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Abstract

Close-proximity operations play a crucial role in new classes of missions, such as Ac-
tive Debris Removal. Approaching a non-cooperative target, the elevated risk of

collision and the scarce reliance on ground intervention dictate the need for autonomous
onboard pose (attitude and position) estimation for the chaser spacecraft. Monocular
cameras operating in the visible (VIS) spectrum have been widely investigated and in-
flight tested for navigation applications because of their adequate balance between the
quality of the provided data and the limited mass and power consumption. However, the
strong dependency of the results on the target’s illumination condition strongly reduces
this sensor’s application range. A frequently investigated solution to mitigate this prob-
lem is the implementation of a monocular thermal-infrared (TIR) camera concurrently
with the visible one. Thermal sensors provide lower-quality data than visible sensors but
they are less dependent on illumination conditions. This thesis proposes a novel visual
navigation pipeline to perform pose tracking with measurements obtained from a VIS and
a TIR monocular camera. The navigation algorithm exploits the point features extracted
from the images to perform model-based pose estimation with respect to a known target.
The point features detected in the multispectral images are fused with a tightly coupled
approach through an Extended Kalman Filter, whose output is the refined pose of the
chaser. Such innovative pipeline will be presented in detail in this thesis, along with tests
performed with synthetic images. The proposed navigation chain successfully performs
the pose estimation: results will be presented, assessing the contribution of combining a
TIR and a VIS monocular camera, studying the performance of the fused multispectral in-
formation and characterizing the performance of TIR-only navigation in low-illumination
conditions. This thesis is intended to contribute to the assessment of the performance
and robustness of multispectral visual navigation and developing pose estimation schemes
which operate in demanding environments like Active Debris Removal.

Keywords: Proximity operations, Visual-based relative navigation, Non-linear estima-
tion, Multispectral data fusion





Sommario in italiano

Le operazioni di prossimità ravvicinata ricoprono un ruolo cruciale nelle nuove classi
di missioni, come la Rimozione Attiva di Detriti (ADR). Avvicinandosi ad un target

non cooperativo, l’elevato rischio di collisione e la scarsa possibilità di affidarsi ad un
intervento da terra richiedono la stima autonoma della posa (assetto e posizione) dell’ in-
seguitore. Le fotocamere monoculari nello spettro visibile sono state ampiamente studiate
e testate per applicazioni di navigazione visto il loro bilanciato rapporto tra la qualità dei
dati che forniscono e le ridotte massa e potenza richieste. Tuttavia, la forte dipendenza
dei dati forniti dalla condizione di illuminazione del target riduce fortemente le possibilità
di applicazione del sensore. Una soluzione frequentemente proposta per mitigare questo
problema è l’implementazione di una fotocamera monoculare termica insieme a quella vis-
ibile. I sensori termici forniscono dati di minor qualità rispetto a quelli visibili, ma sono
meno dipendenti dalle condizioni di illuminazione. Questa tesi propone una catena di nav-
igazione innovativa per effettuare il rilevamento della posa tramite misurazioni ottenute
da una camera visibile e una termica. L’algoritmo di navigazione usa i punti d’interesse
estratti dalle immagini per effettuare la stima della posa con un approccio model-based
rispetto ad un obiettivo noto. I punti d’interesse identificati nelle immagini multispettrali
sono fusi con un approccio strettamente accoppiato attraverso un Filtro di Kalman Esteso
(EKF), il cui output è la posa corretta dell’ inseguitore. La tesi presenta il suddetto algo-
ritmo, che effettua con successo la stima della posa, insieme ai test effettuati su immagini
sintetiche. Si valuta il contributo della combinazione delle fotocamere visibili e termiche,
analizzando inoltre la possibile applicazione della navigazione solo termica in scarse con-
dizioni di illuminazione. La tesi vuole contribuire alla comprensione delle prestazioni e
della robustezza della navigazione ottica multispettrale e a sviluppare algoritmi per la
stima della posa che possano operare in ambienti difficili come quello della Rimozione
Attiva di Detriti.

Parole chiave: Operazioni di prossimità, Navigazione relativa ottica, Stima non lineare,
Fusione di dati multispettrali
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1

Introduction

Vision based relative navigation is becoming increasingly important to enable the
development of next-generation space missions, such as the exploration of natu-

ral celestial bodies, On Orbit Servicing (OOS), Formation Flying (FF) or Active Debris
Removal (ADR). In this context, the necessity of real-time guidance and decision mak-
ing in a dynamical environment makes onboard relative attitude and position estimation
paramount for the successful completion of the mission objectives.
Within the previously mentioned mission scenarios, ADR has recently gained significant
interest because of the growing concern about space situational awareness. Dealing with
inherently non-cooperative targets, ADR mission shall be equipped with vision-based
sensors able to provide a high-frequency relative pose estimation so to avoid undesired
collisions with the target.
In this context, monocular cameras in the visible spectrum present a very mass and
power-effective solution, although presenting important operational limitations. Their
strong dependency on the illumination conditions of the target limits their range of appli-
cations in case of low illumination conditions or eclipse. A promising solution to enhance
the reliability of monocular cameras is to use collaboratively two sensors working in the
visible and thermal spectrum. Thermal imaging sensors measure the thermal radiance
of the target, which is influenced by the illumination coming from the Sun, but it is not
subject to shadowing or reflections. However, the overall quality provided by thermal
imaging sensors is lower because the images produced are subject to a higher blur and a
lower resolution.
In this framework, the thesis proposes a novel navigation pipeline that exploits an Ex-
tended Kalman Filter to perform feature-level adaptive sensor fusion between the two
cameras. The stand-alone vision-based navigation chain is tested on synthetically gen-
erated images to assess its performances, evaluating as well the capability to perform
TIR-only navigation in low illumination conditions.
The present chapter further details the motivation for the thesis work and presents the
literature related to the investigated subject. Finally, the work’s intended contribution is
presented with a general overview and the thesis outline.
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Chapter 1. Introduction

1.1 Context & motivation

1.1.1 Active Debris Removal

Since the beginning of spaceflight, the amount of artificial objects in orbit has increased
steadily. In particular, non-cooperative objects, better known as space debris, threaten
satellites operating in certain orbital families such as Low Earth Orbits. Awareness of
this problem led to the publication in 2002 of the IADC Space Debris Mitigation Guide-
lines [61] by the InterAgency Debris Coordination Committee, superseded by the 2011
ISO standard 24113 [26] on debris mitigation requirements. These standards have been
adopted by the European Committee for Space Standardization (ECSS) and apply to all
projects developed by the European Space Agency (ESA).
However, the effect that such recommendations have had is limited. Firstly, entities oper-
ating space missions are not required to follow them, as they are not applicable regulations.
Furthermore, even if these were strictly followed, the environment is unstable [40], i.e.,
the number of debris will increase even if all space activities are interrupted because of
consecutive impacts of existing objects. An identified solution to limit the growth of the
number of space debris is to actively deorbit human-made objects with ADR missions.
According to [33], removing five Intact Derelict Objects (IDOs) per year would stabilize
the situation in LEO. IDOs comprises mainly inoperative satellites, such as the European
debris ENVISAT, launcher stages and payload adapters.
ADR missions aim at interacting with space objects to reduce their orbital lifetime. In
this context, the active spacecraft is referred to as chaser, while the spacecraft to be de-
commissioned is the target. The mission profile of an ADR mission can be subdivided into
different operational phases, presented in Figure 1.1. After being launched, the chaser
phases with the target orbit reaching an hold point, relying on absolute navigation. Sub-
sequently, during the inspection phase, the chaser collects information about the target
with onboard sensors to plan the subsequent phases. The duration of this phase and the
distance maintained from the target depends on the prior knowledge about the target,
and the characteristics of the sensors of the chaser. For the inspection, it is necessary to
rely also on relative navigation, as the shorter the chaser-target distance, the higher the
risk of collision. The information collected during the inspection phase is confirmed and
improved during the fly-around phase, further approaching the target. Once gathered the
required information the chaser performs the final approach and capture in order to cap-
ture the target. Finally, the target is safely disposed in the stabilization and de-orbiting
phase.
The first mission to perform this task will be the ClearSpace-1 mission in 2025 [8], commis-
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Chapter 1. Introduction

sioned by ESA. The mission aims to deorbit VEga Secondary Payload Adapter (VESPA).

Figure 1.1: Simplified schematic of the typical phases of an ADR mission

1.1.2 Autonomous visual navigation

For applications including Close-Proximity Operations (CPO) and Active Debris Removal,
it is paramount to have a high degree of onboard autonomy. To avoid the risk of an un-
desired contact with the target, the chaser shall be able to operate autonomously to be
robust against communication delays or unavailability. In this framework, the necessity
to have continuous relative position and attitude estimation with respect to the target is
evident.
Unlike Formation Flying or In-Orbit Assembly scenarios, in the case of navigation around
space debris, the target is always non-cooperative. Therefore, visual navigation must be
used to estimate the relative position and attitude, using optical sensors such as Light De-
tection and Ranging (LiDAR), stereo cameras, or monocular cameras. For the selection of
the navigation sensor, its precision and range of applicability are paramount. However, the
trade-off shall consider parameters like mass, power consumption, the processing power
required, and cost. Monocular cameras represent a more mass and power-effective so-
lution than LiDAR while granting a more comprehensive operational range than stereo
cameras [43, 45].
The Orbital Express carried out the first in flight-demonstration of autonomous docking to
a non-cooperative spacecraft in 2007 [47], commissioned by DARPA, using optical images
and a system of corner-cube reflectors. Additional flight heritage is given by the PRISMA
mission in 2010 [28], providing a more relevant example of the usage of monocular cam-
eras. The mission was composed of two spacecrafts: Mango and Tango. The Vision
Based Sensor mounted on Mango comprised two monocular cameras, one for far range

3



Chapter 1. Introduction

and one for close range operations, working in the visible spectrum. Within the multiple
mission objectives, Mango performed an autonomous vision-based rendezvous with Tango
acting like a non-cooperative target. Once this was completed, an additional experiment,
IRIDES, was added to test the visual navigation pipeline to rendezvous and inspect the
uncooperative Picard spacecraft. However, the rendezvous could not be tested because
of the delta-v depletion before the phasing with Picard [21]. Finally, to consolidate the
results of the PRISMA mission, the German Aerospace Center (DLR) launched the Au-
tonomous Vision Approach Navigation and Target Identification (AVANTI) experiment
onboard the BRIOS spacecraft [22], aimed at demonstrating autonomous rendezvous from
10 km to 1 km towards an uncooperative spacecraft making use of visual angles-only mea-
surements. To achieve this result, the same far-range navigation camera as PRISMA was
mounted on BRIOS.
Despite the significant progress made in the last decades and the flight heritage given
by past missions, navigation technologies for autonomous relative navigation about un-
cooperative targets still require further development to de-risk them and increase their
robustness. Moreover, the development of more reliable navigation solutions for the ADR
application would have a positive effect on other mission scenarios. The increased in-
terest in missions involving OOS and FF requires improving the current state of the art
of navigation technologies. A planned mission aimed at contributing to this aspect is
the ESA mission e.Inspector, which includes within its mission objectives to test optical
technologies for navigation about an uncooperative target. Within the proposed archi-
tecture to be mounted onboard e.Inspector, currently in phase B of its development, it is
proposed a combination of visible and thermal monocular cameras. The addition of the
thermal camera serves to increase the range of applications of the visible one to different
illumination conditions.

1.1.3 Thermal imaging

Because of their wide range of applications and long history of use, cameras working in
the visible spectrum (VIS) provide high-quality data with low power consumption. This
is not the case for thermal (TIR) cameras. TIR cameras based on cooled microbolome-
ters, working in the Mid-Wave (3 µm - 8 µm) to Long-Wave (8 µm - 15 µm) infrared, are
not suitable for space applications due to the power required and the complexity of the
cryogenic cooling of the bolometer. The state of the art for space scenarios consists of
uncooled sensors working only in the Long-Wave infrared, providing sufficient sensitivity
without the issues of cooling the sensor [10]. The flight heritage of this sensor is relatively
limited, as it was tested only on the LIRIS experiment onboard the ATV5 Mission [11]
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and later on the Raven ISS Hosted Payload [23].
Additional heritage is provided in the context of asteroid exploration. The Hayabusa 2
mission [41] acquired close range thermal images of the Ryugu asteroid in the Long Wave
InfraRed spectrum. The thermal imaging was not performed for the purpose of relative
navigation, although it was noted that in the thermal spectrum it was possible to clearly
identify visual markers placed on the surface as cold spots, highlighting the possibility
of multispectral navigation. This technology will be tested for asteroid navigation in the
ESA mission Hera [38], mounting the TIRI (Thermal InfraRed Imager) payload provided
by JAXA (Japan Aerospace Exploration Agency).
Compared to VIS cameras, TIR sensors are less sensitive to different illumination condi-
tions because they depend on the thermal profile of the target and its emitted radiation.
Thus, the thermal cameras could be employed also when the target is not illuminated if
its temperature is within the sensor’s sensibility ranges. However, the image resolution
is lower than VIS cameras, with a higher blur that reduces its performance for relative
navigation. Because of the limitations of both visible and thermal imaging sensors, com-
bining the two represents a promising solution for increasing the robustness of relative
optical navigation.

1.2 Literature review

This section presents the current state of the art in multispectral visual navigation. The
literature is reviewed with a top-down approach, beginning with an overview of monocular
pose estimation methods, followed by a discussion of common filtering approaches for
relative navigation, and concluding with an examination of the latest developments in
multispectral data fusion for navigation applications.

1.2.1 Monocular pose estimation

Monocular pose estimation is the process estimating a target spacecraft’s relative atti-
tude and position with respect to a chaser spacecraft, using the measurements output of
a single monocular camera or multiple cameras fused together.
The taxonomy of pose estimation methods divides them based on how the image informa-
tion is exploited. In appearance-based approaches, also known as direct methods, the raw
visual measurement in terms of pixels is used [39]. Algorithms such as the Active Appear-
ance Model (AAM) or the Principal Component Analysis (PCA) are used to match the
object detected in the image to a stored database of the target images. This approach,
although often implemented in robotics and surveillance applications, is less suitable for
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space applications because of its scarce robustness to noise in the images or elements in
the background, which are common elements of space imagery [10, 42].
More suitable approaches for space applications are the feature based-methods, which
exploit relevant features of the image, such as corners or edges, to reconstruct the target’s
pose. These methods apply to navigation about both known and unknown targets. If
the shape of the target is not known, a common solution is to reconstruct it with the
available measurements. This is commonly accomplished with Simultaneous Localization
and Mapping (SLAM) [19], a real-time process where the chaser computes at the same
time its location (Localization) and a map of the target (Mapping). As the navigation
about unknown objects is outside the thesis work, the reader is referred to [42] for a broad
overview of uncooperative pose determination about unknown targets.
In the case of navigation about a known target whose 3D model is available a priori, or if
the model has been reconstructed via SLAM, this information can be used to enhance the
pose estimation process. In Perspective-n-Point (PnP) solver approaches, the features ex-
tracted from the image are matched to the wire-frame model of the target to retrieve the
pose by solving the PnP problem. Because of the lack of fiducial markers on the target,
the matching problem can result challenging. If corners, also known as point features, are
extracted from the image, a solution is represented by the SoftPosit algorithm [17]. The
algorithm provides a joint solution to the two aspects using the soft-assign technique to
find correspondences and the POSIT (Pose from Orthography and Scaling with Iterations)
to compute the relative pose. This approach has been successfully tested for spacecraft
relative navigation in [55] and [54], although noticing a decrease in accuracy when given an
initial guess far from the solution. An alternative is to match with the RANdom SAmple
Consensus (RANSAC) algorithm [20] then use a Perspective-n-Point solver. A commonly
used algorithm to solve the PnP problem is the Efficient Perspective-n-Point (EPnP) [31],
as it offers a non-iterative solution. An example of this implementation can be found in
[48], successfully tested on synthetic images of the ENVISAT inoperative satellite. Alter-
natively, other elements can be identified as corner features, such as edges, as investigated
by [53], or more complex features as circles or ellipses [34]. Edge features are found to
be more robust to different illumination conditions, although less reliable when the target
is only partially visible. Moreover, if more complex shapes such as circles are used, they
apply to spacecraft with a specific geometry only, limiting their applicability.
Another approach used to estimate the pose of a known target exploiting features is
Template Matching (TM). This method requires the offline generation of a database of
template images of the target by sampling the six degrees of freedom (position and at-
titude). The most similar image to the one captured by the camera is identified, and
the pose is automatically retrieved from the database. Even if the online computational

6



Chapter 1. Introduction

effort might be reduced with respect to PnP solvers, the lack of robustness to illumination
conditions makes it less appealing for space applications.
Because of their fast development in recent years, Convolutional Neural Networks (CNNs)
are of increasing interest for monocular pose estimation. Unlike previously described
methods, CNN-based methods do not distinguish from a feature extraction and pose esti-
mation phase but rather an offline training and online test. Their application is expected
to improve the robustness with respect to existing methods and reduce the computational
burden. In [52], a CNN-based navigation algorithm is validated on a database of images
comparable to the actual space images taken by the PRISMA Mission, obtaining better
results than classical methods. Learning methods are currently limited by the need for
large databases of authentic space imagery or synthetically generated images necessary
for their training [10].
In recent years, the possibility to perform monocular navigation with a thermal camera
has been investigated. In [64] the beneficial effects of using thermal imagery are illus-
trated, also studying the images acquired by the LIRIS demonstrator, showing that a
SLAM-based approach is suitable for thermal cameras. This result is also confirmed in
the context of asteroid navigation in [12, 45, 46]. Contrary to the visible spectrum, there
is a lack of literature regarding the generation of realistic space thermal imagery, necessary
for the validation of the proposed architectures. The recent works of [13, 65] fill this gap
by providing new insights and methods for generating realistic space thermal imagery.

1.2.2 Visual-based navigation filters

The pose estimation schemes introduced to this point can provide an estimate of the
relative position and attitude of the target without any a priori information. When an
initial estimate is provided from a lost-in-space condition, it is commonly referred to as
pose acquisition or pose initialization. Once an initial estimate is provided, pose tracking
can be performed, using the previous pose estimate for each new image acquired as the
initial condition for the pose acquisition problem. Pose initialization schemes are unsuited
to work at high frequencies because of their high computational time. Therefore, a visual
navigation filter shall be used to process the camera measurements to provide the updated
pose at high frequency [10].
In relative navigation, two different architectures are distinguished based on which level
the filter processes the measurements. In tightly coupled filters, the extracted features
are directly processed by the filter, reconstructing the pose with the refined output of
the filter. Alternatively, in loosely coupled filters the pose is already determined prior to
the filter. A schematic of the two architectures is reported in Figure 1.2, considering a
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navigation architecture using two cameras. The same concept applies to other types of
sensors, such as IMU or GNSS [29].
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Navigation
Filter

Camera 1

Camera 2 Features
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Features
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(a) Tightly coupled
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Figure 1.2: Tightly and loosely coupled navigation filter architecture using two cameras

Loosely coupled are usually preferred for applications where the target is fully known, as
the computational time of tightly coupled approaches depends on the number of features
detected and they lack robustness to fast relative dynamics [43]. However, if the inertia
properties of the target are unknown, tightly coupled filters can retrieve them [60].
A very widely used filter in relative navigation applications is the Extended Kalman
Filter (EKF) [23, 43, 53] because of their balanced ratio between low complexity and
sound performances. As relative dynamics are intrinsically non-linear, the EKF exploits
the linearization of the dynamics. In the case of highly non-linear dynamics, non-linear
filters are implemented. In the works [60, 67], the Unscented Kalman Filter is exploited
to improve the filter’s accuracy, but with the degradation of the computational efficiency.
In [44], several non-linear filtering techniques such as Minimum Energy Filter, 2nd Order
Energy Filter, and Attitude Observer were investigated, uncovering that they outperform
linear filters.

1.2.3 Multispectral data fusion

Multispectral navigation is an emerging area of interest for space applications, yet the
literature on this topic is still limited. Data fusion can be performed at different levels.
The lowest level is to perform image fusion (image-level data fusion), creating from two
images in different spectra a composite image with the best characteristics of the two. An
extensive survey of methods for image fusion is reported in [56]. In [14], different methods
are applied to the fusion of space imagery performing a comparative assessment. These
findings were applied in [6], where fused images were used to perform pose initialization,
demonstrating that fused images can be a reliable source of measurements for navigation
algorithms.
If the information fusion is performed at a higher level, then the problem can be ap-
proached with classical sensor fusion techniques. Odometry fusion techniques are divided
into optimization-based, and filter-based techniques [63]. In the former, the state is esti-
mated after processing the measurements acquired into an optimization problem. These
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methods are more accurate than filter-based methods, although presenting a higher level
of complexity [27].
In filter-based approaches, the sensor information is fused inside the navigation filter,
as described in Section 1.2.2. This methodology has been investigated for multispectral
sensor fusion in the context of the ESA study ”Image Recognition and Processing for
Navigation (IRPN)” [57]. The interest in this approach was also expressed in [23], fusing
VIS, TIR, and LiDAR measurements employing a loosely-coupled Kalman Filter. To the
best of the author knowledge, a tightly coupled approach for multispectral data fusion
has not been investigated for space applications.
Further research has been performed in the context of asteroid navigation. In particular,
[12] uses a loosely coupled approach to fuse multispectral data, while [45] investigates both
a multi-modal approach and image fusion. Both studies focus on a SLAM algorithm, as
the map of the asteroid is not known a priori.
The lack of literature in the field of multispectral data fusion applied to relative naviga-
tion highlights the need for further research in this area, aiming at paving the road for
robust navigation pipelines for harsh environments as the one of Active Debris Removal.

1.3 Research objectives and overview

The paragraph highlights the thesis scope and its logical flow. It presents the research ob-
jectives and formulates them as research questions. The thesis overview and the document
structure is presented.

1.3.1 Objectives

The core motivation of the thesis is the enhancement of visual relative navigation tech-
niques about uncooperative targets whose shape is known, given the context explained in
Section 1.1. In particular, the principal aim of the thesis is:

to investigate the potential in exploitating of visible and thermal imaging measure-
ments fusion for enhancing relative navigation about known uncooperative space
targets.

The thesis aims at providing a deeper understanding of the contribution of multispectral
imaging to the estimation of the relative attitude and center of mass position. Specifi-
cally, it investigates how sensor fusion expands the range of applicability and increases the
performances of monocular visible navigation by combining data from multiple spectra.
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Moreover, the effectiveness of thermal navigation as a standalone solution is presented,
studying the possibility of substituting the visible counterpart when the output of the
latter is compromised. In this context, the effort is focused on assessing most suitable
strategy between privileging either visible or thermal measurements depending on en-
vironmental conditions or going straight forward with data fusion always, no matter of
external conditions. The work proposes a solid basis for a comparison with different data
fusion techniques, providing further understanding about at which level the multispectral
data shall be fused to obtain the most proper results.
Additionally, this work provides valuable insights into best practices and potential pitfalls
whenever designing simulation frameworks for testing visual navigation algorithms.

1.3.2 Research questions

The thesis objective is then articulated in the following research questions:

1. can multispectral imaging improve relative navigation about a known non-cooperative
target? What is the contribution of thermal imaging?

2. Which is the most effective visible and thermal imaging measurements management
to improve relative navigation?

3. Can thermal imaging sensors provide a standalone solution to the relative navigation
problem? What are the most prominent limitations of thermal-only navigation?

4. Upon what criteria VIS-IR measurements fusion is preferred against treating them
as split inputs? Is there an overall winner among the tightly, loosely coupled and
image-fusion based approaches?

1.3.3 Thesis overview

To develop the aforementioned objective, this thesis proposes a novel multispectral naviga-
tion pipeline for pose tracking with measurements obtained from a VIS and TIR monocu-
lar cameras. The algorithm exploits the information extracted from the images to perform
model-based pose estimation with respect to the target. The sensor fusion and the pose
refinement are performed with an Extended Kalman Filter. The multispectral informa-
tion is fused at feature level with a tightly coupled approach. In particular, the features
tracked on the VIS and TIR images represent the measurements fed into the Kalman
Filter, while the pseudo-measurements are computed by projecting the model landmarks
onto the image plane. Such fusion technique enables avoidance of the execution of pose
reconstruction routines such as the PnP, without the need to expand the filter’s state

10



Chapter 1. Introduction

vector, as commonly performed in tightly coupled approaches. In the proposed solution,
an online adaptation of the filter’s characteristic matrices is employed to tune the contri-
bution of the different features based on the data quality.
Although the proposed algorithm’s primary goal is to investigate the benefits of com-
bining multispectral imaging sensors, this work is intended to be the basis for a future
onboard implementation of the algorithm. For this reason, special attention is given to
the computational time required and the complexity of the steps of which the navigation
chain is composed.
The proposed navigation chain is validated exploiting synthetic images of a space debris.
The results are presented and discussed to reach the thesis objective and answer to the
research questions.
The thesis is structured as follows:

• Chapter 2 provides a brief explanation of the principles at the basis of the the-
sis, ranging from aspects of computer vision to preliminary aspects of non-linear
estimation methods used.

• Chapter 3 presents the proposed visual navigation pipeline, introducing both the
filter structure and the IP algorithms used.

• Chapter 4 describes the simulation framework used to validate the proposed solu-
tion to the estimation problem.

• Chapter 5 presents the simulations’ outcome, providing a critical analysis of the
obtained results.

• Chapter 6 summarizes the key findings, identifying the final conclusions. Ideas for
future works are also reported.
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Background

This chapter provides a brief explanation of the principles and algorithms at the basis
of the thesis.

As the visual navigation pipeline strongly relies on computer vision, some basic aspects of
this subject are introduced. Initially, the pinhole camera model is presented, describing
the relation between world points and their projection on the image plane. Subsequently,
projective transformations between two sets of points are introduced, focusing on the
Direct Linear Transform (DLT) algorithm to estimate the homography associated with the
transformation. The concept of key points, or point features, is presented. The description
presents some widely used methods for detection, description, and tracking, setting the
framework for the analysis and trade-offs performed during the thesis development.
Finally, a brief discussion on non-linear estimation methods is presented, focusing on the
multiplicative extended formulation of the Klaman Filter (KF) for navigation applications.

2.1 Computer Vision

Computer Vision (CV) is a multidisciplinary subject that enables computers to derive
meaningful information from digital images. This section describes some preliminary
aspects on which the thesis work is built upon.

2.1.1 Camera model

A camera model represents the mathematical relationship between 3D points and their
respective 2D projection on the image plane. In particular the pinhole camera model is
a simple but faithfully representative model of optical navigation cameras. The camera
model representation is reported in Figure 2.1.

Under the pinhole camera model, real-word points are projected onto the image plane
(or focal plane) 𝑍 = 𝑓 , resulting in a transformation from R3 to R2. More specifically,
a point in space with coordinates X = (𝑋,𝑌, 𝑍)𝑇 is mapped to the point where the
line joining the point to the camera center, or center of projection, meets the image
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Figure 2.1: Pinhole camera model, taken from [25]

plane. The line perpendicular to the image plane passing for the camera center takes the
name of principal axis, and its point of intersection with the image plane is the principal
point. Using homogeneous coordinates, the pinhole camera model mapping is formalized
in Equation (2.1).
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In Equation (2.1) 𝑓𝑥 and 𝑓𝑥 express the camera’s focal length, i.e., the distance between
the center of projection and the image plane. The variables 𝑥0 and 𝑦0 are the principal
point offset, which are the principal point coordinates in the image reference frame, as
presented in Figure 2.2. The focal length, principal point offset and camera’s field of view
are related by Equation (2.2).

𝑓𝑥 =
𝑥0

tan(𝐹𝑂𝑉𝑥/2)
(2.2)

Equation (2.1) can be rewritten in compact form as:

x = KΥ0X (2.3)

The matrix K, explicitly defined in Equation (2.1), is the intrinsic camera matrix. The
parameters of this matrix express the geometrical parameters of the camera. The term Υ0

expresses a rotation matrix that rotates the reference frame to have the y-axis pointing
downward, as this is the convention commonly used for the image reference plane, as
reported in Figure 2.2.
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Figure 2.2: Camera coordinate system and image coordinate system

The equations presented so far stand under the assumption that the position of the real-
world point is known and expressed in the camera coordinate system. Commonly, the
points to be projected by the camera model are expressed in a different coordinate sys-
tem, generically called world reference frame. An example of this situation is reported
in Figure 2.3. It is helpful to relate the mapping going from the position in the world
reference frame to the image plane in a compact expression.

Figure 2.3: Camera coordinate system and world coordinate system

By defining a three-element column vector c representing the camera center position in the
world reference frame and a rotation matrix R that transforms the world coordinates into
camera coordinates, the transformation between world coordinates to camera coordinates
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can be formalized as:
X𝑐𝑎𝑚 = RX𝑤𝑜𝑟𝑙𝑑 − Rc (2.4)

By defining the center of the world reference frame in camera coordinates as t = −Rc,
and using homogeneous coordinates, Equation (2.4) can be rearranged as:

X𝑐𝑎𝑚 =

[
R t
0 1

]
X𝑤𝑜𝑟𝑙𝑑 (2.5)

Including Equation (2.5) into Equation (2.1) a mapping between a 3D point expressed in
world coordinates and its position on the image plane is obtained:

x𝑖𝑚𝑎𝑔𝑒 = KΥ0 [R|t]X𝑤𝑜𝑟𝑙𝑑 (2.6)

It is therefore possible to define the projection matrix P:

P = KΥ0 [R|t] (2.7)

The projection matrix is the combination of the intrinsic parameters of the camera K,
representing its geometrical proprieties, and the extrinsic parameters [R|t] that represent
the camera position.

2.1.2 2D Projective transformations

Figure 2.4 shows a scenario where a set of points with world coordinates X is observed
from two cameras with projection centers 𝐶1 and 𝐶2, which have different poses. That
condition can occur either in the case of two different cameras at different positions or
where the same camera takes two consecutive images in time with relative camera-object
motion. Those two camera histories mathematical description is anallogous [25].

Figure 2.4: Same object multiple view
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x and x′ represent the points homogenous coordinates on the image plane, respectively.
The linear relationship between x and x′ is named projective transformation, reported in
Equation (2.8).

x′ = Hx =


ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 ℎ9

 x (2.8)

The matrix H is referred to as homography matrix. The transformation is defined by
eight degrees of freedom, as the matrix is defined up to a scale [18]. This reflects the fact
that the transformation relates homogeneous coordindates, which are also defined up to
a scale.
Projective transformations can be seen as the generalization of simpler transformations,
such as similarities and affine transformations. The detailed description of those trans-
formations is beyond the thesis scope, the reader is referred to [25] for an in depth pre-
sentation of the subject.

2.1.3 Direct Linear Transformation algorithm

Given a set of 2D to 2D point correspondences, estimating the homography between the
two sets of points might be useful, as it encodes information about the relative pose of
the two views [25]. Having the homography matrix 8 degrees of freedom, just four two-
dimensional points are needed to estimate the transformation. A simple and effective
algorithm to perform this is the Direct Linear Transformation (DLT) algorithm [25].
If two points expressed in homogeneous coordinates x = [𝑥 𝑦 𝑧]𝑇 and x′ = [𝑥′ 𝑦′ 𝑤′]𝑇

satisfy the relation x′ = Hx (Equation (2.8)), than the following also must hold:

x′ × Hx = 0 (2.9)

The 𝑗-th row of H can be denoted as h𝑇
𝑗 , so that Equation (2.9) becomes:

©«
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1x − 𝑥′h𝑇

3x
𝑥′h𝑇

2x − 𝑦′h𝑇
1x

ª®®¬ = 0 (2.10)

Equation Equation (2.10) can be expressed as function of [h𝑇
1 h𝑇

2 h𝑇
3 ]𝑇 so to define a linear
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system with the components of the homography matrix as unknowns:


0𝑇 −𝑤′x𝑇 𝑦′x𝑇

𝑤′x𝑇 0𝑇 −𝑥′x𝑇

−𝑦′x𝑇 𝑥′x𝑇 0𝑇


©«
h1

h2

h3

ª®®¬ = 0 (2.11)

Since two out of three are linearly independent equations, the system can be reduced to:

[
0𝑇 −𝑤′x𝑇 𝑦′x𝑇

𝑤′x𝑇 0𝑇 −𝑥′x𝑇

] ©«
h1

h2

h3

ª®®¬ = 0 (2.12)

If the system in Equation (2.12) is computed for four points it will result in a system with
nine unknowns, namely the components of the homography matrix, and eight equations,
thus resulting under-constrained. That highlights that only the ratio of the components
of H is relevant. A condition to force the matrix norm to be unitary is introduced to
solve the under-constraining issue.
If more than 4 point correspondences are considered, the system becomes over-determined;
therefore, a least-square approach must be applied to find the solution. A practical way
to solve the over-determined system is to apply the Singular Value Decomposition (SVD)
to the matrix of coefficients and take the last vector of the matrix V as the solution.
A significant issue is overseen whenever the DLT defines the Equation (2.12) solution:
the quality of the result is conditioned by the coordinate frame in which the points are
expressed. This implies that some reference frames provide better results than others.
As suggested by [25], a normalization to the points sets to increase the DLT algorithm’s
performances can be applied. The normalization consists of defining two transformations
T and T′ respectively for the sets of points x and x′ that translate the centroid of the sets
at the origin and scales them such than their average distance from the origin equals

√
2.

Once this normalization is applied, Equation (2.12) cab be solved and then the matrix H
denormalized. The complete DLT algorithm is summarised in Algorithm 1.

Algorithm 1 Normalized DLT for 2D homographies [25]
1: Given at least 4 2D to 2D point correspondences x → x′

2: Compute the normalization of x such that x̃ = Tx
3: Compute the normalization of x′ such that x̃′ = T′x′

4: Solve the linear system in Equation (2.12) using the normalized coordinates to obtain
the homography H̃

5: Denromalize the homography matrix such that H = T′H̃T
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2.1.4 Random Sample Consensus method

The DLT algorithm, presented in Section 2.1.3, assumes that the position of points on
the image plane is not affected by noise and that outliers (elements following a different,
and possibly unmodelled, error distribution [25]) don’t exist in the set considered. A
widespread algorithm for model fitting data containing spurious points is the RANSAC
method, introduced by Fischler and Bolles in [20].
The RANSAC algorithm, summarised in Algorithm 2, starts by randomly selecting the
minimum number of correspondences required for the model fitting (4 for the homogra-
phy), and computes the model based on the values selected. It then uses the newly fitted
model to compute the number of inliers, evaluating the distance of the points from the
fitted model. This process is repeated iteratively until the exit condition is reached. The
algorithm’s output is the model that maximizes the number of inliers.

Algorithm 2 RANdom SAmple Consensus (RANSAC) [20]
1: Let 𝐴 be a set of 𝑁 correspondaces
2: while 𝑛𝑖𝑡𝑒𝑟 < 𝑛𝑚𝑎𝑥 and 𝜖 > 𝜖𝑚𝑎𝑥 do
3: Select a sample 𝑠 from the set 𝐴

4: Fit the model to 𝑠

5: Compute the distance of all points in 𝐴 from this model
6: Compute the inliers set and the percentage of outliers 𝜖𝑖
7: if 𝜖𝑖 < 𝜖 then
8: Update 𝜖 and save model
9: end if

10: end while

RANSAC is an iterative and non-deterministic algorithm. This implies that the result
is not repeatable. It depends on the randomness of the selected points to fit the model,
and its accuracy depends on the maximum number of iterations. Therefore, the number
of iterations is selected high enough to ensure with a given probability 𝑝 that at least
one of the selected random sets does not include any outliers. The maximum number of
iterations 𝑛𝑚𝑎𝑥 can be computed as:

𝑛𝑚𝑎𝑥 =
𝑙𝑜𝑔(1 − 𝑝)

𝑙𝑜𝑔(1 − (1 − 𝜖)𝑠) (2.13)

Figure 2.5 reports an example of RANSAC applied to the case of a line-fitting problem.
It can be observed that the least squares fit is highly influenced by the presence of the
outliers, while the RANSAC fit is more consistent with the inliers. However, it is possible
to obtain an even more reliable solution to the problem by adding a step to the RANSAC
algorithm. Once the RANSAC model and the inliers set are computed, applying the
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least squares fit to all the correspondences in the inliers set provides the best estimate of
the model, as seen in Figure 2.5. In the case of homography estimation, this procedure
takes the name of Gold Standard Algorithm [25], as it provides the best estimate of the
homography matrix.

Figure 2.5: Example of line fitting with different algorithms

2.1.5 Point features

In Computer Vision, a feature is generally defined as a distinguishable element of an
image. Features can be of many types, such as points, edges, circles, or colors [49]. The
following sections further detail the concept of point features, also known as keypoints
or corner features, introducing the most common methods to detect describe and track
these features.

Features detection & extraction

Feature detection is a process that aims to identify for each image point if it corresponds to
a feature. The output is a set of points coordinates, subset of the image pixels position,
corresponding to each feature identified. Methods for point features detection can be
divided into two categories:

• corner detectors, which identifies the intersection between two edges;
• blob detectors, which detect features by considering a supporting surrounding region.
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Once the features location is identified, a neighboring region can be defined and encoded
into a numerical descriptor. That process refers to as feature extraction or feature de-
scription, and it enables matching the same feature in different images without searching
the whole image.
Different point features detectors and descriptor can be found in literature. A detailed
overview of the most common and an evaluation of their applicability for multispectral
navigation is reported in [49], highlighting a better performance of blob detectors for
thermal images. Although modeled equally from a geometrical perspective, visible and
thermal images present an overall difference in appearance, requiring different considera-
tions in terms of features detection.
The selection process of the methods used in the thesis is based on a trade-off between
edge detectors methods and blob detectors reported in Table 2.1. That set of algorithms
includes both methods for detection only and both detection and extraction because, as
explained in in the Feature tracking paragraph of Section 2.1.5, the feature descriptors
are not adopted in this work.

Method Type Function Reference

FAST Corner detector Detection [50]
ORB Corner detector Detection & description [51]
BRISK Corner detector Detection & description [32]
SIFT Blob detector Detection & description [35]
SURF Blob detector Detection & description [5]

Table 2.1: Features detection methods evaluated in the thesis work

The detailed description of these methods is outside the scope of this work, which focuses
on their application. For a detailed description of the algorithms the reader is referred to
their formulation in the related papers [5, 32, 35, 50, 51].
As the feature detection process is highly dependent on the pixel intensity in the image
[49], whenever a scarce contrast within the image holds the number of detected features
is limited. That typically happens while processing thermal images whenever the temper-
ature profile is almost uniform within the target and visible images whenever the target
is in shadow. The image pre-processing beforehand the feature extraction through his-
togram equalization mitigates those issues. This process consists into splitting the image
into different tiles, and then equalizing the pixel intensity so to increase the contrast and
enhance the edges. In particular, the Contrast Limited Adaptive Histogram Equalization
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(CLAHE) [68] algorithm successfully avoids overshooting in the contrast in sections with
a uniform texture, like the background of the image. An example on the effect of CLAHE
on a thermal image can be appreciated comparing Figure 2.6 and Figure 2.7.

Figure 2.6: Thermal image and intensity histogram before applying CLAHE

Figure 2.7: Thermal image and intensity histogram after applying CLAHE

Features tracking

Visual navigation benefits from tracking same features in subsequent images. This prob-
lem is commonly referred to as feature tracking. A straightforward solution would be for
each image to extract a new set of features, then match them with the original set using
the descriptor information. However, this solution might result in a heavy computational
burden, making it less suitable for onboard execution. In optical navigation applications,
if the frame rate of acquisition of the images is in the order of seconds, the pose dif-
ference between two consecutive images is limited. This enables to use feature tracking
techniques that extract keypoints only in the first image and track them in consecutive
images searching for them in a bounded spot around the previous position. The output
of each step is the field of displacement of the features between two consecutive images,
known as optical flow.
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Whenever feature tracking algorithms are adopted, two aspects have to be considered.
Firstly, some features might be erroneously tracked, asking for an outlier rejection rou-
tine such as RANSAC at each step to remove spurious results. Secondly, the number
of features will strictly decrease over time: that happens as the features are detected in
the first image only, and over time they might either move outside the camera’s field of
view or get shadowed, as can be seen in Figure 2.8. To tackle those issues, the detection
step shall be revisited as soon as the number of tracked key points gets below a defined
threshold.
A widely used algorithm to perform feature tracking is the Lucas-Kanade (LK) tracker
[36]. This algorithm associates a movement vector to every key point from its position in
the first image to the position in the second image. To register the position of the key
points in the two images, three assumptions hold:

• the color of a pixel, or its intensity in gray scale images, does not change over two
consecutive images.

• The motion of the keypoints is limited to a bounded neighboring region around its
original position.

• The keypoints are assumed to lie on rigid objects, thus moving coherently.

The research adopts the pyramidal version of the LK algorithm implemented in the MAT-
LAB computer vision toolbox. As a detailed description of the algorithm is outside the
scope of this work, which focuses on its application, the reader is referred to [4] and [9]
for an overview of the different LK formulations and the implementation of the pyramidal
LK respectively.

(a) Detected keypoints
(n. = 115)

(b) Tracked keypoints (n. = 85)
after 30 s

(c) Tracked keypoints (n. = 67)
after 60 s

Figure 2.8: Features tracked with the LK algorithm in different frames taken at a frequency
of 1 Hz with a relative angular rate of 1.5 deg/s
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2.2 Non-linear estimation

In vision-based navigation, the features tracked on the image represent the primary source
of information from the sensors. However, feature detection and tracking are always sub-
ject to a certain degree of noise, propagating into the pose information. Moreover, the
information given by the position of the features at a given time is not directly influenced
by the relative velocity or the angular rates, thus making their direct determination im-
possible without considering a sequence of measurements. This is commonly referred to
as the observability problem of dynamical systems.
For the thesis work a filtering approach based on the Klaman Filter (KF) was selected
because its capability to deal with nonlinear dynamics and measurements functions while
maintaining a lightweight implementation. The Kalman Filter is a first-order Bayesian
filter that iteratively predicts the states’ estimates propagating them with a dynamical
model (prediction step) to update the prediction with the information from the measure-
ments (correction step). In the interest of brevity, the demonstration and formulation of
the Kalman filter are not reported. For a detailed explanation of the method, the reader
is referred to [66].
The classic formulation of the Kalman Filter works for linear systems only, while the
relative navigation problem is intrinsically non-linear [44]. The filter’s formulation has
been extended to deal with non-linearity with the Extended Kalman Filter (EKF) and
the Unscented Kalman Filter (UKF). The latter is less computationally efficient but is
more accurate than the EKF, as it does not require any linearization of the dynamics.
Because the thesis applies to close-proximity operations with short measurement update
intervals, making the nonlinearity less problematic, the EKF was considered the most
effective solution.

2.2.1 The Extended Kalman Filter

To introduce the EKF, it is first necessary to describe the real world set of non-linear
differential equations describing the system:

¤x = 𝑓 (x) + 𝒘 (2.14)
y = ℎ(x) + 𝒗 (2.15)

where x is the vector of system states, y is the vector of measurements, 𝑓 (x) is the
nonlinear function of the states and ℎ(x) is the measurement function that maps the states
into the measurements. 𝒘 and 𝒗 are zero mean gaussian noises with known covariance
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such that:

Q = 𝐸 (𝒘𝒘𝑇 ) (2.16)
R = 𝐸 (𝒗𝒗𝑇 ) (2.17)

where 𝐸 ( · ) denotes the expected value. Q and R are referred to as process noise matrix
and measurement noise matrix respectively.
To make the classical Kalman Filter formulation applicable to non-linear problems, in the
EKF the both the state and the measurement functions are linearized in the current state
estimate, computing the Jacobian matrices of the two functions:

F =
𝜕 𝑓 (x)
𝜕x

���
x=x̂

(2.18)

H =
𝜕ℎ(x)
𝜕x

���
x=x̂

(2.19)

Further, to propagate the covariance matrix between two consecutive time steps, it is
necessary to compute the state transition matrix Φ. This can be performed with a variety
of approaches, such as finite differences, variational approach or exponential matrix. With
this linearization it is possible to consider the system to be linear at each step of the filter.
The steps of the Extended Kalman Filter are reported in Algorithm 3.

Algorithm 3 Extended Kalman Filter
1: x−

𝑘
= Φ(𝑡𝑘 , 𝑡𝑘−1)x+

𝑘−1 ⊲ State & covariance propagation
2: P−

𝑘
= Φ(𝑡𝑘 , 𝑡𝑘−1)P+

𝑘−1Φ(𝑡𝑘 , 𝑡𝑘−1) + Q
3: d𝑘 = y𝑘 − H𝑘x−

𝑘
⊲ Innovation & covariance residual computation

4: S𝑘 = H𝑘P−
𝑘
H𝑇

𝑘
+ R

5: K𝑘 = P−
𝑘
H𝑇

𝑘
S−1
𝑘

⊲ Kalman gain
6: x+

𝑘
= x−

𝑘
+ K𝑘d𝑘 ⊲ State & covariance update

7: P+
𝑘
= (I − K𝑘H𝑘 )P−

𝑘

2.2.2 The Multiplicative Extended Kalman Filter

Since the thesis aims at investigating the 6 degrees of freedom navigation performances
the filter shall be able to estimate both the center of mass position and the relative atti-
tude between the two spacecrafts.
The quaternion is a widely used parametrization for attitude estimation, as it is the
singularity-free representation with the lowest dimensionality [37]. However, the normal-
ization constraint might cause issues in the standard formulation of the EKF with the
additive representation of the error (Algorithm 3, line 6). The Multiplicative EKF, pro-
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posed in [30], successfully solves this issue. The underlying principle of the MEKF is to
replace the full quaternion with a three-element vector representing the local represen-
tation of attitude errors while keeping track of a unit quaternion representing the global
attitude. As a consequence, the additive state correction is substituted by a quaternion
multiplication:

q+ = 𝛿q(a𝑝) ⊗ q− (2.20)

where 𝛿q is the unit quaternion error, a𝑝 is the three element attitude error state, and
q = [𝑞1 𝑞2 𝑞3 𝑞4]𝑇 , is the reference quaternion with 𝑞4 as scalar part. This method solves
the issues related to an additive representation of the error and reduces the number of
states of the system to its degrees of freedom, providing a more compact formulation.
In this work, the parametrization used for the three-element state vector is the Modified
Rodriguez Parameters (MRP) proposed in [59]. The direct and inverse mapping from
quaternion to MRP is reported in Equations (2.21) and (2.22).

a𝑝 =
4

1 + 𝑞4
[𝑞1 𝑞2 𝑞3]𝑇 =

4
1 + 𝑞4

q̄ (2.21)

q =
1

16 + a𝑇𝑝a𝑝

[
8a𝑝

16 − a𝑇𝑝a𝑝

]
(2.22)

where q̄ indicates the vectorial part of the quaternion. From Equation (2.21) it can be
deduced that the MRP are not singularity free. However, this problem does not arise in
the MEKF, as the three-element error state is set to zero at each reset step of the filter.
This is consequential to the assumption that the filter provides the best estimate. After
the update step, the estimated quaternion is assumed to be equal to the true attitude,
having a quaternion error equal to 𝛿q = [0 0 0 1]𝑇 and consequentially a𝑝 = [0 0 0]𝑇 .
Having the scalar term of the quaternion unitary allows one to avoid the singularity
condition of the MRP.
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Visual Navigation Filter

In the present chapter, the visual navigation pipeline proposed in the thesis is presented,
utilizing the tools and techniques detailed in Chapter 2 as the foundation for the work.

The algorithm aims at tracking the relative attitude and position (pose) of the target with
respect to the chaser using a visible and a thermal monocular camera measurements only.
The core of navigation pipeline is an Extended Kalman Filter that provides the pose
estimate fusing the information coming from the two sensors. The raw images acquired by
the cameras are not fed directly into the filter, but are elaborated in an Image Processing
step, which applies pre-processing (if needed) and tracks the relevant point features.
The original aspect of the proposed navigation algorithm stays in the filter’s innovation
computation. The image features and the relative landmark position represent the filter’s
measurements and pseudo-measurements of the filter. The landmarks position results
from the projection of a wireframe model of the target on the image plane according
to the available state estimate, thus representing a measure of it. The update step of
the filter is then able to correct the pose estimate without reconstructing the pose from
the images with algorithms such as the PnP. Additionally, an online estimation of the
measurement noise covariance matrix is implemented to avoid modeling errors and adjust
for the sensors performance changes due to environmental conditions.
A pseudo-code description is presented in Algorithm 4, where the implementation of the
process is reported. For the sake of clarity a block diagram of the pipeline is also reported
in Figure 3.1.

Algorithm 4 Navigation Filter
Input: Visible and/or thermal image from navigation cameras

1: Pre-process the thermal images (histogram equalization)
2: Track the features on the images at 𝑡𝑘 given their position in the previous measure-

ments 𝑡𝑘−1
3: Propagate the states and the associate covariance from 𝑡𝑘−1 to 𝑡𝑘
4: Project the model landmarks according to the pose provided by the propagated states
5: Compute the filter’s innovation: image features position minus landmarks position
6: Compute the Kalman gain and perform the state update (Algorithm 3)
7: Update the estimate of the measurement noise covariance
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Chapter 3. Visual Navigation Filter

Throughout this chapter, the visual navigation filter is presented to provide a detailed
insight into the proposed navigation solution. After an introduction on the adopted
reference frames, the dynamical model employed by the filter to propagate the states is
discussed. The presentation of the measurement model is splitted between the description
of the measurement function defined to compute pseudo-measurements and the Image
Processing pipeline exploited to detect and track features. Finally, the methods used to
estimate the measurement noise covariance matrix and remove outliers are described.
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KALMAN FILTER
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Figure 3.1: Visual navigation pipeline architecture

3.1 Reference frames

The fundamental reference frames used in the thesis are hereafter presented.
The spacecraft absolute position and attitude are expressed in Earth Centered Inertial
frame I (Figure 3.2a).
The origin of the Local Vertical Local Horizon (L) frame is the barycenter of the space-
craft, the x axis is directed from the spacecraft radially outward, the z axis is aligned with
the normal of the orbit plane and positive along the direction of the angular momentum.
The y-axis completes the right-handed triad (Figure 3.2b).
The Body frame is instead attached to the spacecraft, having the center in the center of

mass of the body. The body frame (B) axes are aligned with the principal axis of inertia
of the spacecraft.
Finally the sensor coordinate system, the camera frame (C), shall be introduced to de-
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(a) Earth Centered Inertial reference frame
(b) Local Vertical Local Horizon reference
frame

Figure 3.2: ECI and LVLH coordinate systems, taken from [3]

scribe the position of external elements with respect to the sensor. This coordinate system
is described in detail in Section 2.1.1.
To express in which coordinate system a vector is described, its reference letter is added
as subscript. In the case of the LVLH and Body reference frames, as they can be applied
both to the chaser and the target, the lowercase letters 𝑐 and 𝑡 are added to specify the
origin of the system. An example of this notation is reported in Equation (3.1).

r𝐶 = A𝐶/𝐵𝑐A𝐵𝑐/𝐼r𝐼 (3.1)

The generic vector r is mapped from the Earth Centered Inertial to the Camera frame by
mean of two consecutive rotations expressed in terms of Direct Cosine Matrices A. For
elements expressing the transformation between the two reference frames, such as rotation
matrices or quaternions, the convention used is the one reported in Equation (3.1). A𝐵𝑐/𝐼

represents the chaser body frame (𝐵𝑐) expressed in the inertial reference frame (𝐼), and
A𝐶/𝐵𝑐 represents the camera frame expressed in the chaser body reference frame.

3.2 Dynamical model

As the filter estimates the 6 degrees of freedom pose of the target, the dynamical model
includes both the translational and the rotational dynamic of the relative motion. Specif-
ically, the states of the filter are comprised of the position and velocity of the target in
the chaser LVLH frame, a three-element attitude error expressed in MRP and the angular
velocities of the target body frame expressed in the chaser body frame. In the present
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section the state propagation model is detailed. During the discussion, to express the
target position in the chaser’s body frame (x𝐿𝑐 = [𝑥𝐿𝑐 𝑦𝐿𝑐 𝑧𝐿𝑐]) and the relative attitude
(𝑞𝐵𝑡/𝐵𝑐), the subscripts indicating the reference frames are avoided for the sake of brevity.

3.2.1 Translational dynamic

The relative motion between two spacecrafts is an intrinsically non-linear problem. An
extensive derivation of the differential equation describing the target motion expressed in
the chaser LVLH frame is reported in [3], resulting in the general nonlinear equations of
relative motion:

¥𝑥 − 2 ¤𝑓𝑐 ¤𝑦 − ¥𝑓𝑐𝑦 − ¤𝑓 2
𝑐 𝑥 = − `(𝑟𝑐 + 𝑥)

[(𝑟𝑐 + 𝑥)2 + 𝑦2 + 𝑧2]3/2 + `

𝑟2
𝑐

+ 𝑑𝑅

¥𝑦 + 2 ¤𝑓𝑐 ¤𝑥 + ¥𝑓𝑐𝑥 − ¤𝑓 2
𝑐 𝑦 = − `𝑦

[(𝑟𝑐 + 𝑥)2 + 𝑦2 + 𝑧2]3/2 + 𝑑𝑇

¥𝑧 = − `𝑧

[(𝑟𝑐 + 𝑥)2 + 𝑦2 + 𝑧2]3/2 + 𝑑𝑁

(3.2)

where 𝑓𝑐 and 𝑟𝑐 represent the true anomaly and the radius of the chaser respectively, and
[𝑑𝑅, 𝑑𝑇 , 𝑑𝑁 ] the differential perturbing acceleration in the radial, tangential and normal
directions.
In the context of spacecraft rendezvous, Clohessy and Wiltshire [15] proposed a linear
form of the equations of relative motion by neglecting all perturbations considering only
the first order terms of the Taylor expansion of Equation (3.2) [58]. This model of mo-
tion is here selected for the translational dynamic of the filter. The selection of such a
simplified model is justified by the short measurements update intervals of close proxim-
ity operations (in the order of seconds) and by the quasi-circular orbit of space debris in
LEO orbits. In case those assumption are not applicable more complex models such as the
Yamanaka-Ankersen [62] are advised. The Clohessy-Wiltshire (CW) linearized equations
of unperturbed relative motion are reported in Equation (3.3).

¥𝑥 − 2𝑛 ¤𝑦 − 3𝑛2𝑥 = 0
¥𝑦 + 2𝑛 ¤𝑥 = 0
¥𝑧 + 𝑛2𝑧 = 0

(3.3)

where 𝑛 indicates the mean motion of the chaser. The state transition matrix of the CW
equations can be computed analitically and is reported in Equation (3.4), where 𝑐𝑛𝑡 and
𝑠𝑛𝑡 indicates 𝑐𝑜𝑠(𝑛𝑡) and 𝑠𝑖𝑛(𝑛𝑡) respectively [3].
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(3.4)

3.2.2 Rotational dynamic

The target absolute angular accelerations cannot be determined in an uncooperative sce-
nario; the model here used for attitude dynamics assumes constant small relative angular
velocities, as proposed in [24, 53]. A quaternion parametrization is adopted, formalized
in Equations (3.5) and (3.6).

¤q =
1
2Ω(𝝎)q =

[
𝜔

0

]
⊗ q (3.5)

¤𝝎 = 0 (3.6)

where q = [𝑞1 𝑞2 𝑞3 𝑞4]𝑇 , with 𝑞4 as scalar part, is the target body frame expressed in
the chaser body frame, and 𝝎 the relative angular velocities vector. Ω(𝝎) is a 3×4 matrix
defined as:

Ω(𝝎) =
[
−[𝝎×] 𝝎

−𝝎𝑇 0

]
(3.7)

where [ · ×] indicates the skew-symmetric matrix. As the filter exploits the multiplicative
representation of the quaternion error (Section 2.2.2), it is necessary to derive the attitude
dynamical model as function of the three-element error vector a𝑝 expressed in MRP. This
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can be obtained by substituting Equation (3.5) in the time derivative of Equation (2.21):

¤a𝑝 =
4

1 + 𝑞4
¤̄q − 4

(1 + 𝑞4)2 ¤𝑞4q̄

=

(
− 1

2 [𝝎×] + 1
8𝝎 · a𝑝

)
a𝑝 +

(
1 − 1

16a𝑇𝑝a𝑝

)
𝝎

= −1
2 [𝝎×]a𝑝 + 𝝎

(3.8)

Equations (3.6) and (3.8) represent the differential equations of the attitude dynamical
model. In this case, the State Transition Matrix Φ𝑎𝑡𝑡 cannot be computed analytically but
requires numerical computation. The approach suggested in [59] is to use the exponential
matrix, and, as no difference in terms of accuracy was found comparing this method with
the variational approach, it is used for the computation of the STM.

The complete rotational-translationa propagation model can be expressd in compact form
as: ©«

¤x
¥x
¤a𝑝

¤𝝎

ª®®®®®¬
=

[
Φ𝐶𝑊 0

0 Φ𝑎𝑡𝑡

] ©«
x
¤x

a𝑝

𝝎

ª®®®®®¬
(3.9)

3.3 Measurement model

The measurement model is a function that transforms the filter states to the estimates
of the measurements coming from the sensors. In the here treated context, this implies
mapping the landmarks of the target known 3D model, expressed in the target body frame,
to their estimated position on the image plane. The measurement function building can
be conceptually divided in three steps, namely the transformation of the features position
from the target body frame to the camera frame (ℎ1), a second step of projection of the
points on the image plane (ℎ2), and finally the conversion from homogeneous to Cartesian
coordinates (ℎ3).
The first step is formalised in Equation (3.10).

f𝐶 = ℎ1(x𝐿𝑐, a𝑝) = A𝐶/𝐵𝑐 (A(q(a𝑝) ⊗ q𝐵𝑡/𝐵𝑐)𝑇 f𝐵𝑡 + A𝐵𝑐/𝐼A𝐼/𝐿𝑐x𝐿𝑐) − A𝐶/𝐵𝑐t𝐵𝑐 (3.10)

where f𝐶 is a generic landmark position in the camera reference frame, f𝐵𝑡 its position in
the target body frame and t𝐵𝑐 the position of the camera in the chaser body frame. The
transformation matrices A𝐵𝑐/𝐼 and A𝐼/𝐿𝑐 can be determined because the position and
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attitude of the chaser in the inertial frame are assumed to be known. In real applications,
the DCM A𝐶/𝐵𝑐 and the translation vector t𝐵𝑐 have different values for different cameras,
as they are necessarily placed in different positions onboard the chaser. However, within
the current application both the thermal and the visible cameras are assumed to lie in
the center of the chaser mounted with the same attitude. This assumption is not realistic
but does not entail any difference to the navigation pipeline.
The MRP attitude error a𝑝, used to retrieve the estimated attitude of the chaser in the
attitude reference frame, and the target position in the chaser LVLH frame x𝐿𝑐 are the
states dependent on the measurements. As expected, the velocity and angular rate do not
appear, as they do not provide any information on the features position at a given time.
The second step corresponds to the projection of the points to the image plane according
to the pinhole camera model described in Section 2.1.1:

fℎ = ℎ2(f𝐶) = Kf𝐶 (3.11)

where fℎ = [ 𝑓 ℎ𝑥 𝑓 ℎ𝑦 𝑓 ℎ𝑧 ]𝑇 indicates the feature position on the image plane expressed in
homogeneous coordinates. As the visible and thermal cameras are assumed to be coin-
cident, the intrinsic camera matrix is the only factor that distinguishes the two sensors
within the context of the measurement function.
The final step consists in the non-linear transform between the homogeneous and Carte-
sian coordinates:

f = ℎ3(fℎ) =


𝑓 ℎ𝑥

𝑓 ℎ𝑧

𝑓 ℎ𝑦

𝑓 ℎ𝑧

(3.12)

Combining the defined equations according the definition of Equation (2.15), and defining
the output pseudo-measurements y as the landmark position f, the full measurement
function can be defined as:

y = ℎ3(ℎ2(ℎ1(x𝐿𝑐, a𝑝))) (3.13)

The resulting measurement function is non-linear, therefore the Jacobian of the function
has been computed with respect to all the filter states to be compatible with the EKF
formulation. Since it is not function of the velocity or the angular rates, the columns of
the Jacobian associated to those states will be zeros.
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3.4 Image Processing pipeline

The scope of the image processing pipeline is to provide the image features location and
their relation to the wireframe model points. A flow diagrams of the IP pipeline is reported
in Figure 3.3.
The features position on the image acquired at time 𝑡𝑘 are the output of the Lucas Kanade
tracker, using the results obtained at time 𝑡𝑘−1 as initial condition. As the features are
tracked along different images, the information about their correlation with the model
landmarks is maintained, avoiding the need of a matching process at each filter step.
To remove either spurious associations or errors collected during the tracking step, a
RANSAC routine is added to remove possible outliers. If the number of features after
the outlier rejection is over a defined threshold 𝑘, then the IP step can be considered
satisfactory and the information acquired is used in the filter to refine the estimated pose.

LK Tracker

Image at tk

DLT & Projective
transform 

Image at tk-1

2D Features location

New features
detection

RANSAC 
 matching

Projected model
points at tk

RANSAC 
outliers rejection n. features > k

2D Features location at tk-1

Image and model  
features location

REINITIALIZATION

yes

no

Figure 3.3: Image processing pipeline architecture

However, as explained in Section 2.1.5, the number of features strictly decreases over time,
requiring a re-initialization step.
In the re-initialization the problem of redefining the correlations between image features
and model landmarks arises. A possible solution is to perform a brute-force RANSAC
association by randomly sampling the entire set of image features and model points until
the correct correspondences are extracted and the associations are computed. Given the
large number of features, the number of iterations required to ensure a good probability
of success would make the algorithm prohibitive for real-time applications.
The solution here proposed exploits the information about the image-to-map correlation
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available before the re-initialization process to limit the brute-force RANSAC search re-
gion. The steps of the implemented solution are described in pseudocode in Algorithm 5.
Given the output of the RANSAC outlier rejection routine, the homography matrix map-
ping the model landmarks to the respective image features is computed. To combine
those two steps is equivalent to applying the Golden Standard algorithm (Section 2.1.4),
thus providing the best estimate of the projection of the landmarks onto image features.
At this point, it is possible to use the retrieved projective transformation matrix to map
all model landmarks to where their corresponding image feature is expected to be lo-
cated. Once detected the new features from the image, it is reasonable to assume that
the associated landmarks are restricted to a limited region about their location. When
performing the RANSAC polling, only the landmarks within a certain distance 𝑑𝑚𝑎𝑥 from
the respective extracted feature are considered. The more the search region dimension
is extended, the more the method is robust to estimation errors, although increasing the
computational burden. The search region is therefore to be tuned to reach the desired
trade-off between robustness and computational time.

Algorithm 5 IP re-initialization algorithm
1: Given: a vector of image features locations f𝑖𝑎 and the associated projected model

points locations f𝑚𝑎 , subset of all model landmarks on the image plane F𝑚
𝑎

2: With DLT, compute the homography s.t. f𝑖𝑎 ≃ Hf𝑚𝑎
3: Trasform all the model points s.t. F𝑚

𝑏
= HF𝑚

𝑎

4: Detect a new set of features f𝑖𝑏 from the image
5: while 𝑛𝑖𝑡𝑒𝑟 < 𝑛𝑚𝑎𝑥 do
6: Randomly select 4 elements from f𝑖𝑏
7: Randomly select 4 elements from the subset of F𝑚

𝑏
s.t. ∥ F𝑚

𝑏
− f𝑖𝑏 ∥≤ 𝑑𝑚𝑎𝑥

8: Compute the homography matrix between the selected points and select the inliers
f𝑚𝑏 of the model

9: Count the number inliers Y of the fitted model
10: if Y > Y𝑚𝑎𝑥 then
11: Update Y𝑚𝑎𝑥 and save f𝑖𝑏 and f𝑚𝑏 as the re-intialized features
12: end if
13: end while

The IP pipeline is almost identical for the visible and thermal spectra. The only difference
is the application of the CLAHE contrast equalization to the thermal image. Because of
the overall lack of contrast of thermal images, its enhancement is beneficial for the features
identification process [49].
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3.4.1 Feature detector trade-off

The selection of the feature detector is based on a trade-off performed between different
methods. The methods investigated include both blob detectors (SIFT, SURF) and cor-
ner detectors (BRISK, FAST, ORB). For all those methods, the formulatio implemented
in the Computer Vision toolbox of MATLAB is here adopted.
The trade-off is performed against merit-criteria tailored for the thesis applications. As
all methods can detect a satisfactory amount of features, given the suitable tailoring of
their parameters, they are evaluated on the quality of the features detected in terms
of tracking: the more a method can detect features that are reliably tracked along dif-
ferent frames (moving coherently with the associated point on the rigid body) the less
re-initialization steps are required, thus providing a positive contribution to the naviga-
tion pipeline timeliness. To achieve this evaluation, the extracted features are tracked
along 60 consecutive frames, eliminating outliers at each step. This procedure is executed
100 times on a database of 400 images, starting each run with a different initial frame to
avoid test the methods on different point of views of the target.
The averaged results obtained over 100 runs are reported for the different methods in
Figure 3.4.

(a) Visible images (b) Thermal images

Figure 3.4: Number of features tracked along different frames for visible and thermal images

For both visible and thermal images the best method results to be ORB, as it identifies
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more reliable features traceable for longer times. It can also be observed an overall dif-
ference in performances between the visible and thermal case, as TIR images present a
faster feature drop rate. At a first analysis this results seemed counter-intuitive as in the
thermal images the shadowing problem does not arise, thus it is expected to maintain a
higher number of features over time with respect the VIS images, which are affected by
that problem. The reason behind the TIR spectrum lower performances of the TIR spec-
trum is the spurious association of the features to the model points after the detection,
given by the higher noise level in the image and the adopted simplified thermal model.
Along the tracking process this outliers are then rejected, justifying the results obtained
in Figure 3.4b.
The computation time required for the feature detection process is a second merit-criterion
considered because a lightweight method would ease future onboard testing of the algo-
rithm. Figure 3.5 shows results for both the visible and thermal case. In both spectra the
FAST and ORB methods outperform the others, making the ORB detection the overall
best solution for this work application.
It should be noted that the trade-off performed is specific to the application and does not
generally apply as a benchmark for feature detector methods.

(a) Visible images (b) Thermal images

Figure 3.5: Average time required on the feature detection process for the visible and thermal
images over 100 images
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3.5 Measurement noise matrix adaptation

As described in Section 3.3 the features’ position on both the visible and thermal images
are the measures of the filter. In the framework of the Kalman filter it is necessary to
accurately model the measurement noise to avoid degradation of the filter performances or
divergence from the ground truth. For navigation cameras this can result in a challenging
task, as the noise associated to the detected features is influenced both by the quality
of the sensor and by the external environmental conditions; aspects such as either the
illumination condition or the chaser-target distance could in fact vary the noise associated
to the image features.
To tackle this issue the residual-based adaptive estimation of the measurement noise
covariance matrix R proposed in [2] is implemented.
The filter residual is defined as the difference between the measurements and the pseudo-
measurements of the updated state:

𝜺𝑘 = y𝑘 − H𝑘x+
𝑘 (3.14)

As demonstrated in [2] the estimate of the residual covariance can be expressed as:

�̂�𝑘 = 𝐸 (𝜺𝑘𝜺𝑇𝑘 ) = R̂𝑘 − H𝑘P−
𝑘H𝑇

𝑘 (3.15)

Indicating with ·̂ the estimated values. The definition for the estimate of R at each step
becomes:

R̂𝑘 = 𝐸 (𝜺𝑘𝜺𝑇𝑘 ) + H𝑘P−
𝑘H𝑇

𝑘 (3.16)

The expected value of the residual covariance 𝐸 (𝜺𝑘𝜺𝑇𝑘 ) can be approximated by averaging
𝜺𝑘𝜺

𝑇
𝑘

over a sliding window of dimension 𝑁 as:

𝐸 (𝜺𝑘𝜺𝑇𝑘 ) =
1
𝑁

𝑁∑︁
𝑘=1

𝜺𝑘𝜺
𝑇
𝑘 (3.17)

To avoid saving all residuals over the sliding window, a forgetting factor 𝛼 is introduced to
adaptively estimate the measurement noise covariance matrix, rewriting Equation (3.16)
as:

R̂𝑘 = 𝛼R𝑘−1 + (1 − 𝛼) (𝜺𝑘𝜺𝑇𝑘 + H𝑘P−
𝑘H𝑇

𝑘 ) (3.18)

The lower the value of 𝛼, the more the estimation of R depends on the current residual,
although the estimate would be subject to fluctuations due to noise within the residu-
als. The forgetting factor should then be tuned to obtain the desired results from the
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adaptation.

3.6 Outliers rejection

Although an outlier rejection method is already introduced in the Image Processing
pipeline, it is convenient to discard the noisiest measurements to enhance the perfor-
mances and the stability [12].
As it is assumed that the measurements are affected by known Gaussian noise, a null-
hypothesis test is performed to check whether the measurements are in accordance with
the assumed model. As highlighted in [59], the square of the Mahalanobis distance (𝛾𝑘)
of the innovation can be exploited as performance metric for the null-hypothesis:

𝛾𝑘 = 𝑀2
𝑘 = d𝑇

𝑘S−1
𝑘 d𝑘 (3.19)

where d𝑘 is the innovation, S𝑘 its covariance matrix and 𝑀𝑘 the Mahalanobis distance.
The innovation is defined as:

d𝑘 = y𝑘 − H𝑘x−
𝑘 (3.20)

And the associated covariance S𝑘 as:

S𝑘 = H𝑘P−
𝑘H𝑇

𝑘 + R (3.21)

Under the assumption that the null-hypothesis is true, i.e.the error is Gaussian distributed,
𝛾𝑘 should be Chi-square distributed with degrees of freedom equal to the dimensionality of
the innovation vector. To remove possible outliers a gating method is applied, excluding
all measurements which are bigger than a threshold 𝜒𝛼 defined so that Equation (3.22) is
true.

𝑃(𝛾𝑘 > 𝜒𝛼) = 𝛼 (3.22)

Equation (3.22) expresses that the probability of a randomly selected 𝛾𝑘 to be higher
than 𝜒𝛼 is equal to 𝛼. The value of 𝛼 is selected to be 0.05. Such value ensures that the
noisiest measurements are removed without excluding inliers.
That approach for outliers rejection enables both to remove possible outliers and to re-
move from the measurement vector the most noisy values, thus enhancing the filter’s
performances.
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4

Testing Framework

All tests performed are based on MATLAB routine executed on a Desktop PC. The
images output of the thermal sensors are the result of an a priori rendering process

both for the visible and the thermal case.
To provide a detailed overview of the testing framework, the target debris VESPA [1]
is presented, describing the model used to generate the landmarks. Subsequently, the
rendering tool used to generate the synthetic images is detailed. Different study cases are
identified from a brief discussion on the rendered synthetic images, varying the parameters
that primarily influence the sensors’ output. Finally, the ground truth used for relative
dynamics and the filter’s figures of merit are presented.

4.1 Vega Secondary Payload Adapter

VESPA is a payload adapter that enables the Vega rocket embarking and deploying differ-
ent payloads in different orbits. It was first used on Vega’s second flight (VV02) in 2013,
deploying the Proba-V and other two payloads in two different orbits [1]. A pre-launch
picture of Proba-V mounted on VESPA is shown in Figure 4.1.

Figure 4.1: Proba-V mounted on VESPA, from [1]
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The VESPA properties are reported in Table 4.1. The VESPA debris is of interest both
for the ClearSpace-1 mission [8], aimed to de-orbit the adapter, and for the e.Inspector
mission, aimed at de-risking optical navigation technologies for uncooperative targets
and collecting relevant information on the current debris status to support its removal
operations. Because of its dimension, VESPA is considered an Intact Derelict Object,
making its removal critical for space sustainability [33].

Parameter Value Unit

Payload interface diameter 937 mm
Launcher interface diameter 2105 mm

Height 2867 mm
VESPA mass 262 kg

Maximum main payload mass 1000 kg
Maximum secondary payload mass 200 kg

Table 4.1: VESPA properties [1]

4.1.1 VESPA wireframe model

As specified in Section 3.3, the filter uses a wireframe model of the target to compute the
pseudo-measurements of the states, projecting the model features onto the image plane.
A STereolithograpfy File (STL) containing a detailed model of VESPA is used to define the
model landmarks. As shown in Figure 4.2b, a landmark is generated for each face of the
model. If the landmarks were to be generated from a highly detailed model (Figure 4.2a),
their elevated number would compromise the filter’s efficiency. For this reason, the target’s
original model is downscaled to avoid this issue. The detailed model, the downscaled
model, and the landmarks can be observed in Figure 4.2.
Figure 4.2 allows evaluating, it is possible to evaluate how this target might affect the
navigation process: first of all, VESPA is axis-symmetrical because of its conic shape;
the only elements not axis-symmetrical are the superficial elements, such as bolts or
flanges. However, those present a central symmetry. This symmetry properties require to
arbitrarily define which of the two identical sides of VESPA the chaser faces when the pose
is initialized, as the x-y axis orientation is undefined because of the central symmetry. For
the tracking, the superficial elements are the only features that could provide information
about the chaser position around the axis of symmetry of VESPA.
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(a) VESPA detailed model (b) VESPA downscaled model and landmarks

Figure 4.2: VESPA models and generated landmarks

4.2 Synthetic images rendering

The visible and thermal images rendering tool was not developed or modified within the
context of the thesis but was solely exploited as user. The working principle of the im-
age generation pipeline is briefly presented, and the reader is referred to [45] for a more
detailed description. The rendering tool was initially designed for small-bodies rendering
and was adapted for the space debris application for the thesis.
Both the VIS and TIR generation relies on Blender rendering software [16]. The process
is straightforward for the visible images, as the software is intended for this task. In the
case of the thermal images, a simplified thermal model of the target is used to compute
the surface irradiance, which is fed into Blender to generate the thermal images. The
target simplified thermal model relies on two significant assumptions. Firstly, the target
thermal profile is considered spatially uniform at each given instant, so the target appear-
ance in the thermal image is influenced only by the overall temperature, the emissivity
of the different surfaces, and the view factor. Secondly, only two thermal conditions were
considered: a sunlit (hot) case, which provides a bright thermal image (Figure 4.4b) and
an eclipse (cold) case, providing an overall darker image (Figure 4.7b) assuming the target
temperature close to lower limit of the sensor’s sensibility.
The camera parameters used for the image generation are reported in Table 4.2, where it
can be seen that the visible image provides a higher resolution and has a wider FOV with
respect to the thermal camera. These parameters are also used to calculate the intrinsic
camera matrix to compute the filter’s pseudo-measurements.
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Parameter Value Unit

Resolution [2000, 2000] px
FOV [9.15, 9.15] deg

(a) VIS camera properties

Parameter Value Unit

Resolution [640, 512] px
FOV [6.2, 5] deg

(b) TIR camera properties

Table 4.2: Visible and thermal camera properties

As environmental conditions highly influence space imagery, also the rendered images
reflect this behavior. The parameters that most influence the visible and thermal images
are identified to be:

• the chaser-target-Sun angle 𝜙 [0 𝜋] (Figure 4.3a), referred to as phase angle, which
indicates if the camera is facing the sunlit or shadowed side of the target.

• The elevation angle of the chaser in the target body frame 𝜌 [−𝜋/2 𝜋/2] (Fig-
ure 4.3b), that indicates in which measure the camera observes the outer or inner
surface of the conical shape.

• The presence of eclipse.

(a) 𝜙 angle definition (b) 𝜌 angle definition

Figure 4.3: Geometrical definition of the phase angles 𝜙 and the elevation angle 𝜌

Case 𝜙 𝜌
Target visibility

Reference figure
VIS TIR

A low high good good Figure 4.4
B low low poor good Figure 4.5
C high low poor good Figure 4.6
D eclipse high null poor Figure 4.7

Table 4.3: Different illumination cases overview
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By varying those parameters, four illumination conditions have been identified (Table 4.3).
Those study cases solve the role of providing a further description of the synthetic images
and provide a better understanding of the filter results in different situations.

• Case A represents the most favorable illumination condition for both the visible
and thermal spectra. The low phase angle provides good illumination of the target
and a high temperature that allows for a vivid thermal image (Figure 4.4b). As
highlighted in Figure 4.4a, the high 𝜌 value results in imaging the upper side of
VESPA, i.e., the outer side of its conical shape. This represents the best condition
for visible imaging, as demonstrated in the second study case.

• Case B considers a low phase angle is maintained, but the elevation angle is
dropped. It can be observed how observing the concavity of VESPA is critical
for the visible imagery (Figure 4.5), as the concavity is subject to important shad-
ows that make the target only partially visible also in good illumination conditions.
The thermal image is not highly affected by the shadows, although it shall be noted
that the lower side of VESPA has fewer distinguishable elements than its upper side.

• Case C considers a situation with a low illumination condition, increasing the phase
angle. As expected, even with a high 𝜌, the visible image is compromised as the
target remains only partially visible (Figure 4.6). In this condition, the thermal im-
age is unaffected, as the rendering process works under the assumption of a uniform
thermal profile.

• Case D investigates the eclipse condition. In that circumstance, the visible image
results completely black (Figure 4.6a), as the rendering process assumes the Sun
as the only light source. Regarding the thermal images, it is considered the eclipse
case as the cold case for the target. The sensor response was lowered to highlight a
difference with the hot case, but the temperature of the target is assumed to be still
within the sensor sensibility ranges (Figure 4.6b). This was considered because if
the target temperature were below the sensor’s minimum sensibility also the thermal
image would result completely black, becoming a case study not worth investigating
as it would produce no results.

In the thesis work, the images are rendered and used without noise. For further develop-
ments, a pixel-level noise should be added to increase the realism of the testing framework
[7].
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(a) VIS image (b) TIR image

Figure 4.4: Case A: low 𝜙, high 𝜌

(a) VIS image (b) TIR image

Figure 4.5: Case B: low 𝜙, low 𝜌

(a) VIS image (b) TIR image

Figure 4.6: Case C: high 𝜙, high 𝜌

(a) VIS image (b) TIR image

Figure 4.7: Case D: eclipse
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4.3 Reference dynamics

The Section discusses the reference dynamical model used to test the filter’s estimation
capabilities.
For what concerns the relative position and velocity, the chaser and the target positions
are independently propagated in ECI according to a J2-perturbed Keplerian motion about
the Earth. As this model of motion is well known in literature, it is not presented in the
thesis. For a detailed description of this dynamics the reader is referred to [3]. The target
position is moved into the chaser LVLH frame a posteriori of the propagation. Additional
orbital perturbations are not included as their effect is not appreciable in short-term
propagations.
As far as the attitude dynamics is concerned, the target angular velocities are propagated
with rigid body motion Euler’s equation, assuming the principal inertia axes aligned with
the body frame axes (Figure 4.2b). The elements of the diagonal inertia matrix were
randomly defined as, for the purpose of the thesis, their physical coherence with the
target’s mass distribution is not relevant. As the chaser mounts two fixed cameras on
its body, the cameras’ z-axis is assumed to always point the center of the target body.
For the sake of simplicity, both cameras are assumed to be placed in the center of the
chaser body frame with the cameras’ z-axis aligned with the chaser’s x-axis (Figure 4.8).
This results in the condition that the chaser’s x axis shall always point the center of the
target’s body frame, as if an ideal control was applied. For this reason, the attitude of
the chaser is not propagated dynamically, but by ensuring geometrically this condition
along the trajectory.

Figure 4.8: Schematic of the chaser, target and camera frames

4.3.1 Figures of merit

After the position and attitude are propagated according to the dynamic described in
Section 4.3, and the images are rendered accordingly, the navigation filter is tested to
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evaluate its capability to estimate the relative pose. The criteria defined to quantitatively
assess the filter’s performances are:

• the absolute and relative position error

• the attitude error

This Section defines those variables.
Given a simulation composed on 𝑁 filter updates (or equivalently 𝑁 measurements events)
the position Absolute Knowledge Error (AKE) at a given step 𝑖 is defined as:

𝑒𝑝,𝑖 =
√︁
(𝑥𝑖 − 𝑥𝑖)2 + (𝑦𝑖 − 𝑦𝑖)2 + (𝑧𝑖 − �̂�𝑖)2 (4.1)

where ·̂ indicates the estimated values. Equation (4.1) can be interpreted as the distance
between the true and estimated target position. The position Relative Knowledge Error
(RKE) is defined as the absolute error 𝑒𝑝,𝑖 normalized against the true chaser-target
distance:

𝑒𝑟,𝑖 =
𝑒𝑝,𝑖√︃

𝑥2
𝑖
+ 𝑦2

𝑖
+ 𝑧2

𝑖

(4.2)

It shall be noted that this definition differs from the RKE formulation reported in the
ECSS, which defines that index as the difference between the AKE and the mean of the
AKE over a time interval.
For the attitude AKE, the Euler angle between the estimated and true relative attitude
𝑒𝑎,𝑖 is computed. Initially the quaternion error is defined as:

𝑞𝑒𝑟𝑟 = 𝑞𝑖 ⊗ 𝑞′𝑖 (4.3)

where 𝑞′ is the conjugate of the estimated quaternion. The Euler angle associated with
the quaternion error can be computed as

𝑒𝑎,𝑖 = 2 𝑎𝑡𝑎𝑛2
(√︃

𝑞2
𝑒𝑟𝑟,1 + 𝑞2

𝑒𝑟𝑟,2 + 𝑞2
𝑒𝑟𝑟,3 , 𝑞𝑒𝑟𝑟,4

)
(4.4)

The Euler angle ambiguity between the clockwise or counterclockwise rotation is solved
by the 𝑎𝑡𝑎𝑛2 operator, which provides always the smallest between the two angles.
The Mean Knowledge Error (MKE) and its associated standard deviation along a simu-
lation are generally defined according to Equations (4.5) and (4.6), where 𝑒𝑖 represents a
generic error at at the filter step 𝑖.
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`𝑒 =
1
𝑁

𝑁∑︁
𝑖=1

𝑒𝑖 (4.5)

𝜎𝑒 =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝑒𝑖 − `𝑒)2 (4.6)

As the MKE is defined as the average of the error along the simulation, it can be computed
for both the AKE and RKE. The mean of the absolute and relative errors will be referred
to as Absolute MKE and Relative MKE.
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5

Numerical Simulations

The present chapter describes the performances and limitations of the proposed visual
navigation pipeline based on the results of numerical simulations.

Using the testing framework described in Chapter 4, the algorithm was stressed in various
conditions to understand its advantages and limitations. The testing plan followed is re-
ported in Table 5.1, where the different cases for the illumination conditions are presented
in Table 4.3.

Test n. Illumination
condition

Spectra Scope

1 Case A VIS & TIR Evaluate the nominal performances of
the multispectral filter, comparing them
to the VIS-only and TIR-only applica-
tions. (Research questions 1,2)

VIS
TIR

2 Cases B,C VIS & TIR Evaluate the robustness to low illumina-
tion for multispectral navigation. (Re-
search questions 1,2)

3 Cases B,D TIR Evaluate the robustness of TIR-only nav-
igation under both sunlit and eclipse con-
ditions. (Research question 3)

4 Case A VIS & TIR Varying relative distance (20 m to 80 m)
to assess the range of applicability of
the visual navigation pipeline in terms of
chaser-target distance.

5 Case A VIS & TIR Synchronous chaser-target rotation to
evaluate the influence of apparent dy-
namics in the visual navigation pipeline.

Table 5.1: Test plan and rationale
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At first, the filter’s effectiveness is tested in a nominal condition, evaluating the advantages
of sensor fusion when both the thermal and visible spectra provide good data quality.
Secondly, different aspects of the pipeline are stressed, starting with its dependability from
illumination conditions. The possibility of TIR-only navigation is investigated to overcome
the aforementioned criticality, presenting its applicability to the test case. Finally, the
navigation pipeline robustness is tested against the chaser-target distance and a condition
of synchronous rotation.
A comparative assessment is qualitatively performed concerning image fusion techniques
applied to navigation about small bodies, as it represents a valuable alternative to the
proposed method.

5.1 Test 1: nominal performances

At first, the visual navigation pipeline performances are evaluated in favorable illumina-
tion conditions (Case A), having a good target illumination with a phase angle of 25 deg
and a distance of 35 m, which do not compromise the Image Processing pipeline as the
target is well illuminated and clearly visible on the image plane.
The conditions in which Test 1 is performed are reported in Table 5.2.

𝜙 𝜌 Relative distance

25 deg > 0 deg 35 m
Table 5.2: Test 1 illumination conditions and relative distance

The trajectory followed by the chaser about the target expressed in the target body and
LVLH frame is reported in Figure 2.8.

As the thesis work does not include the pose acquisition routine, the initialization of the
filter is performed assuming an initial error with respect to the ground truth in terms
of position and attitude. The amplitude of the error is selected to be consistent with
the results of [43], randomly generating a position offset in the order of 1 m, and an at-
titude variation of 8 deg maximum. Since the pose acquisition process does not provide
information regarding the initial values of the relative velocity or the angular rates, these
states are initialized to zero in the filter. The states initialization prior to the addition of
the randomic initialization errors is reported in Tables 5.3 and 5.4 for the position and
attitude parameters. In Table 5.4 the attitude is parameterized in Euler angles (X 𝜓, Y 𝜙,
Z \) to provide a more straightforward physical interpretation with respect to quaternions.
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(a) Target body frame (b) Target LVLH frame

Figure 5.1: Chaser trajectory in target’s body frame and LVLH frame

𝑥 𝑦 𝑧 ¤𝑥 ¤𝑦 ¤𝑧

35 m 0 m 0 m 0 m s−1 0 m s−1 0 m s−1

Table 5.3: Relative velocity and position initialization

𝜓 𝜙 \ 𝜔𝑥 𝜔𝑦 𝜔𝑧

0 deg 0 deg 0 deg 0 deg/s 0 deg/s 0 deg/s
Table 5.4: Relative attitude and angular rates initialization

Both the states’ covariance matrix and the process noise covariance matrix are initialized
as diagonal matrices. The diagonal elements of the matrix are defined for each state and
reported in Table 5.5. As for the covariance matrix, the values are defined to be noticeably
higher than the covariance estimate computed by the filter reached steady state. This is
performed to account for the initialization error and perform a faster filter convergence to
the correct values in the first steps. Considering the filter’s dynamic truthfulness, the pro-
cess noise covariance matrix has been defined with a trial and error procedure to enhance
the filter’s performance. For the tuning of Q, its influence on the covariance estimation
is also considered, trying to avoid either under or over-estimating the states’ uncertainty.

Although the measurement noise matrix R is estimated online by the filter, it is re-
quired to provide an initialization as it is estimated recursively. The initial values were
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Parameter Value Unit

𝜎2
x 2.5e+0 m2

𝜎2
¤x 8.0e−2 m2/s2

𝜎2
a𝑝

1.0e−2 /
𝜎2
𝜔 2.0e−2 rad2/s2

(a) Initial covariance matrix settings

Parameter Value Unit

𝜎2
x 2.5e+0 m2

𝜎2
¤x 5.0e−6 m2/s2

𝜎2
a𝑝

3.0e−3 /
𝜎2
𝜔 6.0e−4 rad2/s2

(b) Process noise covariance diagonal elements

Table 5.5: Diagonal values of the matrices Q and P at the initial step of the filter

set to be close to the estimates performed by the R-adaptation routine to ensure good
performances and avoid numerical issues. Similarly to P and Q, the measurement noise
covariance matrix is initialized as a diagonal matrix, whose diagonal elements are reported
in Table 5.6. The values are expressed in pixels and refer to non-rectified images, as the
measurements are modeled with a pinhole camera model. This is not considered a critical
point as the rectification is taken into account by the calibration of the camera in real
applications. Given these initialization parameters, the algorithm has been tested on a

Parameter Value Unit

𝜎𝑉𝐼𝑆 20 px
𝜎𝑇 𝐼𝑅 10 px

Table 5.6: Initial standard deviation assigned to the features

database of four hundred synthetic images generated along the trajectory reported in Fig-
ure 2.8. The filter’s operating frequency has been set to be 1 Hz. The navigation pipeline
has been tested by feeding both the VIS and TIR, the visible only, and the thermal only
information in the navigation filter. The results of position and attitude errors for a single
run, defined as presented in Section 4.3, are reported in Figures 5.2a and 5.2b respectively.
From Figures 5.2a and 5.2b, it can be qualitatively assessed that the multispectral case

can track the position and attitude without ever diverging through the simulation. The
multispectral information proved to provide consistently better results than the VIS-only
or TIR-only case, as understandable also from the numerical values reported in Table 5.7.
This result was expected as in the multispectral case the filter has more information com-
ing from the sensors, thus it can provide a better estimate of the states.

The chaser’s estimated trajectory of the chaser in the target body frame, affected by
both the position and attitude errors, is represented in Figure 5.3. It can be observed
how, after the initial correction of the initialization offset, the estimated path remains
bounded to the ground truth on which the sensor’s output has been generated.
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(a) Position AKE

(b) Attitude AKE

Figure 5.2: Position and attitude errors over a 400 seconds simulation

Spectrum Absolute MKE [m] Relative MKE [%]

VIS & TIR 0.25 ± 0.54 0.63 ± 0.54
VIS 0.35 ± 0.59 0.85 ± 0.60
TIR 0.59 ± 0.81 1.51 ± 0.82

(a) Position errors

Spectrum Absolute MKE [deg]

VIS & TIR 1.72 ± 0.88
VIS 2.64 ± 1.04
TIR 3.36 ± 1.66

(b) Attitude errors

Table 5.7: Position and attitude errors for the different spectrum modalities
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Figure 5.3: Ground truth and estimated trajectory of the chaser about the target body frame

To discuss the confidence in the states’ estimation, the position and attitude errors are
reported for each component with the associated uncertainty expressed in 3𝜎. Figure 5.4
shows that the filter provides a reliable estimation of both the relative position and atti-
tude, as the confidence region envelopes the errors without overestimating the uncertainty.
The sudden drops in the standard deviation correspond to the re-initialization steps. That
is an expected behavior as the uncertainty increase with the decrease in number of fea-
tures and reduces whenever new features are added.

As the attitude error state expressed in Modified Rodriguez Parameters (Figure 5.4b)
does not provide a straightforward physical representation of the problem, the true and
estimated Euler angles associated with the relative attitude are reported in Figure 5.5 for
completeness. The rotation sequence is X (𝜓), Y (𝜙), Z (\).
The same representation of Figure 5.4 is reported for the relative velocities and angular

rates in Figures 5.6a and 5.6b, respectively. The visualization starts at 100 s to enhance
the understanding of the graphical representation that would be otherwise compromised
by the high error values given by the initialization errors. For both the relative velocities
and angular rates, an overestimation of the covariance and an almost null dependence on
the feature re-initialization appear evident, contrarily to the relative position or attitude
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(a) Position (b) Attitude (MRP)

Figure 5.4: Difference between the true and estimated position and attitude (MRP) states
with associated uncertainty

Figure 5.5: True and estimated Euler angles according to XYZ rotation sequence ( ·̂ indicates
the estimated values)

case. This latter phenomenon is justified by the fact that there is no direct measurement
of the velocity and angular rates.
The uncertainty region associated with the relative velocities decreases as it converges
after the initial overestimation due to the initialization error, although presenting a very
slow convergence to the steady state value. On the other hand, the overestimation of the
relative angular rates results from the increased value of its process noise covariance ma-
trix. Because of the filter’s dynamic unreliability, a higher entrustment of the propagated
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value would result in a higher error.
The measurement noise matrix adaptation results are reported in Figure 5.7, graphically

(a) Velocity (b) Angular rates

Figure 5.6: Difference between the true and estimated relative velocities and angular rates
with associated confidence region

illustrating the variance values of the model features at the end of the simulation for both
the visible and thermal spectrum. Figure 5.7 shows how the visible and thermal spectra
differ in variance values and which features have been matched by the IP routine. As
detailed in the following analysis, those differences are one of the reasons behind the TIR
spectrum lower performance.

As the filter works at a frequency of 1 Hz, the algorithm must have a computational time
smaller than the filter’s update time. The computation time of the filter steps and the
re-initialization process are reported in Tables 5.8a and 5.8b respectively. Those results
are obtained on a Desktop PC with processor Intel Core i5-7300HQ 4 x 2.5 GHz.
The filter run time remains well under one second in all three cases. Since the opera-
tions must be performed twice, the multispectral application is almost twice as slow as
single-spectrum cases. The re-initialization time is critical, as the computational time is
prohibitive as it greatly exceeds the filter’s operating frequency of 1 Hz.
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Figure 5.7: Variance of the features at the end of the simulation for VIS (left) and TIR (right)
images

The presented times must be reevaluated on relevant hardware to understand the onboard
applicability; however, at the current stage, the computational burden is identified as a
critical point of the proposed pipeline.

Spectrum CPU Time [s]

VIS & TIR 0.17 ± 0.03
VIS 0.08 ± 0.02
TIR 0.07 ± 0.02

(a) Filter’s step computational time

Spectrum CPU Time [s]

VIS 8.9 ± 0.55
TIR 9.0 ± 0.46

(b) re-initialization computational time

Table 5.8: CPU time for the the filter step and the reinitialization process

5.2 Navigation pipeline limitations

In the following sections, the visual navigation filter is tested in different conditions (Test
2-5 of Table 5.1) to assess its limitations and range of applicability. The different testing
conditions are presented, and the obtained results are discussed to identify the shortcom-
ing and propose possible mitigations.

5.2.1 Test 2: low illumination conditions

A well-known VIS cameras limitation is the dependence on the target illumination con-
ditions. To assess this condition the algorithm was tested on a database of one-hundred
images generated with a phase angle close to 100 deg. In this condition, most of the tar-
get is shadowed, and the low quality information coming from the VIS sensors limits the
filter performances. A frame of the rendered database is reported in Figure 5.9a, as an
example.
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The environmental conditions in which the simulation is performed are summarized in
Table 5.9.

𝜙 𝜌 Relative distance

100 deg > 0 deg 35 m
Table 5.9: Test 2 illumination conditions and relative distance

The obtained results in terms of position and attitude errors are reported in Figure 5.8:
the low illumination conditions strongly affect the results, causing a strictly increasing er-
ror in terms of attitude and deteriorating the performance in terms of position estimation.
The exceedingly high errors emphasize that the multispectral data-fusion is not suitable
for low illumination conditions.

(a) Position AKE (b) Attitude AKE

Figure 5.8: Position and attitude errors in case of low illumination conditions

The low-quality data provided by the visible sensor have a counterproductive effect on
the estimation process, increasing the number of outliers in the measurements and forcing
a continuous re-initialization of the features. A small region of the target illuminated
decreases the number of features detected in the visible images and concentrates them on
a small region of the target, making the pose correction step less effective and affecting
it negatively.
As already discussed in Section 4.2, a scarce illumination affecting the visible camera is
caused both from an high phase angle (Figure 5.9a) and by a low elevation angle 𝜌 (Fig-
ure 5.9b), as the concavity is almost always shadowed.
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(a) Sample image in low illumination conditions (b) Detail of VESPA concavity

Figure 5.9: Examples of unfavourable visible conditions

This aspect was further investigated highlighting how it affects the feature detection pro-
cess. Figure 5.10 highlights how the illumination angle is as influential as the chaser
elevation angle. It is observed that the only reliable condition is represented by a low
phase angle and a high elevation angle.

Figure 5.10: Number of matched features as function of the illumination and elevation with
respect to VESPA

From Figure 5.9 and the results presented in Figure 5.10, it can be inferred that the
multispectral application is limited to a low range of environmental conditions, requiring
a good point of view of the target and a good illumination condition.
A possible solution to extend the reliability to illumination conditions was considered to
be the application of the Contrast Limited Adaptive Histogram Equalization (CLAHE)
to extract information from the shadowed parts as well. However, as presented in Fig-
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ure 5.11, in the parts of the image where the target is not illuminated, there is a complete
loss of information in terms of pixel intensity, obtaining tiles that are totally black (all
pixels have 0 intensity). In this case, the histogram equalization would not enhance but
compromise the IP algorithm, adding artifacts in the image. It shall be noted that these
considerations apply to those synthetic images, rendered under the assumption of having
the Sun as the only light source. Additional illumination sources such as Earth’s and
Moon’s albedo might avoid the presented total black condition, giving the possibility to
use CLAHE to enhance the algorithm’s performances.
The IP pipeline should be validated on real space imagery to further assess that assertion.

Figure 5.11: Pixel intensity histograms for an illuminated and a shadowed tile in the image.

Since it was assessed that visible sensor exploitation when the target is only partially
visible is counterproductive to the estimation process, a possible solution compatible
with the proposed pipeline would be to discard the visible sensor output whenever a low
illumination condition arises. In this case, it would be necessary for the thermal navigation
to provide a reliable pose estimation for long periods of time.
This possibility is investigated in the following analysis.
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5.2.2 Test 3: thermal-only navigation

To provide continuous pose estimation in all environmental conditions, the visual nav-
igation filter should function correctly whenever only the thermal images are available.
This applies both to conditions of low phase angle, with the target in its hot case, and to
eclipse periods, with the target in its cold case.

𝜙 𝜌 Relative distance

Hot case 100 deg > 0 deg 35 m
Cold case eclipse > 0 deg 35 m

Table 5.10: Test 3 illumination conditions and relative distance

Hot case

To test the sunlit condition, the same database generated for Test 1 was used, discarding
the visible image. The obtained results in terms of position and angular velocities errors
were already shown in Figure 5.2 for comparison with the multispectral case and are
reported hereafter (Figure 5.12) for convenience.

(a) Position AKE (b) Attitude AKE

Figure 5.12: Position and error for thermal navigation only (hot case)

It can be seen that the position estimation provides stable results, while the attitude
counterpart consistently presented an error spike at the end of the simulations, suggest-
ing a future divergence of the filter. To characterize the error behavior’s source, the Euler
angles between the true and estimated target body frame are computed and presented in
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Figure 5.13, with a rotation sequence Z (\), Y (𝜙), X (𝜓).
In Figure 5.13, it can be observed that along the simulation and specifically at the end,

Figure 5.13: Euler angles between the estimated target body frame and the true target body
frame (hot case)

the error is mainly concentrated on the z-axis of the VESPA body frame, which is also
its axis of symmetry. An error accumulation along this axis indicates that the IP process
has difficulties tracking the superficial elements, which, as detailed in Chapter 4, are the
only elements providing information about the relative position about the z-axis of the
target.
The same consideration could be qualitatively inferred by observing the features tracked
by the filter in the first steps of the simulation (Figure 5.14a) and towards the end (Fig-
ure 5.14). Both images are subject to CLAHE for contrast enhancement. In the second
image, almost no feature is associated with those elements that provide information about
the rotation about the axis of symmetry.
This effect is due to the low-quality images in terms of resolution and low contrast, which
makes it more difficult to detect the beforementioned elements, differently from the visible
case. Moreover, to reduce the rendering tool’s computational time, the VESPA model has
been down-scaled, splitting the conical shape of the target into a limited number of flat
surfaces. That creates an apparent contrast gradient on surfaces that otherwise would be
textureless. That contrast discontinuity between these regions allows identifying fictitious
features which degrade the Image Processing pipeline as they follow a thermal dynamic in-
stead of the rigid body rotational dynamic of the target, favoring an error about the z-axis.

Cold case

Worse results are obtained during the simulated eclipse, as the image quality is lowered
with respect to the presented hot case. The position and attitude error results are reported
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(a) Beginning of the simulation (b) End of the simulation

Figure 5.14: Tracked features on two thermal images of the target

in Figure 5.15. In this case as well, the position estimation works properly, maintaining
the error bounded under 1 m. On the contrary, the attitude error presents an almost
steadily increasing error, making the estimation diverge.

(a) Position AKE (b) Attitude AKE

Figure 5.15: Position and attitude errors for thermal navigation only (cold case)

As for the sunlit case, the Euler angles between the estimated and true target body frame
are computed and presented in Figure 5.16. In this case as well, the drift is unique to the
z-axis, but more evident than in the sunlit case because of the lower quality of the image.

As shown in Figure 5.17, after applying the histogram equalization to the image in eclipse,
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Figure 5.16: Euler angles between the estimated target body frame and the true target body
frame (cold case)

a good information on the overall target shape is attainable, while the lack of contrast in
the image highly compromises the texture; that highly contributes to the error behavior
shown in Figure 5.16, since an error on the x or y axis produces a significant change of
the target shape on the image plane, detectable and correctable by the filter, while an
error on the z-axis is hardly observable in terms on Image Processing.

(a) Raw TIR image in eclipse (b) TIR image in eclipse after CLAHE

Figure 5.17: Original and CLAHE enhanced thermal image in eclipse

The obtained results for the sunlit and eclipse case indicate that the proposed navigation
filter can not provide reliable standalone pose estimation based on the thermal spectrum
only. It shall be noted, however, that most of the criticalities associated with those
analyses are related to the symmetrical nature of the target. Further testing on a non-
symmetrical target should be performed to test the pipeline in a less critical case, while
further work shall be performed to tailor it to apply to symmetrical targets. A possible
solution could be to split the IP routine in two segments: one dedicated to the detection
of elements that provide information about the relative pose with respect to the x-y axis
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of the target and one specifically dedicated to the detection of the superficial elements
of VESPA for the estimation of the position and attitude about the z-axis (the axis of
symmetry). For the former task it would be interesting to extract the ellipses from the
images instead of the point features, as suggested in [34] for navigation about cylindrical
spacecrafts.
Finally, the validity of the results proposed is limited by the strong assumptions made
on the thermal model of the target. A more refined thermal model should be introduced
to further characterize the navigation pipeline to consider aspects such as non-uniform
thermal profiles.

5.2.3 Test 4: Target-chaser distance dependability

The visual navigation filter scope is to enhance close proximity navigation capabilities. It
is, therefore, necessary to identify the limit of application in terms of distance from the
target for which the proposed solution can be used.
Different simulations have been performed on images rendered considering an increasing
distance from the target. Because of the time required for image rendering, only four
sets of 100 VIS and TIR images have been generated, considering an average distance
of 20 m, 40 m, 50 m, and 80 m. Those distances were selected to range from a condition
where the target fully occupies the image up to critical distance where the superficial
features are hardly identifiable (Figure 5.18). The simulation at different distances have
been performed with the same illumination conditions, reported in Table 5.11, to enable
a meaningful comparison of the results.

𝜙 𝜌 Relative distance

25 deg > 0 deg [20 m, 40 m, 50 m, 80 m]
Table 5.11: Test 4 illumination conditions and relative distances

Sample images at different distances are reported in Figures 5.18 and 5.19.

The position Relative MKE and attitude Absolute MKE over a run performed for each
distance is reported in Figure 5.20. The numerical results with the associated standard
deviation are also reported in Table 5.12. As expected, there is a steady increase in both
the parameters estimated by the filter under equal values of 𝜙 and 𝜌, as the information
provided by the images decreases with the distance.

67



Chapter 5. Numerical Simulations

Figure 5.18: Visible images rendered at different distances: 20 m (leftmost), 40 m (left), 50 m
(right), 80 m (rightmost)

Figure 5.19: Thermal images rendered at different distances: 20 m (leftmost), 40 m (left), 50 m
(right), 80 m (rightmost)

Figure 5.20: Position relative MKE (left) and attitude absolute MKE (right) errors along
different simulations with associated standard deviation

Figure 5.20 and Table 5.12 show that with the distance, there is also an increase in the
standard deviation of the error. This derives from a high fluctuation in the error values
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Distance Absolute MKE [m] Relative MKE [%]

20 m 0.07 ± 0.05 0.37 ± 0.26
40 m 0.17 ± 0.10 0.42 ± 0.24
50 m 0.28 ± 0.17 0.52 ± 0.34
80 m 0.82 ± 0.55 1.02 ± 0.68

(a) Position errors

Distance Absolute MKE [deg]

20 m 1.44 ± 0.72
40 m 1.94 ± 0.76
50 m 2.16 ± 1.00
80 m 3.64 ± 1.50

(b) Attitude errors

Table 5.12: Position and attitude errors at different chaser-target distances

that could bring instabilities in more extended simulations. This performance degrada-
tion is attributable to the Image Processing pipeline, as the lower dimension of the target
in the image plane compromises the feature detection and matching.
Given the presented results and the cameras’ parameters used to render the images, the
proposed pipeline is suitable for the close-range inspection and final approach phases,
limiting the chaser-target distance to 50 m. To extend the application range, possible
solutions include different navigation techniques such as angles-only navigation, either
avoiding a 6-DoF pose reconstruction, or including in the sensor suite cameras with dif-
ferent FOVs to provide higher quality images at higher distances.

5.2.4 Test 5: synchronous rotation

A final analysis was carried out investigating the capability of the filter to work correctly
in the case there is synchronous rotation between the chaser and the target, giving the
appearance that there is no relative motion between the two. This situation is tested
in favorable condition for both spectra. The chaser-target distance and the illumination
parameters are reported in Table 5.13.

𝜙 𝜌 Relative distance

25 deg ≈ 0 deg 35 m
Table 5.13: Test 5 illumination conditions and relative distance

69



Chapter 5. Numerical Simulations

As detailed in the results analysis, two simulations have been performed with the same
environmental conditions (Table 5.13), initial conditions and tuning of the filter to high-
light the non-deterministic behavior of the navigation filter.
The chaser trajectory in the target body frame can be observed in Figure 5.21. As ex-
pected it is almost point-like. This is obtained by setting the angular velocity of the target
equal to the opposite of the angular velocity of the chaser position about the target. All
other angular velocities are set to zero.

Figure 5.21: Chaser trajectory in the target body frame in the case of quasi-synchronous
motion

(a) Position AKE (b) Attitude AKE

Figure 5.22: Position and attitude errors for two simulations in the case of quasi-synchronous
motion

In Figure 5.22 the error behavior along the two simulations performed can be observed.
The two simulations have been executed with an identical initialization of the parame-
ters and environmental conditions; the difference in the results is justified only by the
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non-deterministic behavior of the navigation chain. In both cases, the filters present no
problems in estimating the attitude and position of the target. Because of the attitude-
position dynamical coupling, the apparent stasis of the features on the image plane is
recognized as the synchronous rotation of the target with the relative position of chaser.
In the case of synchronous rotation, the features are quasi-static on the image plane, re-
quiring for no feature re-initialization as there is no feature loss. This aspect has two main
effects: primarily, it increases the filter’s performances relaxing the tracking step, result-
ing in a more stable estimation. Secondly, the filter’s performances are mostly influenced
by the quality of the first matching between the image points and the model landmarks,
which is affected by randomic aspects such as the RANSAC routine. If the association
presents an increased number of outliers, the navigation will be consistently affected by
an increased error (Simulation 1), while if it provides good feature associations, the errors
are lowered (Simulation 2).
From the results presented, the synchronous motion does not represent a critical condition
for the proposed navigation pipeline. On the contrary, because of the null relative angular
rates, it represents a favorable condition facilitating the IP process.

5.3 Final remarks

The results obtained on the test plan provide an insightful overview of the proposed
navigation chain performances and limitations. The key findings for each test case are
reported in Table 5.14 to provide a concise yet exhaustive summary of the obtained results.

Test n. Illumination Final remarks

1 Case A Whenever the target is well illuminated and clearly visible both
in the VIS and TIR image, the proposed navigation chain can
reliably estimate the 6-DoF relative pose. In this condition the
fusion of the VIS & TIR information enhances the results, high-
lighting the positive contribution of sensor fusion. Those results
suggest that a tightly coupled filtering approach is suitable for
multispectral relative navigation applications. The main limi-
tation identified in this condition is the elevated computational
time required for the re-initialization step, which exceeds the
filter’s update frequency.
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2 Cases B,C The multispectral navigation chain fails if the VIS image is com-
promised by low illumination conditions, indicating that the vis-
ible spectrum is the mainstay of the algorithm’s robustness. The
phase angle 𝜙 and the elevation angle 𝜌 resulted to be equally
influential on the navigation pipeline performances, restraining
the algorithm’s application to a limited range of environmental
conditions. As the VIS contribution is counterproductive in low
illumination conditions, the solution identified is to discard the
visible information when this condition arises.

3 Cases B,D Thermal navigation could not provide reliable pose estimate in
both the hot case (Case B) and cold case (Case D). In both cases
the navigation chain fails to estimate the relative position about
the axis of symmetry of VESPA, resulting in a diverging attitude
estimation. The cause of this behavior is identified in the lower
performances of the IP routine applied to TIR images, which is
not able to track the superficial elements of the target.

4 Case A The navigation performances are highly influenced by the the
chaser-target distance. With the considered camera proprieties
it is evaluated that the the proposed application is suited for
CPO under a relative distance of 50 m, as it does not provide
reliable results if the chaser and the target are further apart.

5 Case A The navigation chain works properly also under a synchronous
motion condition. The dynamical and measurement models en-
able the filter to estimate all the states correctly also in this
peculiar relative motion. Moreover, the performances are im-
proved as the quasi static appearance of the target on the image
plane relaxes the IP routine.

Table 5.14: Final remarks for each test case and illumination condition

5.4 Image fusion comparative assessment

In this section, a comparative assessment of the proposed pipeline is performed with
respect to the obtained results by [45] regarding multispectral relative navigation per-
forming sensor fusion at image level. The reference work and the thesis investigate the
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multispectral navigation problem in two very different situations, as one performs pose
estimation about a small body while the other is applied to artificial space objects. More-
over, the asteroid navigation is performed with a SLAM approach, as the target is not
initially known, while the thesis work proposes a model-based solution to the navigation
problem. Finally, it shall be noted that the analyses performed in [45] are performed
with a more realistic testing framework, providing a more reliable insight on the subject.
These important differences limit to a qualitative comparison only.
Both methods perform well in good illumination conditions, solving the pose throughout
the simulations. For the image fusion technique, it is found that, in nominal conditions,
it performs slightly worse than using visible-only or thermal-only images. This is not the
case for the proposed pipeline, where the sensor fusion enhances navigation performances.
This is due to the introduction of noise in the image fusion process, avoided in the navi-
gation filter. On the other hand, image fusion enables stronger reliability in cases where
the target is only partially visible in the VIS image. While the visible contribution in the
proposed filter becomes counterproductive, in the image fusion technique, this does not
happen, enabling wider multispectral navigation applicability. Finally, in low illumination
conditions, both methods are unreliable, showing invalid results.
The consistency of the results in the two applications highlights the need for more ma-
turity of multispectral navigation in scarce illumination conditions, where the thermal
sensor should increase the range of applicability. The proposed sensor fusion method out-
performs the image-fusion technique when the target is well visible in both the VIS and
TIR images. However, the latter is more robust when the visible image is less performing.
To the best of the author’s knowledge, both methods take advantage of a switch between
different modalities based on real-time environmental conditions.
A schematic of the comparison between the proposed filter-based multispectral navigation
pipeline and the image fusion-based one proposed in [45] is reported in Table 5.15.

Filter-based Image fusion

low 𝜙 Reliable pose estimation; VIS &
TIR fusion provide the best solu-
tion

Reliable pose estimation; VIS
only provides the best results

high 𝜙 Unreliable pose estimation Reliable pose estimation; VIS &
TIR fusion provides the best re-
sults

eclipse/shadow Unreliable pose estimation Unreliable pose estimation
Table 5.15: Comparison between the presented filter-based multispectral navigation pipeline
and the image fusion based proposed in [45]

73



Chapter 5. Numerical Simulations

Based on the comparison presented in Table 5.15, it appears that image fusion is more
advantageous than the method proposed in the thesis because it is more resistant to low
illumination of the target. However, due to the significant differences between the two
applications and the respective synthetic images, it is not possible to definitively determine
which method is superior. To answer the question of whether there is a winner between
tightly, loosely, and image-fusion based approaches, it is necessary to apply them to the
same test case to have quantitatively comparable results.

74



6

Conclusion

This thesis presents a study on relative navigation around a known uncooperative target
using multispectral imaging sensors. A novel visual navigation pipeline has been devel-
oped to exploit images acquired by both a visible and a thermal monocular camera, either
by fusing the information or using a single spectrum. The proposed navigation solution
has been critically tested on synthetic images of the VESPA debris to evaluate its perfor-
mance and limitations.
In favorable illumination and thermal conditions, the multispectral data fusion resulted
in an enhancement of the pose estimation performance at the expense of a mild increase
in computational time. This results demonstrates the proper working of the sensor fu-
sion using a tightly coupled filtering approach applied to the navigation problem, as the
EKF successfully fuses the sensor’s data providing an improved estimate of the pose.
The effectiveness of multispectral data fusion is also enhanced by the adaptivity of the
measurement noise matrix, which balances the contribution of the two sensors given their
different accuracy.
However, when tested in low illumination conditions, the navigation pipeline was unable
to track the relative position and attitude, as the estimated pose consistently diverged
from the ground truth. It can be concluded that with the proposed navigation algorithm,
the multispectral approach does not provide a reliable standalone solution when different
illumination conditions are encountered. The limiting factor is identified as the visible
image, which degrades the performance of the Image Processing pipeline. As a conse-
quence, the possibility of exploiting thermal-only navigation when the visible sensor is
compromised has been investigated.
The TIR-only navigation application has been tested in both the hot and cold cases of
the target. The main difference between the two situations is that in the hot case, the
target’s temperature is fully within the thermal sensor’s temperature range, providing a
vivid image. In contrast, in the cold case, the target appears less distinct in the thermal
image since its temperature is closer to the lower limit of the sensor’s detection range.
Although the results are promising, they are not satisfactory enough to confirm thermal-
only navigation as a reliable solution. In the hot case, a divergence behavior was identified
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at the end of the simulations, while this behavior was prominent from the early stages in
the cold case. However, the error drift is mainly caused by the target’s symmetry asso-
ciated with the low performance of Image Processing using only thermal images, which
is not able to successfully track the superficial elements of VESPA. This indicates that,
with a more distinguishable target shape, thermal navigation might indeed provide robust
performances.
From the obtained results, the original research questions can be answered as:

1. Multispectral imaging can improve the relative navigation about a known non-
cooperative target. The thermal imaging contribution is limited to an improvement
of the performances in good illumination conditions, while it does not successfully
increase the range of applications of visible navigation because of the combined
degradation of the visible information and the low robustness of the IP routine
applied to the thermal images.

2. The most effective imaging measurements management method is to use different
spectral modalities in different environmental conditions. If in good illumination
conditions the multispectral data fusion increases the navigation performances, in
harsher conditions it is beneficial to discard the visible measurements. This high-
lights an environmental triggered switch between different modalities as the best
solution.

3. From the obtained results, thermal sensors can not provide a standalone solution to
the relative navigation problem because the low performance of the Image Processing
routine applied to thermal images. However, as the limitations are also related to the
particular shape of the VESPA target, it is believed that with a more distinguishable
target thermal-only navigation might produce valuable results.

4. A tightly coupled sensor fusion approach successfully solves the relative navigation
problem. However, because of the dependency of the results on the test case, it is
not possible to quantitatively compare the obtained results with other works. It is
therefore not identified at which level it is more convenient to fuse the multispectral
data.

Even if the validation methodology presents a solid basis, the overall lack of realism in
the testing framework may impact the validity of the results. For instance, the absence
of noise in the images and background elements creates favorable conditions. However,
the simplified structural and thermal model used to generate thermal images introduces
fictitious elements not expected in real imagery. To provide a more insightful evaluation of
the navigation pipeline, it would be beneficial to design a more realistic testing framework.
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6.1 Future work

Because of its relevance for next-generation space missions, autonomous relative naviga-
tion about uncooperative target is a continuously evolving subject in the research field.
With the growing interest in multispectral navigation in recent years, the obtained re-
sults in this thesis work represent a preliminary but promising starting point for further
advancement in this area. Some possible future developments identified during the thesis
work are here provided:

Testing framework refinement

As mentioned in the previous paragraph, more realistic synthetic images should be imple-
mented to achieve a more insightful assessment of the navigation pipeline’s performance.
Since both visible and thermal images are currently rendered without noise, it should be
added in post-processing, as it may not be negligible for the application considered [7].
An important simplification of the current testing framework is the use of a simplified
thermal model for the target. For future studies, it is suggested to increase the realism
of the thermal model by considering transient behaviors and a non-uniform temperature
profile of the target. In this context, the work proposed by [13] presents a refined thermal
rendering tool tailored for space imagery.

Multispectral navigation

In this work, the data fusion has been performed at feature level, demonstrating the pos-
sibility to perform multispectral data fusion with a tightly coupled approach. However,
the results suggest that the proposed multispectral algorithm provides a meaningful so-
lution only when the target is clearly visible in both thermal and visible images. As one
proposed approach to tackle this issue involves using thermal navigation as a standalone
solution for low illumination conditions, further effort should be focused on making this
method more reliable. One advantage of the proposed solution is its flexibility to changes
in the Image Processing routine, enabling the investigation of hybrid approaches for the
visible and thermal spectrum. An IP routine tailored specifically for thermal images or
using more innovative techniques, such as CNNs, could provide an important contribution
to the applicability of the proposed navigation filter.
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Extension to different mission scenarios

The visual navigation pipeline developed has been presented and tested in an ADR sce-
nario. However, it can be adjusted for other space missions involving navigation around
a known target, such as OOS or FF. As the navigation filter provided promising results
for a peculiar target such as VESPA, it is expected that testing the pipeline on targets
with more distinguishable shapes will yield even better results than those presented in
the thesis. Moreover, the flexibility of the tightly coupled approach allows for straight-
forward integration of additional instruments in the sensor suite, making it easy to adapt
for cooperative relative navigation.
The navigation solution could also be adapted for small-body exploration, assuming either
a known asteroid or successful mapping of it. In this context, it would be interesting to
compare this work with that proposed in [12], where a loosely coupled approach was used
to navigate around the Ryugu asteroid.
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