
School of industrial and information
engineering

Department of Aerospace Science and Technologies - DAER

Master of Science in Space Engineering

VISUAL IMAGING FOR RELATIVE POSITION

RECONSTRUCTION IN SATELLITES PROXIMITY

OPERATIONS: PRELIMINARY ANALYSES

Giacomo Petrucci

916208

Supervisor: Prof. M. Lavagna

A.Y. 2020/2021

Abstract

During the course of time the continuous evolution of space missions required the
development of more and more advanced technologies. In the recent years, autonomous
spacecrafts, able to perform different kinds of mission, have been increasingly exploited.
This type of spacecrafts are often equipped with optical sensors and a computer vision
software , in such a way that even the most dangerous, but also the most interesting and
useful, types of mission can be carried out, like docking, sampling of an asteroids, relative
navigation, etc...
Computer vision is the field dealing with optical navigation, and it involves, as the name
implies, the understanding of how a computer see and elaborate an image. It is based on
many technologies, statistics, signal and image processing, optimization methods etc... .
A common and popular process by which visual navigation is carried out is the V-SLAM,
Visual-Simultaneous Location And Mapping, which, as stated by the name, is able to
estimate the location of a robot, equipped with a camera, in an unknown environment
and simultaneously mapping the latter.
In this thesis the V-SLAM algorithm, in one of its many forms, has been implemented
and investigated, in order to see if a real time implementation could be possible, and its
accuracy. The architecture selected is that of a monocular camera applied to the space
sector. Due to the versatility of the instrument, both for the performance and the economic
side, a synthetic image generator software, capable of reproducing almost any scenario,
has been exploited to create images of an unknown, for now, and uncooperative object.
Due to the vast number of scenario it could not be possible to perform tests on everyone
of them, so one has been chosen, proximity operations/active space debris removal. In
the last year the worldwide interest for this new type of mission has been exponentially
increasing and, for this reason, it has been selected. The target chosen is a space debris
called VESPA. Then, after the creation of the images, a feature based method for relative
navigation has been implemented and tests have been carried out. In conclusion, the
results obtained are presented and critically analysed, giving also some tracks to follow in
order to improve their quality.

Keywords: Relative navigation, Optical navigation, Active space debris removal,
Computer vision, SLAM, ORB-SLAM, synthetic images, Blender.

i

Sommario

Durante il corso del tempo la continua evoluzione delle missioni spaziale ha richiesto
lo sviluppo di tecnologie sempre più avanzate. Negli ultimi anni, spacecrafts autonomi
capaci di eseguire differenti tipi di missioni, sono stati utilizzati sempre di più. Questa
tipologia di spacecraft sono spesso equipaggiati con dei sensori ottici ed un software di
computer vision, così che anche le tipologie di missioni più pericolose, ma allo stesso tempo
più interessanti ed utili, possano essere svolte, per esempio, attracco, raccolta di campioni
da un asteroide, navigazione relativa, ecc...
Il campo della computer vision è quello che si occupa della navigazione ottica, e, come si
può evincere dal nome, cerca di capire come un computer vede ed elabora le immagini.
Si basa su molte tecnologie, statistica, elaborazione di immagini e di segnali, metodi
d’ottimizzazione, ecc... . Un processo comune e popolare con il quale è spesso svolta la
navigazione ottica, è lo V-SLAM, Visual-Simultaneous Location And Mapping, che, come
possibile capire dal nome, si occupa di stimare la posizione di un robot, dotato di una
camera, in un ambiente sconosciuto e simultaneamente mappare quest’ultimo.
In questa tesi l’algoritmo dello V-SLAM, in una delle sue tante forme, è stato implementato
ed investigato, così da vedere se un suo utilizzo in tempo reale sia possibile, nonchè anche la
sua accuratezza. L’archietettura selezionata è quella di una camera monoculare nel settore
spaziale. Grazie alla versatilità dello strumento, sia dal lato delle prestazione che da quello
economico, un software in grado di generare immagini sintetiche, fedeli quasi a tutti i tipi di
scenario, è stato utilizzato per creare immagini di un oggetto sconosciuto, per il momento, e
non cooperativo. Poiché il numero di scenari possibili è molto vasto, non è possibile fare dei
test su ogni di essi, uno di loro è stato scelto, operazione di prossimità/Rimozione attiva di
detriti spaziali. L’interesse del mondo in questo argomento è aumentato esponenzialmente
negli ultimi anni e per questo è stato selezionato. L’oggetto scelto come obbiettivo è un
detrito spaziale di nome VESPA. Quindi, dopo la creazione delle immagini, un metodo
per la navigazione relativa basato sulle features è stato implemetato e dei tests sono stati
svolti. In conclusione, i risultati ottenuti sono presentati e analizzati con occhio critico,
dando anche dei consigli da seguire in futuro per migliorarli.

Parole chiavi : Navigazione relativa, Navigazione ottica, Rimozione attiva di detriti
spaziali, Computer vision, V-SLAM, ORB-SLAM, Immagini sintetiche, Blender.

ii

Ringraziamenti

Prima di proseguire con la trattazione dell’elaborato, mi sembra doveroso spendere
qualche riga per ringraziare tutte le persone che hanno reso tutto questo, chi in un modo
chi nell’altro, possibile.

In primo luogo vorrei ringraziare la Professoressa Michèle Lavagna per avermi dato
l’opportunità di lavorare su questa tesi, che con le sue sfide e le sue difficoltà mi ha
permesso di acquisire conoscenze riguardo nuovi argomenti, andando così ad allargare e
ad arricchire la mia formazione qui al Politecnico di Milano.

Inoltre vorrei ringraziere tutti i miei amici, sia vecchi che nuovi, per avermi fatto
compagnia e a volte anche "costretto" a studiare durante questi anni. In futuro ricorderò
con malinconia l’estati passate in taverna a studiare con Michele e Simone, dove una
pausa di 10 minuti si trasformava in un torneo di 1 ora a ping pong, le ore passate in
biblioteca a studiare con Francesco, Gloria, Stella, Marco, Gianluca e Paolo, i giorni passati
al politecnico a seguire le lezioni dove, fra una chiacchierata ed un’equazione, il tempo
volava. Una menzione speciale va fatta per Gianluca e Paolo, poiché con loro ho condiviso
la maggior parte di questo percorso, mi hanno sempre spinto a dare il massimo ed erano
sempre lì pronti ad aiutarmi. Gianluca è tutt’ora il miglior coinquilino che abbia mai
avuto, condividevamo e condividiamo tutt’ora le stesse passioni, dentro e fuori il poli, ed è
grazie a lui se ho iniziato ad appassionarmi alla palestra, del resto, come dicevano i latini,
"mens sana in corpore sano". A Paolo, o meglio, ai suoi appunti, devo tutto, senza di
loro preparare gli esami sarebbe stato molto più difficile e lungo. Infine voglio ringraziare
anche tutti i "ragazzi di moscova" per le bellissime serate passate in questi anni.

In ultimo, ma assolutamente non per importanza, vorrei ringraziare tutta la mia famiglia
per essermi stata sempre accanto, la zia Patrizia, che fino all’ultimo si è preoccupata di
come stesse andando questo mio percorso, lo zio Francesco ed i suoi gelati post-pranzo, le
mie cugine Mariacristina e Francesca, loro mi hanno insegnato che bisogna sempre andare
avanti con il sorriso, anche se la vita fa di tutto per togliertelo. Un grazie ai miei fratelli

iii

Paolo e Stefano, che sono stati e sono tutt’ora i miei modelli di riferimento. La nonna
Adele, la mitica ed inarrestabile nonna Adele, sempre pronta a cucinarmi qualsiasi cosa
le chiedessi perchè alla fine, la cosa importante, era se io avessi mangiato oppure no, i
polpettoni che mi facevi riportare qui a Milano rimarranno per sempre nel mio cuore. In
fine un grazie enorme ai miei genitori, Rocco e Manola, sempre presenti e comprensivi, mi
hanno sempre permesso di seguire le mie passioni senza mai farmi pesare nulla. Non me
ne voglia Papà ma la mamma è sempre la mamma, magari a volte un po’ oppressiva e
pressante, ma del resto, quale mamma non lo è? Si è preoccupata sempre di tutto, e di
più, non lasciando mai nulla al caso, qualsiasi cosa chiedessi arrivava subito, aveva una
soluzione ad ogni problema ed è stata sempre la mia sostenitrice numero uno.

Grazie a tutti, davvero.

iv

Contents

Abstract . i

Sommario . ii

Ringraziamenti . iii

List of Figures . viii

List of Tables . xii

Acronyms . xii

1 Introduction 1

1.1 State of the Art: Relative navigation in space 2

1.2 Computer vision: Visual relative navigation methods 4

1.3 Rendering for space application . 7

1.4 Thesis overview . 9

1.4.1 Thesis structure . 9

2 Relative Dynamics 11

2.1 Orbital Dynamics and Reference frames 11

2.1.1 Reference frames . 13

2.2 System of equation for nonlinear relative dynamics 15

2.2.1 Perturbations and Control actions 17

2.2.2 Linearized model, the Clohessy-Wiltshare Equations 17

2.3 System of equations for coupled tran- slational-rotational relative
dynamics . 18

2.3.1 Relative rotational model . 19

2.3.2 Relative translational model . 21

3 Camera 24

3.1 Projective geometry . 25

3.1.1 Projective geometry transformation 25

v

3.2 Camera Model . 26

3.3 Camera calibration . 29

3.4 Photography and optics . 31

4 Computer Vision 35

4.1 VO and SLAM . 35

4.2 Direct and Feature-based methods . 36

4.2.1 Feature detection . 37

4.2.2 Feature Matching and Tracking 37

4.3 ORB-SLAM . 38

4.3.1 General SLAM algorithm . 38

4.3.2 Oriented FAST and Rotated BRIEF 39

4.4 Epipolar geometry . 39

4.5 Fundamental and Essential matrix estimation 41

4.6 Extrinsic parameters from essential matrix 42

4.7 Triangulation . 42

4.8 Perspective n-Point Problem . 43

4.9 Bundle Adjustment . 45

5 Thesis workflow and set-up steps 46

5.1 VESPA . 47

5.1.1 VESPA’s physical characteristics 47

5.1.2 VESPA’s orbit . 49

5.2 Creation of synthetic images in
Blender . 50

5.2.1 VESPA’s model . 51

5.2.2 Environment’s model . 54

5.3 Camera calibration step . 57

5.4 V-SLAM algorithm . 59

5.4.1 Map initialization . 60

5.4.2 Tracking . 61

5.4.3 Local mapping . 61

5.4.4 Loop closure . 62

vi

6 Results 63

6.1 Camera calibration results . 63

6.1.1 First calibration . 63

6.1.2 Second calibration . 65

6.1.3 Third calibration . 65

6.1.4 Fourth calibration . 66

6.1.5 Extra: tangential distortion coefficients 67

6.2 Algorithm validation . 67

6.3 V-SLAM results . 68

6.3.1 Trajectory . 68

6.3.2 Test case 1 . 69

6.3.2.1 Full Trajectory . 69

6.3.2.2 Half trajectory . 80

6.3.2.3 No local bundle adjustment 86

6.3.3 Test case 2 . 90

6.3.3.1 No local bundle adjustment 92

6.3.4 Test case 3 . 93

7 Conclusions 96

7.1 Future development . 97

7.1.1 Synthetic images . 97

7.1.2 V-SLAM . 97

Bibliography . 99

vii

List of Figures

1.1 Autonomous relative navigation applicable fields 2

1.2 ORB-SLAM workflow [21] . 6

1.3 SurRender Software . 8

1.4 Planet and Asteroid Natural Scene Generation Utility 8

1.5 Blender software . 9

2.1 Position and velocity along the orbit . 12

2.2 Graphic representation of four of the six keplerian elements [31] 12

2.3 Earth Centered Inertial reference frames [32] 13

2.4 Sun Centered Inertial reference frame [33] . 13

2.5 Perifocal reference frame [34] . 14

2.6 LVLH reference frame for the relative motion [35] 14

2.7 Rotating reference frame [36] . 15

2.8 Chief and Deputy S/C [36] . 15

2.9 Chief and deputy S/C, two rigid-body with body-fixed reference frame [36] . . 21

3.1 Railway tracks converging at infinity [40] . 24

3.2 Pinhole camera model [39] . 27

3.3 Translation and rotation between the world and the came coordinate frame [39] 28

3.4 Radial distortion effect: Original image (upper left), Negative radial distortion

(upper right), Positive radial distortion(bottom) [42] 30

3.5 Misalignment of the lens and the image plane [43] 30

3.6 Tangential distortion effect [44] . 31

3.7 Converging lens [46] . 32

3.8 Field of view [48] . 33

3.9 Focal length effect [49] . 33

4.1 Loop closure example . 36

4.2 Two view geometry . 40

4.3 The four possible solutions for calibrated reconstruction from E 43

5.1 Thesis workflow . 46

viii

5.2 VESPA with Proba-V on top [57] . 48

5.3 Interesting elements/features of VESPA upper part 49

5.4 VESPA’s orbit in the ECI reference frame . 50

5.5 VESPA’s orbit in the SCI reference frame . 50

5.6 CAD model of VESPA . 51

5.7 Textures: from the upper-left corner, carbon fiber [61], gold and aluminum . . 52

5.8 Node for the creation of the desired material, carbon fiber case 53

5.9 VESPA’s complete model . 54

5.10 Earth’s model in blender . 55

5.11 Clouds and Atmosphere model’s nodes . 55

5.12 Full model . 57

5.13 Checkerboard pattern . 58

5.14 Checkerboard used . 59

5.15 ORB-SLAM overview . 60

6.1 Part of the set of image of the checkerboard used for calibration 63

6.2 Detected grid points for the first two images of the set 64

6.3 Reprojected grid points for the first two images of the set 64

6.4 Mean reprojection error per image on the first run 64

6.5 Extrinsic parameters visualization . 65

6.6 Mean reprojection error per image on the fourth run 66

6.7 Comparison between the reconstructed trajectory and the real one in the

validation test. 68

6.8 Trajectory of the camera around VESPA . 69

6.9 First frame . 70

6.10 Map initialization matching . 70

6.11 Comparison between the reconstructed trajectory and the real one 71

6.12 Uncertainty on 3D points due to the angle between the views 71

6.13 Comparison between the reconstructed trajectory and the real one with map

initialization performed by the first and third frames 72

6.14 Map initialization step between the first and the eleventh frame 73

6.15 Comparison between the reconstructed trajectory and the real one with with

map initialization performed by the first and the eleventh frames 73

6.16 Comparison between the reconstructed trajectory and the real one with with

map initialization performed by the first and the 16th frames 74

6.17 2 FS: Comparison between the reconstructed and real trajectory (left), Error

(right) . 75

ix

6.18 2 FS: Important times during the tracking (left), closeup to the first three

important times that are not visible (right) 75

6.19 2 FS: Fundamental times (left), Number of features (right) 76

6.20 7 FS: Comparison between the reconstructed and real trajectory (left), Error

(right) . 77

6.21 7 FS: Important times during the tracking (left), closeup to the first three

important times that are not visible (right) 77

6.22 7 FS: Fundamental times (left), Number of features (right) 78

6.23 8 FS: Comparison between the reconstructed and real trajectory (left), Error

(right) . 78

6.24 8 FS: Important times during the tracking (left), closeup to the first three

important times that are not visible (right) 79

6.25 8 FS: Fundamental times (left), Number of features (right) 79

6.26 First frame . 80

6.27 Map initialization matching . 80

6.28 Comparison between the reconstructed and real trajectory with 1 frame-step. . 81

6.29 2 FS: Comparison between the reconstructed and real trajectory (left), Error

(right) . 81

6.30 2 FS: Important times during the tracking (left), closeup to the first three

important times that are not visible (right) 82

6.31 2 FS: Fundamental times (left), Number of features (right) 82

6.32 7 FS: Comparison between the reconstructed and real trajectory (left), Error

(right) . 83

6.33 7 FS: Important times during the tracking (left), closeup to the first three

important times that are not visible (right) 83

6.34 7 FS: Fundamental times (left), Number of features (right) 83

6.35 8 FS: Comparison between the reconstructed and real trajectory (left), Error

(right) . 84

6.36 8 FS: Important times during the tracking (left), closeup to the first three

important times that are not visible (right) 84

6.37 8 FS: Fundamental times (left), Number of features (right) 84

6.38 2 FS: Comparison between the reconstructed trajecotry and the real one with

the map initilization performed by the first and third frame. 85

6.39 8 FS: Comparison between the reconstructed trajectory and the real one with

map initialization performed by the first and fifth frame (left), error (right) . . 85

6.40 8 FS: Comparison between the reconstructed and real trajectory (left), Error

(right) . 86

x

6.41 8 FS: Important times during the tracking (left), closeup to the first three

important times that are not visible (right) 87

6.42 8 FS: Fundamental times (left), Number of features (right) 87

6.43 7 FS: Comparison between the reconstructed and real trajectory (left), Error

(right) . 87

6.44 7 FS: Important times during the tracking (left), closeup to the first three

important times that are not visible (right) 88

6.45 7 FS: Fundamental times (left), Number of features (right) 88

6.46 4 FS: Comparison between the reconstructed and real trajectory. 89

6.47 4 FS: Error. 89

6.48 4 FS: Important times during the tracking. 89

6.49 First frame . 90

6.50 Map initialization matching . 91

6.51 Comparison between the reconstructed trajectory and the real one (left), Error

(right) . 91

6.52 Important times during the tracking (left), closeup to the first three important

times that are not visible (right) . 91

6.53 Fundamental times (left), Number of features (right) 92

6.54 7 FS: Comparison between the reconstructed trajectory and the real one . . . 92

6.55 7 FS: Error . 93

6.56 7 FS: Important times during the tracking 93

6.57 Image of the Earth used as background [67] 94

6.58 First frame . 94

6.59 Map initialization matching . 94

6.60 Comparison between the reconstructed trajectory and the real one 95

6.61 Error . 95

xi

List of Tables

5.1 VESPA possible elements of interest . 49

5.2 VESPA’s orbital elements . 49

5.3 Camera’s characteristics . 53

xii

Acronyms
DOF Degree Of Freedom
S/C Spacecraft
ECI Earth Centered Inertial
LVLH Local Vertical Local Horizontal
SCI Sun Centered Inertial
CW Clohessy-Wiltshare
CM Center of Mass
FOV Field of VieW
ORB Oriented FAST and Rotated Brief
ISS International Space Station
VO Visual Odometry
SLAM Simultaneous Localization and Mapping
KF Kalman Filter
EKF Extended Kalman Filter
ROI Region of Interest
VESPA VEga Secondary Payload Adapter
CFRP Carbon Fiber Reinforced Polymer
AU Astronomical Unit
fps frame per second
BU Blender Unit
FS frame-step
RMSE Root Mean Square Error
SVD Single Value Decomposition
DLT Direct Linear Transform
GNC Guidance.Navigation and Control

xiii

1 Introduction
Since the dawn of times, any being starts taking its first steps into the world by

mapping it and then it moves accordingly, in such a way it doesn’t hit any object/obstacle
and hurt itself. This process can be defined as relative navigation. In space, this concept
can be expressed as the problem of estimating the relative position and orientation of
one object, typically a S/C, called deputy with respect to another one called chief, the
latter can be any space object, comet, S/C, asteroids, etc. Like said before, this is a
fundamental process for any entity, starting from the simplest life forms and finishing with
rovers exploring new planets, in particular their surface, so of course, satellites are not an
exception, and the necessity to have some sort of localization procedures is more important
now than ever. Obviously, these kind of procedures already exist, but they are mostly
remote ones, nowadays the concept of autonomy, having on-board awareness, is emerging
and a lot of interest is put into it, especially for missions involving formation flying and
proximity operations since time critical decision must be made in such a situation.

Two object orbiting together can be categorized into two classes:

• Cooperative: The two object can communicate to each other, a telecommunication
link is established and the two object share the appropriate pose information. This
class is mainly composed of S/C since instruments needed to reconstruct the state
are necessary and they must be active, in fact each S/C is tasked to reconstruct its
state and then share it with the other/others.

• Uncooperative and unrelated: As the name implies, the two object don’t coop-
erate, like for example a S/C and a comet. In this class, typically, the S/C is used
to study/acquire information about the other object.

In the case of the second class, the question of how to reconstruct the distance and the
pose of the object of interest is fundamental, laser or camera based sensor are a common
choice to answer that question. A LiDAR, Light Detection and Ranging, is, as can be
deduced from the name, a radar that exploits light, a laser, in order to obtain the range
of the target object. Through the spinning and the tilting of the laser beam, a full scan
of the environment can be performed too. Although these solutions have an high degree
of accuracy, and so can be applied to the problem of relative navigation with respect to
another satellite or space object [1], they are very expensive. On the other hand, cameras
offer simple and low cost solutions, but with a reduced accuracy of the results. If the latter
solution is chosen, the saved resources could be redirected towards achieving other mission

1

objectives. Camera can be used in two configurations, mono and stereo, the former is very
appealing for cubesats, while the latter is used in order to obtain the depth of the scene.
The two sensor described above can be also used together in order to indirectly obtain the
scene depth.

As said before, the concept of autonomy is exponentially gaining interest, this is due to
the fact that it will grant great improvements to the current generation of space mission
and it will also affect the future one. As said in [2], autonomy is the ability of a system to
achieve goals operating independently of external control, so it require self-directedness, to
achieve its goal, and self-sufficiency, to operate independently.

In the Space sector this can affect many different fields, spanning from spacecraft
formation flying to rover ground operation, Fig. 1.1.

Figure 1.1: Autonomous relative navigation applicable fields

In order to perform close relative navigation and subsequently, if requested, proximity
operations in a safe way, precise pose knowledge is necessary. This new approach can
be applied to a lot of actions, starting from the ones with cooperative class objects,
like, docking, refueling, satellite inspection and maintenance, to the ones with unknown
and uncooperative objects, like, space debris removal, asteroid navigation and mining.
Although the introduction of autonomy could boost the performance of a space system, it
must not be taken lightly since an high risk is involved in its implementation.

1.1 State of the Art: Relative naviga-

tion in space
During the course of time, from the first space mission on wards,a lot of them were

developed with different forms of relative navigation, here, some of them will be briefly
discussed. A lot of technology demonstration mission have seen the light due to the

2

increased interest in autonomous proximity operations.
Talking first about missions with cooperative objects, and starting from one of the

most recent and prominent one, docking with the ISS, International Space Station, has
become an important problem to solve and in 2009 a solution based on LiDAR has been
proposed by NASA and the Canadian Space Agency. An all-in-one solution, called TriDAR
(Triangulation & Light Detection and Ranging Automated Rendezvous & Docking), it
is an automated rendezvous and docking sensor composed by a LiDAR and a thermal
imager. The shape of the target is assumed to be known and is compared to the estimated
one to retrieve important parameters like the relative range and position between the
spacecraft and the ISS, up to 1 km distance. Three Space Shuttle missions and Cygnus
spacecraft adopted this technology [3]. Also Dragon spacecraft uses a similar sensor asset
called DragonEye. Relative GPS navigation is used up to 750 m, after which the ISS is
tracked using the LiDAR, DragonEye, and thermal cameras [4].

Going back in time, in 2005 NASA launched two S/Cs, XSS-11 and DART [5]. The
first was meant to conduct proximity operations with its carrier, the second stage of the
Minotaur I rocket, while the second should have performed a 2d hours mission with no
human intervention, in which several rendezvous were included, but unfortunately it ended
with a soft collusion with its target due to a malfunction of the spacecraft. Going further
back, in 1997, the first mission for demonstration of rendezvous and docking capabilities
was launched, it was the Japanese ETS-VII [6]. Proximity operations were carried out
automatically and with remote control through a camera-aided robotic arm and in orbit
refuelling was also investigated successfully.

Regarding relative navigation around unknown and uncooperative space object, the
main and most recent mission are Hayabusa 2 [7], OSIRIS-Rex [8] and Rosetta [9]. Since
the set-up of the mission is similar to the one under the study of this thesis, few camera
parameters are listed too.

Rosetta was lunched in 2004, it consisted of an orbiter and a lander for the first
ever study of a cometa, the 67P/Churyumov-Gerasimenko. It was equipped a redundant
navigation camera called NAVCAM [10] for AOCS only, and a pair of camera for optical,
infrared and spectroscopic imaging called OSIRIS [11]. The imaging data necessary for
the optical navigation of the S/C around the comet were provided by the NavCam. It
had a CCD sensor resolution of 1024x1024 px and a focal length of 152.5 mm with an
aperure of 30 or 70 mm, depending on the mode. Regarding OSIRIS, it had two cameras,
a high resolution Narrow angle camera, NAC, with a CCD detectors of 2048x2048 px,
that, as stated before, was used to produce high resolution images, with a focal length
of 717 mm and an aperture of 90 mm, giving a f number of, almost, 8, and a Wide Angle
Camera, WAC, mainly used to study the intensity of gas emissions and dust-scattered

3

sunlight, it had a focal length of around 140 mm.
Talking about the other two missions cited before, they are both an asteroid sample and

return, the first, Hayabusa-2, from JAXA (Japanese Space Exploration Agency) developed
to study Asteroid 1999 JU3 [12], while the second, OSIRIS-REx, was developed by NASA
to study asteroid Bennu [13], and, in case of necessity, asteroid 1999 JU3 as backup. The
latter is provided with a redundant LiDAR for ranging to the surface and two NavCams
[14], used to support the navigation during various mission operations, in particular during
the sampling operation. The images obtained from them are used to track the star-fields
and landmarks on Bennu in order to determine the spacecraft position. Going back to
Hayabusa-2, it had a LiDAR and three Optical Navigation Cameras, two them are wide
angle cameras and are called ONC-W1 and ONC-W2, the last one is a telescopic camera
and is called ONC-T. All of them use a CCD detectors of size 1024x1024 px and the
telescopic one has a focal leght of 121 mm and an aperture of 15 mm.

As can be seen from the cases presented, these missions generally use a mix of laser-
based and vision-based sensor for relative navigation. In particular, for Rosetta, visual
navigation was fundamental for the whole mission duration. When in the far approach
navigation, images were used to understand the centroid position of the comet and perform
optical measurements. In the following phase of comet characterization and mapping a
visual navigation based on landmarks was performed on ground, a manual process at first
and automatic later on, it allowed to predict the S/C position and orientation along with
a very detailed shape of the comet.

These system however had limitations, such as the amount of data that could be
sent due to the link budget, thus limiting the possibilities for proximity operations. This
problems could be solved by researching and developing more autonomous navigation
system.

1.2 Computer vision: Visual relative nav-

igation methods
Computer vision is very vast and multidisciplinary fields, it is tasked with the mission

of understanding and extract useful information from images. Though at the beginning as
an easy problem to solve, it proved to be a very complex challenge and it still is. The field
in which development is nowadays more innovative is that of robotics, it contains the best
tolls for estimating the trajectory of a camera. Due to the numerous way this technology
can be used, it is becoming increasingly popular even in the space context, in fact, a wide

4

range of missions like, in-orbit rendezvous and docking, asteroid and small body sampling
operations and planetary approach and landing, use it.

During the years numerous algorithms were developed in the various sectors, but
fundamentally they are based on two methods: Visual Odometry, VO, and Simultaneous
Location and Mapping, SLAM. Starting from the latter, as stated in "Simultaneous
localization and mapping: Part I" [15]:

"SLAM is a process by which a mobile robot can build a map of an environment and at
the same time use this map to deduce its location."

Since the argument of the discussion is computer vision, the SLAM problem is usually
referred as V-SLAM problem where the V stands for Visual. There are mainly two
way to approach and solve the online, real time version of it. The first is based on the
use of filtering techniques, the most popular being the ones of the Kalman filter family
(KF,EKF,...). They form a toll that continuously predicts and update the state of a
dynamical system in time recursively. Due to the fact that they are very light in terms of
memory and are fast, they are the ideal tool for real time problems and embedded system
for space applications [16] [17].

The second one is based on the keyframe method, it is popular due to the optimization
approach of global bundle adjustment. It is an optimization algorithm for structure and
motion refinement but ut us usually too expensive, in terms of memory and velocity, to
be executed in real time. To overcome this hurdle, it is possible to use this algorithm
on a subset of the available frames, also called keyframes. They are selected from the
available frames and are mainly used to reduce the computational load and enable real
time performances. As for the first way, also here there are popular algorithm, one of
them is the ORB-SLAM [18], it is a complex workflow, as can be seen in Fig. 1.2 capable
of automatic map initialization, loop detection and closure, re-localization.
To see which of the way gives better result, a sturdy to campare the two has been performed,
in [19], and it concluded that keyframe-based techniques with bundle adjustment are
better than the filtering ones for the same computational cost, but, if small processing
budget is available, the last one might be better.

For space application, solutions include the use of ORB-SLAM for S/C non-cooperative
rendezvous image sequences, such as in [20]. It performs in an accurate way in very
different scenarios, differently from the robotic fields. It must be said, as written in the
previously cited paper, that pose reconstruction is lost when too many features disappear
from the images, but the algorithm is always able to recover the trajectory once it revisits
previously known map features.
According to "ORB-SLAM: a Versatile and Accurate Monocular SLAM System" [21]:

5

"(...) no other system has demonstrated to work as in many different scenarios and with
such accuracy. Therefore our system is currently the most reliable and complete solution

for monocular SLAM."

Figure 1.2: ORB-SLAM workflow [21]

Going to the Visual Odometry, as reported in "Visual Odometry [Tutorial]" [22]:

"VO is the process of estimating the egomotion of an agent (e.g. vehicle, human, robot)
using only the input of a single or multiple cameras."

The operational concept is to examine how the motion of the vehicle generates changes
in images, thus reconstructing the pose of the camera, so of the vehicle itself, in an
incremental way. It can be considered a subcategory of the V-SLAM problem. The main
difference between the two methods is that the latter, VO, focuses on local consistency
while the former focuses on the global consistency of the trajectory. The feature that
differentiate them is the one on loop closure, performed in the V-SLAM. It consists on
the recognition of features from area already visited, in order to correct the entire list of
stored features and thus improve the accuracy of the results. Due to these characteristics
different methodologies are use to solve the VO problem and it might be useful mainly in
situation where it would be impossible, or improbable, to revisit a particular 3D scene
point twice, such as landing trajectory or rover ground operations, in fact, the Mars
Exploration mission [23], exploits the VO to support attitude and position estimation.
Since it’s possible that not every part of the image is in the interest of the task that must

6

be performed, and therefore should not be processed in a V-SLAM framework, a feature
that might be needed in a vision-based algorithm is the one of ROI, Region of Interest,
estimation. It can be the case of a spacecraft image with the Earth in the background, in
fact, the different motion of the target S/C and the background can be very dangerous for
the mapping and trajectory estimation process.

1.3 Rendering for space application
As for every new (and old) technology, everything must be first tested, for that

generations of synthetic images became increasingly important, as a tool to support
physical tests.

There are two main research areas:

• Simulation of the surface of celestial bodies.

• Simulation of images from sensors, like navigation cameras.

The testing of these systems, even in terrestrial environment, is very expensive and
complicated [24]. Four main problems have been encountered in the use of physical models
[25]:

• Illumination, using lamps to recreate the different kind of lighting that can be present
during a mission and, the movement of light during its various phases, can be quite
challenging.

• Model Calibration and Measurement, the calibration of the test instrumentation can
be quite difficult and, not only the miscellaneous tools, but also the various physical
models require attention in this regard.

• Low flexibility in changing the scenario, as the name implies, this is related to the
difficulty of changing the scenario to find out how robust an algorithm is. Since
modifying the first model would be difficult, it will be necessary to create a new one,
process that turns out to be time consuming and, more important, expensive.

• Scalability and Resolution, as before, the problem can be inferred from the name,
due to the available space, it is almost impossible to built the model in 1:1 scale.
When recreating a model in scale it is required that the accuracy of the details will
not be altered so, manufacturing constraints are present, and the model can’t be
scaled at will.

7

Even if important problems are present, the use of laboratory tests is still fundamental
since this is the only way in which, for example, test real sensor with real noise. The use
of a rendering software can help all these procedures, but not substitute them, indeed, it
can be an useful instrument to deploy in combination with a GNC facility.

Imaging software for the creation of synthetic image, even in a space environment,
already exist and are available online. One of the is SurRender [26], Fig. 1.3, developed
by Airbus Defence & Space. It utilizes a ray tracing engine in order to generate images
specifically for space scenarios, such as planetary approach, landing and in orbit rendezvous.
The software is free to use upon request.

Figure 1.3: SurRender Software

Another similar software is PANGU [27], Fig. 1.4, Planet and Asteroid Natural
Scene Generation Utility, developed by the University of Dundee in Scotland with ESA’s
support. It is able to generate camera and LiDAR images of different planetary bodies and
spacecraft to test vision-guided navigation, guidance and landing system. The software is
licensed and to be used free of charges in ESA projects only.

Figure 1.4: Planet and Asteroid Natural Scene Generation Utility

Both of them include various effects, some induced by the space environment and some

8

that can happen everywhere, like, lens distortion, internal light scattering, motion blur,
electronic noises, rolling shutter etc.

The software used in this thesis to obtain synthetic images of a spacecraft is Blender

[28], Fig. 1.5. It is a free and open source 3D creation suite, very popular in the
entertainment industry, often used in animation, film production and 3D modeling.

Figure 1.5: Blender software

1.4 Thesis overview
The aim of this thesis is to explore the topic of vision-based real time relative navigation

between two unknown and uncooperative space objects in order to check if it is possible
to apply it to future missions, such as active space debris removal, planetary landing,
sampling, etc. In order to do so, one of the previous scenario has been selected, active
space debris removal, and a target has been chosen, VESPA. Blender is used to develop
realistic space images of it, implementing data from a real camera. The calibration of its
parameters is then performed, as should be done for any real mission. A V-SLAM like
method has been implemented in Matlab and in order to replicate as close as possible the
actual scenario of a mission, where the computational power of a CPU is, usually, not very
high, the CPU of the used computer, a 2,2 GHz Intel Core i7 quad-core, has been capped
at 40% of its full potential.

1.4.1 Thesis structure
Regarding the structure of the thesis, it is as follow:

• Chapter 2
It exposes some basic concepts of theory concerning relative dynamics, then going
into more specific cases.mainly investigating the system of equations for nonlinear
translational-rotational relative dynamics.

• Chapter 3
In this section projective geometry theory and the basic camera model are discussed.

9

It starts with the basis of homogeneous transformations and finsh with the image
formations through a pinhole camera model and the calibration of a camera.

• Chapter 4
It contains an insight into the field of computer vision (theory and method), starting
from feature extraction, feature matching and tracking and then epipolar geometry.
It also includes important numerical methods like fundemental matrix estimation,
triangulation and PnP, Perspective-n-Point.

• Chapter 5
In this section the workflow of the thesis and its set-up steps are presented. Starting
from the target identification, the creation of its model in blender, the process
to follow in order to calibrate the parameters of the camera and ending with the
presentation of the V-SLAM algorithm implemented.

• Chapter 6
It shows the results of the analysis: first the parameters obtained from the camera
calibration are reported and after, the analysis of the V-SLAM results are discussed.

• Chapter 7
The conclusion of the work and its future developments are here reported.

10

2 Relative Dynamics
The main task of an autonomous navigation system is, as the name implies, to make

navigation around the specified target possible; for this reason, Relative Dynamics has
been one of the topics first investigated. The goal of any computer vision algorithm is the
one of reconstructing it from images, estimating how the target appears in the different
frames.

It is imperative to remember that the environment in which the mission is taking place
is space and the relative dynamics in this kind of scenario is very different, for example,
from those present in the field of robotics. During the passage of time several models
have been developed, each one with its own limitations and constraints, depending on
the characteristic of the orbit of the target, the perturbations considered and even the
available computing power, therefore, it is not easy to establish the most suitable one.

The models present in literature range over the simplest and most common ones, based
on point masses [29], to the more complex and accurate ones able to describe the relative
motion of a 6 DOF spacecraft.

In the following sections the nonlinear relative dynamics system of equations and the
coupled translational-rotational [30] relative dynamics system of equations are derived,
but, before jumping in these more complex topics, a brief description of the general orbital
dynamics model, and the different kind of reference frames used in space, are presented.

2.1 Orbital Dynamics and Reference frames
The two-body problem equations of motion in an inertial reference frame are given by:

r̈ = −µ r
r3

(2.1)

where r is the position of the S/C and µ is the standard gravitational parameter, described
as µ= GM, in which, G is Newton’s constant of gravitation and M is the mass of the body
the S/C is orbiting. It’s important to point out that in this description of the equation of
motion a simplification has been made, the mass of the S/C has been neglected, since,
usually, it’s various order of magnitude less than the one of the main body, in this case
planets.

Another way to describe the orbit of the S/C is by using the keplerian elements:

11

Figure 2.1: Position and velocity along the orbit

• α = semi-major axis

• e = eccentricity

• i = inclination

• Ω = Right Ascension of the Ascending node

• ω = argument of perigee

• ν = True anomaly

Figure 2.2: Graphic representation of four of the six keplerian elements [31]

A graphic representation of the last four keplerian elements can be seen in fig. 2.2.
Regarding α and e, they are the classic parameter of any ellipses.
Since this is a general and basic topic for the sector, it won’t be shown how to derive these
elements from the position and velocity of the S/C.

12

2.1.1 Reference frames
In this section some standard reference frames are described since most of them are

used through this chapter.

• ECI, Earth Centered Inertial reference frames [I](Fig. 2.3): Inertial reference frame
where X points towards the vernal equinox and forms the equatorial plane with Y.
Z is positive towards the North Pole.

Figure 2.3: Earth Centered Inertial reference frames [32]

• SCI Sun Centered Inertial reference frames [S](Fig. 2.4): Inertial reference frame
where Xs points towards the vernal equinox, Zs is normal to the ecliptic plane and
points towards the Northern Hemisphere and Ys is perpendicular to the Xs and Zs

axes, forming a right-handed coordinate system.

Figure 2.4: Sun Centered Inertial reference frame [33]

13

• Perifocal reference frame [P](Fig. 2.5): x and y denote the orbital plane, with x

pointing towards the periapsis of the orbit, and z perpendicular to the orbital plane,
forming a right-handed coordinate system.

Figure 2.5: Perifocal reference frame [34]

• LVLH, Local Vertical Local Horizontal reference frame [L](Fig. 2.6): x is directed as
the radial vector, y lies in the orbital plane and z completes the frame.

Figure 2.6: LVLH reference frame for the relative motion [35]

• Rotating reference frame [R](Fig. 2.7) used to write equations in polar coordinates.
The unit vector r̂ is directed from the primary radially outward, and the angle θ is

14

measured in the counterclockwise direction from some reference line, PQ, the line of
nodes in the Earth case, to r. The angles ω and f are also shown.

Figure 2.7: Rotating reference frame [36]

2.2 System of equation for nonlinear

relative dynamics

Figure 2.8: Chief and Deputy S/C [36]

As described in eq. 2.1, the two-body problem equations of motion in an inertial
reference frame are:

r̈ = −µ r
r3

(2.2)

and by expressing them for the chief and the deputy they become:

r̈c = −µ
rc

rc
3

(2.3)

15

r̈d = −µ rd

rd
3

(2.4)

where, referring to Fig. 2.8, rc = r0 and rd = r1.
The relative position ρ of the deputy with respect to the chief one, as can be seen from

fig. 2.8, is:

ρ = rd − rc (2.5)

Starting from Eq. 2.3 and subtracting Eq. 2.4, then defining the position of the deputy
with respect to the chief as rd= rc + ρ, the following expression is obtained:

ρ̈ = − µ

||rc + ρ||
(rc + ρ) + µ

rc

rc
3

(2.6)

This discussion started from the ECI reference frame so, an inertial one, however it
would be useful to have the equation written with respect to a non inertial reference
frame, like the LVLH one. The relative acceleration ρ̈ in the LVLH frame can be recovered
starting from [37]:

aa = ar + aτ + ac (2.7)

where aa is the absolute acceleration of the deputy measured in [I], ar is ρ̈, so the
relative acceleration of the deputy with respect to the chief, measured in [L], aτ = aCh +
ω̇ × (rc - rd) + ω × (ω × (rc - rd)) is the entrained acceleration and ac = 2ω × vr is the
Coriolis acceleration. ω is the relative angular velocity of the LVLH frame with respect to
the ECI one, so the difference between their angular velocity; vr is the relative velocity of
the deputy (relative to the chief) ρ̇, so meausered in [L]. Substituing all the terms yelds:

aa − aCh = ar + ω̇ × (rc − rd) + ω × (ω × (rc − rd)) + 2ω × vr (2.8)

since aa - aCh is the relative acceleration of the deputy with respect to the chief
measured in [I], and making the derivative explicit, Eq. 2.8 can be rewritten as:

d2Iρ

d2t
=
d2Lρ

d2t
+
dIωL

dt
× ρ+ IωL × (IωL × ρ) + 2IωL × dLρ

dt
(2.9)

The notation IωL denotes the difference between the angular velocity of the two frames
[L] and [I], ωL - ωI. Since [I] is an inertial reference frames, its angular velocity ωI is null,
so the derivative of IωL measured from the inertial frame [I] or the non inertial one [L], is
the same, for this reason, its derivative doesn’t have any apexes, differently from the ones
of ρ.

Substituting Eq. 2.6 and the quantities of ω, rc and ρ in [L], IωL = [0,0,θ̇]T, rc=

16

[rc,0,0]T, ρ = [x,y,z]T into Eq. 2.9, the system of nonlinear equations for relative motion is
finally derived [36]:

ẍ− 2ḟcẏ − f̈cy − ḟ 2

c x = − µ(rc+x)

[(rc+x)2+y2+z2]
3
2
+ µ

r2c

ÿ − 2ḟcẋ− f̈cx− ḟ 2
c y = − µy

[(rc+x)2+y2+z2]
3
2

z̈ = − µz

[(rc+x)2+y2+z2]
3
2

(2.10)

This set of equation alone is not sufficient to describe the full motion of the deputy,
the equation for absolute motion of the chief, Eq. 2.3, is needed. In Eq. 2.10 the terms fc
(chief true anomaly) and rc appear, they can be obtained solving Eq. 2.3 in [R], where
rc= rc r̂c derivating two r̂c=r̂c (t), it is then obtained:

{
r̈c = rcḟ

2
c −

µ
r2c

f̈c = −2ṙcḟc
rc

(2.11)

Eq. 2.10 and Eq. 2.11 form the complete set needed to obtain the full motion of the
deputy, they form a system of five second order differential equation which can be reduced
in order into the ODEs and then integrated.

2.2.1 Perturbations and Control actions
Up until now, no perturbation d and no control forces u have been considered, to take

them into account it is necessary to add some terms to Eq. 2.10, resulting in a not so
different system of equations:

ẍ− 2ḟcẏ − f̈cy − ḟ 2

c x = − µ(rc+x)

[(rc+x)2+y2+z2]
3
2
+ µ

r2c
+ dx + ux

ÿ − 2ḟcẋ− f̈cx− ḟ 2
c y = − µy

[(rc+x)2+y2+z2]
3
2
+ dy + uy

z̈ = − µz

[(rc+x)2+y2+z2]
3
2
+ dz + uz

(2.12)

As can be seen in the system above, the only differences, with respect to Eq. 2.10, are
the components of the perturbations and control forces.

2.2.2 Linearized model, the Clohessy-Wiltshare Equations
Even if the motion of the deputy is described by a set of non linear equations, under

determined conditions, the system can be linearized and so simplified, this is exactly the
case for the Clohessy-Wiltshare equations [36].

The conditions necessary to apply this method are:

− The chief’s orbit must be circular.

17

− The deputy’s orbit in [I] is only slightly elliptical and slightly inclined with respect
to the chief’s one.

The more these conditions are respected, the more the two models (nonlinear e linear)
overlap, and, provided that the initial conditions are first order small, the motion of the
deputy will appear very close to the chief in a chief-fixed frame.

Since the chief’s orbit is circular it is possible to write rc = αc, where αc is the
semi-major axis, or, in this case, radius, of the orbit. Substituting it to Eq. 2.10 and
expanding the right-hand side into a Taylor series about the origin and taking only the
first-order terms:

− µ(αc+x)

[(αc+x)2+y2+z2]
3
2
≈ n2

0(2x− αc)

− µy

[(αc+x)2+y2+z2]
3
2
≈ −n2

0y

− µz

[(αc+x)2+y2+z2]
3
2
≈ −n2

0z

(2.13)

where n0 =
√

µ
α3
c
.

Rearranging the terms, the set of equations (CW) that governs the relative motion of
the deputy with respect to chief is obtained:

ẍ− 2n0ẏ − 3n2
0x = 0

ÿ + 2n0ẋ = 0

z̈ + n2
0z = 0

(2.14)

Solving this set of equations is straightforward and easier than solving Eq. 2.10.
It must be noted that the method discussed above is just one of many that can be

used to obtain the CW equations.

2.3 System of equations for coupled tran-

slational-rotational relative dynam-

ics
The case described above consider the two S/Cs, the chief and the deputy, as two point

masses, but, when the two are in close proximity and their relative distance is similar in
order of magnitude to their dimensions, they cannot be modelled as such. It is necessary
to take into account both the relative dynamic and the attitude of the chief and the deputy,
and develop a model accordingly.

Each S/C will have its own LVLH frame, [Lc] and [Ld], its own Body frame, [Bc] and

18

[Bd]. For the model discussed in the following sections it is assumed that the satellites are
Earth pointing, so that [Lc] ≡ [Bc] and [Ld] ≡ [Bd].

2.3.1 Relative rotational model
Defining the rotational angular velocity of the deputy relative to the chief as:

ω = ωd − ωc (2.15)

.
where ωc and ωd are, respectively, the angular velocity of the chief and the deputy in
some given reference frame.

It’s possible to parameterize the relative attitude using a rotation matrix D (3× 3)

that transform a vector from the body-fixed frame [Bd] to the body-fixed frame [Bc]. This
parametrization will be performed by using the Euler parameters e, eigenaxis of rotation,
and γ, the eigenangle of rotation, which uniquely parametrize the Euler rotation from a
reference frame to another.The Euler paramenters form a quaternion q = [q1, q2, q3, q4]

T :
q1 = e1sin(

γ
2
)

q2 = e2sin(
γ
2
)

q3 = e3sin(
γ
2
)

q4 = cos(γ
2
)

(2.16)

where e1, e2, e3 are the component of the eigenaxis of rotation e.
The rotation matrix D expressed in terms of quaternions becomes:

D(q) =

q21 − q22 − q23 + q24 2(q1q2 − q3q4) 2(q1q3 + q2q4)

2(q1q2 + q3q4) −q21 + q22 − q23 + q24 2(q2q3 − q1q4)
2(q1q3 − q2q4) 2(q2q3 + q1q4) −q21 − q22 + q23 + q24

 (2.17)

Using the matrix above, the relative angular velocity vector ω can be calculated in
[Bc], remembering that [Lc] ≡ [Bc], as follow:

ω|Lc = ωd|Lc − ωc|Lc = D(q)ωd|Ld − ωc|Lc (2.18)

Utilizing ω and q, the attitude kinematic of the deputy relative the chief can be
described using the quaternion kinematic equation of motion:

q̇ =
1

2
Q(q)ω|Ld (2.19)

with:

19

Q(q) =

−q1 −q2 −q3
q4 −q3 q2

q3 q4 −q1
−q2 q1 q4

 (2.20)

To derive the attitude dynamics of the deputy relative to the chief it is first necessary
to differentiate Eq. 2.15 in the inertial frame [I]:

dIω

dt
=
dIωd
dt
− dIωc

dt
(2.21)

Now, expressing it in [Lc] yields:

dIω

dt
|Lc = D(q)

dIωd
dt
|Ld −

dIωc
dt
|Lc (2.22)

On the other hand, it is possible to obtain the derivative of ω|Lc in [I] following the classic
derivation rule from an inertial fram [I] to a non-inertial frame [V] of a vector [37]:

dIω

dt
=
dLcω

dt
+ ωc × ω (2.23)

Expressing it in [Lc] provides:

dIω

dt
|Lc =

dLcω

dt
|Lc + ωc|Lc × ω|Lc (2.24)

Comparing Eq. 2.22 and Eq. 2.24 yields:

dLcω

dt
|Lc = D(q)

dIωd
dt
|Ld −

dIωc
dt
|Lc − ωc|Lc × ω|Lc (2.25)

Eq. 2.25 relates the derivative of the relative angular velocity to the angular velocity
rates of the deputy and the chief, thus yielding the relative rotational dynamic equations,
but, the objective of this discussion is to have them expressed only by the relative angular
velocity and the angular velocity rate of the chief, thus dropping the one of the deputy.
In order to do that several passages must be followed.

The first one uses the fact that the differentiation of the angular velocity in a fixed
frame or in a body frame gives the same result, so Eq. 2.25 becomes:

dLcω

dt
|Lc = D(q)

dLdωd
dt
|Ld −

dLcωc
dt
|Lc − ωc|Lc × ω|Lc (2.26)

Then it is necessary to multiply Eq. 2.26 by the Inertia Tensor of the chief, Ic.
Now, starting from the total angular momentum H, it is known that:

dH
dt

= N (2.27)

20

where N is the total external torque, if any.
Applying the Eq. 2.23, both for the chief and the deputy, and writing Hc as Icωc and Hd

as Idωd, with Id being the Inertia Tensor of the deputy, yields:{
Id d

Iωd

dt
= Id d

Ldωd

dt
+ ωd × Idωd = Nd

Ic d
Iωc

dt
= Ic d

Lcωc

dt
+ ωc × Icωc = Nc

(2.28)

Now, substituting Eq. 2.28 into Eq. 2.26, after multiplying it by Ic, and then using Eq.
2.18, yields the equation for the relative attitude dynamics expressed using relative and
[Lc]-related angular velocities:

Ic
dLcω

dt
|Lc =IcD(q)Id-1{Nd −D(q)T (ω|Lc + ωc|Lc)× IdD(q)T (ω|Lc + ωc|Lc)}

− Icωc|Lc × ω|Lc − {Nc − ωc|Lc × Icωc|Lc}
(2.29)

Eq. 2.19 and Eq. 2.29 fully describe the relative attitude behaviour.

2.3.2 Relative translational model
The coupling between the rotational and translation dynamics arises because of ei-

ther external torques (the most obvious example is the gravity gradient torque, which
depends on altitude) or internal coupling, which is external-perturbations independent.
The internal coupling comes from the fact that relative motion equations can be writ-
ten for any point on the S/C, not necessarily the CM, since as said before, they can’t
be considered anymore as point masses. Thus, an apparent translational motion of
points on the deputy S/C (that do not coincide with the CM) will result from rotation of
the deputy about its CM, so feature points of the two S/C must be taken into consideration.

Figure 2.9: Chief and deputy S/C, two rigid-body with body-fixed reference frame [36]

Looking at Fig. 2.9 it must be clarified that the notation used refer P0 to Pc and P1

to Pd, and the same for all the other components.

21

It is important to remark that the S/C in this discussion are assumed to be rigid.
Now, defining Pc

j as a vector directed from the origin of the coordinate system [Lc], so
the CM of the chief, to the point P j

c , and Pd
i as a vector directed from the origin of the

coordinate system [Ld], so the CM of the deputy, to the point P i
d, as shown in Fig. 2.9,

the relative position of point j of the chief and point i of the deputy can be defined as ρij.
ρ is the same as before.
By observing Fig. 2.9 it is also possible to note that the following relationship holds:

Pj
c + ρij = ρ+ Pi

d (2.30)

thus:

ρij = ρ+ Pi
d −Pj

c (2.31)

Taking the first and second-order derivative it’s obtained:

ρ̇ij = ρ̇+ Ṗ
i

d − Ṗ
j

c (2.32)

ρ̈ij = ρ̈+ P̈
i

d − P̈
j

c (2.33)

where in frame [Lc]:
dLcPj

c

dt
|Lc =

d2LcPj
c

dt2
|Lc = 0 (2.34)

while, calculating Ṗ
i

d and P̈
i

d with respect to the rotating frame [Lc] yields:

dLcPi
d

dt
|Lc =

dLdPi
d

dt
|Ld + ω ×Pi

d (2.35)

d2LcPi
d

dt2
|Lc =

d2LdPi
d

dt2
|Ld + 2ω × dLdPi

d

dt
|Ld + ω̇ ×Pi

d + ω × (ω ×Pi
d) (2.36)

and, as happened before for the chief, since the deputy is considered as a rigid body:

dLdPi
d

dt
|Ld =

d2LdPi
d

dt2
|Ld = 0 (2.37)

This leads us to the following equations:

dLcρij

dt
|Lc =

dLcρ

dt
|Lc + ω ×Pi

d (2.38)

d2Lcρij

dt2
=
dLcρ

dt
|Lc + ω̇ ×Pi

d + ω × (ω ×Pi
d) (2.39)

Then, expressing the vectors using their components, ρ = [x, y, z]T , ρij = [xij, yij, zij]
T ,Pi

d =

[P xd
i, P yd

i, P zd
i]T , Pj

c = [P xc
j, P yc

j, P zc
j]T ,ω = [ωx, ωy, ωz]

T and substituting them first
into Eqs. 2.31,2.38,2.39 and then substituting again into Eq. 2.10, the model describing

22

the translational motion between any arbitrary point Pc
j and Pd

i, in the absence of any
perturbation or control forces, is obtained:

ẍij − [ωy(ωxP yd
i − ωyP xd

i) + ωz(ωzP xd
i − ωxP zd

i)]− ω̇yP zd
i + ω̇zP yd

i

−2ḟc[yij − (ωzP xd
i − ωxP zd

i)]− f̈c(yij − P yd
i + P yc

j)− ḟ 2
c (xij − P xd

i + P xc
j)

=
−µ(rc+xij−Pxd

i+Pxc
j)

[(rc+xij−Pxd
i+Pxc

j)2+(yij−Pyd
i+Pyc

j)2+(zij−P zd i+P zc j)2]
3
2
+ µ

r2c

ÿij − [ωz(ωyP zd
i − ωzP yd

i) + ωx(ωxP yd
i − ωyP xd

i)]− ω̇zP xd
i + ω̇xP zd

i

+2ḟc[xij − (ωyP zd
i + ωzP yd

i)] + f̈c(xij − P xd
i − P xc

j)− ḟ 2
c (yij − P yd

i + P yc
j)

=
−µ(yij−Pyd

i+Pyc
j)

[(rc+xij−Pxd
i+Pxc

j)2+(yij−Pyd
i+Pyc

j)2+(zij−P zd i+P zc j)2]
3
2

z̈ij − [ωx(ωzP xd
i − ωxP zd

i) + ωy(ωyP zd
i − ωzP yd

i)]− ω̇xP yd
i + ω̇yP xd

i

=
−µ(zij−P zd

i+P zc j)

[(rc+xij−Pxd
i+Pxc

j)2+(yij−Pyd
i+Pyc

j)2+(zij−P zd i+P zc j)2]
3
2

(2.40)

These equations are coupled to the rotational motion equations, Eqs. 2.19, 2.29,
through the components of the relative angular velocity vector ω, and, together, they
form a set of 15 ODEs, since fc is already inside Eq. 2.40 to be integrated. These are only
for the relative motion of the deputy with respect to the chief, so in order to have the
full system, it is necessary to include Eq. 2.11, that describe the absolute motion of the
chief, in particular only the ODEs for rc are needed, bringing the total of the ODEs to be
integrated to 17. Even in this case a CW linearization can be applied.

Even though these models have not been used later on, they offer a valuable framework
in which develop this thesis. Furthermore, most rendendering software adopt the same
quantities definition, and since they also allow the definition of a trajectory of an object
before imaging, such models can be used to automate the trajectory rendering process.
Moreover, relative motion models are fundamental when a filter based solution to the
V-SLAM problem is sought.

23

3 Camera
One of the most important concepts of an autonomous navigation system is the one of,

as the name implies, autonomy. In order to achieve that, the S/C must be able to perceive
its surroundings, this can be done through the use of sensors. There are multiple kind of
sensors but, in a mission where optical navigation is required, cameras are essential.

In the following chapter the camera model and the context in which cameras operate
and how pictures are taken will be discussed.

Starting from the former, Euclidean geometry cannot fully explain it. For example,
two parallel lines in R3 will never intersect, however, as can be seen from our daily life,
things are perceived differently. Looking at Fig. 3.1, it is rapidly noticed that the two
rails, that in reality would never intersect, meet each other in a point at infinity. This
phenomenon, in art, is called perspective [38], and a way to describe it, so how 3D objects
are projected in 2D images, comes from projective geometry [39].

Figure 3.1: Railway tracks converging at infinity [40]

24

3.1 Projective geometry
When talking about projective geometry it is fundamental to introduce a new set

of coordinates called homogeneous. Any general point x = [x, y]T in R2, written in
homogeneous coordinates became x̂ = [x1, x2, x3]

T in the projective space P2. To go back
to the inhomogeneous one it’s necessary to divide the first two components of x̂ by x3, in
this way x = [x1

x3
, x2
x3
]T = [x, y]T . As can be immediately noticed, the previous notation

holds until x3 6= 0 such that the homogeneous vector x̂ corresponds to finite points in R2.
The points with x3 = 0 are known as iideal points, or points at infinity.

Also lines can be written in homogeneous vector, in this case homogeneous stands
for the fact that scaling that particular vector won’t change what it represents. A line
in the plane is represented by an equation such as ax + by + c = 0, different choices of
a, b and c giving rise to different lines, thus, a line may naturally be represented by the
vector l = [a, b, c]T . As said before, this is an homogeneous form too since the vector
l̂ = k[a, b, c]T represent the same line as l, for any non zero k.

Here some properties regarding homogeneous points and line will be illustrated. A point
x̂ = [x1, x2, x3]

T lies on a line l = [a, b, c]T only if x̂T · l = 0, this can be easily demonstrated
by saying that a point x = [x, y]T = [x1

x3
, x2
x3
]T lies on line l only if ax+ by + c = 0.

The intersection of two lines l = [a, b, c]T and l1 = [a1, b1, c1]
T is the point x = l× l1, From

this it’s possible to demonstrate that two lines l = [a, b, c]T and l2 = [a, b, c2]
T meet indeed

at point at infinity, since the vectorial product l× l2 = (c− c2)[b,−a, 0]T .
The set of ideal points [x1, x2, 0]T lies on a single line called line at infinity, l∞ = [0, 0, 1]T

3.1.1 Projective geometry transformation
The transformation in the projective space are very similar to the one of the classic

geometry, they are divided in four classes:

• Class I: Isometries
Isometries are transformations of the plane R2 that preserve Euclidean distance.
Translation and Rotation belongs to this class and it is described by following
equation:

x1

y1

1

 =

[
R t

0 1

]
x

y

1

 (3.1)

where R is the rotation matrix and t is the translation vector. If R=I then the
motion is only translational while, if t=0 it is only rotational.

25

• Class 2: Similarity transformations.
In this case an isotropic scaling is presents and it follow the relation:

x1

y1

1

 =

[
sR t

0 1

]
x

y

1

 (3.2)

where s is the scaling factor.

• Class III: Affine transformation.
An affine transformation is a non-singular linear transformation followed by a
translation. It has the form:

x1

y1

1

 =

a11 a12 tx

a21 a22 ty

0 0 1

x

y

1

 =

[
A t

0 1

]
x

y

1

 (3.3)

where A is the composition of two fundamentals transformations, namely rotation
and non-isotropic scaling.

• Class IV: Projective transformation. This is the most important class in the projective
geometry. A Projective transformation projects every figure into a projectively
equivalent figure, leaving all its projective properties invariant, so it maps points in
one R3 plane to another. It is decribed by:

x1

y1

1

 =

[
A t

vT v

]
x

y

1

 (3.4)

where v = [v1, v2]
T . This is an 8 DOF matrix since the only new important parameter

is the ratio v. With this transformation parallel lines will not be parallel anymore,
instead they will converge at infinity, the ideal point.

All the above discussion as been carried out considering 2D geometric transformation
but, 3D ones are not so different, with the only big difference being the definition of
the rotation matrix R, which can be represented either through quaternions or euler angles.

3.2 Camera Model
In this section, the simplest model for a camera, which is an object able to map

information from a 3D world to a 2D one, will be presented, it is called the pinhole camera

26

model. Even if this is the most basic model, it is able to adapt to different types of camera,
for example X-ray images, scanned photographic negatives, scanned photographs from
enlarged negatives, etc.

In this model all the information pass through the camera centre and points are
projected into the image plane or focal plane at a distance f from the centre, a point in
space with coordinates X = [X, Y, Z]T is mapped to the point on the image plane where a
line joining the point X to the centre of projection meets the image plane. This is shown
in Fig. 3.2, and by similar triangle it is possible to quickly compute that the point X is
mapped into the point x = [f X

Z
, f Y

Z
]T on the image plane.

Figure 3.2: Pinhole camera model [39]

This is a mapping from an Euclidean R3 space to an Euclidean R2 space.
If the world and image points are expressed in homogeneous coordinates, the mapping

goes from X = [X, Y, Z, 1]T to x = [fX, fY, Z]T , and can be expressed in matrix form as:

x1

x2

x3

 =

fX

fY

Z

 =

f 0 0 0

0 f 0 0

0 0 0 1

X

Y

Z

1

 (3.5)

where the 3× 4 matrix is called the camera projection matrix, P, so that Eq. 3.5 can be
written as:

x = PX (3.6)

Until now it has been considered that the origin point of the image plane is at the
principal point p, usually this is not the case, so two additional translational DOF for the
image plane origin must be added in P, such that:

P =

f 0 cx 0

0 f cy 0

0 0 0 1

 (3.7)

27

where cx and cy are the coordinates of the principal point.
In the equations above X is expressed in the camera coordinate frame, in general such

a frame is different from the world coordinate frame, and the two are related through a
rotation and a transaltion. For this reason the notation Xcam and Xworld will be used,
respectively for the point X in the camera coordinate frame and the world one. The
relation between the two points is the following:

Xcam =

[
R −RC

0 1

]
Xworld (3.8)

where C represents the coordinates of the camera centre in the world coordinate frame
and R is a 3× 3 rotation matrix representing the orientation of the camera coordinate
frame. Usually -RC is referred as t, as can be seen from Fig. 3.3

Figure 3.3: Translation and rotation between the world and the came coordinate frame [39]

Since the camere and the world coordinate frame are no more coincident, the previous
expression of P is no longer valid. It’s new form is:

x =

f 0 cx

0 f cy

0 0 1

Xcam = K[R|t]Xworld = PXworld (3.9)

K is called the camera calibration matrix and the parameters contained in it are called the
internal camera parameters, or the internal orientation of the camera. The parameters
of R and t (C) which relate the camera orientation and position to a world coordinate
system are called the external parameters or the exterior orientation. From Eq. 3.9 it is
possible to see that the matrix P has 9 DOF: 3 for K, image axis and focal length, 3 for
R and 3 for C.

28

It’s important that the parameters inside the intrinsic camera matrix K have all the
same unit, pixels. For this reason the focal length f must be multiplied by the pixel
density [pixel

mm
], and cx, cy can be taken as half resolution of the image in x and y direction.

3.3 Camera calibration
An important step to exploit the full potential of a computer vision software is the

Camera Calibration, in fact, an incorrect one would give rise to wrong results, or in the
worst case, no results. As always, a model has integrated into it some simplification, indeed
the objective of the Calibration step consists in making up the differences between a real
camera and the idealized model, modifying, through the use of some derived parameters,
the image acquired with a real camera. These parameters are not listed in the camera
specification since they are unique to each camera and also differ between cones of the
same model or series, and so, they must be calculated.

One of the main reason that this step has to be performed is due to the fact that lenses
introduce distortions[41] in the images, to be more specific, two types of it, called radial
distortion and tangential distortion [42]. Truthfully there is another kind of distortion,
called skew, that represent the skewing of the pixel element in the pixel array such that
the image axes x and y are not perpendicular. This is a very rare case and for this reason
it will be no further investigated.

Going back to the radial and tangential distortion, as it happens for almost everything,
the cheaper the camera, the more apparent they will be.

Starting from the radial distortion, it happens when light rays bend more near the
edges of a lens than they do at its optical center, the smaller the lens, the greater the
distortion, and consist in seeing straight lines as curved. This effect is shown in Fig. 3.4
and it is analogous to the effect obtained through the use of a fisheye lens. Denoting as xd
and yd the distorted image points, thei expression is:{

xd = x(1 + k1r
2 + k2r

4 + k3r
6)

yd = y(1 + k1r
2 + k2r

4 + k3r
6)

(3.10)

where x and y are the coordinates of the undistorted image, as projected by an ideal
pinhole camera, the parameters ki are the radial distortion coefficient and r is defined as:

r =
√

(xd − xcenter)2 + (yd − ycenter)2 (3.11)

Typically, two coefficients are sufficient for calibration. For severe distortion, such as
in wide-angle lenses, 3 coefficients can be selected to include k3.

29

Figure 3.4: Radial distortion effect: Original image (upper left), Negative radial distortion (upper

right), Positive radial distortion(bottom) [42]

The other distortion, the tangential one, occurs when the lens and the image plane are
not parallel, as shown in Fig. 3.5

Figure 3.5: Misalignment of the lens and the image plane [43]

The effect of the this distortion is reported in Fig. 3.6, it causes some details of the
image to be closer, or further apart, than the real case. Similarly to the previous case, it
can be expressed as:

{
xd = x+ [2p1xy + p2(r

2 + 2x2)]

yd = y + [p1(r
2 + 2y2) + 2p2xy]

(3.12)

30

The equation above is conceptually equal to Eq. 3.10, with the only difference being the
tangential distortion coefficients pi.

Figure 3.6: Tangential distortion effect [44]

These parameters don’t change over time so, unless the lenses are changed, or a zoomed
is performed (this act on the intrinsic camera parameters), one calibration is sufficient. In
[45], the full procedure for calibration is present, here only the fundamental step will be
reported.

It starts with the acquisition of a good number of images that have as the subject an
object of known pattern, shape and dimensions, usually checkerboards are used. These
images should be taken all from different angles and the object must be whole in the
camera’s FOV. Key points are extracted from the images and a comparison is made with
those present in the object’s pattern. Then a linear mapping between the model points
and the 2D image points is constructed, called Homographies, H. Then, considering only
the simple pinhole projection model, an estimation of K, in closed-form, can be obtained.
An unique solution is guaranteed only if at least three images are used, two if the skew
is not present. In the previous step no distortions were considered, now, an estimation
of its coefficients can be computed using a linear least-squares fitting, minimizing the
projection error. The lens distortion parameters are then refined (simultaneously with all
other parameters, intrinsic and extrinsic) in a final, overall optimization step, through a
non-linear optimization of a function that has as variables all the previous cited parameters.

3.4 Photography and optics
Here, parameters related to a camera and belonging to the fields of photography, optics

and the above discussed projective geometry will be described. This is due to the fact that
most imaging software use a terminology that is a mixture of terms coming from these
fields.

Starting from the lenses, the camera ones can be approximated as converging lenses,

31

shown in Fig. 3.7. that collect the light to the focus.

Figure 3.7: Converging lens [46]

The equation describing lenses parameters is:

1

f
=

1

g
+

1

h
(3.13)

When talking about projective geometry, the focal length f as been identified as the
distance between the camera centre and the image plane, but for real cameras this is not
valid anymore [47]. The new definition of f is the distance between the lens of the camera
and the imaging sensor. The other parameters g and h are, respectively, the distance
between the object and the lens, and the distance between the image plane and the lens,
G and H are the height of the object and the one of the image. Images that appear
upright relative to the object have heights that are positive and those that are inverted
have negative heights.

In Fig. 3.9 the effect of the focal length is shown, the shorter it is, the greater the
extent of the scene captured by the lens. On the other hand, the longer it is, the smaller
the extent captured by the lens. If the same subject is photographed from the same
distance, its apparent size will decrease as the focal length gets shorter and increase as the
focal length gets longer.

The effect above discussed can be attributed to another parameter, computed starting
from the focal length f , called FOV, Field of View. It is the angular extent of a scene
that can be captured by the camera and a graphic representation can appreciated in Fig.

32

3.8. The expression of the FOV is:

FOV = 2arctan(
dsensor

2f
) (3.14)

where dsensor is the size of the imaging sensor, in mm. So from Eq. 3.14 it is possible to
better understand the effect discussed before, as the focal length increase, the FOV gets
narrower and scene captured is less.

Figure 3.8: Field of view [48]

Figure 3.9: Focal length effect [49]

Another important parameter is the f-number, it is the measure of how much light
enters the camera lens. As for the FOV, it is dependant on f , and another parameter
called aperture, a, that represent the size of the lens opening.

fnumber =
f

a
(3.15)

33

It could be thought that the bigger the aperture the grater the light that enters the
camera. This is relatively true since a bigger aperture will indeed gather more light,
however, also the spherical rectangle view of the camera must be taken into account, by
means of FOV or f . Just to give an example, a lens with f = 100[mm] and a = 20[mm]

will gather as much light as a lens with f = 50[mm] and a = 10[mm], even if the sec-
ond has half the aperture of the second, due to the fact that their f-number is the same, f/5.

34

4 Computer Vision
Computer vision is the engineering field that seeks to understand and extract various

types of information from images. This chapter contains an insight into this field and
an overview of the different methods and techniques found in the literature is presented.
Then, a detailed explanation of the techniques used in ORB-SLAM is provided, followed
by two view geometry, or epipolar geometry, the method applied to compute the rotation
and translation of the camera in time: the fundamental/essential matrix, is estimated from
the point tracks and is decomposed into the relative rotation matrix and translation vector.
Triangulation allows to compute the initial map, which is later navigated by continuously
tracking features and solving the PnP, Perspective n-Point, problem. Finally, the Bundle
Adjustment, an optimization method, is described.

4.1 VO and SLAM
As already said in Section 1.2, computer vision algorithms are based on two methods:

VO, Visual Odometry, and SLAM, Simultaneous Location And Mapping. The VO estimate
progressively the camera pose, taking advantages of the changes present in the images taken,
it calculates the transformation that took place between two consecutive images/frames
by reconstructing the camera trajectory between the moments of the two snaps. So, in
this way, the trajectory is reconstructed incrementally, image after image.

The SLAM problem was first introduced in the field of robotics. As the name implies,
it is a process by which it is possible to reconstruct simultaneously the surrounding
environment and determine the position of the robots, equipped with a camera, in it. This
happens through the observation of landmarks, points of the surrounding environment that
are taken as a reference. The reconstruction of the environment and the determination of
the position are estimated through a probabilistic algorithm. Since the position depends
on the quality of the reconstructed map and the relative measurements of the sensor, the
better the map was reconstructed, the better the accuracy of the determined position.
As mentioned, the consistency of the trajectory, local for VO and global for SLAM, is
the difference between the two mehods, since in the second the loop closure is added.
With it, it is possible to understand if a place has already been visited or not and, taking
advantage of this information, reduce the drift accumulated over time. In fact, if not
counterbalanced by the readings of other sensors (IMU,GPS,et.), the drift presents in the

35

reconstructed trajectory will continue to grow, leading, in the long run, to a significant
error. In Fig. 4.1 a simple example is illustrated. The circle (A) is the ground truth while
(B) is the reconstructed trajecotry with the presence of drift and the absence of a loop
closure. The point P1 should coicide with the point P2 but, due to the drift, this doesn’t
happen. Using the VO method, case (A) would be be obtained only in ideal condition, by
not considering drift, or, using other sensors’ information to make correction. However,
even if these ideal conditions are considered, the points P1 and P2 will always be seen as
separate, even if overlapping. Instead, using SLAM, the loop closure forces the overlapping
of the two points by making them coincide in P, it also corrects the entire trajectory thus
obtaining the result in (A). Thanks to the loop closure, SLAM manages, as mentioned, to
correct the entire list of stored landmarks and therefore to improve the accuracy of the
results. All of these better results come with a price, although better, SLAM is also more
computationally expensive.

Figure 4.1: Loop closure example

4.2 Direct and Feature-based methods
The methods that can be used to reconstruct the position of the camera and the

environment from the captured images are two, both for VO and SLAM:

• Direct method : the intensity value in the entire image is used as base for the estima-
tion, the difference in the intensity of the pixels among those observed is used for
the relative position reconstruction of the frame taken into consideration.

• Feature-based method : differently from the previous method, it is no longer based
on the whole image, but only on some elements, the features. Once identified in an
image, they are looked for and recognized in the following images by the descriptors.
So, using camera models, like the pinhole camera one described in Section 3.2, they
transform information from the 2D to the 3D world by obtaining the camera position.

36

The first method is less accurate, slower and computationally more expensive than the
second one. For these reasons the feature-based methods are further investigated in the
following sections.

4.2.1 Feature detection
Features are specific points in the image that can be easily identified, like angles,

sharp lines, or high contrast areas. Feature detection is therefore a fundamental step,
nevertheless, the first one to be done, since it retrieves information from the image.

In literature it’s possible to find several methods that allow the extraction of features,
with different properties between each other. The Harris detector is the most classic
and intuitive one, it evaluates the change in intensity if a pixel with respect to the sur-
rounding area, if it is high then a feature is detected. Among the other methods there
are FAST,SURF, BRIEF and the one used in this thesis, ORB [50]. Two of them will
be rapidly analyzed, Features from Accelerated Segment Test select and understand if
a pixel is of interest or not. It analyze both the intensity of the pixel and those around
it, using an appropriate threshold it decide whatever the examined pixel is a corner or
not. the Speed Up Robust Features, SURF, obtains the feature thanks to the use of an
approximation of the Hessian matrix and exploiting the so-called integral images. Taking
x as the location, the integral image corresponds to the sum of the pixels of a rectangular
area formed by the point x and the origin.

4.2.2 Feature Matching and Tracking
After extracting good features from an image, the next step is the one of finding the in

the following frames/images. Two methods are commonly used:

• Feature Matching: This method is based on descriptors, they are extracted for
each detected feature in the image and then, are compared with the one of the
subsequent image.The one that are more similar will get matched and a track will
be created. The results are not always accurate and false tracks could be present,
due to the fact that points could be similar to each other, so they must be removed.
A popular algorithm used to remove false track is RANSAC [51], RANdom Sample
Consensus. It is a simple and efficient iterative algorithm for outliers detectors. It
is accomplished in the following step: 1)Randomly selecting a subset of the data
set, 2)Fitting a model to the selected subset, 3)Determining the number of outliers,
4)Repeating steps 1-3 for a prescribed number of iterations. Then the model with
the most number of inliers is selected between all the computed ones. RANSAC is

37

already implemented in Matlab [52].

• Feature Tracking: This method extract features only in the first image and they
are tracked predicting their future position in the following images. At this point, in
the subsequent image, each initial features is searched in a neighbourhood of the
predicted point. In literature it is possible to find several tracker, each with its own
characteristics.

4.3 ORB-SLAM
In this thesis the visual SLAM approach of ORB-SLAM is exploited. To the SLAM

methodology, the modified version of FAST and BRIEF for features detection and descrip-
tion is added. In order to obtain information for reconstructing the camera pose feature
matching is used.

4.3.1 General SLAM algorithm
The SLAM algorithm is based on the solution of the localization problem, in particular,

on the minimization of the uncertainties introduced during the movement of the robot
[53]. Defining:

• xk Pose of the robot.

• l = l1, l2, ..., ln Set of all landmark position.

• Z = z1, z2, ..., zk Set of all landmark observations.

• U = u1, u2, ..., uk Control input history.

• x0 Initial pose.

The distribution probability can be expressed as:

P (xk, l|Z,U, x0) (4.1)

Since it’s not possible to directly found the robot’s pose and the set of all landmarks,
the SLAM algorithm tries to find what they could be. So, the estimation of the pose
and the map depends on two factors: the control input and the observations. The former
derives from the robot’s internal sensor and is used for a first estimate:

P (xk|xk-1, uk) (4.2)

38

where xk-1 is the last pose and uk is the current control input. The observation factor
is due to the optical sensors of the robot:

P (zk|xk, l) (4.3)

The problem presented in 4.1 can now be solved, initially the Time-update is required:

P (xk, l|Z0:k-1, U0:k, x0) =

ˆ
P (xk|xk-1, uk) · P (xk-1, l|Z0:k-1, U0:k-1, x0)dx (4.4)

Then, the Measurement-update will be calculated:

P (xk, l|Z0:k, U0:k, x0) =
P (zk|xk, l)P (xk, l|Z0:k-1, U0:k, x0)

P (zk|Z0:k-1, U0:k)
(4.5)

4.3.2 Oriented FAST and Rotated BRIEF
Oriented FAST and Rotated BRIEF (ORB) is the features detection and description

method used in ORB-SLAM, and, as can be deduced from its name, it is based on two
other features extractors and descriptors, FAST and BRIEF. The former was already
discussed in one of the previous sections, while the latter has not. BRIEF is a descriptor
that uses binary strings to describe image patched, it creates short strings directly after
comparing the pairs of points and their intensity. ORB uses variant both for FAST and
BRIEF, the first is called oFAST, that after performing FAST operations organizes, among
the extracted features, the best ones in a multi-scal pyramid scheme. It also take into
consideration their orientation component. The second is called rBRIEF and orientation
operations are also performed here, in particular, BRIEF is oriented along the direction of
the keypoints through rotation matrices.

With this procedure a process-friendly property is lost, the high variance linked to each
bit feature. To put a limit to it, after orienting BRIEF, a selection is made, keeping only
those points with an high variance and a mean close to 0.5. With this, ORB turns out to
be one of best algorithm available, both in terms of speed and computational cost.

4.4 Epipolar geometry
The epipolar geometry is the intrinsic projective geometry between two views. It is

independent of scene structure, an only depend on the camera internal parameters and
relative pose. The geometric entities involved in epipolar geometry are illustrated in Fig.
4.2 and they are:

39

• The epipoles, e and e’, are the points of intersection of the baseline, line joining
the camera center C and C’ with the image plane, or, equivalently, the image in one
view of the camera centre of the other view.

• The epipolar plane is the plane containing the baseline.

• The epipolar line is the intersection of an epipolar plane with the image plane. All
epipolar line intersect at the epipole.

Figure 4.2: Two view geometry

Given a point X in a 3D space, it is imaged in two views, x in the first, and x' in the
second. The relations between the three points, and the rays back-projected from x and
x' that intersect at X, is that they are coplanar in the plane π. Supposing that only x is
known it is possible to obtain x' due to some constrain. The plane π is determined by the
baseline and the ray defined by x. From before, it is known that the ray corresponding to
the point in x' lies in π, hence the point x' lies on the line of intersection l' of π with the
second image plane. This line is the image in the second view of the ray back-projected
from x, also called epipolar line.
This constrain can be expressed in a mathematical formulation through the essential
matrix E, which maps points in one image to the corresponding epipolar lines in the othe
one:

Ex̂T = l' (4.6)

where x̂ = K-1x notation refers to normalized coordinates, where the camera matrix P

becomes I[R|t]. The epipolar constrain is described as:

x̂'TEx̂ = 0 (4.7)

Through a series of geometric properties, the matrix E is defined as:

40

E = [t]xR (4.8)

Where R is the rotation matrix from camera frame two to one and t is the translation
vector of frame two written in frame 1. This equation can be used to recover analytically the
expression of E given the two camera poses as well as to retrieve the extrinsic parameters
of the relative camera pose if an estimate of E is available.

To calculate E, a priori knowledge of K is necessary, but, when it is not available, a
genralization of the essential matrix can be used, the fundamental matrix F. The relation
between the two is the following:

E = KTFK (4.9)

So, as can be deduced from the fact that there are more unknowns, F has more degree
of freedom, 7, with respect to E, 5. The considerations done before still holds for F.

4.5 Fundamental and Essential matrix

estimation
Given a set of point correspondences in two images, F and E can be estimated from

them. Due to the previously cited fact that E has a lower number of degrees of freedom
it can also be reconstructed from a lower number of correspondences, with respect to F,
even though the complexity of the algorithm is increased.

The 8 points normalizes algorithm is the simplest one for the estimation of F. By
recalling the epipolar constrain, x'TFx=0, one linear equation in F components can be
obtained per points pair. Once obtained, the set of equations can be rearranged in a linear
systems giving the following result:

Af =

x'1x1 x'1y1 x'1 y'1x1 y'1y1 y'1 x1 y1 1
...

...
...

...
...

...
...

...
x'nxn x'nyn x'n y'nxn y'nyn y'n xn yn 1

 f = 0 (4.10)

where f is the vector containing the component of F:

f = [F 11, F 12, F 13, F 21, F 22, F 23, F 31, F 32, F 33]
T (4.11)

and n is the index for the n-th correspondence. Unfortunately, during feature matching
or tracking points couple could be not exact, due to noise or some other interference, and

41

in this case a least square solution must be sought for that system.

4.6 Extrinsic parameters from essential

matrix
As said before, if an estimation of E is available, it is possible to extract the relative

extrinsic parameters between two different camera poses. Since the essential matrix is
an homogeneous one, the camera matrix can be reconstructed up to scale. It is possible
to demonstrate that, for a SVD up to scale of E=Udiag(1,1,0)VT and P= [I|0], four
possible choices for P' are available.

Since by definition [t]xt= 0, it follows that t=U(0,0,1)T=u3, the last column of U,
but since is up to scale the sign is not known.[t]x may be written as [t]x=UZUT and it
can be demonstrated that it can also be decomposed as Udiag(1,1,0)WUT or equally
Udiag(1,1,0)WTUT with Z=diag(1,1,0)W or Z=diag(1,1,0)WT.

W =

0 −1 0

1 0 0

0 0 1

 (4.12)

Z =

0 1 0

−1 0 0

0 0 0

 (4.13)

Finally, since E=[t]xR=UZUT, the expressions of R can be:

R = UWVT or R = UWTVT (4.14)

Since the scale of E is not defined, the sign is not set too and both R expressions are
valid. With two possibilities fot the translation vector and two for the rotation matrix, a
total of four solutions are possible, shown in Fig. 4.3

The correct solution is the one where the point X is in front of both cameras.

4.7 Triangulation
Given two image points x and x' and their respective camera matrices P and P', the

method by which the world point X is found is the triangulation one. The easiest methods
for triangulation are the linear ones, the system of equation is obtained by expanding the
expression x=PX and x'=P'X and is defined by the form AX=0 with A:

42

Figure 4.3: The four possible solutions for calibrated reconstruction from E

A =

xPT

3 −PT
1

yPT
3 −PT

2

x'P'T3 −P'T1
y'P'T3 −P'T2

 (4.15)

where the notation Pn refers to the rows of P. When the system is solved through SVD,
the method is referred as DLT. The solution is the singular vector corresponding to the
singulare value of A.

The method just described consider images, and so image points, as perfect, without
any kind of noise/distortion, but in real application this is not true, geometrical relations
are no longer exactly satisfied and optimal algorithms will be needed.

Since a more detailed description of the topic of epipolar geometry is out of the scope
of this work, if interested, the author invites the reader to consult [39].

4.8 Perspective n-Point Problem
Perspective-n-Point is the problem of estimating the pose of a calibrated camera given

a set of n 3D points in the world and their corresponding 2D projections in the image.
The camera pose consists of 6 DOF which are made up of the rotation (roll, pitch, and
yaw) and 3D translation of the camera with respect to the world. A commonly used

43

solution to the problem exists for n = 3 called P3P, and many solutions are available for
the general case of n ≥ 3. A solution for n = 2 exists if feature orientations are available
at the two points. Some methods, such as UPnP [54] or the Direct Linear Transform,
DLT, applied to the projection model, don’t consider the intrinsic parameters as already
known and so they try to estimate them as well as the extrinsic parameters which make
up the pose of the camera that the original PnP problem is trying to find. RANSAC is
also commonly used with a PnP method to make the solution robust to outliers in the set
of point correspondences.

The simplest form of the PnP problem can be retrieved by expanding the relations
x=PX:

x

y

w

 = K

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

X

Y

Z

W

 =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

X

Y

Z

W

 (4.16)

and by passing from homogeneous coordinates to normal ones, x̂ = x/w and ŷ = y/w,
and creating a vector with the mij, it is possible to create a linear system:

(
X Y Z 1 0 0 0 0 −x̂X −x̂Y −x̂Z −x̂
0 0 0 0 X Y Z 1 −ŷX −ŷY −ŷZ −ŷ

)
m11

m12
...

m34

 (4.17)

With at least n > 6 correspondences the linear system Am = 0 can be solved through the
SVD method [55].

Talking about the previously mentioned P3P problem, it is described by the following
linear system:

Y 2 + Z2 − Y Zp− b2 = 0

Z2 +X2 −XZq − c2 = 0

X2 + Y 2 −XY r − a2 = 0

(4.18)

This formulation is provided in Matlab and is joined with RANSAC too for outliar
removal.

When n ≥ 4 another formulation can be adopted, called EPnp, Efficieent PnP. If
interested, its formulation can be found in [56]

44

4.9 Bundle Adjustment
Bundle adjustment is an optimization technique generally found at the last steps, at

least its global version, of a computer vision algorithm. It is tasked with the refining of
the model of the structure of the scene, the motion of the camera in terms of relative pose
and 3D points. The equation x=PX, that project a 3D world point X into a 2D point x

by using the camera matrix P, in presence of noise is never solved exactly. For this reason,
estimated quantities must be used such that:

x̂ = P̂X̂ (4.19)

Making the assumption of a Gaussian noise, the goal is to estimate the three parameters
above such that the equation can be solved exactly, in this way, the reprojection error
between the estimated 2D point, x̂, and the real one, x, is minimized. This procedure
must be performed for every 3D world point and for every available camera pose:

x̂ij = P̂
i
X̂j (4.20)

where the index i stands for the i-th camera view and j for the j-th point. The equation
for the reprojection error is written as:

min
P̂i
,X̂j

∑
i,j

d(P̂
i
X̂j, x̂ij) (4.21)

with d describing the geometric distance between the estimated and real 2D points.
Since the number of parameters involved is quite high, the global bundle adjustment
quickly become a huge minimization problem requiring an important processing power,
which is typically not available in a space mission scenario. Various solutions to this
problem exist, starting from, maybe, the most intuitive ones, that consist on applying
the method only to a moving window between frames or to carefully selected frames,
also known as keyframes. Other solutions regard the possibility of applying the bundle
adjustment method selectively, to optimize structure only, the 3d points in the scene, or
motion only, the camera parameters, trajectory included, to provide further customization
options.

45

5 Thesis workflow and set-
up steps

In this section the thesis workflow will be shown, starting from the target identification
and finishing the V-SLAM algorithm used. In Fig. 5.1 its diagram representation can be
appreciated.

Figure 5.1: Thesis workflow

The rectangular blocks represent the external data that must be obtained, in other

46

words, the input, the hexagonal ones are the programs used to analyse and process the
various data, a color is given to each program and to the subsequent data, the rhombus
are these data and the rounded shape represents the final results obtained.

As can be seen, everything starts from the target identification, once one has been
selected and all the necessary data are obtained it is possible to progress to the next step,
the creation of synthetic images. After the rendering of the chosen relative trajectories
is done and so the frames of its motion are available, they are fed to the ORB-SLAM
algorithm together with the data obtained from the camera calibration and, if requested,
the computational power is suppressed in order to have a more realistic model, simulating
also the relatively low computational power typical of space missions. Then, all the useful
data going out of the ORB-SLAM algorithm are taken, the significant ones are the camera
trajectory and the time used to process all the data, and are discussed in the results
section, also comparing the reconstructed trajectory to the real one. In the following
section the target chosen is presented, along with all its parameters and specifications.

5.1 VESPA
The space object chosen as target for this thesis is a space debris called VESPA, VEga

Secondary Payload Adapter, to be more specific, its upper part. It is an adapter of the
VEGA launcher injected in orbit in 2013 during the launch of Proba-V spacecraft, it can
be seen in Fig. 5.2. VESPA is a challenging object for a visual system as it is almost
completely black and is an axisymmetric object. Moreover it is an important target for
European space debris removal missions under the ESA project ADRIOS, Active Debris
Removal/ In-Orbit Servicing.

5.1.1 VESPA’s physical characteristics
VESPA is composed by an upper part and a lower part, attached by means of a

clamp-band with low shock separation system. Proba V was connected to VESPA by
means of another clamp-band with low shock separation system. Its physical characteristics
are the following [58]:

• Total height: 4.552 m

• Maximum diameter: 2.62 m

• Total mass: 455 kg

• Materials CFRP and alluminum alloy

47

Figure 5.2: VESPA with Proba-V on top [57]

As mentioned before the interest is focused on VESPA’s upper pat, so, considering
only that, the debris characteristic dimension should be of about 2 m, coherently with
the radar cross-section of 3.911m2. The most important factors to be considered for the
inspection imaging strategy, and for the creation of the model in blender, are the following
ones:

• The target is mainly composed by a low reflection material (black), the CFRP.

• There are some parts, i.e. the clamp bands, made by high reflection materials.

• The target has an axial symmetric shape.

In Fig. 5.3 a closeup of VESPA upper part can be seen and some interesting ele-
ments/features can be appreciated. This kind of analysis in performed in order to collect
useful data, on one side for the model to be created on blender, on the other, to understand
the required images resolution at the closest inspection. A list containing some of the
potentially interesting elements is reported in Tab. 5.1

It must be remembered that these are not all of the interesting elements that can be
seen on VESPA, also bolts and all the other polished, so with high reflection coefficient,
components should be taken into consideration.

48

Figure 5.3: Interesting elements/features of VESPA upper part

Element ID Description Material

01 lower flange polished metal
02 bracket below upper ring polished metal
03 cables holder metal
04 - polished metal
05 supporting bracket for spring bolts polished metal
06 upper flange polished metal

Table 5.1: VESPA possible elements of interest

5.1.2 VESPA’s orbit
Regarding it’s orbit around the Earth, the orbital elements, available in the NORAD

catalogue [59] are reported in the following Tab. 5.2

Orbital element Value

Semi-major axis [km] 7109.7962
Eccentricity [-] 0.009518
Inclination [deg] 98.8425
RAAN [deg] 324.1226
Arg. of pericenter [deg] 337.8519

Table 5.2: VESPA’s orbital elements

In Fig. 5.4 its orbit trajectory in the ECI reference frame is presented, while, the orbit

49

trajectory in the SCI reference frame is shown in Fig. 5.5.

Figure 5.4: VESPA’s orbit in the ECI reference frame

Figure 5.5: VESPA’s orbit in the SCI reference frame

5.2 Creation of synthetic images in

Blender
The creation of synthetic images is one of the main stages of this work. It puts the

basis for which the results are obtained, its outputs in fact are the generation of synthetic
images for the algorithm of recognition and tracking of the features and the images for the
calibration algorithm of the camera. The former are generated with the aim of creating
a scenario that is as realistic as possible, accordingly to some criteria that will be lately
explained. The other objective is no longer photorealism, but the precise reconstruction of
the calibration grid and the accurate simulation of the step that should be performed in
the case of calibration of a real camera, this specific argument will be discussed in Section
5.3.

50

Regarding the criteria mentioned before, they are the rendering time and the graphic
rendering, or photorealism. The first is due to the fact that each trajectory (animation) is
composed of many frames and the time to render each frame should be reasonable, not
taking an enormous amount of time, and computational power. The second, as the name
implies, is due to the photorealism of the scenario, i.e. an image with a grainy texture
is not beautiful to see and doesn’t describe the reality in an accurate way, or also, the
correct scale should be used between the S/C and the space environment, according also
to the software capabilities.

As mentioned in Section 1.3, the software utilized for the creation of synthetic images
is Blender, to be more precise, the version 2.91 of it. Numerous tutorials can be found
online, one of the most basic, that covers all the principle fields is [60].

5.2.1 VESPA’s model
Once the target is defined and all its dimensions are acquired, or at least the main

ones, it is time to pass on the creation of the model in Blender. This step is very similar
to the creation of a model in a CAD software, in fact blender sustain this kind of feature.
In Fig. 5.6 the model in the blender environment is shown, the main body and all of the
interesting elements can be appreciated.

Figure 5.6: CAD model of VESPA

Once the model is deemed satisfactory, it is time to pass onto the next step, the creation
of the materials for it, that can be simplified into the application of a texture to the
selected part of the model. As can be seen from the various images in the previous section,

51

and it also written, VESPA is composed mainly by a low reflection material, CFRP, and a
high reflective one. The latter can be divided into two different types of material, with the
only difference being in the color, the first one, that can be seen almost everywhere, is very
similar to the "color" of gold, while the second, a bit more hidden, is more like the "color"
of aluminum, and can be found in the bolts of the upper part of the target and in the
cables holders. To create these three materials the textures present in Fig. 5.7 were used.

Figure 5.7: Textures: from the upper-left corner, carbon fiber [61], gold and aluminum

It can be noticed that the textures for gold and aluminum are not uniform, this could
result in a problem for the graphic rendering, especially for the gold one, since the objects
at which it is applied are rather big, while for the aluminum, since it is applied to really
small objects and the fact that its color gradient is very faint, it will not result in a problem.
For the gold texture the problem is solved applying only the lower part of it to the selected
objects of the model.

Once the textures are chosen, Blender offer quite a number of parameters to obtain

52

the desired effect of the material, in Fig. 5.8 some of them can be seen. It will be shown
only for the Carbon Fiber material since for the others two the concept is the same, only
some of the values change.

Figure 5.8: Node for the creation of the desired material, carbon fiber case

Then adding some lights, the final result is illustrated in Fig. 5.9. In order to obtain
this image, also the camera parameters such as the focal length, the array size etc. should
be inserted in blender. The characteristics of the selected camera can be seen in Tab. 5.3

Characteristic Value

Array size [pixels] 2048x2048
Pixel pitch [µ] 5.5
Frame rate [fps] 5
Focal length [mm] 70

f-number 2.8

Table 5.3: Camera’s characteristics

From these fundamental ones it is possible to derive other important parameters such
as the FOV and the aperture. The pixel pitch is the distance between the centre of each
pixel, so, multiplying it by the array size, the sensor size is obtained, dsensor = 11.06 mm,
then using the formula seen in Section 3.4, FOV = 9.034°. The f-number chosen is 2.8,
since as stated in [62] "If you need a fast, low-light lens for astrophotography, then an
aperture of f/2.8 or wider is the way to go", and so, following the formula in Section 3.4,
a = 25 mm.

53

Figure 5.9: VESPA’s complete model

5.2.2 Environment’s model
Once the model of the target has been finished, it’s time to think about the environment

VESPA is in. The main points are:

• Lighting.

• Earth in the background.

Regarding the lighting, blender is provided of different kind of light, the two most
interesting being the Sun light and the Point light, the first simulates the light coming
from the sun as parallel lines and the unite of measure assigned to it is [W/m2], making
the realization of a realistic model possible. The second type considers the light coming
from a point source and it radiates outwards in all directions, it is also possible to enlarge
this point source making it an emitting light sphere.

54

Talking about the Earth, some considerations must be made in order to understand
the final decision taken. In Fig. 5.10 the chosen model of the Earth, with all its nodes, in
the blender environment can be seen.

Figure 5.10: Earth’s model in blender

Looking at the upper-right corner of the image it is possible to notice that the Earth
is composed of other two object, Cloud and Atmo, that, as can be deduced, refer to the
clouds and to the atmosphere, their nodes can be seen in Fig. 5.11. All the texture used
can be found in [63].

Figure 5.11: Clouds and Atmosphere model’s nodes

This is one of the most simple and light, in terms of computational power and time
needed for rendering, Earth model and although everything seems perfect, once it’s time to
render, problems arise. The main reason is because of the scale between the target, order
of magnitude [m], and the Earth, order of magnitude [106 m]. In Blender, for astronomical
environment, is possible to set the scale in a such a way that if the scale used is 10000, 1
BU (Blender Unit) = 10000 m, but, even with these changes the problem remains, again,

55

due to the difference in the order of magnitude. In fact, even if a scale of 106 is used,
although the Earth is fine, to bring the S/C to its real dimension, so meters, the reduction
of the size would be too big and its meshes will start to collide and no regular form can be
identified. To overcome this problem, a consideration has been made, since the Earth on
the background is there only as a disturbing element, there is no need for it to be at its
original size, for this reason the scale used is 1000, in such a way the Earth is big enough
to cover all the background and the size of the S/C can be its real one, and the same
for the relative distances. Summarizing, the scale has been set to 1000, in this way the
Earth’s radius (in Blender) is 6378 m, the size of the target has been maintained, with a
characteristic length of around two meters, the semi-major axis of its orbit is set to 7109
m, in order to have a consistent framework, and the relative distance has been maintained
in the order of meters too.

After all these considerations, the model should be complete, but no, the final two
problems, that can be seen only after the rendering starts, arise, they are:

• Rendering time.

• Realism of the graphic rendering.

The time needed to render one single image (frame) was more than 30 minutes, the
exact time was not verified since during the rendering it is possible to see the image being
created and it was not in any way a realistic image, so the process was stopped. The S/C
was fine but the Earth in the background was all grainy with the texture being divided
in big squares and no feature could be extracted, this is again due to the difference in
scale. Due to the enormous rendering time and the horrible results at the end of it, a
drastic decision has been taken. For the full trajectory of the camera around VESPA the
Earth will not be considered, only its illumination (albedo) will be present. The full work
environment is presented in Fig. 5.12.

The light coming from the Sun has been simulated using the Sun light present in
blender, with an intensity of 1366.9 W/m2, which is the real intensity of the solar radiation
arriving on the Earth, and an inclination of 23.5°. Since the object Earth is not present,
no reflection due to it could have been used, for this reason a Point light has been used, it
has a radius of 6378 m, the one of the Earth, and a power of 280 MW, in this way the
power radiated outwards is around 40 % of the one coming from the sun, simulating the
albedo effect, and a faint azure color has been used. Also the Sun, as an object, has been
placed in the work environment, proportionate accordingly to the distance at which it is
set. This has been done since, as can be seen also on Earth, if the Sun enters the FOV
of the camera it will saturate the image and nothing would be identified. For the chosen
trajectory this does not happen and it’s not certainly an isolated case, since, with just

56

some calculation it can be verified if the Sun enters the camera’s FOV or not.

Figure 5.12: Full model

To end this discussion, just two words will be spent on the trajectory chosen. The
point in which VESPA is located along its orbit is identified by a true anomaly, θ, of 80°,
and the chosen trajectory in an helical one that develops along the direction of the velocity.
The camera starts from a distance of around 30 m from the the S/C.

5.3 Camera calibration step
For the camera calibration the camera calibration app [64] present in matlab [65]. In

order to use the following workflow should be respected:

1. Prepare images, camera, and calibration pattern.

2. Add images and select standard or fisheye camera model.

3. Calibrate the camera.

4. Evaluate calibration accuracy.

5. Adjust parameters to improve accuracy (if necessary).

6. Export the parameters object.

To better the results, a number of images of the calibration pattern between 10 and 20
should be used. The calibrator requires at least three images. The calibration pattern
and the camera setup must satisfy a set of requirements to work with the calibrator. The
calibration pattern most used is the checkerboard, a sequence of black and white squares,
it can be seen in Fig. 5.13.

They have to satisfy the following requirements:

57

Figure 5.13: Checkerboard pattern

• Containing an even number of squares along one edge and an odd number of squares
along the other edge.

• They have to be non-square pattern, and must contain two black corners along one
side and two white corners on the opposite side.

This criteria enables the app to determine the orientation of the pattern and the origin.
The calibrator assigns the longer side to be the x-direction. A square pattern can produce
unexpected results for camera extrinsics. It can be noticed that the checkerboard in Fig.
5.13 doesn’t respect any of the above requirements and so, obviously, won’t be used for
the calibration.

Another important parameter that must be introduced is the size of one square, the
checkerboard used has a square of 35 mm, and it is shown in Fig. 5.14.

The images of the pattern captured should be at a distance roughly equal to the
distance from the camera to the objects of interest. For example, if the plan is to measure
objects from 2 meters, the pattern must be kept approximately at 2 meters from the
camera. In addition the checkerboard should be placed at an angle less than 45 degrees
relative to the camera plane. It is important to capture a variety of images of the pattern.
Lens distortion increases radially from the center of the image and sometimes is not
uniform across the image frame. To capture this lens distortion, the pattern must appear
close to the edges of the captured images. As a general rule, the checkerboard should fill
at least 20% of the captured image.

To begin calibration, images must be added. It is possible to add saved images from
a folder or add images directly from a camera. The calibrator analyzes the images to

58

Figure 5.14: Checkerboard used

ensure they meet the calibrator requirements. The calibrator then detects the points on
the checkerboard. After the images are added, the checkerboard Square Size dialog box
appears. The size of the checkerboard square must be specified by entering the length
of one side of a square from the checkerboard pattern. Once the accepted images are
satisfactory, the real calibration can start. The default calibration settings assume the
minimum set of camera parameters. Start by running the calibration with the default
settings. After evaluating the results, it can be tried to improve calibration accuracy by
adjusting the settings and adding or removing images and then calibrating again.

It is possible to evaluate the calibration accuracy by examining the reprojection errors,
examining the camera extrinsics, or viewing the undistorted image. To improve the
calibration, high-error images can be removed, more images can be added, or the calibrator
settings could be modified.

5.4 V-SLAM algorithm
. In this section the V-SLAM algorithm utilized will be analyzed and discussed. As

already said through the introduction and in general the whole thesis, the algorithm
utilized is a features-based one and in particular the method used to detect and extract
features is the ORB one, making it an ORB-SLAM algorithm.

In Fig. 5.15 an overview of the whole process is present, it is formed by four main
steps:

• Map initialization: ORB-SLAM starts by initializing the map of 3-D points from
two video frames. The 3-D points and relative camera pose are computed using
triangulation based on 2-D ORB feature correspondences.

• Tracking: Once a map is initialized, for each new frame, the camera pose is

59

estimated by matching features in the current frame to features in the last key frame.
The estimated camera pose is refined by tracking the local map.

• Local mapping: The current frame is used to create new 3-D map points if it is
identified as a key frame. At this stage, bundle adjustment is used to minimize
reprojection errors by adjusting the camera pose and 3-D points.

• Loop closure: Loops are detected for each key frame by comparing it against all
previous key frames using the bag-of-features approach. Once a loop closure is
detected, the pose graph is optimized to refine the camera poses of all the key frames.

Figure 5.15: ORB-SLAM overview

5.4.1 Map initialization
The ORB-SLAM pipeline starts by initializing the map that holds 3-D world points.

This step is crucial and has a significant impact on the accuracy of final SLAM result.
Initial ORB feature point correspondences are found by matching them between a pair of
images. After the correspondences are found, two geometric transformation models are
used to establish map initialization:

• Homography: If the scene is planar, a homography projective transformation is a
better choice to describe feature point correspondences.

• Fundamental matrix: If the scene is non-planar, a fundamental matrix must be
used instead.

The model that results in a smaller reprojection error is selected to estimate the relative
rotation and translation between the two frames. Since the RGB images are taken by a
monocular camera which does not provide the depth information, the relative translation
can only be recovered up to a specific scale factor. Given the relative camera pose and
the matched feature points in the two images, the 3-D locations of the matched points
are determined using a triangulation function. A triangulated map point is valid when it

60

is located in the front of both cameras, when its reprojection error is low, and when the
parallax of the two views of the point is sufficiently large. Then the two keyframes and
the corresponding map points are stored.

5.4.2 Tracking
The tracking process is performed using every frame and determines when to insert a

new key frame. Each frame is processed as follows:

1. ORB features are extracted for each new frame and then matched with features in
the last key frame that have known corresponding 3-D map points.

2. Estimate the camera pose with the Perspective-n-Point algorithm.

3. Given the camera pose, project the map points observed by the last key frame into
the current frame and search for feature correspondences.

4. With 3-D to 2-D correspondence in the current frame, refine the camera pose by
performing a motion-only bundle adjustment.

5. Project the local map points into the current frame to search for more feature
correspondences and refine the camera pose again using the motion-only bundle
adjustment.

6. The last step of tracking is to decide if the current frame is a new key frame. If the
current frame is a key frame, continue to the Local Mapping process. Otherwise,
start Tracking for the next frame.

In order to decide if the current frame is a keyframe or not , two conditions must be
satisfied:

• At least a defined number of frames have passed since the last key frame or the
current frame tracks fewer than 100 map points.

• The map points tracked by the current frame are fewer than 90% of points tracked
by the reference key frame.

5.4.3 Local mapping
Local mapping is performed for every keyframe. When a new one is determined, add

it to the keyframes and update the attributes of the map points observed by it. To
ensure that the map points contains as few outliers as possible, a valid map point must
be observed in at least 3 keyframes. New map points are created by triangulating ORB

61

feature points in the current keyframe and its connected keyframes. For each unmatched
feature point in the current one, search for a match with other unmatched points in the
connected keyframes. The local bundle adjustment refines the pose of the current keyframe,
the poses of connected keyframes, and all the map points observed in these key frames.
This is the step that requires the highest time to be executed, especially the local bundle
adjustment algorithm, it can be seen in Section 6.

5.4.4 Loop closure
The loop closure step takes the current keyframe processed by the local mapping

process and tries to detect and close the loop. Loop detection is performed using the
bags-of-words approach. A visual vocabulary represented as a bagOfFeatures object is
created offline with the SURF descriptors extracted from a large set of images in the
dataset by the SURF feature extractor function. The loop closure process incrementally
builds a database that stores the visual word-to-image mapping based on the bag of SURF
features. Loop candidates are identified by querying images in the database that are
visually similar to the current keyframe. A candidate keyframe is valid if it is not connected
to the last one and three of its neighbor keyframes are loop candidates. When a valid loop
candidate is found, the relative pose between the loop candidate frame and the current
keyframe is computed. The relative pose represents a 3-D similarity transformation. Then
add the loop connection with the relative pose and update the map points and keyframes
set.

It must be noted that in the case study of this thesis no points in space are visited
twice, due to the characteristic of the chosen trajectory, and so a loop closure will never
happen.

A last passage, not present in the general overview, and not possible during real time
operations since it is performed after all the analysis is complete and all the frames have
been used, is the similarity pose graph optimization. It is performed over the essential
graph in order to correct the drift of camera poses. The essential graph is created internally
by removing connections with fewer than a minimum number of matches in the covisibility
graph. After the similarity pose graph optimization, the 3-D locations of the map points
are updated.

62

6 Results
All the results obtained are here reported. It starts with results from the camera

calibration, following its various step, refining the various parameters. Then the V-SLAM
results are presented, including the various time for the execution of the single parts of
the algorithm and the error between the reconstructed trajectory and real one.

6.1 Camera calibration results
The checkerboard used has already been introduced in Section 5.3. A part of the set of

images used for the calibration is shown in Fig. 6.1.

Figure 6.1: Part of the set of image of the checkerboard used for calibration

6.1.1 First calibration
As stated in Section 5.3 in the first calibration all the images will be used, no initial

condition for the K matrix will be inserted and since it is not the case of a fisheye lens,
only two radial distortion parameters will be calculated In Fig. 6.2 the first two images of
the set are shown after the tool has detected the grids point, its origin and the axes.

while the reprojected points, again for the first two images of the set, can be seen in
Fig. 6.3.

63

Figure 6.2: Detected grid points for the first two images of the set

Figure 6.3: Reprojected grid points for the first two images of the set

In Fig. 6.4 the mean reprojection error per image is shown, while in Fig. 6.5 the
position of the pattern, keeping the camera fixed, on the left, and the position of the
camera keeping the pattern fixed, on the right, are shown.

Figure 6.4: Mean reprojection error per image on the first run

The radial distortion calculated are k1 = 0.0450 and k2 = −10.3502, instead, for what
regard K, the camera intrinsic matrix, it is:

64

Figure 6.5: Extrinsic parameters visualization

K =

12980.82 0 1027.45

0 12980.82 1030.22

0 0 1

 (6.1)

6.1.2 Second calibration

Here the three images that gave the highest mean reprojection error are eliminated,
bringing the Overall Mean Error to 0.06 pixels. The obtained radial distortion coefficients
are k1 = 0.0484 and k2 = −9.84 and K:

K =

12959.1 0 1015.6

0 12959.1 1039.5

0 0 1

 (6.2)

6.1.3 Third calibration

Now an initial guess is introduced, since the focal length and the array size are available,
the ideal K should be the following:

Kideal =

12727.27273 0 1024

0 12727.27273 1024

0 0 1

 (6.3)

65

Then putting it inside the camera calibration app of Matlab, the radial distortion coefficients
are k1 = 0.0484 and k2 = −9.839, and K is:

K =

12958.6 0 1015.5

0 12958.6 1039.5

0 0 1

 (6.4)

6.1.4 Fourth calibration
Here, the final calibration is presented. The last image with the highest Mean repro-

jective error is eliminated. As this is the last case, in Fig. 6.6, the mean reprojection error
per image will be shown again.

Figure 6.6: Mean reprojection error per image on the fourth run

The radial coefficients obtained are k1 = 0.0511 and k2 = −10.3651 and the intrinsic
camera matrix K is:

K =

12948.86 0 1017.8

0 12948.86 1035.9

0 0 1

 (6.5)

It must be said that in the case of synthetic images the radial distortion should not be
present as the images are generated through an ideal model of camera and the K matrix
should have been reconstructed perfectly as the ideal one, shown in Eq. 6.3. Evidently
this is not the case, but not everything is lost, this can be interpreted in two ways. The
first, and most immediate one, is that the camera calibration app made a mistake, but
even if this is the case, since in reality there are always some errors, this could be applied
in order to take them into account. The second one is that Blender made some mistakes in
the rendering of the images and so, in reality, the camera calibration app reconstructed K

66

in a good way, since the images were at fault. Regardless of which tool made the mistake,
it has been decided to use the K matrix of the fourth calibration, the closest to the ideal
one, in the ORB-SLAM algorithm to make the case study as real as possible.

6.1.5 Extra: tangential distortion coefficients
As an extra, also the case considering the tangential distortion coefficients is reported

but this will not be used for the future discussion.
The radial distortion coefficients are k1 = 0.0575 and k2 = −12.2534 and the tangential

one are p1 = −2.684 ∗ 10-4 and p2 = 4.96 ∗ 10-4. While the first set is similar to other case,
a bit bigger, the values of the tangential distortion coefficients are very low and can be
easily neglected. Regarding K, it is:

K =

12949.32 0 1034.5

0 12949.32 1028.2

0 0 1

 (6.6)

6.2 Algorithm validation
Before starting the feature extraction and the reconstruction of the camera’s trajectory

around the target, VESPA, a test, in order to verify the effectiveness of the tools used
and the correctness of the results achieved, are performed. It has been decided to carry
out this validation tests through the "RGB-D dataset and benchmark" of the computer
vision group, TUM, department of informatics, Technical University of Munich [66]. The
sequence of images used is called long office household, the sensor/camera was moved
along a large round through a household and office scene with much texture and structure.

All the camera parameters are given and K is:

K =

535.4 0 320.1

0 539.2 247.6

0 0 1

 (6.7)

The results of this validation test are presented and, as can be seen from Fig. 6.7
the reconstructed trajectory is very close to the real one and the error has an RMSE of
0.13 m. So, it can be concluded that, in this first test, the algorithm is effective and the
test is successfully carried out.

Although successful, it must be pointed out that this is just a first validation test and
even if it guarantees, to a certain extent, that the algorithm works fine, it doesn’t take
into account all the possible variations of the algorithm’s settings and of the scenarios. In

67

order to fully validate it, an extended campaign of tests is necessary, taking into account
the previously mentioned variations.

Figure 6.7: Comparison between the reconstructed trajectory and the real one in the validation

test.

6.3 V-SLAM results
In the following subsections test cases of the V-SLAM algorithm are reported. It

must be remembered that the CPU of the computer utilized, a 2,2 GHz Intel Core i7
quad-core, has been capped at 40% of its full capability, this is important especially for
the execution times calculated. Moreover, the following cases are only a small portion of
the possible ones, and even here, in order to obtain more consistent and truthfully results,
a sensitivity analyses of all the parameters of the algorithm, of the initial conditions and
of the scenario, should be performed. In fact, although some good results are obtained
and some considerations are made, they refer only to the cases studied, and should be
verified for a general view.

Before exploring the results obtained, more information, with respect to Section 5.2,
about the selected trajectory must be said.

6.3.1 Trajectory
As said before, the chosen shape for the trajectory is an helical one, to be more precise,

the camera will do two turns around VESPA, so a full rotation of 720°. The direction in

68

which the helical develops is that of the velocity of the S/C and the starting point of the
trajectory is at a distance of 30 m behind VESPA, it can be seen in Fig. 6.8.

In Blender it has been defined as an animation of 721 frames, so a frame for each degree
of the rotation, since the first frame is at 0°

Figure 6.8: Trajectory of the camera around VESPA

6.3.2 Test case 1
The test cases are divided by the orientation of VESPA along its orbit. Since data

about its attitude have not been found, it has been decided to study two cases, one in
which the orientation of VESPA’s z axis is along the velocity direction and one in which
it is perpendicular. In this subsection the first case is studied, but two sub-cases are
presented, one with the full trajectory and one with only half of the trajectory. The
reasons that brought this division will be later on explained

6.3.2.1 Full Trajectory
Here, differently from the following subsection, a digression about the map initialization

step and the angle view between two images is present, this is due to the fact that the
ORB-SLAM algorithm is not able to reconstruct in a good way the trajectory, or at least,
part of it. In Fig. 6.9 the first frame is shown while in Fig. 6.10 the map initialization is
reported, it happens with the first two frames of the animation.

Then the entire algorithm is put into work and the reconstructed trajectory is obtained,
in Fig 6.11 it, red line, can be seen plotted against the real one, green line, and it can be

69

immediately noticed that something is not right. The biggest problem is at the beginning of
the reconstruction. Even though the camera is not exactly behind the S/C, the algorithm
thinks that it is and start its mapping from there, then after some keyframes are examined
it tries to come back, as near as possible, to the real one, but the error made is already
too big.

Since the reconstruction fails, the time necessary to the algorithm to map each keyframe
will not be discussed.

Figure 6.9: First frame

Figure 6.10: Map initialization matching

As said in Section 5.4.1, the map initialization step is fundamental, since it is the step
in which the map is generated for the first time. Since it will be used for navigation in the
following steps, it is important to achieve an estimation of its 3D points as accurate as
possible. The separation angle between the two frames used for initialization is the key

70

Figure 6.11: Comparison between the reconstructed trajectory and the real one

by which this problem could be unlocked. In Fig. 6.12 the effect of the difference in the
viewing angle between the images can be appreciated.

Figure 6.12: Uncertainty on 3D points due to the angle between the views

Very low difference in the separation angle will result in the failure of the method since
the uncertainty of the 3D points location would be too high. Moreover, also moving in a
straight trajectory, with respect to the target, doesn’t allow any perspective view of it and
so the map will not be be correctly generated. In fact, particular steps should be followed,
first an investigation of the object, then a study on how the approach phase would be
performed and so understand when to let the map initialization step begin.

It could be thought that the higher the viewing angle the better the map initialization
step, this could be right for an human eye but not for a computer and the computer vision.
This is due to the fact that the method utilized is a feature-based one and in order to
reconstruct the 3D points features must be matched/tracked. It is generally assumed that
features don’t change their appearance by large amounts, obviously not for the whole
trajectory/video but around a selected frame, and so they can be matched accurately
and the tracking could be performed. But if a large view angle is used and so the frames
examined are very different, the features matched will be inevitably low and the accuracy

71

of the reconstruction of the camera pose will be low too. In general, a trade-off between
the previously cited effect should be sought.

In order to understand if the problem for the map initialization previously mentioned
is the fact that the camera is behind VESPA and other than a rotation motion, also a
translation is present, making the case similar to the one where the camera moves in
straight trajectory towards the target, or if it simply a too low angle view between the
frames, a study has been carried out. The part of the trajectory considered is only the
one of the first 100 frames, since the biggest problem is a the beginning and that is the
point of interest.

The condition for the map initialization step is that a minimum number of features,
100, must be matched, keeping this condition, another one has been added, the number
of the frame that must be used. Since in the previous case the frames used for the map
initialization are the first two, this number will start from three and will be increased until
the condition of the minimum number of matches is no longer satisfied, obviously this can
be changed but, in order to have a good reconstruction of the camera pose it won’t be
done, or if by increasing it again the quality of the reconstruction drops.

The first test is performed by imposing that the initialization can be performed by
starting from the third frame. The initialization is successful with the third frame but as
can be seen from Fig. 6.13 the reconstruction of the trajectory faces the same problem as
before.

Figure 6.13: Comparison between the reconstructed trajectory and the real one with map initial-

ization performed by the first and third frames

72

Instead, by imposing that at least three frames must pass, so starting from the fourth
one, the initialization doesn’t happen until the eleventh frame, this is due to the fact that
not enough matches are found until that frame and the results change completely. In Figs.
6.14, 6.15 the initialization step matching and the reconstructed trajectory are shown.

Figure 6.14: Map initialization step between the first and the eleventh frame

Figure 6.15: Comparison between the reconstructed trajectory and the real one with with map

initialization performed by the first and the eleventh frames

As can be seen from them, with this map initialization, the trajectory is reconstructed
in a better way than before, at least the general shape is present. But, the reconstruction

73

error is very high, having a RMSE of 6.162 m. Just from this result it could be concluded
that the problem with the initialization was in fact the starting position of the camera,
behind the target, with its motion, but, more importantly, the angle view, that at the
beginning was too small. In fact, increasing again the number of the frame for the map
initialization, but keeping the minimum number of matches at 100, the next useful frame
is the 16th one. With this initialization, the reconstruction becomes even better, having
an RMSE of 1.6221 m, and can be appreciated in Fig. 6.16.

Figure 6.16: Comparison between the reconstructed trajectory and the real one with with map

initialization performed by the first and the 16th frames

Increasing again the angle view, the map initialization is performed with the 23th frame
but the reconstruction of the initial step is not good validating the previous statement
than an angle view too large is not good.

As already explained in Section 5.4, there are two conditions that must be satisfied in
order for the algorithm to recognize a frame as a keyframe, one is based on number of
matched feature and one on the number of frames that has passed from the last keyframe.
During the simulation it has been noticed that setting this last criteria as small as possible
won’t always give better results, and in reality it is the total opposite, making also the
algorithm stop in certain cases.

For this reason an analysis between the results obtained, time needed and reconstruction
error, between the various frame-step, number of frames that must pass from the last
keyframe, is performed. The results obtained point out that starting from a frame-step
of 1 and increasing it, the results keep becoming better, arriving at a maximum for the
frame-step of 7 and 8, after these values the reconstruction error and the time needed keep

74

getting worse. Frame-step 7 and frame-step 8 maximize the performance of two different
parameters, for the latter the times needed to the algorithm to work are minimized,
while for the former the reconstruction error is minimized. These results can be brought
back again, to a certain extent, to the angle views between two images, if too small, the
algorithm is not able to properly reconstruct the 3D points and the camera pose, and also
to particular sections of the algorithm that will be later explained.

Since by using a frame-step of one the algorithm stops prematurely, it will be shown in
the following subsection, the first frame-step analyzed is two. The results obtained are
shown in Figs. 6.17, 6.18, 6.19.

0 20 40 60 80 100 120

Key Frames

0

0.5

1

1.5

2

2.5

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

Figure 6.17: 2 FS: Comparison between the reconstructed and real trajectory (left), Error (right)

0 50 100 150 200 250

Frames

0

2

4

6

8

10

12

14

16

T
im

e
 [
s
]

track of the last key frame

track of the local map

keyframe validation

addition of a new keyframe

removing of map points

creation of new map points

update of the view direction and depth

local bundle adjustment

Total

0 50 100 150 200 250

Frames

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

T
im

e
 [
s
]

track of the last key frame

track of the local map

keyframe validation

Figure 6.18: 2 FS: Important times during the tracking (left), closeup to the first three important

times that are not visible (right)

Before discussing those results, the meaning of these graphs should be explained.
Starting from Fig. 6.17, on the left, the reconstructed trajectory is plotted against the
real one, also the optimized one is present but it is not interesting in this discussion, on
the right side instead, the error, along the three axis and its normal, between the two
trajectories is presented. In Fig. 6.18 the execution times are reported, on the left side,
the times needed by each part of the algorithm, in order, are illustrated. Starting from

75

0 50 100 150 200 250

Frames

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
im

e
 [
s
]

Features detection

Features matching with the Key Frames

Feature matching with the map points

Camera pose reconstruction

0 50 100 150 200 250

Frames

0

100

200

300

400

500

600

700

800

900

N
u
m

b
e
r

o
f
F

e
a
tu

re
s

Features detected

Features matched

Features used

Figure 6.19: 2 FS: Fundamental times (left), Number of features (right)

the time necessary for tracking the last keyframe, then the local map, so the keyframe
validation and if valid its addition to the keyframe set, after this, the time needed for
the elimination of map points that don’t appear in more than 3 keyframes, subsequently
the one for the creation of new map points that were not yet created, then the time for
the update of the view direction and depth of the camera and lastly for the local bundle
adjustment. Then the sum of all this times is presented. On the right side, since the
scale of the first three times listed is way smaller than the one of the others and are not
clearly visible, a close up of them is shown. Going to the last one, Fig, 6.19, on the left,
the time needed for the process of feature detection, feature matching and camera pose
reconstruction are shown, while on the right, the number of features detected, matched,
and the ones used for camera pose reconstruction are illustrated. The number of features
that can be detected has been capped at 1000.

As can be immediately seen from Fig. 6.17, the trajectory has not been fully recon-
structed, but not because there was an error in the algorithm and so it stopped naturally,
but it was forcefully stopped by the author because the time needed for the execution at
each step was becoming higher and higher, as can be verified by Fig. 6.17, on the left.
Keeping the eyes on the same figure, the main culprits can be immediately identified. As
expected, since it is stated in literature, the process that takes the most execution time
is the bundle adjustment, even if it is in its local version, then the next one, that kept
increasing and was becoming even more important than the local bundle adjustment is
the addition of a new keyframe in the keyframe set. This is due to the fact that in order
to add the connection between keyframes, the algorithm performs a for loop for everyone
of them up until that moment, so the more keyframes the more this loop will go on, but
the real problem is the adding of the connection between this important frames, since they
are very near, the angle view is small, a lot of them, connection point, are present, and so,
the algorithm take a lot of time to find them all. Then, the third culprit is the creation of

76

new map points, the creation is done through triangulation of the points of the current
keyframe and the ones of the set, but it excludes automatically the one that have an angle
view too small. The other times are almost linear, without any points of interest, apart
the time for the reconstruction of the camera pose in Fig. 6.19 where a spike is present,
this is due to the low number of features matched used for its reconstruction, as can be
seen from the figure on the right. Up until the point at which the algorithm was forcefully
stopped, the error was not so big, having an RMSE of 1.4152 m but, since the objective
of this thesis is to check if a real time implementation of the V-SLAM method could be
possible, this results have been discarded.

Increasing the FS, the times keep decreasing in a linear manner while the error, more
specifically, its RMSE, oscillates but in a general view, it keeps decreasing too. Arriving
at FS equal to 7 the maximum time needed for the algorithm goes below two seconds and
the reconstruction error is also minimized, with an RMSE of 1.662 m. The results for this
FS can be seen in Figs. 6.20, 6.21, 6.22.

0 20 40 60 80 100 120

Key Frames

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

Figure 6.20: 7 FS: Comparison between the reconstructed and real trajectory (left), Error (right)

0 100 200 300 400 500 600 700 800

Frames

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
im

e
 [

s
]

track of the last key frame

track of the local map

keyframe validation

addition of a new keyframe

removing of map points

creation of new map points

update of the view direction and depth

local bundle adjustment

Total

0 100 200 300 400 500 600 700 800

Frames

0

1

2

3

4

5

6

7

8

9

T
im

e
 [
s
]

10
-3

track of the last key frame

track of the local map

keyframe validation

Figure 6.21: 7 FS: Important times during the tracking (left), closeup to the first three important

times that are not visible (right)

77

0 100 200 300 400 500 600 700 800

Frames

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
im

e
 [
s
]

Features detection

Features matching with the Key Frames

Feature matching with the map points

Camera pose reconstruction

0 100 200 300 400 500 600 700 800

Frames

0

100

200

300

400

500

600

700

800

900

1000

N
u
m

b
e
r

o
f
F

e
a
tu

re
s

Features detected

Features matched

Features used

Figure 6.22: 7 FS: Fundamental times (left), Number of features (right)

It can be seen that the maximum time necessary by the algorithm is a little more than
1.2 seconds and that the majority of the results stay between one and 1.2 seconds, making
the real time implementation of it a possibility. Again, as the 2 FS case, the sections of
the algorithm that take the most time are the local bundle adjustment, the addition of
a new keyframe and the creation of new map points. From Fig. 6.20 and Fig. 6.22 an
interesting consideration can be extrapolated, the error starts increasing when the number
of features detected, matched and used start decreasing, in fact, it can also be seen in the
trajectory that from that point the reconstructed trajectory starts going adrift.

Instead, using a FS equal to 8, the time is minimized, while the error is a bit higher,
having an RMSE of 2.757 m. In Figs. 6.23, 6.24, 6.25 the result for this simulation are
illustrated.

0 20 40 60 80 100 120

Key Frames

0

2

4

6

8

10

12

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

Figure 6.23: 8 FS: Comparison between the reconstructed and real trajectory (left), Error (right)

Here, the highest time needed by the algorithm is a little more than 1.1 seconds and
the majority of the cases stay between 0.8 and 1 second, which is better than before but,
as previously said, the RMSE of the error is bigger. So, this time, going from FS equal
to 7 to FS equal to 8, a reduction in the algorithm’s run-time is present but it is paid
by a bigger error. Again, the sections of the algorithm that take the most running-time

78

0 100 200 300 400 500 600 700 800

Frames

0

0.2

0.4

0.6

0.8

1

1.2

T
im

e
 [

s
] track of the last key frame

track of the local map

keyframe validation

addition of a new keyframe

removing of map points

creation of new map points

update of the view direction and depth

local bundle adjustment

Total

0 100 200 300 400 500 600 700 800

Frames

0

1

2

3

4

5

6

7

T
im

e
 [
s
]

10
-3

track of the last key frame

track of the local map

keyframe validation

Figure 6.24: 8 FS: Important times during the tracking (left), closeup to the first three important

times that are not visible (right)

0 100 200 300 400 500 600 700 800

Frames

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
im

e
 [
s
]

Features detection

Features matching with the Key Frames

Feature matching with the map points

Camera pose reconstruction

0 100 200 300 400 500 600 700 800

Frames

0

100

200

300

400

500

600

700

800

900

1000

N
u
m

b
e
r

o
f
F

e
a
tu

re
s

Features detected

Features matched

Features used

Figure 6.25: 8 FS: Fundamental times (left), Number of features (right)

are the same three as before, but, due to the reasons explained before, it doesn’t come
as a surprise anymore. Another interesting fact is that also here the error starts going
adrift when the number of features detected, matched and used decrease, in fact before
that event, the error is comparable to the previous case, being just a bit higher, but not
by much. Obviously, if the possibility of a real time implementation could be exploited
before, now it is even better, at least for what regards the time side.

Since for two cases the errors started increasing at the same point, a further investigation
has been performed, it uses all the FS up to 8, excluding FS equal to two since the times
were too high. The results of this investigation is that for all the cases studied the
trajectory starts going adrift exactly at the same point so, intrigued by this fact, it has
been checked what happens in those frames and why the features detected decrease. It
has been observed that in those frames the only source of light is the one of the Earth and
shadow zone are also present.

79

6.3.2.2 Half trajectory
In the previous section it has been said that in order to overcome the limitation of the

map initialization, two things could be done, increasing the angle view or changing the
initial position in which the algorithm will start. Here this exact case is shown, in fact
it has been decided to let the algorithm work starting from midway so, only half of the
trajectory will be mapped, to be more precise, the last half of it.
In this case, the map is initialized with the first and second frame, in Fig. 6.26 and Fig.
6.27 the first frame and the matching for the initialization are reported.

Figure 6.26: First frame

Figure 6.27: Map initialization matching

From Fig. 6.26 the separation between the light coming from the Earth and the one
coming from the Sun can be appreciated.

In Fig. 6.28 it can be seen that the algorithms stops prematurely and the full trajectory
is not reconstructed, this time not because the author stopped it due the very high run-time

80

but because an error occurs due to the fact the the algorithm is not able to map correctly
the map points due to the nearness, in terms of angle view, of the keyframes. Even if
stopped, it can already be seen that the reconstruction error is quite big although the map
initialization is performed in a relatively good way and the relative position of the camera
is right.

Figure 6.28: Comparison between the reconstructed and real trajectory with 1 frame-step.

For these reasons the first frame-step analyzed is 2. The results are shown in the figures
below, Figs. 6.29, 6.30, 6.31

0 20 40 60 80 100 120 140 160 180 200

Key Frames

0

1

2

3

4

5

6

7

8

9

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

Figure 6.29: 2 FS: Comparison between the reconstructed and real trajectory (left), Error (right)

From these figures it can be seen that the reconstruction error is quite big but this is
not even the worst result, as before, the time needed to process each keyframe is very high,

81

0 50 100 150 200 250 300 350 400

Frames

0

0.005

0.01

0.015

0.02

0.025

0.03

T
im

e
 [
s
]

track of the last key frame

track of the local map

keyframe validation

Figure 6.30: 2 FS: Important times during the tracking (left), closeup to the first three important

times that are not visible (right)

0 50 100 150 200 250 300 350 400

Frames

0

0.1

0.2

0.3

0.4

0.5

0.6

T
im

e
 [
s
]

Features detection

Features matching with the Key Frames

Feature matching with the map points

Camera pose reconstruction

0 50 100 150 200 250 300 350 400

Frames

0

100

200

300

400

500

600

700

800

900

1000

N
u
m

b
e
r

o
f
F

e
a
tu

re
s

Features detected

Features matched

Features used

Figure 6.31: 2 FS: Fundamental times (left), Number of features (right)

making the real time vision-based relative navigation impossible to be performed. Again,
the three main sections responsible are local bundle adjustment, keyframe addition and
creation of new map points, but in this case, since it was not stopped prematurely, the
time needed by the keyframe addition section becomes higher than the one of the local
bundle adjustment. The RMSE for the trajectory in this case is 5.65 m.

As for the case before, increasing the FS, the error decreases, reaching its minimum
at the FS equal to 8, while the run-time is at its minimum at FS equal to 7. So, going
directly to the results of frame-step=7 and frame-step=8, respectively Figs. 6.32, 6.33,
6.34 and Figs. 6.35, 6.36, 6.37, it can be seen the the execution time for the first, 7 FS,
is lower than the execution time of the second, but the RMSE for the trajectory of the
frame-step=8 case is 3.98 m while for the frame-step=7 case is 4.45 m. Although lower
than the frame-step=2 case, the RMSE is still a bit too high to enable vision-based relative
navigation, especially in close proximity.

Regarding the times instead, they are considerably lower than the previous case and
a real time implementation can be performed. In this case, nothing is unexpected, the

82

0 10 20 30 40 50 60

Key Frames

0

1

2

3

4

5

6

7

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

Figure 6.32: 7 FS: Comparison between the reconstructed and real trajectory (left), Error (right)

0 50 100 150 200 250 300 350 400

Frames

0

0.2

0.4

0.6

0.8

1

1.2

T
im

e
 [
s
]

track of the last key frame

track of the local map

keyframe validation

addition of a new keyframe

removing of map points

creation of new map points

update of the view direction and depth

local bundle adjustment

Total

0 50 100 150 200 250 300 350 400

Frames

0

1

2

3

4

5

6

7

8

9

T
im

e
 [
s
]

10
-3

track of the last key frame

track of the local map

keyframe validation

Figure 6.33: 7 FS: Important times during the tracking (left), closeup to the first three important

times that are not visible (right)

0 50 100 150 200 250 300 350 400

Frames

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
im

e
 [
s
]

Features detection

Features matching with the Key Frames

Feature matching with the map points

Camera pose reconstruction

0 50 100 150 200 250 300 350 400

Frames

0

100

200

300

400

500

600

700

800

900

1000

N
u
m

b
e
r

o
f
F

e
a
tu

re
s

Features detected

Features matched

Features used

Figure 6.34: 7 FS: Fundamental times (left), Number of features (right)

bundle adjustment is the main protagonist for the execution time, needing double the time
of the second highest time-requiring process.

As can be seen, its true that increasing the FS yields a smaller error but, in general it is
still very high, completely different from the benefits provided by a good map initialization
as seen in Section 6.3.2.1.

83

0 10 20 30 40 50 60

Key Frames

0

1

2

3

4

5

6

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

Figure 6.35: 8 FS: Comparison between the reconstructed and real trajectory (left), Error (right)

0 50 100 150 200 250 300 350 400

Frames

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
im

e
 [
s
]

track of the last key frame

track of the local map

keyframe validation

addition of a new keyframe

removing of map points

creation of new map points

update of the view direction and depth

local bundle adjustment

Total

0 50 100 150 200 250 300 350 400

Frames

0

1

2

3

4

5

6

7

8

T
im

e
 [
s
]

10
-3

track of the last key frame

track of the local map

keyframe validation

Figure 6.36: 8 FS: Important times during the tracking (left), closeup to the first three important

times that are not visible (right)

0 50 100 150 200 250 300 350 400

Frames

0

0.05

0.1

0.15

0.2

0.25

0.3

T
im

e
 [
s
]

Features detection

Features matching with the Key Frames

Feature matching with the map points

Camera pose reconstruction

0 50 100 150 200 250 300 350 400

Frames

0

100

200

300

400

500

600

700

800

900

1000

N
u
m

b
e
r

o
f
F

e
a
tu

re
s

Features detected

Features matched

Features used

Figure 6.37: 8 FS: Fundamental times (left), Number of features (right)

Following this line of thought, it has been decided to try to increase also the angle
view for the map initialization. Since before, by increasing it, the results became better
and better, this was the expected outcome of this trial, but in reality it is the contrary.
The following consideration has been made by taking into account all the possible FS, up
to 8, for all the tried angle view.

84

By increasing the angle view the results not only don’t become better but they keep
getting worse and worse, in fact what can be thought as a good reconstruction for the
map initialization at first, become immediately a source of problem for the reconstruction
of the following step. In Fig. 6.38 the reconstructed trajectory with the map initialization
performed by the first and third frames and a FS of 2 is shown. As can be seen with this
angle view at first the reconstructed trajectory follows the real one but it goes adrift really
soon.

Figure 6.38: 2 FS: Comparison between the reconstructed trajecotry and the real one with the

map initilization performed by the first and third frame.

Increasing the angle view, performing the map initialization with the first and fifth
frames, and using an FS equal to 8, the results obtained are shown in Fig. 6.39

0 10 20 30 40 50 60

Key Frames

0

2

4

6

8

10

12

14

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

Figure 6.39: 8 FS: Comparison between the reconstructed trajectory and the real one with map

initialization performed by the first and fifth frame (left), error (right)

Looking only at the trajectory it could be thought that the map initialization is
performed in a good way but, adding the view of the error, it can be seen that even that
step is not performed in a good way, in fact, the error is very high, especially the one
along the Y axis, pointing at a reconstruction far above the real one. For the rest of the

85

trajectory it can be immediately noticed that is far from being accurate.
The reason for this behavior, not only the error becoming worse with an increasing

angle view but also the fact that in general the error is quite big, should be traceable to a
property of VESPA, its axisymmetric body. Since the starting point is almost from its side,
this property is put immediately into action and prevents the algorithm to reconstruct the
trajectory in an accurate way. This didn’t happen for the full trajectory case since when
going to its side the map was already initialized in a good way and the algorithm could
proceed without much problems.

Just from these two cases it can be seen how changing the initial condition of the
algorithm, in terms of frames, change also the end results, validating the statement made
at the beginning of the section where, although good, or bad, the results stand true only
for their case and, even if some general consideration can be extrapolated, they must be
further on verified with a large number of tests.

6.3.2.3 No local bundle adjustment
Here, the local bundle adjustment of the algorithm, the one that in previous images

was shown to take the highest execution time, is excluded. The expected results are a
decrease in the accuracy of the reconstructed trajectory and a lower execution time.

The cases studied are the one present in the previous sections, so half trajectory with
FS equal to 7 and 8, and the full trajectory. In Fig. 6.40, 6.41, 6.42 the results for the
half trajectory case with FS equal to 8 can be seen.

0 10 20 30 40 50 60 70 80

Key Frames

0

2

4

6

8

10

12

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

Figure 6.40: 8 FS: Comparison between the reconstructed and real trajectory (left), Error (right)

From Fig. 6.40 it can immediately seen that the trajectory is not reconstructed
completely and this is due to the fact that, as shown in Fig. 6.42, the number of matched
features goes to zero and so reconstruction is no longer possible. Other two things that can
be noticed are the, as expected, reduction in the execution time, Fig. 6.41, and decrease of
the accuracy, Fig.6.40, the RMSE is in fact 6.1134 m. Going back to the times, although
lower in general, it can be seen as the time required to add a new keyframe is higher with

86

0 50 100 150 200 250 300

Frames

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 [
s
]

track of the last key frame

track of the local map

keyframe validation

addition of a new keyframe

removing of map points

creation of new map points

update of the view direction and depth

Total

0 50 100 150 200 250 300

Frames

0

1

2

3

4

5

6

7

T
im

e
 [
s
]

10
-3

track of the last key frame

track of the local map

keyframe validation

Figure 6.41: 8 FS: Important times during the tracking (left), closeup to the first three important

times that are not visible (right)

0 50 100 150 200 250 300 350 400

Frames

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
im

e
 [
s
]

Features detection

Features matching with the Key Frames

Feature matching with the map points

Camera pose reconstruction

0 50 100 150 200 250 300 350 400

Frames

0

100

200

300

400

500

600

700

800

900

1000

N
u
m

b
e
r

o
f
F

e
a
tu

re
s

Features detected

Features matched

Features used

Figure 6.42: 8 FS: Fundamental times (left), Number of features (right)

respect to the case with local bundle adjustment.
Talking about the case with frame-step=7, the results are shown in Fig. 6.43, 6.44,

6.45.

0 10 20 30 40 50 60 70

Key Frames

0

1

2

3

4

5

6

7

8

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

Figure 6.43: 7 FS: Comparison between the reconstructed and real trajectory (left), Error (right)

Here the trajecotry is fully reconstructed and better global results are obtained with
respect to the frame-step=8 case above. Instead, comparing it to the case with local bundle

87

0 50 100 150 200 250 300 350 400

Frames

0

0.1

0.2

0.3

0.4

0.5

0.6

T
im

e
 [
s
]

track of the last key frame

track of the local map

keyframe validation

addition of a new keyframe

removing of map points

creation of new map points

update of the view direction and depth

Total

0 50 100 150 200 250 300 350 400

Frames

0

1

2

3

4

5

6

7

8

T
im

e
 [
s
]

10
-3

track of the last key frame

track of the local map

keyframe validation

Figure 6.44: 7 FS: Important times during the tracking (left), closeup to the first three important

times that are not visible (right)

0 50 100 150 200 250 300 350 400

Frames

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
im

e
 [
s
]

Features detection

Features matching with the Key Frames

Feature matching with the map points

Camera pose reconstruction

0 50 100 150 200 250 300 350 400

Frames

0

100

200

300

400

500

600

700

800

900

1000

N
u
m

b
e
r

o
f
F

e
a
tu

re
s

Features detected

Features matched

Features used

Figure 6.45: 7 FS: Fundamental times (left), Number of features (right)

adjustment, it’s easy to see that the execution time is almost halved and the accuracy is
worse, with an RMSE of 5.2384.

In the case of the full trajectory, starting with an FS equal to 8, the algorithm runs
until the last frame but what is reconstructed can’t be called a trajectory, pointing out
the importance of the local bundle adjustment performed at the last step of the algorithm.
Then going to FS equal to 7, the trajectory isn’t fully reconstructed since problems arise in
the transformation from world points to image points, since no world points are found. The
same thing happens for FS equal to 6, just that the algorithm stops further on along the
trajectory. Then an FS of 5 is used, but as for FS equal to 8, the trajectory reconstructed
can’t be called a trajectory anymore, the only difference is that for at least half of it, it is
reconstructed in a good way while, for the FS of 8, it started to go adrift immediately. All
this results points out the importance of the local bundle adjustment step. Finally, going
to FS equal to 4, the trajectory is fully reconstructed and in a good way. In Figs. 6.46,
6.47, 6.48 the comparison between the case with the local bundle adjustment, on the left,
and without, on the right, can be appreciated.

88

Figure 6.46: 4 FS: Comparison between the reconstructed and real trajectory.

0 20 40 60 80 100 120 140 160 180 200

Key Frames

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

0 20 40 60 80 100 120 140 160 180 200

Key Frames

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

Figure 6.47: 4 FS: Error.

0 100 200 300 400 500 600 700 800

Frames

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
im

e
 [
s
]

track of the last key frame

track of the local map

keyframe validation

addition of a new keyframe

removing of map points

creation of new map points

update of the view direction and depth

Total

Figure 6.48: 4 FS: Important times during the tracking.

The reconstructed trajectory and the error are not so different, with, as expected,
the case with local bundle adjustment having a smaller one, but, the times are worlds
apart, almost a full order of magnitude less for the case without bundle adjustment. The
RMSE for the first is 2.0185 while for the second it is 2.6023. For this case it almost seems
like that the local bundle adjustment is a weight bringing down the performances of the
algorithm, but this is just a single positive case with respect to all the other ones that

89

confirm its importance.
It could be said that without the local bundle adjustment it is better to use smaller FS

since more information can be retrieved this way, being always careful to not use too small
ones since they could increase again the time needed for the execution of the algorithm,
in fact an optimum here was found for FS equal to 4, going lower, the times will start
increasing again.

Even though for the FS equal to 4 the addition of the local bundle adjustment is not
such a good thing, as it is visible from the previous results, at least for this specific test
case 1, the case of optimum FS with local bundle adjustment gives better results than the
one of optimum FS without it.

6.3.3 Test case 2
Now, in order the bypass the axysimmetric body of VESPA, its z axis is positioned

perpendicular to the velocity direction. With this configuration, unlike the previous case,
no problem arise. In Fig. 6.49 the first frame and in Fig. 6.50 the map initialization
matching for this case are presented. The map is initialized with the first and second
frame.

Figure 6.49: First frame

Again, using a low frame-step gives worst results than using an high one. In this case
only an optimum frame-step exist, minimizing both the execution time and the trajectory
error, it is frame-step equal to 9. In Figs. 6.51, 6.52, 6.53 the results given by such a
frame-step can be seen. It is immediately noticed that the reconstructed trajectory in
this case is way better than in the previous one, in fact the RMSE is 0.91686 m. Also
the times are very satisfactory, with the highest one being around 1.3 second and the

90

Figure 6.50: Map initialization matching

majority staying in the range from 0.8 to 1.2 second and a real time implementation could
be possible.

0 10 20 30 40 50 60 70 80 90 100

Key Frames

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

Figure 6.51: Comparison between the reconstructed trajectory and the real one (left), Error (right)

0 100 200 300 400 500 600 700 800

Frames

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
im

e
 [
s
]

track of the last key frame

track of the local map

keyframe validation

addition of a new keyframe

removing of map points

creation of new map points

update of the view direction and depth

local bundle adjustment

Total

0 100 200 300 400 500 600 700 800

Frames

0

0.005

0.01

0.015

0.02

0.025

0.03

T
im

e
 [
s
]

track of the last key frame

track of the local map

keyframe validation

Figure 6.52: Important times during the tracking (left), closeup to the first three important times

that are not visible (right)

From Fig. 6.53 it can be seen that the fewer the matched feature, and consecutively
the one used for the camera pose reconstruction, the higher the time needed for the camera

91

0 100 200 300 400 500 600 700 800

Frames

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 [
s
]

Features detection

Features matching with the Key Frames

Feature matching with the map points

Camera pose reconstruction

0 100 200 300 400 500 600 700 800

Frames

0

100

200

300

400

500

600

700

800

900

1000

N
u
m

b
e
r

o
f
F

e
a
tu

re
s

Features detected

Features matched

Features used

Figure 6.53: Fundamental times (left), Number of features (right)

pose reconstruction. Those points are in correspondence of the passage of the camera
under VESPA, where few features are present due to the fact that no information about
its interior is known and so it has been modelled as completely void of any particular
element, having only the carbon fiber texture.

Summarizing, it is evident that having VESPA with this orientation is beneficial to the
trajectory reconstruction, although the times are comparable to the ones of Test case 1,
the RMSE is way better.

6.3.3.1 No local bundle adjustment
Even for this case, tests with no bundle adjustment were performed. For the precedent

optimum frame-step the trajectory is not fully reconstructed and the reconstruction error,
until the algorithm stopped, was bigger. The execution time was lower but since problems
arise and the algorithm doesn’t end, they have no meaning. To let the algorithm run until
the last frame a frame-step equal to 7 must be used.

Figure 6.54: 7 FS: Comparison between the reconstructed trajectory and the real one

The results are not unexpected, the trajectory error is bigger and the execution times
lower with respect to the case with local bundle adjustment. In Figs. 6.54, 6.55, 6.56

92

0 20 40 60 80 100 120

Key Frames

0

0.5

1

1.5

2

2.5

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

0 20 40 60 80 100 120

Key Frames

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

Figure 6.55: 7 FS: Error

0 100 200 300 400 500 600 700 800

Frames

0

0.5

1

1.5

2

2.5

T
im

e
 [
s
]

track of the last key frame

track of the local map

keyframe validation

addition of a new keyframe

removing of map points

creation of new map points

update of the view direction and depth

local bundle adjustment

Total

0 100 200 300 400 500 600 700 800

Frames

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e
 [
s
]

track of the last key frame

track of the local map

keyframe validation

addition of a new keyframe

removing of map points

creation of new map points

update of the view direction and depth

Total

Figure 6.56: 7 FS: Important times during the tracking

the case with, on the left side, and without, right side, the local bundle adjustment, are
reported, respectively, to let the reader have a visible paragon. The RMSE for the case
with the local bundle adjustment is 1.35 m while without it is 1.724 m.

6.3.4 Test case 3
Starting from the Test case 2, since it is the one with the better results, an image of

the Earth, Fig. 6.57, has been used to create a background. This has been done since the
Earth introduce some disturbances in the entire algorithm making the reconstruction of
the trajectory more difficult and less accurate, this is due to the fact that some feature
will be detected, described and matched also for it, creating an interference with the ones
of VESPA.

The trajectory considered consist only of the first 115 frames of the whole trajectory,
this is due to the higher rendering time and the fact that this case is performed just to
let the reader understand how the background, in any space scenario, affects the results.
In Fig. 6.58 the first frame of the sequence can be seen, while in Fig. 6.59, the map
initialization step is presented.

93

Figure 6.57: Image of the Earth used as background [67]

Figure 6.58: First frame

Figure 6.59: Map initialization matching

As can be seen from Figs. 6.60, 6.61, with the case having the Earth on the background
being on the right side, the reconstructed trajectory is less accurate and so the error bigger,
in fact the RMSE of the the Earth-free trajectory is 0.6453 while the other is 1.4452 m,
more than two times the first. A comparison between the times is not shown since they
are similar and no interesting consideration can be derived from it.

94

Figure 6.60: Comparison between the reconstructed trajectory and the real one

0 2 4 6 8 10 12 14

Key Frames

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

0 5 10 15

Key Frames

0

0.5

1

1.5

2

2.5

E
rr

o
r

a
lo

n
g
 t
h
e
 a

x
e
s
 f
o
r

e
a
c
h
 f
ra

m
e
s
 [
m

]

X axis

Y axis

Z axis

Error for each keyframe

Figure 6.61: Error

95

7 Conclusions
The V-SLAM problem for space application has been presented in this thesis and from

the results obtained it is possible to understand the benefits and limitation of such a
method.

During the development of this thesis the first hurdle found along the road was the
creation of the synthetic images that, although don’t belong to the V-SLAM problem,
they are the foundations, in this work, in which the problem is built on. The creation
of the model was challenging and two main aspects stand out, the first one being the
fidelity of the model with respect to the real one, for VESPA, or any object of interest, it
is important to replicate even the smallest elements since they would likely be points of
interest/features detected by the algorithm. The second one is about the textures used,
the better the texture used the more the image will be photorealistic. Then also the
environment gave rise to some difficulties, especially in the creation of the background
that, as explained, in order to show some results, has been implemented using a flat image
due to the low computational power of the used CPU.

Another important brick for the resolution of the V-SLAM problem is the camera
calibration, without a good reconstruction of the camera parameters the computer is not
able to "see" the image correctly, much likely as a person who wears glasses is not able to
see correctly without them or with ones with a wrong gradation, making the detection of
features and their consecutive matching very hard.

Going to the algorithm, it is immediately shown the importance of the map initialization
step for a good trajectory reconstruction and how its angle view doesn’t follow a constant
rule but each case has its own one, be it small or large. Particular attention should be
given to this step in order to achieve the best results possible. Then also the angle view
between each keyframe is taken into consideration and the results seems to point out that
a bigger one, in presence of the local bundle adjustment step, gives better results, both in
terms of accuracy of the reconstructed trajectory and of time needed for the execution of
the algorithm. The limitation of a keyframe approach is shown too, especially regarding
the time needed by the addition of a new keyframe in the set. In a long simulation the
number of keyframe will be quite high and so that section of the algorithm will likely take
more and more time to be executed, making the algorithm unusable. A possible solution
could be a window approach that will not take into consideration all the keyframes added
up until the new one to search for connection, but only a window around it, this suggestion
has been made taking into consideration that after some time the connection between the

96

first keyframes and the current one will be near none.
In conclusion, although the method shows great potential, and will surely play a major

role in the future, in the current phase of its study, an integration with data coming from
other sensor, like a LiDAR, or another camera, maybe an infrared one in order to retrieve
data even during an eclipse, is necessary in order to obtain accurate/satisfactory results.

This analyses, although in a preliminary state, is well aligned with the needs of the
incoming space missions interests around small objects, in which the relative navigation
has a central role. Active Debris Removal (ADR) missions and asteroid exploration are
examples of possible applications, as previously stated. To better evolve the discipline
of relative navigation using images, the next section proposes some hints to enhance the
work in this thesis.

7.1 Future development
The obtained results are as good as the programs and the procedures used to attain

them, so, by improving the latter, also the former will become better. In the sections
below, some of the future developments that could be carried out to improve the tools
used will be shown.

7.1.1 Synthetic images
Starting from the generation of synthetic images, the target model should be first

update with the most recent information and further details could be added. Also the
textures can be improved: specific higher quality textures can be used, remembering that
one of the main characteristics of a good texture is that of being seamless. But it must be
taken into consideration that the higher the texture quality, the more "heavy" it will be
and so the rendering time will increase. Other than the target, also the background could
be improved. In this work the Earth in the background could not have been applied but,
with a more powerful computer, this limitation could be lifted, creating in such a way, a
more realistic environment.

A final improvement, and let’s say the most simple and immediate one, is changing the
image generator software. This could be done by changing completely the software or by
upgrading the current one in use with its latest version available.

7.1.2 V-SLAM
In the V-SLAM algorithm the loop closure feature was present, but since the trajectory

never passed the same place twice, it was never exploited. In order to see how such a

97

feature works in a space environment an appropriate trajectory could be designed. Another
feature that could be added is the failure recovery one.

Another solutions, as for the case of the synthetic images, could be changing the
software, in this case ORB-SLAM. As before, two paths can be taken, either improving
the current one, a SLAM algorithm is based on a lot of parameters, changing them could
give beneficial results, depending on what has been modified and how, or by completely
changing the software, using a SURF-SLAM for example.

In order to validate the V-SLAM approach in different kind of scenario, due to the
nature of the used tools, it is possible to perform an extensive number of tests, changing
something every time, from the camera parameters to the target and the background.
Talking about the background, as said before, it is a disturbing element that introduces
not useful features in the algorithm. In order to reduce their number, a ROI detection
algorithm can be added, in this way the features will be extracted only from the bounded
box of the region of interest. It must be remembered that, although beneficial, it will also
increase the execution time of the whole algorithm.

Even if simulations through the use of synthetic images are useful, they cannot replace
tests in real scenarios with actual sensors and targets. Testing could be conducted on
embedded systems or in a GNC facility, such as the one present at Politecnico di Milano
with an asteriod and satellite mock-ups.

98

Bibliography
[1] D. F. Pierrottet F. Amzajerdian, L. B. Petway G. D. Hines, and B. W. Barnes.

“Doppler lidar sensor for precision navigation in GPS-deprived environment”. In:
Laser Radar Technology and Applications XVIII, Vol. 8731, International Society
for Optics and Photonics, SPIE (May 2013). doi: 10.1117/12.2018359.

[2] Capability overview of NASA autonomous systems. url: https://www.nasa.gov/
sites/default/files/atoms/files/nac_tie_aug2018_tfong_tagged.pdf.

[3] Tridar, automating a better rendezvous in space. url: https://www.nasa.gov/
mission_pages/station/research/news/b4h-3rd/it-automating-better-

space-rendezvous/.

[4] S. Cryan J. A. Christian. A Survey of LIDAR Technology and its Use in Spacecraft
Relative Navigation. url: https://arc.aiaa.org/doi/abs/10.2514/6.2013-
4641.

[5] DART mission. url: https://www.nasa.gov/mission_pages/dart/main/index.
html.

[6] ETS-VII mission. url: https://global.jaxa.jp/projects/sat/ets7/index.
html.

[7] Hayabusa-2 mission. url: https://spaceflight101.com/spacecraft/hayabusa-
2/.

[8] OSIRIS-Rex mission. url: https://www.asteroidmission.org/objectives/.

[9] Rosetta mission. url: https://www.esa.int/Science_Exploration/Space_
Science/Rosetta/Rosetta_Media_factsheet.

[10] Rosetta’s NavCam instrument. url: https://pdssbn.astro.umd.edu/catalogs/
Rosetta/navcam_inst.cat.

[11] Rosetta’s OSIRIS instrument. url: https://www.mps.mpg.de/1979623/OSIRIS.

[12] Humberto Campins et al. “THE ORIGIN OF ASTEROID 162173 (1999 JU3)”. In:
The Astronomical Journal 146 (2013).

[13] Bennu. url: https://www.minorplanetcenter.net/db_search/show_object?
object_id=Bennu.

[14] OSIRIS-REx instruments. url: https://www.asteroidmission.org/objectives/
instruments/.

99

https://doi.org/10.1117/12.2018359
https://www.nasa.gov/sites/default/files/atoms/files/nac_tie_aug2018_tfong_tagged.pdf
https://www.nasa.gov/sites/default/files/atoms/files/nac_tie_aug2018_tfong_tagged.pdf
https://www.nasa.gov/mission_pages/station/research/news/b4h-3rd/it-automating-better-space-rendezvous/
https://www.nasa.gov/mission_pages/station/research/news/b4h-3rd/it-automating-better-space-rendezvous/
https://www.nasa.gov/mission_pages/station/research/news/b4h-3rd/it-automating-better-space-rendezvous/
https://arc.aiaa.org/doi/abs/10.2514/6.2013-4641
https://arc.aiaa.org/doi/abs/10.2514/6.2013-4641
https://www.nasa.gov/mission_pages/dart/main/index.html
https://www.nasa.gov/mission_pages/dart/main/index.html
https://global.jaxa.jp/projects/sat/ets7/index.html
https://global.jaxa.jp/projects/sat/ets7/index.html
https://spaceflight101.com/spacecraft/hayabusa-2/
https://spaceflight101.com/spacecraft/hayabusa-2/
https://www.asteroidmission.org/objectives/
https://www.esa.int/Science_Exploration/Space_Science/Rosetta/Rosetta_Media_factsheet
https://www.esa.int/Science_Exploration/Space_Science/Rosetta/Rosetta_Media_factsheet
https://pdssbn.astro.umd.edu/catalogs/Rosetta/navcam_inst.cat
https://pdssbn.astro.umd.edu/catalogs/Rosetta/navcam_inst.cat
https://www.mps.mpg.de/1979623/OSIRIS
https://www.minorplanetcenter.net/db_search/show_object?object_id=Bennu
https://www.minorplanetcenter.net/db_search/show_object?object_id=Bennu
https://www.asteroidmission.org/objectives/instruments/
https://www.asteroidmission.org/objectives/instruments/

[15] Tim Bailey Hugh Durrant-Whyte. “Simultaneous localization and mapping: Part
I”. In: Robotics and Automation Magazine, IEEE 13 (June 2006), pp. 99–110. doi:
10.1109/MRA.2006.1638022.

[16] V.Pesce. Stereovision-based pose and inertia estimation for unknown and uncoop-
erative space objects. url: https://www.politesi.polimi.it/handle/10589/
107902?mode=complete.

[17] Shai Segal, Avishy Carmi, and Pini Gurfil. “Stereovision-Based Estimation of Relative
Dynamics Between Noncooperative Satellites: Theory and Experiments”. In: IEEE
Transactions on Control Systems Technology 22.2 (2014), pp. 568–584. doi: 10.
1109/TCST.2013.2255288.

[18] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. “ORB-SLAM: A Versatile
and Accurate Monocular SLAM System”. In: IEEE Transactions on Robotics 31.5
(2015), pp. 1147–1163. doi: 10.1109/TRO.2015.2463671.

[19] Hauke Strasdat, J. M. M. Montiel, and Andrew J. Davison. “Real-time monocular
SLAM: Why filter?” In: 2010 IEEE International Conference on Robotics and
Automation. 2010, pp. 2657–2664. doi: 10.1109/ROBOT.2010.5509636.

[20] P. Tsiotras M. Dor. “ORB-SLAM Applied to Spacecraft Non-Cooperative Ren-
dezvous”. In: 2018. doi: 10.2514/6.2018-1963.

[21] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. “ORB-SLAM: A Versatile
and Accurate Monocular SLAM System”. In: IEEE Transactions on Robotics 31.5
(2015), pp. 1147–1163. doi: 10.1109/TRO.2015.2463671.

[22] F. Fraundorfer D. Scaramuzza. “Visual Odometry [Tutorial]”. In: IEEE Robotics and
Automation Magazine (Dec. 2011), pp. 80–92. doi: 10.1109/MRA.2011.943233.

[23] Larry Matthies Yang Cheng Mark Maimone. “Visual odome- try on the Mars
exploration rovers”. In: 2005 IEEE International Con- ference on Systems, Man and
Cybernetics 1 (2005), pp. 903–910.

[24] S. M. Parkes et al. “A virtual test environment for validating spacecraft optical
navigation”. In: The Aeronautical Journal (1968) 117.1197 (2013), pp. 1075–1101.
doi: 10.1017/S000192400000871X.

[25] I. Martin S. M. Parkes. “Virtual lunar landscapes for testing vision-guided lunar
landers”. In: 1999 IEEE International Conference on Information Visualization (Cat.
No. PR00210) (1999), pp. 122–127.

[26] SurRender software. url: https://www.airbus.com/space/space-exploration/
SurRenderSoftware.html.

100

https://doi.org/10.1109/MRA.2006.1638022
https://www.politesi.polimi.it/handle/10589/107902?mode=complete
https://www.politesi.polimi.it/handle/10589/107902?mode=complete
https://doi.org/10.1109/TCST.2013.2255288
https://doi.org/10.1109/TCST.2013.2255288
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/ROBOT.2010.5509636
https://doi.org/10.2514/6.2018-1963
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/MRA.2011.943233
https://doi.org/10.1017/S000192400000871X
https://www.airbus.com/space/space-exploration/SurRenderSoftware.html
https://www.airbus.com/space/space-exploration/SurRenderSoftware.html

[27] Planet and Asteroid Natural Scene Generation Utility software. url: https://www.
star-dundee.com/products/pangu-planet-and-asteroid-natural-scene-

generation-utility/#technical_specs.

[28] Blender software. url: https://www.blender.org/download/.

[29] RS Wiltshire WH Clohessy. “Terminal guidance system for satellite rendezvous”. In:
Journal of the Aerospace Sciences 27.9 (1960), pp. 653–658.

[30] Vikram Kapila Haizhou Pan. “Adaptive nonlinear control for spacecraft formation
flying with coupled translational and attitude dynamics”. In: Proceedings of the 40th
IEEE Conference on Decision and Control (Cat. No. 01CH37228) Vol.3 (2001),
pp. 2057–2062.

[31] Describing Orbits. url: https://www.faa.gov/about/office_org/headquarters_
offices/avs/offices/aam/cami/library/online_libraries/aerospace_

medicine/tutorial/media/III.4.1.4_Describing_Orbits.pdf.

[32] Earth Centered Inertial reference frame. url: https://en.wikipedia.org/wiki/
Earth-centered_inertial.

[33] Siamak Tafazoli. “On Attitude Recovery of Spacecraft using Nonlinear Control”. In:
(Dec. 2020), p. 40.

[34] Perifocal reference frame. url: https://adcsforbeginners.wordpress.com/tag/
vernal-equinox/.

[35] Hyung-Chul Lim, Hyochoong Bang, and Sangjong Lee. “Adaptive Backstepping
Control for Satellite Formation Flying with Mass Uncertainty”. In: Journal of
Astronomy and Space Sciences 23 (Dec. 2006), pp. 405–414. doi: 10.5140/JASS.
2006.23.4.405.

[36] S. R. Vadali K. T. Alfriend, J. P. How P. Gurfil, and L. Breger. Spacecraft For-
mation Flying Dynamics, control and navigation. Elsevier Astrodynamics Series -
Butterworth-Heinemann, 2010.

[37] G. Saccomandi P. Biscari T. Ruggeri and M. Vianello. Meccanica Razionale. Springer,
2013.

[38] Perspective. url: https://www.tate.org.uk/art/student-resource/exam-
help/perspective.

[39] Andrew Zisserman Richard Hartley. Multiple View Geometry in computer vision.
Cambridge University Press, 2004.

[40] Parallels lines that intersect at infinity. url: https://baweanlov.blogspot.com/
2021/03/rette-parallele-si-incontrano.html.

101

https://www.star-dundee.com/products/pangu-planet-and-asteroid-natural-scene-generation-utility/#technical_specs
https://www.star-dundee.com/products/pangu-planet-and-asteroid-natural-scene-generation-utility/#technical_specs
https://www.star-dundee.com/products/pangu-planet-and-asteroid-natural-scene-generation-utility/#technical_specs
https://www.blender.org/download/
https://www.faa.gov/about/office_org/headquarters_offices/avs/offices/aam/cami/library/online_libraries/aerospace_medicine/tutorial/media/III.4.1.4_Describing_Orbits.pdf
https://www.faa.gov/about/office_org/headquarters_offices/avs/offices/aam/cami/library/online_libraries/aerospace_medicine/tutorial/media/III.4.1.4_Describing_Orbits.pdf
https://www.faa.gov/about/office_org/headquarters_offices/avs/offices/aam/cami/library/online_libraries/aerospace_medicine/tutorial/media/III.4.1.4_Describing_Orbits.pdf
https://en.wikipedia.org/wiki/Earth-centered_inertial
https://en.wikipedia.org/wiki/Earth-centered_inertial
https://adcsforbeginners.wordpress.com/tag/vernal-equinox/
https://adcsforbeginners.wordpress.com/tag/vernal-equinox/
https://doi.org/10.5140/JASS.2006.23.4.405
https://doi.org/10.5140/JASS.2006.23.4.405
https://www.tate.org.uk/art/student-resource/exam-help/perspective
https://www.tate.org.uk/art/student-resource/exam-help/perspective
https://baweanlov.blogspot.com/2021/03/rette-parallele-si-incontrano.html
https://baweanlov.blogspot.com/2021/03/rette-parallele-si-incontrano.html

[41] J. Heikkila and O. Silven. “A Four-step Camera Calibration Procedure with Implicit
Image Correction.” In: IEEE International Conference on Computer Vision and
Pattern Recognition (1997).

[42] OpenCV. Camera Calibration and 3D Reconstruction. url: https://docs.opencv.
org/3.4.4/d9/d0c/group__calib3d.html.

[43] cause of tangential distortion. url: https://uk.mathworks.com/help/vision/ug/
camera-calibration.html#buvr2qb-2.

[44] Tangetial distortion effect. url: https://developer.ridgerun.com/wiki/index.
php?title=File:Undistort_tangential_distortion_representation.svg.

[45] Wilhelm Burger. “Zhang’s Camera Calibration Algorithm: In-Depth Tutorial and
Implementation”. In: May 2016.

[46] Lens equation. url: https://www.kielia.de/photography/calculator/lens-
equation/.

[47] DSLR camera basics. url: https://imaging.nikon.com/lineup/dslr/basics/
19/01.htm.

[48] Hasan Joni, Imzahim Alwan, and Ghazwan Naji. “Utilizing Artificial Intelligence to
Collect Pavement Surface Condition Data”. In: Engineering and Technology Journal
38 (Feb. 2020), pp. 74–82. doi: 10.30684/etj.v38i1A.251.

[49] Understanding Focal length. url: https://www.nikonusa.com/en/learn-and-
explore/a/tips-and-techniques/understanding-focal-length.html#.

[50] Visual navigation for autonomous planetary landing. url: http://hdl.handle.
net/10589/123100.

[51] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartography”.
In: 24.6 (1981). issn: 0001-0782. doi: 10.1145/358669.358692. url: https:
//doi.org/10.1145/358669.358692.

[52] RANSAC algorithm. url: https://uk.mathworks.com/discovery/ransac.html.

[53] Chris Kahlefendt. Implementation and Evaluation of Monocular SLAM for an
Underwater Robot. 2018. url: https://robotics.ee.uwa.edu.au/theses/2017-
UnderwaterSLAM-Kahlefendt.pdf.

[54] Adrian Penate-Sanchez, Juan Andrade-Cetto, and Francesc Moreno-Noguer. “Ex-
haustive Linearization for Robust Camera Pose and Focal Length Estimation”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 35.10 (2013),
pp. 2387–2400. doi: 10.1109/TPAMI.2013.36.

102

https://docs.opencv.org/3.4.4/d9/d0c/group__calib3d.html
https://docs.opencv.org/3.4.4/d9/d0c/group__calib3d.html
https://uk.mathworks.com/help/vision/ug/camera-calibration.html#buvr2qb-2
https://uk.mathworks.com/help/vision/ug/camera-calibration.html#buvr2qb-2
https://developer.ridgerun.com/wiki/index.php?title=File:Undistort_tangential_distortion_representation.svg
https://developer.ridgerun.com/wiki/index.php?title=File:Undistort_tangential_distortion_representation.svg
https://www.kielia.de/photography/calculator/lens-equation/
https://www.kielia.de/photography/calculator/lens-equation/
https://imaging.nikon.com/lineup/dslr/basics/19/01.htm
https://imaging.nikon.com/lineup/dslr/basics/19/01.htm
https://doi.org/10.30684/etj.v38i1A.251
https://www.nikonusa.com/en/learn-and-explore/a/tips-and-techniques/understanding-focal-length.html#
https://www.nikonusa.com/en/learn-and-explore/a/tips-and-techniques/understanding-focal-length.html#
http://hdl.handle.net/10589/123100
http://hdl.handle.net/10589/123100
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://uk.mathworks.com/discovery/ransac.html
https://robotics.ee.uwa.edu.au/theses/2017-UnderwaterSLAM-Kahlefendt.pdf
https://robotics.ee.uwa.edu.au/theses/2017-UnderwaterSLAM-Kahlefendt.pdf
https://doi.org/10.1109/TPAMI.2013.36

[55] J. Sturm. Lecture 6: Visual navigation for flying robots. url: https://www.youtube.
com/watch?v=HuzC0MAlo0w.

[56] P.Fua V. Lepetit F. Moreno-Noguer. “EPnP: An accurate O(n) solution to the PnP
problem”. In: International journal of computer vision 81 (2009). doi: 10.1007/
s11263-008-0152-6.

[57] VESPA. url: https://www.esa.int/Enabling_Support/Space_Transportation/
Launch_vehicles/VV02_Vega_uses_Vespa.

[58] Vega C user manual. url: https://www.arianespace.com/wp-content/uploads/
2018/%2007/Vega-C-user-manual-Issue-0-Revision-0_20180705.pdf.

[59] NORAD catalogue. url: https://www.norad.mil.

[60] Blender beginner tutorial. url: https://www.youtube.com/watch?v=NyJWoyVx_
XI&list=PLjEaoINr3zgEq0u2MzVgAaHEBt--xLB6U.

[61] Collection of high quality free carbon fiber texture. url: http : / / designbeep .
com/2012/01/06/collection-of-high-quality-yet-free-carbon-fiber-

texturespatterns-for-designers/.

[62] f-stop in photography and what it does. url: https://www.adobe.com/creativecloud/
photography/discover/f-stop.html.

[63] How to make Earth (Cycles). url: https://www.blenderguru.com/tutorials/
earth-cycles.

[64] Single camera calibration app. url: https://www.mathworks.com/help/vision/
ug/single-camera-calibrator-app.html.

[65] Matlab. url: https://uk.mathworks.com/products/matlab.html.

[66] J. Sturm et al. “A Benchmark for the Evaluation of RGB-D SLAM Systems”. In:
Proc. of the International Conference on Intelligent Robot Systems (IROS). Oct.
2012.

[67] NASA. url: https://www.nasa.gov/topics/earth/images/index.html.

103

https://www.youtube.com/watch?v=HuzC0MAlo0w
https://www.youtube.com/watch?v=HuzC0MAlo0w
https://doi.org/10.1007/s11263-008-0152-6
https://doi.org/10.1007/s11263-008-0152-6
https://www.esa.int/Enabling_Support/Space_Transportation/Launch_vehicles/VV02_Vega_uses_Vespa
https://www.esa.int/Enabling_Support/Space_Transportation/Launch_vehicles/VV02_Vega_uses_Vespa
https://www.arianespace.com/wp-content/uploads/2018/%2007/Vega-C-user-manual-Issue-0-Revision-0_20180705.pdf
https://www.arianespace.com/wp-content/uploads/2018/%2007/Vega-C-user-manual-Issue-0-Revision-0_20180705.pdf
https://www.norad.mil
https://www.youtube.com/watch?v=NyJWoyVx_XI&list=PLjEaoINr3zgEq0u2MzVgAaHEBt--xLB6U
https://www.youtube.com/watch?v=NyJWoyVx_XI&list=PLjEaoINr3zgEq0u2MzVgAaHEBt--xLB6U
http://designbeep.com/2012/01/06/collection-of-high-quality-yet-free-carbon-fiber-texturespatterns-for-designers/
http://designbeep.com/2012/01/06/collection-of-high-quality-yet-free-carbon-fiber-texturespatterns-for-designers/
http://designbeep.com/2012/01/06/collection-of-high-quality-yet-free-carbon-fiber-texturespatterns-for-designers/
https://www.adobe.com/creativecloud/photography/discover/f-stop.html
https://www.adobe.com/creativecloud/photography/discover/f-stop.html
https://www.blenderguru.com/tutorials/earth-cycles
https://www.blenderguru.com/tutorials/earth-cycles
https://www.mathworks.com/help/vision/ug/single-camera-calibrator-app.html
https://www.mathworks.com/help/vision/ug/single-camera-calibrator-app.html
https://uk.mathworks.com/products/matlab.html
https://www.nasa.gov/topics/earth/images/index.html

	Abstract
	Sommario
	Ringraziamenti
	List of Figures
	List of Tables
	Acronyms
	Introduction
	State of the Art: Relative navigation in space
	Computer vision: Visual relative navigation methods
	Rendering for space application
	Thesis overview
	Thesis structure

	Relative Dynamics
	Orbital Dynamics and Reference frames
	Reference frames

	System of equation for nonlinear relative dynamics
	Perturbations and Control actions
	Linearized model, the Clohessy-Wiltshare Equations

	System of equations for coupled tran- slational-rotational relative dynamics
	Relative rotational model
	Relative translational model

	Camera
	Projective geometry
	Projective geometry transformation

	Camera Model
	Camera calibration
	Photography and optics

	Computer Vision
	VO and SLAM
	Direct and Feature-based methods
	Feature detection
	Feature Matching and Tracking

	ORB-SLAM
	General SLAM algorithm
	Oriented FAST and Rotated BRIEF

	Epipolar geometry
	Fundamental and Essential matrix estimation
	Extrinsic parameters from essential matrix
	Triangulation
	Perspective n-Point Problem
	Bundle Adjustment

	Thesis workflow and set-up steps
	VESPA
	VESPA's physical characteristics
	VESPA's orbit

	Creation of synthetic images in Blender
	VESPA's model
	Environment's model

	Camera calibration step
	V-SLAM algorithm
	Map initialization
	Tracking
	Local mapping
	Loop closure

	Results
	Camera calibration results
	First calibration
	Second calibration
	Third calibration
	Fourth calibration
	Extra: tangential distortion coefficients

	Algorithm validation
	V-SLAM results
	Trajectory
	Test case 1
	Full Trajectory
	Half trajectory
	No local bundle adjustment

	Test case 2
	No local bundle adjustment

	Test case 3

	Conclusions
	Future development
	Synthetic images
	V-SLAM

	Bibliography

