
Session Layer Bounded Latency in

Wireless Mesh Networks

Tesi di Laurea Magistrale in

Computer Science and Engineering - Ingegneria In-

formatica

Author: Luca Conterio

Student ID: 920261
Advisor: Federico Terraneo
Co-advisors: Prof. William Fornaciari
Academic Year: 2021-2022

i

Abstract

During the last years, wireless networks gained increasing importance in humans life,

becoming leading actors in many scenarios. Consider for example the incredible spread

of mobile devices and those related to the Internet of Things, together with commonly

used technologies such as WiFi or ZigBee. Wireless technologies are usually targeted

either to high-performance or low-power networks and, in this context, TDMH (Time

Deterministic Multi-Hop) presents itself as a wireless communication stack capable of pro-

viding e�cient low-power medium access control. Being also able to manage multi-hop

mesh networks and adapt to network topology changes, TDMH is suitable for real-time

applications, running on battery-powered devices and targeting industrial control use

cases. In such applications, guarantees on the expected latency bounds for all the pack-

ets �owing through the network is crucial and, to the best of the author's knowledge,

existing technologies are unable to combine then with the support for multi-hop net-

work topologies. This thesis presents an extension to the existing TDMH session layer,

through the design and implementation of two new interfaces between the application

and the underlying network stack layers, enforcing guarantees on the latency bounds up

to the upper ones. The optimized mechanisms are presented together with reliability

experiments and the validation of the proposed solution through an exemplary use case

of distributed feedback control over a wireless network. The conducted experiments

con�rm that TDMH is suitable for real-time control applications, being able to achieve

high network reliability levels and to provide deterministic latencies.

Keywords: real-time, latency, wireless networks, session layer, industrial control

Abstract in Lingua Italiana

Negli ultimi anni le reti wireless hanno acquisito un'importanza sempre maggiore nella

vita di tutti i giorni, diventando attori di primo piano in molti scenari. Si consideri ad es-

empio l'incredibile di�usione dei dispositivi mobili e relativi all'Internet of Things, assieme

a tecnologie usate comunemente come WiFi o ZigBee. Le tecnologie wireless sono gen-

eralmente destinate a reti ad alte prestazioni o a basso consumo energetico e in questo

contesto TDMH (Time Deterministic Multi-Hop) si presenta come uno stack di comuni-

cazione wireless capace di fornire accesso al mezzo di comunicazione in modo e�ciente e a

bassa potenza. Essendo anche in grado di gestire reti mesh multi-hop e di adattarsi ai

cambiamenti della topologia di rete, TDMH è adatto per applicazioni real-time eseguite

su dispositivi alimentati a batteria e mirati a casi d'uso di controllo industriale. In

tali applicazioni è cruciale fornire garanzie sui limiti di latenza per tutti i pacchetti che

�uiscono attraverso la rete e, al meglio delle conoscenze dell'autore, le tecnologie esistenti

non sono in grado di combinarle con il supporto a topologie di rete multi-hop. Questa

tesi presenta un'estensione dell'esistente livello di sessione di TDMH attraverso la pro-

gettazione e l'implementazione di due nuove interfacce fra l'applicazione e lo stack di rete

sottostante, fornendo garanzie sui limiti di latenza �no ai livelli più alti. I meccanismi

e le ottimizzazioni realizzati vengono presentati insieme a esperimenti di a�dabilità e

alla validazione della soluzione proposta attraverso un caso d'uso esemplare di controllo

a feedback, distribuito su una rete wireless. Gli esperimenti e�ettuati mostrano come

TDMH sia adatto ad applicazioni di controllo real-time, essendo capace di raggiungere

alti livelli di a�dabilità di rete e di fornire latenze deterministiche.

Parole chiave: real-time, latenza, reti wireless, livello di sessione, controllo industri-

ale

v

Contents

Abstract i

Abstract in Lingua Italiana iii

Contents v

1 Introduction 1

1.1 Goal of This Work . 1

1.2 Author's Contribution . 2

2 Literature Review 3

2.1 Low Power Wireless Networks . 3

2.1.1 Low Power Listening . 3

2.1.2 Channel Access Methods . 4

2.2 Low Power Protocols . 5

2.2.1 TSCH . 5

2.2.2 DSME . 6

2.2.3 LLDN . 6

2.2.4 ABMP . 7

2.2.5 TDMH Comparison . 7

3 TDMH Overview 9

3.1 Time Synchronization . 9

3.2 Network Nodes . 10

3.2.1 Master Node . 10

3.2.2 Dynamic Nodes . 11

3.3 Time Division . 11

3.4 Protocol Phases . 12

3.4.1 Downlink Phase . 13

3.4.2 Uplink Phase . 14

vi | Contents

3.4.3 Data Phase . 15

3.5 TDMH Network Stack . 15

3.5.1 Network Layer . 16

3.5.2 Data Link Layer . 19

3.5.3 Session Layer . 20

3.5.4 Physical Layer . 24

3.6 Cryptography . 25

4 Problem Statement 27

4.1 Real-Time Systems and Latency . 27

4.2 TDMH Streams API . 28

4.3 Weak Points . 29

4.4 Real Example . 31

4.5 Desired Behavior . 33

5 Proposed Solution 35

5.1 Callbacks API . 35

5.1.1 Overview . 35

5.1.2 Implementation . 35

5.2 Write/Wait API . 41

5.2.1 Overview . 42

5.2.2 Implementation . 43

5.3 APIs Comparison . 61

5.3.1 Callbacks API . 61

5.3.2 Write/Wait API . 62

5.4 APIs Interoperability . 63

5.5 Data Phase . 64

5.5.1 "As Soon as Possible" Policy . 64

5.5.2 "As Late as Possible" Policy . 67

5.5.3 Radio Startup Time and Cryptography 68

5.6 Schedule Expansion . 69

5.6.1 Schedule Expansion Module . 70

5.6.2 Schedule Distribution . 71

5.6.3 Re-Transmitted Schedules . 76

5.6.4 Streams Wake-Up Lists . 76

6 Latency Computation 79

6.1 Minimum Theoretical Latency . 79

6.1.1 Radio Startup Time and Crypto . 81

6.2 Callbacks API Latency . 82

6.3 Write/Wait API Latency . 84

6.4 Heterogeneous APIs Latency . 87

6.5 Real Examples . 89

6.5.1 Callbacks API . 90

6.5.2 Write/Wait API . 91

6.5.3 Heterogeneous APIs . 93

6.6 Re-Scheduling Latency . 94

7 Experiments 99

7.1 Experiments Setup . 99

7.1.1 WandStem Nodes . 99

7.1.2 Latency Pro�ling . 100

7.2 Simulations . 100

7.3 Wireless Validation Experiments . 102

7.3.1 Callbacks API . 103

7.3.2 Write/Wait API . 114

7.4 Distributed Control Loop . 126

7.4.1 Setup . 126

7.4.2 Results . 129

8 Conclusions and Future Developments 135

8.1 Future Developments . 136

Bibliography 137

List of Figures 141

List of Tables 147

Acknowledgements 149

1

1| Introduction

During the last decades, wireless networks gained increasing importance in a variety of

di�erent contexts. Wireless networks are nowadays widespread and used in more and more

application �elds. They are in fact commonly used in private homes but also in o�ces

and productive plants. Wireless networks particularly increased their pervasiveness in

the �eld of the Internet of Things and industrial control. The advantages that they have

over wired networks include mobility and �exibility, for example when the number of

devices needs to be updated or the network topology is evolving. Wireless networks allow

limiting the infrastructure updates, which would be instead required in a wired setting. In

addition, they have on their side lower cost and lower power consumption. Mobile devices,

such as wearable ones, need to be energetically e�cient, mainly due to their reduced size

and the impossibility to carry a large battery with themselves.

In industrial control scenarios, Wireless Sensor Networks (WSNs) can be used to

connect di�erent nodes that are able to read and forward sensors information to other ones

that are instead in charge of driving actuators. Indeed, the devices that compose the WSN

cooperate in order to carry out a task. At the same time, industrial control applications

have stricter requirements, especially related to time: real-time constraints are usually

needed, with guarantees on data packets latency and periodicity.

Starting from the described background, TDMH (Time Deterministic Multi Hop) [25]

was speci�cally designed for real-time industrial control applications over wireless net-

works. TDMH provides a deterministicMedium Access Control (MAC) mechanism, which

allows ful�lling real-time and low power requirements, providing also the �exibility of

mesh network topologies.

1.1. Goal of This Work

In real-time applications, for example in the �eld of industrial control, a consistent

and predictable latency over time is something much more important than having the

lowest possible latency.

2 1| Introduction

Keeping in mind the application �elds that TDMH targets, the goal of this thesis work is

to provide guarantees on the minimum and maximum latency values of every data packet

�owing through the wireless network.

Following TDMH phylosophy, it must be possible for the application to access the network

stack through a limited set of primitives, while the underlying layers take care of managing

the whole protocol. Then, the goal is to avoid delegating decisions to the application code

and to the user. Any enforced guarantee has to be embedded into the protocol stack itself.

1.2. Author's Contribution

The main part of author's contribution consists in the analysis of the existing TDMH ses-

sion layer implementation and its extension, aiming at providing an end-to-end bounded

latency among network nodes. The mentioned extension includes the design and imple-

mentation of two APIs (Application Programming Interface) used to interface the appli-

cation code and the session layer itself. Some required updates that were made to two

of the main TDMH protocol mechanisms, the data phase and the schedule expansion,

are also presented. The newly introduced features are evaluated and validated through

the conducted experiments, proving that they do not a�ect the overall network reliability

provided by TDMH. In the �nal experiment, TDMH is used in a distributed control

loop over the wireless network, demonstrating its capabilities in this �eld.

3

2| Literature Review

2.1. Low Power Wireless Networks

Among the successful wireless network protocols, some commercial and widely adopted

solutions exist. They include technologies such as WiFi [2], Bluetooth [4], and ZigBee [5].

The WiFi protocol was designed to provide high data rates over TCP/IP networks. It

aims at providing low latency but with no guarantees about it, especially when the tra�c

increases and the network becomes congested. Indeed, it enforces guarantees on the

packets delivery, which is ensured, with manifest drawbacks on their latency. Moreover,

WiFi was not designed to be a low-power protocol and its high power consumption makes

it non-applicable to battery-powered devices, whose goal is to maximize batteries duration

by minimizing the energy requirements.

Bluetooth was instead designed for low bandwidth and star network topology scenarios.

This setting is indeed very common for smartphone accessories. Bluetooth radio range is

limited to a few meters and the supported network topology is not enough for industrial

control applications.

The last one, ZigBee, is a low-power targeted protocol that is capable of low data rates.

Its advantage is to support also multi-hop network topology, by dividing network nodes

into two categories: router devices and end devices. The drawback is that only end devices

can enter a power-saving mode and, so, can be battery-powered, while router devices are

better suited for a power supply.

2.1.1. Low Power Listening

Among the existing techniques to reduce the power consumption in wireless protocols,

the one speci�ed in the IEEE 802.15.4 standard [1] is called low power listening [17].

It is adopted for example by the B-MAC protocol, which is built on top of the mentioned

standard. According to the speci�cation, sender nodes transmit a long preamble, that

can last for example 100 ms, before every packet, whose transmission instead lasts a few

4 2| Literature Review

milliseconds. The receiver on the other side, periodically checks if the communication

channel is free or a carrier-wave already exists. If it is the case, an incoming packet is

being sent over the channel. The receiver sensing mechanism is called carrier sensing.

This check on the channel occupation gives some statistical certainty on packets reception,

according to the period at which these some checks are performed.

Anyway, this approach reduces the energy needed for receiving, being more power-consuming

on the transmission side, but its main drawback is that it does not eliminate collisions.

As a consequence, it does not provide any guarantee on the delay in accessing the com-

munication channel, making it neither deterministic nor predictable.

Moreover, due to the long packet preambles needed, the communication channel is not

e�ciently used.

2.1.2. Channel Access Methods

The choice of the best suitable channel access method is one of the main wireless pro-

tocol design challenges. In the setting of a wireless network in fact it may happen that

multiple devices need to transmit or receive through using the same physical communi-

cation medium. If these devices happen to use the medium at the same time, collisions

can take place. The consequent radio interference deteriorates the simultaneous trans-

missions, with possible data losses, since the recipient(s) would not be able to receive

correctly formatted packets.

The mostly used approaches to solve the collisions problem are CSMA/CA (Carrier

Sensing Multiple Access with Collision Avoidance) andTDMA (Time Deterministic Mul-

tiple Access) [26].

CSMA/CA

In CSMA/CA, when a network node has something to transmit, it has to check (listen)

that the radio channel is not already occupied, i.e. no other node is transmitting. If the

channel is free, the node can proceed with its own transmission. Otherwise, if the channel

is occupied, the node executes the exponential backo� process, which is based on waiting

a random time interval until the channel is sensed to be free.

CSMA/CA guarantees that, eventually, the node will be able to transmit. The price for

avoiding collisions is then to have no upper bound on the possible latency, which

is intrinsically unpredictable. This means that this mechanism is not compatible with

2| Literature Review 5

applications in which real-time constraints have to be ful�lled and since there is no prior

agreement on the time when packets will be sent, CSMA/CA protocols usually force

devices to keep the radio transceiver in receive mode continuously, which is a concern in

battery-operated devices.

TDMA

As opposed to CSMA/CA, TDMA addresses the problem of collisions. They are avoided

by dividing time into discrete time slots. In each time slot then, at most one device

at a time can transmit. The main drawback of TDMA is that it requires a distributed

knowledge of the time schedule: every node must know which node is allowed to use

the communication channel during each of the time slots. The need for a schedule com-

putation implies some centralized or distributed orchestration and, thus, some form of

clock synchronization, which complicates the protocol. On the other side, TDMA has

the advantage of enforcing a lower energy consumption. Nodes can wake up and use

the physical wireless medium only during their assigned time slot. The rest of the time

nodes can simply save energy entering for example into a low power state. The time slots

schedules also allow having deterministic bounded latencies, since no collisions can

take place and there is no need of delaying transmissions.

2.2. Low Power Protocols

An upgraded version of the IEEE 802.15.4 exists and is called IEEE 802.15.4e. It spec-

i�es some new physical and MAC level standards. The most known and interesting

ones are TSCH (Time Slotted Channel Hopping [14]), DSME (Deterministic and Syn-

chronous Multi-channel Extension [13]), LLDN (Low Latency Deterministic Network [6]),

and ABMP (Adaptive and Beacon-based Multi-Channel Protocol [9]).

2.2.1. TSCH

Among the cited standards, Time Slotted Channel Hopping (TSCH) is the most developed

and the most present in research works. It is based on the peer-to-peer architecture

presented in the IEEE 802.15.4 standard, but, instead of using the CSMA/CA channel

access method, it implements a TDMA approach. In TSCH the active network nodes

(called FFD, Fully Functioning Device, in IEEE 802.15.4) send beacons, which are used

6 2| Literature Review

by the other nodes to synchronize. The network active nodes cooperate to build a schedule

in a distributed manner. The computed schedule is used to enable the TDMA physical

medium access and, thus, to assign communication links to channels and time slots.

Even though TSCH guarantees transmission reliability, but, at the same time, it does not

provide any guarantee on the medium access delay bounds, which is a relevant drawback

in the context of real-time systems.

2.2.2. DSME

A protocol that is able to handle multi-hop transmissions is the Deterministic and Syn-

chronous Multi-channel Extension (DSME). In addition to being a time-synchronized

protocol, it improves the IEEE 802.15.4 MAC standard. It has a multi-channel ability

which means that it is able to use di�erent radio channels at the same time (channel

diversity).

The channel access mechanism that DSME employs is TDMA. Time is divided into trans-

mission frames that are called multi-superframes and each of them is in turn divided into

16 superframe slots. Superframe slots are split into two parts:

• During the Contention Access Period (CAP), network nodes have to dispute the

channel access. This is the most expensive part in terms of energy consumption,

since nodes need to sense the physical channel to check if it is free.

• On the contrary, in the Contention Free Period (CFP) the single nodes are scheduled

for transmission, so that each of them is assigned to speci�c time intervals.

In order to limit the power consumption, DSME uses a technique called CAP reduction

that consists in limiting the usage of the CAP part and prioritizing the CFP usage.

2.2.3. LLDN

Another Media Access Control (MAC) protocol that is presented in the IEEE 802.15.4e

standard is Low Latency Deterministic Network (LLDN). The main target of LLDN is

the data collection from a set of sensors in the network, in fact it can handle up to 20

sensors transmitting data at 100Hz. LLDN organizes time in superframes which in turn

are divided into time slots: the nodes in the network access the superframe time slots

through a CSMA/CA approach.

2| Literature Review 7

Even if LLDN enforces bounds on the maximum transmission latency, its main drawback

consists in the fact that it only supports star network topologies, which are limited to a

single hop.

2.2.4. ABMP

The last considered protocol based upon the IEEE 802.15.4e standard for the physical

layer is the Adaptive and Beacon-based Multi-Channel Protocol (ABMP). Its main ad-

vantage is the ability of the network to dynamically allocate channels as a response to

channels quality changes. Moreover, for what concerns the network topology, it supports

the star and tree structures.

2.2.5. TDMH Comparison

Table 2.1 shows a comparison between the previously described protocols built on top of

the IEEE 802.15.4 and TDMH.

It can be noticed from the table that there are two main categories of IEEE 802.15.4

protocols: those proving bounds on the achieved latencies, such as LLDN which is, how-

ever, limited to star topologies, and those that support multi-hop network structure. In

the second category, providing guarantees on the latency bounds is not a common fea-

ture. TDMH tries to overcome the limitations of both categories by supporting generic

mesh (and so multi-hop) topologies while, at the same time, providing a deterministic

and predictable latency.

Feature TDMH TSCH DSME LLDN ABMP

Multi-hop X X X X

Bounded latency X X

Spatial redundancy X

Temporal redundancy X X Feasible Feasible Feasible

Topology Type Mesh Cluster-Tree Cluster-Tree Star Star / Tree

Management Centralized Centr. / Distr. Distributed Centralized Centr. / Distr.

Table 2.1: TDMH features compared to other IEEE 802.15.4 protocols.

Moreover, TDMH provides all the mentioned guarantees targeting low-end single-core

microcontrollers, in which both the applicative code and the network stack run on the

8 2| Literature Review

same processor. This is completely di�erent from other approaches like Bolt [19] [12],

which provides predictable messages transfer times among multiple processors and can

also be applied to wireless networks.

9

3| TDMH Overview

TDMH (Time Deterministic Multi-Hop) is a real-time protocol forwireless sensor net-

works (WSN) and industrial control applications, that is based on the IEEE 802.15.4

radio standard. It has a centralized network structure in which the main algorithms are

executed by a master node. TDMH is also capable of low power consumption and it

supportsmesh networks, allowing multi-hop transmissions too, being also able to adapt

to changes in the network topology. Low power is achieved through time synchro-

nization among all the network nodes, so that they can access the physical transmission

medium in a time deterministic fashion, which relies on Time Deterministic Multiple

Access (TDMA). Time synchronization allows avoiding medium access contention, and,

thus, carrier sensing or random exponential backo�: the nodes can wake up, and thus

consume power, only during time slots in which they actually have something to send or

receive. This mechanism also avoids non-deterministic delays when a node tries to get

access to the physical transmission medium. It is then suitable for real-time applications

and constraints. These constraints in the TDMH context are represented by the period

of each communication channel between network nodes, which in turn are called streams.

TDMH is entirely written in C++ and implemented on top of Miosix [21], a real-time

operating system developed by Terraneo Federico at Politecnico di Milano. Previous

students Paolo Polidori, Federico Amedeo Izzo and Valeria Mazzola also contributed to

the project through their master thesis. The TDMH project is open source and can be

found on GitHub [22].

3.1. Time Synchronization

In order to provide a TDMA channel access mechanism, a fundamental role is played

by the time synchronization, which is necessary to synchronize each node's internal

clock. Employing a synchronization scheme, allows network nodes to avoid contention and

collisions when accessing the radio channel. Carrier sensing indeed has a negative impact

on power consumption and latency, since multiple attempts might be needed before a

10 3| TDMH Overview

successful transmission occurs.

The algorithm employed by TDMH is FLOPSYNC-2 [23]. It was designed in order to

compensate for possible jitter, temperature drift or errors caused by the PLL, avoiding

clock errors that can lead to nodes desynchronization.

By using both a local clock model and a controller that is in charge of correcting non-

idealities, FLOPSYNC-2 is able to reach a high precision. and a power consumption as

low as 2.1µW .

Even when the needed clock correction is signi�cant, FLOPSYNC-2 guarantees the clock

to be monotonic, meaning that adjustments are incrementally applied avoiding backward

clock steps. This is not instead guaranteed when a node de-synchronizes from the network

and has to re-join the network and synchronize again.

3.2. Network Nodes

Being TDMH a centralized protocol, a master node is always needed. All the other

nodes are instead called dynamic nodes, since their status and their physical position

may change over time.

3.2.1. Master Node

A single master node exists for each network and it is �xed.

The master node's clock is the main clock of the network and is used as a reference for

synchronizing the clock of all the other nodes. For this reason, its clock is distributed

over the network during the timesync downlink phase. This way all the nodes know

the network time, represented by the master's clock.

The master node is also in charge of performing other main tasks, such as:

• Receiving from the dynamic nodes the global network topology during the uplink

phase.

• During the uplink phase it is also in charge of handling requests of opening or closing

streams. Streams are the abstraction exposed to the application by TDMH and will

be discussed more in detail in Sec. 3.5.3.

• Thanks to the knowledge of the network graph, the master node is able to compute

the routing for each stream over the graph and to compute schedules of the needed

3| TDMH Overview 11

transmissions and receptions. During the schedule distribution downlink phase,

the master distributes the computed schedule is sent through to all the network

nodes.

The master node can also open or close streams towards other nodes and send, receive or

simply forward application data through the network.

3.2.2. Dynamic Nodes

One of the basic tasks performed by dynamic nodes is to synchronize their own clock with

the master's one.

When new schedules are available, they also receive Dynamic nodes in the same network

cooperate in order to collect the network graph topology information and to forward them

to the master, during the uplink phase.

Dynamic nodes also receive from the master newly computed schedules and apply them

to remain aligned with the new time slots allocation scheme.

As the master, dynamic nodes can also open or close streams. They also can send and

receive application data, but, as the master, they are also in charge of forwarding infor-

mation if they are on a stream path.

3.3. Time Division

Being TDMH a TDMA protocol, the network time known by all the nodes in the network

is used to mark the time passing, and so also used to divide the protocol into di�erent

phases, occurring at di�erent time slots. The repetition of all the phases is periodic and

known to all the nodes, through TDMH con�gurations.

Di�erent time units are de�ned by TDMH. In particular the protocol is organized in tiles,

whose default duration is equal to 100 ms. Each tile then is divided into a con�gurable

amount of slots.

Tiles can be either a downlink tile or an uplink tile and tiles sequence periodically

repeats. This means that each tile starts with a control slot, being it a downlink or an

uplink slot. Here is where the protocol phases execution takes place. The rest of the tile

is occupied by data slots, in which application data packets are transmitted.

All tiles have the same duration, but downlink slots need more time in order to �ood

information from the master node to all the dynamic nodes. As a consequence, a lower

12 3| TDMH Overview

number of data slots is available in a downlink tile with respect to an uplink tile.

Each downlink slot can either be used for a timesync or for a schedule distribution.

More details on the protocol phases are described in Sec. 3.4.

Tiles are then grouped into control superframes. Superframes are the shortest repeat-

ing sequence of downlink and uplink tiles, so a control superframe corresponds to the

period of phases execution.

The structure of control superframes can be statically speci�ed inside the network con-

�gurations, but each superframe must contain at least one downlink and one uplink tile,

in order for the network stack to perform both activities.

Tiles are also grouped into data superframes, which corresponds to the length of the

schedules computed by the master node, which depend on the period of all the active

streams. This means that data superframes length is dynamic and can change according

to the evolution of the network structure.

Fig. 3.1 shows an example of phases executions, underlying the concepts of tiles, slots,

and superframes.

Figure 3.1: TDMH temporal organization. Transmission is divided into tiles. Tiles initial

slots are occupied by control slots, either downlink (D) or uplink (U).

3.4. Protocol Phases

This section describes the main phases of the TDMH protocol, the downlink phase

(divided into timesync and schedule distribution), the uplink phase and the data

phase.

3| TDMH Overview 13

3.4.1. Downlink Phase

The downlink phase is used by the master node to distribute information to the other

network nodes.

This includes both time synchronization and schedules information.

During the downlink phase, packets are distributed through the network using a �ooding

technique, which consists of a modi�ed version of Glossy [8]. This technique also employs

constructive interference, which can take place when radio packets having the same

content are simultaneously transmitted by all the nodes at the same hop distance.

Timesync Downlink

The timesync is the downlink phase part that is dedicated to time synchronization.

During this phase, a node that needs to synchronize its clock remains in a continuously re-

ceiving state. After receiving the �rst packet, if a second one is received after the expected

time interval, the node is considered synchronized and will start operating according to

the TDMA mechanism.

Synchronized nodes periodically, during timesync pahses (i.e. every 100 tiles, which by

default corresponds to 10 seconds), listen to synchronization packets to adjust their own

clock. All the nodes forward the received packets, by also incrementing a counter that

will signal to the other nodes their distance from the master node (in number of hops).

A node's hop number is set when the node itself (re-)synchronizes and cannot change,

until a desynchronization and a consequent re-synch take place. Forwarding of time

synchronization packets is performed by all the nodes, even those that are currently non-

synchronized.

Symmetrically, if a node loses three consecutive timesync packets, it also loses synchro-

nization and a re-synchronization is needed.

Schedule Distribution Downlink

The second downlink subphase is represented by the schedule distribution.

During this phase, if a new schedule has been computed, the master distributes it. Oth-

erwise, the latest schedule can be re-transmitted to all the nodes, for example after an

explicit request of a dynamic node. It happens when schedule packets are lost and a node

14 3| TDMH Overview

does not receive a complete schedule.

Notice that schedules can become big objects when the network is composed of tens of

devices and the number of opened streams is relevant. A single downlink slot may not

be enough for schedule distribution. Then, schedules are divided into smaller packets

and distributed over multiple downlink slots. In order to increase the probability that

all nodes correctly receive a complete schedule, schedule packets are transmitted multiple

times, redundantly.

As for timesync packets, also packets sent during this phase are transmitted using the

�ooding technique.

Symmetrically to the uplink phase, the master also distributes Info Elemenets, which

contain information related to the management of streams.

3.4.2. Uplink Phase

Symmetrically to the downlink phase, the uplink phase is used by the master node to

collect information from the dynamic nodes.

All the nodes maintain a neighbors table that during this phase is converted to a

bitmask and transmitted. It is guaranteed that reciprocity holds, meaning that if node a

forwards a table in which node b is set as a neighbor, that node b will also forward a table

in which node a is speci�ed to be a neighbor too. This guarantee is given by cooperation

among dynamic nodes and not by the master.

During the uplink slots, only one node transmits packets, while all the others try to

receive them. So only one node can transmit during an uplink tile. Indeed, the uplink

phase works in a round-robin fashion. The round-robin mechanism can take place without

the master node intervention, relying on the distributed knowledge of the network time

and of the maximum number of network nodes, that is a TDMH con�guration parameter

(it can be speci�ed in the NetworkCon�guration object).

Thanks to this mechanism, when a node is receiving during an uplink slot, it can also

know which node is currently transmitting. If a packet is received with a strong radio

signal, then the transmitting node can be added as a neighbor by the receiver.

The master can use the received neighbors bitmasks to update the network topology.

During the uplink phase, another important piece of information is sent to the master

node. Stream Management Elements (SMEs) are the stream control packets, that

are used by nodes to open or close streams.

3| TDMH Overview 15

3.4.3. Data Phase

Finally, the data phase is used by both the master and dynamic nodes to exchange

application data. The data phase traverses the TDMA schedule that was computed

by the master node and distributed during the downlink phase reproducing it. Indeed,

time slots reserved for application data are assigned to one or multiple streams in di�erent

nodes. The data phase is executed on each node and is in charge of managing packets that

have to be transmitted or received by the node itself. Moreover, it also handles packets

that only have to be forwarded to another node. If no action has to be performed in a

speci�c slot, the node can sleep and save power.

In order to meet its real-time goals, TDMH does not guarantee the delivery of each packet.

The possible loss is reliability is then faced by the use of redundancy. For each stream,

a redundancy level can be speci�ed, from one to three, meaning that each packet on that

stream is re-transmitted a number of times equal to the speci�ed value. Redundancy can

be only temporal, with each packet being only sent multiple times, or also spatial. In the

second scenario, packets are also sent over multiple redundant paths. Redundancy is also

managed during the data phase.

Experiments showed that, even in an electromagnetically polluted environment, streams

redundancy allows keeping the network reliability largely above 99%.

More details are described in Sec. 3.5.3.

3.5. TDMH Network Stack

TDMH can be considered to be a full network stack [11], since only a physical layer is

needed in order for its functionalities to be properly ful�lled. All these functionalities are

in fact implemented in a single protocol.

Fig. 3.2 represents the complete TDMH network stack and its layers.

16 3| TDMH Overview

Figure 3.2: TDMH network stack overview.

3.5.1. Network Layer

In the network layer the router and the scheduler are executed by the master node,

together with the schedule distribution and activation logic.

This section brie�y explains how these mechanisms work.

Routing and Scheduling

Both the streams routing and scheduling processes are centralized in the master node.

The router is the component that, given the network topology, is in charge of �nding

possible paths between nodes.

The scheduler instead, given the network topology and the list of open streams, assigns

transmissions to TDMH data slots. Notice that each transmission can happen in a single

slot and belongs to a single stream. In fact, each one has a sender and receiver node

(neighbor nodes), which do not necessarily coincide with the source and the destination

of the stream, since packets can also be forwarded by intermediate nodes.

It is important to underline that new schedules are computed, and then distributed, only

when the streams list changes (e.g. some new stream is opened or some is closed) or

3| TDMH Overview 17

topology changes a�ect existing streams, such that for example a re-routing is needed.

After distribution, the schedule can be repeatedly executed until a new one is �ooded

through the network.

Channels Spatial Reuse

As said, each scheduled transmission takes place in a single slot, but in the same slot

multiple transmission may be scheduled. This optimization is called channel spatial

reuse.

Thanks to its centralized nature, when computing a schedule, the scheduler decides which

node is allowed to transmit during a given data slot. It is able to perform checks on chan-

nels interference, based on the network topology graph and, consequently, it is possible

to schedule two or more nodes to simultaneously transmit or receive radio packets in case

the di�erent transmissions do not interfere with each other.

Fig. 3.3 and Tab. 3.1 show an example of schedule for node 3, with an opened stream

to the master node 0 and triple redundancy. In the example channel spatial reuse is

exploited too.

0

3

21

Figure 3.3: Example of network topology with four nodes. The master is node 0.

Redundant transmissions ... Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 ...

1st .. 3→ 1 1→ 0 ...

2nd ... 3→ 1 1→ 0 ...

3rd ... 3→ 2 2→ 0 ...

Table 3.1: Example of scheduling for stream 3→ 0.

18 3| TDMH Overview

Schedule Distribution and Expansion

When a schedule has to be �ooded through the network, during downlink slots, it is

forwarded from node to node in its implicit (compact) form. Its elements are composed

of a tuple containing:

• Stream ID

• Source node

• Destination node

• O�set in schedule (number of slots)

• Period

After the schedule is received by a node, it performs the schedule expansion. Each

schedule element in which either the source or the destination coincides with the node

identi�er itself is expanded: transformed into an element that associates the stream with

its o�set in the schedule, its period and a speci�c action.

Forwarding bu�ers are also allocated during the schedule expansion process.

The resulting explicit schedule is an array whose size is equal to the number of slots in

a complete schedule. ExplicitScheduleElements are tuples containing the stream ID, the

o�set inside the schedule and the associated action, in addition to the stream parameters

(containing information such as the period and the redundancy level).

Possible actions associated to time slots are:

• Send from stream (SENDSTREAM): the node is the source of the stream and it is

schedule for transmission.

• Receive from stream (RECVSTREAM): the node is the destination of the stream and it

is schedule for reception.

• Send from bu�er (SENDBUFFER) and Receive from bu�er (RECVBUFFER): the node is

neither the source nor the destination of the stream, but it is onto the stream path

and it is scheduled for forwarding transmission or reception respectively.

• Sleep (SLEEP): the node is not scheduled in that speci�c slot. No action is needed.

As previously said, schedules are transmitted multiple times (triple redundancy) in order

to minimize the probability that a node receives only a partial schedule. If this happens

though, a re-transmission can be requested to the master node.

3| TDMH Overview 19

Schedule Activation

When the scheduler produces a new schedule, this is associated with a data structure

containing information about the schedule itself, such as its ID and the number of tiles

in it.

An important piece of information that is also distributed to all the nodes is the schedule

activation tile. It represents the tile index at which the new schedule will become active.

At the activation tile, the previous schedule is replaced by the new one and its playback

starts in the data phase.

Schedule Length

A schedule is composed of various tiles. The schedule length can be considered as the

number of tiles in it.

When multiple streams exist, the schedule length is the least common multiple among all

the streams period.

3.5.2. Data Link Layer

The data link layer is in charge of managing the previously explained protocol phases,

from the time organization to the downlink and uplink phases. It is then in charge of

managing everything that concerns network topology collection, clock synchronization,

schedule distribution and stream management elements.

In this same layer data slots are managed, so transmission, reception or forward actions

are performed according to the node's schedule knowledge.

The data link layer (data phase) main task in fact is to continuously reproduce the last

valid schedule. In particular, the schedule is used in its explicit form, which is speci�c for

every single node, since each node may have to take a di�erent action in the same slot.

This means that it executes the transmissions and receptions of application data through

the scheduled streams, by reproducing the actions that are associated with each TDMH

time slot.

During slots associated with transmission actions SENDSTREAM and SENDBUFFER, a sleep

action until the start time of next slot is performed if no packet is available for transmis-

sion.

20 3| TDMH Overview

3.5.3. Session Layer

The session layer implements the streams management logic. In this thesis, the term

session layer will be used when referring in general to the set of streams and their man-

agement logic.

Streams

The TDMH session layer provides applications the streams abstraction to establish com-

munication among any two network nodes. They are similar to TCP sockets, in order

to provide the user with a familiar interface. The di�erence is that, due to the real-time

goals of TDMH, they also embed the notion of transmission period. In fact, TDMH

streams only allow a single packet to be transmitted during a period.

Streams are identi�ed by the tuple:

• Source node

• Destination node

• Source port

• Destination port

Period As previously introduced, TDMH enforces the notion of stream period, which

is the time interleaving between two consecutive stream transmissions.

Fig. 3.4 shows a scenario with two streams, that have di�erent periods. As it can be seen

from the example, periods are measured in number of tiles.

D US1

Time slot

S1 D US1 S1

D US2 D US2

Control superframe

Figure 3.4: Multiple streams periods example. Stream S1 has period 1 tile and S2 period

2 tiles.

The period can be chosen according to the application requirements, since it has a direct

impact on the frequency at which data are produced or received.

Assume to have a sensor node and a control algorithm running on another node: the

3| TDMH Overview 21

sensor node may specify a lower period for transmitting data (higher frequency), while

the controller may output control actions at a lower frequency, and so transmitting them

with a higher period, e.g. 1 second.

TDMH exposes a set of available stream periods, in the form of PK, where K indicates

the number of period tiles.

Supported periods are the numbers 1, 2 and 5 multiplied by di�erent powers of 10. For

example, available periods can be P1, P2, P5, but also P10, P100, P500 and P2000.

The minimum, in the current implementation, is P1 and the maximum is P10000.

The reason why only period values starting with 1, 2 or 5 are allowed, comes from the

Frobenius coin problem [3]. These numbers allow �nding a higher number by keeping their

least common multiple as low as possible. As a consequence, schedules length is also kept

low.

Redundancy As brie�y introduced, TDMH does not guarantee the reception of each

packet by the destination node. No packets queue is used and packets are sent without

acknowledgments or re-transmissions, as it happens instead when using the TCP protocol,

which guarantees that each packet that is transmitted is also eventually received by the

recipient. Error detection mechanisms implemented in TCP are not applicable in the con-

text of TDMH: a variable number of re-transmission would cause the end-to-end latency

to be non-predictable, which is not compatible with a real-time network. As consequence,

when using TDMH radio interference can lead to packets loss.

Since reliability in wireless networks is a fundamental aspect, some mitigation has to be

implemented.

TDMH mitigates this issue by allowing the application to specify a redundancy level

associated with each stream. Packets sent over that stream are transmitted a number of

times equal to the speci�ed level, which is a value between one and three. This allows the

receiver to have multiple chances to get the incoming data, increasing stream's reliability.

The redundancy level allows for a trade-o� between bandwidth and reliability. Indeed, if

all the streams use the minimum redundancy level (which actually is no redundancy) more

streams can be scheduled, while if all the streams use the maximum level the reliability

is increased but fewer data can �ow through the network during the same time interval.

TDMH implements two types of redundancy:

• Temporal Redundancy : each packet transmission is simply duplicated and uses the

same path between source and destination nodes.

22 3| TDMH Overview

• Spatial Redundancy : besides being duplicated, each packet is redundantly sent over

multiple paths between source and destination nodes. Two paths are considered to

be di�erent if the intermediate nodes are di�erent (excluding source and destination

of course), in order to avoid single points of failure. If multiple paths do not exist

in the network topology, the redundancy is downgraded: it may happen that the

number of distinct paths is lower than the redundancy level or, in the worst case,

the spatial redundancy is downgraded to a temporal one (if a single path exists).

The redundant transmissions and receptions are handled by the data phase. When some

data is sent through a stream, the data phase manages the multiple transmission. When

some data has to be received, only after the redundant slots have passed, the data phase

returns the received data to the application, if something was actually received. This

avoids delegating the same task to the application, which otherwise would have to handle

multiple copies of the same data. Moreover, this strategy helps to keep the packets latency

consistent, while returning the data to the application always after the �rst successful

reception would make it �uctuate.

Fig. 3.5 represents two schedules in which two streams exist. Redundancy of S1 is set to

triple while S2 has no redundancy.

D US1 S1 S1 S2

D US1 S1 S1 S2

Time slot

Figure 3.5: Di�erent streams redundancy levels example. It shows both a scenario in

which the redundant transmissions are consecutively scheduled and one in which they are

not, for stream S1.

Clients and Servers Streams can be divided into two categories, called servers and

clients.

A node that aims at opening a communication has to perform a connect operation to a

speci�c node and a speci�c port. The node that receives the connection request on its

side needs to have a server opened on that port.

Server streams are only able to listen to a speci�c port and accept incoming connections.

Server streams cannot send or receive application data packets. When an incoming con-

3| TDMH Overview 23

nection request is accepted, a client stream is returned. This is the stream that the node

can use to carry on communication with other nodes.

Direction Another characteristic of streams is their direction. Streams direction can

assume two possible values:

• TX: only the client is allowed to transmit data, while the server can only receive.

• RX: only the server is allowed to transmit data, while the client can only receive.

Primitives Streams expose primitives both to the application and to the data phase.

Primitives exposed to the application to perform transmissions and receptions are:

• connect : it is used by the application to open the communication with another node.

On the other side, a server is needed to be running on the node and port speci�ed

as a parameter of the connect primitive.

• write: copies data to the stream's bu�er. If the bu�er is already occupied (e.g.

multiple write calls during the same period), the execution blocks on a condition

variable until the bu�er is emptied by the data phase.

• read : symmetrically to the write, retrieves data from the stream's bu�er. If the

bu�er is empty, the execution blocks on a condition variable until a new packet is

received and added to the bu�er.

The main primitives exposed by streams to the data phase instead are:

• sendPacket : used by the data phase to get the packet that has to be sent. The

packet is retrieved from the stream's bu�er (if it exists) and returned. If it is the

�rst redundant call, it unlocks the write from waiting on the condition variable.

• receivePacket : used by the data phase to signal that a new packet is received. The

new packet is passed as a parameter and copied to the stream's bu�er. When the

redundancy counter reaches a value equal to the stream redundancy level, it unlocks

the read from waiting on the condition variable.

• missPacket : used by the data phase to signal that a packet was missed. The redun-

dancy counter is incremented, since missed packets concur to the stream redundancy

too. When the redundancy counter reaches the value of the stream redundancy, it

unlocks the read from waiting on the condition variable.

As mentioned, servers expose other two methods:

24 3| TDMH Overview

• listen: a server is used to listen to a speci�c port and to wait for incoming commu-

nication requests.

• accept : when a communication request is received, the accept method is used to

create a stream that can be used to communicate with the requesting node.

Stream Manager

The StreamManager is the component that is in charge of managing servers and streams

instantiated by network nodes. Every node has a StreamManager since it is needed to

hold all the streams information and to open or close streams according to information

received by the network and the master node. Streams and servers status can change

according to actions performed by the application and the stream API or events coming

from the network, such as schedules, disconnections or Info Elements.

Streams primitive are exposed to the application and the data phase through the Sensor-

Manager and it is implemented as a �nite state machine.

3.5.4. Physical Layer

The TDMH physical layer implements a set of features that are worth mentioning:

• Packets transmissions can be scheduled for a future time instant. Not only the

data to be sent has to be speci�ed. According to the IEEE 802.15.4 standard, the

transmission jitter has to be lower than 500 ns while TDMH physical layer achieves

a value of 21 ns. This jitter in fact is needed to be as low as possible in TDMH, in

order to be accurate enough for constructive interference to take place.

• Since packets are transmitted without acknowledgments or re-transmission logic, the

physical layer only has to handle one packet at a time and no bu�ers are needed.

• Thanks to the nature of TDMH, the physical layer does not have to continuously

listen to the radio channel for incoming packets, but it is already aware of the TDMA

slots in which a reception is scheduled. This has of course bene�ts on the power

consumption.

3| TDMH Overview 25

3.6. Cryptography

TDMH also supports authentication and encryption of all control and data messages

[15]. It was designed to use symmetric keys safely stored in the nodes and to also be

resistant to replay attacks.

All the dynamic nodes that join the network are required to authenticate the master node

by means of a challenge-response mechanism.

The cryptographic scheme is centered around the problem of key management: a rekeying

based on a hash chain mechanism allows to achieve periodic key rotation. The rekeying

process takes place when a new schedule is distributed. During this process, a node must

derive:

• A new master key.

• Three phases keys (for uplink, timesync and schedule distribution), used for authen-

tication and encryption of packets relative to protocol phases.

• A new key for all the streams in which the node is involved as an endpoint (either

as a source or destination node). Key of stream S is used for authentication and

encryption of packets belonging to stream S.

Since the number of streams that need rekeying can be high, the rekeying process is

implemented in such a way that it is possible to incrementally execute it across multiple

downlink slots. All the keys are then replaced by the new ones when the new schedule

is applied. Using TDMH control slots to perform such a process, does not a�ect the

periodicity of data transmission.

Even if no new schedules are computed for a long time, the rekeying process is performed

anyway after a timeout elapses.

27

4| Problem Statement

4.1. Real-Time Systems and Latency

According to the IEEE Technical Committee on Real-Time Systems, a real-time system

is "a computing system whose correct behavior depends not only on the value of the

computation but also on the time at which outputs are produced" [10].

Real-time is sometimes confused with the notion of high-performance computing, which, as

the name suggests, refers to the ability of a system to provide outstanding computational

resources and performance. An example of real-time computation is instead an automotive

anti-lock braking system (ABS). The ABS execution has to be carried out before a speci�c

deadline elapses. The system has to guarantee that the task's deadline is not missed, as

opposed to the high-performance computing requirement of completing its tasks as soon

as possible. This means that no further performance optimizations are needed in a real-

time scenario, as far as tasks deadline are respected.

Consider another example in which a web page is subject to high network tra�c. The

web page response time may get higher or lower together with the load amount, but it

will complete eventually. Even in the worst-case in which the user request takes more

than a timeout to be served, no catastrophic consequences take place. On the contrary,

this variable delay is not admissible in a real-time system nor compatible with it.

Focusing on real-time systems, two di�erent kinds exist: in hard real-time systems missing

deadlines means producing catastrophic consequences, while in soft real-time systems a

deterioration of performance is experienced when requirements are not met.

To summarize, the common thread among all the real-time systems is that processing

fails if not completed within a speci�ed deadline, which is relative to an event. Moreover,

deadlines must always be met, regardless of system load or other external interferences.

One of the main elements related to real-time tasks and the requirement of ful�lling their

deadline is latency, which in general is a measure of a delay. In a network, latency

measures the time it takes for some data to get from its source to its destination across

the network. Low latency is desirable in a wide range of use cases, but for real-time

28 4| Problem Statement

and possibly periodic tasks, but a consistent and bounded latency is usually more im-

portant. Imagine an industrial control loop, with a sensor node producing data and a

control application, running on another node, that has to compute control output based

on the received sensor data. If the transmission has a consistent amount of latency, the

application can plan the processing accordingly. If sensor data is fed with an inconsistent

amount of latency, whether large or small, there will sometimes be too much data, and

sometimes not enough. If the application runs out of data, there will be no up-to-date

output for some time or it will be delayed. On the contrary, some data may not be used

if the application outputs are periodic or if it has not enough processing power to handle

data coming in a shorter time interval.

4.2. TDMH Streams API

TDMH exposes a simple API for handling streams, providing a set of fundamental oper-

ations that can be performed with them.

Apart from the primitives needed to establish or conclude a communication among two

devices, such as the methods listen, accept, connect and close, network nodes can exchange

data through the write and read primitives. These two methods allow the application to

send or receive data packets through a very common API, similar to the one used to read

and write from or to a �le, that completely masks the lower layers of the network stack.

Alg. 4.1 and Alg. 4.2 shows the basic behavior respectively of a node that opens a stream

and sends application data through it and of a node that accepts an incoming stream

opening request, receiving data.

Algorithm 4.1 Basic application behavior, sender side

1: stream ← connect(dest, port, ...)

2: if stream < 0 then

3: print("Error")

4: else

5: while stream.status == ESTABLISHED do

6: data ← ...

7: write(stream, data)

8: end while

9: close(stream)

10: end if

4| Problem Statement 29

Algorithm 4.2 Basic application behavior, receiver side

1: server ← listen(port, ...)

2: if server < 0 then

3: print("Error")

4: else

5: stream ← accept(server)

6: while stream.status == ESTABLISHED do

7: read(stream, data)

8: ...

9: end while

10: end if

4.3. Weak Points

Despite the usage simplicity of the current API, it doesn't provide the required guarantees

on the end-to-end latency of a any packet sent through the network. In particular, it leaves

to the application the task of synchronizing the data packets generation and transmission

request with the actual transmission time.

Being TDMH a TDMA network protocol, each time slot is dedicated to the transmission

over a speci�c network hop (or a set of hops, if channel reuse is possible). Indeed, the

data phase running on a node always sends or receives packets during the slots assigned to

that speci�c node. So, the data phase is always synchronized with the network schedule.

What the write primitive does is to copy the data generated by the application code

(upper layer) to the session layer, which holds it until the data phase is ready to get it

and to send it over the network, through the underlying layers. The session layer bu�er

can hold two packets for each one of the existing streams. Each Stream object that is

part of this network stack layer, can hold one packet to be transmitted and one packet to

be received at the same time.

From the application point of view, the call to write corresponds to the transmission re-

quest, but, since the application code is free to call this primitive at any time instant, the

delay between the time at which the application requests the transmission and the actual

time at which it is sent through the physical layer varies according to the application logic.

If write is called exactly after the data phase executes and checks if some new data exists

in the session layer bu�er, this delay is maximum. In fact, the data phase will �nd the

stream bu�er to be empty and the packet will be read and sent by the data phase thread

30 4| Problem Statement

during the next stream's period (when it will �nd the packet in the bu�er). Assuming

that latency is computed from the moment in which the packet is created by the sending

node, to the moment in which it becomes available by the destination node application,

the described delay directly a�ects the end-to-end latency value.

Moreover, if the application unconditionally generates new packets one after the other, it

may happen that, after the �rst write is performed, the session layer bu�er remains occu-

pied while a successive call to the write primitive takes place. Since streams periodicity

is always guaranteed and respected, the subsequent transmissions will be delayed in the

future (i.e. to the following stream's period), increasing the latency of successive packets.

The explained behavior is shown in Fig. 4.1. Assume to have a single stream used for

transmitting some data over the network, with period P . When the �rst write w1 is per-

formed, the session layer does not hold any data yet, so the �rst packet p1 is immediately

copied to the session layer. At this point, the application might immediately produce

another data packet, before p1 is actually sent (which takes place at time t1, in the �rst

available slot). Since streams periods have to be guaranteed, the second write w2 blocks

until the bu�er is emptied and p1 sent, which means until the following slot is assigned

to the sending stream. It is immediate to understand that in this scenario, packet p2 will

have a higher end-to-end latency than p1, since it is forced to wait some time until the

bu�er is �rst cleared.

From the third write operation w3 on, the latency stabilizes: since w2 blocks until the

completion of w1, from this point write operations will be aligned with the transmission

slots of the mentioned stream, but the latency is as high as two times the stream period.

4| Problem Statement 31

Application

Dataphase

P

Session
layer

w1w2 w3 w4

t1 t2 t3 t4

p1 p2 p3 p4

Figure 4.1: Undesired behavior in which write operations wi are delayed by two periods.

pi represent ready for transmission packets, hold by the session layer bu�er, and ti the

transmission slots, with period P .

In the shown scenario, the latency value directly depends on the stream period and, in

particular, its value is a multiple of the period itself. Two streams sending the same

amount of data through the same network path may happen to have latencies that can

di�er by few orders of magnitude, for example if they transmit with very di�erent periods

(e.g. 1 tile and 100 tiles period).

The above example shows that the problem a�ecting the latency value is concentrated

on the sender side, since it is the transmission that is delayed if the application produces

data too fast. The reception instead is managed by the data phase, which only executes

according to the scheduled time slots and returns the data to the application after it is

(redundantly) received.

4.4. Real Example

This section shows a simple example underlining the entity of the latency on a star

network, composed of three nodes: two dynamic nodes (with IDs 1 and 2) sending packets

over a stream opened towards the master node.

Streams were opened using a period equal to one tile and the tile duration was 100 ms.

So, ten packets were sent every second. When a packet is sent, a timestamp is added to

it, so that the master can log the delay from the moment in which the packet was created

32 4| Problem Statement

and the one in which it is received. The experiment was left running until ten thousand

data packets were sent by both nodes.

Fig. 4.2 shows the measured latency of packets that are sent through stream 1 → 0. It

can be seen that the average latency has a value of around 220 ms, which corresponds to

two times the stream period.

The �rst sent packet, instead, has a latency of only 60ms, due to the fact that the session

layer bu�er is empty when the application calls write for the �rst time. This leads the

measured jitter, with respect to the latency mean value, to be as high as 162 ms. Even

considering only packets after the latency stabilizes, the jitter is equal to 37 ms, which

represents a variation of almost the 17% with respect to the average latency value. A

detailed view on the initial packets is shown in Fig. 4.3. It can be seen that even in

correspondence of the plateau, where the measured latency is more stable, the amplitude

of the oscillations has a value of 4 ms. Such a variation is not tolerable since it has the

same order of magnitude as the TDMH slots dimension.

The mentioned problems a�ect the overall latency standard deviation, which is in the

order of a few milliseconds.

Figure 4.2: Measured latency of packets sent over stream 1→ 0.

4| Problem Statement 33

Figure 4.3: Detail of the measured latency of the �rst 110 packets sent over stream 1→ 0.

Stream Stream

period

Packets

num.

Avgerage

latency

Jitter Standard

deviation

1→ 0 100 ms 10050 220.476 ms 162.761 ms 3.700 ms

Table 4.1: Latency statistics for stream 1 → 0 when using the current session layer

implementation.

4.5. Desired Behavior

As mentioned, in the current implementation the end-to-end latency of data packets is

in�uenced by the application logic. This behavior is of course undesired and latency must

be kept constant even if the user changes the application code and its logic or actions.

Furthermore, the desired latency shall not depend on the stream period, which should only

represent the maximum admissible latency. The latency measure, instead, should only

depend on the current schedule and on the speci�ed redundancy value for that stream,

which directly a�ects the number of slots needed to deliver a packet. Even if two streams

have very di�erent periods, for example 1 and 100 tiles, the end-to-end latency of the data

34 4| Problem Statement

packets sent over them should be the same if they span the same amount of schedule slots,

since their delivery will take the same amount of time slots as well. This means that each

stream's latency has to be, not only measurable but also predictable by knowing the

current schedule, which implicitly means also knowing streams redundancy level. No

information about streams periods is instead needed.

It is required that the data packets generation and the write operations are performed

slightly before the start of each transmission slot, so that the new packet will always �nd

the session layer bu�er empty and can be transmitted as soon as possible (i.e. in the next

slot assigned to the stream on which the packet has to be sent). The time passing between

the moment in which the application generates a packet and its transmission should also

be known.

This behavior is pictured in Fig. 4.4.

Application

Dataphase

P

Session
layer

t1 t2 t3

p2 p3p1

w1 w2 w3

Figure 4.4: Desired application and session layer behavior.

It is needed to enforce guarantees on the end-to-end latency inside the network stack lower

layers, by also providing some primitives through which the application code can be able

to synchronize itself with the data phase and, so, with the streams schedule without any

explicit knowledge about it. Indirectly, then, the aim is to align packets generation and

transmission requests with the actual transmission slots.

In the following, the proposed solutions are presented, together with an overview of how

latency bounds can be computed in di�erent scenarios.

35

5| Proposed Solution

As brie�y introduced in the previous chapter, the proposed solution has to guarantee

a bounded latency for all the packets �owing through the network. No matter what

the stream period is, the latency boundaries should only depend on the required stream

redundancy (none, double or triple) and on the current schedule.

It is also preferable that the proposed solution maintains the ease of use of the existing

API, while leaving some �exibility to the application and to the user.

In this chapter, the two implemented solutions are discussed, together with the required

updates to two of the main TDMH modules, the data phase and the schedule expansion.

5.1. Callbacks API

5.1.1. Overview

As the name suggests, the �rst proposed API is based upon a callback functions mech-

anism. After opening a stream, the application can specify two functions to be executed

respectively before a packet is sent and after a packet is received. Indeed these two func-

tions are the interface among the application and the underlying layers, preparing the

data to be transmitted, by copying it to the session layer, and handling the reception of

new packets.

The idea behind the callbacks API implementation is to keep it simple, avoiding intro-

ducing new threads to the system.

5.1.2. Implementation

When creating a new stream, the application can specify the send and receive callback

functions. Each callback then needs to be called by the underlying network stack during

the required time slot assigned to the stream in question. This way, since the lower

36 5| Proposed Solution

layers know the current schedule, the management of receptions and transmissions will

always be synchronized with the execution of the callback and, as a consequence, with the

application, being these callbacks the only interface among the upper and lower layers in

the stack.

The prototype of the mentioned functions is:

void callback(void* data, unsigned int* size, StreamStatus status)

The �rst parameter is a pointer to the packet bu�er, while the second one is a pointer to

the number of bytes to be written or read to or from the bu�er. The basic idea is that

these callbacks are used by the application to copy data to or from the session layer. In

fact, the aim of a send callback is to copy the data to be transmitted to the session layer

bu�er, while the receive callback has to read the data from it A send callback will set the

value of *size according to the number of bytes to be sent, while a receive callback will

access *size to retrieve the number of bytes to be read. The third parameter instead allows

the application to have a feedback on the current status of the stream. Since streams can

be closed during the execution, even without an explicit request from the application, for

example if a radio link in the network becomes too weak, the stream status parameter is

useful to avoid leaving the application in a waiting state without any feedback. In this

sense, this parameter works as an error code.

Through the setSendCallback and setRecvCallback methods, callback functions can be

set into the Stream class, in order to signal to the session layer that this API has to

be used. This way, they can also be called inside the same class when Stream's public

methods sendPacket(Packet& data), receivePacket(const Packet& data) and missPacket()

are executed. These methods indeed are called by the data phase thread. Alg. 5.1 shows

how to set a stream send callback, but the same holds for the receive one.

5| Proposed Solution 37

Algorithm 5.1 Basic application behavior to set a stream callback.

1: procedure CALLBACK(*data, *size, status)

2: if stream.status != ESTABLISHED then

3: close(stream)

4: else

5: *data ← ...

6: end if

7: end procedure

8:

9: stream ← connect(dest, port, ...)

10: if stream < 0 then

11: print("Error")

12: else

13: setSendCallback(stream, &CALLBACK)

14: end if

In order to retrieve the data to be sent from the application, the send callback is executed

when the data phase calls sendPacket for the �rst time on the current packet, that is

before the �rst redundant transmission of the packet.

On the contrary, the receive callback is called after receivePacket (or missPacket) is called

R times, where R is equal to the redundancy value of the mentioned stream: the received

data indeed is really available to the application for processing only after the R redundant

receptions (or misses) have completed.

See Fig. 5.1 and 5.2 for reference.

38 5| Proposed Solution

Application

return

Session layer

return: stream

sendPacket(&packet)

return: true

Dataphase Transceiver

connect(destination, port)

setSendCallback(stream, callback)

callback(bytes, size, status)

return

send(packet)

return

for i = 1 ... stream redundancy

loop

Figure 5.1: Sequence diagram showing the send callback mechanism.

5| Proposed Solution 39

Application

callback(bytes, size, status)

Session layer

setRecvCallback(stream, callback)

return

Dataphase Transceiver

receive()

return: packet

accept(server)

return: stream

receivePacket(packet) /
missPacket

return: true

return

listen(port)

return: server

for i = 1 ... stream redundancy

loop

Figure 5.2: Sequence diagram showing the receive callback mechanism.

When computing the duration of each single time slot, the execution time of the callback

functions has to be considered too, to ensure that they do not occupy some time needed

to perform other operations, for which the data slot duration was sized.

For these reasons, the application can specify the callbacks execution time inside the

NetworkCon�guration object, which has to be the same in each of the nodes connected

to the TDMH network. At startup, the speci�ed value is directly summed to the data

phase duration, thus directly in�uencing the data slot dimension. It must also be the

same value among all the nodes and each node using this API must ensure that the given

callbacks execution time, for each stream, is an upper bound of the real time needed to

execute both send and receive callback functions. In order to also handle the case in which

a node may need to receive and then to send during two consecutive slots, and so the

execution of the receive callback and the send callbacks may be overlapped, the double of

40 5| Proposed Solution

the callbacks execution time is actually added to the data slot duration.

In the current implementation, the data phase calls the stream methods sendPacket or

receivePacket at each execution, which may mean at each slot assigned to the stream in

question.

Fig. 5.3 shows the wrong behavior in which the callback is executed at the start time

of the slot assigned to streams S1 and S2 (when sendPacket is called). In this case, the

real transceiver transmission would be delayed after the callback execution, causing the

packet to be sent too late.

D

Send callback
execution

US1 S1 S1 S2

Start radio
transmission

Tslot Tcallback

Start radio
transmission

Send callback
execution

Packet
transmission

Figure 5.3: Undesired send callback execution behavior, which would delay the packet

transmission.

When sending a packet, to avoid executing the send callback when the stream's transmis-

sion slot is already started, and so delaying the real radio transmission, the data phase

execution (call to sendPacket) has to be anticipated to the slot start time minus the

callback execution time.

The correct behavior, in which the callback is executed at the slot start time minus the

needed time to actually execute the function, ensuring that the real radio transmission is

aligned with the slot start time, is instead represented in Fig. 5.4 and 5.5 that respectively

show the execution of a send and a receive callback.

It might seem that in the setting shown in Fig. 5.4 the callback execution still consumes

some time allocated to the previous slot with respect to the slot assigned to streams S1

and S2, but even if the previous slot is assigned to another stream, the callback execution

time is already accounted and added the slot duration, so some dedicated time is allocated

for the execution of the send callback. Reception in the previous slot will end for sure

before the send callback execution is started. One could imagine that the time needed to

execute the send callback is allocated in the previous slot with respect to the transmission

one, while the time needed by the receive callback is allocated in the same reception slot.

Anyway, during reception and transmission, the CPU is not fully used, since these two

5| Proposed Solution 41

actions are delegated to the radio hardware, so the callback can be executed even if it

happens to be overlapped with a packet transmission.

D

Send callback
execution

US1 S1 S1 S2

Start radio
transmission

Tslot Tcallback

Start radio
transmission

Send callback
execution

Packet
transmission

Figure 5.4: Desired and implemented send callback behavior (transmission side).

Symmetrically, Fig. 5.5 shows that the receive callback is executed after all the redundant

receptions have passed (three for stream S1 and only one for S2), in the time interval

allocated to the execution of the callback.

D

Start radio
reception

US1 S1 S1 S2

Receive callback
execution

Tslot Tcallback

Packet
reception Receive callback

execution

Start radio
reception

Figure 5.5: Desired and implemented receive callback behavior (reception side).

5.2. Write/Wait API

The callbacks API, although having a very low overhead, has the side e�ect of making

the network slot size dependent on the execution time of the callback functions. Thus,

even if this solution is suitable for deeply embedded applications where the callback op-

eration is often as simple as reading from a sensor, is not �exible enough for more general

computation. For this reason, a second API has been introduced to better decouple the

network and application layer.

42 5| Proposed Solution

5.2.1. Overview

The second proposed and implemented API aims at providing a more "�le oriented"

interface, such as the one that TDMH already provides. It is in fact an extension of the

existing interface. The write/wait API is intended for streams that are used to transmit

some data, since, as described in Ch. 4, the problems of the current implementation reside

in the transmission side. The aim is to provide an API that is able to somehow synchronize

the write operation performed by the application with the data phase execution.

This API extends the set of available TDMH primitives. The write function is still

present, but the wait primitive is added to the set of available ones: it can be used by the

application in order to enter a waiting state until the moment at which the write execution

has to take place, usually a small amount of time before the actual transmission time of

the required stream. The read remains available for those streams that have to receive

packets.

In the desired behavior, the application code can specify a time advance value when

opening a new stream through the connect primitive. Then, the application will put itself

into a waiting state (wait primitive) on the transmitting stream. The idea is that the

stream (and the waiting application too) will be automatically woken up an amount of

time equal to the speci�ed advance before its assigned transmission slot. Each stream

can specify a di�erent wake-up advance value, according to the duration of the operations

needed by the application to prepare the data to be sent. In fact, the time between the

wake-up instant and the stream's slot start is thought to be used by the application to

produce the new data and to call the write primitive, through which the new packet is

built inside the session layer.

Fig. 5.6 exempli�es the moment in which the stream should be woken up and Alg. 5.2

shows the steps required for a basic usage of this API.

D US1 S1 S1

Stream
wakeup

Wakeup advance

Start radio
transmission

Packet
transmission

Tslot

Figure 5.6: Desired behavior for stream transmission using the write/wait API.

5| Proposed Solution 43

Algorithm 5.2 Basic application behavior, with the Write/Wait API

1: stream ← connect(dest, port, timeAdvance, ...)

2: if stream < 0 then

3: print("Error")

4: else

5: while stream.status == ESTABLISHED do

6: wait(stream)

7: data ← ...

8: write(stream, data)

9: end while

10: close(stream)

11: end if

5.2.2. Implementation

Stream and StreamManager

The Stream class was extended by adding the two methods wait and wakeup:

• wait : this method blocks the caller on a condition variable. It has to be used by the

application to wait until stream's transmission slot minus the required time advance.

• wakeup: it unlocks (signals) the condition variable used by wait to block the caller.

It is called internally in the session layer and wakes up the stream and, consequently,

the application.

Both methods can be accessed from outside through the StreamManager, where two

homonymous proxy methods exist and take as a parameter the stream �le descriptor

or the StreamId of the required stream, respectively:

int wait(int fd)

bool wakeup(StreamId id)

The write method is also updated. In the current implementation, it is a blocking method:

if the session layer bu�er is already occupied, it waits on a condition variable until the

bu�er is cleared. This blocking mechanism was needed to guarantee the streams periods,

but in the new API this is no more needed. The application blocks on the wait method

until its wake-up time is reached, so the periodicity is enforced by the session layer internal

algorithm that manages the wake-up actions. When the time advance is correctly sized,

this mechanism ensures that the write operation will always �nd the bu�er empty. Thus

44 5| Proposed Solution

the write can proceed to copy the data to the packet bu�er and to return without blocking.

Anyway, the write will block on the same condition variable if the application continuously

calls it, without using the wait primitive.

Assumptions

In order for this API to be correctly implemented, a few assumptions have been made:

1. If the stream wake-up advance is high enough, it might happen that a stream wake-

up time does not fall inside the tile in which the stream has to transmit, but in a

previous one. For the explained reason, the maximum allowed wake-up advance for

any stream is equal to the duration of a TDMH tile, which is speci�ed by the user

inside the NetworkCon�guration object. This assumption is necessary to bound to

one tile the maximum overlap between two consecutive schedules.

2. Whenever a new schedule is activated, the data structures relative to the last valid

schedule have to be replaced by the new ones. Moreover, as said, the maximum

overlap among the streams wake-up times belonging to two di�erent schedules is

one tile. As a consequence of the �rst assumption then, new schedules have to be

received at least one tile before their own activation. This last assumption will be

discussed in the following, together with the proposed solution.

3. Whatever value the application provides for the wake-up advance time, it is rounded

to the nearest multiple of a data slot duration. This assumption is needed in order to

keep the time instants in which all the events in system occur aligned with the time

division slots. Starting from the schedule computed by the master node and then

forwarded to all the dynamic nodes, the available information about the moment at

which a stream has to transmit is represented by the o�set, inside the same schedule,

of the transmission slot assigned to that stream. Indeed, it is comfortable to keep

reasoning in terms of number of slots and slot o�set values.

Streams Wake-Up List

During the schedule expansion phase, the data structures required by the correct function-

ing of the write/wait API are computed and constructed. In particular, what is needed

is a list whose elements contain:

• The StreamId of the corresponding stream.

5| Proposed Solution 45

• The wake-up time for the same stream, computed according to the stream trans-

mission o�set inside the schedule.

The wake-up list elements are represented through the StreamWakeupInfo data structure.

This list de�nes all the time instants at which the algorithm should execute and con-

sequently act, waking up the required streams. Its elements are relative to the explicit

schedule elements associated to a SENDSTREAM action (i.e. the stream has to transmit

something and the current network node is the stream's source endpoint).

In a �rst implementation, the wake-up list was only composed by the time of the �rst ap-

pearance of each schedule element associated to a SENDSTREAM action, minus the stream's

advance time. In fact, streams with lower periods may appear multiple times in the sched-

ule, according to the schedule length itself. Moreover, only the �rst redundant packet of

each of the mentioned occurrences was added to the list. Every time an element from the

list was used, its wake-up time was incremented by a time amount equal to its own period,

in order to handle streams periodicity. It can be simply demonstrated that it may happen

that the elements in the list become no more order by their own wake-up time, even if they

were in principle. This undesired situation would make the algorithm wake up streams at

the wrong time or skip some of them. For this reason, an implementation using a C++

priority queue was also evaluated. The priority queue guarantees that the element with

the lowest wake-up time (i.e. highest priority) is always the front element. Getting a copy

of the priority queue front element is O(1), but if an element has to be removed or added,

the complexity is O(log(n)). After getting the front element of the queue, it should be

removed, updated and reinserted into the data structure. A non-constant access time to

this data structure is not compatible with an algorithm that aims at providing constant

latencies and, consequently, also its execution times have to be consistent.

In the �nal solution, the �rst redundant transmission of each stream appearance whose

action in the explicit schedule is SEDNSTREAM is added to the list. Indeed, if at every

period a stream has to send a redundant packet, the stream itself needs to be woken up

only before the �rst redundant transmission in order to perform a write operation. The

following redundant packets are already managed and transmitted by the data phase.

The wake-up slot (i.e. wake-up o�set) and the wake-up time of each stream is computed

by relying on its own o�set, speci�ed in the implicit schedule, and the stream wake-up

advance:

wakeupSlot = offset− wakeupAdvance

Tslot

wakeupT ime = (wakeupSlot · Tslot) + Tact

46 5| Proposed Solution

where Tslot is the duration of a single data slot and Tact is the time instant at which

the schedule will be activated. Wake-up times are always absolute times and they are

computed using the schedule activation time as a base time.

Tab. 5.1 represents the wake-up list relative to the schedule presented in Fig. 5.7. Two

streams are scheduled, (S1 with period 1 tile and S2 with period 2 tiles) with double

redundancy. The schedule is composed by a single control superframes, the duration of

each slot is Tslot = 6 ms and the stream advance is set to Tadvance = Tslot. The schedule

is activated at time Tact.

D U

Tslot

S2S1 S1S1 S2 S1

Wakeup advance S1

Schedule
activation

Tact

Wakeup advance S2

Figure 5.7: Example of schedule containing streams with di�erent periods and their rela-

tive advance. Required wake-up time instants are represented by an upwards blue arrow

for stream S1 and a red one for stream S2. Schedule length is two tiles.

Stream ID Wakeup time

S1 Tact + 0 ms

S2 Tact + 12 ms

S1 Tact + 42 ms

Table 5.1: Resulting streams wake-up list from the �nal implementation. It contains the

wake-up times of all the streams occurrences in the schedule, excluding redundant slots.

Stream ID Wakeup time

S1 Tact + 0 ms

S2 Tact + 12 ms

Table 5.2: Resulting streams wake-up list from the �rst implementation. It contains only

the wake-up time of �rst streams appearance in the schedule, excluding redundant slots.

5| Proposed Solution 47

Stream Wake-Up Scheduler

The main element on which the write/wait API relies for its correct functioning consists in

an active object called StreamWakeupScheduler, which is in charge of waking up streams

at the needed time, according to the current schedule and their required advance. It

relies on the previously described streams wake-up list, which it directly receives from the

TDMH module in charge of carrying out the schedule expansion process.

As shown in Fig. 5.8, the wake-up mechanism is internally managed by the TDMH stack

session layer, since also the StreamWakeupScheduler is part of it.

Application Session layer

return: stream

connect(destination, port)

wait(stream)

wakeup(stream)

return

write(stream, data)

Dataphase Transceiver

sendPacket(&packet)

return: true

send(packet)

return

return

for i = 1 ... stream redundancy

loop

Figure 5.8: Sequence diagram showing the interaction between application, session layer

and dataphase when using the write/wait API.

Basic mechanism The algorithm is based on the playback of the streams wake-up list,

a list in which the required stream transmissions are ordered by their own wake-up time,

which in this case represents the elements priority. The list is used as a circular bu�er

and represents a queue, in which the position of the element with the lowest wake-up time

48 5| Proposed Solution

is always the front one and the cost for getting it is O(1). This is the desired temporal

complexity, since it allows the algorithm to always have consistent computation timings

with as less variability as possible.

At each iteration:

1. The StreamWakeupScheduler thread, takes the front element from the queue.

2. The removed element is replaced by an updated one. The update consists in incre-

menting the wake-up time by the duration of a schedule, that in turn is computed

as:

scheduleDuration = #tilesInSchedule · tileDuration

In this way, since all stream occurrences in the schedule also appear in the wake-

up list, elements are consumed once per schedule repetition and their ordering is

maintained.

3. The thread sleeps until the wake-up time of the element removed from the queue is

reached. When returning from the sleep, the StreamId contained in the element read

from the queue is used to wake up the relative stream, through the StreamManager.

4. The algorithm continues by taking a new element from the queue and by repeating

the above steps.

The described behavior is reported in Fig. 5.9.

5| Proposed Solution 49

element = queue.getElement()

sleepUntil(when)

wakeup(streamId)

when = element.wakeupTime
streamId = element.id

element.wakeupTime += scheduleDuration
index = (index + 1) % queueSize

Save info relative
to next stream

Update element's wakeup
time and move queue
index in a circular way

Take queue's
front element

Figure 5.9: Flow diagram showing the basic mechanism of the StreamWakeupScheduler.

Finite State Machine The StreamWakeupScheduler algorithm is implemented through

a simple �nite state machine (FSM) with three states:

• IDLE: this is the initial state. The FSM remains in this state until the �rst sched-

ule is received. After the schedule is received, the FSM moves to the AWAITING

ACTIVATION state.

• AWAITING ACTIVATION: this state is used to manage the period that goes from the

reception of a new schedule, until its activation tile is reached. When the new

schedule is activated, the FSM moves to the ACTIVE state. Data structures related

to the previous schedule are replaced by the newer ones.

• ACTIVE: the FSM remains in this state until no new schedule is received and the

basic wake-up list playback is performed.

50 5| Proposed Solution

IDLE

AWAITING
ACTIVATION ACTIVE

new schedule
(first schedule)

current tile == downlink tile
&&

new schedule

current tile
<

activation tile

current tile
>=

activation tile

no new schedule

no new schedule

Figure 5.10: StreamWakeupScheduler �nite state machine.

More details on the actions performed in the di�erent FSM states are discussed in the

following.

Handling New Schedules

New schedules are distributed during the downlink phase. This means that during down-

link tiles, in particular at the end of downlink slots, the StreamWakeupScheduler should

check if a new schedule has been received, in order to trigger a transition in the �nite

state machine and to update the current data structures.

According to the FSM state, di�erent actions are performed:

• While in the IDLE state, the algorithm continuously performs a sleep action until

the next tile time plus the duration of a downlink slot. This way it will always

execute at the end of downlink slots, checking if a new schedule has been received

and, if needed, move to the ACTIVE state.

• The solution to enforce checking for new schedules while in the ACTIVE state is to

also add the downlink slots end time to the wake-up list, with no advance time.

5| Proposed Solution 51

Then, a new member is also added to the list elements to indicate the element type,

being it a STREAM or a DOWNLINK. If the algorithm wakes up at the end of a downlink

slot it checks for the existence of a new schedule and, if it is the case, it moves to

the AWAITING ACTIVATION state.

Tab. 5.3 is the updated version of the wake-up list shown in Fig. 5.7 and Tab. 5.1,

by including downlink slots too. In the example, the schedule is composed of one

control superframe, which contains one downlink slot.

Type Stream ID Wakeup time

STREAM S1 Tact + 0 ms

DOWNLINK − Tact + 6 ms

STREAM S2 Tact + 12 ms

STREAM S1 Tact + 42 ms

Table 5.3: Streams wake-up list containing also the downlink slots end time, referred to

example in Fig. 5.7.

• Until the FSM remains in the AWAITING ACTIVATION, a new schedule has already

been received but its activation time has not been reached yet. Then, no check is

needed, since no re-scheduling can take place until the last computed schedule has

been activated, but at that time the FSM would already be gone back to ACTIVE.

Handling Streams with Di�erent Periods

In this solution, streams with di�erent periods are easily managed. All the streams will

always appear at least once in the schedule and whenever the algorithm takes an element

from the queue also updates it with its next wake-up time. Since the schedule length,

in number of tiles, is equal to the least common multiple among all the existing streams

periods, actually streams appear a number of times equal to:

#streamOccurrencies =
#tilesInSchedule

streamPeriod

So, a stream will be woken up a number of times equal to #streamOccurrencies per

schedule repetition and its relative elements in the queue are also updated the same

amount of times. Every time an element is updated, it had the lowest wake-up time and

becomes the element with the highest one. This mechanism ensures that elements in

the wake-up queue are always ordered and no problems arise while dealing with di�erent

52 5| Proposed Solution

stream periods. A schedule containing streams with di�erent periods was represented in

Fig. 5.7 and Tab. 5.1.

Handling Streams with Same Wake-Up Time

Consider two streams, S1 and S2 with the same wake-up time tw and S1 ordered before S2

in the queue. After waiting until tw in order to wake-up S1, the StreamWakeupScheduler

thread would again sleep until tw to wake-up S2. Since tw is a time that has already

passed, the sleepUntil primitive provided by TDMH immediately returns and the second

stream is also woken up.

The same can happen among a stream and a downlink slot end time: the stream wake-

up action, in this case, has higher priority, so the STREAM element is ordered before the

DOWNLINK one. This means that the check on newly arrived schedules will be executed

after the stream wake-up has been performed. In such a situation, the stream has to be

woken up, since if a new schedule was not yet received, the older one is still valid. Even if

a new schedule is received during the mentioned downlink slot, it will be activated some

tiles in the future. By design, the schedule distribution always ends at least one tile before

the same schedule activation. So, when the new schedule is received, the stream is for

sure still open. It may then be removed as soon as the new schedule becomes active. This

is the �rst reason why new schedules have to be received at least one tile before their own

activation.

Streams Wake-Up Lists Subdivision

Problems can arise when a stream speci�es an advance that makes its wake-up time to take

place in the previous tile with respect to the one in which the stream has to transmit.

In Fig. 5.11 it can be seen how stream S1 needs to be woken up in correspondence

of the last slot of tile N-1 for transmitting during tile N, since its advance is set to

Tadvance = 2 · Tslot.

5| Proposed Solution 53

D

Start radio
transmission

U

Stream
wakeup

Wakeup
advance

S1 S1

Stream
wakeup

Wakeup
advance

Tile NTile N - 1 Tile N + 1

Start radio
transmission Tslot

Figure 5.11: Example of schedule in which the stream S1 has to be woken up during the

previous tile w.r.t. the transmission slot tile.

The main problem, in this case, is that a stream may need to be woken up before the

schedule itself is activated. For example, assume that a new schedule has to be activated

at tile N : the wake-up of stream S1 has to be performed during the previous tile with

respect to schedule activation. This is the main reason why the maximum allowed wake-

up advance is one tile and, thus, it is needed to receive new schedules at least one tile

before their own activation, in order to have time to wake-up streams during the previous

tile, if needed.

As said, the main problem is when a new schedule is going to be activated. Indeed, not

all the streams that have a high wake-up advance cause this problem, but only those

that need to transmit during the �rst schedule tile (since the maximum allowed wake-up

advance is exactly one tile). So, only those that have a negative wake-up o�set (in number

of slots) with respect to the schedule activation moment. In the previous example, stream

S1 has to transmit during slot 2 in tile N, but its wake-up o�set is −1 slot with respect

to tile N (i.e. the schedule activation tile). In other words, only those streams whose �rst

wake-up time relative to the new schedule is lower than its activation time.

In order to handle these corner cases, when computing the wake-up times, streams are

divided into two lists:

• currQueue: it contains the wake-up time of those streams that have to be woken

up and transmit while the schedule is already active.

• nextQueue: it contains the wake-up time of those streams that have to be woken

up during the previous tile with respect to the one in which the schedule has to be

activated (i.e. they transmit during the "next" schedule repetition).

Referring to the previous example, the wake-up time of the �rst occurrence of stream S1

is added to the nextQueue, while the second one to the currQueue.

54 5| Proposed Solution

Both lists are relative to speci�c schedules. From now on they will be indicated as

currQueueK and nextQueueK , where K is the schedule identi�er, which is an incremental

value.

This distinction allows to perform di�erent operations according to the current FSM state:

• ACTIVE: in this state the algorithm is running in a "stable scenario", meaning that

a schedule is currently active and no new ones have been received. At each itera-

tion, the algorithm takes the element with lower wake-up time among currQueueK

and nextQueueK , associated with the current schedule. In fact, at each schedule

repetition also elements inside nextQueueK have to be checked out.

• AWAITING ACTIVATION: in this other state instead a new schedule has been received,

so the currQueueK+1 and the nextQueueK+1 associated with the new schedule

already exist. In particular:

� It may happen that a schedule is received several tiles before its activation.

If the current tile is not the last one before the activation, the algorithm acts

exactly as in the ACTIVE state, considering always that the maximum allowed

wake-up advance for a stream is one tile.

� If instead, the current tile is the last one before the new schedule activation, the

algorithm, in order to take an element from the streams wake-up lists, compares

the currQueueK associated to the current schedule and the nextQueueK+1 of

the new schedule. This is because by checking also nextQueueK the algorithm

may wake up a stream whose o�set changed in the new schedule (and so also the

needed wake-up time) or directly removed. Waking up a stream in nextQueueK

that has been moved in the new schedule means waking it up at the wrong time,

causing a variation in the experienced latency. If a stream was removed instead,

it would cause a useless wake-up, that will not correspond to any transmission.

New streams may also appear in nextQueueK+1 and they have to be woken up

before even activating the new schedule. Indeed, at this point, nextQueueK

represents wake-up times of transmissions that would take place after schedule

K+1 activation (since its elements have been updated over time) and schedule

K is instead no more valid. Therefore, it has to be ignored.

To be more speci�c, there are no guarantees that the algorithm wakes up during the

last tile before the new schedule activation. For example, if both nextQueueK and

nextQueueK+1 are empty, the last tile before activation is an uplink tile (so no check on

downlink slots is performed) and streams have a period higher than 1. It is instead guar-

5| Proposed Solution 55

anteed that the StreamWakeupScheduler executes at least once per control superframe,

since in each of them at least one downlink slot has to be present. So, actually while in

the AWAITING ACTIVATION state, the algorithm checks if the last superframe before the

new schedule activation has been reached, which also includes the last tile. By doing so,

the nextQueueK+1 is also checked in previous tiles of the same control superframe, not

only the last one, to which by design the wake-up times contained in nextQueueK+1 can

not belong. This is not a concern: nextQueueK is already has to be ignored (its streams

were already woken up during the �rst tile of schedule K) and comparing the �rst element

of two lists is not a heavy operation at all.

Notice that, in the case in which the next considered wake-up time is successive to the

new schedule activation, the algorithm waits until the schedule activation time, in order

to swap the data structures before proceeding, without removing or updating any element

in any queue.

To summarize, Fig. 5.12 to Fig. 5.15 represent the described mechanism.

New schedule
available ?

no

yes

move to state
AWAITING

ACTIVATION

seepUntil(when)

when = nextTileStartTime + downlinkSlotDuration

no

Figure 5.12: StreamWakeupScheduler IDLE state.

56 5| Proposed Solution

queue = compareQueues()

no

wakeup(streamId)

streamId = element.id

element.type ==
DOWNLINK ?

New schedule
available ?

yes

yes

move to state
AWAITING

ACTIVATION

element = queue.getElement()
when = element.wakeupTime

sleepUntil(when)

no

update element in queue:
element.wakeupTime += scheduleDuration

Figure 5.13: StreamWakeupScheduler ACTIVE state.

5| Proposed Solution 57

no

element.type ==
DOWNLINK ?

element = queue.getElement()
when = element.wakeupTime

update element in queue:
element.wakeupTime += scheduleDuration

sleepUntil(when)

queue = compareQueues()

yes

yes

no

curr tile >=
schedule activation

tile

replace wakeup
queues with
newer ones

move to state
ACTIVE

yes

no

when >=
new schedule
activation time

sleepUntil(activationTime)

wakeup(streamId)

streamId = element.id

Figure 5.14: StreamWakeupScheduler AWAITING ACTIVATION state.

58 5| Proposed Solution

FSM state ==
AWAITING

ACTIVATION no

yes

Last control
superframe before

activation ?

yes

q1 = currQueueK
q2 = nextQueueK

q1 = currQueueK
q2 = nextQueueK+1

usedQueue = compare(q1, q2)

return usedQueue

no

Return reference to the
queue whose front
element has lower

wakeup time

Figure 5.15: compareQueues() function used to get a reference to the queue from which

the next element has to be taken, according to the current FSM state.

Handling Removed and Added Streams

As said in the previous paragraph, closing a stream or receiving a schedule in which

a stream (or more than one) has been removed (e.g. after a topology change or de-

synchronization) may generate some corner cases around the moment at which the new

schedule has to be activated. In general, it has to be avoided to wake up streams that are

no more existing and to skip waking up new streams, which should instead take place.

Consider the basic situation shown in Fig. 5.16, in which in schedule K only stream S1

exists. Analogously, in schedule K+1 only stream S2 is present. Both streams have a pe-

5| Proposed Solution 59

riod of 1 tile and their wake-up advance is Tadvance = Tslot. In this case, both nextQueueK

and nextQueueK+1 are empty since the wake-up time of both streams appearances is con-

tained in the same tile as their respective transmission slot. The algorithm will normally

proceed taking elements from currQueueK and then from currQueueK+1 after schedule

K+1 is activated. After the �rst two S1 wake-ups, the following wake-up time for stream

S1 would be equal to schedule K + 1 activation time. The algorithm will then sleep until

TK+1 (schedule k + 1 activation time), without taking the element from currQueueK .

At this point, when the activation is reached, the data structures are replaced by the

newer ones and a new wake-up of stream S1 cannot take place. In fact, from this point

on, only currQueueK+1 will be used. Referring to the example, a new element will be

extracted from the queue and immediately woken up, in correspondence to schedule K+1

activation.

D U

Tslot

D U

Control superframe
Activation of

schedule K+1

Wakeup S1
from currQueueK

S1 S1

Wakeup S1
from currQueueK

S2

Wakeup S2
from currQueueK+1

S2

Wakeup S2
from currQueueK+1

Figure 5.16: Example in which nextQueueK and nextQueueK+1 are empty. Upward blue

and red arrows indicate wake-up actions that take place, respectively from streams S1

and S2

Fig. 5.17 shows, instead, an example of a possible corner case. Stream S1 has a wake-up

advance equal to T1,advance = 2 ·Tslot and it is removed in the new schedule. A new stream,

S2, is also opened and its wake-up advance is set to T2,advance = 4 · Tslot.

D U

Tslot

D U

Control superframe

S1 S1

Activation of
schedule K+1

Wakeup S1
from currQueueK

Wakeup S2
from nextQueueK+1

Wakeup S1
from nextQueueK

(not needed)

S2

Wakeup S2
from currQueueK+1

S2

Figure 5.17: Example in which a stream that appears also in the nextQueueK is removed

from the schedule and a new one is added. Upward blue and red arrows indicate wakeup

actions that take place, respectively from streams S1 and S2.

According to the algorithm behavior explained, after receiving the new schedule, the FSM

moves to the AWAITING ACTIVATION state. Here, after the �rst downlink slot, it notices

60 5| Proposed Solution

that the last control superframe before the new schedule activation has been reached.

From this point then, nextQueueK is ignored and only currQueueK and nextQueueK+1

are considered. In the example shown in Fig. 5.17, after the �rst S1 transmission takes

place (it was woken up during the previous tile), the algorithm also wakes up the second

appearance of S1. Since nextQueueK+1 also contains a new appearance of S2, the wake-up

of this second stream will take place. The following appearance of S1 is instead skipped

since it is contained in nextQueueK , which is ignored, and its relative transmission would

take place after the activation of the new schedule K+ 1, in which S1 is no more present.

After the activation of schedule K + 1 the algorithm moves back to the ACTIVE state,

proceeding with its normal execution until a new schedule is computed.

Apart from not waking up streams that are no more existing in the schedule, it is im-

portant to wake up the newly added streams without skipping them. As shown in the

previous example, also newly added streams (as for S2) are managed.

This mechanism also handles the case in which a stream is moved inside the new schedule

(i.e. is re-scheduled with a di�erent o�set). In fact, the situation in which a stream was

moved from slot i to slot j can be assimilated to the case in which the stream at o�set

i was closed and a new stream with o�set j was instead added to the schedule, which

resembles the previously shown examples.

Notice that the wakeup method of the Stream class is also called every time a stream

gets removed from a schedule, either if explicitly closed or due to a de-synchronization or

topology change. This is necessary to prevent the application to remain stuck forever on

the wait call, without being able to react, for example requesting the stream to be opened

again.

Handling Re-Transmitted Schedules

During the distribution of a new schedule, the schedule itself is split into multiple packets

and sent to all the nodes in the network. Each of these packets is redundantly trans-

mitted. Whenever all the redundant transmissions of one or more schedule packets fail,

the dynamic node receives an incomplete schedule. In this case, the node issues a re-

transmission request. It can happen that when �nally the schedule is correctly received

by all the nodes, the activation tile for that schedule has already passed. If it is the

case the wake-up lists may contain wake-up time values that are in the past. If this hap-

pens, when the StreamWakeupScheduler takes an element from the queue and performs a

sleep, this last action would immediately return, causing some consecutive and very fast

5| Proposed Solution 61

streams wake-up actions, until the wake-up times align again with the current time (since

the wake-up time is incremented every time an element is taken from the queue).

On the contrary, in this situation, wake-up time values have to be considered to be invalid.

To avoid undesired wake-ups, all the elements of the wake-up lists are incremented and

aligned to the next schedule repetition (i.e. to the next data superframe start time).

This mechanism is shown in Fig. 5.18. In this example, all the wake-up times would

be aligned to TactNew, so they all would be incremented by an amount of time equal to

TactNew − Tact.

D U D U D U

Schedule
activation

Tact

Schedule
reception

Trecv

Next schedule
repetition
TactNew

Schedule
duration

Figure 5.18: Example in which a schedule is received after its own activation tile has

already passed.

The drawback is that some possible intermediate wake-up actions are not performed,

leading to some missed packets until TactNew is reached, but, at that point, the algorithm

will start again from a consistent state.

5.3. APIs Comparison

In this section, a comparison among the two presented API is provided, underlining the

pros and cons of the two implementations.

5.3.1. Callbacks API

The proposed callbacks implementation has on its side the ease of use: only the callback

functions and one number representing the upper bound of the execution time of the

callbacks themselves have to be speci�ed by the user inside the application code.

The implemented API also exploits the existence in TDMH of the data phase, which is

already in charge of managing transmissions and receptions from the opened streams at

the correct time and slot. Avoiding new threads should not be underestimated, since

threads also bring with them problems related to synchronization and harder debugging.

62 5| Proposed Solution

On the other side, the API relies on the fact that the user speci�es a correct value for the

callbacks execution time, which also has to be minimized as much as possible, by limiting

the number of operations performed inside the callback itself. These operations should

be limited to copy data from or to the session layer and some quick processing. Anyway,

the user is responsible for the implementation of the callback functions and if something

goes wrong inside them, the data phase (and so the entire MAC) will be a�ected, e.g.

by unexpected delays, which can even make the node non-synchronized with the TDMH

time slots (and so, for example, causing packets to be missed and the node's reliability to

get lower).

Anyway, it is impossible to avoid leaving to the user the responsibility of specifying

network-related parameters, as it already happens for example for the TDMH tile duration

and the maximum number of allowed hops. Since the callbacks execution time directly

in�uences the time slots duration, it is considered as a protocol-related parameter.

Since callbacks execution time is considered to make time slots longer and it is usually

an upper bound of the real needed computation time, some more time elapses among two

consecutive streams transmission and reception inside the schedule. This amount of time

is allocated speci�cally for callbacks execution. Moreover, callback functions are executed

in the same thread of the data phase and the MAC, which is the highest priority one. For

the two mentioned reasons, when using this API, latency is less a�ected by the amount

of computational load the node is subject to.

5.3.2. Write/Wait API

This second presented API does not add any usage di�culty with respect to the existing

implementation. In fact, for the user it is needed only to add a parameter to the connect

primitive (the stream's wake-up advance time) and to also call the wait function among

two consecutive write operations. It provides some �exibility in the choice of the wake-

up advance too, that can be di�erently sized for each stream, according to the needed

computations.

The implementation of the StreamWakeupScheduler as an active object, allows to better

integrate it with the codebase, without the need of re-designing a substantial part of

existing modules. It has to be considered that adding a new thread may require some

attention to the synchronization mechanisms, but since the algorithm only needs one

input (the streams wake-up lists) this is not a big deal. Furthermore, this thread spends

most of the time sleeping and waiting the correct time to wake-up the next stream or the

next schedule reception.

5| Proposed Solution 63

As for the callbacks API, the sizing of the wake-up advance is left to the user, who also

has to guarantee that the application processing time does not exceed the speci�ed value,

otherwise packets misses may take place, reducing the network reliability. But if the time

advance is correctly sized, the API guarantees that the application will always �nd a free

session layer bu�er when calling the write primitive, which ensures that the new packet

will be sent during the �rst available transmission slot.

Moreover, it is left to the user to remember to call the wait primitive, in order to synchro-

nize with the underlying network stack layers execution and, so, with streams transmission

slots.

With respect to the callbacks implementation, the StreamWakeupScheduler is executed in

a thread that has lower priority, since only the MAC has the maximum available one. In

addition, when a stream is woken up, the application will perform its computation during

a previous slot with respect to the stream transmission one, possibly being overlapped

with other operations of the system, without having a dedicated time interval, as it is

for the callbacks API instead. The execution of the read primitive on the reception side

also takes place on a thread that does not have the highest possible priority. This means

that when the computational load on the node becomes very high, the latency measures

are a�ected by a higher noise with respect to the callback functions implementation, e.g.

during the experiments in which all the nodes open streams towards the master which is

in charge of logging all the network events and received messages, apart from executing

the main TDMH algorithms, like the topology collection and the scheduler. This last one

in particular, when the network contains tens of streams, may need a time that is in the

order of some seconds.

5.4. APIs Interoperability

The two presented APIs respect all the time constraints de�ned by the TDMH protocol.

This means that all the operations that involve transmission and reception of data pack-

ets are, of course, always synchronized with TDMH data slots, according to the active

schedule. As such, the two APIs are completely alternative and interoperable the one

with the other. Applications running on di�erent nodes, in the same network, can use

heterogeneous APIs. A single node can also be using di�erent APIs for distinct streams.

The extreme case is when for the same stream, the transmitting node uses one API and

the receiver instead uses the other one.

64 5| Proposed Solution

5.5. Data Phase

Some modi�cations to the current implementation of the data phase are needed, in order

to reach the thesis goal, due to its incompatibility with the proposed APIs. In this section,

a description of the current data phase policy is provided. Then, the updates made to the

current implementation are presented, both on the transmission and the reception side,

switching to a new policy, referred to as "as late as possible" policy.

5.5.1. "As Soon as Possible" Policy

The data phase implementation is based on the "as soon as possible" policy, meaning

that as soon as an operation ends, the following one can start. This is made in order

to occupy as much as possible idle time intervals. Moreover, the current implementation

tries to anticipate the moment in which data is retrieved from the session layer, in order

to consequently anticipate the moment in which the bu�er becomes empty and the next

transmission operation can be completed. After retrieving the packet, the data phase

schedules the radio transmission for the next involved stream time slot. The implemented

policy does not guarantee that the data phase is executed always with the same advance

with respect to the moment in which a transmission slot starts.

When the callbacks API is used, the described data phase behavior would change the

moment at which the transmission callback is executed, having re�ections on the end-to-

end latency of data packets.

If instead the new write primitive is used, it can happen that the application provides to

the session layer the data to be sent after the data phase has already been executed during

the current period. In this situation, when the data phase accesses the session layer bu�er,

it does not �nd any packet ready and so the transmission does not take place, leading to a

missed packet. In the previous implementation of the write method this could not happen,

since the it was a blocking procedure, which was unlocked by the data phase itself. In

order to retrieve the data, the data phase uses the Stream class method sendPacket, which

returns the actual packet to be sent. Then it waits until the start time of the transmission

slot, where the packet is sent over the radio module. But, as described, when the data

phase checks for the existence of a ready-to-be-sent packet, the write may not have been

executed yet. In that case, no packet is ready and the transmission will be skipped.

Assume for example that a stream transmission is scheduled during the �rst slot after

the downlink one. Even if the application speci�es a correctly sized time advance for the

5| Proposed Solution 65

needed computations (e.g. 1 time slot), the write operation could take place sometime

after the wakeup one. The application, then, is a�ected by the fact that the data phase

execution may be anticipated. For example, during downlink timesync slots usually the

time needed for executing the synchronization algorithm is lower than the computation

time of other downlink slots. Therefore, the data phase may check if the packet is ready

before it was actually created, as depicted in Fig. 5.19.

D US1 S1 S1

Timesync
computation

Dataphase
(sendPacket)

X XX

Tslot
Application

(write)

Figure 5.19: Undesired situation in which the data phase execution is anticipated before

the write primitive.

In the desired behavior, it must be guaranteed that the data phase checks for a new packet

existence after the write has already been executed.

In addition to what has been said, the current data phase implementation for the reception

side has a direct impact on the value of the end-to-end latency. In general, the data phase:

• Calls the Stream method receivePacket when a packet is received.

• Calls the Stream method missPacket when a packet is missed.

Consider now the last of a group of redundant transmissions. The latency changes ac-

cording to whether the last redundant packet is correctly received or misses. In fact, if

something is being received, the data is returned to the application after a time equal to

Ttx, with respect to the last redundant slot start time. Ttx is indeed the time needed to

transmit (and receive) the packet.

But, as soon as the data phase on the receiving side notices that the packet was missed, it

calls missPacket, which immediately returns the received data to the application (if any

was received during previous redundant transmissions).

Fig. 5.20 and 5.21 show the described situation. Remember that if some data is received, it

will be always delivered to the application after all the redundant receptions (or misses).

Then, in the case in which the last redundant packet is received, even if some of the

previous ones were missed, the time needed for a complete packet reception from stream

66 5| Proposed Solution

S1 can be computed as:

Trx = (R− 1) · Tslot + Ttx

where R is the stream redundancy value, Tslot is the duration of a single TDMH data slot

and Ttx is the time needed to transmit the packet.

But, in the case the last redundant packet is missed (Fig. 5.21), Trx is lower, since it is not

necessary for the data phase to wait until the last redundant transmission is completed

too. So, for stream S1 the reception time becomes:

Trx = (R− 1) · Tslot

D US1 S1 S1 S2

Ttx

Trx Tslot

Packet
delivery

Packet
delivery

Figure 5.20: Example in which the last redundant packet is received by the destination

node.

D US1 S1 S1

Ttx

Trx

X X

Tslot

S2

Packet
delivery

Packet
delivery

Figure 5.21: Example in which the last redundant packet is missed by the destination

node.

If misses occur during other redundant transmissions that are not the last one, no problems

take place, since the successive redundant packets still have to be sent (and received) and

the data phase cannot call missPacket beforehand. So, at least (R−1) ·Tslot elapse before
the received data is returned to the application.

As introduced, the current implementation may lead to undesired packets misses and the

variability of the time needed to perform a complete packet reception has a direct impact

on the end-to-end latency. This policy is no more compatible with the implemented APIs

5| Proposed Solution 67

and with the goal of having constant, or at least bounded, latency for all the transmitted

packets.

5.5.2. "As Late as Possible" Policy

On the contrary, the required policy is "as late as possible". In this context, this means

that the data phase has to retrieve the data to be sent as close as possible to the real

transmission slot.

According to the used API this has two di�erent meanings:

• Callbacks API : the data phase has to wait until the slot start time minus the call-

backs execution time, that is the time instant in which the send callback has to be

executed. After executing the callback, the packet to be sent will be ready in the

session layer, thus the data phase can get it and the transmission can be scheduled

for the slot start time.

• Write/Wait API : the data phase can wait until the transmission slot starts, since

it will only have to get the data from the session layer and send it. Since streams

can specify the advance time in which operations are performed to produce the new

data to be sent (e.g. sampling of a sensor), if the advance is correctly sized, it is

guaranteed that the data phase will �nd a ready packet at the slot start time.

On the receiving side instead, the "as late as possible" policy implies that the data phase

has to delay the execution of receivePacket (or missPacket) as much as possible after the

reception (or miss) of all the redundant packets. It has to be kept in mind that any delay

introduced in this phase has a direct impact on the time instant at which the received

data will be delivered to the application.

When the TDMH MAC context is started, it computes the time needed to transmit a

packet with a size equal to the maximum allowed one. This is necessary to allocate

time for packets transmission inside the data slots, up to the maximum size. The same

computation can be further exploited in the data phase context: whenever a packet is

received or missed the data phase can wait until the slot start time plus the maximum

time needed for a single packet transmission, Ttx,max.

Fig. 5.22 shows the mechanism. Considering stream S1, the time needed for a complete

reception of the triple redundant packet and deliver the it to the application is now �xed

and it is computed as:

Trx = 2 · Tslot + Ttx,max

68 5| Proposed Solution

D US1 S1 S1 S2

Ttx

Trx Tslot

Ttx,max

X X

Packet
delivery

Packet
delivery

Figure 5.22: Dataphase correct behavior on the receiving side, including the Ttx,max time

slack.

Forcing the data phase to wait after each receive (or miss) will increase the end-to-end

latency by a few milliseconds, such as only packets with maximum size are exchanged

through the network. This is the price to pay for keeping the latency constant, instead

of having it �uctuate depending on whether the last redundant packet was received or

missed. Indeed, Ttx,max is an upper bound of the transmission time of data packets, since it

only considers maximum size packets (size already bounded by TDMH). The real packets

size is for sure lower than or equal to the maximum one and so is their transmission time

too.

5.5.3. Radio Startup Time and Cryptography

In the real world, every time the physical layer has to be accessed for transmission or

reception, it needs some time to set up. This setup time is considered in the data phase:

if the action associated with the next slot is to send or to receive, the radio startup time

is accounted for executing the data phase with the correct time advance before the slot

start time, in order to leave the needed time to the radio setup. This setup time in TDMH

amounts to Tstartup = 0.5 ms.

Moreover, if the crypto is enabled, each packet has to be encrypted before its own transmis-

sion and decrypted after the reception. The time needed for this operation was measured

to be Tencrypt = 0.11 ms and Tdecrypt = 0.12 ms.

This means that if the callbacks API is used, the send callback execution will be always

anticipated by a total of Tstartup + Tencrypt. This constant advance has an impact on the

end-to-end latency too. It is not a big concern, since it is always a �xed value and does not

a�ect latency's variability, but it has to be considered when looking at absolute values,

for example when comparing the theoretical and the real latency entity.

The radio startup time does not have any re�ection on the receive callback instead, since

this function is called after the packet has been received (or missed), and so after the

5| Proposed Solution 69

radio already operated and the packet (if any) has been decrypted. The receive callback

is only delayed by an amount of time equal to the decryption time of the incoming packet.

If the write/wait API is used, the data phase transmission advance time does not a�ect

the end-to-end latency, since it is overlapped the stream wake-up advance, but it implies

that the real time left to the application to produce a new packet and to copy it to

the session layer is the speci�ed wake-up advance time minus the data phase one, that

is: Tadvance − (Tstartup + Tencrypt). This is the time the application has for computation

between its own wake-up and the moment in which the data phase will check if a new

packet is ready for transmission. On the reception side, though, the time needed for

packet decryption has to be considered, as it delays the moment at which the data is

delivered to the application.

Fig. 5.23 shows a detailed view of the explained radio startup time and the time allocated

to cryptography execution.

D US1 S1 S1

D US1

Node 1

Node 2

Tslot

Ttx

Stream
wakeup

Tadvance

S1 S1

Ttx,max Tdecrypt

Tstartup + Tencrypt
Dataphase

send

S2

S2

Tcallback

Send
callback

Receive
callbak

Packet
delivery

Packet
delivery

Dataphase
send

Figure 5.23: Example that includes radio startup and crypto timings. Stream S1 uses

the write/wait API while stream S2 uses the callbacks one.

5.6. Schedule Expansion

As described in the TDMH overview chapter (Sec. 3.5.1), schedules are distributed over

the network in an implicit form. Whenever the implicit schedule is received by a node, it

has to perform some operations in order to make the schedule usable by the data phase

and the session layer:

• Streams rekeying : every time a new schedule is received, and then activated, all

the cryptography keys associated with any existing stream have to be updated.

70 5| Proposed Solution

If the number of opened streams is high, this processing may require more than

a downlink slot to be completed. For this reason, the master node computes the

number of downlink slots needed for the rekeying process and selects the tile at

which the new schedule will be activated accordingly, allocating the required slots.

This way, the rekeying process can be split over multiple downlink slots.

• Schedule expansion: it is the process of transforming the received implicit schedule

into an explicit one, that will be used by the data phase. Again, this operation may

require multiple downlink slots to be completed if the scheduled streams number is

very high, especially now that during this process the streams wake-up lists used by

the StreamWaitScheduler are built too. This section discusses the updates made to

split the schedule expansion over multiple downlink slots and to build the stream

wake-up lists.

Fig. 5.24 shows an example in which one downlink slot after the schedule reception

is needed for rekeying and other two slots are dedicated to the schedule expansion. It

exempli�es the desired behavior.

D U

Schedule
received

D U D U D U D U

Rekeying Schedule
expansion (1)

Schedule
activation

Tile

Schedule
expansion (2)

Control superframe
=

Schedule duration

Figure 5.24: Example in which the schedule expansion is executed across two downlink

slots.

5.6.1. Schedule Expansion Module

A new module, inside the downlink phase one, was implemented in order to manage the

schedule expansion over multiple downlink slots.

In particular the ScheduleExpander class was created. It exposes a set of methods through

which the expansion process can be started or an advance in the process can be triggered.

startExpansion The startExpansion method, as its name suggests, is called by the

schedule distribution when the expansion process needs to start. During this phase, a few

simple operations are performed:

5| Proposed Solution 71

• The information contained in the new schedule header, such as the number of sched-

ule slots, its duration and activation tile (and relative time), are stored.

• The number of streams and downlink slots contained in the schedule is computed,

in order to preallocate vectors for the explicit schedule and for the streams wake-up

lists.

• All the required data structures are allocated (or cleared, if the process was already

executed in the past).

needToContinueExpansion This method returns a boolean value indicating whether

the expansion process has been completed or not. After starting the process then, at each

downlink slot, this method is used to check if some streams still need to be expanded or

not. This method returns true until the expansion process has not reached the end of the

implicit schedule.

continueExpansion In case some streams still need to be expanded, the continueEx-

pansion method is used to proceed into the process. Here is where the real expansion

takes place and the stream wake-up lists are built. At each call, a number of iterations

equal to the maximum number of expansions per downlink slot is performed, until the

implicit schedule end is reached. At this point, the process terminates.

getExplicitSchedule This last method is simply used to retrieve the explicit schedule

after the expansion process has been completed.

5.6.2. Schedule Distribution

The schedule distribution module is where the control of this entire phase is implemented.

It relies on two di�erent state machines, one running on the master node and the other

one on all the dynamic nodes. Both the master and the dynamic state machines already

provide a state that is dedicated to the rekeying of all the existing streams. The same

state will also handle the schedule expansion process. In the current implementation this

process is executed when the new schedule activation tile is reached. Since it has to

be possible to execute the expansion over multiple downlink slots, the master node also

considers the required number of slots by the schedule expansion process. In particular,

when computing the activation tile of the new schedule, the master sums the required slots

both for the rekeying and for the expansion. The total amount is used as the minimum

72 5| Proposed Solution

number of tiles after which the new schedule can be activated. Due to the requirement of

the write/wait API of receiving the new schedule at least one tile before the activation, this

number is also incremented by one. The rekeying state of the two �nite state machines is

then renamed as processing state, in which both the rekeying and the expansion processes

take place.

Master Node

When entering the processing state, the master node already knows both the number of

downlink slots needed by the rekeying and those needed by the schedule expansion (ac-

cording to the maximum number of streams that can be expanded per slot). Then, it

executes the rekeying for a number of slots equal to #rekeyingSlots. When the #rekey-

ingSlots are reached, the expansion is started, through the startExpansion method. The

expansion proceeds during the following downlink slots (continueExpansion) until the

overall required number of slots is reached, that is:

#rekeyingSlots+ #expansionSlots

At this point the expansion is complete and the master node only has to wait until the

new schedule activation.

The master node behavior is shown in Fig. 5.25, while Fig. 5.26 reports the slightly

modi�ed state machine.

5| Proposed Solution 73

Schedule
Distribution

Schedule
Expansion

return

startExpansion(schedule, header)

return

continueExpansion(schedule)

Session
Layer

return

counter++

while (counter < rekeyingSlots + expansionSlots)

setStreamsWakeupLists(...)

Figure 5.25: Sequence diagram showing the schedule expansion mechanism on the master

node, after the rekeying already took place (#rekeyingSlots already elapsed).

74 5| Proposed Solution

SENDING
SCHEDULE

PROCESSING

AWAITING
ACTIVATION

APPLIED
SCHEDULE

sendingRounds
<

maxSendingRounds

sendingRounds
==

maxSendingRounds

continueRekeying()
continueExpansion()

processingSlotCtr
==

rekeyingSlots + expansionSlots

activation tile

activation tile

schedule available
for distribution

Figure 5.26: Master schedule distribution �nite state machine.

Dynamic Nodes

Dynamic nodes do not directly know the number of needed slots for rekeying and schedule

expansion. What they can do is to continue the rekeying process until the needToCon-

tinueRekeying method of the StreamManager returns a true value. When rekeying is

done, the expansion process can be started and continued during the following downlink

slots until, symmetrically, the needToContinueExpansion method of the ScheduleExpander

class returns true. Indeed, the continueExpansion method will proceed, at each call, by

a number of iterations equal to the maximum expansions per slot, so it will always be

synchronized with the number of slots computed by the master.

Fig. 5.25 and Fig. 5.26 show the dynamic nodes behavior and their updated state ma-

chine.

5| Proposed Solution 75

Schedule
Distribution

Schedule
Expansion

return

startExpansion(schedule, header)

while (needToContinueExpansion())

return

continueExpansion(schedule)

Session
Layer

return

setStreamsWakeupLists(...)

Figure 5.27: Sequence diagram showing the schedule expansion mechanism on the dy-

namic nodes, after the rekeying already took place (#rekeyingSlots already elapsed).

APPLIED
SCHEDULE

INCOMPLETE
SCHEDULE

SENDING
SCHEDULE

PROCESSING

AWAITING
ACTIVATION

activation tile

activation tile

activation tile

activation tile

schedule packet
received

schedule packet
received

sendingRounds
<

maxSendingRounds

sendingRounds
==

maxSendingRounds

continueRekeying()
continueExpansion()

no streams left to
rekey nor to expand

Figure 5.28: Dynamic schedule distribution �nite state machine.

76 5| Proposed Solution

5.6.3. Re-Transmitted Schedules

It may happen that an incomplete schedule is received by a dynamic node if one or

more of the schedule packets are repeatedly missed. In fact, these packets are redun-

dantly distributed as well. The dynamic node then will issue to the master a schedule

re-transmission request, by sending a StreamManagementElement. The dynamic node

then activates an empty schedule and all the local streams are removed. When the new

schedule is �nally correctly received, the expansion has to take place.

It may occur that when the re-transmitted schedule is received by the mentioned node, the

schedule activation tile has already passed. Even in this situation, the schedule expansion

is executed and, as soon as it ends, the received schedule is activated.

5.6.4. Streams Wake-Up Lists

During the schedule expansion process, all the information needed to build the streams

wake-up lists is already available: schedule activation tile, StreamId, period, o�set inside

the schedule and the action associated with each stream and slot. It is the perfect phase

in which also building the lists needed to manage the streams that use the write/wait

API. As said, it is necessary that the process can be split over di�erent downlink slots.

An advantage of building these wake-up lists during the expansion process is that they

can be pre-allocated. In fact, the number of elements to be put in the two lists can be

computed a-priori on the implicit schedule, before starting the expansion, including the

number of downlinks too. The number of downlink slots added to the list is the number

of downlinks per control superframe multiplied by the number of control superframes in

a schedule (i.e. in a data superframe):

#downlinksInControlSuperframe ·#controlSuperframesInSchedule

A �rst implementation consisted in a simple iteration over the implicit schedule and,

while building the explicit schedule whenever a transmission stream was found it was

added to the wake-up list, ignoring redundant transmissions. Since di�erent streams can

have di�erent wake-up advances, the insertion into the list was not guaranteed to be

ordered according to the streams wake-up time. At the end of the process then a list sort

was required. Even though the loop could be split by performing a maximum number of

iterations per downlink slot, the �nal sort could not.

5| Proposed Solution 77

In order to completely split the process, both the expansion and the construction of the

wake-up lists have to be performed inside the same loop. This means that stream wake-up

information has to be added to the list in an ordered manner and, thus, some elements

shifting may be needed. As a consequence, the time needed in the worst-case scenario has

to be measured in order to compute the maximum number of stream expansions (i.e. loop

iterations) that can be executed inside a single downlink slot. The worst-case scenario is

represented by a stream whose action is SENDSTREAM (because it has to be added to the

wake-up list), when it is the last being added to the list and that has the lowest wake-up

time among all the streams (since it would require shifting all the already inserted list

elements). Moreover, if at that iteration a downlink slot end time has to be added to the

list too, the required time for a single expansion increases again.

So, even though inserting elements in an ordered manner inside a �xed-size array is not

O(1), building the lists in such a way allows minimizing the usage of dynamic allocation.

79

6| Latency Computation

This chapter shows how to compute the expected lower and upper bounds of streams

latency under di�erent conditions for both the proposed APIs, also when using them

heterogeneously in the same network.

Packets propagation delay is ignored since nodes are always enough close to each other.

6.1. Minimum Theoretical Latency

The minimum possible end-to-end latency is achieved in an ideal and optimal scenario in

which:

• The application transmission request (write primitive or send callback) takes place

in correspondence of the transmission slot.

• The application computation time to generate a new packet is null.

• Copying data to or from the session layer takes zero time.

• The redundant transmissions (or receptions) of a stream are scheduled inside con-

secutive slots.

• Radio startup time is null and crypto, if used, also takes zero time.

In the described scenario, the end-to-end latency, from data generation to data availability

after its reception, would be:

L = (R− 1) · Tslot + Ttx,max

where Tslot is the duration of a single data slot, R is the stream's redundancy and Ttx,max

is the time needed by the radio transceiver to transmit a packet of maximum size. In an

ideal scenario, this is the lowest achievable latency, so it represents a lower bound when

either one API or the other is used.

Fig. 6.1 shows the ideal scenario described above. In the example two nodes exists, Node

80 6| Latency Computation

1, which transmits data, and Node 2 that only receives packets. Also, two streams exist,

S1 that has redundancy equal to three and S2 that does not have any redundancy (i.e.

packets on this stream are sent only once). Consider stream S1 �rst: a packet sent over S1

needs two entire data slots, in which the �rst two repetitions of the packet are sent, plus

Ttx,max. During the third slot after starting the transmission, only a time equal to Ttx,max

is needed before the data becomes available to the application for processing. Then, the

end-to-end latency of stream S1 is equal to:

L1 = 2 · Tslot + Ttx,max

Transmitting a packet through S2 instead only requires:

L2 = Ttx,max

D

Start radio
transmission

US1 S1 S1 S2

D US1 S1 S1 S2

Node 1

Node 2

Packet
delivery

Tslot

Ttx Ttx,max Packet
delivery

Start radio
transmission

Figure 6.1: End-to-end latency lower bound example.

Of course, scenarios in which the stream's assigned slots are not consecutive inside the

schedule exist too. This may happen if intermediate slots are assigned to other streams

or if packets need to traverse multiple hops before reaching the destination node (so they

have to be forwarded from node to node). The latency, in this case, is higher than the

previously computed one, since more slots elapse between the start of the transmission

and the end of the reception.

Then, more in general, the end-to-end latency can be expressed as:

L = (nslots − 1) · Tslot + Ttx,max

where nslots is the number of slots spanned by the stream for which the latency is being

computed, including the intermediate ones that may be allocated to other streams. In

6| Latency Computation 81

other words, it is the number of slots that elapse from the �rst to the last transmission slot

of the considered stream, extremes included. As a consequence, nslots is always greater

than or equal to the stream redundancy value.

In the example shown in Fig. 6.2 stream S1 spans a number of slots equal to nslots = 4

and its latency is increased by one data slot with respect to the previous example:

L1 = 3 · Tslot + Ttx,max

D US1 S1 S1 S2

D US1 S1 S1 S2

Node 1

Node 2

Tslot

Ttx Ttx,max Packet
delivery

Packet
delivery

Start radio
transmission

Start radio
transmission

Figure 6.2: End-to-end latency lower bound example, in which stream S1 transmission

slots are not consecutive in the schedule.

6.1.1. Radio Startup Time and Crypto

Now consider the same assumptions as in Sec. 6.1, except for the fact that the physical

layer takes some time before being able to transmit and the time needed to encrypt and

decrypt packets is not null.

In this scenario, the radio startup time and the time needed by the cryptography execution

concur to the end-to-end latency, regardless of the used API.

In case the redundant stream transmissions are schedule to consecutive slots, the latency

lower bound can be computed as:

L = Tstartup + (nslots − 1) · Tslot + Ttx,max + Tcrypto

where Tcrypto = Tencrypt + Tdecrypt.

82 6| Latency Computation

6.2. Callbacks API Latency

As a starting point, assume that both the radio startup and the cryptography execution

take zero time. Assume also that on the transmission side the application computation

takes zero time, while on the reception side it takes the entire speci�ed callbacks execution

time. The latency relative to this scenario represents an upper bound for the callbacks

API latency, since the data generation takes place as soon as the send callback is called,

while the data is made available as late as possible. It can be computed as:

Lcallback = TsendCallback + L+ TrecvCallback

where L is the theoretical lower bound computed in Sec. 6.1 and TsendCallback and

TrecvCallback are the execution times of the two callbacks.

The above formula can be extended to:

Lcallback = TsendCallback + (nslots − 1) · Tslot + Ttx,max + TrecvCallback

where Tslot is the duration of a single data slot, where nslots is the number of slots spanned

by the stream and Ttx,max is the time needed by the radio transceiver to transmit the

required packet.

As previously explained, only one value can be speci�ed for the callbacks execution time

(Tcallback), which is an upper bound of the real execution time among all the existing

callbacks in any node and for any stream. Thus, the above formula simpli�es to:

Lcallback = (nslots − 1) · Tslot + Ttx,max + 2 · Tcallback

In the example shown in Fig. 6.3 it can be seen how the latency upper bound for stream

S1 is exactly:

Lcallback,1 = 2 · Tslot + Ttx,max + 2 · Tcallback

Stream S2 latency is instead:

Lcallback,2 = Ttx,max + 2 · Tcallback

6| Latency Computation 83

D

Start radio
transmission

US1 S1 S1 S2

D US1 S1 S1 S2

Node 1

Node 2

Tslot

Ttx

Send
callback

Send
callback

Receive
callback

Tcallback

Ttx,max Receive
callback

Start radio
transmission

Packet
delivery

Packet
delivery

Figure 6.3: End-to-end latency upper bound example when using the callbacks API.

In a scenario in which stream's assigned slots are not consecutive, the maximum latency

increases by a number of slots that is equal to the increase in the theoretical one. In the

example shown in Fig. 6.4 stream S1 latency increases by one slot:

L1 = 3 · Tslot + Ttx,max + 2 · Tcallback

On the contrary stream S2 is not a�ected by any variation.

D US1 S1 S1 S2

D US1 S1 S1 S2

Node 1

Node 2

Ttx

Tslot

Send
callback

Send
callback

Tcallback

Ttx,max Receive
callback

Receive
callback

Start radio
transmission

Start radio
transmission

Packet
delivery

Packet
delivery

Figure 6.4: End-to-end latency upper bound example when using the callbacks API, in

which stream S1 transmission slots are not consecutive in the schedule.

In the real case, on the transmission side, the application may need some time to generate

the new data, delaying it towards the transmission slot start. The receive callback function

may also need less time to be completed than the user-provided execution time. As such,

when receiving a packet, it would be delivered to the application before the time computed

84 6| Latency Computation

for Lcallback. The real latency increases or decreases according to the real execution time

of the receive callback. It instead increases if the real execution time of the send callback

decreases, while it decreases if the send callback execution time increases.

These factors give as a result that the real end-to-end latency Lreal will be bounded

between the lowest achievable latency L and the upper bound Lcallback:

L < Lreal ≤ Lcallback

Notice that in both the formulas for L and Lcallback the only variable factor is nslots, which

is also the only element that depends on the current streams schedule. Therefore, any

change in the schedule would a�ect in the same way both the lower and upper latency

bound (e.g. if the redundant stream transmissions are not consecutive). As a consequence,

the bound di�erence is always constant:

Lcallback − L = k

where k is a constant time amount and equal to:

k = 2 · Tcallback

This means that, excluding the latency absolute value changes across di�erent schedules,

the maximum theoretical jitter is �xed, since latency can �uctuate at most by a constant

amount between its own bounds. The jitter depends neither on the streams period nor

on the current streams schedule, but only on the callbacks execution time Tcallback, which

is a constant value. To summarize, the achieved latency is deterministic and predictable

by only knowing the current schedule.

Considering an even more realistic situation, the data phase is executed accounting for

the time needed by the radio to startup and to encrypt and decrypt a packet, as explained

in Sec. 5.5.3. This amount of time (Tstartup + Tcrypto), has to be accounted for both the

lower and the upper bounds. The di�erence between the two bounds is thus kept constant

and is still equal to 2 · Tcallback.

6.3. Write/Wait API Latency

As explained in Sec. 5.2, each stream can specify a wake-up advance, Tadvance, that is a

multiple of the duration of a TDMH data slot. So, the value of Tadvance directly a�ects

6| Latency Computation 85

the latency upper bound value.

Again, assume that, as a starting point, the radio is immediately ready for transmission

and reception when requested and that the cryptography execution does not take any

time. Assuming that the write operation is called as soon as the application is woken up

from its waiting state (null processing time), starting from the theoretical formula, the

latency in the current scenario can be derived as:

Lwrite/wait = Tadvance + L

Lwrite/wait = Tadvance + (nslots − 1) · Tslot + Ttx,max

Referring to Fig. 6.5 it can be seen that there exist two streams S1 and S2, having

respectively a wake-up advance time equal to:

Tadvance,1 = Tslot

Tadvance,2 = 2 · Tslot

D

Start radio
transmission

US1 S1 S1 S2

D US1 S2

Node 1

Node 2

Tslot

Ttx

Stream
wakeup

Tadvance

Stream
wakeup

S1 S1

Ttx,max

Start radio
transmission

Packet
delivery

Packet
delivery

Figure 6.5: End-to-end latency upper bound example when using the write/wait API.

Then the latency upper bound for stream S1 can be computed as:

Lwrite/wait,1 = Tadvance,1 + 2 · Tslot + Ttx,max

Lwrite/wait,1 = 3 · Tslot + Ttx,max

And for stream S2 :

Lwrite/wait,2 = Tadvance,2 + Ttx,max

86 6| Latency Computation

Lwrite/wait,2 = 2 · Tslot + Ttx,max

In a scenario in which stream's assigned slots are not consecutive, like the one represented

in Fig. 6.6, the overall latency may increase. Indeed, stream S1 latency is increased by

one slot, while stream S2 is not a�ected by any change in this setting, since it has no

redundancy (and its transmissions cannot be split over di�erent slots).

The upper bound expression is then:

Lwrite/wait,1 = Tadvance,1 + 3 · Tslot + Ttx,max

Lwrite/wait,1 = 4 · Tslot + Ttx,max

D US1 S1 S1 S2

D US1 S1 S1 S2

Node 1

Node 2

Ttx

Tslot

Stream
wakeup

Stream
wakeup

Tadvance

Ttx,max

Start radio
transmission

Start radio
transmission

Packet
delivery

Packet
delivery

Figure 6.6: End-to-end latency upper bound example when using the write/wait API, in

which stream S1 transmission slots are not consecutive in the schedule.

The real latency Lreal then is maximum if the write primitive is called exactly in corre-

spondence of the stream's wake-up time (e.g. in an ideal scenario in which the application

processing takes null time). In any real scenario in which the application is woken up and

has to perform some computation, the write will be called sometime after the stream's

wake-up time. In this situation, the end-to-end latency is lower than in a null processing

time scenario. The latency Lwrite/wait is then an upper bound of the real one:

L < Lreal ≤ Lwrite/wait

As for the callbacks scenario, since the only variable factor in both L and Lwrite/wait

formulas is nslots, which a�ects both bounds by the same amount at any schedule change,

6| Latency Computation 87

it holds that:

Lwrite/wait − L = k

where k is a constant time amount and equal to:

k = Tadvance

Due to the required radio startup and packet encryption time, the data phase execution

takes place sometime before the real transmission slot start. This amount of time does

not a�ect both the latency bounds, but only the lower one. In fact, the write primitive

execution is not further anticipated as it happens with the send callback, so the upper

bound remains unchanged. Anyway, the application has to produce the data and copy

it to the session layer before the data phase checks if a new packet is ready, which takes

place exactly Tstartup + Tencrypt before the transmission slot start time. The lower bound

thus is increased by Tstartup + Tencrypt. Furthermore, both bounds are incremented by the

time needed for decrypting the received packets, Tdecrypt.

As a consequence it holds that the two bounds di�erence is:

Lwrite/wait − L = Tadvance − (Tstartup + Tencrypt)

Thus, in this case the bounds are stricter, since their di�erence is lower.

Again, a deterministic end-to-end latency is achieved, since its absolute value only depends

on the current schedule and the speci�ed wake-up time advance for the stream in question,

which is constant. As for the callbacks case, the di�erence between the two latency bounds

(i.e. maximum jitter) for a speci�c stream does not depend on the current schedule either,

but only on the speci�ed API parameter Tadvance (an possibly on the data phase time

advance) and so it is constant.

6.4. Heterogeneous APIs Latency

As introduced, the two APIs are interoperable. If they are used together on the two sides

of the same stream, the only di�erence with respect to the already presented end-to-end

latency computation is that the upper bound will be a combination of the formulas shown

in the two previous sections.

For simplicity assume that cryptography is not used and the radio startup time is null.

As an example, assume to have two nodes: the �rst one uses the write/wait API to

88 6| Latency Computation

send packets, while the second one uses a receive callback. Looking at the example in

Fig. 6.7, it can be seen that stream S1 has a wake-up advance equal to one data slot:

Tadvance = Tslot. Moreover, after receiving a packet, the receive callback has to be executed

(Tcallback). Then, upper bound for S1 is:

L1 = Tadvance + 2 · Tslot + Ttx,max + Tcallback

L1 = 3 · Tslot + Ttx,max + Tcallback

Stream S2 instead has a wake-up advance time equal to Tadvance = 2 ·Tslot. Its end-to-end
latency upper bound is then equal to:

L2 = Tadvance + Ttx,max + Tcallback

L2 = 2 · Tslot + Ttx,max + Tcallback

D

Start radio
transmission

US1 S1 S1 S2Node 1

Tslot

Stream
wakeup

Stream
wakeup

Tadvance Tcallback

D US1 S1 S1 S2Node 2

Ttx
Receive
callback

Packet
delivery

Ttx,max

Start radio
transmission

Receive
callback

Packet
delivery

Figure 6.7: End-to-end latency upper bound example when using heterogeneous APIs

(write/wait for transmission and callback for reception).

Symmetrically, the sender can use the callbacks API while the receiver can use the read

primitive, which is a blocking call that returns as soon as all the redundant packets have

been received. Considering stream S1 in Fig. 6.8, its end-to-end latency upper bound is

simply:

L1 = Tcallback + 2 · Tslot + Ttx,max

While for stream S2 it is is computed as:

L2 = Tcallback + Ttx,max

6| Latency Computation 89

D US1 S1 S1 S2Node 1

Tslot

Send
callback

Tcallback

Send
callback

D US1 S2Node 2

Ttx Packet
delivery

S1 S1

Ttx,max

Start radio
transmission

Start radio
transmission

Packet
delivery

Figure 6.8: End-to-end latency upper bound example when using heterogeneous APIs

(callback for transmission and read for reception).

6.5. Real Examples

In this section, some examples in which the latency bounds are computed through the

previously-described formulas are presented.

Small experiments were conducted to check that the latency bounds are respected, using

the two APIs separately and also using them to handle transmissions and receptions on

the same stream. The setup includes two nodes, a master and a dynamic one. The

dynamic node opens a stream to the master and sends packets with a period of 10 tiles

(P = 1000 ms). The stream redundancy is set to triple.

When using the write/wait API the stream wake-up advance is a single slot: Tadvance =

Tslot = 6 ms. When using the callbacks API, the callbacks execution time is instead set

to 0.5 ms, which leads to TDMH slots to be as long as Tslot = 7 ms. The physical radio

startup time is Tstartup = 0.5 ms and the time allocated to cryptography execution is

Tcrypto = Tencrypt + Tdecrypt = 0.11 ms + 0.12 ms = 0.23 ms. Finally, the time needed to

transmit a packet of maximum size is Ttx,max = 4.448 ms.

Consider that in these examples almost no computation is performed for generating data

packets (they only contain an incremental counter). For this reason, the measured latency

is almost exactly in the middle of the lower and the upper bounds for the callbacks API,

since the bounds di�erence is 2 · Tcallback and the entire callback execution time on the

sender side a�ects the latency, while the receiving one is almost immediate. For the

write/wait API instead, it is unbalanced towards the upper one, since packets generation

takes place almost immediately after the stream is woken up.

90 6| Latency Computation

In all these small experiments the average latency falls in between the lower and up-

per bounds and the maximum measured jitter never exceeds the bounds di�erence, as

explained in the previous sections.

6.5.1. Callbacks API

The �rst example uses the callbacks API both for the transmission and for the reception

of application data packets.

Fig. 6.9 reports the measured latency among the two nodes and Fig. 6.10 shows the dis-

tribution of packets latency. Latency bounds and measured statistics are then reported

in Tab. 6.1 and 6.2.

It can be seen how the upper and lower bounds di�erence is exactly 1 ms, which corre-

sponds to 2 · Tcallback.

Figure 6.9: Single hop packets measured latency using the callbacks API.

6| Latency Computation 91

Figure 6.10: Single hop packets latency distribution using the callbacks API.

Packets num. Average latency Jitter Standard deviation

400 19.6877 ms 3.31 µs 0.74 µs

Table 6.1: Single hop packets measured latency statistics using the callbacks API.

Lower bound Upper bound

19.178 ms 20.178 ms

Table 6.2: Single hop packets latency bounds using the callbacks API.

6.5.2. Write/Wait API

This example, instead, uses the write/wait API for the transmission and the read primitive

for packets reception.

Fig. 6.11 reports the measured latency among the two nodes and Fig. 6.12 shows the

distribution of packets latency. Latency bounds and measured statistics are then reported

in Tab. 6.3 and 6.4.

92 6| Latency Computation

It can be seen how the upper and lower bounds di�erence is exactly 5.39 ms, which

corresponds to Tadvance − (Tstartup + Tencrypt).

Figure 6.11: Single hop packets measured latency using the write/wait API.

Figure 6.12: Single hop packets latency distribution using the write/wait API.

6| Latency Computation 93

Packets num. Average latency Jitter Standard deviation

400 22.5562 ms 5.83 µs 1.28 µs

Table 6.3: Single hop packets measured latency statistics using the write/wait API.

Lower bound Upper bound

17.178 ms 22.568 ms

Table 6.4: Single hop packets latency bounds using the write/wait API.

6.5.3. Heterogeneous APIs

The third example uses the write/wait API for transmission but the packet reception is

handled through a callback, so also in this case slots duration is 7 ms, rather than 6 ms.

Fig. 6.13 reports the measured latency among the two nodes and Fig. 6.14 shows the

distribution of packets latency. Latency bounds and measured statistics are then reported

in Tab. 6.5 and 6.6.

In this case the upper and lower bounds di�erence is 6.89 ms.

Figure 6.13: Single hop packets measured latency using heterogeneous APIs.

94 6| Latency Computation

Figure 6.14: Single hop packets latency distribution using heterogeneous APIs.

Packets num. Average latency Jitter Standard deviation

400 25.5283 ms 3.68 µs 1.18µs

Table 6.5: Single hop packets measured latency statistics using heterogeneous APIs.

The latency lower and upper bound are reported in Tab. 6.6.

Lower bound Upper bound

19.178 ms 26.068 ms

Table 6.6: Single hop packets latency bounds using heterogeneous APIs.

6.6. Re-Scheduling Latency

The latency bounds computed in the examples shown in Sec. 6.5 are relative to a single

schedule, they are valid as long as a schedule is active. They are not useful around the

exact point in which a new schedule is activated and the previous one becomes invalid.

Latency has to be separately evaluated for the two distinct schedules.

6| Latency Computation 95

Fig. 6.15 shows the latency trend of a stream with triple redundancy and that uses the

write/wait API. The stream S is always scheduled on the �rst hop, but it is assigned

to di�erent transmission slots, according to the active schedule. During some time its

assigned slots are interleaved by an uplink slot, whose duration is Tuplink = 2 · Tslot.
Stream's wake-up advance is instead set to Tadvance = Tslot = 6 ms. Again, the time

needed to transmit a packet of maximum size is Ttx,max = 4.448 ms.

Figure 6.15: Single hop packets latency for stream S when re-schedulings take place.

When the stream is scheduled with three consecutive redundant transmissions (Tab. 6.7),

its latency upper bound amounts to:

Lupper,1 = Tadvance + (nslots − 1) · Tslot + Ttx,max + Tdecrypt

Since Tadvance = Tslot it follows that:

Lupper,1 = 3 · Tslot + Ttx,max + Tdecrypt = 22.568 ms

The average measure value in this scenario was instead 22.547 ms.

Notice that since the write/wait API is used, only the packets decryption time is con-

sidered in the computation of the latency upper bound, while the encryption and radio

96 6| Latency Computation

startup time do not have any e�ect, as explained in Sec. 6.3.

Schedule 1

t0 Downlink

t1 Downlink

t2 Stream S

t3 Stream S

t4 Stream S

t5 ...

Table 6.7: Example of schedule in which stream S transmits during three consecutive

slots.

Schedule 2

t0 Downlink

t1 Downlink

t2 ...

t14 Stream S

t15 Stream S

t16 Uplink

t17 Uplink

t18 Stream S

t19 ...

Table 6.8: Example of schedule in which stream S transmissions are interleaved by the

uplink phase slots.

In the second scenario (Tab. 6.8) the three redundant transmissions are interleaved by the

uplink phase, which occupies two data slots. The number of slots spanned by the stream

then includes also the two slots allocated for the uplink phase and amounts to nslots = 5.

At the end of any tile, a slack time is also added, which amounts to Tslack = 4 ms.

The latency upper bound is:

Lupper,2 = Tadvance + (nslots − 1) · Tslot + Tslack + Ttx,max + Tdecrypt

Lupper,2 = 5 · Tslot + Tslack + Ttx,max + Tdecrypt = 38.568 ms

6| Latency Computation 97

The average measure value in this scenario was instead 38.542 ms.

The same can happen if a stream is scheduled on a hop that is not the �rst one, so its

transmission slots are interleaved by slots in which the same packets have to be forwarded

through the following hops. The absolute end-to-end latency value indeed increases. In

the example of Tab 6.9, packets relative to stream 1 → 0 follow the path 1 → 2 → 0.

Then, nslots for stream 1→ 0 assume the value of 6 slots, from t2 to t7 included.

Schedule 3

t0 Downlink

t1 Downlink

t2 1→ 2

t3 2→ 0

t4 1→ 2

t5 2→ 0

t6 1→ 2

t7 2→ 0

t8 ...

Table 6.9: Example of schedule in which stream 1→ 0 transmissions path to the receiver

node is two-hops long and passes through node 2.

The presented example shows that only around a new schedule activation a high variation

of the latency may be experienced, since the number of slots spanned by streams may

change, but this phenomenon is limited to a single packet. During the plateau intervals

between two schedules, latency is always bounded and all the consideration done in this

chapter are valid.

It is important to underline that (re-)scheduling is intrinsic to the TDMA nature of the

protocol. It is a necessary operation that cannot be avoided. Moreover, re-schedulings

triggered by network topology changes are infrequent and, when new streams are opened,

the scheduler tries to avoid overturning the already existing streams. In conclusion, re-

schedulings only a�ect the latency absolute value, not its variability.

99

7| Experiments

In this chapter di�erent experiments are proposed, consisting of both simulations and real-

world ones. The conducted experiments are divided into two categories. The �rst ones aim

at evaluating streams reliability and latency, by validating the implemented functionalities

and proving that they do not interfere with the overall network reliability provided by

TDMH. Successively, the implementation is evaluated in a control loop scenario over a

wireless network.

7.1. Experiments Setup

During all the experiments, the dynamic nodes open a stream to the master, using triple

redundancy. The packet payload contains a counter that increases with each packet,

allowing to evaluate packet loss by analyzing missing counter values from the master's

logs.

7.1.1. WandStem Nodes

TDMH is designed to run on top of the Miosix Operating System [21] and, more speci�-

cally, on theWandStem nodes [20], which use the low-power EFM32GGmicrocontroller by

SiliconLabs, based on an ARM Cortex-M3 core running at 48 MHz. This microcontroller

has a 1 MB �ash memory and a 128 KB RAM on-chip. These devices are equipped with

a 2.4 GHz radio module and are capable of keeping track of time with a 21 ns resolution,

which is a necessary condition to perform hardware timestamping, needed to make the

FLOPSYNC-2 time synchronization algorithm work. WandStem nodes consumption can

get as low as 2.4 µA during deep-sleep, which makes them suitable to be battery-powered

devices.

100 7| Experiments

7.1.2. Latency Pro�ling

When creating a new packet, sender nodes also insert in its payload the current network

time timestamp. When the packet is received by the master, the �rst operation it performs

is to take the reception timestamp and to log the elapsed time between creation and

reception of the packet. Through master's logs, the history of each packet's latency can

be reconstructed.

A script is then used to analyze the log and to produce a plot, using Scilab [7], for each

sender stream latency, along with statistics for each of those streams (e.g. latency average,

standard deviation, etc.).

Consider that the master node in this setting is heavily loaded. It has one open stream

for each other node in the network and has to compute schedules and lead all the other

mechanisms of the protocol.

Moreover, the high amount of debugging prints increases the load, so latency values can

have higher oscillations. But those debugging prints are necessary to check that everything

is correctly working in the network and to produce a complete log of the experiment.

This is the setting that allows having the best possible observability of the system at the

moment.

7.2. Simulations

A previous student doing his master thesis [18] on TDMH, Paolo Polidori, developed an

interface to run TDMH in OMNeT++ [16], a well known network simulator based on

discrete event simulation. An interface compatible with Miosix was developed, to expose

the radio module, timers and logging, that use the OMNeT++ primitives instead of those

provided by the Miosix kernel. This design allows having a single code base that can be

either executed on the real hardware or on the network simulator, simplifying testing and

troubleshooting, which is usually a hard and time-consuming task on the real hardware,

especially in a distributed setting.

Being able to execute TDMH in a simulated environment allows developing and testing

the new components and features with the simplicity of deploying di�erent topologies.

This allows to also test all the possible corner cases, which are harder to be tested in a

real wireless setting, due to the distributed nature of the system which makes it non fully

observable and to the fact that sometimes they are hardly reproducible.

7| Experiments 101

Setup

As for real-world experiments, also during simulations, all the dynamic nodes open a

stream with the master as a destination. The exchanged data packets are also the same

as described previously in Sec. 7.1.

Thanks to the simulated environment, di�erent network topologies can be tested out with

ease, trying to test all the possible corner cases, such as di�erent stream schedules and

multi-hop networks, which a�ect the required streams wake-up time.

Fig. 7.1 to Fig. 7.4 show some examples of the topologies used for testing.

Figure 7.1: Line4 network topology.

Figure 7.2: Star4 network topology.

Figure 7.3: Kite network topology.

Figure 7.4: PartialMesh network topology.

102 7| Experiments

Results

Simulations on the di�erent network topologies were repeated until positive results were

achieved.

Simulations results are considered positive when the network reliability is constant and

equal to 100%, meaning that no misses occur. Indeed, during simulations, packets can

be missed only if the implemented functionalities are not properly working (e.g. in some

corner cases), since transmission is not a�ected by radio interference.

For what concerns latency instead, simulation experiments results are considered positive

and accepted only if the latency standard deviation is equal to zero for each stream (when

no re-scheduling takes place). Since during simulations the computation time is assumed

to be zero (i.e. it is not considered for simulating the time �owing), packets latency must

be constant.

7.3. Wireless Validation Experiments

Di�erent wireless experiments were conducted in an incremental way: starting from

smaller networks composed of three to seven nodes, in order to check that the thesis

goal was actually achieved (that is showing that nodes latencies are stable over time).

Other experiments, in which all the available WandStem nodes were deployed, were con-

ducted on the �rst �oor of the Building 21 of Politecnico di Milano, reproducing the node

placement used in the paper presented by Terraneo et al. at the RTSS 2018 conference

[24], to have a set of reference results. This method allows checking that the newly im-

plemented features do not undermine the already existing protocol stack and network

stability.

The complete setup is comprised of a master node (node 0) and 13 dynamic nodes,

numbered from 1 to 13. All the streams connecting dynamic nodes to the master have a

period of 10 tiles (i.e. 1 s).

Each experiment was repeated for both the described APIs (the callbacks and the write/wait

one), each time leaving the test running for multiple hours. In particular for both the

APIs two experiments are presented here, each conducted under di�erent electromagnetic

interference conditions.

Fig. 7.5 shows the positioning of all the nodes.

7| Experiments 103

Figure 7.5: WandStem nodes placement at Building 21 of Politecnico di Milano. The

master node is highlighted by an orange circle.

7.3.1. Callbacks API

In the experiments in which the callbacks API is used, the send and receive callback

functions only perform a memcpy operation to retrieve the received packet from the

session layer or to pass it a new packet to be sent, containing an incremental counter and

the current network timestamp. Considering that the master node is heavily loaded in

the experiments setup, much more than all the other nodes, the callbacks execution time

was set to 0.5 ms in order to leave a good margin. The speci�ed callbacks execution time

leads the slot duration to be equal to 7 ms.

High Interference Experiment

Setup The �rst complete experiment using all the 14 available WandStem nodes and

the callbacks API was conducted for 4 hours during a working afternoon, in which the

WiFi usage is intensive and has drawback on the achieved network reliability. Indeed,

WandStem nodes radio module uses the 2.4 GHz band as the WiFi.

104 7| Experiments

The complete resulting topology is represented in Fig. 7.6.

Figure 7.6: First callbacks API experiment network topology. The master node is high-

lighted by an orange circle. Dark blue indicate strong links, light blue represent weak

ones.

Results Every node sent around 14 thousand packets through the opened stream and,

overall, the network showed a reliability of 99.88%, with all the streams being above

99.50%.

Detailed reliability results for each stream are reported in Tab. 7.1, including reliability

values for single, double and triple streams redundancies.

7| Experiments 105

Stream Sent

packets

Reliability

Single

Reliability

Double

Reliability

Triple

1-0 13944 99.99% 100.00% 100.00%

2-0 13935 99.08% 99.80% 99.88%

3-0 13933 99.15% 99.99% 100.00%

4-0 13949 99.36% 99.86% 99.97%

5-0 13949 99.73% 100.00% 100.00%

6-0 13935 98.41% 99.33% 99.51%

7-0 13949 99.63% 99.95% 99.99%

8-0 13949 98.85% 99.94% 99.99%

9-0 13933 99.43% 99.82% 99.87%

10-0 13933 99.16% 99.94% 99.99%

11-0 13933 97.81% 99.49% 99.58%

12-0 13933 97.44% 99.38% 99.61%

13-0 13935 97.45% 99.39% 100.00%

Total 181210 98.88% 99.76% 99.88%

Table 7.1: Stream seliability during the �rst callbacks API experiment.

Plots in Fig. 7.7 to Fig. 7.19 show, for each node from 1 to 13, the latency of every

packet received by the master. It can be seen that the plot trend is the same for each

stream: higher latencies are experienced in correspondence with the execution of the

scheduler in the master node. Still, latency never deviates more than 40 µs from the

average of the relative stream, even while the scheduler is running and the master has a

higher computational load. The maximum experienced jitter indeed is 40.03 µs for stream

4 → 0. Furthermore, the average latency standard deviation among all the streams is

1.47 µs, which is orders of magnitude lower than the measured average latency for each

of them.

The mentioned resulting values are reported in Tab. 7.2.

106 7| Experiments

Stream Average latency Max. Jitter Standard deviation

1-0 19.5714 ms 34.91 µs 1.44 µs

2-0 198.5713 ms 29.87 µs 1.42 µs

3-0 77.5717 ms 33.72 µs 1.43 µs

4-0 61.5716 ms 40.03 µs 1.79 µs

5-0 19.5713 ms 31.30 µs 1.35 µs

6-0 47.5716 ms 31.45 µs 1.38 µs

7-0 47.5717 ms 37.24 µs 1.29 µs

8-0 98.5716 ms 33.28 µs 1.38 µs

9-0 135.5717 ms 27.61 µs 1.30 µs

10-0 68.5716 ms 32.98 µs 1.39 µs

11-0 619.5716 ms 32.18 µs 1.54 µs

12-0 70.5720 ms 36.74 µs 1.51 µs

13-0 340.5720 ms 36.22 µs 1.85 µs

Total − 33.66 µs 1.47 µs

Table 7.2: Streams latency statistics during the �rst callbacks API experiment.

Figure 7.7: Latency for stream 1→ 0. Figure 7.8: Latency for stream 2→ 0.

7| Experiments 107

Figure 7.9: Latency for stream 3→ 0. Figure 7.10: Latency for stream 4→ 0.

Figure 7.11: Latency for stream 5→ 0. Figure 7.12: Latency for stream 6→ 0.

Figure 7.13: Latency for stream 7→ 0. Figure 7.14: Latency for stream 8→ 0.

108 7| Experiments

Figure 7.15: Latency for stream 9→ 0. Figure 7.16: Latency for stream 10→ 0.

Figure 7.17: Latency for stream 11→ 0. Figure 7.18: Latency for stream 12→ 0.

Figure 7.19: Latency for stream 13→ 0.

7| Experiments 109

Low Interference Experiment

Setup The second complete experiment using all the 14 available WandStem nodes and

the callbacks API was conducted for 6 hours, during less hostile hours.

The complete resulting topology is represented in Fig. 7.20.

Figure 7.20: Second callbacks API experiment network topology. The master node is

highlighted by an orange circle. Dark blue indicate strong links, light blue represent weak

ones.

Results Every node sent around 23 thousand packets through the opened stream and,

overall, the network showed a reliability of 99.94%, with more than half of the streams

have 100.00% of packets correctly delivered and all of them being above 99.80%, except

for stream 12→ 0. It can be seen from the network topology in Fig. 7.20 that 12 does not

have a strong link to node 13 (that was instead established during the �rst experiment)

and so its packets are scheduled to follow a 5-hops long path to reach the master, through

nodes 11, 10, 7 and 5.

Detailed reliability results for each stream are reported in Tab. 7.3, including reliability

values for single, double and triple streams redundancies.

110 7| Experiments

Stream Sent

packets

Reliability

Single

Reliability

Double

Reliability

Triple

1-0 22850 100.00% 100.00% 100.00%

2-0 22595 99.77% 100.00% 100.00%

3-0 22839 99.78% 99.98% 100.00%

4-0 22777 99.78% 99.97% 100.00%

5-0 22787 99.98% 100.00% 100.00%

6-0 22843 99.99% 100.00% 100.00%

7-0 22787 99.96% 100.00% 100.00%

8-0 22594 99.83% 100.00% 100.00%

9-0 22608 99.26% 99.81% 100.00%

10-0 22839 99.87% 99.90% 99.90%

11-0 22832 99.78% 99.81% 99.81%

12-0 22832 99.38% 99.54% 99.54%

13-0 22777 99.45% 99.88% 100.00%

Total 295960 99.76% 99.79% 99.94%

Table 7.3: Streams reliability during the second callbacks API experiment.

Plots in Fig. 7.21 to Fig. 7.33 show, for each node from 1 to 13, the latency of every

packet received by the master. In this second experiment no re-scheduling processes took

place and so also latency plot have a �atter trend.

Very few latency spikes (experienced for single packets and never on multiple consecutive

packets) can be noticed and the highest measured jitter, with respect to the mean latency

value, is 32.29 µs for stream 10 → 0. The average latency standard deviation among all

the streams is 0.82 µs, which is again a really appreciable result. This also highlights the

fact that the highest latency spikes are restricted to very few samples.

The mentioned resulting values are reported in Tab. 7.4.

7| Experiments 111

Stream Average latency Jitter Standard deviation

1-0 19.5712 ms 23.20 µs 0.90 µs

2-0 633.5715 ms 12.94 µs 0.83 µs

3-0 49.5715 ms 6.83 µs 0.80 µs

4-0 47.5716 ms 23.87 µs 0.80 µs

5-0 19.5715 ms 27.88 µs 0.78 µs

6-0 19.5715 ms 25.30 µs 0.80 µs

7-0 84.5711 ms 20.44 µs 0.80 µs

8-0 642.5715 ms 6.73 µs 0.78 µs

9-0 91.5715 ms 7.11 µs 0.81 µs

10-0 119.5715 ms 32.29 µs 0.82 µs

11-0 226.5715 ms 20.21 µs 0.93 µs

12-0 256.5715 ms 18.92 µs 0.83 µs

13-0 277.5715 ms 24.31 µs 0.80 µs

Total − 19.29 µs 0.82 µs

Table 7.4: Streams latency statistics during the �rst callbacks API experiment.

Figure 7.21: Latency for stream 1→ 0. Figure 7.22: Latency for stream 2→ 0.

112 7| Experiments

Figure 7.23: Latency for stream 3→ 0. Figure 7.24: Latency for stream 4→ 0.

Figure 7.25: Latency for stream 5→ 0. Figure 7.26: Latency for stream 6→ 0.

Figure 7.27: Latency for stream 7→ 0. Figure 7.28: Latency for stream 8→ 0.

7| Experiments 113

Figure 7.29: Latency for stream 9→ 0. Figure 7.30: Latency for stream 10→ 0.

Figure 7.31: Latency for stream 11→ 0. Figure 7.32: Latency for stream 12→ 0.

Figure 7.33: Latency for stream 13→ 0.

114 7| Experiments

7.3.2. Write/Wait API

When using the write/wait API, dynamic nodes open a stream to the master node and,

after a successful connection, simply wait until their assigned slot. When they are woken

up by the session layer, they instantiate the new packet (with an incremented counter

and the current timestamp) and call the write primitive. After the write returns, they

put themselves again into the waiting state.

TDMH data slots duration, in this case, is 6 ms. The wake-up advance time required by

all the streams is instead equal to two slots (12 ms).

High Interference Experiment

Setup The �rst complete experiment using all the 14 available WandStem nodes and

the write/wait API was conducted for almost 3.5 hours during a working afternoon.

The complete resulting topology is represented in Fig. 7.34.

Figure 7.34: First write/wait API experiment network topology. The master node is

highlighted by an orange circle. Dark blue indicate strong links, light blue represent weak

ones.

7| Experiments 115

Results Every node sent around 11.5 thousand packets through the opened stream

and, overall, the network showed a reliability of 99.88%, with all the streams being above

99.60%.

Detailed reliability results for each stream are reported in Tab. 7.5, including reliability

values for single, double and triple streams redundancies.

It is interesting to see how redundancy almost completely cancels packets loss on stream

2 → 0, passing from only 87.84% of reliability with single redundancy (i.e. no redun-

dancy), up to 99.80% with triple redundancy.

Stream Sent

packets

Reliability

Single

Reliability

Double

Reliability

Triple

1-0 11515 98.58% 99.70% 99.79%

2-0 11524 87.84% 93.92% 99.80%

3-0 11504 94.63% 99.19% 99.63%

4-0 11525 96.60% 99.72% 100.00%

5-0 11520 98.75% 99.92% 99.98%

6-0 11514 99.90% 100.00% 100.00%

7-0 11525 96.84% 99.44% 99.70%

8-0 11525 96.13% 99.56% 99.99%

9-0 11504 95.74% 99.39% 99.94%

10-0 11504 95.96% 99.53% 99.98%

11-0 11504 95.67% 99.24% 99.70%

12-0 11219 98.23% 99.96% 100.00%

13-0 11514 97.92% 98.00% 99.87%

Total 149397 96.36% 99.04% 99.88%

Table 7.5: Streams reliability during the �rst write/wait API experiment.

In this experiment, one re-scheduling took place after few packets from the beginning.

The activation time of the second schedule is called Tact. In order to compute statistics

about each stream, the latencies measured before Tact have been aligned to the ones

measured after this time instant, in order to compute some metrics such as the jitter and

the standard deviation. A value equal to the di�erence of the average latency measured

in the two periods was subtracted (or summed) to the latency of packets that were sent

before Tact.

As expected, the measured latency appears to be noisier than using the callbacks API.

116 7| Experiments

Anyway, the highest jitter with respect to the latency mean value is 107.53 µs for stream

8→ 0. The average latency standard deviation among all the streams is 4.93 µs and, in

fact, the highest experienced latency spikes are very few isolated outliers.

Stream Average latency Jitter Standard deviation

1-0 28.6518 ms 90.60 µs 4.98 µs

2-0 52.6999 ms 104.03 µs 6.29 µs

3-0 292.6250 ms 99.79 µs 4.20 µs

4-0 46.6542 ms 89.75 µs 5.02 µs

5-0 28.6252 ms 65.57 µs 4.49 µs

6-0 28.6728 ms 97.18 µs 4.53 µs

7-0 28.5981 ms 76.00 µs 4.60 µs

8-0 92.6268 ms 107.53 µs 5.60 µs

9-0 52.5990 ms 80.32 µs 4.71 µs

10-0 92.6185 ms 73.28 µs 4.80 µs

11-0 470.7479 ms 102.21 µs 5.22 µs

12-0 428.6189 ms 83.59 µs 4.48 µs

13-0 228.7199 ms 99.11 µs 5.13 µs

Total − 89.92 µs 4.93 µs

Table 7.6: Streams latency statistics during the �rst write/wait API experiment.

Plots in Fig. 7.35 to Fig. 7.52 show, for each node from 1 to 13, the latency of every packet

received by the master during the plateau, with a zoomed plot around the re-scheduling

moment for the a�ected nodes.

Figure 7.35: Latency for stream 1→ 0. Figure 7.36: Latency for stream 2→ 0.

7| Experiments 117

Figure 7.37: Latency for stream 3→ 0. Figure 7.38: Latency for stream 4→ 0.

Figure 7.39: Latency for stream 5→ 0. Figure 7.40: Latency for stream 6→ 0.

Figure 7.41: Latency for stream 7→ 0. Figure 7.42: Latency for stream 8→ 0.

118 7| Experiments

Figure 7.43: Latency for stream 9→ 0. Figure 7.44: Latency for stream 10→ 0.

Figure 7.45: Latency for stream 11→ 0. Figure 7.46: Latency for stream 12→ 0.

Figure 7.47: Latency for stream 13→ 0.

7| Experiments 119

Figure 7.48: Latency for stream 4 → 0

around re-scheduling.

Figure 7.49: Latency for stream 5 → 0

around re-scheduling.

Figure 7.50: Latency for stream 6 → 0

around re-scheduling.

Figure 7.51: Latency for stream 8 → 0

around re-scheduling.

Figure 7.52: Latency for stream 13→ 0 around re-scheduling.

120 7| Experiments

Low Interference Experiment

Setup The second complete experiment using all the 14 available WandStem nodes and

the write/wait API was conducted for almost 14.5 hours, during less hostile hours. This

is the longest experiment among the ones presented.

The complete resulting topology is represented in Fig. 7.20.

Figure 7.53: Second write/wait API experiment network topology. The master node is

highlighted by an orange circle. Dark blue indicate strong links, light blue represent weak

ones.

Results Every node sent around 50 thousand packets through the opened stream and,

overall, the network showed a reliability of 99.97%, with the lowest one being 99.87% for

stream 2 → 0 and more than a half of the streams having 100.00% of packets correctly

delivered.

Detailed reliability results for each stream are reported in Tab. 7.5, including reliability

values for single, double and triple streams redundancies.

7| Experiments 121

Stream Sent

packets

Reliability

Single

Reliability

Double

Reliability

Triple

1-0 50245 99.90% 99.98% 99.99%

2-0 50251 99.63% 99.85% 99.87%

3-0 50251 99.27% 99.94% 100.00%

4-0 50251 99.70% 99.86% 99.90%

5-0 50251 99.82% 100.00% 100.00%

6-0 50013 100.00% 100.00% 100.00%

7-0 50251 99.67% 99.96% 100.00%

8-0 50251 99.73% 99.87% 100.00%

9-0 50221 99.69% 99.86% 99.91%

10-0 50221 99.68% 99.89% 99.91%

11-0 50234 99.42% 100.00% 100.00%

12-0 50234 99.82% 99.99% 100.00%

13-0 50234 99.87% 100.00% 100.00%

Total 652908 99.71% 99.94% 99.97%

Table 7.7: Streams reliability during the second write/wait API experiment.

In this experiment, one re-scheduling took place after few packets from the beginning.

Latency values of packets sent before the second schedule was activated have been aligned

to the following ones (as in the previous experiment) in order to compute some statistics.

Even if in this experiment the measured latency appears to be noisier for all the streams,

it can be noticed that it never deviates more than 125.21 µs from the latency average

of the relative stream. The mentioned highest jitter was measured for stream 5 → 0.

In this scenario, the standard deviation is higher than in the previous experiments, but

the its average among all the streams is 6.40 µs, which is still a good result. Again, this

underlines how the packets whose latency deviates the most from the average value are

an extremely low number.

The mentioned resulting values are reported in Tab. 7.8.

122 7| Experiments

Stream Average latency Jitter Standard deviation

1-0 28.6324 ms 87.65 µs 6.41 µs

2-0 64.6336 ms 107.21 µs 6.30 µs

3-0 62.6073 ms 86.63 µs 6.31 µs

4-0 98.6351 ms 92.72 µs 6.30 µs

5-0 28.7128 ms 125.21 µs 7.07 µs

6-0 68.6268 ms 48.56 µs 6.83 µs

7-0 46.6316 ms 92.39 µs 6.28 µs

8-0 216.6070 ms 105.74 µs 5.99 µs

9-0 198.6059 ms 93.27 µs 6.07 µs

10-0 216.6551 ms 113.17 µs 6.79 µs

11-0 322.6260 ms 79.42 µs 6.16 µs

12-0 104.6260 ms 84.30 µs 6.43 µs

13-0 68.6531 ms 87.40 µs 6.29 µs

Total − 92.59 µs 6.40 µs

Table 7.8: Streams latency statistics during the second write/wait API experiment.

Plots in Fig. 7.54 to Fig. 7.74 show, for each node from 1 to 13, the latency of every

packet received by the master during the plateau, with a zoomed plot around the re-

scheduling moment for the a�ected nodes. The little stairs that can be seen in the plots

trend (easily noticeable in Fig. 7.59) are due to the fact that the master outputs to the log

an increasing amount of bytes, mainly cause of the increasing timestamps values, through

a thread whose priority is not the highest. Nevertheless, these stairs amount to around

5 µs and would be eliminated in a non-debugging setting, in which the latency results

would be even better.

Figure 7.54: Latency for stream 1→ 0. Figure 7.55: Latency for stream 2→ 0.

7| Experiments 123

Figure 7.56: Latency for stream 3→ 0. Figure 7.57: Latency for stream 4→ 0.

Figure 7.58: Latency for stream 5→ 0. Figure 7.59: Latency for stream 6→ 0.

Figure 7.60: Latency for stream 7→ 0. Figure 7.61: Latency for stream 8→ 0.

124 7| Experiments

Figure 7.62: Latency for stream 9→ 0. Figure 7.63: Latency for stream 10→ 0.

Figure 7.64: Latency for stream 11→ 0. Figure 7.65: Latency for stream 12→ 0.

Figure 7.66: Latency for stream 13→ 0.

7| Experiments 125

Figure 7.67: Latency for stream 1 → 0

around re-scheduling.

Figure 7.68: Latency for stream 3 → 0

around re-scheduling.

Figure 7.69: Latency for stream 4 → 0

around re-scheduling.

Figure 7.70: Latency for stream 7 → 0

around re-scheduling.

Figure 7.71: Latency for stream 8 → 0

around re-scheduling.

Figure 7.72: Latency for stream 11 → 0

around re-scheduling.

126 7| Experiments

Figure 7.73: Latency for stream 12 → 0

around re-scheduling.

Figure 7.74: Latency for stream 13 → 0

around re-scheduling.

7.4. Distributed Control Loop

An experiment in a real-world control loop scenario was also conducted. It aims at

proving that a feedback control loop can be achieved through a wireless network, by using

TDMH. The goal of this experiment is to control the temperature of a tube furnace for

semiconductors synthesis.

7.4.1. Setup

Nodes and Network Setup The network setup consists of a feedback controller run-

ning on the master node. The controller receives temperature measures from a node con-

nected to the output serial port of the furnace electronics, on which temperature values

(process variable) are written. The actuator is instead another dynamic node, connected

to the furnace input serial port: after receiving the control variable from the controller

it writes the value to the serial port. The control action is represented by the power

percentage to be fed to the furnace heating element (i.e. it corresponds to the duty cycle

of the pulse-width modulation (PWM) signal fed to the heating element).

Other nodes are connected to the network in order to have multiple hops between these

three main nodes. All these other devices do not open any stream but participate in the

network topology.

Streams period is set to 10 tiles and each tile lasts 100 ms, which means that nodes send

7| Experiments 127

a data packet over their streams every second. Streams are also opened requiring triple

spatial redundancy.

Moreover, the sensor node uses the write/wait API with a wake-up advance equal to

Tadvance = 2 · Tslot = 12 ms, while the other two nodes always send data as a reaction

to a received packet. For example, the controller only sends data to the actuator after a

temperature sample is received (and after computing the new control action).

In order to log all the data, the actuator also measures the latency from the sensor to

itself and sends back the measure to the master node. This is possible because the sensor

also forwards samples timestamps, together with the measured temperature value.

Since the temperature sampling period and the control period are set to 1 s and between

sensor and actuator two steps elapse, the actuator forces a sleep of 2 s with respect to

the received sensor sample timestamp before actuating, minus a slack time needed for the

actuation itself. The combination of the usage of the write/wait API on the sensor node

and the two seconds sleep in the actuator guarantees to have a constant control period.

Fig. 7.75 shows the interactions between the three main network nodes, the sensor, the

controller and the actuator.

Sensor

Controller

Actuator

Furnace

PV

CV

T, PV

T, CV LS-A

Figure 7.75: Interactions among sensor, controller and actuator nodes. Solid line arrows

represent streams, through which the sampling timestamp (T), process variable (PV) and

the control variable (CV) are exchanged. The actuator also transmits the sensor-actuator

latency (LS−A), back to the master. Interactions with the furnace are also shown: dashed

arrows represent serial port communication.

128 7| Experiments

Controller Design The furnace process is modeled as:

P (s) =
µ

1 + τs

where µ = 1250 and τ = 200.

Through the implicit Euler formula, substituting s = z−1
zTs

in the expression of P (s), the

process model in discrete time can be found:

P (z) =
µTz

(Ts + τ)z − τ

Ts represents the control period and is set to 1 s. This is also the network nodes streams

period.

Knowing that P (z) = y(k)
u(k)

, the expression of the process variable y(k) can be derived:

y(k) =
τ

τ + Ts
y(k − 1) + µ

Ts
τ + Ts

u(k)

where u(k) is the control variable.

The error e(k) is expressed as the di�erent between the required set point value ȳ and the

measured process variable:

e(k) = ȳ − y(k)

The controller was designed through the direct synthesis for set point tracking method,

in which the controller design is based on the process model and the desired closed-loop

transfer function.

The desired transfer function in this case is:

F (z) =
1− α
z(z − α)

where α is a design parameter and is equal to α = 0.9985. It was selected in order to

force the controller to reach the desired setpoint in around one hour.

The controller R(z) is found knowing that:

F (z) =
R(z)P (z)

1 +R(z)P (z)

7| Experiments 129

The resulting controller expression is:

R(z) =
(1− α)(Ts + τ)z−2 − τ(1− α)z−3

µTs − αµTsz−1 − µTs(1− α)z−2

Finally, knowing that R(z) = u(k)
e(k)

, the expression for the control variable u(k) can be

derived:

u(k) = αu(k − 1) + (1− α)u(k − 2) + (1− α)
Ts + τ

µTs
e(k − 2)− (1− α)

τ

µTs
e(k − 3)

As required, the found expression of u(k) depends on the two previous steps.

R(z) P(z)
uy y

-

e
+

Figure 7.76: Feedback control loop representation, showing the set point ȳ, the error e,

the control variable u and the process variable y.

Handling Packets Misses Particular attention is needed to the fact that in a dis-

tributed wireless setting data packets can be lost. The actuator may not receive the next

control action, but this is not a big concern since it would maintain the previous one.

When instead sensor samples are missed, some strategy on the controller logic is needed.

The implemented logic does not compute a new control action when a packet is missed,

since no new sensor sample exists. When �nally a new packet is received, the controller

is re-initialized, based on the last available control action and error. This avoids bumps

on computed the control action, while instead, it continues following a smooth trend.

7.4.2. Results

Simulation The designed controller was �rst of all simulated, together with the process

model, using Scilab. Then, the furnace microcontroller was used in a hardware-in-the-loop

fashion, simulating the process behavior through the expression of y(k), without actually

feeding power to the nor sampling the temperature sensor. This was useful to test both

the network and the serial communication. The real setup was used only when everything

130 7| Experiments

was tested out and correctly working.

Real Experiment The real experiment was deployed on the �rst �oor of Building 21 at

Politecnico di Milano and a total of 13 WandStem nodes were used. Unfortunately, node

11 experienced some power supply issue that made it di�cult to form strong links with

other nodes (too low RSSI), leading it to continuously lose packets and de-synchronize

from the network. For this reason, it was not deployed, since it was not strictly necessary

for the correct experiment outcome.

Nodes 12 and 9 respectively represent the sensor and the actuator nodes and were con-

nected via serial communication to the furnace electronics, while node 0 is the master

node and executes the designed feedback controller.

For this experiment, the desired temperature set point is 1000 ◦C.

The resulting network setup is shown in Fig. 7.77. It can be seen how packets need to

traverse multiple hops on the path that connects the controller to the sensor and actuator

nodes. A minimum of 3 hops are traversed between controller and actuator, while 4 are

needed to reach the sensor node. Indeed, the controller-actuator stream was scheduled

to use the path 0→ 5→ 1→ 9, while the stream sensor-controller used instead the two

redundant paths 12→ 9→ 1→ 5→ 0 and 12→ 9→ 1→ 4→ 5→ 0.

7| Experiments 131

Figure 7.77: Control loop experiment network setup. The controller (0), sensor (12) and

actuator (9) nodes are underlined in orange. The furnace (F) is identi�ed by the yellow

circle. Strong wireless links are represented by dark blue lines, while light blue lines

indicate the weak ones.

Figure 7.78: Experiment setup showing the furnace electronics and the sensor and actuator

nodes, during the temperature ascent. Current temperature is shown on the 7-segment

display.

132 7| Experiments

Figure 7.79: Experiment setup showing the furnace electronics and the sensor and actu-

ator nodes, when stability was reached. Current temperature is shown on the 7-segment

display.

Fig. 7.80 shows the complete temperature curve and the relative control action.

As it can be seen, the temperature setpoint of 1000 ◦C was slightly overshot, with an error

of 3.8% with respect to the set point. Indeed, the maximum reached temperature was

1038 ◦C. Overall, the controller reached the steady-state and the setpoint temperature

in around 4 hours.

The overshoot is due to an underestimation of the process gain. The real gain is higher

than the identi�ed one and, so, during the real experiment a lower power (i.e. lower

control action) is needed to reach the desired temperature, with respect to the one needed

during simulations. Nevertheless, the controller was able to reach the setpoint without

further oscillations and was tolerant to packets that were missed due to the distributed

wireless setting.

7| Experiments 133

Figure 7.80: Temperature (top) and control action (bottom) plots during the distributed

control loop experiment.

In terms of reliability, Tab. 7.9 shows the results. Due to the partial network observability,

only the information that can be retrieved from the master node log is shown, so only

information that is relative to the master node incoming streams.

The shown results are not the best possible reliability ones if compared to previously

reported validation experiments, but they show that the control scheme is robust even if

packet misses occur.

Stream Sent

packets

Reliability

Single

Reliability

Double

Reliability

Triple

S-C 14786 94.72% 99.46% 99.73%

A-C 14704 94.65% 99.20% 99.48%

Table 7.9: Reliability of sensor-controller (S-C) and actuator-controller (A-C) streams

during the control loop experiment.

Since the actuator replies to the controller (master) only after receiving a packet, if a

packet on the stream controller-actuator is missed, the following packet on the stream

actuator-controller is missed too. A packet sent by the actuator itself can be independently

134 7| Experiments

lost too. This means that RC−A ≥ RA−C , where RC−A and RA−C represent the reliability

on the controller-actuator and actuator-controller streams.

Finally, the end-to-end latency between sensor and actuator proved to achieve very good

results. The achieved latency standard deviation is as low as 0.74 µs, while the measured

jitter is 3.34 µs, representing the maximum latency deviation from the latency mean value.

The complete measured latency is reported in Fig. 7.81. It may seem really noisy, but

actually the maximum measured peak-to-peak di�erence is 4.62 µs over a set of almost

15 thousand packets. This is a better result than the ones presented in the validation

experiments, in which all the nodes open a stream to the master node.

Average Latency Maximum Jitter Standard Deviation

1997.7783 ms 3.34 µs 0.74 µs

Table 7.10: Sensor to actuator latency statistics measured during the control loop exper-

iment.

Figure 7.81: Measured latency from sensor to actuator during the distributed control loop

experiment.

135

8| Conclusions and Future

Developments

This thesis presented two APIs for interfacing the application with the session layer of

TDMH, a low-power wireless network stack designed for real-time applications. The two

implementations o�er the user di�erent methods for synchronizing the application code

with the underlying network stack according to the application needs, enforcing guaran-

tees on the end-to-end latency bounds for every packet that �ows through the network,

not only at the physical layer but also up to the application one.

The design of the new APIs was driven by the problem of having, not only bounded, but

also predictable latencies, which is a key aspect for real-time applications. The presented

approach proved to be able to provide the required guarantees also having the applica-

tion and the TDMH network stack executed on the same low-power device, without the

need of higher-end hardware. The latency bounds provided by TDMH, thanks to the new

implementation, do not depend on the streams period, but only on the current streams

schedule and their di�erence is always constant. This makes the latency always deter-

ministic and predictable.

Experiments were conducted using the existing WandStem nodes, which are equipped

with a single-core microcontroller, and show that, in the worst-case scenario, a latency

jitter in the order of one hundred microseconds is achieved, with a very low standard devi-

ation and without any drawback on the network reliability provided by TDMH. Moreover,

the highest jitter is experienced for very few packets, as the low standard deviation under-

lines. The distributed temperature control experiment that was presented also con�rms

that the provided latency guarantees and the high level of network reliability make TDMH

suitable for real-time applications, such as industrial control, over a wireless network.

136 8| Conclusions and Future Developments

8.1. Future Developments

Imagining the usage of TDMH in a real industrial control setup, some other features may

be needed. First of all the possibility of specifying a hierarchy among the network nodes,

which has to be considered during the computation of the streams schedule. For example,

assuming to have three nodes, a sensor, a controller and an actuator node, it may be

necessary to enforce a chain among the streams that have the sensor as a source and the

controller as a destination and the ones that go from the controller to the actuator. Then,

it should be possible to indirectly specify the task assigned to each node (e.g. sampling a

sensor) in the form of a hierarchy among existing streams and this knowledge can be

used by the scheduler to �ne-tune the schedules themselves.

Moreover, the current session layer implementation does not allow to have bidirectional

streams. When opening a new stream, the application has to specify the required direc-

tion, which indicates whether data packets �ow from the client to the server or vice-versa.

Instead of using two distinct streams, bidirectional streams would simplify the communi-

cation setup among nodes in a more complex scenario in which network devices not only

transmit or receive data but need to perform both tasks.

137

Bibliography

[1] IEEE Standard for Local and metropolitan area networks�Part 15.4: Low-Rate Wire-

less Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer. IEEE Std

802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011), pages 1�225, 2012. doi:

10.1109/IEEESTD.2012.6185525.

[2] IEEE Standard for Information Technology�Telecommunications and Information

Exchange between Systems - Local and Metropolitan Area Networks�Speci�c Re-

quirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Speci�cations. IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-

2016), pages 1�4379, 2021. doi: 10.1109/IEEESTD.2021.9363693.

[3] D. Beiho�er, J. Hendry, A. Nijenhuis, and S. Wagon. Faster algorithms for frobenius

numbers. The Electronic Journal of Combinatorics, 12(1), June 2005. URL https:

//doi.org/10.37236/1924.

[4] Bluetooth Special Interest Group. URL https://www.bluetooth.com. (Visited

2022-03-26).

[5] Connectivity Standards Alliance. URL https://csa-iot.org/all-solutions/

zigbee/. (Visited 2022-03-26).

[6] D. De Guglielmo, S. Brienza, and G. Anastasi. IEEE 802.15.4e: A survey. Computer

Communications, 88:1�24, 2016. ISSN 0140-3664. doi: https://doi.org/10.1016/j.

comcom.2016.05.004. URL https://www.sciencedirect.com/science/article/

pii/S0140366416301980.

[7] ESI Group. URL https://www.scilab.org. (Visited 2022-03-26).

[8] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. E�cient network �ooding and

time synchronization with Glossy. In Proceedings of the 10th ACM/IEEE Interna-

tional Conference on Information Processing in Sensor Networks, pages 73�84, 2011.

[9] R. D. Gomes, C. Benavente-Peces, I. E. Fonseca, and M. S. Alencar. Adap-

tive and Beacon-based multi-channel protocol for Industrial Wireless Sensor Net-

https://doi.org/10.37236/1924
https://doi.org/10.37236/1924
https://www.bluetooth.com
https://csa-iot.org/all-solutions/zigbee/
https://csa-iot.org/all-solutions/zigbee/
https://www.sciencedirect.com/science/article/pii/S0140366416301980
https://www.sciencedirect.com/science/article/pii/S0140366416301980
https://www.scilab.org

138 | Bibliography

works. Journal of Network and Computer Applications, 132:22�39, 2019. ISSN

1084-8045. doi: https://doi.org/10.1016/j.jnca.2019.01.025. URL https://www.

sciencedirect.com/science/article/pii/S1084804519300396.

[10] IEEE Technical Committee on Real-Time Systems. Terminology and Notation. URL

https://cmte.ieee.org/tcrts/education/terminology-and-notation. (Visited

2022-03-26).

[11] F. A. Izzo. A time deterministic communication stack for mesh networks, 2019. URL

http://hdl.handle.net/10589/149392.

[12] R. Jacob, M. Zimmerling, P. Huang, J. Beutel, and L. Thiele. End-to-End Real-Time

Guarantees in Wireless Cyber-Physical Systems. In 2016 IEEE Real-Time Systems

Symposium (RTSS), pages 167�178, 2016. doi: 10.1109/RTSS.2016.025.

[13] W.-C. Jeong and J. Lee. Performance evaluation of IEEE 802.15.4e DSME MAC

protocol for wireless sensor networks. In 2012 The First IEEE Workshop on En-

abling Technologies for Smartphone and Internet of Things (ETSIoT), pages 7�

12, 2012. doi: 10.1109/ETSIoT.2012.6311258. URL https://doi.org/10.1109/

etsiot.2012.6311258.

[14] S.-S. Joo, B.-S. Kim, J.-A. Jun, and C.-S. Pyo. Enhanced MAC for the bounded

access delay. In 2010 International Conference on Information and Communication

Technology Convergence (ICTC), pages 423�424, 2010. doi: 10.1109/ICTC.2010.

5674810.

[15] V. Mazzola. A secure transport layer for the TDMH network stack with key man-

agement, authentication, and encryption services, 2020. URL http://hdl.handle.

net/10589/166303.

[16] OpenSim Ltd. OMNeT++. URL https://www.omnetpp.org. (Visited 2022-03-26).

[17] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media Access for Wireless

Sensor Networks. In Proceedings of the 2nd International Conference on Embedded

Networked Sensor Systems, SenSys '04, page 95�107, New York, NY, USA, 2004.

Association for Computing Machinery. ISBN 1581138792. doi: 10.1145/1031495.

1031508. URL https://doi.org/10.1145/1031495.1031508.

[18] P. Polidori. A time deterministic MAC protocol for low latency multi-hop wireless

networks, 2017. URL http://hdl.handle.net/10589/140120.

[19] F. Sutton, M. Zimmerling, R. Da Forno, R. Lim, T. Gsell, G. Giannopoulou,

F. Ferrari, J. Beutel, and L. Thiele. Bolt: A stateful processor interconnect.

https://www.sciencedirect.com/science/article/pii/S1084804519300396
https://www.sciencedirect.com/science/article/pii/S1084804519300396
https://cmte.ieee.org/tcrts/education/terminology-and-notation
http://hdl.handle.net/10589/149392
https://doi.org/10.1109/etsiot.2012.6311258
https://doi.org/10.1109/etsiot.2012.6311258
http://hdl.handle.net/10589/166303
http://hdl.handle.net/10589/166303
https://www.omnetpp.org
https://doi.org/10.1145/1031495.1031508
http://hdl.handle.net/10589/140120

| Bibliography 139

In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Sys-

tems, SenSys '15, page 267�280, New York, NY, USA, 2015. Association for Com-

puting Machinery. ISBN 9781450336314. doi: 10.1145/2809695.2809706. URL

https://doi.org/10.1145/2809695.2809706.

[20] F. Terraneo. WandStem: The next generation low-power sensor node. URL https:

//miosix.org/wandstem.html. (Visited 2022-03-26).

[21] F. Terraneo. Miosix kernel, 2008. URL https://miosix.org. (Visited 2022-03-26).

[22] F. Terraneo. TDMH: A time deterministic wireless network stack, 2020. URL https:

//github.com/fedetft/tdmh. (Visited 2022-03-26).

[23] F. Terraneo, L. Rinaldi, M. Maggio, A. V. Papadopoulos, and A. Leva. FLOPSYNC-

2: E�cient Monotonic Clock Synchronisation. In 2014 IEEE Real-Time Systems

Symposium, pages 11�20, 2014. doi: 10.1109/RTSS.2014.14.

[24] F. Terraneo, P. Polidori, A. Leva, and W. Fornaciari. TDMH-MAC: Real-Time and

Multi-hop in the Same Wireless MAC. In 2018 IEEE Real-Time Systems Symposium

(RTSS), pages 277�287, 2018. doi: 10.1109/RTSS.2018.00044.

[25] F. Terraneo, F. A. Izzo, A. Leva, and W. Fornaciari. TDMH: a communication stack

for real-time wireless mesh networks, 2020. URL https://arxiv.org/abs/2006.

03554.

[26] Q. Wang, K. Ja�rès-Runser, Y. Xu, J.-L. Scharbarg, Z. An, and C. Fraboul. TDMA

versus CSMA/CA for wireless multi-hop communications: A comparison for soft

real-time networking. In 2016 IEEE World Conference on Factory Communication

Systems (WFCS), pages 1�4, 2016. doi: 10.1109/WFCS.2016.7496512.

https://doi.org/10.1145/2809695.2809706
https://miosix.org/wandstem.html
https://miosix.org/wandstem.html
https://miosix.org
https://github.com/fedetft/tdmh
https://github.com/fedetft/tdmh
https://arxiv.org/abs/2006.03554
https://arxiv.org/abs/2006.03554

141

List of Figures

3.1 TDMH temporal organization. Transmission is divided into tiles. Tiles

initial slots are occupied by control slots, either downlink (D) or uplink (U). 12

3.2 TDMH network stack overview. 16

3.3 Example of network topology with four nodes. The master is node 0. . . . 17

3.4 Multiple streams periods example. Stream S1 has period 1 tile and S2

period 2 tiles. 20

3.5 Di�erent streams redundancy levels example. It shows both a scenario in

which the redundant transmissions are consecutively scheduled and one in

which they are not, for stream S1. 22

4.1 Undesired behavior in which write operations wi are delayed by two periods.

pi represent ready for transmission packets, hold by the session layer bu�er,

and ti the transmission slots, with period P 31

4.2 Measured latency of packets sent over stream 1→ 0. 32

4.3 Detail of the measured latency of the �rst 110 packets sent over stream

1→ 0. 33

4.4 Desired application and session layer behavior. 34

5.1 Sequence diagram showing the send callback mechanism. 38

5.2 Sequence diagram showing the receive callback mechanism. 39

5.3 Undesired send callback execution behavior, which would delay the packet

transmission. 40

5.4 Desired and implemented send callback behavior (transmission side). . . . 41

5.5 Desired and implemented receive callback behavior (reception side). 41

5.6 Desired behavior for stream transmission using the write/wait API. 42

5.7 Example of schedule containing streams with di�erent periods and their

relative advance. Required wake-up time instants are represented by an

upwards blue arrow for stream S1 and a red one for stream S2. Schedule

length is two tiles. 46

142 | List of Figures

5.8 Sequence diagram showing the interaction between application, session

layer and dataphase when using the write/wait API. 47

5.9 Flow diagram showing the basic mechanism of the StreamWakeupScheduler. 49

5.10 StreamWakeupScheduler �nite state machine. 50

5.11 Example of schedule in which the stream S1 has to be woken up during

the previous tile w.r.t. the transmission slot tile. 53

5.12 StreamWakeupScheduler IDLE state. 55

5.13 StreamWakeupScheduler ACTIVE state. 56

5.14 StreamWakeupScheduler AWAITING ACTIVATION state. 57

5.15 compareQueues() function used to get a reference to the queue from which

the next element has to be taken, according to the current FSM state. . . . 58

5.16 Example in which nextQueueK and nextQueueK+1 are empty. Upward

blue and red arrows indicate wake-up actions that take place, respectively

from streams S1 and S2 . 59

5.17 Example in which a stream that appears also in the nextQueueK is removed

from the schedule and a new one is added. Upward blue and red arrows

indicate wakeup actions that take place, respectively from streams S1 and

S2. 59

5.18 Example in which a schedule is received after its own activation tile has

already passed. 61

5.19 Undesired situation in which the data phase execution is anticipated before

the write primitive. 65

5.20 Example in which the last redundant packet is received by the destination

node. 66

5.21 Example in which the last redundant packet is missed by the destination

node. 66

5.22 Dataphase correct behavior on the receiving side, including the Ttx,max time

slack. 68

5.23 Example that includes radio startup and crypto timings. Stream S1 uses

the write/wait API while stream S2 uses the callbacks one. 69

5.24 Example in which the schedule expansion is executed across two downlink

slots. 70

5.25 Sequence diagram showing the schedule expansion mechanism on the mas-

ter node, after the rekeying already took place (#rekeyingSlots already

elapsed). 73

5.26 Master schedule distribution �nite state machine. 74

| List of Figures 143

5.27 Sequence diagram showing the schedule expansion mechanism on the dy-

namic nodes, after the rekeying already took place (#rekeyingSlots al-

ready elapsed). 75

5.28 Dynamic schedule distribution �nite state machine. 75

6.1 End-to-end latency lower bound example. 80

6.2 End-to-end latency lower bound example, in which stream S1 transmission

slots are not consecutive in the schedule. 81

6.3 End-to-end latency upper bound example when using the callbacks API. . 83

6.4 End-to-end latency upper bound example when using the callbacks API,

in which stream S1 transmission slots are not consecutive in the schedule. 83

6.5 End-to-end latency upper bound example when using the write/wait API. 85

6.6 End-to-end latency upper bound example when using the write/wait API,

in which stream S1 transmission slots are not consecutive in the schedule. 86

6.7 End-to-end latency upper bound example when using heterogeneous APIs

(write/wait for transmission and callback for reception). 88

6.8 End-to-end latency upper bound example when using heterogeneous APIs

(callback for transmission and read for reception). 89

6.9 Single hop packets measured latency using the callbacks API. 90

6.10 Single hop packets latency distribution using the callbacks API. 91

6.11 Single hop packets measured latency using the write/wait API. 92

6.12 Single hop packets latency distribution using the write/wait API. 92

6.13 Single hop packets measured latency using heterogeneous APIs. 93

6.14 Single hop packets latency distribution using heterogeneous APIs. 94

6.15 Single hop packets latency for stream S when re-schedulings take place. . . 95

7.1 Line4 network topology. 101

7.2 Star4 network topology. 101

7.3 Kite network topology. 101

7.4 PartialMesh network topology. 101

7.5 WandStem nodes placement at Building 21 of Politecnico di Milano. The

master node is highlighted by an orange circle. 103

7.6 First callbacks API experiment network topology. The master node is

highlighted by an orange circle. Dark blue indicate strong links, light blue

represent weak ones. 104

7.7 Latency for stream 1→ 0. 106

7.8 Latency for stream 2→ 0. 106

7.9 Latency for stream 3→ 0. 107

144 | List of Figures

7.10 Latency for stream 4→ 0. 107

7.11 Latency for stream 5→ 0. 107

7.12 Latency for stream 6→ 0. 107

7.13 Latency for stream 7→ 0. 107

7.14 Latency for stream 8→ 0. 107

7.15 Latency for stream 9→ 0. 108

7.16 Latency for stream 10→ 0. 108

7.17 Latency for stream 11→ 0. 108

7.18 Latency for stream 12→ 0. 108

7.19 Latency for stream 13→ 0. 108

7.20 Second callbacks API experiment network topology. The master node is

highlighted by an orange circle. Dark blue indicate strong links, light blue

represent weak ones. 109

7.21 Latency for stream 1→ 0. 111

7.22 Latency for stream 2→ 0. 111

7.23 Latency for stream 3→ 0. 112

7.24 Latency for stream 4→ 0. 112

7.25 Latency for stream 5→ 0. 112

7.26 Latency for stream 6→ 0. 112

7.27 Latency for stream 7→ 0. 112

7.28 Latency for stream 8→ 0. 112

7.29 Latency for stream 9→ 0. 113

7.30 Latency for stream 10→ 0. 113

7.31 Latency for stream 11→ 0. 113

7.32 Latency for stream 12→ 0. 113

7.33 Latency for stream 13→ 0. 113

7.34 First write/wait API experiment network topology. The master node is

highlighted by an orange circle. Dark blue indicate strong links, light blue

represent weak ones. 114

7.35 Latency for stream 1→ 0. 116

7.36 Latency for stream 2→ 0. 116

7.37 Latency for stream 3→ 0. 117

7.38 Latency for stream 4→ 0. 117

7.39 Latency for stream 5→ 0. 117

7.40 Latency for stream 6→ 0. 117

7.41 Latency for stream 7→ 0. 117

7.42 Latency for stream 8→ 0. 117

| List of Figures 145

7.43 Latency for stream 9→ 0. 118

7.44 Latency for stream 10→ 0. 118

7.45 Latency for stream 11→ 0. 118

7.46 Latency for stream 12→ 0. 118

7.47 Latency for stream 13→ 0. 118

7.48 Latency for stream 4→ 0 around re-scheduling. 119

7.49 Latency for stream 5→ 0 around re-scheduling. 119

7.50 Latency for stream 6→ 0 around re-scheduling. 119

7.51 Latency for stream 8→ 0 around re-scheduling. 119

7.52 Latency for stream 13→ 0 around re-scheduling. 119

7.53 Second write/wait API experiment network topology. The master node is

highlighted by an orange circle. Dark blue indicate strong links, light blue

represent weak ones. 120

7.54 Latency for stream 1→ 0. 122

7.55 Latency for stream 2→ 0. 122

7.56 Latency for stream 3→ 0. 123

7.57 Latency for stream 4→ 0. 123

7.58 Latency for stream 5→ 0. 123

7.59 Latency for stream 6→ 0. 123

7.60 Latency for stream 7→ 0. 123

7.61 Latency for stream 8→ 0. 123

7.62 Latency for stream 9→ 0. 124

7.63 Latency for stream 10→ 0. 124

7.64 Latency for stream 11→ 0. 124

7.65 Latency for stream 12→ 0. 124

7.66 Latency for stream 13→ 0. 124

7.67 Latency for stream 1→ 0 around re-scheduling. 125

7.68 Latency for stream 3→ 0 around re-scheduling. 125

7.69 Latency for stream 4→ 0 around re-scheduling. 125

7.70 Latency for stream 7→ 0 around re-scheduling. 125

7.71 Latency for stream 8→ 0 around re-scheduling. 125

7.72 Latency for stream 11→ 0 around re-scheduling. 125

7.73 Latency for stream 12→ 0 around re-scheduling. 126

7.74 Latency for stream 13→ 0 around re-scheduling. 126

146 | List of Figures

7.75 Interactions among sensor, controller and actuator nodes. Solid line arrows

represent streams, through which the sampling timestamp (T), process

variable (PV) and the control variable (CV) are exchanged. The actuator

also transmits the sensor-actuator latency (LS−A), back to the master.

Interactions with the furnace are also shown: dashed arrows represent serial

port communication. 127

7.76 Feedback control loop representation, showing the set point ȳ, the error e,

the control variable u and the process variable y. 129

7.77 Control loop experiment network setup. The controller (0), sensor (12) and

actuator (9) nodes are underlined in orange. The furnace (F) is identi�ed

by the yellow circle. Strong wireless links are represented by dark blue

lines, while light blue lines indicate the weak ones. 131

7.78 Experiment setup showing the furnace electronics and the sensor and actu-

ator nodes, during the temperature ascent. Current temperature is shown

on the 7-segment display. 131

7.79 Experiment setup showing the furnace electronics and the sensor and ac-

tuator nodes, when stability was reached. Current temperature is shown

on the 7-segment display. 132

7.80 Temperature (top) and control action (bottom) plots during the distributed

control loop experiment. 133

7.81 Measured latency from sensor to actuator during the distributed control

loop experiment. 134

147

List of Tables

2.1 TDMH features compared to other IEEE 802.15.4 protocols. 7

3.1 Example of scheduling for stream 3→ 0. 17

4.1 Latency statistics for stream 1 → 0 when using the current session layer

implementation. 33

5.1 Resulting streams wake-up list from the �nal implementation. It contains

the wake-up times of all the streams occurrences in the schedule, excluding

redundant slots. 46

5.2 Resulting streams wake-up list from the �rst implementation. It contains

only the wake-up time of �rst streams appearance in the schedule, excluding

redundant slots. 46

5.3 Streams wake-up list containing also the downlink slots end time, referred

to example in Fig. 5.7. 51

6.1 Single hop packets measured latency statistics using the callbacks API. . . 91

6.2 Single hop packets latency bounds using the callbacks API. 91

6.3 Single hop packets measured latency statistics using the write/wait API. . 93

6.4 Single hop packets latency bounds using the write/wait API. 93

6.5 Single hop packets measured latency statistics using heterogeneous APIs. . 94

6.6 Single hop packets latency bounds using heterogeneous APIs. 94

6.7 Example of schedule in which stream S transmits during three consecutive

slots. 96

6.8 Example of schedule in which stream S transmissions are interleaved by

the uplink phase slots. 96

6.9 Example of schedule in which stream 1 → 0 transmissions path to the

receiver node is two-hops long and passes through node 2. 97

7.1 Stream seliability during the �rst callbacks API experiment. 105

7.2 Streams latency statistics during the �rst callbacks API experiment. 106

148 | List of Tables

7.3 Streams reliability during the second callbacks API experiment. 110

7.4 Streams latency statistics during the �rst callbacks API experiment. 111

7.5 Streams reliability during the �rst write/wait API experiment. 115

7.6 Streams latency statistics during the �rst write/wait API experiment. . . . 116

7.7 Streams reliability during the second write/wait API experiment. 121

7.8 Streams latency statistics during the second write/wait API experiment. . 122

7.9 Reliability of sensor-controller (S-C) and actuator-controller (A-C) streams

during the control loop experiment. 133

7.10 Sensor to actuator latency statistics measured during the control loop ex-

periment. 134

149

Acknowledgements

I'd like to thank both my advisor and co-advisor, Federico Terraneo and professor William

Fornaciari, for allowing me to work on this great project. I'm especially grateful to

Federico Terraneo for assisting me during the entire thesis process, teaching me countless

things, a great part of which are not even related to the thesis itself. A di�erent type

of gratitude goes to my family, my friends and my girlfriend Patricia, who indirectly

shared with me the journey at Politecnico di Milano, without ever ceasing to support

me and contributing to alleviate the encountered di�culties. I wish to thank also all my

classmates with whom I spent most of the time throughout these long years, during lessons,

projects and challenges, and especially Davide and Nicolò for pushing me to always do

better. Finally, a special thanks goes to all the members of the Skyward Experimental

Rocketry students association, who shared with me frustrations and satisfactions, and

without whom the university experience would not have been the same.

	Abstract
	Abstract in Lingua Italiana
	Contents
	Introduction
	Goal of This Work
	Author's Contribution

	Literature Review
	Low Power Wireless Networks
	Low Power Listening
	Channel Access Methods

	Low Power Protocols
	TSCH
	DSME
	LLDN
	ABMP
	TDMH Comparison

	TDMH Overview
	Time Synchronization
	Network Nodes
	Master Node
	Dynamic Nodes

	Time Division
	Protocol Phases
	Downlink Phase
	Uplink Phase
	Data Phase

	TDMH Network Stack
	Network Layer
	Data Link Layer
	Session Layer
	Physical Layer

	Cryptography

	Problem Statement
	Real-Time Systems and Latency
	TDMH Streams API
	Weak Points
	Real Example
	Desired Behavior

	Proposed Solution
	Callbacks API
	Overview
	Implementation

	Write/Wait API
	Overview
	Implementation

	APIs Comparison
	Callbacks API
	Write/Wait API

	APIs Interoperability
	Data Phase
	"As Soon as Possible" Policy
	"As Late as Possible" Policy
	Radio Startup Time and Cryptography

	Schedule Expansion
	Schedule Expansion Module
	Schedule Distribution
	Re-Transmitted Schedules
	Streams Wake-Up Lists

	Latency Computation
	Minimum Theoretical Latency
	Radio Startup Time and Crypto

	Callbacks API Latency
	Write/Wait API Latency
	Heterogeneous APIs Latency
	Real Examples
	Callbacks API
	Write/Wait API
	Heterogeneous APIs

	Re-Scheduling Latency

	Experiments
	Experiments Setup
	WandStem Nodes
	Latency Profiling

	Simulations
	Wireless Validation Experiments
	Callbacks API
	Write/Wait API

	Distributed Control Loop
	Setup
	Results

	Conclusions and Future Developments
	Future Developments

	Bibliography
	List of Figures
	List of Tables
	Acknowledgements

