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Sommario

Negli ultimi anni, la rapida diffusione dell’Internet of Things (IoT) ha
contribuito a generare un’enorme quantità di dati. I dispositivi IoT sono
utilizzati nelle cosiddette case intelligenti, i quali permettono di condividere
i dati sull’utilizzo dei consumatori e automatizzare diverse attività a seconda
delle necessità dell’utente. Di contro, qualsiasi nuova tecnologia (superficie
d’attacco) può attirare l’attenzione di attori malevoli (hackers) che cercano
di sfruttarla e abusarne attraverso l’uso di tecniche come il Denial of Service
(DoS). Lo scopo principale di questo lavoro di tesi è rilevare e classificare
gli attacchi DoS per le reti di sensori MQTT. In questo progetto, simuliamo
uno scenario di casa intelligente per raccogliere dati affidabili. Raccogliendo
e segregando i dati legittimi da quelli dannosi, proponiamo un set di dati
realistico basato su MQTT che contiene flusso di traffico legittimo e danno-
so. Presentiamo soluzioni di machine learning online e offline per rilevare e
classificare gli attacchi DoS. I classificatori online proposti sono in grado di
rilevare attacchi in diverse durate del flusso per osservare il compromesso tra
l’accuratezza dei classificatori e la durata del flusso. Mostriamo che siamo
in grado di rilevare con successo il traffico dannoso e legittimo come classi-
ficazione binaria; inoltre, nel caso di classificazione multivalore, riusciamo a
classificare le categorie dell’attacco DoS. Infine, presentiamo il miglior clas-
sificatore per ciascuna durata del flusso, oltre a discutere il compromesso tra
le durate del flusso e l’accuratezza dei classificatori.
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Abstract

In recent years, the rapid deployment of the Internet of Things (IoT) ap-
plications has generated a massive amount of data. IoT devices are utilized
in smart homes, which are frequently working together, sharing consumer
usage data and automating activities depending on the homeowners’ prefer-
ences. Predictably, any new technology that is extensively used by people
can attract the attention of cyber-attackers who seek to exploit and abuse it
through the use of sophisticated techniques such as Denial of Service (DoS).
The main aim of this thesis work is to detect and classify DoS attacks for
MQTT sensor networks. In this project, we simulate a smart home scenario
to gather reliable data. By collecting the legitimate and malicious data,
we propose a realistic MQTT-based dataset that contains legitimate and
malicious flow-level traffic. We present online and offline machine learning
solutions to detect and classify DoS attacks. Our proposed online classifiers
are able to detect attacks in different flow durations to notice the trade-off
between classifiers’ accuracy and flow durations. As part of the evaluation of
this work, we are able to successfully detect malicious and legitimate traffic
as a binary classification; furthermore, our classifiers are capable to detect
and classify categories of the DoS attack in a multi-value classification. Fi-
nally, we present the best classifier for each flow duration, and the trade-off
between flow durations and classifiers’ accuracy are discussed.
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Chapter 1

Introduction

1.1 Overview
Nowadays, our daily life and communication systems are joined with the

Internet of Things (IoT) which is a consolidated technology. In IoT applica-
tions, objects elaborate, process, and communicate with other IoT devices or
more complicated systems. Essentially, User’s demands determine differences
in the Internet of Things applications. For instance, IoT applications that
monitor exercises through IoT devices, checking the perimeter of residential
and industrial environments, or sensors to calculate the temperature and hu-
midity of an area. The fundamental aim of IoT in our lives is to enhance
the quality of human life and offer new opportunities for a lot of applications
[1]. As the use of these devices is increasing, there are several concerns over
their security systems. The reason IoT devices are seen as potential secu-
rity threats is that they are connected to the internet and can be remotely
controlled, they consume sensitive data, and they are provided with lower
security measurements so that they remain economical and user-friendly.
According to predictions, by 2025 the total number of IoT devices will be
approximately 75 billion, as shown in Figure 1.1 [2].
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Figure 1.1: IoT devices installed base worldwide from 2015 to 2025

IoT devices need to operate continuously and reliably for a long time;
thus, they need to be power-efficient. MQTT is arguably the most popular
publish/subscribe protocol specifically designed for IoT devices. An MQTT
broker is a server that receives all the clients’ messages and then routes them
to the proper destination clients. In some cases, the MQTT broker is not
properly secure against Denial of Service (DoS) attacks to remain simple and
power-efficient; therefore, it compromises the valid IoT sensors. In the next
section, the main goal of this thesis work is explained.

1.2 Thesis Objective
The aim of this thesis is to detect and classify malicious attacks with

machine learning models. There is an enormous literature about applying
machine learning algorithms to cyber-attack detection and it has been proven
to be an efficient and reliable approach to the problem [3], however, fewer
studies have been conducted regarding machine-learning-based DoS attack
detection for MQTT sensor networks. To collect the data on which the ma-
chine learning analysis will be based, we have simulated a realistic smart
home scenario. In this project, several MQTT-based IoT sensors with dif-
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ferent traffic behaviors were developed to generate legitimate traffic, and we
simulated three different DoS-based attackers to publish malicious data. Our
simulated sensors communicate through the MQTT broker. In our scenario,
attackers tried to saturate MQTT broker resources to exhaust the server.
After developing the realistic sensors, we launched the simulated IoT devices
and attackers to generate the data. In meantime, we sniffed the network to
gather flow-level data.
TCP flows contain TCP packets with the same source and destination IP
and port addresses which are captured during a limited time interval.
After capturing the flow-based data, we generated our Full-Featured realistic
dataset. The Full-Featured dataset involves legitimates and anomalies flow-
level traffic. We analysed statistically the Flow-level features to extract 10
best features. Then, we proposed the 10-Best Features dataset. After gener-
ating the datasets, we used online and offline machine learning techniques to
detect and classify flows belonging to malicious attacks. In our scenario, on-
line classifiers can detect a DoS attack in different flow durations, however,
the offline classifiers are able to detect an attack after learning the entire
training dataset. Our proposed classifiers are:

• Binary Classifiers, we trained these classifiers, to detect DoS attacks
traffic. In the case of online machine learning, these classifiers are able
to detect the DoS attacks in different flow durations.

• Multi-value Classifiers, the goal of these classifiers is to classify dif-
ferent DoS attack categories and legitimate flows. Our proposed online
multi-value classifiers can detect categories of DoS attack in different
flow durations.

1.3 Thesis Structure
In this section, the content of each chapter is briefly discussed.

• Chapter 2: In second chapter, we review the investigation of the other
researchers, which are related to this topic, and what takes apart our
scenario from other research.

• Chapter 3: IoT sensors and attackers implementation are discussed in
chapter 3. The technologies, tools that we used to simulate the sensors
and attackers are fully described in this section.

• Chapter 4: In chapter 4, we explain the experiment details and data
acquisition. The procedure of creating the dataset and feature selection
are described in this chapter.

3



• Chapter 5: In chapter 5, We discuss machine learning models and
performance evaluation metrics, plus we propose our online and offline
machine learning solutions. The deployment of our solution on 5G
network is explained in this chapter.

• Chapter 6: In chapter 6, the online and offline machine learning re-
sults are demonstrated and classifiers are compared.

• Chapter 7: In the last chapter, the conclusion and the procedure of
this thesis project explain, and at the end, the possible future works
are discussed.
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Chapter 2

Related works

2.1 State of the Art
This chapter presents the investigations that have been done for this

thesis work. Internet of Things often is used for the correct functioning of
critical infrastructures, and swiftly detecting ongoing attacks can give the
opportunity to put countermeasures in place. Considering the importance
of this topic, several kinds of research have been done in this area. In this
chapter, a few relevant works on the problem statement under consideration
are presented.

In [4], ten IoT sensors of various types, including temperature, motion
detector sensor, humidity sensor, door locker, and etc. communicate across
a network to simulate various scenarios such as home automation, critical
infrastructure monitoring, or various industries. To test this strategy, legiti-
mate traffics was mixed in with other malicious traffics targeting the MQTT
network. The authors proposed a new MQTT dataset that covers legitimate
and malicious traffics. The dataset is known as MQTTset, and it is publicly
available in [4]. The packet-level features were extracted from raw PCAP and
balanced and imbalanced datasets were created. They used and compared
different machine learning methods such as neural network, random forests,
naïve bayes, decision trees, gradient boost, and multilayer perceptron to val-
idate the dataset. The obtained results indicate that, all the algorithms have
obtained an accuracy level above 98%, while the F1 score is found to always
be above 97%. Although it is quite difficult to classify attacks accurately, the
accuracy and F1 score values are very high. This error is happened due to
the imbalanced dataset. The number of legitimate traffic instances are much
more than the sum of the instances of all malicious traffics, hence, they tried
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to balance the dataset. After balancing, obtained results are clearly different
in terms of accuracy and F1 score. The algorithms have an accuracy and
F1 score between 87% and 91%, except the naïve bayes algorithm, where
the results are around 64% in accuracy and 68% in F1 score. As a result,
The obtained results illustrate that the unbalanced dataset has high accuracy
and F1 score due to a large number of samples for legitimate traffic, which
has an impact on the final results. The balanced dataset, on the other hand,
reported low metrics but a correct data distribution in the confusion matrices.

Authers in [5], presented a DoS attack detection framework for MQTT
attacks in IoT environments. Normal and attack traffic are captured by
the attack detection testbed. Furthermore, they extracted MQTT con-
trol packet field size/length features and Count-based features. Then, two
datasets which are known as Four-class and Seven-class were generated.The
four-class dataset contained Normal, MQTT-DOS, MQTT-FUZZ and TCP-
DOS attacks, however, the seven-class dataset involved four sub-classes of
MQTT-DoS attacks presented in this work which were:MQTT-DOS-BF1,
MQTT-DOS-BF2, MQTT-DOS-BF3 and MQTT-DOS-IAUTHS.The effec-
tiveness of the proposed feature set was validated using three fundamen-
tally different machine learning algorithms namely, AODE based on Naive
Bayes, C4.5 based on Decision Tress and MLP based on ANN. To mea-
sure the detection accuracy of normal and attack classes, the performance
of the classifiers were tested with count-based flow features and field length
features. The achieved results shows, the AODE classifier obtained the high-
est classification accuracy in detecting the attack traffic for both four-class
and seven-class datasets. The accuracy of the AODE classifier in Four-class
dataset is more than 99% and in case of Seven-class is around 88%. The
MQTT DoS attack modelling results indicate that the adversaries can cause
large scale impact with just basic access to the MQTT broker by launching
the invalid subscription flooding attack. However, the invalid authentica-
tion attacks were found to cause little impact with a single attack source
machine, as these attacks depended on a large volume of attack packets.
In addition, using a malformed CONNECT request, a high memory utiliza-
tion on broker machines was witnessed, which could be exploited during a
memory-exhaustion attacks. The DoS detection model demonstrated that
the proposed MQTT features yielded high detection capabilities, especially
when the control packet field size-length based features were selected. Hence,
the flow-level features can be effectively used in detecting DoS attacks in IoT
networks.

In [6], they demonstrated that packet-level machine learning DoS de-
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tection can accurately predict legitimate and DoS attack traffic from IoT
devices. Due to the low computing power of IoT devices, they used a lim-
ited features which is important for real-time classification. They evaluated
five different machine learning classifiers which are Random Forest, Desci-
sion Tree, K-nearest neighbor, Support vector machine with linear kernel and
Neural Network on a dataset that covers legitimate and DoS attack traffic
collected from an experimental consumer IoT devices. All five algorithms
had a test set accuracy higher than 0.99. These introductory results trigger
additional research into machine learning anomaly detection to protect net-
works from vulnerable IoT devices.

Authors in [7] introduced Bot-IoT, a novel dataset that includes both typ-
ical IoT-related and other network traffic, as well as several types of botnet-
related attack traffic. This dataset was created on a realistic testbed and
labeled, with the label features indicating an attack flow, an attack category,
and a subcategory for multiclass classification goals. Additional features
were generated to improve the predictive abilities of the trained classifiers
on this model. A subset of the original dataset, consisting of the 10-best
features, was created by statistical analysis.They chose Support Vector Ma-
chine (SVM), a Recurring Neural Network (RNN) and a Long Short-Term
Memory RNN (LSTM-RNN) as classfiers to detect the attacks. Then, four
metrics were used to compare the effectiveness of the dataset, specifically
Accuracy, Precision, Recall, Fall-out. The achieved result indicates that the
highest accuracy from the SVM model that was trained on the full-featured
dataset which is more than 99%, while the lowest accuracy from the SVM
model of the 10-best feature dataset version which was around 88%

We presented a new balanced flow-based dataset which is labeled for three
different categories of DoS attacks and legitimate flows. Unlike [6] and [4]
which they extracted packet-level features, we provide a more flexible flow-
level features. All the investigations [4], [5], [6] and [7] evaluated offline
machine learning models on their dataset, however, in this thesis work, not
only we proposed an offline machine learning solution but also a new online
machine learning solution which can validate flow-level features in different
flow durations were presented. Therefore, it allows us to tune the number of
packets that need to be captured and it lets us trade-off the flow length with
accuracy.
In the next section, we compared the similar datasets to our proposed dataset.
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2.2 Comparison different datasets
In this section, we compare 6 different IoT datasets contains attacks and

malicious traffic found in the literature with our proposed dataset.
In these years, different datasets have been used to train different machine
learning models. Particularly, deep learning methods are used to detect
cyber-attacks by training with the KDDCUP99 dataset, and for developing
an intrusion detection system, random forest, decision tree, and gradient
boost algorithms are trained with the KDDCUP99. Although KDDCUP99
is extensively used in cyber-security, it is not a suitable fit for IoT scenarios
because it was not designed for this purpose and includes attacks on conven-
tional ICT networks, which are difficult to adapt to IoT contexts [4].
In UNSW-NB15 dataset, HTTP, DNS traffics which are generated by IoT
sensors are publicly available, however, MQTT traffics is not available [8],
[4].
IoT-23 is used to compare the effectiveness of classification algorithms on
detecting anomalies and legitimate traffic in the IoT context. This dataset
involves DNS traffic focused on Mirai, Torii, IoT Trojan, Kenjiro, Okiru,
Haji me, and other botnets. Focusing only on DNS traffic is the lack of this
dataset [9].
N-BaIoT is a dataset focused on Wi-Fi communication that is used to detect
and prevent botnet attacks in the IoT environment [10]. Despite the fact that
the adopted datasets are particularly fascinating and diverse in this case, the
authors did not make them publicly available. As a result, the possibilities of
using them in study is quite limited [4]. Another interesting MQTT dataset
for the detection approach based on machine learning is called TON-IoT [11].
TON-IoT is publicly available, however, does not cover all MQTT packets
send and received during a connection, in other words, The authentication
process for MQTT and TCP, which involves the sensor and broker, is miss-
ing from the dataset. As a result, the dataset is called incomplete because
the authentication and disconnection phases are essential parts of IoT device
communications [4].
Another exciting dataset that contains legitimate and malicious in the IoT
context is MQTTset [4]. MQTTset is publicly available and the traffic is
MQTT-based, however, as we discussed before, the dataset features are
packet-level, not flow-level [4].
A review of the available datasets and their missing features, compared to
our proposed dataset is shown in Table 2.1.
Unlike the reported dataset, in this thesis project, we proposed a new realis-
tic MQTT-based dataset that involves flow-level features which is publically
available in both PCAP and CSV formats.
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Dataset Citation Flow-level Features Realistic Scenario Focused on IoT Focused on MQTT Compelete dataset

KDDCUP99 [12] T T F F T

UNSW-NB15 [8] T T F F T

IoT-23 [9] T T T F T

N-BaIoT [10] T T T F T

TON-ToT [11] T T T T F

MQTTset [4] F T T T T

Proposed Dataset - T T T T T

Table 2.1: Comparison different available datasets

9



Chapter 3

IoT System implementation

In this chapter, the architecture of the simulated IoT sensors and at-
tackers are explained. The fundamental step for training machine learning
models is data. If we collect reliable data, the machine learning model pre-
diction would be more accurate. Thus, it is extremely critical to generate
realistic data. In our scenario, several IoT sensors with different traffic be-
haviors were developed to generate legitimate traffic, plus different types of
DoS attackers were simulated to publish malicious traffic. In this chapter,
by describing MQTT protocol and Mosquitto broker in section 3.1 and 3.2
respectively, we explain how IoT sensors and attackers communicate with
each other. In section 3.3, development, traffic behavior, and legitimate IoT
sensors specifications are fully explained. Then, in section 3.4, the simulated
DoS-based attackers are completely described.

3.1 MQTT Protocol
MQTT is a lightweight messaging protocol that operates with a bro-

ker. MQTT is based on the publish-subscribe architecture and runs on top
of Transmission Control Protocol / Internet Protocol(TCP/IP) for reliable
message delivery. The MQTT protocol was created by Andy Stanford-Clark
and Arlen Nipper in 1999. It is currently in the OASIS (Organization for the
Advancement of Structured Information Standards) standard [13]. Due to
the simple model and low bandwidth utilization, MQTT was initially created
for remote site communication and is now widely utilized in IoT applications.
In MQTT, messages are exchanged through the brokers using MQTT con-
trol packets [13]. The most significant control packet types are CONNECT,
CONNACK, PUBLISH, PUBACK, SUBSCRIBE, SUBACK and DISCON-
NECT. The clients report their status to the broker using keep-alive messages
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Figure 3.1: Publish-subscribe architecture

Source: [1]

by exchanging PINGREQ (request) and PINGRESP (response) control pack-
ets [5]. The MQTT protocol also supports three levels of Quality of Service
(QoS) that could be used by publishers based on message delivery demands.
QoS levels are shown in table 3.1 [13].
As demonstrated in Figure 3.1 the publishers send the generated data to the
MQTT broker. The published data is specified by a topic that is subscribed
by subscribers to receive notifications from the broker whenever new data is
sent to the topic; hence, subscribers receive the data through the broker.

MQTT topic example:
apartment/room/smartbulb/state

11



QoS Types Message Guarantee behaviour

QoS 0 At most once
Messages sent to all subscribers
once, no retries and no acknowl-
edgment from receivers

QoS 1 At least once
Messages sent to all subscribers at
least once and is acknowledged by
receivers

QoS 2 Excatly once

Messages sent to all subscribers ex-
actly once, no duplicates, extra ac-
knowledgement messages to avoid
duplicate messages and guaranteed
message delivery

Table 3.1: MQTT QoS Types

3.2 Mosquitto broker
In this project, Mosquitto version 2.0.6 is used as the message broker.

Eclipse Mosquitto is an open-source message broker that implements the
MQTT protocol. Mosquitto is lightweight and is suitable for use on all
devices from low-power single-board computers to full servers.
The Mosquitto project also includes a C library for creating MQTT clients,
as well as the widely used command-line MQTT clients mosquitto pub and
mosquitto sub [14].

3.3 IoT sensors
In this section, the general structure of the developed IoT sensors is pre-

sented. In this project, we simulated a Smart Home scenario. Smart homes
are defined as homes that can meet the demands of residents with the help of
the devices used, making their life easier and providing a safer, more comfort-
able, and cost-effective living environment [15]. IoT devices in smart homes
must have several features such as power-efficient and low-cost. We were
taken into account these features when IoT devices were selected for this sce-
nario. In our scenario, as Figure 3.2 shows, a smart plug, smart thermostat,
smart bulb, smart TV, smart vacuum cleaner, smart door lock, smart motion
detector, and smart fire detector which are the most important appliances in
the homes were developed.
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The simulated IoT sensors publish the data to the MQTT topic through
the Mosquitto broker and at the same time, attackers try to saturate the
Mosquitto broker resources. In section 3.3.1, the development of the sen-
sors is explained, then we study traffic behaviors and more details about the
simulated IoT sensors in sections 3.3.2 and 3.3.3 respectively.

Figure 3.2: IoT sensors architecture

3.3.1 Development

In this study, IoT sensors and attackers were developed by Python 3.9
programming language. We used Paho-MQTT library version 1.5.1 which
is available for the Python. This library includes a client class that allows
devices to connect to an MQTT broker for publishing messages or subscrib-
ing to a particular MQTT topic. The Paho-MQTT client class has several
methods. The main methods are: connect(), disconnect(), subscribe(), un-
subscribe() and publish(). The first step of publishing or subscribing is a
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connection to the broker which connect() method handles. Once you have a
connection to the broker, you can start to publish messages with publish()
method. subscribe() and unsubscribe() methods are used for subscribing and
unsubscribing an MQTT topic.

3.3.2 Traffic behavior

Depending on the sensor’s behavior, we considered two main traffic types,
’burst’ and ’constant’.
For example, a temperature sensor publishes data of the measured tempera-
ture at predefined time intervals, e.g., every second so the traffic behavior is
constant however, a motion sensor publishes the data to the broker only when
a movement is detected; hence, the behavior is burst. Two-states sensors,
such as Smart bulb which is ON or OFF, were modeled as continuous-time
Markov chain.
A continuous-time Markov chain is a continuous stochastic process that
changes state according to an exponential random variable for each state
and then moves to another state.

3.3.3 IoT sensors specifications

In this section, the details of each simulated IoT sensor in terms of Traffic
behavior, QoS, Payload size and publish rate, are clarified.
In our smart home scenario, due to the importance of the IoT devices’ mes-
sages, we considered QoS as level 1 for all the sensors, which means messages
are published to all subscribers at least once and are acknowledged by clients.
The table 3.2 indicates the comparison between simulated IoT sensors.

3.3.3.1 Smart Plug

Smart plug is a smart sensor that it goes between the power socket and
the appliance you want to plug in. These devices are considered ‘smart’
because they can control the appliances from an app on the phones from
everywhere. The simplest smart plug feature is to turn the appliance ON
or OFF, however, our simulated Smart plug is publishing the information
about how much energy the appliance connected to it is consuming. The
publishing rate of simulated Smart plug is 8000 publishes per hour. The
application protocol is MQTT and sensor publishes the energy consumption
of the connected appliances to the "apartment/room/plug/state" MQTT
Topic. QoS is set to 1 due to the importance of the clients’ acknowledgement.
Due to the publishing the consumed energy regularly, the traffic behavior of
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the Smart plug is considered as constant. The average payload size of this
sensor is 123 Bytes.

3.3.3.2 Smart Thermostat

Another simulated sensor that publishes constantly is Smart Thermostat.
The smart thermostat measures the temperature of the place which is located
and publishes it to the "apartment/room/temp/state" topic continuously.
This developed smart sensor publishes the temperature of the place every
minute approximately. Smart Thermostat is MQTT-based and QoS is set to
1, so the messages is acknowledged by the user. The average payload size is
considered 118 bytes which is the temperature of the environment.

3.3.3.3 Smart Bulb

A smart bulb is an LED light bulb that can be configured, scheduled,
and controlled remotely. In our scenario, The traffic behavior of this MQTT-
based smart bulb is considered as Burst due to the publishing periodically.
The smart bulb publishes the state of itself which could be ON or OFF to
"apartment/room/bulb/state" topic. The average payload size is 104 bytes.
This sensor modeled as two states (ON-OFF) Continuous-time Markov chain.
The exponential parameter for transitioning from state OFF to ON varies
depending on the time of the day. This sensor is more active between 21:00
to 24:00 so we considered this time as peak-time. The exponential variable in
peak-time is set to 1/500 for changing from state OFF to ON and for going
from state ON to OFF is set to 1/480. In the other time of the day, the
exponential variable for changing the state from OFF to ON is set to 1/120
and for transitioning from state ON to OFF is 1/100. The average publish
rate for this sensor is 300 publishes per hour. By considering the first level
of QoS, messages are acknowledged by clients.

3.3.3.4 Smart TV

A smart TV is a conventional television that is connected to the Inter-
net. Smart TV allows users to stream music, videos, browsing the internet,
etc. In our scenario, we simulated an MQTT-formed smart TV that updates
the subscribers by sending in average 15 messages per hour to "apartment/-
room/tv/state" MQTT topic. The average payload size is 112 bytes which
is the state of the TV. Like Smart Bulb, Smart TV is modelled as two states
CT-Markov chain. This sensor is more active from 20:00 to 24:00 that is a
peak-time of this sensor. In peak-time, the exponential variable for changing
from OFF to ON is 1/20 and from ON to OFF is 1/18, however, in other
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times of the day, the exponential variable for changing from OFF to ON is
1/10 and from ON to OFF is considered as 1/8.

3.3.3.5 Smart Vacuum Cleaner

The smart vacuum cleaner is a smart IoT device that goes around the
home for cleaning. Our developed Smart vacuum cleaner is MQTT-based
and publishes in average 14 messages per hour to "apartment/room/vacu-
um/state" MQTT topic; hence, the traffic behavior is burst. The QoS is 1
and the average payload size which can be ON or OFF, is 113 bytes. Due
to the burst traffic behavior, this sensor is modeled as CT-Markov chain.
The peak-time of this sensor is set from 9:00 to 12:00. In peak-time, the
exponential random parameter for swapping from state OFF to ON is 1/20
and from state ON to OFF is 1/15, however, in other times of the day, the
exponential variable for changing from OFF to ON is 1/10 and from ON to
OFF is 1/8.

3.3.3.6 Smart Lock Door

It happens for everybody to forget that they whether have locked the
door or not. The smart Lock Door is a smart sensor that fits on the door.
This sensor publishes the state of the door whether locked or not periodically
to "apartment/room/lock/state" MQTT topic. The traffic behavior is burst;
SO, we modeled it as two states (Locked - Not Locked) CT-Markov chain.
The publishing rate in average is 9 publishes per hour. The peak-time of
this sensors is set from 7:00 to 9:00. In peak-time, the exponential random
parameter for switching from state OFF to ON is 1/20 and from state ON to
OFF is considered as 1/15, on the other hand, in other times of the day, the
exponential variable for changing from OFF to ON is 1/10 and from ON to
OFF is 1/8. The QoS is 1, so messages sent to all subscribers at least once
and are acknowledged by receivers. The average payload size considered 113
bytes.

3.3.3.7 Smart Motion Detector

Smart Motion Detection applies an advanced algorithm to distinguish be-
tween human and vehicular shapes in a scene and only publishes alarms when
a person or vehicle is identified. Due to the burst traffic behavior, The pub-
lishes rate of the simulated motion detector is just 1 publish per hour which
is "Motion detected" to "apartment/room/motion-detector/state" MQTT
topic. The application protocol is MQTT and the payload size is 122 Bytes.
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3.3.3.8 Smart Fire Detector

The smart fire detector publishes "Fire detected" to the "apartment/-
room/fire/state" MQTT topic when it detects the smoke. The users who
subscribe to that topic notice the alarm. The traffic behavior is burst and it
publishes 1 message per hour and the average payload size is 116 bytes.

Sensor Traffic behavior Average Rate Average Payload size Protocol QoS

Smart Plug Constant 8000 publishes/hour 123 Bytes MQTT 1

Smart Thermostat Constant 400 publishes/hour 118 Bytes MQTT 1

Smart Bulb Burst 250 publishes/hour 103 Bytes MQTT 1

Smart TV Burst 14 publishes/hour 112 Bytes MQTT 1

Smart Vaccum Cleaner Burst 13 publishes/hour 113 Bytes MQTT 1

Smart Lock Door Burst 13 publishes/hour 113 Bytes MQTT 1

Smart Motion Detector Burst 1 publish/hour 122 Bytes MQTT 1

Smart Fire Detector Burst 1 publish/hour 116 Bytes MQTT 1

Table 3.2: IoT Sensors Comparison

3.4 Attackers
A broker server’s main function is to route messages between publishers

and subscribers. In MQTT scenarios which messages are exchanged via the
message broker, DoS attacks can interrupt the broker functions. Due to the
finite resource of the brokers, saturating the broker’s resource can lead to
the server crash or message dropped. The current maximum payload size
for MQTT is 256 MB; thus broker will require more resources if they receive
messages with high payloads. An attacker could take advantage of this and
saturate client and broker resources, causing service to be denied [13].
In addition to payload size attacks, the attackers can also use the QoS levels
provided by MQTT protocol to cause DoS. In comparison to QoS levels 1
and 0, which are described in Table 3.1, messages published with QoS level
2 demand higher broker resources. The broker also holds messages which
sent with QoS level 1 and 2 until messages are delivered to the subscribed
users. With QoS level 2, attackers can send a huge quantity of messages and
seize the broker’s resources [13]. The attackers details are demonstrated in
Table 3.3. In sections 3.4.1, 3.4.2 and 3.4.3, Connect-Flood, Heavy-Flood
and Fast-Flood attackers are explained respectively.
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Sensor Protocol QoS Average Payload size Average Rate Count

Connect-Flood attack MQTT - - 5000 publishes per hour 1024

Heavy-Flood attack MQTT 2 250 MB 900000 publish per hour 1

Fast-Flood attack MQTT 2 4 B 900000 publish per hour 1

Table 3.3: Attackers Specifications

3.4.1 Connect-Flood Attack

The Attacker starts to flood the broker with CONNECT packets.
The CONNECT packet is used by the MQTT user to launch an MQTT
session with the broker and includes Broker IP address, the network port of
the broker host which connects to, and Keepalive. If there are no additional
messages being exchanged, then the client will send a PINGREQ and expect
to receive a PINGRESP from the broker for a keepalive period. This message
exchange confirms that the connection is open and working excellently.

Listing 3.1: Connect() Function

c l i e n t . connect ( " 1 72 . 2 0 . 1 0 . 2 " , port =1883 , k e epa l i v e =1000)

When the broker server gets a CONNECT packet, it examines the user
identity and other optional parameters to determine whether or not to allow
the client to connect.
Attackers publish multiple CONNECT packets with different client identifiers
which can saturate server resources [13]. We developed 1024 Connects flood
attackers that publish CONNECT packets to exhaust the mosquitto broker.
The rate of the publishes is 5000 per hour which is very high concerning the
normal legitimate device. By setting Keepalive period to 1000 seconds, the
attacker can at least occupy each connection for 1000 seconds concerning
the normal Keepalive which is 60 seconds. By increasing the keepalive value,
the exchange of PINGREQ-PINGRESP control messages increases; thus, the
broker remains occupied.

Figure 3.3: Connect-flood attack

18



3.4.2 Fast-Flood Attack

The Fast-Flood attacker publishes multiple packets with a high rate to
seize the broker’s resources. Publish rate is defined as Heavy-Flood attacker
which is 900000 per hour, however, the payload size is not as large as Heavy-
Flood payload. The Fast-Flood attacker’s QoS is defined to 2, therefore,
all the messages are guaranteed to be received by the broker and eventually
subscribed clients, as a result, higher broker resources are required.

3.4.3 Heavy-Flood Attack

The malicious user sending enormous payload messages to saturate bro-
ker and subscriber resources.
The payload up to 256 MB could be attached in the MQTT packets; there-
fore, attackers can publish multiple messages with a heavy payload size to
use the resources of both broker and subscribers who are listening to the
topic. Attackers can apply higher levels of QoS with heavy payload messages
to consume broker resources. The broker is needed to save the information
until they are given to all the subscribed clients due to the highest level of
QoS.
We defined the Heavy-Flood attacker to publish multiple large payload mes-
sages as fast as possible. The payload size is 250 MB and the publish rate
is set to the 900000 per hour. The highest QoS guaranteed that all the mes-
sages will be delivered to all subscribed. As a result, with a high rate, massive
payload and highest level of QoS, this attacker can seize the resources of the
broker.
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Chapter 4

Simulation and Dataset
generation

As we dicussed in chapter 3, It is crucial to create a reliable and realistic
dataset to train the machine learning classifiers excellently. In this chapter,
The simulation of the IoT network and the procedure of generating datasets
are fully presented. In section 4.1, we explain the tools that we used in this
experiment. Then, in section 4.2 the procedure of the simulation and the
data acquisition is clearly described. After that, the Full-Featured dataset
and cleaning the data are presented in section 4.3. In section 4.4, we explain
the feature selection method and 10-Best-Features dataset is proposed.

4.1 Tools
In this project, Wireshark was used for sniffing the network and collecting

the data. To extract TCP flows’ features, we used the Argus tool. In this
section, these tools are defined.

4.1.1 Wireshark

Wireshark is the most popular and commonly used packet analyzer, and
sniffer in the world [16]. It captures network traffic on the local network and
saves that for further investigations. Wireshark captures packet-level data of
Ethernet, Bluetooth, Wireless (IEEE.802.11), and some other technologies
[16]. A packet is a single message from any network protocol (i.e., TCP,
DNS, etc.) [17].
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4.1.2 Argus

Argus is a real-time flow monitor that is developed to make comprehen-
sive data network traffic analysis [18]. Argus is the first network flow system,
created by Carter Bullard at Georgia Tech in the early 1980s and adopted
by Carnegie Mellon’s Software Engineering Institute for cyber security in
the late 1980s. The network flow technology has become a crucial aspect of
modern cyber security [19].
A TCP flow is the end to end connection, and shows how the data flow
through the network. TCP flows cover all the packets with the same source
and destination IP and port addresses which are captured during a limited
time interval. Argus analyzes packet data and creates network flow informa-
tion. If you have packets and want to know what is happening under the
hood, argus() is a wonderful approach to look at features of the data that
packet analyzers cannot easily provide. The main benefits of using the Ar-
gus tool are to understand that how many hosts are communicating, who is
communicating with whom, how frequently is one address sending the traffic
[18].

4.2 Simulation and Data acquisition
After the developing phase of the IoT sensors and attackers, we launched

them to start simulating the Smart home scenario to gather legitimate and
malicious data. We used different devices for each actor of the simulation.
Mosquitto broker version 2.0.6 was installed on the MacBook Pro 2017, 2.3
GHz Dual-Core Intel Core i5, 8 GB of RAM which running macOS Catalina.
All the IoT sensors were simulated on a Virtual Machine with 3 GB of RAM
running Ubunto 19.10 which was installed on the MacBook Pro 2017 ( same
machine as the broker ). In terms of the attackers, Fast-Flood and Connect-
Flood were simulated on Apple iPad 2018 Quad-core 2.34 GHz CPU, 2GB
of RAM. According to the nature of the Heavy-Flood attacker, more RAM
was required to publish massive payload continuously; thus, we implemented
Heavy-Flood on Asus VivoBook S15 2019, Core i7-8565U CPU, 16 GB of
RAM, which running windows 10. Wireshark application was installed on
the MacBook Pro 2017 to sniffed the network. For connecting these devices,
we considered a Local Area Network, All these devices were connected wire-
lessly to the same network. The IP addresses are shown in Table 4.1. After
implementing the simulated sensors and broker, we started the experiment
by launching the Mosquitto broker and Wireshark to do the eavesdropping.
After 1 minute, the IoT sensors started to publish legitimate traffic to the
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MQTT topics through the Mosquitto broker. After 10 minutes of launching
the IoT sensors, Heavy-Flood and Fast-Flood were flooding the messages
through the Mosquitto broker simultaneously for approximately 1 hour and
30 minutes. Then, we disconnected the Heavy-Flood and Fast-Flood; further-
more, Connect-Flood was launched for almost 1 hour to flood CONNECT
packets to the broker. As we explained in chapter 3, 1024 Connect-Flood at-
tackers were simulated; hence, due to the high number of Connect-Flood at-
tackers in comparison to Heavy-Flood and Fast-Flood attackers, we launched
it much less time as opposed to other types of attackers. For collecting more
data, we activated Heavy-Flood and Fast-Flood again for almost 1 hour. Af-
ter 3 hours, the broker, and all the sensors were deactivated. Table 4.1 shows
our testbed details.

Device Type IP address Time of Experiment

MacBook Pro Mosquitto broker 172.20.10.2 3 hours

Apple iPad Fast-Flood attack 172.20.10.3 2 hours and 30 minutes

Apple iPad Connect-Flood attack 172.20.10.3 1 hour

Asus VivoBook Heavy-Flood attack 172.20.10.4 2 hours and 30 minutes

Ubunto virtual machine Legitimate sensors 172.20.10.5 3 hours

Table 4.1: Testbed details

After terminating the simulation, the PCAP file was exported from Wire-
shark. The PCAP file contained all the network’s packets which were le-
gitimate traffic and malicious traffic. Since our study was flow-level, not
packet-level, the Argus tool was used to generate the relevant network flows.
The PCAP file was imported to the Argus tool to convert to Flows. Since
TCP flows are captured during a limited time interval, we defined 5 different
flow durations which are 5, 10, 25, 30, and 60 seconds. After collecting the
network’s flow for each duration, we extracted flow-level features from the
Argus file and converted them to the CSV file for further investigations.
Figure 4.1 presents the procedure of extracting TCP flows. The final features
provided by Argus during the network flow extraction process are listed in
Table 4.2 and Table 4.3.
In the next chapter, our proposed datasets are discussed.
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Figure 4.1: Feature extraction process

4.3 Full-Featured Dataset
After collecting all the Flow-level features, the Full-Featured dataset was

generated. The full-Featured dataset has 44 flow aggregated features. The
size of the CSV format is 10.6 MB and there are 34036 instances in the
dataset. Due to the importance of having a reliable and realistic dataset,
we cleaned and labeled the Full-Featured dataset. In the following sections,
we discuss how we obtained cleaned Full-Featured dataset. In Table 4.2 and
Table 4.3, all the features are demonstrated.
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Number Feature Description

1 StartTime Record start time

2 LastTime Record last time

3 Flgs flow state flags seen in transaction

4 Dur record total duration

5 RunTime total active flow run time

6 IdleTime time since the last packet activity.

7 Mean average duration of aggregated records

8 StdDev standard deviation of aggregated duration times

9 Sum total accumulated durations of aggregated records

10 Min minimum duration of aggregated records

11 Max maximum duration of aggregated records

12 SrcAddr source IP addr

13 DstAddr destination IP addr

14 Proto transaction protocol

15 Sport source port number

16 Dport destination port number

17 TotPkts total transaction packet count

18 SrcPkts src -> dst packet count

19 DstPkts dst -> src packet count

20 TotBytes total transaction bytes

21 TotAppBytes total application bytes

22 SrcBytes src -> dst transaction bytes

23 DstBytes dst -> src transaction bytes

24 Loss pkts retransmitted or dropped

Table 4.2: Generated flow features
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Number Feature Description

25 SrcLoss source pkts retransmitted or dropped

26 DstLoss destination pkts retransmitted or dropped

27 pLoss percent pkts retransmitted or dropped

28 Retrans pkts retransmitted

29 SrcRetra source pkts retransmitted

30 DstRetra destination pkts retransmitted

31 pRetran percent pkts retransmitted

32 Rate pkts per second

33 SrcRate source pkts per second

34 DstRate destination pkts per second

35 Dir direction of transaction

36 SintPkt source interpacket arrival time (mSec)

37 SintDist source interpacket arrival time distribution

38 State transaction state

39 SrcWin source TCP window advertisement

40 DstWin destination TCP window advertisement

41 TcpRtt TCP connection setup round-trip time

42 SynAck the time between the SYN and the SYN-ACK packets

43 AckDat the time between the SYN-ACK and the ACK packets

44 Load bits per second

Table 4.3: Generated flow features

4.3.1 Labeling

For further analyzing the dataset, we had to label each flow.
as we discussed before, our dataset contains legitimate and malicious flows;
hence, firstly we labelled them based on the attack or non-attack for binary
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classification, secondly, each flow was labelled based on the types of attack,
which are Heavy-Flood, Connect-Flood, Fast-Flood and legitimate flow for
multi-value classification.
For binary classification, we performed labelling based on the IP addresses
of the publishers. As we discussed before, the IP addresses of the legiti-
mate sensors have been specified, therefore, all the sensors with source IP
172.20.10.5 were considered as a non-attack flow and labelled as 2. All the
other flows were considered as an attack flow and we labelled them as 0. In
the case of multi-value classification, we labelled the flows based on the IP
addresses, however, because Connect-Flood and Fast-Flood were publishing
from the same device, we had to consider the start time of the sensors for
labelling them correctly.
Labelling of binary and multi-value classifications are demonstrated in table
4.4 and table 4.5.

Type Class

Malicious traffic 0

Legitimate traffic 1

Table 4.4: Binary classification

Type Class

Heavy-Flood traffic 0

Fast-Flood traffic 1

Connect-Flood traffic 2

Legitimate traffic 3

Table 4.5: Multi-value classification

4.3.2 Balancing

A balanced dataset includes an equal or approximately equal number of
samples from the legitimate and malicious class. For achieving a more reli-
able, accurate and balanced detection rate machine learning model, we must
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have a balanced dataset for our classification model. Due to the different
number of sensors and different rate of publishing, our dataset was not bal-
anced. As figure 4.2 illustrated, In the case of multi-value classification, the
number of Connect-Flood attack was more than the others and Fast-Flood
was the least one. 240 flows of each label were chosen randomly to have the
balanced dataset.

Figure 4.2: Unbalnced dataset - Multi-value classifcation

Figure 4.3: Balanced dataset - Multi-value classifcation

The Full-Featured dataset was unbalanced in Binary classification, there-
fore, we chose 500 samples of each label randomly to create the balanced
dataset.
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Figure 4.4: Unbalnced dataset - Binary classifcation

Figure 4.5: Balanced dataset - Binary classifcation

4.3.3 Label Encoding

Label encoding is the process of converting labels into the numeric form
so that they can be read by machines. Machine learning algorithms can make
better decisions about how those labels should be used. It is an essential pre-
processing step for the structured dataset in supervised learning.
The representation of categorical data can be more expressive with a one-hot
encoding. Many machine learning algorithms are unable to operate directly
with categorical data. The categories must be numerically transformed [20].
In our Full-Featured dataset, "State" and "Flags" were presented categor-
ically, hence, we applied one-hot encoding to extract numerically features
from them.
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4.3.4 Redundant features elimination

In the labeling procedure, we used "StartTime", "LastTime", "SrcAddr",
"DstAddr" features to label the data; thus, after labeling all of them were
removed from dataset. "sport" and "dport" which was fixed for all the flows
were eliminated. Due to the high number of missed values, we removed
"SIntPkt", "SIntDist", "SrcWin" and "DstWin".

The details of the Full-Featured datasets are demonstrated in table 4.6.

Dataset Features Instances CSV size

Full-Featured - Before cleaning 44 34036 10.6 MB

Full-Featured Multi-value 37 960 266 KB

Full-Featured Binary 37 1000 201 KB

Table 4.6: Full-Featured datasets

4.4 Feature Selection
Feature selection is a fundamental concept in machine learning that has a

significant impact on the model’s performance. Feature selection can reduce
the training time and improve the accuracy of the classifiers [21]. The data
attributes that use to train the machine learning models will have a signifi-
cant impact on the achieved results. In our scenario, we performed feature
selection to reduce the number of features because reduction of the features
lead to the lower machine learning training time and efforts. A further reason
for doing feature selection is to improve the model generalization capability.
In this work, we used Filter-based selection technique. After applying the
filter-based technique, redundant columns are filtered out from the model.
we have to choose a statistical measure that suits our data, then the module
calculates a score for each feature column. The columns are passed ranked
by their feature scores. In our scenario, because most of the data were nu-
merical and the target was categorical, Analysis of Variance (ANOVA) was
chosen as a filter-based selection method.
As Figure 4.6 shows, ANOVA is a parametric statistical hypothesis test for
determining whether the means from two or more samples of data (often
three or more) come from the same distribution or not [20]. For applying
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the ANOVA method on our dataset we used f-classif() function which is
provided by the scikit-learn library. This function can be used for feature
selection strategy, like selecting the top k most relevant features via the Se-
lectKBest class. For instance, we can define the SelectKBest class to use the
f-classif() function and select all features, then transform the train and test
sets. After that, We printed the scores for each feature to find out the 10
best features [22].

Figure 4.6: Behavior destributions

Source: [23]

4.4.1 Top-10 Best Features Dataset

After applying feature selection, we created datasets for multi-value and
binary cases with 10 best features which are obtained statistically. 10 best
features and ANOVA scores of them, for binary and multi-value classification
problems are demonstrated in Table 4.7 and Table 4.8.

30



Feature Description ANOVA Score

State-CON Reported transaction is active 1091.797346

State-FIN Reported transaction is closed 773.240791

DstRate Destination pkts per second 268.743461

SrcRate Source pkts per second 252.760566

Rate Pkts per second 172.975403

TcpRtt TCP connection setup round-trip time 133.061976

AckDat The time between the SYN-ACK and the ACK packets 130.633730

SynAck The time between the SYN and the SYN-ACK packets 120.424206

Load Bits per second 32.709531

Dur Record total duration 31.573044

Table 4.7: Top-10 Best Features dataset - Binary classification

Feature Description ANOVA Score

Flgs-e * Both Src and Dst loss/retransmission 1032.465791

Flgs-e Ethernet encapsulated flow 448.155430

DstLoss Destination pkts retransmitted or dropped 400.635048

State-FIN Reported transaction is closed 252.980545

Flgs-e s Src loss/retransmissions 248.745935

pLoss percent pkts retransmitted or dropped 207.513853

Load bits per second 159.877985

State-CON Reported transaction is active 159.767769

DstPkts src -> dst packet count 158.117338

DstBytes dst -> src transaction bytes 146.474182

Table 4.8: Top-10 Best Features dataset - Multi-value classification
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Chapter 5

Machine learning models

In this chapter, we describe our proposed machine learning models which
are capable to detect and classify malicious attacks in case of multi-value and
binary classification problems.
In section 5.1 we explain the machine learning algorithms adopted in this
work. After that, In section 5.2, the performance evaluation techniques are
described. In section 5.3, we define our proposed offline and online machine
learning models. At the end of this chapter, in section 5.4, the deployment
is discussed.

5.1 Machine learning algorithms
Machine learning is a branch of artificial intelligence (AI). The main fo-

cus of machine learning is on the use of data and algorithms to learn auto-
matically without human assistance. There are two main kinds of machine
learning, supervised and unsupervised learning. Supervised learning relies on
valuable information in labeled data. Classification is the most popular task
in supervised learning, however, labeling data is costly and takes consider-
able time. Consequently, the lack of sufficient labeled data forms the main
disadvantage of supervised learning. In opposite to supervised learning, un-
supervised learning selects feature information from unlabeled data, making
it much easier to obtain training data. However, the detection performance
of unsupervised learning methods is lower than supervised learning methods
[3].
In our scenario, as we explained in chapter 4, we labeled our data based on
binary and multi-value, plus our main goal is to classify and detect attacks;
so, we have to apply classification which is a supervised learning concept.
The main classification algorithms are Random Forest, Support Vector Ma-
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chine, and K-nearest neighbor. In the following sections, these algorithms
are briefly described.

5.1.1 Random Forest

As the name implies, Random Forest is a technique that uses Ensemble
Learning and is based on the bagging algorithm. It generates as many trees
as possible on a subset of the data and then merges the results of all the
trees and the class with the most votes becomes the prediction of our model.
As a result, the overfitting problem in decision trees is reduced; thus, the
accuracy will be improved. In addition, Random Forest works very well with
both categorical and numerical features. Overfitting is a statistical modeling
error that arises when a function is too tightly fitted to a small number of
data points. Figure 5.1 shows how Random Forest algorithm combine trees
and predict the result.

Figure 5.1: Random Forest algorithm

Source: [24]

5.1.2 K-nearest neighbour

The k-nearest neighbors (KNN) algorithm is one of the simplest, super-
vised machine learning algorithm that can solve both classification and re-
gression problems. The KNN algorithm works as a majority voting mecha-
nism. It collects data from a training dataset and uses this data later to make
predictions for new records. For every new record, the k-closest records of
the training data set are defined. Based on the value of the target attribute
of the closest records, a prediction is performed for the new record.
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Figure 5.2: K-nearest neighbour algorithm

Source: [25]

As Figure 5.2 illustrates, similar data points are frequently gathered to-
gether. The KNN algorithm relies on this assumption being correct in order
to function properly. For capturing the idea of similarity, KNN calculates
distances between data points. For measuring the distances, KNN uses dif-
ferent distance metrics, however, the most common distance metric is the
Euclidean distance function which is the default in the SKlearn KNN clas-
sifier library in Python. Euclidean distance formula is shown in equation
5.1.

d(x, y) =

√√√√ n∑
n=1

(xi − yi)2 (5.1)

5.1.3 Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning algo-
rithm which can be used for both classification or regression challenges. As
Figure 5.3 shows, the support vector machine algorithm’s goal is to find a
hyperplane in an N-dimensional space (N is the number of features) that
distinguishes between data points.
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Figure 5.3: Support Vector Machine algorithm

Source: [26]

If you consider Figure 5.3, Hyperplace is a line that linearly classifies
a set of data. The margin is the distance between the hyperplane and the
nearest data point. To increase the probability that new data being classified
correctly, we have to choose a hyperplane with the greatest possible margin
between the hyperplane and any point in the training set.

5.2 Performance evaluation metrics
Evaluating the prediction performance of a supervised classification method

concerning unseen data is critical in machine learning. A machine learning
model can be trained perfectly, however without evaluation, it is not trust-
worthy. In our scenario, since our goal is to propose reliable and generalize
classifiers, we have to be cautious about final performance indexes such as
F1-score, plus we have to consider the generalization of the classifiers to avoid
overfitting or underfitting. In this section, we explain the main performance
evaluation metrics that we used to examine the performance of the classifiers.

5.2.1 Confusion matrix

One of the best ways to visualize the performance of machine learning
is the confusion matrix. Each row of the matrix describes the instances in
an actual class and each column describes the instances in a predicted class.
Regarding binary classifier, as shown in figure 5.4, the Confusion Matrix is
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defined by 4 entries. The True Positives TP and True Negatives TN describe
the correct classified instances, in our scenario, they indicate respectively
how many attacks have been correctly detected and how many are recognized
truly as legitimate flow. On the other hand, the False Positives FP and False
Negatives FN report the cases of false classification, FP contains cases in
which a legitimate flow has been detected as an attack flow, also called false
alarms, while FN indicates the number of opposite cases, i.e. those in which
an attack flow has been identified as a legitimate flow.

Figure 5.4: Confusion Matrix

5.2.2 Performance Measures

The F1 score also called the F score or F measure is a measure of clas-
sification accuracy. The F1 score is defined as the harmonic mean of the
classification precision and recall.
Precision is defined as the number of true positives divided by the number of
true positives plus the number of false positives and the definition of recall is
the number of true positives divided by the number of true positives plus the
number of false negatives. For calculating F1, we must measured Precision
and Recall from the confusion matrix as:

Precision =
TP

TP + FP
(5.2)

Recall =
TP

TP + FN
(5.3)

Then, from Precision and Recall, we can compute F1-Score:
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F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(5.4)

On the other hand, the simplest intuitive performance metric is accuracy,
which is just the ratio of properly predicted observations to all observations,
however, Accuracy is not the best choice in the real world due to the imbal-
anced datasets; hence, we decided to use F1-score as our main metric.

Accuracy =
TP + TN

TP + FP + TN + FN
(5.5)

5.2.3 Learning curves

Before describing the learning curve, we have to explain the concept of
overfitting and underfitting in machine learning. Overfitting is a statistical
modeling error that arises when a machine learning model is too tightly
fitted to the training data; therefore, the machine learning performance on
training data is very well, however, the performance is poor in case of the
unseen data. Specifically, overfitting happens if the model shows low bias but
high variance. On the other hand, underfitting is a concept that indicates
a model that cannot model the training data and cannot generalize to new
data. intuitively, underfitting occurs if the model or algorithm shows low
variance but high bias. Underfitting is often a result of an excessively simple
model. One of the best tool in machine learning to diagnose overfitiing and
underfitting is learning curve. Learning curves allow us to diagnose bias and
variance in supervised learning models. They show the relationship between
training set size and the chosen evaluation metric (e.g. F1-score, accuracy,
etc.) on the training and validation sets. Generally, by increasing the number
of training samples, the performance of the model improves. Learning curves
can be used to determine how well a model can generalize to new data and
to determine if the model has learned everything it can from the dataset. As
Figure 5.5 shows, in a Good-fitted model, by increasing the training samples
the cross-validation score improving and at the end, the training score and
cross-validation score converged together.
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Figure 5.5: Good-fitted model Learning curve

Source: [27]

5.3 Machine learning models
In this section, we describe our proposed online and offline machine learn-

ing models. Online machine learning is a technique of machine learning in
which data becomes available in consecutive series. Online machine learning
is used to find the best classifier for future data at each step, on the other
hand, offline machine learning techniques recommend the best classifier by
learning on the entire training dataset.In section 5.3.1, we explain how we
trained the offline classifiers, and in section 5.3.2 the online machine learning
models are described.

5.3.1 Offline machine learning models

In offline machine learning, we considered the entire datasets for vali-
dating the classifiers. The maximum flow duration in entire datasets is 60
seconds. We trained Random Forest, KNN and SVMmodels on Full-Features
and 10-Best Features datasets. Scikit-learn library were used for training and
validating the classifiers. The classifiers were trained on a train set which
was 70% of the dataset then they evaluated on the remaining part which was
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30% of the dataset. Our proposed offline machine learning models are capa-
ble to detect and classify malicious and legitimate traffic in case of binary,
and classify attack categories in a multi-value problem.

5.3.2 Online machine learning models

In cyber-attack detection, it is crucial to detect malicious attacks at dif-
ferent moments of time; ergo, online machine learning detectors are able
to solve this problem. In our scenario, as the anomaly TCP packets were
publishing to the broker consecutively, we proposed online machine learning
models which are capable to detect and classify the anomalies in different
TCP flow durations, from flows truncated up to 5 seconds to 60 seconds
flow duration. As we defined before, TCP flows contain TCP packets with
the same source and destination IP and port addresses which are captured
during a limited time interval. For instance, imagine a sensitive applica-
tion that desires to detect the ongoing attacks promptly or an application
that requires to classify attacks at least in 60 seconds. Our proposed cyber-
attack detector can be located on the edge of network to detect the malicous
attack in different flow durations. The main advantage of this classifier is
the ability to detect attack in just 5 seconds. For implementing the online
machine learning classifiers, we considered three main ranges for TCP flow
durations as a threshold which are low-range, mid-range, and high-range.
low-range contains 5 and 10 seconds, mid-range is 25 and 30 seconds, and
high-range is 60 seconds. We trained three main classifiers, Random Forest,
Support Vector Machine, and K-nearest neighbor on Full-Featured and Top
10-Best-Features datasets to predict different classes in case of binary and
multi-value classifications in each flow duration threshold. In this project,
60 seconds flow duration was considered for training the classifiers because
by nature, DoS attacks have relatively longer durations; thus, in 60 seconds
the flow features would reach statistical stability. To notice the trade-off be-
tween accuracy and flow durations, we decided to evaluate our models on 5,
10, 25, 30, and 60 seconds flow durations. For examining the accuracy of our
model in 60 seconds, the dataset was split into train set and test set. The
classifiers were trained on a train set which was 70% of the dataset and then
they evaluated on the remaining part which was 30% of the dataset.
We proposed a reliable classifier for each flow duration threshold which can
be used depends on the application. For implementing the ML models, we
used Scikit-learn machine learning library which is availabe for Python pro-
gramming language, and to interpret the plots, Matplotlib and Seaborn were
used. In the next chapter the results of the online machine learning models
are discussed.
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5.4 Deployment
In this section, the deployment of our proposed classifiers on the 5G net-

work is described. 5G is a brand-new cellular network that seeks to achieve
massive gains in quality of service (QoS), such as higher throughput and
reduced latency [28]. Multi Access Edge computing (MEC) is a way of gath-
ering, storing, processing, and analyzing data close to the client, rather than
in a centralized data-processing center [29]. As Figure 5.6 shows, Edge com-
puting analyzes data from IoT devices at the edge of the local network before
sending them to the main server; thus, it reduces latency and improves re-
liability. In our scenario, there are many advantages to install our proposed
classifiers on the edge of the network. By implementing our proposed clas-
sifiers on the Edge of the local network, due to proximity to the end-users,
classifiers can detect and classify malicious attacks with minimal latency in
comparison to the main data center, plus there is no need to filter out other
networks traffic. In addition, our classifiers were trained on the selected
features; therefore, they do not required too much computation power. For
instance, in a sensitive-delay application that is connected to the 5G network,
in case of a DoS attack, our proposed online classifier which is located on the
Edge of the network can detect an attack in real-time with lower latency in
comparison to attack-detection installed on the cloud.

Figure 5.6: Deployment
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Chapter 6

Results

In this chapter, we explain the achieved results of the binary and multi-
value classification by applying machine learning algorithms on the Full-
Featured and 10-Best Features datasets. In section 6.1, we discuss the offline
machine learning models’ results, then, in section 6.2, the results of online
machine learning models are fully described.

6.1 Offline machine learning results
As we discussed in Chapter 5, RF, KNN, and SVM classifiers were trained

on 70% of the Full-Featured and 10-Best Features datasets, then they evalu-
ated on 30% of the Full-Featured and 10-Best Features datasets. In this case,
due to the offline classification, the flow duration is considered as maximum
which is 60 seconds. The multi-value classification and binary classification
results are described in sections 6.1.1 and 6.1.2 respectively. In Table 6.1,
offline machine learning results are shown.

6.1.1 Multi-value classification

In the case of multi-value classification, the results of the offline classifiers
which are evaluated on the Full-Featured dataset indicate that Random For-
est and KNN have the highest score with a 0.95 F1-score, and SVM is able
to detect and classify attack categories with a 0.86 F1-score; thus, in this
case, RF and KNN are the best classifiers, however, the results of the offline
classifiers which are evaluated on the 10-Best Features dataset pointed, KNN
is the best classifier with a 0.95 F1-score. RF and SVM with a 0.91 and 0.86
F1-score can detect malicious attacks. The obtained results indicate that the
KNN classifier is the best model obtained from 10-Best Features and in the
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case of the Full-Featured dataset, KNN and RF are the best models.

6.1.2 Binary classification

In the case of binary classification, the results of RF and KNN from the
Full-Featured dataset are 0.996 and 0.98 F1-score, however, SVM F1-score is
0.95. In the case of 10-Best Features dataset, the best classifier is RF with
0.997, KNN, and SVM with a 0.99 and 0.84 F1-score can detect malicious
attacks.

Dataset Model Mult-value F1-Score Binary F1-score

Full-Featured

RF 0.95 0.996

SVM 0.86 0.95

KNN 0.95 0.98

10-Best Features

RF 0.91 0.997

SVM 0.86 0.84

KNN 0.95 0.99

Table 6.1: Offline machine learning results

6.2 Online machine learning results
In online machine learning, due to the longer duration of DoS attacks,

60 seconds flow durations was considered for training the classifiers; thus, in
60 seconds the flow features would reach the state of stability. To notice the
trade-off between accuracy and flow durations, we decided to evaluate our
models on 5, 10, 25, 30, and 60 seconds flow duration. In sections 6.2.1 and
6.2.2, the results of the binary and multi-value classification are explained.

6.2.1 Multi-value classification

In multi-value classification, we would like to predict Connect-Flood,
Heavy-Flood, Fast-Flood and legitimate flows which are completely described
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in chapter 4.
In the following sections, we show the machine learning obtained results from
Full-Feature dataset and 10-Best Features dataset.

6.2.1.1 Full-Featured dataset results

As it is shown in Table 6.2, our proposed classifiers are able to detect and
classify the malicious attacks in just 5 seconds flow length. Random Forest
can detect an attack with a 0.76 F1-score which is the highest between other
classifiers in 5 seconds flow duration. KNN with a 0.6 F1-score is more
accurate in comparison to SVM with a 0.55 F1-score. If you consider 10
seconds flow duration, there is an improvement in the results of the classifiers.
RF can classify with a 0.86 F1-score, KNN is able to detect attacks with a
0.68 F1-score, however, the worst one in detection is SVM with a 0.63 F1-
score. So, in 10 Seconds flow duration, Random Forest was the best classifier.
In 25 seconds flow duration, there is a huge improvement in KNN, The F1-
score of KNN increased to 0.88. SVM F1-score is improved slightly to 0.64.
Like 5 and 10 seconds, in 25 seconds, the best predictor was RF with a
0.91 F1-score. As Table 6.2 shows, in 30 seconds flow length, KNN with a
0.92 F1-score is the best classifier. The F1-score of the RF has not changed
with respect to the 25 seconds, however, there is a big enhance in SVM F1-
score which is 0.77 in 30 seconds. In 60 seconds flow length, although all
the classifiers are capable to detect attacks very well, RF and KNN with
a 0.95 F1-score predict better respect to the SVM F1-score which is 0.86.
As obtained results indicate, in this case, The best classifier in Multi-value
classification is Random Forest. As we expected, there is a trade-off between
flow durations and F1-score, in other words, by increasing the flow duration,
the F1-score improved.
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Flow duration Model F1-Score

5 Seconds

RF 0.76

SVM 0.55

KNN 0.60

10 Seconds

RF 0.86

SVM 0.63

KNN 0.68

25 Seconds

RF 0.91

SVM 0.64

KNN 0.88

30 Seconds

RF 0.91

SVM 0.77

KNN 0.92

60 Seconds

RF 0.95

SVM 0.86

KNN 0.95

Table 6.2: Multi-value online classification results - Full-Featured

6.2.1.2 10-Best Features dataset results

The results of multi-value classification which are obtained by applying
ML algorithms on 10-Best features are demonstrated in Table 6.3. The re-
sults in 5 seconds flow length show that the Random Forest model with a
0.67 F1-score is the best classifier. KNN and SVM with a 0.6 and 0.55 F1-
score respectively are able to detect malicious attack categories in 5 seconds
flow duration. In 10 seconds flow duration, RF with a 0.8 F1-score has the
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highest score. In 10 seconds flow duration, the F1-score of KNN and SVM
are close together which are 0.68 and 0.63 respectively. In 25 seconds, KNN
and RF F1-score are the same which is 0.88, however, SVM F1-score in-
creased slightly to 0.64. If you consider 30 seconds flow duration, KNN is
the best classifier with a 0.92 F1-score, however, Random Forest can detect
attack categories with a 0.89 F1-score, and F1-score for SVM is 0.77 in 30
seconds flow length. Finally, KNN is able to detect and classify with a 0.95
F1-score which is the highest score among the other classifiers in 60 seconds
flow duration. RF and SVM F1-score in 60 seconds are reported as 0.91 and
0.86 respectively.
As the achieved results pointed, Random Forest is the best classifier to detect
and classify attacks in 5 and 10 seconds flow duration, however, for detect-
ing attacks in more than 25 seconds flow duration, KNN would be the best
option.
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Flow duration Model F1-Score

5 Seconds

RF 0.67

SVM 0.55

KNN 0.60

10 Seconds

RF 0.80

SVM 0.63

KNN 0.68

25 Seconds

RF 0.88

SVM 0.64

KNN 0.88

30 Seconds

RF 0.89

SVM 0.77

KNN 0.92

60 Seconds

RF 0.91

SVM 0.86

KNN 0.95

Table 6.3: Multi-value online classification results - 10 Best-Features

Generally, the classifiers were trained by the Full-Featured dataset have
higher accuracy in comparison to the classifiers that were trained by 10-Best
features. For finding the reason for the lower results after feature selection,
we plot the learning curves of the Random Forest model in 60 seconds flow
duration. We considered 60 seconds flow duration due to the stability of the
flow’s features. The F1-score of the RF in the Full-Featured dataset is 0.95
however the obtained result from 10-Best features is 0.91 F1-score. As Figure
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6.1 shows, Although the final result of the RF in the case of Full-Featured
is higher, there is an evidence of overfitting in the case of Full-Featured,
however, the learning curve of 10-Best Features (Figure 6.2) shows a good
fitting; therefore, we proposed the RF classifier which trained on 10 Best
Features as the best classifier for 60 seconds flow duration.

Figure 6.1: RF learning curve - Multi-value - Full-Featured

Figure 6.2: RF learning curve - Multi-value - 10 Best-Features
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After plotting the learning curves, we demonstrate the confusion matrix
for multi-value classification to see more details of the predictions. As we
explained in chapter 4, label 0 is Heavy-Flood, 1 is labeled as Fast-Flood,
Connect-Flood is considered as label 2 and legitimate traffic is 3. In Figure
6.3, the confusion matrix of the Random Forest classifier at 60 seconds flow
duration obtained from the Full-Featured dataset is demonstrated. Legiti-
mate flows were correctly detected, there is just one error in Connect-Flood
which is labeled as Heavy-Flood incorrectly. 58 out of 65 Fast-Flood were
truly classified and there are 6 errors in Heavy-Flood which were detected as
Connect-Flood incorrectly.
The confusion matrix of the Random Forest classifier at 60 seconds flow
duration which obtained from the 10-best features dataset is shown in Fig-
ure 6.4. As the Figure shows, 17 out of 74 Connect-Flood were labeled as
legitimate flows incorrectly. 2 instances of Heavy-Flood were detected as
Connect-Flood falsely. From 81 Fast-Flood instances, 4 instances were la-
beled incorrectly as Heavy-Flood and Connect-Flood. In the case of the
legitimate flow, RF detected 75 instances correctly and just 3 instances were
classified as Connect-Flood wrongly.
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Figure 6.3: RF Confusion matrix - Multi-value - Full-Featured
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Figure 6.4: RF Confusion matrix - Multi-value - 10 Best-Features

As a final result of the Online machine learning in multi-value classifica-
tion, by increasing the duration of the flows, the accuracy of the classifiers
are improved. In Figure 6.5, The standard deviation and average score be-
tween RF, SVM, and KNN models for each flow duration is demonstrated.
As it illustrates, our proposed models can classify the attack categories and
legitimate flow in 5 seconds with an average 0.55 F1-score, however, in 60
seconds flow duration, the average F1-score is around 0.9 F1-score. Mid-
range durations F1-score are around 0.8. The results show that there is a
trade-off between flow durations and classifier accuracy.
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Figure 6.5: Average scores - online multi-value classification

6.2.2 Binary classification

In binary classification, we try to classify and detect legitimate and ma-
licious attacks.
In the following sections, we describe the results of applying ML algorithms
on Full-Featured dataset and 10-Best-Features dataset.

6.2.2.1 Full-Featured dataset results

As Table 6.4 illustrates, our classifiers can detect malicious attacks in the
case of binary classification in 5 seconds flow duration. In 5 seconds flow
duration, the Random Forest model is able to classify attacks with a 0.97
F1-score. F1-score for SVM and KNN are 0.85 and 0.66 respectively, so, the
best classifier in 5 seconds flow duration is Random Forest. In 10 seconds flow
duration, RF F1-score is 0.99 which is higher than SVM with a 0.92 F1-score
and KNN with a 0.91 F1-score. If we consider 25 seconds flow duration,
RF remains with a 0.99 F1-score however there is an improvement in the
F1-score of SVM and KNN. SVM score is 0.96 and KNN score is 0.93 in 25
seconds flow. RF and KNN are capable to classify attacks in 30 seconds flow
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duration with 0.99 and 0.97 F1-score respectively, however, SVM F1-score in
30 seconds is 0.93. In 60 seconds flow duration, all the classifiers can detect
attacks with higher accuracy. RF F1-score is 0.996 and KNN F1-score jump
to 0.98, SVM can detect malicious flows with a 0.95 F1-score.
Like multi-value classification, there is a trade-off between classifier accuracy
and flow duration here. In other words, as Table 6.4 shows, by increasing
the flow duration, the classifier accuracy enhances.

6.2.2.2 10-Best features dataset results

In Table 6.5, the ML results achieved from the 10 best features are shown.
As table 6.5 shows, Random Forest is the best classifiers in 5, 10, 25, 30, and
60 seconds flow duration. The F1-score of RF in 5 seconds flow duration is
0.98 and in 10 seconds duration, it increased to 0.99. In the case of 25, 30,
and 60 seconds, the F1-score is 0.997 which is the highest score. On the other
hand, in this case, the SVM is the worst classifier. The F1-score of SVM in
5 seconds flow duration is 0.74, however, in 10 seconds it reached 0.76. Then
by increasing the flow duration, the F1-score of SVM is improving, so, in
25, 30, and 60 seconds, the result is 0.78, 0.79, and 0.84 respectively. If you
consider KNN, in 5 and 10 seconds, the F1-score is 0.92 and in 25 and 30
seconds, the F1-score increased to 0.95. The highest F1-score of KNN is in
flows with 60 seconds duration.
As the obtained results show, in terms of F1-score, in all the flow durations,
RF is the best classifier. In flows in which the duration is truncated up to
5 seconds, RF is able to detect attacks with a 0.98 score, however, in longer
flows, the accuracy of the classifier is better.
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Flow duration Model F1-Score

5 Seconds

RF 0.97

SVM 0.85

KNN 0.66

10 Seconds

RF 0.99

SVM 0.92

KNN 0.91

25 Seconds

RF 0.99

SVM 0.96

KNN 0.93

30 Seconds

RF 0.99

SVM 0.93

KNN 0.97

60 Seconds

RF 0.996

SVM 0.95

KNN 0.98

Table 6.4: Binary online classification results - Full-Featured
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Flow duration Model F1-Score

5 Seconds

RF 0.98

SVM 0.74

KNN 0.92

10 Seconds

RF 0.99

SVM 0.76

KNN 0.92

25 Seconds

RF 0.997

SVM 0.78

KNN 0.95

30 Seconds

RF 0.997

SVM 0.79

KNN 0.95

60 Seconds

RF 0.997

SVM 0.84

KNN 0.99

Table 6.5: Binary online classification results - 10 Best-Features

If we consider 60 seconds flow duration, The obtained result of RF and
KNN from 10 best features are better than the Full-Featured dataset, how-
ever, in SVM, the F1-score is decreased from 0.95 to 0.84; hence, we plotted
the learning curves of SVM to see what happened. Figure 6.6 shows the
learning curve before feature selection and Figure 6.7 illustrates the Learn-
ing curve after feature selection. As the figures show, Although the achieved
result from the Full-Featured dataset is higher, there is an overfitting in the
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learning curve, however, the obtained result of the 10 best features is good-
fitted and there is no evidence of overfitting or underfitting. As a result, in
case of 60 seconds flow duration, SVM is the best classifier in binary classi-
fication.

Figure 6.6: SVM learning curve -Binary - Full-Featured

Figure 6.7: SVM learning curve - Binary - 10 Best-Features
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In Figure 6.8 and Figure 6.9, we show the confusion matrix for binary
classification. As discussed in chapter 4, In binary classification, we consider
label 0 as a malicious attack and label 1 as legitimate traffic. for evaluat-
ing the performance 60 seconds flow duration is considered. In Figure 6.8,
which shows the confusion matrix of the SVM model obtained from the Full-
Featured dataset, 5 attack flows are incorrectly reported as legitimate flows
and 11 legitimate flows are falsely announced as a malicious attack, however,
146 attack flows and 138 legitimate flows are correctly classified.
In Figure 6.9, the results of the SVM model which achieved from 10 Best-
Features are evaluated. As Figure 6.9 shows, 125 attack flows is correctly
classified, however 34 attack flows detected as legitimate wrongly. In this case
122 legitimate flows correctly classified, but just 19 legitimate flows detected
as attacks.

Figure 6.8: SVM Confusion matrix - Binary - Full-Featured
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Figure 6.9: SVM Confusion matrix - Binary - 10 Best-Features

The standard deviation and average scores of Machine learning models
for each flow duration in case of binary classification is shown in Figure 6.10.
As the results are shown, there is a trade-off between flow durations and
accuracy of the predictions. Our classifiers can detect the malicious attack
in 5 seconds with a higher than 0.85 F1-score, however, if we go around 60
seconds, we can reach a 0.99 F1-score.
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Figure 6.10: Average scores - online binary classification
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Chapter 7

Conclusion and Future works

7.1 Conclusion
The main goal of this thesis was detect and classify DoS attacks for

MQTT sensor networks. Therefore, we simulated a smart home scenario
contains eight Internet of Things sensors to generate legitimate traffic. To
publish malicious traffic, three different types of DoS attackers which are
Heavy-Flood, Connect-Flood, and Fast-Flood were developed. After that,
we started the simulation and sniffed the network in meantime. After cap-
turing the network packets with Wireshark, the TCP flows were extracted
by the Argus tool from the PCAP file. The first version of the dataset was
made by extracting 44 flow-level features. Then, we labeled the dataset based
on binary and multi-value classification. In binary classification we classify
malicious and legitimate flows, however in multi-value classification, our clas-
sifiers can predict each type of DoS attack and legitimate flow. After cleaning
and labeling the first version of dataset, the Full-Featured dataset was gen-
erated with 34 flow-level features. Then, we performed the ANOVA features
selection method to have more accurate and comprehensive machine learning
models. By applying ANOVA, we obtained 10 best features to make the 10
Best-Features dataset. Afterward, Random Forest, K-nearest neighbor, and
Support Vector Machine algorithms were trained with the Full-Featured and
10-Best Features dataset to achieve the offline and online machine learning
models. After evaluating the classifiers on the entire dataset as an offline
machine learning, we tested the online classifiers on different flow durations,
to notice the trade-off between flow durations and classifiers’ accuracy. Then,
we evaluated classifiers performance by using Confusion Matrix and Learning
curves.
The results obtained indicate that our online classifiers can detect and classify
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DoS attacks in binary and multi-value cases within different flow durations,
however, by increasing the flow durations, we achieve more accurate results.
After evaluating the performances of all algorithms we have proposed:

• Binary Classifier, we have chosen SVM as the best classifier which
can detect and classify in 5 seconds flow duration with a 0.74 F1-score
and in 60 seconds flow duration with a 0.84 F1-score.

• Multi-value Classifier, In multi-value classification, depends on the
application, if higher accuracy is required, we suggest the RF classifier
which is able to classify attacks with a 0.91 F1-score at 60 seconds flow
duration. On the other hand, in the case of delay-sensitive applica-
tions, our proposed RF classifier can detect an attack in 5 seconds flow
duration with a 0.67 F1-score.

7.2 Future works
In this section, we explain the possible extension of this thesis work.

• In this project, we considered smart home scenario for detecting the
DoS attacks, however, automated transportation, smart energy man-
agement systems, smart cities can be taken into account.

• Another possible extension of this work could be the diversity of at-
tacks. In this project, we detect and classify 3 types of DoS attacks,
however, Phishing or Man in the middle attacks could be considered as
future works.

• In this thesis work, we trained RF, KNN, and SVM as classification al-
gorithms; however, applying Deep learning algorithms on our proposed
datasets can be taken into account as an extension of this work.

• In online classification, we detect the DoS attack in different flow du-
rations; however, another online classifier could be added to classify
attacks after receiving different number of packets in each flow.

• Other future works could be the reaction of the broker after detecting
the malicious attack. For instance, when the attacker is detected, the
broker can deactivate it.
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