
 

 

 

 

 

 

 

 

 

 

 

EXECUTIVE SUMMARY OF THE THESIS 

Shaping the stationary state distribution via state-feedback 

and the scenario approach 

TESI MAGISTRALE IN AUTOMATION AND CONTROL ENGINEERING – INGEGNERIA 

DELL’AUTOMAZIONE 

AUTHOR: GIULIO SALIZZONI 

ADVISOR: SIMONE GARATTI 

ACADEMIC YEAR: 202O-2021 

 

 

 

1. Introduction 

The subject of study is discrete-time time-invariant 

linear system which is affected by a stationary 

disturbance. It is described by the following 

equation: 
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑑𝑘 

 The aim is to design a method to develop a state-

feedback controller while optimizing a certain 

performance, set by the user. The state and the 

input must satisfy some probabilistic constraints 

when the system is operating in stationary 

conditions. 

The path followed is similar to the one proposed in 

[1], but with substantial differences in the 

assumptions and in the controller. 

 

2. Problem formulation 

The problem defined is a chance-constrained 

optimization program. The controller has a 

constant term  and a feedback term, obtained 

multiplying the state for a matrix 𝐾 with a suitable 

dimension. The goal is to define a method to  

 

 

optimize these controller parameters such that the 

stationary state distribution respects the 

constraints. Unlike most previous cases where the 

scenario approach was used, both the cost function 

and the constraints are not assumed to be convex. 

The disturbance is a stationary stochastic process 

with zero mean. 

 

3. Scenario approach 

The scenario approach is a methodology, 

developed in the recent years, to deal with chance-

constrained optimization program. This type of 

problems is generally hard to solve, for both the 

presence of probabilistic constraints and the 

application to the stationary process, which 

prevents the use of analytic methods. Using the 

scenario approach, however, it is possible to 

simplify the problem, replacing the probabilistic 

constraint with the equivalent normal one. As 

demonstrated by [2], by choosing an appropriate 

sampling of the constraints it is possible to obtain 

a standard convex optimization problem. The 
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solution is then approximately feasible for the 

original set of constraints. This means that the 

number of all the original constraints that are 

violated when applying the solution found goes to 

zero with the growth of the number of samples 

used in the program. 

One of the strengths of this approach is that it does 

not require any knowledge on the probability ℙ. 

The scenarios are sampled from the system, 

according to the probability but without the 

necessity to know it. This is particularly useful as 

not always is possible to determine with precision 

the probabilistic distribution of certain variables. 

 

4. Truncation 

Even after the application of the scenario approach, 

the problem remains in practice unfeasible, due to 

the use of the stationary conditions. To calculate 

them, it is, in fact, necessary to have infinitely long 

realizations of the disturbance, while in practice 

there are only finite ones. To solve this problem, an 

approximation is introduced. Instead of the 

stationary condition process, a truncated version is 

used, calculated for the first 𝑀 terms. To 

compensate for the approximation error, it is 

necessary to introduce a tightening δ on the 

constraints and a bound on the norm of the matrix 

(𝐴 + 𝐵𝐾). Thanks to this simplification, together 

with the scenario approach, the problem is now an 

optimization program that can be solved through 

standard methods. An example of resolution is 

given in the practical case, where the matlab 

function fmincon is used. 

 

5. Norm bound 

The difference between the stationary state and the 

approximated one is: 

‖𝑥𝑘,∞ − 𝑥𝑘,𝑀‖ = ‖∑(𝐴 + 𝐵𝐾)𝑠𝑑𝑘−1−𝑠

∞

𝑠=𝑀

‖ 

In order to the difference to be negligible, 

considering the assumption made on the 

disturbance, the norm of the matrix (𝐴 + 𝐵𝐾)𝑠 has 

to go to zero as s goes to infinity. It is possible to 

apply many conditions on the norm. The simplest 

one is requiring that ‖𝐴 + 𝐵𝐾‖ < 1. Then, thanks to 

the sub-multiplicative property of the norm, all the 

matrix power will be smaller than one and tend 

towards zero. This condition is, however, too strict. 

In fact, it limits the values that the matrix 

(𝐴 + 𝐵𝐾)𝑠 also for 𝑠 < 𝑀, even if that is not 

necessary. Between the possibility explored in the 

thesis, a good one is bounding with an exponential 

the norm just for power greater than the truncation 

value. The condition is expressed as follows: 
‖(𝐴 + 𝐵𝐾)𝑡‖ ≤ 𝜆𝑡   𝑓𝑜𝑟 𝑡 = 𝑀, . . . ,2𝑀 − 1 

It is indeed sufficient to express the condition until 

a certain value, the following one are bounded 

thanks to the sub-multiplicative property. 

 

6. Violation probability 

The violation probability describes the probability 

that the scenario solutions does not fulfill the 

constraints for new realizations of the disturbance. 

In practice, it useful to evaluate the generalization 

of the scenario decision, so to determine how well 

it deals with unseen situations. It has been 

demonstrated that it is possible to bound the 

violation probability, but to do that it is necessary 

to introduce the concept of support set. 

Often, not all the scenarios used to determine the 

solution contributed to the process. In these cases, 

it is possible to remove some of the realizations and 

the program would provide the same result. A 

support set is a subsample of the original set that 

guarantees the same solution. Starting from the 

cardinality of the support set, i.e., the number of 

scenarios contained, the cardinality of the original 

set and a confidence parameter β, a bound for the 

violation probability can be determined. In case of 

convex problem, it is known that the cardinality of 

the support set will be equal, or smaller, to the 

dimension of the state. Therefore, given the 

confidence parameter which gives the probability 

with which the bound is true, it is possible to 

calculate a priori the number of scenarios needed 

to obtain a certain maximum violation probability. 

This is not possible with nonconvex constraints, 

with which a different approach has to be used. 

The cardinality of the support set can be 

determined only a posteriori, therefore the 

violation probability bound can be used when 

deciding if the solution found is satisfying or not 

and whether adopt it or not [3].  

Notice that, for our goal, the support set identified 

does not need to be the smallest one neither an 

irreducible one (i.e., no scenario can be removed 

without a change in the solution). However, the 

smaller the cardinality, the better are the 

guarantees, so a small set is preferable. 
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7. Research of the support set 

With enough time, it is always possible to find the 

smallest irreducible support set through brute 

force, but it is not, in practice, a feasible path. As 

said, it is not necessary to find the smallest 

irreducible support set, so it is possible to balance 

the quality of the result with the time needed. A 

simple solution, presented in [3] as well in other 

articles, is a simple greedy algorithm, that removes 

one scenario at a time from the original set. This 

algorithm guarantees that the support set found is 

irreducible, but it needs at least as many steps as 

the number of scenarios present in the original set. 

Also, the program has to be repeated many times 

with a great number of scenarios. 

To solve these problems, it is possible to use an 

opposite approach. The idea is to look for a support 

set adding a scenario at a time. The critical point is 

the order used to add the scenarios. A good order, 

for the problems studied, is following the distance 

of the state from the constraints, starting from the 

nearest one to the most distant. Then, when a 

support set is found, it is possible to apply the 

simple greedy algorithm to it, to cut off the 

scenarios not needed and to guarantee the 

irreducibility. This algorithm showed good 

performances. It generally uses many less steps 

than the simple greedy algorithm, it requires to 

solve simpler problem and has the same 

guarantees. 

 

 

8. Complete problem and 

solution 

The compete problem is formulated as follows: 
𝑚𝑖𝑛
𝛾,𝐾,ℎ

ℎ 

𝑠. 𝑡. ℙ𝑑𝑘
{𝑙(𝑥𝑘,∞, 𝛾 + 𝐾𝑥𝑘,∞) ≤ ℎ ∧ 𝑓(𝑥𝑘,∞, 𝛾 + 𝐾𝑥𝑘,∞)

≤ 0} ≥ 1 − 휀 
‖(𝐴 + 𝐵𝐾)𝑡‖ ≤ 𝜆𝑡   𝑓𝑜𝑟 𝑡 = 𝑀, . . . ,2𝑀 − 1 

After applying the scenario approach and the 

truncation, the new version of the problem is: 
𝑚𝑖𝑛
𝛾,𝐾,ℎ

ℎ 

𝑠. 𝑡. 𝑙(𝑥𝑘,𝑀, 𝛾 + 𝐾𝑥𝑘,𝑀) ≤ ℎ − 𝛿  

𝑓(𝑥𝑘,𝑀, 𝛾 + 𝐾𝑥𝑘,𝑀) ≤ −𝛿 

𝑥𝑘,𝑀
(𝑖)

= (𝐼 − 𝐴 − 𝐵𝐾)−1𝐵𝛾 + ∑ (𝐴 + 𝐵𝐾)𝑠𝑑𝑘−1−𝑠

𝑀−1

𝑠=0

 

𝑖 = 1, … , 𝑁 
‖(𝐴 + 𝐵𝐾)𝑡‖ ≤ 𝜆𝑡   𝑓𝑜𝑟 𝑡 = 𝑀, . . . ,2𝑀 − 1 

 

 

Given a solution (𝛾𝑀, 𝐾𝑀, ℎ𝑀) and considering a 

cost function dependent only on the controller 

parameters (this condition is not mandatory, but it 

is useful to simplify the calculous and the 

notations), then it is guaranteed that: 

ℙ𝑑𝑘

𝑁 {ℙ𝑑𝑘
{𝑓(𝑥𝑘,∞, 𝛾 + 𝐾𝑥𝑘,∞) > 0} ≤ 휀(𝑠𝑀) +

𝜒𝑀

𝛿
}

≥ 1 − 𝛽 

𝑠𝑀 is the cardinality of the support set and 𝜒𝑀 is a 

parameter dependent on the difference between 

the stationary process and the truncated one, and 

therefore on the truncation value M and the norm 

bound exponential 𝜆. 

In practice, the probability that the optimal 

controller parameter found are not suitable for a 

realization of the disturbance, coherent with the 

probability distribution, is smaller than a term 

evaluated. 휀(𝑠𝑀) depends one the number of 

scenarios used, the cardinality of the support set 

found and the confidence parameter 𝛽. 𝜒𝑀 𝛿⁄  

depends on the approximation of the stationary 

process, the bound on the norm and the tightening 

of the constraints. We can guarantee this with a 

probability greater than 1 − 𝛽. Since the 

dependence of 휀(𝑠𝑀) on 𝛽 is logarithmic, it is 

possible to choose a very low value for the 

confidence parameter, making the inequality true 

in almost all the cases, without great repercussion. 

 

9. Choice of the parameters 

There are many tunable parameters, giving more 

freedom to the user but also increasing the choice 

complexity. In some cases, the number of scenarios 

N and the truncation value M are limited by the 

data available. This can simplify a lot the decision 

process, but that is not always the case. Also the 

confidence parameter 𝛽 can be given, but, even if it 

is not, it is the easiest to tune, since its value can be 

assigned after having found the solution. The other 

parameters to assess are 𝜆 and 𝛿. If N and M are 

given, it only necessary to balance the two values. 

If, for example, 𝛿 can not be too big, maybe because 

the constraints are already very strict, then the 

value of 𝜆 should be quite small, to limit the value 

of 𝜒𝑀 𝛿⁄ . If even N and M must be tuned, the tuning 

becomes more sophisticated. It is necessary to 

consider the computational load, so there are 

practical limits on the value of N and M. A general 

method to decide can be given, the choice has to be 
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done based on the specific case. If the probabilistic 

distribution of the disturbance is known, and so it 

is possible to generate the realizations, a solution 

could be to do many attempts, varying the 

parameters and looking for the best combination. 

 

 

10. Simulation example 

One of the two examples brought in the thesis is an 

asymptotically stable system with two states and 

two control inputs. The state matrix and the control 

matrix are: 

𝐴 = [
0.9 −0.1
0.2 0.6

] 

𝐵 = [
1 0
0 1

] . 

The constraints are given by two parallel straight 

line, between which the state variables should stay. 

The norm bound is an exponential with coefficient 

λ. Its value and the other parameters are reported 

in the following table. 

 

Parameter Value 

Number of scenarios N=200 

Truncation value M=20 

Norm bound coefficient 𝜆 = 0.72 

Confidence parameter 𝛽 = 10−5 

 

The controller computed, using the algorithm 

developed, is: 

𝐾 = [
−0.4164 0.1609
−2.2481 −0.3233

] 

𝐴 + 𝐵𝐾 = [
0.4836 0.0609

−2.0481 0.2767
] 

𝛾 = [
0.0752
0.0394

] . 

In figure 1 it is possible to appreciate the work done 

by the controller. In orange, there are the state 

variables after M step if the disturbance 

realizations are applied without control. In blue, 

the state variables with the same disturbance 

realizations but with the developed control. 

Thanks to the controller, all the scenarios lay 

between the two constraints. The bound for the 

violation probability, calculated assuming a value 

of 0.1 for δ, is 16.52%. A test done using 10000 

scenarios (not used in the solution computation), 

shown in figure 2, has a violation percentage of 2%. 

In figure 3, it is shown the evolution of ‖(𝐴 + 𝐵𝐾)s‖ 

compared with the exponential bound applied. 

 
Figure 1: The scenarios without the control action 

(in orange) and with (in blue). The two straight 

lines are the two constraints. 

 

 
Figure 2: The test performed using several 

disturbance realizations to assess the controller 

quality 

 

 
Figure 3: The norm ‖(𝐴 + 𝐵𝐾)s‖ (in blue) and 

the exponential bound (in red and dashed).  
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11. Conclusion 

The methodology developed allows to deal with 

chance-constrained optimization problem. The 

main strength is its generality, requiring very few 

assumptions. Thanks to the use of the scenario 

approach, there is no restriction on the disturbance 

probability distribution neither assumption on its 

knowledge, and, differently from most of the other 

cases, convexity of the cost function and the 

constraints is not required. Also, thanks to the use 

of a state-feedback controller, there is no 

assumption on the stability of the state matrix. The 

user has a lot of personalization possibility, due to 

the many tunable parameters, allowing a better 

adaptation to the specific case. 
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Abstract 

The goal of this work is that of designing a state feedback controller for a discrete-

time time-invariant linear system, so as to optimize a given cost function while 

shaping the stationary state distribution to satisfy a probabilistic constraint. 

Specifically, we consider a system affected by a disturbance described as a strictly 

stationary stochastic process, and subject to nonconvex probabilistic constraints to its 

state variables and control inputs. These requirements are synthesized in a chance-

constrained optimization program, where the optimization variables are the 

controller parameters. In recent years, a new methodology has been developed to 

solve this type of problems, which are otherwise very hard to assess. It is called the 

scenario approach and it has the merit of transforming the chance-constrained 

problem to a standard problem, more precisely the probabilistic constraints are 

substituted with a finite number of deterministic constraints corresponding to a 

certain number of randomly selected realizations of the disturbance. In this way, the 

computational burden is kept moderate. At the same time, however, the approach is 

complemented by a solid theory that keeps the approximation under control and 

provides a quantification of the feasibility of the obtained solution for the original 

probability constraint. In the present setup, however, the scenario approach alone is 

not sufficient to make the problem solvable, because it would require realizations of 

infinite length of the disturbance to reconstruct the stationary state. It is necessary 

thus to apply a truncation, to make the program feasible, and a tightening on the 

constraints, to compensate for the approximation introduced. The main contribution 

of this thesis is to account for all these elements and provide a non-trivial extension 

of the theory of the scenario approach that applies to the present non-standard setup. 

In addition to the theoretical part, a numerical example, together with the algorithm 

to solve it, is presented in the final part of the thesis. 

 

 

Key-words: stochastic linear system, state feedback, nonconvex constraint, scenario 

approach, optimal chance-constrained control. 
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Abstract in lingua italiana 

L’obiettivo di questa tesi è realizzare un controllore con feedback di stato per un 

sistema lineare a tempo discreto e tempo invariante, in modo da ottimizzare una data 

funzione costo e, allo stesso tempo, rimodellare la distribuzione dello stato 

stazionario, così da soddisfare un vincolo probabilistico. Più precisamente, 

consideriamo un sistema affetto da un disturbo definito come un processo stocastico 

strettamente stazionario, e soggetto a un vincolo probabilistico e non convesso sulle 

variabili di stato e sull’azione di controllo. Queste richieste sono raccolte in un 

programma di ottimizzazione soggetto a vincoli probabilistici, in cui le variabili da 

ottimizzare sono i parametri del controllore. Recentemente è stata sviluppata una 

nuova metodologia per risolvere questo genere di problemi, altrimenti molto difficili 

da trattare. Si chiama approccio a scenari e ha il merito di trasformare un problema 

soggetto a vincoli probabilistici in uno standard. Più precisamente, i vincoli 

probabilistici sono sostituiti con un numero finito di vincoli deterministici, 

corrispondenti a un certo numero di realizzazioni del disturbo selezionate 

casualmente. In questo modo, il carico computazionale è mantenuto limitato. Allo 

stesso tempo, però, l’approccio è sostenuto da una solida teoria che mantiene 

l’approssimazione sotto controllo e fornisce una quantificazione, per l’iniziale vincolo 

probabilistico, dell’attuabilità della soluzione ottenuta. In questa situazione 

l’approccio a scenari non è sufficiente, da solo, per poter risolvere il problema, in 

quanto richiederebbe una realizzazione infinitamente lunga del disturbo per 

ricostruire il processo stazionario. È perciò necessario applicare un troncamento per 

rendere il programma risolvibile e, per compensare l’approssimazione, deve essere 

applicato un irrigidimento dei vincoli. Il principale contributo di questa tesi è il 

tenere in considerazione tutti questi elementi e il fornire un’estensione, non banale, 

dell’approccio a scenari che si applichi al problema presentato. In aggiunta alla parte 

teorica, è stato sviluppato un esempio numerico e un algoritmo per risolverlo, 

presentati nella parte finale della tesi. 
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Introduction 

 

General overview 

 

In this thesis we consider the control of a linear discrete-time stochastic state-space 

system operating in stationary conditions. It is assumed that the state is measurable 

and the problem is that of designing a state feedback in order to optimize a given 

cost function while satisfying some constraints on the state (which can be interpreted 

as safety operating conditions) and on the control input (to prevent undesired effects 

due to saturation). Since the system is affected by a disturbance possibly with 

unbounded support, the evolution of the state is in turn stochastic and with 

unbounded support too, and for this reason the constraints on the state and on the 

control action (which is determined by the state since it is obtained by means of a 

feedback) cannot be deterministically imposed, for each realization of the state, as 

they would lead to an unfeasible problem. We therefore consider problems in which 

the constraints are imposed in probability, that is, by requiring that the constraints 

are satisfied for a fraction of the possible realizations of the state which nevertheless 

has a fairly large probability of occurring. The problem thus can be interpreted as 

that of selecting a proper feedback so as to optimally shape the state distribution in 

order to meet the conditions expressed by the given constraints. Since the system is 

considered in stationary conditions, the distribution of the state is time invariant and 

consequently it is sufficient to impose the constraint on a generic instant of time to 

guarantee its satisfaction for the whole time interval. From the practical side, the 

state feedback is designed off-line and then applied for every time instants. Given 

that asymptotic stability must be somehow imposed to accomplish the given goals, 

the stationary conditions will then be reached in the long run, with an exponential 

rate of convergence, depending on the maximum absolute value of the close-loop 

eigenvalues. By the law of large numbers, the state and the input will satisfy the 

constraints with a frequency that will tend to the chosen level of probability.  



2 Introduction 

 

 

The shape of the stationary state distribution for control purpose is a task which is 

implicitly addressed in a number of control techniques. For example in  minimum 

variance control, [1], generalized minimum variance control, [2], [3], [4], [5], [6] and 

[7], the shaping of the stationary state distribution is directed towards the 

minimization of the variance of some suitable output signal. In these approaches, 

however, it is very difficult to achieve a finer shaping as dictated by the satisfaction 

of state/input constraints. As a matter of fact, in these approaches it is not possible to 

include constraints, which are therefore accounted for only indirectly e.g. by 

introducing a control penalization term to the variance in the cost function. Another 

approach that instead allows the user to consider constraints that are imposed in 

probability is Stochastic Model Predictive Control (SMPC, see e.g. the extensive 

survey [8]), where the feedback control is achieved by means of the so-called 

receding horizon technique. In this case however on-line computations are needed to 

design the controller and the designed controller is typically outside the realm of 

linear state-feedbacks as consider here. Moreover, an exact analysis of the stationary 

behavior of the control scheme is difficult to achieve and there are no results in the 

literature on the optimality of the SMPC solution and on the satisfaction of 

probabilistic state/input constraints in the long run. Eventually, a work this thesis is 

in the vein of is the recent publication [9], where a similar problem is addressed. [9] 

however deals with a peculiar situation, complementary to the one studied here, 

where the state is not accessible, while the disturbance is so. The consider control 

problem thus is that of designing an open-loop compensator, instead of a more 

commonly encountered in practice state feedback controller as considered here. In a 

sense, this thesis extends the methodology of [9] to the important class of state-

feedback controllers, but it is important to notice that the extension is highly 

nontrivial since state-feedback implies a number of extra difficulties. One above all, 

the dependence of the dynamics on the controller parameters naturally leads to non-

convex problems. 

The inclusion of probabilistic constraints makes the computation of the controller 

parameters a chance-constrained optimization program. This type of problem is 

particularly hard to solve, and generally it is not possible to tackle it with the 

common design approach. Recently, a new approximate method, called the scenario 

approach, has been developed, [10] and [11]. The scenario approach allows to solve 

chance-constrained problems starting from samples of the uncertain affecting the 

system. The main idea behind it is to solve the problem with deterministic 

constraints, instead of the probabilistic ones, for a finite number of instances. It has 

been proved that the solution of this problem can be then generalized to the chance-

constrained one, with guarantees on the However, in this case, the complexity 

introduced by the presence of probabilistic constraints is increased by the fact that 
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they regard the state in stationary conditions. This involves the whole disturbance 

process, with the consequence that the constraints can not be treated directly 

applying analytic methods. In this case, the use of the scenario approach alone is not 

possible, since it would require infinitely-long realizations of the disturbance to 

compute the optimization. Following a path similar to the one presented in [9], the 

problem is tackled using the scenario approach in combination with an 

approximation of the stationary process. In fact, in order to apply the scenario 

approach on the problem we are analyzing, the stationary state process has to be 

approximated with a truncated version. To compensate for the error introduced by 

the approximation, a tightening on the constraints has to be enforced. We also need 

to introduce a bound on the norm of the controlled system state matrix, to guarantee 

that the difference between the approximated state and the stationary one is lower 

than a desired value.  

The assumption on the convexity of cost functions and constraints, present in [9], is 

removed, so to include a wider range of functions. This generalization, however, 

leads to the impossibility to determine a priori a bound on the satisfaction of the 

probabilistic constraints. That bound can be still, assessed a posteriori, once the 

solution has been computed, and it can therefore be used to determine the overall 

quality of the controller and if it satisfies the user needs. 

The parameters computation is done entirely off-line, using data collected from the 

system, and the optimality of their performance is guaranteed by the method 

applied. The use of the scenario approach guarantees indeed the feasibility and the 

satisfaction of the probabilistic constraints when operating in stationary conditions. 

 

 

Contribution 

 

The problem presented in [9] has been reviewed using a state-feedback controller 

instead of the disturbance compensator. The presence of a state-feedback controller is 

generally a more common choice, since it happens with higher frequency to have the 

state measurements available than the disturbance ones. So, although for specific 

situations a disturbance compensator is the only choice, the state-feedback controller 

has a wider range of applications. The extension of the result found in [9] to state-

feedback controllers, however, faces some obstacles, such as more intricate 

dependence of the state from the controller parameters. 



4 Introduction 

 

 

The problem has also been extended to include nonconvex constraints, removing the 

assumption that required the cost function and the constraints to be convex. In this 

way, the only requirement for the functions is to be Lipschitz continuous, which is 

not a particularly restrictive condition. 

The path followed to solve the problem is similar to the one presented in [9], but 

revised and expanded to deal with the state-feedback and the nonconvexity of the 

functions. It is based on the application of the scenario approach in combination with 

an approximation of the stationary process. In practice, the problem is twice 

simplified: first it is transformed from a chance-constrained program to a standard 

one, secondly it is approximated by truncating the stationary state process. 

The main contribution is the extension of the guarantees about the solution, provided 

for the approximated scenario problem, to the original chance-constrained problem. 

To do that, it has been necessary to blend the scenario approach with an 

approximation on the stationary state. The combination of the two approaches allows 

to address the two main difficulties related to the problem, making it solvable by 

available optimization solvers. 

When the approximation was applied, it required a tightening on the constraints and 

also a limit on the difference between the stationary state process and the truncated 

one. To maintain under control the value of the difference, a bound on the norm of 

the controlled system state matrix was introduced. Since this was not necessary in 

previous works with the scenario approach, we had to study the possible typologies 

that can be used. Three different versions are presented, with an analytical 

comparison between the best two. 

The methodology developed has also been tested, simulating a practical case. The 

tests have been conducted under many different conditions, both with stable and 

unstable systems, to check that the validity of the approach and to show its 

potentialities. 

 

 

Structure 

 

In the first chapter, we formulate the problem, expressing mathematically the state 

equation and the state-feedback. Then, we present the scenario approach, together 

with the main related concepts, indispensable to understand it, and its results. In the 

final section, we try to apply the scenario approach to the problem presented. Here 
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emerges the unfeasibility of the program due to the presence of the stationary state 

process, which relies on infinitely-long realizations. 

In practice, it is not possible to collect or generate an infinite number of disturbance 

measurements, and it wouldn’t even be possible to work with that. To address this 

problem, in the second chapter we introduce an approximation of the stationary state 

process, based on a finite-long realization of the disturbance. To guarantee that the 

approximation is negligible, we introduce a condition on the controlled system, so 

that the difference between the stationary state process and the approximated one is 

kept under control. We also introduce a tightening on the constraints to compensate 

for the error caused by the process approximation. We speak about data collection 

and, in the final section, we introduce the mathematical process to extend to the 

original problem the guarantees obtained for the approximated version. 

In the third chapter, three different bounds for the norm of the controlled system 

state matrix are introduced. The second and the third are then compared, to 

evaluated which one, for the same result, is less restrictive. 

Finally, in the fourth chapter, we put together all the concepts presented in the 

previous chapters. We define the final problem and state and prove its solution 

guarantees, using the theorems and definitions given in the first and second chapters. 

In the last section, we discuss the choice of the parameters, explaining which 

considerations must be done when deciding their values. 

The fifth chapter presents three algorithm that can be used to determine a support 

set. The advantages and disadvantages of each are highlighted and used to compare 

them. 

Two simulation examples are presented in the final chapter, to show the main results 

obtained by this methodology and to give a practical example of the application of 

the theory exposed. 
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1. Chance-constrained problem and the 

scenario approach 

 

1.1 Problem formulation 

 

The thesis addresses the problem of controlling via state function the motion of a 

discrete-time time-invariant linear system affected by an additive stationary 

disturbance. The equation describing the evolution of the system is: 

𝑥𝑘+1 =  𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑑𝑘 . 1-1 

The state belongs to a real space with dimension 𝑛𝑥, so that 𝑥𝑘 ∈ ℝ𝑛𝑥, while the control 

input has dimension 𝑛𝑢, that is, 𝑢𝑘 ∈ ℝ𝑛𝑢 . The system is also affected by an additive 

stochastic disturbance for each state variable, 𝑑𝑘 ∈ ℝ𝑛𝑥. A and B are matrices of 

appropriate dimensions. 

The stochastic process 𝑑𝑘 is assumed to be strictly stationary with zero mean and 

well-defined and known second order moment. The requirement on the zero value of 

the mean is without any loss of generality. If indeed one is dealing with a stochastic 

process with a non zero mean, then one can work with an unbiased version of the 

state. Specifically, introduce the term �̅�𝑘 subject to 

�̅�𝑘+1 = 𝐴�̅�𝑘 + 𝑊�̅� , 1-2 

where �̅� = 𝔼𝑑[𝑑𝑘]. The problem can be then reformulated as the difference Δ𝑥𝑘 = 𝑥𝑘 −

�̅�𝑘, whose evolution is described by the equation 
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𝛥𝑥𝑘+1 = 𝐴𝛥𝑥𝑘 + 𝐵𝑢𝑘 + 𝛥𝑑𝑘 , 1-3 

where 𝛥𝑑𝑘 is the difference between the disturbance 𝑑𝑘 and its mean �̅� and is 

therefore a zero mean process. As is clear, controlling Δ𝑥𝑘 is completely equivalent to 

control 𝑥𝑘. 

The state is assumed to be observable and the control action is computed as a state 

feedback, obtained by multiplying the state vector with a matrix gain 𝐾, plus a 

control offset term :  

𝑢𝑘 =   +  𝐾𝑥𝑘  . 1-4 

The parameters values are taken from the sets Γ ⊂ ℝ𝑛𝑢 and K ⊂ ℝnu×nx. Combining 

the equation 1-1 with the equation 1-4, we obtain the equation for the controlled 

system: 

𝑥𝑘+1 = (𝐴 + 𝐵𝐾)𝑥𝑘 + 𝐵 + 𝑑𝑘 . 1-5 

Under the assumption made on the disturbance, for any 𝑘 ∈ ℤ there exists a 

measurable function 𝑥𝑘,∞  of the process 𝑑𝑘−1 = {. . . , 𝑑𝑘−2, 𝑑𝑘−1} such that the process 

𝑥∞ = {𝑥𝑘,∞ , k ∈ ℤ} is strictly stationary and with finite first and second order 

moments. This 𝑥𝑘,∞, referred to as the stationary state process, is unique and it is 

given by the following equation: 

𝑥𝑘,ꝏ = (𝐼 − 𝐴 − 𝐵𝐾)−1𝐵 + ∑(𝐴 + 𝐵𝐾)𝑠𝑑𝑘−1−𝑠

ꝏ

𝑠=0

 , 
1-6 

where convergence of the right-hand side is meant in the mean square sense. The 

goal is to choose the parameters  and 𝐾 in order to optimize a certain cost function 

while satisfying, at the same time, state and input probabilistic constraints. 

Specifically, the problem is formulated as a chance-constrained optimization 

program: 

min
,𝐾,ℎ

ℎ 

𝑠. 𝑡. ℙ𝑑𝑘
{𝑙(𝑥𝑘,ꝏ,  + 𝐾𝑥𝑘,ꝏ) ≤ ℎ ⋀ 𝑓(𝑥𝑘,ꝏ,  + 𝐾𝑥𝑘,ꝏ) ≤ 0} ≥ 1 − 휀. 

1-7 

𝑙(𝑥, 𝑢) is a function that associate a cost to the state/control input pair or the 

parameters that determine the control variable. 𝑓(𝑥, 𝑢) = ℝ𝑛𝑥xℝ𝑛𝑢 → ℝ is the 

constraint applied, which can bound both the state and the control input. Both the 

cost function and the constraint are evaluated in stationary conditions, when the 
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state 𝑥 is equal to 𝑥𝑘,∞ and the control action 𝑢 is the state compensator given 

applying the control equation 1-4 on the stationary state.  

Throughout we will work under the following assumption: 

Assumption (Lipschitz continuity): the cost function 𝑙(𝑥, 𝑢) and the constraint function 

𝑓(𝑥, 𝑢)  are Lipschitz continuous in 𝑥 ∈ ℝ𝑛𝑥  and in 𝑢 ∈ ℝ𝑛𝑢  with Lipschitz constant, 

respectively, 𝐿1 and 𝐿2.  

The problem presented in 1-7 is particularly hard to solve, due to the presence of 

probabilistic constraints and the fact that 𝑙(𝑥𝑘,ꝏ,  + 𝐾𝑥𝑘,ꝏ) ≤ ℎ and 𝑓(𝑥𝑘,ꝏ,  +

𝐾𝑥𝑘,ꝏ) ≤ 0 are nonconvex. It is therefore necessary to introduce an approximate 

method to address it.  

 

 

1.2 The scenario approach 

 

The scenario approach is a general methodology presented for the first time by 

Calafiore and Campi in [10] and [11]. It was introduced to solve chance-constrained 

problems where a linear objective is minimized under a probabilistic condition over 

a convex constraint, parametrized by uncertainty terms. The presence of uncertainty 

is often encountered in practical problems, making them harder to solve (in many 

cases, even NP-hard). The word scenario indicates a sampled realization of the 

uncertainty affecting the system. The idea behind this framework is to rely on a finite 

number of randomly sampled scenarios and to solve the correspondent convex 

problem only for these selected cases. In this way, the initial problem is transformed 

from a chance-constrained control design problem to a standard convex problem, 

which can be solved in one shot using standard program solvers. One of the main 

advantages of this method is the possibility to know a-priori the level of probabilistic 

guarantees of robustness as a function of the number of the scenarios used. It is 

therefore possible to know the number of scenarios needed to attain the desired level 

of robustness before computing the optimization. 

The general methodology has then been refined by many contributions, exploring 

possible applications in system and control design, [9], [12], [13]  and improving the 

quality of the results, see e.g. [14], [15], [16], [17], [18]. Nowadays, the theory that 

certifies the generalization properties has achieved great recognition and the scenario 

optimization is well understood for convex problems. Recently its validity has been 

extended also for problems subject to nonconvex constraints [19] [20] [21], which 
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were not included in the previous studies. This requires a paradigm shift, since it is 

not possible to know a-priori how many constraints will be necessary to guarantee a 

certain level of probabilistic robustness. However, the theory provides a formidable 

tool to a-posteriori assess the achieved level of robustness. 

In the following subsections, we present an abstract setup to introduce all the 

necessary elements to understand the scenario approach and then we state the 

theorem we will use for problem 1-7. 

 

 

1.2.1  Problem formulation 

 

The starting point is an optimization program, in which the goal is to minimize a 

linear objective function 𝑐𝑇𝜃. 𝜃 is the optimization variable belonging to the decision 

space 𝛩 with dimension 𝑑: 𝜃 ∈ 𝛩 ⊆ ℝ𝑑, and in the context of control problems it 

includes the parameters of the controller and possibly other additional parameters. 𝑐 

represents the weights given to the single values among the optimization parameters 

when computing the cost.  

The system our solution is supposed to operate with is affected by uncertainty, 

which is described through a set Δ and a probability distribution ℙ.  

The set Δ is a space containing all the admissible situations. Generally, Δ is a 

continuous set, so it has an infinite cardinality The probability distribution ℙ can 

have different interpretation, based on the problem given. Indeed, it can be the 

function representing the likelihood of the different situations present in Δ to occur, 

or it can be a way to attribute different value of importance to the uncertainty 

instances. The instances δ belongs to the probability space Δ and they can be infinite 

in number if the set is continuous. 

Uncertainty enters the problem because 𝜃, our optimization variable, has to address 

the satisfaction of the constraints 𝑟(𝜃, 𝛿) ≤ 0, where 𝑟(𝜃, 𝛿): 𝛩 × 𝛥 → [−∞, ∞] is a 

scalar-value function that specifies the constraints we have to enforce (multiple 

constraints can be reduced to a single scalar-value function by the use of the max 

operator, see [11]). 

A first way to address uncertainty is the worst-case approach where the satisfaction 

of the constrains is enforced for every 𝛿 ∈ 𝛥. This leads to the problem, where we 

want to minimize a linear cost function 𝑐𝑇𝜃, where 𝜃 is subject to 𝑟(𝜃, 𝛿) ≤ 0 ∀𝛿 ∈ 𝛥. 

Notice that other studies following [10] and [11] removed the necessity to have a 
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linear function to minimize, using instead a more generic cost function and requiring 

only it to be convex. Take as examples [9], discussed in the introduction, or [16]. In 

the first example the function depends on the state, the control input and the 

disturbance. In the second one, it depends on the optimization variables and the 

uncertainty parameter. 

If the set Δ is continuous, the worst-case problem is a semi-infinite optimization 

problem, because the number of optimization variables is finite while the number of 

constraints is infinite. This type of problem is generally difficult to solve and 

moreover it suffers from conservativism. As a matter of fact, in the worst-case 

approach, the constraints 𝑟(𝜃, 𝛿) ≤ 0 are enforced for all the possible values 𝛿 ∈ ∆, 

with the result that few ill situations can determine a system control with an 

extremely high cost, as it is shown in [22]. To reduce the conservatism of the worst-

case approach, probabilistic robust design has been introduced which is meant to 

compromise between minimizing the objective function and satisfying most of the 

constraints. The probabilistic relaxation can be interpreted in this way: instead of 

satisfying all the constraints, the aim becomes to satisfy all but a small fraction of 

them, whose probability is no larger than a certain level 휀 ∈ (0,1) (see [11]). 

Removing some constraints increases the number of possible solutions and therefore 

the possibility to find solutions with improved cost. It is common experience that 

even for small values of  휀 huge improvements for the cost are obtained over the 

worst-case solution. We now better formalize probabilistic robust design by 

introducing the relevant notions. 

The set of instances 𝛿 ∈ ∆ for which the constraints are not satisfied is called violation 

set, leading to the probability of violation, taken from [11]. 

Definition 1 (Probability of violation): let 𝜃 ∈ 𝛩 be given. The probability of violation of 

𝜃 is defined as: 

𝑉(𝜃) ≐ ℙ{𝛿 ∈ 𝛥: 𝑟(𝜗, 𝛿) > 0}. 

To better understand the probability of violation, it can be useful to look first at the 

case where the probability space Δ is not continuous. In this case, 𝑉(𝜃) quantifies 

how many instances, on the total, do not satisfy the associated constraints when the 

optimization variable has value 𝜃. To measure it also in the continuous case, the 

probability measure ℙ is used. 

From [11] we have also the definition of 휀-level feasibility (also called 휀-feasibility). 

Definition 2 (휀-level): let 휀 ∈ (0,1). We say that 𝜃 ∈ 𝛩 is an 휀-level robustly feasible (or 

simply 휀-level) solution, if 𝑉(𝜃) ≤ 휀. 
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In probabilistic robust optimization, the goal is to find a solution that minimize the 

objective function while guaranteeing a certain 휀-feasibility. The problem can be then 

formulated in a general way as follows: 

min
𝜃

𝑐𝑇𝜃 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ℙ{𝑟(𝜃, 𝛿) ≤ 0} ≥ 1 − 휀. 

1-8 

As 휀 increases in value, progressively more constraints are discarded and, therefore, 

the feasibility region is enlarged, increasing the number of admissible solutions.  

Problem 1-8 is also called chance-constrained problem, where the set of the neglected 

constraints is chosen in an optimal way, i.e., the constraints not considered are the 

ones which allows the greatest improvement of the solution in terms of cost. Solving 

a chance-constrained problem is, however, very hard, given that 1-8 is nonconvex 

even though 𝑟(𝜃, 𝛿) is convex in 𝜃 for all 𝛿. For this reason approximation need to be 

introduced and one effective, which allows the user to keep control on the violation, 

is the scenario approach. 

 

 

1.2.2  Scenario approach 

 

The scenario approach, as introduced at the begin of this section, is a method to deal 

with chance-constrained problems as in 1-8. The fundamental idea behind the 

scenario approach is to consider just a finite number of instance of 𝛿 (scenarios) and 

to treat them as rigid constraint, without having to deal with the probability 

distribution of the disturbance and the probabilistic constraints. In fact, one of the 

strengths of this method is that it does not require, neither assume, any knowledge 

on ℙ, [17]. The scenarios are, indeed, sampled from the mechanism generating 

uncertainty, according to the probability, but without the need to know it. If the 

probability is known, it can be used to draw the scenarios from a model, with 

potentially great savings in terms of time and resources. In both the cases, all the 

theoretical results hold independently from ℙ. 

Once N realizations of 𝛿 are extracted, say (𝛿(1), . . . , 𝛿(𝑁)), the scenario approach 

amounts to solve the following program: 
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𝑚𝑖𝑛
𝜃

𝑐𝑇𝜃  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑟(𝜃, 𝛿(𝑖)) ≤ 0  𝑖 = 1, . . . , 𝑁 

1-9 

whose solution will be denoted by 𝜃𝑁
∗ . Notice that 1-9 defines a so called family of 

decision maps, [17], which are indicated as 𝑀𝑁: 𝛥𝑁 → 𝛩, 𝑁 = 0,1,2,…, i.e., they are 

functions which go from the N-dimensional uncertainty domain 𝛥𝑁 to the decision 

space 𝛩.  In practice, a decision map indicates that the scenario solution 𝜃𝑁
∗  is a 

decision calculated from a scenario set 𝛿(1), . . . , 𝛿(𝑁) according to 1-9: 𝜃𝑁
∗ =

𝑀𝑁(𝛿(1), . . . , 𝛿(𝑁)).  

It is straightforward to verify that the decision maps 𝑀𝑁 satisfy the following 

property. 

Property 1 (consistency): for every non-negative integers N and n, and for every choice 

𝛿(1), . . . , 𝛿(𝑁) and 𝛿(𝑁+1), . . . , 𝛿(𝑁+𝑛), the following three properties hold: 

i. If 𝛿(𝑖1), . . . , 𝛿(𝑖𝑁) is a permutation of 𝛿(1), . . . , 𝛿(𝑁), then it holds that 

𝑀𝑁(𝛿(1), . . . , 𝛿(𝑁)) =𝑀𝑁(𝛿(𝑖1), . . . , 𝛿(𝑖𝑁) ); 

ii. If 𝑟(𝜃𝑁
∗ , 𝛿(𝑁+𝑖)) ≤ 0 for all i=1,…,n, then it holds that 

𝜃𝑁+𝑛
∗ = 𝑀𝑁+𝑛(𝛿(1), . . . , 𝛿(𝑁+𝑛)) = 𝑀𝑁(𝛿(1), . . . , 𝛿(𝑁)) = 𝜃𝑁

∗ ; 

iii. If 𝑟(𝜃𝑁
∗ , 𝛿(𝑁+𝑖)) > 0 for one or more i=1,…,n, then it holds that 𝜃𝑁+𝑛

∗ =

𝑀𝑁+𝑛(𝛿(1), . . . , 𝛿(𝑁+𝑛)) ≠ 𝑀𝑁(𝛿(1), . . . , 𝛿(𝑁)) = 𝜃𝑁
∗ ; 

This property is indicating that 𝑀𝑁 is permutation-invariant, so it leads to the same 

solution despite the order in which the scenarios are disposed. The second point 

demands that, given a set of scenarios and its corresponding solution, if other 

scenarios are added to a set and the scenario solution is feasible for them, then the 

solution does not change. Finally, the third point is complementary to the second: if 

the solution is not feasible for at least one of the added scenarios, then it can not be 

the solution for the enlarged scenario set. Property 1 is key for the theory of [17] to 

hold true. This theory will be presented next. Even though our discussion will be 

limited to program 1-9, notably the theory of [17] applies for the generic decision 

maps satisfying Property 1. This generality leaves open the possibility of extending 

the results of this work to algorithms other than 1-9 to approximately solve 1-7. 
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1.2.3  Support constraints and irreducible support set 

 

The solution 𝜃𝑁
∗  to problem 1-9, found using the scenario approach, depends on the 

extracted scenarios and is therefore a random variable. Consequentially, also the 

probability of violation 𝑉(𝜃𝑁
∗ ), due to its dependence on the decision, is a random 

variable.  

Now we would like to determine what guarantees can be provided on the 휀-

feasibility of the solution 𝜃𝑁
∗ . To determine the violation probability, however, it is 

first necessary to introduce the concept of support subsample and irreducible 

support subsample. 

Definition 3 (support subsample): given a sample of scenarios (𝛿(1), . . . , 𝛿(𝑁)), a support 

subsample (or support set) S is a k-tuple of elements taken from (𝛿(1), . . . , 𝛿(𝑁)), i.e., 

𝑆 = (𝛿(𝑖1), . . . , 𝛿(𝑖𝑘)) with 𝑖1 < 𝑖2 < 𝑖𝑘, whose solution is the same as the one obtained 

with the original sample: 

𝑀𝑘(𝛿(𝑖1), . . . , 𝛿(𝑖𝑘)) = 𝑀𝑁(𝛿(1), . . . , 𝛿(𝑁)) 

A support set is said to be irreducible if removing any element from it would modify 

the solution. It is important to notice that, in general, for the same sample 

𝛿(1), . . . , 𝛿(𝑁), it is possible to find more than one irreducible support set. The 

cardinality 𝑠𝑁
∗   of a support set is the number of elements and it will be called 

complexity of the support set. Following the definition given in [17], the complexity 

of 1-9 is the smallest cardinality of a support subsample and it can be equal to zero in 

the case the support set is void. 

Once the set 𝛿(1), . . . , 𝛿(𝑁) is given, it is possible to determine the complexity 

according to Definition 3, so 𝑠𝑁
∗  is an observable quantity. Finding an irreducible 

support set is a simple task, it is sufficient for example to eliminate one scenario at 

time and check whether the solution changes or not. If yes the scenario is kept in the 

support set, otherwise is discarded However, finding the one with minimal 

cardinality can be a truly formidable task, not always feasible in terms of 

computational effort.  
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Figure 1-1 The image represents a scenario program characterized by V-shaped constraints. 

If one of the two support constraints is removed, the solution improves. 

When treating convex problems, the maximum value for the complexity is known 

even before computing the solution the complexity. In fact, thanks to the convexity, 

the minimum number of support samples necessary to determine the solution is, at 

most, equal to the number of optimization variables, therefore 𝑠𝑁
∗ ≤ 𝑑. Looking to 

figure 1-1, where there are two optimization variables, it is clear that there are only 

two support constraints, all the other can be removed without affecting the solution. 

It could be possible to have just one support constraint, if the lowest point for 

optimization coincides with the angular point of one of the constraints. On the other 

hand, it is impossible to have an irreducible support set containing three or more 

constraints.  

For nonconvex problem, on the other hand the cardinality of the support set can be 

computed only after knowing the solution and it is not possible to bound it with the 

number of optimization variables, as done with convex constraint. From figure 1-2, it 

is possible to see an example where all the constraints belong to the support set. In 

fact, the solution is determined by the intersection of just two constraints but 

removing any other one would lead to a new optimal point. 
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Figure 1-2 This figure represents a nonconvex problem suitable for explanation’s sake. This is 

indeed a particular case in which the support subsample contains all the present constraint. 

 

 

1.2.4  Results of the scenario approach 

 

The main result of the scenario approach, [15], [17], [18], is that there is a relation 

between the unknown probability of violation 𝑉(𝜃) and the complexity 𝑠𝑁
∗   of 1-9, so 

that 𝑠𝑁
∗  can be used to bound the value of 𝑉(𝜃). The more general result has been 

proven in [17] which in particular applies for all nonconvex scenario programs 

irrespective of . The result is as follows: 

Theorem 1: Given a confidence parameter 𝛽 ∈ (0,1), for any 𝑘 = 0,1, … , 𝑁 − 1 consider 

the polynomial equation in the 𝑣  variable 
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(
𝑁

𝑘
) (1 − 𝑣)𝑁−𝑘 −

𝛽

𝑁
∑ (

𝑚

𝑘
) (1 − 𝑣)𝑚−𝑘

𝑁−1

𝑚=𝑘

= 0, 
1-10 

and let 휀(𝑘) be the unique solution over the interval (0,1). Also define 휀(𝑁) = 1. For 

any ℙ it holds that 

ℙ{𝑉(𝜃𝑁
∗ ) > 휀(𝑠𝑁

∗ )} ≤ 𝛽. 1-11 

Where N is the number of scenarios used, 𝜃𝑁
∗ = 𝑀𝑁(𝛿(1), . . . , 𝛿(𝑁)) and 𝑠𝑁

∗  is the 

complexity of 1-9, i.e. it is the smallest cardinality of a support set. 

What the theorem says is that, if N scenarios 𝛿(1), . . . , 𝛿(𝑁) are randomly extract, the 

solution 𝜃𝑁
∗  is 휀-feasible with a high probability 1 − 𝛽, irrespective of the problem at 

hand and the probability distribution ℙ. 

The role of the confidence parameter 𝛽 is marginal, since 휀 depends logarithmically 

on 𝛽, so it is possible to set it equal to a very low value, such as 10−7. In this way, the 

probability violation is bounded by 휀(𝑠𝑁
∗ ) with practical certainty and a usable upper 

estimation to assess 𝑉(𝜃𝑁
∗ ) is given. 

Thanks to Theorem 1, we can evaluate the 휀-feasibility of the solution 𝜃𝑁
∗  computed 

using the scenario approach and hence we can assess the feasibility for the chance-

constrained problems of type 1-8. To determine the function 휀(∙) , it is necessary to 

solve numerically equation 1-10. In Appendix A, an algorithm based on bisection is 

provided. 

If an explicit result is needed, one can use: 

휀̃(𝑘): = {

1                               if k = N,

1 − √
𝛽

𝑁(𝑁
𝑘

)

𝑁−𝑘
   otherwise,

 

1-12 

in place of 휀, see While 휀̃ is explicit and ready to use, the provided evolution is loose 

as compared to that of 휀 computed by solving equation 1-10. So it is suggested to use 

the numerical solution of 1-10 whenever is possible. Importantly, since 휀(𝑘) is 

monotonically increasing with k, it must be noticed that Theorem 1 continues to hold 

if 𝑠𝑁
∗  is taken as the cardinality of any support set, not necessarily a minimal one or 

even an irreducible one. However, finding the smallest support subsample leads to 

better guarantees on the result reliability, so it is crucial being able to identify small 

support set. In chapter 5 three searching algorithms are presented to this purpose. 
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Eventually, notice that for convex problems, since 𝑠𝑁
∗ ≤ 𝑑, it holds that ℙ{𝑉(𝜃𝑁

∗ ) >

휀(𝑑)} ≤ 𝛽, a result that allows one to decide the requirement number of scenarios N 

to achieve that the violation 𝑉(𝜃𝑁
∗ ) is below a given threshold with high confidence. 

This result however applies for convex problem only and it is therefore of no use in 

this work. 

 

 

1.3 Naïve application of the scenario approach to 

problem 1-7 

 

We can apply the scenario approach to the problem 1-7 described in the first section 

to deal with the probabilistic constraints. As explained in the subsection 1.2.3, the 

value of N, i.e., the number of scenarios, required to obtain desired ε-level for the 

violation can not be determined before computing the solution. To deal with this 

type of problem is therefore necessary to treat ε as a target value, and not as a strict 

requirement. The choice about the value of N will be discussed in chapter 4, for now 

a generic value is taken. The optimization variables we are considering are the matrix 

gain 𝐾, the control offset  and the value ℎ (so the solution will be 𝜃 = (, 𝐾, ℎ)). The 

scenarios are unilaterally infinitely long realizations of the disturbance, i.e., 𝛿 =

{𝑑𝑘, 𝑑𝑘−1, . . . , 𝑑𝑘−𝑗 , . . . }. To use the scenario approach, we assume to extract/collect N 

infinitely long realizations {𝑑𝑘
(𝑖)

, 𝑑𝑘−1
(𝑖)

, . . . , 𝑑𝑘−𝑗
(𝑖)

, . . . } 𝑖 = 1, . . . , 𝑁. 

The scenario version of the problem 1-7 is then formulated as follows: 

𝑚𝑖𝑛
,𝐾,ℎ

ℎ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑙(𝑥𝑘,∞
(𝑖)

,  + 𝐾𝑥𝑘,∞
(𝑖)

) ≤ ℎ 

𝑓(𝑥𝑘,∞
(𝑖)

,  + 𝐾𝑥𝑘,∞
(𝑖)

) ≤ 0 

𝑥𝑘,∞
(𝑖)

= (𝐼 − 𝐴 − 𝐵𝐾)−1𝐵 + ∑(𝐴 + 𝐵𝐾)𝑠𝑑𝑘−1−𝑠

∞

𝑠=0

 

𝑖 = 1, . . . , 𝑁. 

1-13 

Given a solution 𝜃𝑁
∗  and given the cardinality 𝑠𝑁

∗  of a support set, it is possible to 

state, using theorem 1, that the violation probability for the original problem 1-7 is 
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smaller than 휀(𝑠𝑁
∗ ) with confidence 1 − 𝛽. This could be a satisfactory solution for our 

problem, but there is a major issue. 

The problem expressed in Errore. L'origine riferimento non è stata trovata. can not 

be solved in practice because it requires N infinitely-long realizations of 𝑑𝑘 to obtain 

𝑥𝑘,∞
(𝑖)

. Indeed, only finite-length realizations of the disturbance are available in 

practice, so a further step must be done to make the scenario problem applicable in 

practice. As is clear, the guarantees obtained with the scenario approach are 

particularly interesting, so we do not want to lose them when modifying the 

approach. In the next chapters, we will explore the idea to make problem 1-13 

solvable by approximating the stationary state process 𝑥𝑘,∞ with a truncated version. 

The approximation obviously introduces an error, so it will be necessary to guarantee 

that the difference between 𝑥𝑘,∞ and the truncated version is negligible and also to 

apply some restriction to maintain the guarantees obtained through theorem 1. At 

the end, an approximated version of problem 1-13 will be obtained establishing also 

a link with the initial problem 1-7 thanks to the guarantees provided by the scenario 

approach. 
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2. The proposed scenario optimization 

 

Thanks to the scenario approach, it has been possible to deal with the probabilistic 

constraints of the original problem formulation 1-7. The proposed method has 

opened an interesting resolution path, but the obtained scenario problem is still not 

feasible, since it depends on realizations of the disturbance which are infinitely long. 

In practice, it is possible to work only with finitely-long realizations, therefore it is 

necessary to introduce an approximation of the stationary state process. 

Unfortunately, the error introduce by the approximation prevents one to directly use 

the existing scenarios theory for the evolution of the violation of the solution. A 

specific theory will be developed to this purpose, as a major contribution of the 

thesis. 

  

 

2.1  The approximated scenario problem 

 

As said, the impossibility to deal with infinite-long realizations of the disturbance as 

in 1-13 demands the introduction of an approximation of 𝑥𝑘,∞. Given an integer 

𝑀 ∈ ℕ, we will consider a truncated version of 𝑥𝑘,∞ as follows 

𝑥𝑘,𝑀 = (𝐼 − 𝐴 − 𝐵𝐾)−1𝐵 + ∑ (𝐴 + 𝐵𝐾)𝑠𝑑𝑘−1−𝑠

𝑀−1

𝑠=0

 , 
2-1 

which requires only a finitely-long realization of the disturbance {𝑑𝑘−1, . . . , 𝑑𝑘−𝑀}. The 

truncation is influenced by the data availability and the complexity that our solver 

can deal with. The approximation of 𝑥𝑘,∞ with 𝑥𝑘,𝑀  improves as M increases towards 

infinity. Therefore, to obtain a result as close as possible to the one guaranteed by the 

scenario approach, M should be chosen as high as possible, considering the available 
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data and the computational load. The truncated version of the scenario program 1-13 

requires to generate/collect N infinitely-long realizations of the disturbance 

{𝑑𝑘−1
(𝑖)

, . . . , 𝑑𝑘−𝑁
(𝑖)

}, 𝑖 = 1, . . . , 𝑁 and then to enforce the constraints for the truncated state 

𝑥𝑘,𝑀 corresponding to these realizations. However, to compensate the error 

introduced by the truncation, we need to introduce a tightening in the constraints. 

While the scope of a tightening is not clear here, its role will become obvious later, 

during the development of the result. The new problem is equal to the scenario 

problem 1-13 except for the tightening term δ and the use of the truncated version of 

the state: 

𝑚𝑖𝑛
,𝐾,ℎ

ℎ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑙(𝑥𝑘,𝑀
(𝑖)

,  + 𝐾𝑥𝑘,𝑀
(𝑖)

) ≤ ℎ − 𝛿 

𝑓(𝑥𝑘,𝑀
(𝑖)

,  + 𝐾𝑥𝑘,𝑀
(𝑖)

) ≤ −𝛿 

𝑥𝑘,𝑀
(𝑖)

= (𝐼 − 𝐴 − 𝐵𝐾)−1𝐵 + ∑ (𝐴 + 𝐵𝐾)𝑠𝑑𝑘−1−𝑠𝑑𝑘−1−𝑠
(𝑖)

𝑀−1

𝑠=0

 

𝑖 = 1, . . . , 𝑁. 

2-2 

The solution will be denoted by 𝛾∗, 𝐾∗, ℎ∗
. This problem corresponds to a standard 

optimization program, and it is possible to solve it via available solvers.  

The computational effort needed to solve 2-2 depends on both N and M. The greater 

the value of M, the greater is the problem complexity. In fact, the general cost 

function and the constraint are applied to 𝑥𝑘,𝑀, which depends non-linearly on the 

optimization variables   and 𝐾. In particular, the relationship with 𝐾 depends on the 

value of M, which appears at the exponent of a matrix containing 𝐾. So, even in the 

case that the distribution probability ℙ is known and it is possible to have an 

unlimited quantity of data, the computational complexity gives a limit to the value of 

M. Furthermore, as we will see later, the values of M and 𝛿 determine, together with 

other parameters, the guaranteed probability violation, so there is an incentive in 

trying to maximize M and minimize 𝛿. For the choice of the number of scenarios N, 

more discussion will be given in chapter 4, where there will be a broader 

understanding of the problem. We anticipate indeed here that 2-2 is not yet the final 

version of the problem, because another condition will be introduced. 
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2.1.1 Types of data collection and possible limitation 

 

The data used for the disturbance realizations can be collected in two ways. In the 

first case, the probability distribution ℙ is known and the data required is generated 

according to it. In this case, it is easy to generate large quantity of data without 

significative cost. In the second case, the probability distribution is not known, but it 

is possible to sample the system to collect the data. It can happen, for certain 

configurations, that is not possible to sample directly the disturbance, with the 

measurements being available only for the state. However, it is easy to obtain the 

needed quantity from the measurable ones by using equation 1-1: 

𝑑𝑘 = 𝑥𝑘+1 − 𝐴𝑥𝑘 − 𝐵𝑢𝑘 2-3 

When sampling the disturbance (or the state), it is important to keep the system 

stable. If the state matrix A is stable or asymptotically stable, there is no need of a 

control action, so it is possible to just impose 𝑢𝑘 = 0 ∀𝑘. If, on the other hand, the 

state matrix A is unstable, it is necessary to implement a control system. It does not 

have to be complex or optimal, the only requirement is to counteract the instability of 

the state. A possible simple solution is using a simple proportional controller 

𝑢𝑘 = −𝐾𝑥𝑘. Then, the state equation becomes: 

𝑥𝑘+1 = (𝐴 − 𝐵𝐾)𝑥𝑘 + 𝑑𝑘 2-4 

The matrix K  has to be such that the matrix 𝐴 − 𝐵𝐾 is stable or asymptotically stable.  

If the data needed have to be sampled from a real system, the quantity that can be 

collected is limited by many factors. First, the time needed by the system to evolve 

and the one needed to sample. Second, the cost to run the system, both in terms of 

resources used and human labor needed. For these reasons, the case in which the 

probability is known is generally preferred, but the second case is more frequent. 

 

 

2.2 Violation assessment of the solution of 2-2 

 

A main problem here is to evaluate the feasibility of the solution to 2-2 which respect 

the original chance-constrained problem 1-7. Given the approximated problem 2-2 

and its solution (𝛾∗, 𝐾∗, ℎ∗
), we can determine a support set and assess its violation 



 23 

 

 

probability, with respect to the constraints over the truncated state. Specifically, the 

notion of violation is related in the present context to 

ℙ{𝛿 ∈ 𝛥: 𝑙(𝑥, 𝑢) ≤ ℎ ∧ 𝑓(𝑥, 𝑢) ≤ 0}. 2-5 

To simplify the notation, we introduce the function 𝑔(𝑥, 𝑢) defined as 

𝑔(𝑥, 𝑢) = 𝑚𝑎𝑥{𝑙(𝑥, 𝑢) − ℎ, 𝑓(𝑥, 𝑢)}, 2-6 

and then, the following equivalence is true: 

𝑙(𝑥, 𝑢) ≤ ℎ ∧ 𝑓(𝑥, 𝑢) ≤ 0 ⇔ 𝑔(𝑥, 𝑢) ≤ 0. 2-7 

So, considering the solution (𝛾∗, 𝐾∗, ℎ∗
), we have that 

𝑔𝑘,𝑀
∗ = 𝑚𝑎𝑥{𝑙(𝑥𝑘,𝑀

∗ , ∗ + 𝐾∗𝑥𝑘,𝑀
∗ ) − ℎ∗, 𝑓(𝑥𝑘,𝑀

∗ , ∗ + 𝐾∗𝑥𝑘,𝑀
∗ )}, 

 

2-8 

where 𝑥𝑘,𝑀
∗  is the truncated version of the state when the controller 𝛾∗, 𝐾∗ is used 

𝑥𝑘,𝑀
∗ = (𝐼 − 𝐴 − 𝐵𝐾∗)

−1
𝐵𝛾∗ + ∑(𝐴 + 𝐵𝐾∗)

𝑠
𝑑𝑘−1−𝑠

𝑀−1

𝑠=0

 . 
2-9 

Then, thanks to properties of the scenario approach, knowing the cardinality 𝑠∗ of the 

support set to 2-2 and setting the confidence parameter 𝛽, using the theorem 2 we 

can state that the violation probability for the computed solution is guaranteed to be 

smaller 휀(𝑠∗) than with a confidence equal to 1 − 𝛽: 

ℙ𝑑𝑘

𝑁 {ℙ𝑑𝑘
{𝑔𝑘,𝑀

∗ > −𝛿} ≤ 휀(𝑠∗)} ≥ 1 − 𝛽 . 2-10 

This result found is valid for the constraints evaluated for the approximated state 

𝑥𝑘,𝑀
∗ . However, to reapproach problem 1-7, we need to obtain a similar statement for 

the stationary state process 𝑥𝑘,∞
∗  obtained when the controller is 𝛾∗, 𝐾∗, that is  

𝑥𝑘,∞
∗ = (𝐼 − 𝐴 − 𝐵𝐾∗)−1𝐵𝛾∗ + ∑(𝐴 + 𝐵𝐾∗)𝑠𝑑𝑘−1−𝑠

∞

𝑠=0

 . 
2-11 

Precisely, addressing problem 1-7 requires to find a bound for the violation 

probability of 𝑔𝑘,ꝏ
∗ ≤ 0, where 𝑔𝑘,ꝏ

∗  is the max of the cost function and the constraint 

function evaluated for the stationary state process 𝑥𝑘,∞
∗ : 
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𝑔𝑘,ꝏ
∗ = 𝑚𝑎𝑥{𝑙(𝑥𝑘,∞

∗ , ∗ + 𝐾∗𝑥𝑘,∞
∗ ) − ℎ∗, 𝑓(𝑥𝑘,∞

∗ , ∗ + 𝐾∗𝑥𝑘,∞
∗ )}. 2-12 

In order to boundℙ𝑑𝑘
{𝑔𝑘,∞

∗ > 0}, we would like to use the guarantees obtained for 

𝑔𝑘,𝑀
∗  and expressed in 2-10. For that to be possible, it is intuitive that the difference 

between 𝑥𝑘,𝑀
∗  and  𝑥𝑘,∞

∗  has to be kept under control. In the next section, we introduce 

the mathematical steps to obtain the sought result and we highlight the necessity to 

introduce another constraint to 2-2, as exhaustively discussed in chapter 3. In chapter 

4, the final solution to problem 1-7 will be given together with the complete proof. 

 

 

2.3 Preliminary calculation 

 

As said in the previous section, the result 2-10 is valid for the approximated state, 

while we would like to have a similar statement for the original problem. With some 

mathematical steps, we will be able to extend the validity of equation Errore. 

L'origine riferimento non è stata trovata., provided that a suitable margin is added 

to 휀(𝑠𝑁
∗ ). This margin is the price we have to pay for using the truncated scenario 

approach. The first step is to include 𝑔𝑘,𝑀
∗  in the violation probability expression for 

𝑔𝑘,ꝏ
∗ . To do that, we add and subtract 𝑔𝑘,𝑀

∗  and 𝛿 in the expression of the violation 

probability for the constraint evaluated for the stationary state process: 

ℙ𝑑𝑘
{𝑔𝑘,ꝏ

∗ > 0} = ℙ𝑑𝑘
{𝑔𝑘,𝑀

∗ + 𝛿 + 𝑔𝑘,ꝏ
∗ − 𝑔𝑘,𝑀

∗ − 𝛿 > 0} 

≤ ℙ𝑑𝑘
{𝑔𝑘,𝑀

∗ > 𝛿 ⋀ 𝑔𝑘,ꝏ
∗ − 𝑔𝑘,𝑀

∗ > 𝛿} 

≤ ℙ𝑑𝑘
{𝑔𝑘,𝑀

∗ > −𝛿} + ℙ𝑑𝑘
{𝑔𝑘,ꝏ

∗ − 𝑔𝑘,𝑀
∗ > 𝛿}. 

2-13 

The value of ℙ𝑑𝑘
{𝑔𝑘,𝑀

∗ > −𝛿} is determined, with a certain confidence, by equation 

2-10, so we just need to bound the value of ℙ𝑑𝑘
{𝑔𝑘,ꝏ

∗ − 𝑔𝑘,𝑀
∗ > 𝛿}. We can rewrite it as: 

ℙ𝑑𝑘
{𝑔𝑘,ꝏ

∗ − 𝑔𝑘,𝑀
∗ > 𝛿} = ℙ𝑑𝑘

{|𝑔𝑘,ꝏ
∗ − 𝑔𝑘,𝑀

∗ | > 𝛿} ≤
𝔼[|𝑔𝑘,ꝏ

∗ − 𝑔𝑘,𝑀
∗ |]

𝛿
 . 

2-14 

The second inequality is the result of the application of the Chebyshev’s inequality 

(see [23]). In this step emerges the reason behind the tightening 𝛿 introduced in 

problem 2-2. Without it, it would not be possible to bound the probability with the 

expected value, blocking the following steps. 



 25 

 

 

Thanks to the assumption on the Lipschitz continuity of the functions 𝑙(𝑥, 𝑢) and 

𝑓(𝑥, 𝑢) we can write the difference between 𝑔𝑘,ꝏ
∗  and 𝑔𝑘,𝑀

∗  as:  

𝔼[|𝑔𝑘,ꝏ
∗ − 𝑔𝑘,𝑀

∗ |] = 𝔼[|𝑔𝑘,ꝏ
∗ − 𝑔(𝑥𝑘,𝑀

∗ , ∗ + 𝐾∗𝑥𝑘,∞
∗ ) + 

𝑔(𝑥𝑘,𝑀
∗ , ∗ + 𝐾∗𝑥𝑘,∞

∗ ) − 𝑔𝑘,𝑀
∗ |] 

≤ 𝔼[|𝑔(𝑥𝑘,∞
∗ , ∗ + 𝐾∗𝑥𝑘,∞

∗ ) − 𝑔(𝑥𝑘,𝑀
∗ , ∗ + 𝐾∗𝑥𝑘,∞

∗ )|] + 

𝔼[|𝑔(𝑥𝑘,𝑀
∗ , ∗ + 𝐾∗𝑥𝑘,∞

∗ ) − 𝑔(𝑥𝑘,𝑀
∗ , ∗ + 𝐾∗𝑥𝑘,𝑀

∗ )|] 

≤ 𝔼[𝐿‖𝑥𝑘,∞
∗ − 𝑥𝑘,𝑀

∗ ‖] + 𝔼[𝐿‖𝐾𝑀(𝑥𝑘,∞
∗ − 𝑥𝑘,𝑀

∗ )‖] 

≤ 𝐿(1 + ‖𝐾∗‖)𝔼[‖𝑥𝑘,∞
∗ − 𝑥𝑘,𝑀

∗ ‖] . 

2-15 

L is the maximum between the Lipschitz constant of the cost function and the one of 

the constraints. The term ‖𝐾∗‖ is present only when the functions depend not only 

on the state, but also on the control input. In this case, when computing the solution, 

a bound on the norm of ‖𝐾∗‖ has to be added as a constraint in 2-2, so that 𝐿(1 +

‖𝐾∗‖) can be bounded by another constant 𝐿′. If, instead, none of the functions 

depends on the control input, the bound is |𝑔𝑘,ꝏ
∗ − 𝑔𝑘,𝑀

∗ | ≤ 𝐿‖𝑥k,ꝏ − 𝑥k,𝑀‖. From now 

on we take this second standpoint. However, there are no conceptual differences and 

it is clear that all results applies when L is replaced by 𝐿′ as defined above. 

Substituting 𝑥𝑘,𝑀
∗  and 𝑥𝑘,∞

∗  with equations 2-9 and 2-11 in 2-15 the expected value of 

the difference is finally bounded as follows: 

𝔼[|𝑔𝑘,ꝏ
∗ − 𝑔𝑘,𝑀

∗ |] ≤ 𝔼[𝐿‖𝑥𝑘,∞
∗ − 𝑥𝑘,𝑀

∗ ‖] = 𝐿𝔼[‖𝑥𝑘,∞
∗ − 𝑥𝑘,𝑀

∗ ‖] 

≤ 𝐿𝔼 [‖∑(𝐴 + 𝐵𝐾∗)𝑠𝑑𝑘−1−𝑠

ꝏ

𝑠=𝑀

‖] ≤ 𝐿𝔼 [∑‖(𝐴 + 𝐵𝐾∗)𝑠‖ ⋅ ‖𝑑𝑘−1−𝑠‖

ꝏ

𝑠=𝑀

]

≤ 𝐿 ∑‖(𝐴 + 𝐵𝐾∗)𝑠‖

ꝏ

𝑠=𝑀

𝔼[‖𝑑𝑘−1−𝑠‖]. 

2-16 

The expected values of the disturbance, thanks to the assumption made, is equal to 

𝜎2:  

𝔼[∥ 𝑑𝑘−1−𝑠 ∥2] = 𝜎2. 2-17 

This term is not chosen by the user but depends on the problem at hand. 

The only term in inequality 2-16 on which the user has influence is the control gain 

𝐾∗
. Given that the summation contains an infinite number of terms, it is necessary to 

impose some restriction on the values 𝐾 can assume. In particular, it is necessary to 

ensure that the norm of the matrix (𝐴 + 𝐵𝐾)𝑠 has to become smaller than one at a 
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certain point, for the summation to be finite. Also, the summation value influences 

the quality of the result, so it will be necessary to find a balance between it and the 

restrictiveness of the condition imposed to 𝐾∗. 

There are few different bounds that can be applied on the norm of the matrix 

(𝐴 + 𝐵𝐾)𝑠. These will be discussed in the next chapter 3. Later chapter 4 will re the 

derivation here initiated and the complete result on the bound ℙ𝑑𝑘
{𝑔𝑘,ꝏ

∗ > 0} will be 

provide.
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3. Constraints on the norm of (𝐴 +
𝐵𝐾)𝑠 

 

The need to limit the value of 𝔼[|𝑔𝑘,ꝏ
𝑀 − 𝑔𝑘,𝑀

𝑀 |] demands us to bound the value of the 

term ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀 , which can be accomplished by imposing suitable conditions 

on K. As a matter of fact, the other two terms determining the value of 𝔼[|𝑔𝑘,ꝏ
𝑀 −

𝑔𝑘,𝑀
𝑀 |] (which are the Lipschitz value of the constraints function and the expected 

value of the disturbance) are both given and not modifiable by the user; on the 

contrary,  the matrix 𝐴 + 𝐵𝐾 depends on the optimization variables, K, and though 

an uniform bound to ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀  that applies for every K does not exist, this 

can be achieved by imposing suitable conditions on that limit the values taken by 

‖(𝐴 + 𝐵𝐾)𝑠‖. These conditions can be enforced as additional constraints in program x 

when selecting K. Given that the value of 𝔼[|𝑔𝑘,ꝏ
𝑀 − 𝑔𝑘,𝑀

𝑀 |] concurs in determining the 

bound for the violation probability, we are interested on the other hand, in obtaining 

the smallest possible value for the ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀 , leading to the strictest 

constraints. However, feasibility and cost value must be considered too: the size of 

the feasible set diminishes when the bound strictness increases, potentially causing a 

large rise in the cost, and if the norm ‖(𝐴 + 𝐵𝐾)𝑠‖ is required to be too small the 

feasible decision set can even become void, meaning that there is no feasible solution. 

In this chapter we will analyze three possible constraints, highlighting their 

differences and the advantages of each one, to find the one with the best compromise 

between the dimension of the decision set and the bound on the value of ∑ ‖(𝐴 +ꝏ
𝑠=𝑀

𝐵𝐾)𝑠‖. We will start from the simplest one and then increasing in complexity. 

 

 

3.1 Constraint on the spectral radius 
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One of the simplest constraints that can be applied is requiring that A+BK is 

contractive according to some sub-multiplicative norm, i.e., that the norm of A+BK is 

smaller than 1.  

‖𝐴 + 𝐵𝐾‖ ≤ 𝜆 < 1 3-1 

 

Thanks to the sub-multiplicative property of the norm, condition implies 3-1 that the 

norm of the power of the matrix must be bounded by a stricter condition as the 

exponent increases. Indeed, it holds that 

‖𝐴𝐵‖ ≤ ‖𝐴‖ ⋅ ‖𝐵‖ , 3-2 

and in the case of matrix power, we have that: 

‖𝐴𝑎+𝑏‖ = ‖𝐴𝑎𝐴𝑏‖ ≤ ‖𝐴𝑎‖ ⋅ ‖𝐴𝑏‖ . 3-3 

Applying this property repeatedly, we can therefore write 

‖(𝐴 + 𝐵𝐾)𝑠‖ ≤ ‖𝐴 + 𝐵𝐾‖ ⋅ ‖𝐴 + 𝐵𝐾‖ ∙. . .⋅ ‖𝐴 + 𝐵𝐾‖(𝑠 𝑡𝑖𝑚𝑒𝑠) ≤ 𝜆𝑠 , 3-4 

that is, for any value of s, the norm of the power matrix ‖(𝐴 + 𝐵𝐾)𝑠‖ must stay below 

an exponential with base λ.  

Assuming that the condition 3-1 is satisfied, the bound on the summation can easily 

be found as follow: 

∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑀

≤ ∑ 𝜆𝑠

ꝏ

𝑠=𝑀

= ∑ 𝜆𝑠

ꝏ

𝑠=0

− ∑ 𝜆𝑠

𝑀−1

𝑠=0

 

=
1

1 − 𝜆
−

1 − 𝜆𝑀

1 − 𝜆
=

𝜆𝑀

1 − 𝜆
 . 

3-5 

 

We can now substitute it in the equation 2-16, obtaining the value of 𝜒𝑀: 

𝔼[|𝑔𝑘,ꝏ
𝑀 − 𝑔𝑘,𝑀

𝑀 |] ≤ 𝐿1 ∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑀

𝔼[‖𝑑𝑘−1−𝑠‖] 

≤ 𝐿1

𝜆𝑀

1 − 𝜆
𝜎2 = 𝜒𝑀 . 

3-6 
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The value of 𝜒𝑀 depends on both M and λ. When deciding the values of these 

parameters, it is important to remember the various need to one has to trade off with. 

Increasing M leads to a decrease of 𝜒𝑀, obtaining better guarantees for our solution, 

but it also means requiring more data and increasing the computational load. For λ 

the trade-off is between the value of 𝜒𝑀 and the strictness of the constraint. The 

choice has to be done based on the problem requirements and the user goals.  

The main advantage of the solution proposed in the present section is its simplicity. 

It is possible to include constraint 3-1 in most optimization problems without 

noticeable increase of the computational load or algorithm complexity. On the other 

hand, it is unnecessary restrictive, excluding solutions that could potentially be the 

best choice or, in the worst case, it can make the feasibility domain void. It is 

possible, as we will see in a further chapter, to bound the norm with an exponential 

after a transient, just for exponents s equal or greater than M, obtaining the same 

value for the summation, but with a less rigid constraint. The advantages brought by 

the solution in the present section thus do not compensate the excessive reduction of 

the feasibility domain. 

 

 

3.2 Bounding the tail with an exponential 

 

The condition ‖𝐴 + 𝐵𝐾‖ ≤ 𝜆 < 1, introduced in the previous section, effectively 

limits the summation ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀 , but it is far more restrictive than necessary. 

In fact, it also constrains the terms (𝐴 + 𝐵𝐾)𝑠 for 𝑠 < 𝑀, which we are not interested 

about because they do not appear in the sum. Admissible solutions, such as the ones 

having an initial overshoot, are excluded from the decision set, despite being 

admissible and guaranteeing the same bound as the summation. Our goal is then to 

impose to the norm  ‖(𝐴 + 𝐵𝐾)𝑠‖ to stay under a given exponential just for certain s 

onwards. As is clear expressing this condition as an infinite sequence of constraints 

would be not admissible. Remarkably, it is enough to impose the following finite 

number of constraints: 

‖(𝐴 + 𝐵𝐾)𝑡‖ ≤ 𝜆𝑡 𝑓𝑜𝑟 𝑡 = 𝑇, 𝑇 + 1, . . . ,2𝑇 − 1, 3-7 

Where ‖∙‖ is a generic sub-multiplicative norm. 

Even if the condition 3-7 is imposed till 2T-1, it suffices to guarantee that the norm of 

(𝐴 + 𝐵𝐾)𝑡 is dominated by the exponential 𝜆𝑡 for every t greater than T thanks to the 
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sub-multiplicativity property of the norm, we can rewrite ‖(𝐴 + 𝐵𝐾)𝑋‖ as the 

product of components that can be bounded according to condition 3-7. If X is a 

multiple of T, it is sufficient to divide it in 𝑋 𝑇⁄  equal terms: 

‖(𝐴 + 𝐵𝐾)𝑋‖ ≤ ‖(𝐴 + 𝐵𝐾)𝑇‖ ⋅ ‖(𝐴 + 𝐵𝐾)𝑇‖ ⋅ … ⋅ ‖(𝐴 + 𝐵𝐾)𝑇‖ 

= (‖(𝐴 + 𝐵𝐾)𝑇‖)
𝑋

𝑇⁄ ≤ (𝜆𝑇)
𝑋

𝑇⁄ = 𝜆𝑋. 

3-8 

If, instead, X is not a multiple of T, it possible to use a similar division, writing X as 

𝑞 ⋅ 𝑇 + 𝑟, where 𝑞 = ⌊𝑋 𝑇⁄ ⌋ − 1 and, consequently, 𝑇 < 𝑟 ≤ 2𝑇 − 1. The bound of the 

norm is then: 

‖(𝐴 + 𝐵𝐾)𝑋‖ ≤ (‖(𝐴 + 𝐵𝐾)𝑇‖)𝑞 + ‖(𝐴 + 𝐵𝐾)𝑟‖ ≤ (𝜆𝑇)𝑞 + 𝜆𝑟 = 𝜆𝑞⋅𝑇+𝑟 = 𝜆𝑋 . 3-9 

Therefore, for every value X greater than T, ‖(𝐴 + 𝐵𝐾)𝑋‖ ≤ 𝜆𝑋, i.e., the norm lays 

under the exponential with base λ. 

Under the condition 3-7 and thanks to the considerations done above, the value of 

the summation ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀   can be bounded as follows: 

∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑀

≤ ∑ 𝜆𝑠

ꝏ

𝑠=𝑀

= ∑ 𝜆𝑠

ꝏ

𝑠=0

− ∑ 𝜆𝑠

𝑀−1

𝑠=0

=
1

1 − 𝜆
−

1 − 𝜆𝑀

1 − 𝜆
=

𝜆𝑀

1 − 𝜆
 . 

3-10 

As anticipated, the result is the same we obtained in the previous section, so the 

same expression of 𝜒𝑀 is obtained and the same conclusions about the choice of the 

parameters M and λ can be drawn. 

The fact that the bound for ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀  found depends only on λ and M is 

useful for a further consideration. The parameter T, which determines the starting 

point of the bound and so its strictness, does not appear in the final result, so it can 

be modified without repercussion on the quality of the guarantee. We would like to 

have as much freedom as possible in the design of the controller, so a bigger T is 

preferred. There is no gain in choosing a small T, so we are pushed to select the 

biggest T possible. The only limit is the value of M. Choosing a T greater than M 

would make impossible to determine an a priori value that bounds the sum 

∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀  and, consequentially, one for 𝜒𝑀. Considering these two aspects, 

the best choice is clearly picking 𝑇 = 𝑀, which maximize the value of T while 

respecting the condition  𝑇 ≤ 𝑀. 

The only exception to this rule is because of computational limitations since the 

bigger T the higher the number of constraints to be imposed according to 3-7 and the 

harder the resulting non-convex problem. 
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3.3 Bounding the tail with a recurrent exponential 

 

Starting from the previous constraint, we can try to develop a less strict condition. 

An idea is to use again an exponential, but shifting it towards left. In this way, the 

first term bounded is limited by 1 instead of λM, the second by λ instead of λM+1 and 

so on. In mathematical terms, the condition becomes: 

‖(𝐴 + 𝐵𝐾)𝑡‖ ≤ 𝜆𝑡−𝑇 𝑓𝑜𝑟 𝑡 = 𝑇, 𝑇 + 1, . . . ,2𝑇. 3-11 

It is possible to use slightly different variations of this condition, for example 

imposing it from T to 2T-1 instead of 2T, or starting the bound from λ and not from 1, 

but the procedure to reach the result becomes more intricate, so it is preferred to 

present this version as a first example, which is the simplest one in term of notations.  

The first step consists in splitting the summation in two parts (given that M and T are 

two user-chosen parameters, it will be always true that M is greater than T), in order 

to obtain a summation that start from T: 

∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑀

 = ∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑇

 − ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖

𝑀−1

𝑠=𝑇

 . 
3-12 

To better understand the calculus, we rewrite the first sum showing explicitly its 

terms: 

∑‖(𝐴 + 𝐵𝐾)𝑠‖ = ‖(𝐴 + 𝐵𝐾)𝑇‖ + ‖(𝐴 + 𝐵𝐾)𝑇+1‖+. . . +‖(𝐴 + 𝐵𝐾)2𝑇‖+. . .

ꝏ

𝑠=𝑇

 
3-13 

We collect the components in different summations, each one with 2T-1 elements (the 

first one is actually composed of 2T elements, but in a further step we will leave out 

the first term to make it equally long): 

∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑇

= ∑‖(𝐴 + 𝐵𝐾)𝑠‖

2𝑇

𝑠=𝑇

+ ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖

3𝑇

𝑠=2𝑇+1

 

+ ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖

4𝑇

𝑠=3𝑇+1

+ ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖

5𝑇

𝑠=4𝑇+1

+ ⋯ 

 

3-14 
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Then we use the sub-multiplicative property of the norm to split the terms with too 

high power in more components. Due to this step, we have the following inequality: 

∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑇

≤ ∑‖(𝐴 + 𝐵𝐾)𝑠‖

2𝑇

𝑠=𝑇

+ ∑ ‖(𝐴 + 𝐵𝐾)𝑇‖‖(𝐴 + 𝐵𝐾)𝑠−𝑇‖

3𝑇

𝑠=2𝑇+1

 

+ ∑ ‖(𝐴 + 𝐵𝐾)2𝑇‖‖(𝐴 + 𝐵𝐾)𝑠−2𝑇‖

4𝑇

𝑠=3𝑇+1

 

+ ∑ ‖(𝐴 + 𝐵𝐾)3𝑇‖‖(𝐴 + 𝐵𝐾)𝑠−3𝑇‖

5𝑇

𝑠=4𝑇+1

+ ⋯ 

3-15 

We can now bring outside the summations the terms that do not depend on s and 

redefine the running index in all the sums so as to obtain 

∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑇

≤ 1 + ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖

2𝑇

𝑠=𝑇+1

+ ‖(𝐴 + 𝐵𝐾)𝑇‖ ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖

2𝑇

𝑠=𝑇+1

 

+‖(𝐴 + 𝐵𝐾)2𝑇‖ ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖

2𝑇

𝑠=𝑇+1

 

+‖(𝐴 + 𝐵𝐾)3𝑇‖ ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖

2𝑇

𝑠=𝑇+1

+ ⋯ 

3-16 

Using the inequality 3-11, we can now bound the norms of the matrices in the sum 

with the corresponding exponential, and noticing that  

‖(𝐴 + 𝐵𝐾)𝑚𝑇‖ = ‖(𝐴 + 𝐵𝐾)⌊
𝑚
2

⌋2𝑇 ∙ (𝐴 + 𝐵𝐾)(𝑚−2⌊
𝑚
2

⌋)𝑇‖ 

≤ ‖(𝐴 + 𝐵𝐾)𝑚𝑇‖⌊
𝑚
2

⌋ ⋅ ‖(𝐴 + 𝐵𝐾)𝑇‖(𝑚−2⌊
𝑚
2

⌋) ≤ 𝜆𝑇⌊
𝑚
2

⌋ 

3-17 

Yields 

∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑇

≤ 1 + ∑ 𝜆𝑠−𝑇

2𝑇

𝑠=𝑇+1

+ 

 

1 ∗ ∑ 𝜆𝑠−𝑇

2𝑇

𝑠=𝑇+1

+ 𝜆𝑇 ∑ 𝜆𝑠−𝑇

2𝑇

𝑠=𝑇+1

+ 1 ∗ 𝜆𝑇 ∑ 𝜆𝑠−𝑇+. . .

2𝑇

𝑠=𝑇+1

 

3-18 
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Notice that the above derivations are equivalent to use 3-11 to bound each generic 

term ‖(𝐴 + 𝐵𝐾)𝑡‖ for 𝑡 ≥ 𝑇 as follows 

‖(𝐴 + 𝐵𝐾)𝑡‖ ≤ 𝜆⌊
𝑚
2

⌋𝑇+𝑟 , 3-19 

where m and r, 𝑟 = 0,1, … , 𝑇 − 1, are such that 𝑡 = 𝑚𝑇 + 𝑟. A pictorial representation 

of the bound 3-19 is given in figure 3.1. 

 

Figure 3-1 Example of the constraint described by equation 3-19. In this case λ is equal to 0.95 

and T is equal to 10 

To complete the bound to ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑇 , we redefine the summing indexes 

∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑇

≤ 1 + ∑ 𝜆𝑠

𝑇

𝑠=1

+ ∑ 𝜆𝑠

𝑇

𝑠=1

 

+𝜆𝑇 ∑ 𝜆𝑠

𝑇

𝑠=1

+ 𝜆𝑇 ∑ 𝜆𝑠

𝑇

𝑠=1

+ 𝜆2𝑇 ∑ 𝜆𝑠

𝑇

𝑠=1

+ 𝜆2𝑇 ∑ 𝜆𝑠+. . .

𝑇

𝑠=1

 

3-20 
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which highlights a clear pattern with which the summations repeat. We can then 

collect the common terms so obtaining 

∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑇

≤ 1 + 2 (∑ 𝜆𝑠

𝑇

𝑠=1

) (∑(𝜆𝑇)𝑖

ꝏ

𝑖=0

)  
3-21 

which, using the properties of geometric series, is equal to 

∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑇

≤ 1 + 2 (
1−𝜆𝑇+1

1 − 𝜆
− 1) (

1

1 − 𝜆𝑇
) 

= 1 +
2(1 − 𝜆𝑇+1 − 1 + 𝜆)

(1 − 𝜆)(1 − 𝜆𝑇)
= 1 + 2𝜆

1 − 𝜆𝑇

(1 − 𝜆)(1 − 𝜆𝑇)
=

1 − 𝜆 + 2𝜆

1 − 𝜆
=

1 + 𝜆

1 − 𝜆
 . 

3-22 

Replacing it in equation 3-12, we obtain: 

∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑀

≤
1 + 𝜆

1 − 𝜆
− ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖

𝑀−1

𝑠=𝑇

≤
1 + 𝜆

1 − 𝜆
 . 

3-23 

This inequality is valid for every value of M, but it is not the best that can be 

obtained. In fact, ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖𝑀−1
𝑠=𝑇  depends on the difference between M and T and 

it differs from case to case, so there is no generic value to substitute it. The best way 

to find the limit for the summation ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀  is to start from M, and not from 

T as done. Given 𝑛 such that (𝑛 − 1)𝑇 < 𝑀 ≤ 𝑛𝑇 we can split the sum as follows 

∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑀

= ∑‖(𝐴 + 𝐵𝐾)𝑠‖

𝑛𝑇

𝑠=𝑀

+ ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖

(𝑛+1)𝑇

𝑠=𝑛𝑇+1

+ . . ., 

3-24 

and then proceed in an analogous way as seen before. While the notation becomes 

complex when trying to do it with general values, once M and T are known the steps 

are not more complex than what done before. This subdivision leads to the lowest 

bound for the sum ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀 , and therefore to the best guarantee. 

There are many conditions similar to 3-11 that can be considered as alternatives. 

Among these, there is one which is still quite simple and, at the cost of a little 

increase in its restrictiveness, it guarantees a better evolution of ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀 . 

The condition is the following: 
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‖(𝐴 + 𝐵𝐾)𝑡‖ ≤ 𝜆𝑡−𝑇+1 𝑓𝑜𝑟 𝑡 = 𝑇, 𝑇 + 1, . . . ,2𝑇 . 3-25 

The difference with the condition 3-11 is the presence of a +1 in the exponent of λ. It 

is not too much more limiting with respect to 3-11 (in fact, it is possible to make it 

almost identical to the previous one just incrementing the value of T by 1). On the 

other side, it guarantees a better bound for the summation: 

∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑀

≤ 𝜆
1 + 𝜆2 − 2𝜆𝑇+1

(1 − 𝜆)(1 − 𝜆𝑇+1)
− ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖

𝑀−1

𝑠=𝑇

 . 
3-26 

We will skip the derivation, because it is analogous to the one shown above for 3-11. 

With this condition, the bound diminishes much faster as λ decreases. The 

improvements in the results can be worth the increased rigidness of the 

requirements. For this reason, we will use this condition in the practical case.  

 

 

3.4 Comparison between the exponential and the 

recurrent exponential 

 

It is useful to understand the relation between conditions 3-7 and 3-11. This 

comparison is provided in the present section. 

At the step T, the constraint with the exponential will be equal to 𝜆𝑇, while the 

recurrent one will be equal to λ. It is then clear that we can not compare them using 

the same λ, because the exponential is much stricter, but it gives a better bound for 

the summation ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀 , guaranteeing less conservative evolution of the 

sum. It can be useful then to plot the values for the summation bounds as function of 

λ for both the conditions, making easier to find the values of λ leading to the same 

𝜒𝑀 for the two conditions. 

As it is possible to see in figure 3-2 and in figure 3-3, the difference in value for the 

same λ is significative, both for high values (over 0,9) and for low ones. The recurrent 

exponential goes to zero much slower, because its first term is always raised with a 

lower exponential, due to subtraction of T in the exponent. As T decreases, the shape 

of the function becomes more similar to the one of the exponential, which on the 

other side remains unvaried, because it depends only on M (see figure 4-4).  
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Figure 3-2 In red the value of the summation for the condition 3-7, in blue the one for the 

condition 3-25. The parameters values are T=10 and M=20 

 

Figure 3-3 The value of the summation tends to zero much faster in the case of the condition 

3-7 with respect to the one of the condition 3-25. The parameters values are T=10 and M=20.  
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Figure 3-4 In this case T=3 and M=20. It is possible to appreciate how much is changed the 

summation of the recurrent exponential in comparison to the previous image where T=10. 

Now, the value of 1 is reached around 0.84 while before was obtained for 0.68 ca 

For T=1, the two curves will be identical, but as T increases, the bound to ∑ ‖(𝐴 +ꝏ
𝑠=𝑀

𝐵𝐾)𝑠‖ using the recurrent exponential grows much faster, moving the plot towards 

left in the graph. The difference between the two λs, given the same 𝜒𝑀 for the two 

approaches, is small for high values of 𝜒𝑀. When we take the λ for the classic 

exponential equal to 0.99, the other λ, for the recurrent exponential to give the same 

𝜒𝑀, is 0.98, with a difference of just 0.01. The difference increases for small 𝜒𝑀, so 

when the first λ is equal to 0.8, the other must be around 0.45, with a difference of 

circa 0.35, 35 times higher than the previous case.  

Figure 3-5 depicts the relation between the λs for T=10. While the x axis depicts the λ 

used in the classic exponential bound, the y axis gives the λ used in the bound based 

on the recurrent exponential.  

As we have said before, the recurrent exponential goes to zero much slower. For this 

reason, very low values for its λ are needed to obtain the value of the summation 

obtained via the classic exponential when 𝜆 = 0.5. 
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Figure 3-5 Correspondence between the two lambdas for T=10 and M=20 

The relation between the two λs depends both on the value of T and the value of M. 

In figure 3-6 the relation is shown for eight different values of M (maintaining T=10).  

Increasing the value of M while keeping constant T corresponds in subtracting more 

terms in 3-24 and 3-30 equations. But the term subtracted for the 3-30 is greater. For 

example, when passing from M=20 to M=21, we will subtract 𝜆𝑀 = 𝜆20 to the 

exponential summation and 𝜆𝑀−𝑇+1 = 𝜆9 to the recurrent exponential one. In this 

way, we are subtracting a greater value to the condition 3-7, decreasing its 

summation curve and making it more similar to the other. 
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Figure 3-6 Plot of the relationship between the λ of the classic exponential (on the x axis) and 

the one of the recurrent exponential (on the y axis) for T=10 and for M going from 20 to 27. 

Once we have two equivalent λs, leading to the same value of 𝜒𝑀, it is possible to 

compare the constraints imposed by 3-7 and 3-11 by plotting the two functions 

‖(𝐴 + 𝐵𝐾)𝑡‖ is required to stay below. While comparing them, it is important to 

remember that the condition 3-7, the one with the recurrent exponential, starts at T, 

while the condition 3-25 starts at M. 
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Figure 3-7 Comparison between the two bounds for T=5 and M=20 

 

Figure 3-8 Comparison between the two bounds for T=10 and M=20 

 



 41 

 

 

 

Figure 3-9 Comparison between the two bounds for T=15 and M=20 

 

Figure 3-10 Comparison between the two bounds for T=20 and M=20 
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In the first three cases (T=5, T=10 and T=15), the best condition appears to be 3-7, 

since the disadvantage given by starting earlier, for the recurrent exponential, is not 

compensated by a less strict bound to be satisfied by ‖(𝐴 + 𝐵𝐾)𝑡‖. The two functions 

have indeed similar values for 𝑡 ≫ 𝑀, so the difference in the starting point is 

decisive in determining the best one. Condition 3-11 could be better for very specific 

cases, but in general the condition is definitively worse.  

In the fourth case (T=20), it is not anymore obvious which one is the best condition. 

While the recurrent exponential has a steeper slope, it also starts from a much higher 

value. The two conditions lead to two different decision sets, but it is not possible to 

state which one contains the best solution. The choice between the two is left to the 

user. Even if there is the possibility to choose a value for T smaller than M, it seems 

that, as for the other exponential, the best decision is to pick it equal to M. The 

increase in the value of λ allowed by a smaller T is not sufficient to justify the earlier 
start of the constraint. 
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4. Complete solution to the given 

problem 

 

As explained in previous chapters, the methodology proposed to solve the initial 

problem, the application of the scenario approach followed by an approximation of 

the stationary process, required to insert a further constraint on the norm of the 

matrix (𝐴 + 𝐵𝐾)𝑠. This is not an assumption on the given system, therefore it does 

not reduce the applicability of the method, rather it is a further requirement on the 

controller parameters. So, even though this constraint needs to be added to the 

formulation of the initial problem, it has to be seen as a step of the solution process 

rather than a part of the problem itself. With this addition, the problem is finally 

complete, and we have all the ingredients to prove that the violation probability of 

the solution is bounded by un upper limit with a confidence 1 − 𝛽. 

In this chapter, the main problem resolution steps are recalled, and the complete 

problem is introduced for two bounds on the norm: the exponential and the 

recurrent exponential. The main result, regarding the violation probability of the 

solution, is stated and proved. In the second part of the chapter there are some 

considerations and recommendations on the choice of the tunable parameters.  

 

 

4.1 Complete problem with the exponential bound on 

the norm 

 

The constraint introduced to bound the value of ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀 , in order to limit 

the expected difference 𝔼[|𝑔𝑘,ꝏ
𝑀 − 𝑔𝑘,𝑀

𝑀 |], need to be added to problem 2-2, together 

with the other constraints on the state and the control input. If we apply the 
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exponential bound expressed in equation 3-7, the complete version of the problem 

becomes   

𝑚𝑖𝑛
,𝐾,ℎ

ℎ  

𝑠. 𝑡. ℙ𝑑𝑘
{𝑙(𝑥𝑘,∞, 𝛾 + 𝐾𝑥𝑘,𝑀) ≤ ℎ ∧ 𝑓(𝑥𝑘,∞, 𝛾 + 𝐾𝑥𝑘,∞) ≤ 0} ≥ 1 − 휀 

∥ (𝐴 + 𝐵𝐾)𝑡 ∥≤ 𝜆𝑡 𝑓𝑜𝑟 𝑡 = 𝑇, 𝑇 + 1, . . . ,2𝑇 − 1 .  

4-1 

In words, we are looking for a controller that minimizes a cost function and respects 

the state-input constraints for the majority of the cases, and, at the same time, 

guarantees that the norm of the matrix (𝐴 + 𝐵𝐾)𝑡 lays under an exponential from a 

certain power over. The problem, as presented here, is hard to solve, mainly due to 

the presence of probabilistic constraints and the fact that the stationary state 𝑥𝑘,∞ 

depends on an infinite long disturbance realization, which is not feasible in practice. 

A solution to address the first problem is the use of the scenario approach, which 

allows to move from a chance-constrained problem to a problem with a finite 

number of standard constraints. The scenario approach requires N realizations of the 

disturbance to work with. In the case of convex problem, it is possible to determine 

the value of N so as to guarantee the satisfaction of the chance constraint in 4-1 with 

confidence 1 − 𝛽 when N is a function of both the confidence required and the value 

of 휀. When dealing instead with nonconvex problems this is not possible anymore, 

and the wait&judge approach is used, i.e., first the solution is computed and then a 

bound to the violation probability is calculated. The value of 휀 is not a strict 

requirement anymore because it can not be imposed. It is instead determined after 

that the solution has been calculated.  

To avoid the use of infinite long realization it is necessary to introduce an 

approximation. Instead of using the stationary state 𝑥𝑘,∞, the truncated version 𝑥𝑘,𝑀, 

obtained from a realization containing M samples, is adopted. To compensate for the 

approximation, the constraints on the state and the cost function must be tightened 

by a term 𝛿. This approximation made necessary the introduction of the bound on 

the norm, which guarantees that the difference 𝔼[|𝑔𝑘,ꝏ
𝑀 − 𝑔𝑘,𝑀

𝑀 |] remains under a 

maximum value determined by the user. 

Applying the scenario approach, the truncation of 𝑥𝑘,∞ and the tightening 𝛿 the 

problem to solve becomes the following approximated scenario program: 

min
,K,h

h 

𝑠. 𝑡. 𝑙(𝑥𝑘,𝑀
(𝑖)

, 𝛾 + 𝐾𝑥𝑘,𝑀
(𝑖)

) ≤ ℎ − 𝛿 

4-2 
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𝑓(𝑥𝑘,𝑀
(𝑖)

, 𝛾 + 𝐾𝑥𝑘,𝑀
(𝑖)

) ≤ −𝛿 

𝑥𝑘,𝑀
(𝑖)

= (𝐼 − 𝐴 − 𝐵𝐾)−1𝐵 + ∑ (𝐴 + 𝐵𝐾)𝑠𝑑𝑘−1−𝑠
(𝑖)

𝑀−1

𝑠=0

 

𝑖 = 1, … , 𝑁 

∥ (𝐴 + 𝐵𝐾)𝑡 ∥≤ 𝜆𝑡 𝑓𝑜𝑟 𝑡 = 𝑇, 𝑇 + 1, . . . ,2𝑇 − 1 , 

where the solution is denoted by (𝛾∗, 𝐾∗, ℎ∗) and 𝑠∗ is the cardinality of the smallest 

support set identified. N is the number of scenarios used while M is the truncation 

value. Before stating the theorem on the results of problem 4-2, we retrieve some 

notations introduced before. 

𝑔𝑘,ꝏ
∗  depends on the state and the control input in stationary conditions and, on the 

base of the definition of the function 𝑔(𝑥, 𝑢), it is equal to: 

𝑔𝑘,ꝏ
∗ (𝑥𝑘,∞

∗ , 𝛾∗ + 𝐾∗𝑥𝑘,∞
∗ ) = 𝑚𝑎𝑥 (𝑙(𝑥𝑘,∞

∗ , 𝛾∗ + 𝐾∗𝑥𝑘,∞
∗ ) − ℎ, 𝑓(𝑥𝑘,∞

∗ , 𝛾∗ + 𝐾∗𝑥𝑘,∞
∗ )) 4-3 

휀(∙) is the function solution of 1-10, 𝐿 is the Lipschitz constant and 𝜎2 is the expected 

value of the disturbance.  

Theorem 2: given the solution (𝛾∗, 𝐾∗, ℎ∗) to problem 4-2, fixed a confidence parameter 

𝛽 ∈ (0,1), it holds that 

ℙ𝑑𝑘

𝑁 {ℙ𝑑𝑘
{𝑔𝑘,ꝏ

∗ > 0} ≤ 휀(𝑠∗) +
𝜒𝑀

𝛿
} ≥ 1 − 𝛽 , 

where 𝜒𝑀 is equal to 

𝜒𝑀 = 𝐿
𝜆𝑀

1 − 𝜆
𝜎2 , 

The proof is provided in section 4.3. 

Theorem 2 states that the solution to the approximated scenario problem described in 

4-2 is valid even for the stationary process, i.e., the original problem 1-7, with a 

probability violation smaller than 휀(𝑠∗) + 𝜒𝑀 𝛿⁄ . The fraction 𝜒𝑀 𝛿⁄  represents the loss 

in the guarantees due to the approximation done.  

The controller developed shapes the stationary state distribution, so that the 

constraints are respected with a certain probability greater than a threshol. If the 

problem is convex, it is possible for the user to set the threshold by tuning the related 

parameters. This feature is loss when dealing with nonconvex problem, but it is the 

price to pay for the great increase in generality of the methodology. In nonconvex 

cases, however, the threshold for the controller found is known, and it can be used, 

together with the cost function, to decide if the results obtained are satisfactory or 
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not. Thanks to the generality of this approach (no assumptions are made on the state 

matrix, the disturbances distribution and its knowledge) and to the fact that it is 

computed in one shot offline, it can be applied to a very large number of problems.   

 

 

4.2 Complete problem with the recurrent exponential 

bound on the norm 

 

For the sake of completeness, the version of the problem with the recurrent 

exponential bound is also reported, even though the total analogy with the previous 

section 4.1. Applying the recurrent exponential condition as expressed in equation 

3-25 to the problem 1-7 gives 

min
,𝐾,ℎ

ℎ 

𝑠. 𝑡. ℙ𝑑𝑘
{𝑙(𝑥𝑘,∞, 𝛾 + 𝐾𝑥𝑘,∞) ≤ ℎ − 𝛿 ∧ 𝑓(𝑥𝑘,∞, 𝛾 + 𝐾𝑥𝑘,∞) ≤ −𝛿} ≥ 1 − 휀 

‖(𝐴 + 𝐵𝐾)𝑡‖ ≤ 𝜆𝑡−𝑇+1 𝑓𝑜𝑟 𝑡 = 𝑇, 𝑇 + 1, . . . ,2𝑇 . 

4-4 

As done in the previous section, the scenario approach is applied, to move from a 

chance-constrained problem to a standard one, and then the state process truncation 

is adopted, to remove the dependance on infinitely long realizations. The 

approximated scenario program with the recurrent exponential bound is 

min
,𝐾,ℎ

ℎ 

𝑠. 𝑡. 𝑙(𝑥𝑘,𝑀
(𝑖)

,  + 𝐾𝑥𝑘,𝑀
(𝑖)

, 𝑑𝑘) ≤ ℎ − 𝛿 

𝑓(𝑥𝑘,𝑀
(𝑖)

,  + 𝐾𝑥𝑘,𝑀
(𝑖)

) ≤ −𝛿 

𝑥𝑘,𝑀
(𝑖)

= (𝐼 − 𝐴 − 𝐵𝐾)−1𝐵 + ∑ (𝐴 + 𝐵𝐾)𝑠𝑑𝑘−1−𝑠
(𝑖)

𝑀−1

𝑠=0

 

𝑖 = 1, … , 𝑁 

‖(𝐴 + 𝐵𝐾)𝑡‖ ≤ 𝜆𝑡−𝑇+1 𝑓𝑜𝑟 𝑡 = 𝑇, 𝑇 + 1, . . . ,2𝑇 . 

4-5 
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Theorem 3: given the solution (𝛾∗, 𝐾∗, ℎ∗) to problem 4-5, fixed a confidence parameter 

𝛽 ∈ (0,1), it holds that 

ℙ𝑑𝑘

𝑁 {ℙ𝑑𝑘
{𝑔𝑘,ꝏ

𝑀 > 0} ≤ 휀(𝑠𝑀) +  
𝜒𝑀

𝛿
} ≥ 1 − 𝛽 . 

where 𝜒𝑀 is equal to 

𝜒𝑀 = 𝐿 (𝜆
1 + 𝜆2 − 2𝜆𝑇+1

(1 − 𝜆)(1 − 𝜆𝑇+1)
− ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖

𝑀−1

𝑠=𝑇

) 𝜎2 . 

The proof is given  

The value of ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖𝑀−1
𝑠=𝑇  is limited by the condition imposed on the norm and 

it depends on the difference between T and M. Given that their value differs from 

case to case, it is not possible to give a general threshold always valid, but in every 

case it can be calculated. An example of a specific case was given in section 2.3. 

As said, the only difference between theorem 2 and theorem 3 is in the value of 𝜒𝑀, 

so all the comments given in the previous section for the problem with the 

exponential bound remains valid also in this case. 

 

 

4.3 Proof of theorems 2 and 3 

 

The introduction of a bound on the norm of the matrix (𝐴 + 𝐵𝐾)𝑠 was motivated by 

the necessity of keeping a link between the stationary process 𝑥𝑘,∞ to the truncated 

one 𝑥𝑘,𝑀. The idea was to limit the difference between the constraints violation in the 

truncated case and in the stationary case, so that the bound for the violation 

probability found for the approximated scenario program could be applied to the 

initial problem. Thanks to the norm bound introduced in the previous chapter, we fill 

the gap. The proof applies for both theorems 2 and 3, with the only precaution of 

adjusting the proper value of 𝜒𝑀 in the two cases. 

From the first chapter, we know that an upper limit for the violation probability of 

the solution of the approximated scenario program with confidence 1 − 𝛽: 
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ℙ𝑑𝑘

𝑁 {ℙ𝑑𝑘
{𝑔𝑘,𝑀

∗ > −𝛿} ≤ 휀(𝑠𝑀)} ≥ 1 − 𝛽. 4-6 

The problem here is that the 𝑔𝑘,𝑀
∗  refers to the constraints in the approximated 

scenario program referring to the truncated solution, while the result in theorems 2 

and 3 is about the satisfaction of 𝑔𝑘,ꝏ
∗ ≤ 0, i.e., the behavior of the solution to 4-2 in a 

stationary condition. The next step seen in chapter 2 was to rewrite the violation 

probability for the non-approximated program, as 

ℙ𝑑𝑘
{𝑔𝑘,ꝏ

∗ > 0} = ℙ𝑑𝑘
{𝑔𝑘,𝑀

∗ + 𝛿 + 𝑔𝑘,ꝏ
∗ − 𝑔𝑘,𝑀

∗ − 𝛿 > 0} 

≤ ℙ𝑑𝑘
{𝑔𝑘,𝑀

∗ > −𝛿 ∨ 𝑔𝑘,ꝏ
∗ − 𝑔𝑘,𝑀

∗ > 𝛿} 

≤ ℙ𝑑𝑘
{𝑔𝑘,𝑀

∗ > −𝛿} + ℙ𝑑𝑘
{𝑔𝑘,ꝏ

∗ − 𝑔𝑘,𝑀
∗ > 𝛿} , 

4-7 

where the first term, ℙ𝑑𝑘
{𝑔𝑘,𝑀

∗ > −𝛿}, is bounded by equation 4-6, while the second 

can be bounded using the Chebyshev’s inequality: 

ℙ𝑑𝑘
{𝑔𝑘,ꝏ

∗ − 𝑔𝑘,𝑀
∗ > 𝛿} = ℙ𝑑𝑘

{|𝑔𝑘,ꝏ
∗ − 𝑔𝑘,𝑀

∗ | > 𝛿} ≤
𝔼[|𝑔𝑘,ꝏ

∗ − 𝑔𝑘,𝑀
∗ |]

𝛿
 . 

4-8 

Thanks to the assumption on the Lipschitz continuity of the cost function and the 

constraint functions, it is possible to bound the difference between the two functions 

𝑔𝑘,ꝏ
∗ − 𝑔𝑘,𝑀

∗  as a function of the mismatch between 𝑥𝑘,∞
∗  e 𝑥𝑘,𝑀

∗  . 

𝔼[|𝑔𝑘,ꝏ
∗ − 𝑔𝑘,𝑀

∗ |] = 𝔼[|𝑔𝑘,ꝏ
∗ − 𝑔(𝑥𝑘,𝑀

∗ , ∗ + 𝐾∗𝑥𝑘,∞
∗ ) + 

𝑔(𝑥𝑘,𝑀
∗ , ∗ + 𝐾∗𝑥𝑘,∞

∗ ) − 𝑔𝑘,𝑀
∗ |] 

≤ 𝔼[|𝑔(𝑥𝑘,∞
∗ , ∗ + 𝐾∗𝑥𝑘,∞

∗ ) − 𝑔(𝑥𝑘,𝑀
∗ , ∗ + 𝐾∗𝑥𝑘,∞

∗ )|] + 

𝔼[|𝑔(𝑥𝑘,𝑀
∗ , ∗ + 𝐾∗𝑥𝑘,∞

∗ ) − 𝑔(𝑥𝑘,𝑀
∗ , ∗ + 𝐾∗𝑥𝑘,𝑀

∗ )|] 

≤ 𝔼[𝐿‖𝑥𝑘,∞
∗ − 𝑥𝑘,𝑀

∗ ‖] + 𝔼[𝐿‖𝐾𝑀(𝑥𝑘,∞
∗ − 𝑥𝑘,𝑀

∗ )‖] 

≤ 𝐿(1 + ‖𝐾𝑀‖)𝔼[‖𝑥𝑘,∞
∗ − 𝑥𝑘,𝑀

∗ ‖] . 

4-9 

L is the maximum between the Lipschitz value of the cost function and the one of the 

constraint function. The norm ‖𝐾∗‖ is limited by the bound imposed on ‖(𝐴 +

𝐵𝐾)𝑀‖. It is not, however, easy to explicate it, so a solution could be to introduce a 

new requirement directly on ‖𝐾∗‖. This is necessary only if the cost function or the 

constraints depend on the input variable. If they depend only on the state, the 

difference |𝑔𝑘,ꝏ
∗ − 𝑔𝑘,𝑀

∗ | is bounded by just 𝐿‖𝑥𝑘,∞
∗ − 𝑥𝑘,𝑀

∗ ‖, without the need to do any 

further reasoning about ‖𝐾∗‖. As done in the previous chapter, for the sake of 
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simplicity, we will indicate |𝑔𝑘,ꝏ
∗ − 𝑔𝑘,𝑀

∗ | ≤ 𝐿‖𝑥𝑘,∞
∗ − 𝑥𝑘,𝑀

∗ ‖, knowing that L could be 

multiplied for 1 + ‖𝐾∗‖ if one of the functions depends on the control input. 

The difference between the stationary state process and the approximated version is, 

thanks to the bound on the norm of ‖(𝐴 + 𝐵𝐾)𝑠‖ finite. We indeed have that 

𝔼[‖𝑥𝑘,∞
∗ − 𝑥𝑘,𝑀

∗ ‖] = 

𝔼 [‖(𝐼 − 𝐴 − 𝐵𝐾)−1𝐵 + ∑(𝐴 + 𝐵𝐾)𝑠𝑑𝑘−1−𝑠

ꝏ

𝑠=0

− (𝐼 − 𝐴 − 𝐵𝐾)−1𝐵

+ ∑ (𝐴 + 𝐵𝐾)𝑠𝑑𝑘−1−𝑠

𝑀−1

𝑠=0

‖] 

= 𝔼 [‖∑(𝐴 + 𝐵𝐾)𝑠𝑑𝑘−1−𝑠

ꝏ

𝑠=𝑀

‖] ≤ 𝔼 [∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑀

‖𝑑𝑘−1−𝑠‖]  

= ∑‖(𝐴 + 𝐵𝐾)𝑠‖

ꝏ

𝑠=𝑀

𝔼[‖𝑑𝑘−1−𝑠‖] . 

4-10 

The summation ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀  is limited by in view of the results 3-10 and 3-23, 

where the proper bounds depends on the adopted problem (e.g. ∑ ‖(𝐴 + 𝐵𝐾)𝑠‖ꝏ
𝑠=𝑀 ≤

𝜆𝑀 (1 − 𝜆)⁄  in the case ‖(𝐴 + 𝐵𝐾)𝑠‖ is constrained to stay below to a classic 

exponential and likewise for the other case). 𝔼[‖𝑑𝑘−1−𝑠‖] is by assumption equal to 

𝜎2. Altogether, we thus have 

𝔼[|𝑔𝑘,ꝏ
𝑀 − 𝑔𝑘,𝑀

𝑀 |] ≤ 𝜒𝑀 , 4-11 

which used in 4-8 gives 

ℙ𝑑𝑘
{𝑔𝑘,ꝏ

𝑀 − 𝑔𝑘,𝑀
𝑀 > 𝛿} ≤

𝔼[|𝑔𝑘,ꝏ
𝑀 − 𝑔𝑘,𝑀

𝑀 |]

𝛿
≤

𝜒𝑀

𝛿
 . 

4-12 

This, together with 4-7, allows us to evaluate the violation probability for the 

stationary process based on the violation probability with the truncated one. 

ℙ𝑑𝑘
{𝑔𝑘,ꝏ

𝑀 > 0} ≤ ℙ𝑑𝑘
{𝑔𝑘,𝑀

𝑀 > −𝛿} + ℙ𝑑𝑘
{𝑔𝑘,ꝏ

𝑀 − 𝑔𝑘,𝑀
𝑀 > 𝛿} 

≤ ℙ𝑑𝑘
{𝑔𝑘,𝑀

𝑀 > −𝛿} +
𝜒𝑀

𝛿
 . 

4-13 

The proof of the theorem is now completed. In indeed holds that 

ℙ𝑑𝑘

𝑁 {ℙ𝑑𝑘
{𝑔𝑘,ꝏ

𝑀 > 0} ≤ 휀(𝑠𝑀) +  
𝜒𝑀

𝛿
} ≥ 4-14 
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≥ ℙ𝑑𝑘

𝑁 {ℙ𝑑𝑘
{𝑔𝑘,𝑀

𝑀 > −𝛿} +  
𝜒𝑀

𝛿
≤ 휀(𝑠𝑀) +  

𝜒𝑀

𝛿
} 

= ℙ𝑑𝑘

𝑁 {ℙ𝑑𝑘
{𝑔𝑘,𝑀

𝑀 > −𝛿} < 휀(𝑠𝑀)} ≥ 1 − 𝛽 , 

which is the statement of theorems 2 and 3. This concludes the proof. 

 

 

4.4 Choice of tunable parameters 

 

Theorems 2 and 3 provide an evolution to the violation, with respect to the original 

constraints in 1-7, of the scenario solution in the vein of the results of 4-2: 

𝑉(𝛾∗, 𝐾∗, ℎ∗) ≤ 휀(𝑠∗) +
𝜒𝑀

𝛿
 

with confidence equal to 1 − 𝛽 

4-15 

The main differences, with respect to [9] is that ε is no more an user chosen reliability 

level. In [9] indeed, ε can be given as a requirement which can be satisfied by a priori 

selection of other user chosen parameters. In our case, ε can not be a hard 

requirement, because there are no guarantees it is possible to satisfy it. According to 

the wait&judge perspective, ε is a function of the complexity 𝑠∗ and the value taken 

by it can span the whole range [0,1]. 4-15 has indeed to be interpreted thus as 

solution of the violation of the obtained solution. As compared with the scenario 

approach, in 4-15 we have to take a margin 𝜒𝑀 𝛿⁄  over 휀(𝑠∗) which is needed in order 

to account for the approximation given by the series truncation in the position of the 

scenario program as well as the tightening of constraints. 

The tunable parameters are the number of scenarios N, the truncation value M, the 

confidence parameter β, the tightening δ, the base of the exponential λ, and, in the 

case of the recurrent exponential, the bound starting point T. The last two were not 

present in [9] and increase the possible tuning combination. 

Interestingly, we can divide the tunable parameters in two groups, because on the 

one hand N and β determine, together with the cardinality of the support set, the 

value of the violation parameter ε, while 𝜒𝑀 𝛿⁄  is unaffected by the remaining ones. 

Different considerations can thus be made for these two groups of parameters. 
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4.4.1  Choice of the parameters affecting 𝜒𝑀 𝛿⁄  

 

β is the confidence with which we want to guarantee the result. So when tuning β, it 

must be considered that increasing its value the bound on the violation probability 

becomes more strict, but there are less guarantees on the effectiveness of the control 

system. ε depends logarithmically on β (see [24]), so it is possible to choose very 

small value without having a significant impact on ε.  A difference of one order of 

magnitude in β corresponds roughly to a difference in one percentage point for the 

violation probability, see figure 4-1. With β equal to 10−6 or 10−7, it is practically 

certain that 𝑉(𝛾∗, 𝐾∗, ℎ∗) ≤ 휀(𝑠∗) + 𝜒𝑀 𝛿⁄  is valid. 

 

Figure 4-1 Relationship between the support set cardinality and the violation probability 

with N=300 for different values of β 

 

 

ε is more influenced by the N, number of scenarios. The bigger its N, the better is the 

result, as it can be seen in figure 4-2 (휀(𝑠𝑁
∗ ) tends to 𝑠𝑁

∗  when 𝑁 → ∞, see [24]). 

However, the number of scenarios is, together with the truncation value M, the 
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biggest factor influencing the computational load. Increasing it too much leads to an 

extremely complex problem, which would require very long time to solve and 

without any guarantees on its feasibility. Considering also that N dictates the 

quantity of data needed, it is crucial, in case the data are obtained by measurements, 

to have a good value at the first time. If, after a first trial, it is necessary to increase 

the value of N, it could be indeed a problem to acquire more data. The choice of N 

has to balance these necessities, considering also the strictness of the other 

conditions. These choice is particularly hard since is not possible to know the 

cardinality of the support set, so the choice of N should be done considering the 

possible range of value ε can assume, instead of thinking to a specific value. In figure 

3-1 the function 휀(⋅)  is represented for different value of N.  

 

Figure 4-2 Relationship between the support set cardinality (on the x axis) and the violation 

probability expressed from 0 to 1 with β=10-5 and for different values of N 
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4.4.2  Consideration on the probability tightening for the classic 

exponential condition 

 

The best approach to tune the remaining parameter is starting with the value of 

𝜒𝑀 𝛿⁄ . While the cardinality of the support set, and so the value of ε, depends on the 

sample used and so is a probabilistic variable (except the case with convex 

functions), the value of 𝜒𝑀 𝛿⁄  is decided by the user, through the selection of certain 

parameters. Its value represents the maximum acceptable margin of guarantees 

loosening. It should therefore decided first to then tune the other parameters so to 

obtain the desired value. 

δ is the tightening applied to the constraint. Being at the denominator, we would like 

to set it as big as possible, to minimize the value of the fraction. The limit is given by 

the cost function and the feasibility. An excessively high value can make the problem 

unfeasible or can lead to a very big , with an incredibly high cost. The idea is 

therefore to try to maximize δ without getting out of proportion.  

The truncation parameter M and the exponential base λ are the two value we can use 

to tune 𝜒𝑀. The relation is, in case of exponential, 

𝜒𝑀 = 𝐿
𝜆𝑀

1 − 𝜆
𝜎2 . 

4-16 

Increasing M, considering that 𝜆 < 1, leads to an exponential decrease in the value of 

𝜒𝑀. The trade-off is like the one present for the number of scenarios N. The quality 

improvements in the result are paid with the need of a greater pool of data and a 

bigger computational load. Differently from N, the value of M does not influence 

significatively the feasibility of the problem. The choice of λ regards instead the 

bound rigidity. A too small λ could lead to a condition too strict, making the problem 

unfeasible if the dimension of the control input is smaller than the number of states. 

The value of λ also influences the cost, due to the restriction in the number of 

possible solutions the program can be chosen between. The consideration here done 

for the case with an exponential bound on the norm can be replicated, in a similar 

way, also in the case with a recurrent exponential bound, and, more in general, for 

every bound on the norm. There will always be, in fact, a trade-off on the bound 

strictness: its increase it means a reduction of the value of 𝜒𝑀, but also of the decision 

set. The compromise between the two must be found case by case and so for the 

value of M. 

With respect to the situation in [9], where there are only M and δ to be tuned, the 

choice is more complex. While it is possible that M is given by the problem, but λ and 
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δ must be always picked by the user. The choice is highly related to the problem 

given. If the norm of the matrix A is already high, it could be better to loosen λ, using 

the constraints tightening to obtain the value desired. On the other hand, if the 

constraints are already strict, it is probably a more advisable to tauten λ, leaving 

more space in the choice of δ. 
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5. Support set identification 

In the first chapter, we were interested in bounding the violation probability 𝑉(𝜃), 

which defines, for a certain solution 𝜃, the probability that the constraints are 

respected when applying a new realization of the disturbance. The violation 

probability depends on the probability distribution of the disturbance, which is not 

known, therefore it is not possible to directly compute it. However, it is 

demonstrated that it is related to the cardinality of a support set as defined in chapter 

1, definition 3, and this fact can be used to determine a bound. A support set is a set 

of scenarios which suffices to obtain the solution to the optimization problems with 

all the N scenarios in place. If the constraints are convex, the cardinality of the 

smallest irreducible support set is known to be not greater than the optimization 

variable dimension, as shown in [15]. In this way, it is always possible to bound the 

violation probability before even computing the solution. In the case of nonconvex 

constraints, this is not possible, and a different approach, called wait&judge, is used 

proposed in [15] and in [19]. The bound on the violation probability is given only 

after the solution is computed, based on the cardinality of any support set. With the 

solution at the disposal, it is possible to compute a support set based on its definition, 

i.e., trying to obtain the same solution using a reduced number of scenarios. There 

are many different approaches to do it, with huge differences in terms of 

effectiveness and computational time, so it is useful to spend some time looking for a 

good algorithm.  

 

 

5.1  Support set identification methods for nonconvex 

scenario 

 

The cardinality of the identified support set determines the reliability guarantee. The 

smaller it is, the better is the guarantee on the results. It is important to remember 
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that, from a theoretical point of view, minimality is not required. However, given the 

importance it has on the results, it is essential to find an algorithm able to find a 

support set as small as possible in a limited time. In fact, although it is always 

possible to find the irreducible support set with minimal cardinality, this would 

require an exhausting by brute force search over every possible subset of scenarios, 

and considering the number of scenarios we are dealing with, the task would be 

overwhelming. Just to give an idea of the entity of the calculation, imagine having a 

problem with 200 scenarios where the smallest irreducible support set has cardinality 

4 (which is not known beforehand). If we try every possible support set, starting 

from these with cardinality 1, we have to try 200 times using just one scenario, 19’900 

times (the number of possible combinations considering that the order does not 

matter, so it is (200 ∗ 199) 2⁄  ) using two scenarios, 1’313’400 times using three 

scenarios and then a bigger number of times using four scenarios, but that depends 

on the specific case. It should now be evident the necessity to have a good algorithm. 

So we need an algorithm that can be regarded as a function 𝐹: (𝛿(1), 𝛿(2), . . . , 𝛿(𝑁)) →

{𝑖1, 𝑖2, . . . , 𝑖𝑘} where (𝛿(𝑖1), 𝛿(𝑖2), . . . , 𝛿(𝑖𝑘)) is a support set. The cardinality of the 

support set is then: 

𝑠𝑁
∗ : = |𝐹(𝛿(1), 𝛿(2), . . . , 𝛿(𝑁))| . 5-1 

Among the various possible approaches, I will present three algorithms, the first two 

are more basic, while the third is a combination of the other two. 

 

 

5.2 The simple greedy algorithm 

 

The first approach is a simple greedy algorithm presented in [20] which works as 

follow: 

1. Set 𝐿 ← (𝛿(1), . . . , 𝛿(𝑁)) and compute 𝐾𝑁
∗ ← solution of the related program 

nonconvex problem; 

2. For all 𝑖 = 1, . . , 𝑁: 

 Let 𝐿′ ← 𝐿\𝛿(𝑖), form the program 𝑁𝐶𝑆𝑃(𝐿′) with the constraint in L’, and 

let K* be its solution; 

 If 𝐾∗ = 𝐾𝑁
∗ , set 𝐿 ← 𝐿′; 

3. Output the set {𝑖1, 𝑖2, . . . , 𝑖𝑘} of the indices of the elements in L. 
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The output of this algorithm can be particularly subject to the order in which the 

elements (𝛿(1), 𝛿(2), . . . , 𝛿(𝑁)) appear, increasing the uncertainty about the result. 

Another limit of this algorithm is that start using all the scenarios, with two major 

consequences. First, the number of times that perform the optimization is, at least, N, 

the number of starting scenarios. Second, given that it removes one scenario at a 

time, the first optimizations are done with a great number of scenarios, with a longer 

computational time. To obtain a good reliability guarantee is necessary to have a 

high N and to find a support set with a small cardinality. It is therefore evident how 

a proportional dependence from N can drastically affect the time needed to find the 

support set. The support subsample found is guaranteed to be irreducible, but it can 

be not the one of minimal length. 

 

 

5.3 The incremental algorithm 

 

The second algorithm perform on average less cycles than the greedy algorithm. 

Also, the optimization problem to be solved have an increasing number of scenarios, 

starting from one, so that the computational time is reduced. The cons is that there 

isn’t a formal guarantee to find an irreducible support set, even though in practice 

the algorithm proved effective for the problem at hand The idea behind the 

incremental algorithm is opposite to that of the greedy algorithm. Instead of finding 

a support set removing one element at time, it creates one adding one scenario at 

time. In this way, the time needed does not depend anymore on N, but potentially 

just on the cardinality of the found support set. The main problem to solve is in 

which order the scenarios have to be added. Choosing the wrong order, a scenario 

that is essential to construct any support set could potentially put in the last position 

and the algorithm would find as support set the whole set of scenarios. This example 

shows the crucial role that the order has. An effective solution has been found by 

looking at the support sets obtained with the greedy algorithm. In most cases, the 

scenarios composing the support set were the ones for which 𝑓(𝑥, 𝑢) was closest to 0 

(remember that the constraint requires 𝑓(𝑥, 𝑢) ≤ 0). This makes sense intuitively: 

changing the parameters values of a small amount, is more probable that the 

scenarios for which 𝑓(𝑥, 𝑢) is close to 0 will violate the constraint, with respect to the 

other. An algorithm that orders the scenario based on the value of  𝑓(𝑥, 𝑢) was 

created and the support set is obtained by adding one scenario at time from the 

nearest one to the most distant. The steps are the following: 
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1. Compute 𝐾𝑁
∗  from the complete set (𝛿(1), . . . , 𝛿(𝑁)); 

2. Using 𝐾𝑁
∗  and the disturbance realizations (𝛿(1), . . . , 𝛿(𝑁)), calculate the states 

after M step xM ; 

3. Order the realizations based on the value of 𝑓(𝑥, 𝑢) for 𝑥 = 𝑥𝐾,𝑀, obtaining 

(𝛿(𝑖1), . . . , 𝛿(𝑖𝑁)). The case of two or more points are at the same distance is rare 

and their order is generally not significant. For this reason, no further 

criterions were evaluated. 

4.  For all 𝑛 = 1, . . , 𝑁: 

 Let 𝐿′ ← 𝐿 ∪ 𝛿(𝑖𝑛), form the program 𝑁𝐶𝑆𝑃(𝐿′) with the constraint in L’, 

and let K* be its solution; 

 If 𝐾∗ = 𝐾𝑁
∗ , set 𝐿 ← 𝐿′ and exit the “for” cycle; 

5. Output the set {𝑖𝑔, . . . , 𝑖𝑘} of the indices of the elements in L. 

This algorithm proved to be much more efficient than the previous one in the case 

study developed in chapter 6. It generally finds small support set at a much lower 

computational effort. However, it may be that a scenario that is necessary for the 

minimal support set is not among the first in the order. In that case, the algorithm 

finds a support set significatively bigger than the minimal one, and the 

computational time is affected too. In spite of this drawback, the results are 

definitively good and it is often the case that the incremental algorithm outperforms 

the greedy one. 

 

 

5.4 The incremental greedy algorithm 

 

The third algorithm solves the weak spot highlighted in the incremental algorithm by 

combining it with the simple greedy one. The idea is to apply completely the second 

algorithm and then to reduce the support set found using the first algorithm. In this 

way, we keep the benefit given from the incremental algorithm (to not be dependent 

on N, far less computational load than the first), solving its problem and further 

improving the results. In fact, even when the support set is already small, for 

example with cardinality 4 or 5, applying the simple greedy algorithm often further 

reduced the support set. With respect to the second algorithm, the computational 

load and the time needed are increased by roughly a factor 2, but the improvements 

in the result make it worth using. The support subsample found with this algorithm 
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is guaranteed to be irreducible, but again it could be not the one with the smallest 

cardinality.  

The incremental greedy algorithm is the following: 

1. Compute 𝐾𝑁
∗  from the complete set (𝛿(1), . . . , 𝛿(𝑁)); 

2. Using 𝐾𝑁
∗  and the disturbance realizations (𝛿(1), . . . , 𝛿(𝑁)), calculate the states 

after M step xM ; 

3. Order the realizations based on the distance between the states after M step 

and the constraint, obtaining (𝛿(𝑖1), . . . , 𝛿(𝑖𝑁)). The case of two or more points 

are at the same distance is rare and their order is generally not significant. For 

this reason, no further criterions are evaluated; 

4. For all 𝑛 = 1, . . , 𝑁: 

 Let 𝐿′ ← 𝐿 ∪ 𝛿(𝑖𝑛), form the program 𝑁𝐶𝑆𝑃(𝐿′) with the constraint in L’, 

and let K* be its solution; 

 If 𝐾∗ = 𝐾𝑁
∗ , set 𝐿 ← 𝐿′ and exit the “for” cycle; 

5. Considering the set {𝑖1, . . . , 𝑖𝑘} of the indices of the elements in L, ∀𝑖 ∈

{𝑖1, . . . , 𝑖𝑘} : 

 Let 𝐿′ ← 𝐿\𝛿(𝑖), form the program 𝑁𝐶𝑆𝑃(𝐿′) with the constraint in L’, and 

let K* be its solution; 

 If 𝐾∗ = 𝐾𝑁
∗ , set 𝐿 ← 𝐿′; 

6. Output the set {𝑖1, 𝑖2, . . . , 𝑖𝑗} of the indices of the elements in L.
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6. Simulation example 

 

This chapter is meant to illustrate the approach previously presented by means of a 

simple yet not simplistic example. Many experiments were made, here we report the 

most significant. 

 

 

6.1 Problem setup 

 

In both the two simulation examples, we will study states of the second order, in the 

first case with a single control input, while in the second with two. In the following 

subsections, the common aspects of the two examples are discussed. 

 

 

6.1.1 Cost function 

 

The cost function used is a quadratic function evaluating the controller parameters 𝐾 

e 𝛾, expressed as 

𝑙(𝐾, 𝛾) = ∑ ∑ 𝑝𝑖,𝑗(𝐾𝑖,𝑗)
2

𝑛𝑥

𝑗=1

𝑛𝑢

𝑖=1

+ ∑ 𝑞ℎ(𝛾ℎ)2

𝑛𝑢

ℎ=1

. 
6-1 

This type of cost function allows a great personalization, with the possibility to 

choose a different weight for each controller parameter. In the two examples 

proposed, the values taken are 𝑝𝑖,𝑗 = 1 ∀𝑖, ∀𝑗 and 𝑞ℎ = 1000 ∀ℎ. The bigger weights 
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imposed for 𝛾 should lead the optimization program to rely more on 𝐾 and to use 𝛾 

only if really needed. 

 

 

6.1.2 Constraint applied 

 

The constraint function 𝑓(𝑥, 𝑢) imposes a constraint to the pair (𝑥, 𝑢). As for the cost 

function, there is no assumption on its convexity, on the contrary we will treat them 

as if it is nonconvex. 

In the two simulation examples, a simple linear constraint is used, and which is 

expressed by the following equation: 

𝐹𝑥 ≤ 𝑣 . 6-2 

In the 2-dimensioanl case, it reduces to ask that all the points stay below or over one 

or more straight lines. When the disturbance is generated, the evolution of the states 

without control action is plotted, to confront it with the constraint.  

In addition to the constraint on the states value, a constraint on the norm of 𝐴 + 𝐵𝐾 is 

applied. Three different functions, based on what seen in chapter 3, have been 

developed. The first one just requires that the norm of 𝐴 + 𝐵𝐾 is smaller than one. It 

is the simplest one and it can be useful to compare with the other two. The second 

includes the condition 3-7, which is: 

∥ (𝐴 + 𝐵𝐾)𝑡 ∥≤ 𝜆𝑡 𝑓𝑜𝑟 𝑡 = 𝑇, 𝑇 + 1, . . . ,2𝑇 − 1 . 6-3 

In practice it requires that the norm of the exponential of the matrix lays under an 

exponential with base λ form a certain T over. The third function includes the 

condition 3-25: 

∥ (𝐴 + 𝐵𝐾)𝑡 ∥≤ 𝜆𝑡−𝑇+1 𝑓𝑜𝑟 𝑡 = 𝑇, 𝑇 + 1, . . . ,2𝑇 . 6-4 

Similar to the previous one, it is less strict, as we have seen in the previous chapters. 

In the two simulation examples, the second function is used. 
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6.1.3 Noise simulation 

 

While in a real practical case the scenarios must be sampled independently one from 

the other, according to the Δ distribution. In the case developed, the disturbance is 

generated randomly according to a certain distribution. I used the normal 

distribution, with the possibility to apply standard deviations σ for every state. For 

the normal distribution, the general form of the probability density function is 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1
2

(
𝑥−𝜇

𝜎
)

2

 . 
6-5 

However, the distribution type is totally irrelevant in the scenario approach, the only 

strict requirement is the independence in the sampling. Therefore, it is possible to 

apply to problems with any type of distribution. 

For the two cases presented, the disturbance used has zero mean, as required by the 

assumptions, and all the standard deviations equal to 1. 

 

 

6.1.4 fmincon 

 

The function used to find an optimal solution for the problem is fmincon. It is a 

function available on Matlab that finds the minimum of constrained nonlinear 

multivariable functions. We pass to it the cost function, the constraint function, and 

an initial guess from the parameters. It is possible to impose other requirements, such 

as an upper and lower bound for the parameters, or linear inequalities. 

The initial guess can influence the results of the optimization with sometimes 

significative difference. If it is not possible to have a good initial guess it is 

recommended to run the program multiple times changing the starting point to have 

more guarantees on the quality of the result. 
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6.2 First example 

 

6.2.1  System choice 

 

The system has two states, but only one control input. The state space matrix is 

𝐴 = [
0.95 0.2
0.8 0.8

] . 6-6 

The system is not stable, the two eigenvalues are 1.282 and 0.468, so the controller 

will have to stabilize it. 

The system has just one control input and the control matrix is 

𝐵 = [
1

0.3
] . 6-7 

The values of the other main parameters are reported in the following table. The only 

constraint on the states is to stay below a given straight line, so 𝑣1𝑥1 + 𝑣2𝑥2 − 𝑣𝑚𝑎𝑥 ≤

0. The constraint has been chosen so that, when there is no control applied, a high 

number of realizations violates it. The controller, therefore, has to do a strong 

reshaping of the state distribution. 

Name Symbol Value 

Number of scenarios N 400 

Truncation value M 20 

Confidence parameter β 10−5 

Norm bound coefficient λ 0.95 

Constraint coefficient for the first state V1 1 

Constraint coefficient for the second state V2 2 

Constraint constant coefficient Vmax 2 
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6.2.2  Results 

 

From image x it is possible to see how would evolve the system after M steps without 

control (the orange points). In blue, near the center and harder to notice, there are the 

states after the same number of steps and affected by the same disturbance when the 

control action developed is applied. In the next image it is possible to better 

appreciate the job done by the controller.  

The result is: 

𝐾 = [−0.1866 −0.1699] 

𝐴 + 𝐵𝐾 = [
0.7634 0.0301
0.7440 0.7490

] 

𝛾 = −0.7553 . 

6-8 

It is possible to see that the dependance of the first state from the second is 

practically canceled. Now, the two eigenvalues are 0.906 and 0.606, so the system is 

asymptotically stable. 𝛾 has a quite high value due to the small distance of the 

constraint from the origin. The controller needs to move the average position away 

from the center, to avoid crossing the constraint in case the disturbance as a high 

value.  

In Figure 6-1, it is possible to see in red the states after M step without control and in 

blue with the developed control. The orange line is the constraint that has to be 

respected. The state has to stay below the line. Figure 6-2 is a zoom on the center of 

image x to better highlight the controlled states. As it is possible to see, the points are 

made more compact and there is a small change in the overall direction. All the 

points are now below the constraint. 
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Figure 6-1 The non controlled states are in orange, while the controlled ones in blue. The 

yellow straight line delimits the area in which the states should stay. 

 
Figure 6-2 Zoom of the image proposed in Figure 6-1. Here it is possible to better appreciate 

the state distribution when the control is applied. 
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This case is particularly interesting because the norm of the matrix (𝐴 + 𝐵𝐾)𝑠 starts 

over the value of 1, it has an overshoot, but after the 20th step it lays under the bound, 

as required (see Figure 6-3). The optimization program has used the increased 

freedom available thanks to the less strict requirement. If the norm bound was 

required from the first step, the program would have had less option and would 

have found a solution with a greater cost. This is a limit case, where the program 

takes all the space it has, waiting until the last step before respecting the bound. But 

it is not a case so rare, it can happen often, if the initial matrix has the norm bigger 

than 1.  

This case is particular also because the support set is composed of just one scenario. 

Together with the elevated number of scenarios used, it allows to have a low bound 

for the violation probability. 

An example of a test conducted to evaluate the quality of the resulting controller is 

shown in Figure 6-4. 

 

 

Figure 6-3 Evolution of the norm of the matrix (𝐴 + 𝐵𝐾)𝑠 as s increases compared to the 

bound (which is valid for value equal or greater than 20) 
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Figure 6-4 Results of a test conducted using the controller developed. 

 

 

6.3 Second example 

 

6.3.1 System choice 

 

In this case, the system has two states and two inputs, giving more control over the 

state distribution. The state matrix is 

𝐴 = [
0.9 −0.1
0.2 0.6

]. 6-9 

It is asymptotically stable, with the two eigenvalues being 0.7 and 0.8. The control 

input matrix is 
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𝐵 = [
1 0
0 1

]. 6-10 

The controller must maintain the states between two parallel straight lines. The first 

constraint is 𝑣1𝑥1 + 𝑣2𝑥2 − 𝑣𝑚𝑎𝑥 ≤ 0, while the second is −𝑤1𝑥1 − 𝑤2𝑥2 + 𝑤𝑚𝑎𝑥 ≤ 0.  

Name Symbol Value 

Number of scenarios N 200 

Truncation value M 20 

Confidence parameter β 10−5 

Norm bound coefficient λ 0.72 

Constraint coefficient for the first state V1 1 

Constraint coefficient for the second state V2 0.2 

Constraint constant coefficient Vmax 2.25 

Constraint coefficient for the first state W1 1 

Constraint coefficient for the second state W2 0.2 

Constraint constant coefficient Wmax 2.25 

  

 

6.3.2 Results 

 

The resulting controller is: 

𝐾 = [
−0.4164 0.1609
−2.2481 −0.3233

] 

𝐴 + 𝐵𝐾 = [
0.4836 0.0609

−2.0481 0.2767
] 

𝛾 = [
0.0752
0.0394

] . 

6-11 
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Differently from the previous case, the values for 𝛾 are almost negligible. While with 

only one linear constraint it is useful to move away the points using a constant term 

in the control input, it is not true in this situation.  

The two constraints are facing one another and moving away from one means 

implicates getting close to the other. Also, thanks to the fact that the number of 

inputs is equal to the state dimension, there is more control on the values of 𝐴 + 𝐵𝐾 

and, therefore, the state distribution shape. For these two reasons, and the fact that 𝛾 

is associated to a high cost, its value is near zero. 𝐾 alone is, in this case, sufficient to 

reshape the distribution and to guarantee the constraints observance. In Figure 6-5, it 

is possible to compare the states without control, in orange, and the controlled one, 

in blue. The direction among which are directed the noncontrolled points is 

completely changed by the controller. Thanks to its intervention, the direction is 

rotated to be parallel to the two straight lines used as constraints. 

 

Figure 6-5 Comparison between the non controlled states and the controlled ones. 
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Figure 6-6 Norm of the matrix (𝐴 + 𝐵𝐾)𝑠  as a function of s (in blue). Dotted in red the 

bound applied. 

 

The norm of the matrix 𝐴 + 𝐵𝐾 starts over 2, but it rapidly decreases to zero, 

respecting the condition imposed (see Figure 6-6).  

The support set found contains four scenarios, so, considering that the number of 

scenarios used is 200 and β is 10−5, the best epsilon guaranteed is 11.52%. 

Considering that 𝜎 = √𝔼[∥ 𝑑𝑘−1−𝑠 ∥2]2
= 1 and L=1, the value of 𝜒𝑀 is: 

𝜒𝑀 = 𝐿
𝜆𝑀

1 − 𝜆
𝜎2 =

0.7220

1 − 0.72
= 0.005 . 

6-12 

Being a simulation, we do not have a value, but using 0.1, which corresponds to a 

reduction of ca 10% of the area between the two straight lines, we would obtain  

휀(𝑠𝑀) +  
𝜒𝑀

𝛿
= 0.1152 +

0.005

0.1
= 0.1652 . 

6-13 

Therefore, with a probability greater than 99.99%, ℙ𝑑𝑘
{𝑔𝑘,ꝏ

𝑀 > 0} ≤ 16.52%. 

 In a test done using 10000 realizations, the error percentage was of 2% (see Figure 6-

7). 
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Figure 6-7 Results of a test conducted using the controller developed. 

 

 

 

 

 



 

 

  

7. Conclusion 

The work done in the thesis led to the development of a new method to solve chance-

constrained optimization program, which are generally hard to tackle with 

traditional approach. The main contribution of the thesis is the combination of the 

scenario approach, effective when working with probabilistic constraints, with the 

approximation of the stationary state process, necessary to use finitely-long 

realizations of the disturbance. In this way, the guarantees given for the 

approximated problem, which were provided by the scenario approach, could be 

extended to the original problem, thanks to a convenient tightening of the 

constraints. The use of a state-feedback control and the absence of assumption on the 

convexity of the constraint function make this approach suitable for a high number of 

problems. Also, the results obtained testing the method on numerical examples were 

very satisfactory, with the program being able to find optimal solutions even for 

strict setups. 

Further development of this methodology could include a different approach in the 

use of the scenarios. In fact, a limit in the scenario approach is that, when the number 

of scenarios used tends towards infinity, the program is solving all the constraints, 

and so the solution tends towards the robust one. If, however, some of the sampled 

scenarios are removed, the solution would better fit the chance-constrained problem. 

With this approach, if any bad instances is sampled, it would now be discarded and 

would not, therefore, affect the solution. 
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9. Appendix  

 

The following MATLAB code returns (k), k = 0, 1,..., d, for user assigned d, N, and β. 

 

function out = epsilon(d,N,bet)  

out = zeros(d+1,1); 

for k = 0:d  

   m = [k:1:N];  

   aux1 = sum(triu(log(ones(N-k+1,1)*m),1),2); 

   aux2 = sum(triu(log(ones(N-k+1,1)*(m-k)),1),2);  

   coeffs = aux2-aux1;  

   t1 = 0;  

   t2 = 1;  

   while t2-t1 > 1e-10 t = (t1+t2)/2;  

      val = 1 - bet/(N+1)*sum( exp(coeffs-(N-m’)*log(t)) );  

      if val >= 0 

         t2 = t; 

      else  

         t1 = t;  

      end  

   end  

   out(k+1) = 1-t1;  

end 
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