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Abstract

APPLICATION autotuning is a promising path investigated in literature to improve
computation efficiency. In this context, the end-users define high-level require-
ments and an autonomous manager is able to identify and seize optimization

opportunities by leveraging trade-offs between extra-functional properties of interest,
such as execution time, power consumption or quality of results. The relationship be-
tween an application configuration and the extra-functional properties might depend on
the underlying architecture, on the system workload and on features of the current input.
For these reasons, autotuning frameworks rely on the so called application-knowledge to
drive the adaptation strategies. The application-knowledge is typically produced off-line
because it highly depends on an expensive phase called Design Space Exploration whose
fruition requires significant effort in order to reduce its overhead.

This master thesis aims at providing an adaptive framework which supports ap-
plication autotuning at runtime in order to get the application-knowledge during the
production phase and in a distributed fashion. Experimental results show how the
proposed approach is able to learn the application knowledge maintaining the quality
thresholds while exploring a small fraction of the design space.
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CHAPTER1
Introduction

The end of Dennard scaling [1] forced the beginning of a new era where the optimization
focus towards the search of efficiency in a wide range of scenarios drastically increased,
from embedded systems integration to High-Performance-Computing (HPC). This
marked the birth of the autotuning concept that has been identified as a promising
research field. Autotuning refers to the automatic generation of a search space of
possible implementations of a computation that are evaluated through models and/or
empirical measurement to identify the most desirable implementation. Autotuning has
the potential to dramatically improve the performance portability of applications [2].
In this direction many frameworks begin appearing on the scene with goals that go
from the optimization of a specific task to the optimization of certain configurations,
often referred to as software-knobs, which can be identified both at system-level (e.g.
the core frequency) and at application-level (e.g. software parameters). It can happen
that the software-knobs configurations may be changed at runtime, for which they’re
referred to as dynamic-knobs [3]. Moreover, there is a large class of applications that
implicitly expose software-knobs to find accuracy-throughput tradeoffs. This approach
goes with the name of approximate computing [4] which can significantly increase the
application throughput by decreasing the result accuracy. Following this philosophy,
several techniques were born such as loop perforation [5] or task skipping [6] to name a
few well known.

As a consequence of this, application requirements in terms of extra functional
properties (EFPs), such as execution time, power consumption or quality of results,
are increasing in complexity. Moreover, these EFPs might depend on the actual inputs
of the application, on the available resources and on the underlying configuration. A
subset of software-knobs relates to parameters that aim at tailoring the application
for the underlying architecture, such as work-group size, MPI runtime parameters or
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Chapter 1. Introduction

compiler options and typically the autotuning frameworks that address these parameters
perform a Design Space Exploration (DSE) at design-time to find the most suitable
configuration to be used during production. A second subset of software-knobs relates to
application-specific parameters, such as the confidence level, loop perforation factors or
algorithm parameters. Typically, it is easier to change these software-knobs during the
production phase and their effects on EFPs are strongly coupled with the features of the
current input. For these reasons the autotuning frameworks often model this relationship
as an application-knowledge and leverage it to identify and seize the optimization
opportunities [7].

1.1 Thesis Motivations

The main challenge of the general approaches described previously is the exponential
growth of the Design Space (DS) when considering several, and usually unbounded,
software knobs. Given the complexity of the this tuning process, the DSE phase is
usually done off-line prior to the application execution, leaving only the configuration
selection at run-time. The main issue behind this is that the code could be ported to
a new architecture, updated, or the application could even require the elaboration of
new input data. This could potentially nullify the whole DSE and eventually lead to a
forced restart of the whole off-line tuning process. On the other hand, porting this phase
online at production time requires a significant effort to minimize the tuning time and
the overhead. Despite being a known problem in literature, this has not been throughly
investigated and remains an open question.

1.2 Thesis Contributions

This thesis’ work aims at advancing the state-of-the-art proposing a framework which
exploits a model-driven approach to learn the application-knowledge online, at the
beginning of the production phase. The methodology is based on an iterative approach to
obtain the application knowledge using as few samples as possible. It has been designed
to work in a distributed context where different entities can collaborate to the knowledge
collection. The framework mainly targets the context of HPC, where an application is
composed of more than one process and it usually executed for a long period. However,
it might be applied also in a wider range of scenarios. There are multiple benefits in
learning the application-knowledge at runtime:

• The actual execution environment of the application is being used and is stored for
dynamic autotuning;

• The application behavior learning phase uses the actual features of the input set;

• Being able to leverage the parallelism of the platform, it is possible to reduce the
time-to-knowledge.

The starting point of this thesis is mARGOt [8], a dynamic autotuning framework
that has been implemented as an adaptation layer which gives to the target application
mechanisms to adapt in a reactive and proactive fashion, based on the application-
knowledge provided. The learning module is designed to enhance mARGOt. It is

2
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1.3. Thesis Outline

important to highlight that during this work no new modeling techniques were created
nor comparison between existing ones were made. The main focus was to leverage
existing techniques in order to reduce the time required to compute the application-
knowledge that mARGOt uses.

The main contributions of this thesis can be summarized as follows:

1. The methodology implementation has been named Agora. Agora is a C++ auto-
tuning framework to learn the relationship between EFPs, software-knobs con-
figurations and input features during production time. The incorporated iterative
exploration strategy is employed in order to reduce as much as possible the required
number of samples. Agora is able to address an arbitrary number of EFPs, leaving
the end-user the ability to integrate it without the need of porting it to another
language or using a different compiler for the use. A skeleton of the main module
was already available but not fully integrated with the rest of the framework nor was
scalable inside a distributed context. The effort of this thesis made it an asset for
the exploitation of mARGOt. The framework source code is publicly released [9].

2. A modular, flexible and fully extendible plugin system that takes care of each step
of the iterative procedure independently. The end-user can extend the plugins with
its own implementation in a language agnostic fashion.

3. Thanks to a scalable infrastructure, it can exploit the parallelism to strongly increase
the application knowledge generation speed.

4. An experimental evaluation of Agora has been performed on known benchmark
applications to demonstrate the introduced benefits.

1.3 Thesis Outline

This thesis has been divided into the following chapters. Chapter 2 describes the
background and introduce the reader to the main concepts covered in this thesis. It also
provides an overview of the current state-of-the-art, highlighting the contributions of the
proposed framework. Chapter 3 describes the proposed approach in details, explaining
the methodology in depths and the design efforts. Chapter 4 outlines Agora from the
implementation point of view, describing the build system used and how the library
and the plugin system work in details, specifying the technologies used and the most
critical aspects faced during development. A brief example is presented to demonstrate
the integration steps needed to leverage Agora. Chapter 5 describes the experimental
validations that have been made to address both benefits and limitations of the proposed
framework. Starting from the description of the target architecture where the experiments
have been running, it follows a summary of some known benchmarks which have been
considered as target applications. After describing the experiments that addressed the
framework scalability and overhead, the chapter ends with a final evaluation on the
methodology quality. Finally, Chapter 6 concludes this thesis by summarising the main
contributions and leaving some recommendations and thoughts on future works.

3
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CHAPTER2
Background and Previous Works

This chapter provides an introduction to the research field related to this thesis’ work
and gives a definition of the main concepts and technologies that will be addressed
during Agora framework description and comparison with the current state-of-the-art.
In the following sections, the reader is introduced to some key concepts which hopes
to facilitate the understanding behind the methodology that has been adopted. We start
by presenting the autonomic computing world along with some general definitions
and terminology of the field. Then, we describe some recent works and comparison
in relation to this thesis’ scope. Moreover, we take a background overview on the
experimental design approach that aims at reducing the Design Space by obtaining
suitable configurations to explore. We introduce the concept of process modeling
along with the reasons why it is important in conjunction with the experimental design
output. After that, we outline the clustering technique in relation to the input features
sensitivity problem. Then, we briefly describe a lightweight network message protocol
which has been leveraged inside Agora’s distributed context. Finally, we introduce
mARGOt, a dynamic autotuning framework that has been the starting point of Agora’s
core development.

2.1 Autonomic Computing

In mid-October 2001, IBM released a manifesto [10] that the main obstacle to further
progress in the IT industry is a looming software complexity crisis. The manifesto
pointed out that the difficulty of managing today’s computing systems goes well beyond
the administration of individual software environments. The need to integrate several
heterogeneous environments into corporate-wide computing systems, and to extend that
beyond company boundaries into the Internet, introduces new levels of complexity. As

5



i
i

“thesis” — 2021/4/5 — 20:40 — page 6 — #12 i
i

i
i

i
i
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Figure 2.1: Technologies applied to the four stages of the autonomic control loop. Although inspired by
control theory, this structure encompasses symbolic and other techniques within a common framework
as well as aspects of both computing and communications.

systems become more interconnected and diverse, architects are less able to anticipate
and design interactions among components, leaving such issues to be dealt with at
runtime.

In the autonomic computing [7], an application is perceived as an autonomic element
capable of self-management. Among the self-* properties required by this self manage-
ment, autotuning frameworks aim to provide self-optimization. In this specific context,
the end-user should specify high-level requirements and the application should adapt
accordingly. Autonomic systems will continually seek ways to improve their operation,
identifying and seizing opportunities to make themselves more efficient in performance
or cost. Just as muscles become stronger through exercise, and the brain modifies its
circuitry during learning, autonomic systems will monitor, experiment with, and tune
their own parameters and will learn to make appropriate choices about keeping functions
or outsourcing them. They will proactively seek to upgrade their function by finding,
verifying, and applying the latest updates.

By this premise it comes natural that developers considering the evolution and
management of systems in terms of self-* properties must take a different perspective,
for example, by including programmatic monitoring and management interfaces. Such a
perspective, while common in telecommunications in the form of managed components,
is unusual in software architectures still based largely on configuration files read only
at start-up time. As Figure 2.1 shows, providing monitoring and control suggests
the application of control theory expressing a control action derived from a system’s
observed behavior against a model of intended or expected behavior. Researchers have
successfully applied such techniques to, for example, power management [11], to achieve
clear closed-form representations. However, it is less clear whether the techniques can
be applied more broadly in areas where the control domain changes dynamically [12].

2.1.1 Definitions and Terminology

Autotuners work at the application level, leveraging the assigned resources to reach
end-user requirements and therefore, orthogonal decisions are taken. Before further
discussing the current state-of-the-art and the related works, it is important to clearly

6
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2.2. Previous Works

define the key concepts behind the methodology presented in this thesis.
With the term application, we may refer to any software that is possible to execute

on the target architecture. However, we consider only applications that perform an elab-
oration and that do not require human interaction, such as a video encoder, a navigation
system or scientific applications. Moreover, end-users or system administrators may
have preferences or requirements on the application extra-functional properties (EFPs),
such as execution time, energy consumption or quality of the results. For example,
the user of a video encoder application would like to convert a video streaming with
the highest quality, provided a throughput of at least 25fps; or the administrators of a
navigation system would like to minimize the energy consumption while respecting a
Service Level Agreement on the response time and quality of the results. We refer to the
set of EFPs relevant for the end-user or system administrator as metrics, defining the
application performance as a vector of values.

A large class of applications exposes tunable parameters that alter the application
performance, named software-knobs. We may have application-specific software-knobs
and application-agnostic software-knobs such as tile size or the number of Monte Carlo
simulations. The main idea is that a change in the software-knobs configuration leads to
a change in the application performance/output as well. A portion of all the possible
software-knobs configurations is called Design Space. More details about this concept
are discussed in Section 2.3. The main goal of an application autotuner is to automatically
tune the software-knobs according to end-users or system administrator preferences
or requirements. The major challenge is that the relation between a software-knobs
configuration and the application performance is unknown and usually depends also on
the underlying architecture and on the current input. For this reason, it is possible to
use the characteristics of the current input, such as its size or autocorrelation, to better
describe the relationship with the application performance. This set of values is named
input features. Finally, the representation used by application autotuner to describe
the relation between software-knobs configurations, input features and the application
performance is named application-knowledge.

2.2 Previous Works

In the following section we will take a quick overview of the most recent works that
can be found in literature and which are related to this thesis’ work. After outlining
them, a comparison with Agora is made, drawing attention to the main differences and
contributions with respect to the current state-of-the-art.

2.2.1 Static vs Dynamic Autotuning

It is important to draw a line that separates two significant categories of autotuners in
order to better grasp the nature of autotuning in its whole. As stated, in the autonomic
computing world frameworks are born according to their vision on how to provide
self-optimization properties. Often this is reflected with the selection of the most
suitable configuration of software-knobs to leverage the assigned resources. Among
these approaches, we can have static autotuners and dynamic autotuners that respectively
select the suitable configuration before and during the production phase.

Static autotuners target software-knobs that tailor the application for the underlying

7



i
i

“thesis” — 2021/4/5 — 20:40 — page 8 — #14 i
i

i
i

i
i

Chapter 2. Background and Previous Works

architecture, such as tiling size, loop unrolling factor, compiler options and algorithm
selection. This tailoring process implies that static autotuners have to consider a fair
amount of knobs with a large, possibly unbounded, domain of possible values. They
are typically designed to find the best configuration that maximizes/minimizes an utility
function in a reasonable amount of time and once they settle with it they are not willing
to change it anymore.

In contrast, dynamic autotuners can continuously tune the knobs configuration at
runtime leveraging informations about the actual execution context, which is bundled
to the application-knowledge. They usually exploit this to predict the behaviour of a
configuration and to drive the decision process.

2.2.2 State of the Art

Among the static autotuners, there are frameworks that aim at applying code or binary
transformations to introduce the possibility of exploiting accuracy-throughput trade-
offs. In this category we can find for instance Quick-Step [13], Paraprox [14] and
PowerGAUGE [15]. The main focus of these frameworks is on how to expose trade-offs
by introducing software-knobs. QuickStep and Paraprox target the applications parallel
regions while performing the code transformation and without preserving the code
semantics. PowerGAUGE works at assembly level and exploits a genetic algorithm to
expose and optimize the accuracy-throughput trade-off. The parameter tuning phase is
done at design-time by relying on the representative input set. We also have frameworks
whose goal is exploring a very large Design Space in order to find the best configuration
according to the application requirements before the production phase. ATune-IL [16],
OpenTuner [17] and ATF [18] are some representatives of this category. ATune-IL
provides a mechanism to prune and reduce the configuration space according to the code
structure and to the dependencies among software knobs. This approach only aims at
minimizing the execution time. OpenTuner uses a multi-armed bandit framework to
find the best search algorithm for the target application. It is also possible to define the
EFPs as a constrained multi-objective optimization problem. Finally ATF is a language
agnostic autotuning framework that improves the OpenTuner strategies by considering
also domain-constraints of the parameters. Keeping the focus on static autotuning,
in the context of HPC many frameworks exist aiming at optimizing specific domains.
ATLAS [19] for matrix multiplication routing, FTTW [20] for FFTs operations, OSKI
[21] for sparse matrix kernels, SPIRAL [22] for digital signal processing, CLTune [23]
and GLINDA [24] for OpenCL applications, Patus [25] and Sepya [26] for stencil
computations.

On the dynamic autotuning category, there are frameworks that target streaming
applications and that typically learn the application-knowledge at design-time, to be
leveraged during production. The Green framework [27] , the Sage framework [28] and
PowerDial [3] are some examples. They focus on how to provide reaction mechanisms
to a streaming application and therefore they use representative inputs to derive the
application-knowledge. Green framework, after an integration step, performs at first a
Design Space Exploration to generate QoS Data and after that an external program in
MATLAB performs curve fitting and interpolation with re-calibrating steps if necessary.
Sage targets specific CUDA kernels. It takes as input the original kernel and a metric
that represents the elaboration quality. In the first step, it analyses the code trying to

8
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2.2. Previous Works

find some transformation opportunities. After that, it uses a greedy approach to select
the most suitable kernel version and tune its parameters to minimize the execution time
while monitoring quality oaddressver time in order to set a more accurate configuration
in case of quality drops. The PowerDial framework takes as input the source code
of the application, the command-line options, a representative input set and an output
abstraction in order to measure the accuracy. It performs a Design Space Exploration
to sort the software-knobs configuration according to a speed-up with respect to a
baseline throughput. Then it generates a binary with a manager based on control theory
that selects the speedup required to reach the target throughput. Another group of
frameworks that adapt an application also in a proactive way exploits the application
input features to learn the knowledge during design-time. Petabricks [29] and Capri [30]
are some renowned examples. The idea behind is to derive the knowledge assuming the
possibility to select which input to consider in the representative set used during learning
process. Petabricks is a language that exposes algorithm choices. It analyses the code
and generates a configuration file that selects the fastest algorithm and configuration
according to the input size. This framework has been subject to major improvements
during time to leverage accuracy-throughput trade-offs, check quality levels at runtime
or taking into consideration input features besides the input size during design time.
Capri framework is another work which uses a set of representative inputs at design time
to model a cost metric (e.g. execution time, energy, etc.). Its controller aims at finding
the software-knobs configuration at runtime that minimizes the cost function given an
error bound and a probability that measures how the selected bound is satisfied according
to the representative inputs. Finally, an interesting work that adapt an application in a
proactive way without learning the application-knowledge at design time is IRA [31].
This framework defines the concept of canary input as the smallest sub-sampling of the
actual input, which has the same property of the original input. Using the canary for a
runtime parameter exploration for each data to be processed, it then selects the fastest
configuration of knobs resulting within a given bound on the minimum accuracy.

2.2.3 Comparison with the state-of-the-art

For what concerns the static autotuning world, the possibility of having an unbounded
exponential growth of the Design Space forces the vast majority of frameworks to search
for the best configuration that maximizes/minimizes an utility function in a reasonable
amount of time. Even if a small fraction of those is able to perform such exploration at
runtime, once they settle with the chosen configuration they’re not willing to change it
anymore regardless potential changes on the underlying architecture or in the input space.
For instance ATLAS, FTTW, OSKI, SPIRAL, CLTune, GLINDA, QuickStep, Paraprox
and PowerGAUGE are all frameworks that take tuning decisions at design-time and falls
under this category. Even ATune-IL, OpenTuner and the ATF framework, given that the
tuning phase is done at design-time, usually target software-knobs loosely coupled with
the inputs. As highlighted, the output of the tuning process is a single software-knob
configuration, not the application-knowledge required to adapt dynamically during the
production phase.

On the contrary, dynamic autotuners can continuously tune the knobs configuration at
runtime leveraging informations about the execution context. Even if the tuning process
can happen at runtime, the overall process remains fundamentally static with a predefined

9
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workflow. A great part of them typically learns the application-knowledge at design-time
to be leveraged during the production phase. Green, Sage and PowerDial frameworks
are examples in this category. Capri and Petabricks are somewhat different since they
try to adapt an application also in a proactive way by exploiting input features. However,
they still learn the application-knowledge at design-time. Moreover, the methodology
used to derive the application-knowledge assumes the possibility to select which input to
consider in the representative set used during the learning process while Agora has been
designed to use directly the production input and therefore it is not possible to apply the
same approaches. Furthermore, these frameworks are able to express a trade-off between
a quality metric and an additional EFP only, while the proposed methodology is able to
consider an arbitrary number of EFPs. It is worth to mention that Agora is partly inspired
by the Petabricks work especially concerning the approach towards input sensitivity but
tries to offer some advantages by being able to extrapolate the application-knowledge at
runtime and in a distributed manner. Moreover, Petabricks requires the target application
to be ported on their own language to expose algorithmic choices. Finally, another
interesting work that inspired the Agora development is the IRA framework but the main
drawback of this methodology is that the presented sub-sampling technique applies to
matrix-like inputs only, therefore limiting the applicability of the framework.

In conclusion, Agora proposes to be an enhancement of an existing dynamic autotuner,
giving the end-user the possibility to perform a Design Space Exploration, and thus
the knowledge collection, at runtime with respect to the application execution. The
comparison with the current state-of-the-art reveals the impossibility to make this
utilization and even the few frameworks that enable it, still remains essentially static
within a predefined workflow. The amount of configuration points that has to be chosen
in order to generate the application-knowledge is fixed while Agora gives the possibility
to automate this choice. Finally, the most important concept that has to be stressed is
that Agora’s methodology, which will be outlined in details in Chapter 3, is not offering
a new revolutionary process modeling approach but whole framework itself gives the
possibility to do something different. The application can be adaptive as its learning
process, regardless of the model complexity.

2.3 Design of Experiments

Within the theory of optimization, an experiment is a series of tests in which the input
variables are changed according to a given rule in order to identify the reasons for the
changes in the output response. According to Montgomery [32]:

Experiments are performed in almost any field of enquiry and are used to study the performance of
processes and systems. [...] The process is a combination of machines, methods,people and other
resources that transforms some input into an output that has one or more observable responses. Some
of the process variables are controllable, whereas other variables are uncontrollable, although they may
be controllable for the purpose of a test. The objectives of the experiment include: determining which
variables are most influential on the response, determining where to set the influential controllable
variables so that the response is almost always near the desired optimal value, so that the variability in
the response is small, so that the effect of uncontrollable variables are minimized.

Thus, the purpose of experiments is essentially optimization. The Design of Exper-
iments (DoE) is the name given to the techniques used for guiding the choice of the
experiments to be performed in an efficient way. Usually, data subject to experimental
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Controllable factors

Uncontrollable factors
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. . .

. . .

Figure 2.2: General model of a process in a system.

error (noise) are involved, and the results can be significantly affected by noise. Thus,
it is better to analyze the data with appropriate statistical methods. The basic princi-
ples of statistical methods in experimental design are replication and randomization.
Replication is the repetition of the experiment in order to obtain a more precise result
(sample mean value) and to estimate the experimental error (sample standard deviation).
Randomization refers to the random order in which the runs of the experiment are to be
performed. In this way, the conditions in one run neither depend on the conditions of
the previous run nor predict the conditions in the subsequent runs.

2.3.1 Terminology

In order to perform a DoE it is necessary to define the problem and choose the variables,
which are called factors or parameters by the experimental designer. A design space,
or region of interest, must be defined, that is, a range of variability must be set for
each variable. The number of values the variables can assume in DoE is restricted and
generally small. Therefore, we can deal either with qualitative discrete variables, or
quantitative discrete variables. Usually the DoE technique and the number of levels
should be selected according to the number of experiments which can be afforded. By
levels we identify the number of different values a variable can assume according to its
discretization. In experimental design, the objective function and the set of experiments
to be performed are called response variable and sample space respectively.

The experiments are used to study the performance of applications/processes and
systems. These entities can be represented by the model shown in Figure 2.2. We can
usually visualize the process as a combination of operations, machines, methods, people,
and other resources that transforms some input (often a material) into an output that has
one or more observable response variables. Some of the process variables and material
properties x1, x2, ..., xp are controllable (e.g. software-knobs), whereas other variables
z1, z2, ..., zq are uncontrollable (e.g. input features). Retrieving the output produced by
each experiment is what we have referred to as Design Space Exploration.

11
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Figure 2.3: Example of 23 full factorial experimental design.

(a) 22 (b) 23 (c) 33

Figure 2.4: Examples of Lk full factorial experimental designs with {L = 2, k = 2} (a), {L = 2, k = 3}
(b) and {L = 3, k = 3} (c).

2.3.2 Techniques

To end this section, three of the most relevant design categories related to this thesis’
work are presented and briefly discussed to introduce the reader to the topic, showing
the main techniques which are used in practice. The designs are divided into Factorial
Designs, Response-Surface Designs and Randomized Designs. The following material is
referring to [33].

Full Factorial (Factorial)

Full factorial is probably the most common and intuitive strategy of experimental design.
In the most simple form, the two-levels full factorial, there are k factors and L = 2
levels per factor. The samples are given by every possible combination of the factors
values. Therefore, the sample size is N = 2k. Starting from any sample within the full
factorial scheme, the samples in which the factors are changed one at a time are still part
of the sample space. This property allows for the effect of each factor over the response
variable not to be confounded with the other factors. Let us consider a full factorial
design with three factors and two levels per factor (Figure 2.3). The full factorial is an
orthogonal experimental design method. The term orthogonal derives from the fact that
the scalar product of the columns of any two-factors is zero.

The idea of the 2k full factorial experimental designs can be easily extended to the
general case where there are more than two factors and each of them have a different
number of levels. The sample size of the adjustable full factorial design with k factors
X1, ..., Xk, having L1, ..., Lk levels, is N =

∏k
i=1 Li. In Figure 2.4 we can see some

visual representations of Lk full factorial designs.

12
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(a) 3 parameters: 3 out of 3 blocks with 22 full-factorial,
plus the central point, 13 samples overall, 10 coef-
ficients needed for fitting a 2nd order interpolating
polynomial.
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(b) 4 parameters: 6 out of 6 blocks with 22 full factorial,
plus the central point, 25 samples overall, 15 coef-
ficients needed for fitting a 2nd order interpolating
polynomial.

Figure 2.5: Box-Behnken tables for k = 3 (a) and k = 4 (b).

Figure 2.6: Example of Box-Behnken experimental design for k = 3.

The advantage of full factorial designs is that they make a very efficient use of the
data and do not confound the effects of the parameters, so that it is possible to evaluate
the main and the interaction effects clearly. On the other hand, the sample size grows
exponentially with the number of parameters and the number of levels.

Box-Behnken (Response-Surface)

This technique is not exploited by the proposed framework but we think that it is still
worth to mention as future developments may consider its integration. Box-Behnken are
incomplete three-levels factorial designs. They are built combining two-levels factorial
designs with incomplete block designs in a particular manner. Box-Behnken designs
were introduced in order to limit the sample size as the number of parameters grows.
In Box-Behnken designs, a block of samples corresponding to a two-levels factorial
design is repeated over different sets of parameters. The parameters which are not
included in the factorial design remain at their mean level throughout the block. The
type (full or fractional), the size of the factorial, and the number of blocks which are
evaluated, depend on the number of parameters and it is chosen so that the design meets,
exactly or approximately, the criterion of rotatability. An experimental design is said to
be rotatable if the variance of the predicted response at any point is a function of the
distance from the central point alone.

Since there is not a general rule for defining the samples of the Box-Behnken designs,
tables are given by the authors for the range from three to seven, from nine to twelve and
for sixteen parameters. Figure 2.5 shows two examples. Each line stands for a factorial
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(a) k = 2, N = 4 (b) k = 3, N = 3

Figure 2.7: Example of latin hypercube designs.

Figure 2.8: Example of correlation reduction in a latin hypercube DoE with k = 2, N = 10.

design block, the symbol ± individuates the parameters on which the factorial design is
made, “0” stands for the variables which are blocked at the mean level.

Let us consider the Box-Behnken design with three parameters (Figure 2.5a), in this
case a 22 full factorial is repeated three times:

• on the first and the second parameters keeping the third parameter at the mean level
(samples: llm,lhm,hlm,hhm),

• on the first and the third parameters keeping the second parameter at the mean level
(samples: lml,lmh,hml,hmh),

• on the second and the third parameters keeping the first parameter at the mean level
(samples: mll,mlh,mhl,mhh),

then the central point (mmm) is added. Graphically, the samples are at the mid-points of
the edges of the design space and in the centre (Figure 2.6).

Latin Hypercube (Randomized)

In latin hypercube DoE the design space is subdivided into an orthogonal grid with
N elements of the same length per parameter. Within the multi-dimensional grid, N
sub-volumes are individuated so that along each row and column of the grid only one
sub-volume is chosen. In Figure 2.7, by painting the chosen sub volumes black gives, in
two dimensions, the typical crosswords-like graphical representation of latin hypercube
designs. Inside each sub-volume a sample is randomly chosen.

It is important to choose the sub-volumes in order to have no spurious correlations
between the dimensions or, which is almost equivalent, in order to spread the samples

14
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(a) Random (b) Sobol (c) Latin hypercube

Figure 2.9: A comparison between different space filling DoE techniques for k = 2, N = 1000.

all over the design space. For instance, a set of samples along the design space diagonal
would satisfy the requirements of a latin hypercube DoE, although it would show a
strong correlation between the dimensions and would leave most of the design space
unexplored. There are many techniques which are used to reduce the correlations in
latin hypercube designs which although won’t be discussed further as they’re not in the
scope of this thesis.

Figure 2.8 shows the effect of the correlation reduction procedure for a case with two
parameters and ten samples. The correlation reduction was obtained using one of the
above-mentioned methods. Finally, Figure 2.9 shows a comparison between random,
Sobol (another randomized design technique which has not been discussed) and latin
hypercube space filling DoE techniques on a case with two parameters and a thousand
samples. It is clear that the random method is not able to completely avoid samples
clustering. Using latin hypercubes the samples are more uniformly spread in the design
space. The Sobol sequence gives the most uniformly distributed samples.

2.4 Process Modeling

We have seen what is a Design of Experiments and some of the main techniques that
revolve around this world. But why do experiments exist and what’s their purpose
in our particular scenario? In its simplest form, an experiment aims at predicting the
outcome of a general process by introducing a change of the preconditions, which is
represented by one or more independent variables (predictor variables), which till now
we’ve referred to as software-knobs. The change in one or more independent variables
is generally hypothesized to result in a change in one or more dependent variables
(response variables), also referred previously as metrics. As stated, experimental design
involves not only the selection of suitable dependent variables, but planning the delivery
of the experiment under statistically optimal conditions given the constraints of available
resources.

With this premise, process modeling [34] aims at giving a concise description of the
total variation in one quantity, y, by partitioning it into:

1. A deterministic component given by a mathematical function of one or more other
quantities, x1, x2, ..., xn.

2. A random component that follows a particular probability distribution.

For example, the total variation of the measured pressure of a fixed amount of a gas in a
tank can be described by partitioning the variability into its deterministic part, which is
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a function of the temperature of the gas, plus some left-over random error. Charles’ Law
states that the pressure of a gas is proportional to its temperature under the conditions
described here, and in this case most of the variation will be deterministic. However,
due to measurement error in the pressure gauge, the relationship will not be purely
deterministic. The random errors cannot be characterized individually, but will follow
some probability distribution that will describe the relative frequencies of occurrence of
different-sized errors.

There are three main parts to every process model. These are:

1. The response variable, usually denoted by y.

2. The mathematical function that describes it, usually denoted as f(~x; ~β).

3. The random errors, usually denoted by ε.

The general form of the model is

y = f(~x; ~β) + ε

The response variable y is a quantity that varies in a way that we hope to be able to
summarize and exploit via the modeling process. Generally it is known that the variation
of the response variable is systematically related to the values of one or more other
variables before the modeling process is begun, although testing the existence and nature
of this dependence is part of the modeling process itself.

The mathematical function consists of two parts. These parts are the predictor
variables x1, x2, ..., xn and the parameters β0, β1, ..., βn. The predictor variables are
observed along with the response variable. They are the quantities described as the
inputs to the mathematical function f(~x; ~β). The collection of all of the predictor
variables is denoted by ~x for short. The parameters are the quantities that will be
estimated during the modeling process. Their true values are unknown and unknowable,
except in simulation experiments. As for the predictor variables, the collection of all
of the parameters is denoted by ~β for short. The parameters and predictor variables
are combined in different forms to give the function used to describe the deterministic
variation in the response variable.

Process models are used for four main purposes: Estimation, Prediction, Calibration
and Optimization. In our particular scenario, this thesis revolves around the prediction
purpose. The goal of prediction is to determine either

1. the value of a new observation of the response variable, or

2. the values of a specified proportion of all future observations of the response
variable

for a particular combination of the values of the predictor variables. Predictions can be
made for any combination of predictor variable values, including values for which no
data have been measured or observed.

The basic steps used for model-building are the same across all modeling methods.
The details vary somewhat from method to method but in general it is always provided
a framework in which the results from almost any method can be interpreted and
understood. The basic steps of the model-building process are:
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1. Model selection.

2. Model fitting.

3. Model validation.
In the model selection step, usually process knowledge and assumption about data are
used to determine the form of the model to be fit to the data. Then, using the selected
model and possibly information about the data, an appropriate model-fitting method is
used to estimate the unknown parameters ~β in the model. When the parameter estimates
have been made, the model is then carefully assessed during validation phase to see if the
underlying assumptions of the analysis appear plausible. If the assumptions seem valid,
the model can be used to answer the scientific or engineering questions that prompted
the modeling effort. If the model validation identifies problems with the current model,
however, then the modeling process must (or at least should) be repeated.

In this class of problems which we will refer to as regression problems, inside the
model validation phase there are usually two scoring factors which are taken into con-
sideration. One is the coefficient of determination R2 which measures the fraction of the
total variability in the response that is accounted for by the model. Since unfortunately a
highR2 value does not always guarantee that the model fits the data well, another scoring
metric which is commonly taken into consideration is the residual. The residuals from a
fitted model are the differences between the responses observed at each combination
values of the explanatory variables and the corresponding prediction of the response
computed using the modeling function. Mathematically, the definition of the residual
for the ith observation in the data set is written

ei = yi − f(~xi; ~β) = yi − fi
with yi denoting the ith response in the data set and ~xi represents the list of explanatory
variables, each set at the corresponding values found in the ith observation in the data set.
The residuals are used in combination to produce a general scoring system in regression
problems. For instance the R2 metric is defined as

R2 = 1− SSres
SStot

where SStot =
∑

i(yi − ȳ)2 is the total sum of squares (proportional to the variance
of the data), SSres =

∑
i(yi − fi)2 =

∑
i e

2
i is the sum of squares of the residuals and

ȳ = 1
n

∑n
i yi is the mean of the observed data. The mean absolute error is another

common scoring metric and it is defined as

MAE =
1

n

n∑
i

|yi − fi| =
1

n

n∑
i

|ei|.

A final error metric worth to mention is the mean absolute percentage error. The idea
of this metric is to be sensitive to relative errors. For example, it does not change by a
global scaling of the target variable. It is defined as

MAPE =
1

n

n∑
i

|yi − fi|
max(ε, |yi|)

=
1

n

n∑
i

|ei|
max(ε, yi)

where ε is an arbitrary small yet strictly positive number to avoid undefined results when
y is zero.
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2.5 Clustering

As stated, the relation between a software-knobs configuration and the application
performance is unknown and usually depends also on the underlying architecture and on
the current input. We’ve referred to the relation between these characteristics, such as
size or autocorrelation, as input features.

A daunting challenge faced by program performance autotuning is input sensitivity,
where the best autotuned configuration may vary with different input sets. For a large
class of problems, the best optimization to use depends on the input data being processed.
For example, sorting an almost-sorted list that contains many repeated values can be
done most efficiently with a different algorithm than one optimized for sorting random
data. A common solution is to search for good optimizations on every training input,
based on which, it builds a process model that predicts the best optimization to use
according to the features of the new input. These choices are often sensitive to input
features that are domain-specific and require deep, possibly expensive, analysis to extract.
It can happen that following this philosophy hundreds or thousands of training inputs
are often prepared such that the complex input feature space could get well covered.
The large number of inputs, combined with the long training time per input, means
searching for good configurations for every training input may take months or years for
a program, which makes the traditional exhaustive approach impractical. An intuitive
solution is through clustering. It first splits training inputs into groups with the members
in the same group featuring similar values of predefined input features, and then finds
the configuration that works the best for the centroid of each group. In a production
run, when a new input comes, the program extracts its feature values, based on which, it
identifies the cluster that the input resembles the most, and then runs with that cluster’s
configuration. [29]

Clustering deals with finding a structure in a collection of unlabeled data. A cluster is
therefore a collection of objects which are "similar" between them and are "dissimilar"
to the objects belonging to other clusters. In this thesis we introduce two categories
which are relevant to the subject: partitioning and density-based. Partitioning methods
relocate instances by moving them from one cluster to another, starting from an initial
partitioning. Such methods typically require that the number of clusters will be pre-set
by the user. To achieve global optimality in partitioned-based clustering, an exhaustive
enumeration process of all possible partitions is required. Because this is not feasible,
certain greedy heuristics are used in the form of iterative optimization. Density-based
methods assume that the points that belong to each cluster are drawn from a specific
probability distribution. The overall distribution of the data is assumed to be a mixture
of several distributions. The aim of these methods is to identify the clusters and their
distribution parameters. [35]

2.5.1 Algorithms

For each category, one of the most relevant clustering techniques is presented and briefly
discussed to introduce the reader to the topic. The following material refers to [36].
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Figure 2.10: K-means example on PCA (Principal Component Analysis) reduced data. Centroids are
marked with a white cross.

K-means (Partitioning Method)

The simplest and most commonly used algorithm, employing a squared error crite-
rion is the K-means algorithm. This algorithm partitions the data into K clusters
(C1, C2, ..., CK), represented by their centers or means. The center of each cluster is
calculated as the mean of all the instances belonging to that cluster. Algorithm 1 presents
a simplified pseudo-code of the K-means algorithm. The algorithm starts with an initial
set of cluster centers, chosen at random or according to some heuristic procedure. In
each iteration, each instance is assigned to its nearest cluster center according to the
Euclidean distance between the two. Then the cluster centers are re-calculated.

Data: S (instance set), K (number of clusters)
Result: (C1, C2, ..., CK)
Initialize K cluster centers ;
while termination condition is not satisfied do

Assign instances to the closest cluster center ;
Update cluster centers based on the assignment ;

end
Algorithm 1: How the K-means method finds cluster representatives.

The center of each cluster is calculated as the mean of all the instances belonging to
that cluster:

µk =
1

Nk

Nk∑
q=1

xq

where Nk is the number of instances belonging to cluster k and µk is the mean of the
cluster k.

A number of convergence conditions are possible. For example, the search may stop
when the partitioning error is not reduced by the relocation of the centers. This indicates
that the present partition is locally optimal. Other stopping criteria can be used also such
as exceeding a pre-defined number of iterations. The K-means algorithm may be viewed
as a gradient-decent procedure, which begins with an initial set of K cluster-centers and
iteratively updates it so as to decrease the error function. A visualization example is
shown in Figure 2.10.
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Figure 2.11: DBSCAN example. Estimated number of clusters is 3. The outliers are in black.

DBSCAN (Density-based Method)

Like other methods of this kind, DBSCAN is designed for discovering clusters of arbitrary
shape which are not necessarily convex, namely:

xi, xj ∈ Ck

This does not necessarily imply that:

α · xi + (1− α) · xi ∈ Ck

The idea is to continue growing the given cluster as long as the density (number
of objects or data points) in the neighborhood exceeds some thresh-old. Namely, the
neighborhood of a given radius has to contain at least a mini-mum number of objects.
The DBSCAN algorithm (density-based spatial clustering of applications with noise)
discovers clusters of arbitrary shapes and is efficient for large spatial databases. The
algorithm searches for clusters by searching the neighborhood of each object in the
database and checks if it contains more than the minimum number of objects. The
DBSCAN algorithm views clusters as areas of high density separated by areas of low
density. Due to this rather generic view, clusters found by DBSCAN can be any shape,
as opposed to K-means which assumes that clusters are convex shaped. The central
component to the DBSCAN is the concept of core samples, which are samples that are
in areas of high density. A cluster is therefore a set of core samples, each close to each
other (measured by some distance measure) and a set of non-core samples that are close
to a core sample (but are not themselves core samples).

A visualization example is shown in Figure 2.11. The color indicates cluster member-
ship, with large circles indicating core samples found by the algorithm. Smaller circles
are non-core samples that are still part of a cluster. Moreover, the outliers are indicated
by black points.
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Broker

publish subscribe

Publishers Subscribers

Figure 2.12: The architecture of MQTT.

2.6 Distributed Communication

As we stated during introduction, this thesis’s project has been designed to be applied
in a wide range of scenarios but manly targets the context of HPC. Inside a distributed
scenario like this, MQTT has been chosen as the network message protocol in order to
enable the exchange of informations in a client-server fashion, where Agora is deployed
as a server machine and the target applications are running as client instances. More on
this will be covered while discussing about the implementation details in Chapter 4.

MQTT has been manly utilized as part of many IoT (Internet of Things) gadgets
and instant message delivery systems because it was intended to work on low-power
machines as a light-weight protocol [37]. It still remains a valuable message protocol
also in the context of HPC and embedded systems thanks to the low power consumption
property. It is a standardized publish/subscribe push protocol that was released by IBM
in 1999. MQTT was planned to send a data accurately under the long network delay and
low-bandwidth network condition.

2.6.1 Architecture

Some of the MQTT key concepts are listed in the following section in order to explain
how the architecture works. A full in-depth summary can be found on the survey [38]
they are taken from.

MQTT uses the client/server publish-subscribe model. Every device that is connected
to a server, using TCP known as (broker) message in MQTT is a discrete chunk of data
and it is ambiguous for the broker. Therefore, MQTT is a message oriented protocol.
The address that the message published to it is called topic. The device may subscribe to
more than one topics, and it receives all messages that are published to these topics. The
broker is a central device and its main responsibilities are processing the communication
between MQTT clients and distributing the messages between them based on their
interested topics. Upon receiving the message, the broker must search and find all the
devices that own a subscription to this topic.

MQTT architecture contains three components (Figure 2.12). Those are a publisher,
a broker, and a subscriber. The device that is interested in a specific topics registers
on it as a subscriber to be informed when the publishers publishing his topics by the
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broker. The publisher transfers the information to the subscribers via the broker (i.e. the
interested entities).

2.6.2 Quality of Service

There are three levels of Quality of Service (QoS) in order to maintain the reliability
of messages in the MQTT. Level 0 is called one delivery (at most) and the messages
are delivered based on the effort of the network. Level 1 is one delivery (at least) and
the messages are being sent at least once and the duplicate may exist in messages. The
last level is Level 2, which is called one delivering (exactly). An additional protocol is
required in this level to guarantee that the message is delivered only once (i.e. Highest
level of QoS). Table 2.1 provides a summary of QoS levels and their meanings.

QoS Level Meaning

Level 0 A message is delivered at most once and no acknowledgement
of receiving is required.

Level 1 Every message is delivered at least once and a confirmation of
receiving a message is required.

Level 2 A four-way handshake mechanism is used exactly once for the
delivery of a message.

Table 2.1: Quality of Service levels of MQTT.

2.7 mARGOt Framework

mARGOt is a dynamic autotuning framework that was developed at Politecnico di Milano
and which Agora has been based on. In this section a general overview of mARGOt and
its functionalities is given to get a grasp of what’s going on under the hood [8], [39].

mARGOt is an adaptation layer that provides to the target application mechanism to
adapt in a reactive and proactive fashion, based on the application-knowledge provided.
From an implementation point of view, mARGOt is a C++ library that is linked to the
target application and works at the function level. It employs separation of concerns
between functional and extra-functional requirements. End-user might define or change
requirements at runtime, according to application phases. Moreover, by using feedback
information from runtime monitors, it is possible to react to changes in the execution
environment, providing to the application the most suitable software-knobs configuration.
Furthermore, it leverages input features to identify and seize optimisation opportunities
according to the current input.

Figure 2.13 shows an overview of mARGOt and how it interacts with an application.
To simplify the description of the autotuning methodology, we consider an application
that is composed of a single phase. However, mARGOt is designed to manage different
phases, or blocks of code, independently. Each phase is composed of a single kernel
g that elaborates an input i to generate the desired output o. Moreover, the kernel
algorithm is assumed to expose software-knobs that alter its EFPs, such as the number
of Monte Carlo simulations or the parallelism level. Let x̄ = [x1, ..., xn] the vector of
software-knobs, then we might define a kernel as o = g(x̄, i). Within this abstraction,
the end-user requirements are defined as follows. The metrics of interest (i.e. EFPs)
are seen as the vector m̄ = [m1, ...,mn]. Supposing that the application developers are
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2.7. mARGOt Framework

Figure 2.13: Global architecture of the mARGOt framework. Purple elements represent application
code, while orange elements represent mARGOt high-level components. The black box represents the
executable boundary.

capable of extracting features of the current inputs, such properties are represented by
the vector f̄ = [f1, ..., fn]. The end-user can define the application requirements as in
Equation 2.1:

max(min) r(x̄; m̄ | f̄)

s.t. C1 : ω1(x̄; m̄ | f̄) ∝ k1 with α1 confidence

C2 : ω2(x̄; m̄ | f̄) ∝ k2

. . .

Cn : ωn(x̄; m̄ | f̄) ∝ kn

(2.1)

where r denotes the objective function (named rank in mARGOt context), defined as a
composition of any of the variables defined in x̄ or m̄, using their mean values. Let C be
the set of constraints, where each Ci is a constraint expressed as the function ωi, defined
over the software-knobs or the EFPs, that must satisfy the relationship∝∈ {<,≤, >,≥}
with a threshold value ki and with a confidence αi (if ωi targets a statistical variable).
Since it is agnostic about the distribution of the target parameter, the confidence is
expressed as the number of times to consider its standard deviation. If the application is
input-dependent, the value of the rank function r and the constraint functions ωi also
depend on the features of the input f .

In this formulation, the main goal of mARGOt is to solve the optimization problem:
finding the configuration x̂ that satisfies all the constraints C and maximizes (minimizes)
the objective function r, given the current input i. The application must have a con-
figuration to use even if it is not feasible to satisfy all the constraints. For this reason,
mARGOt might relax constraints until a feasible solution is found, starting by relaxing
the lowest priority constraint. Therefore, the end-user must sort the set of constraints by
their priority.
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2.7.1 Components

In this subsection mARGOt three main components and briefly described to give the
reader a general understanding of the internal units behaviour.

Application Knowledge

As we’ve seen, for a generic application, the relation between software-knobs, EFPs
of interest and input features is complex and unknown a priori. Therefore, we need a
model of the application extra-functional behavior to solve the optimization problem
stated in Equation 2.1. We’ve referred to this as the application-knowledge. mARGOt
uses a list of Operating Points (OPs) as application-knowledge, where each Operating
Point θ states the target software-knob configuration and the achieved EFPs with the
given input features. For instance it can be defined as

θ = {x1, . . . , xn, f1, . . . , fn,m1, . . . ,mn}

This list incorporates informations about software-knobs configurations, metrics of
interest and (potentially) input features. The OPs list is considered a required input.
Therefore, mARGOt is agnostic on the methodology used to obtain the application-
knowledge. Even if the latter is considered an input, it is of paramount importance to
mARGOt for solving the optimisation problem.

The application-knowledge is codified inside a configuration file that is parsed by
mARGOt before beginning the tuning phase. More details on this will be discussed
further in Chapter 4.

Monitors

This module provides to mARGOt the ability to observe the actual behaviour of either
the application or the execution environment. The application-knowledge defines the
expected behaviour of the application. However, it might change according to the
evolution of the system. For example, a power capper might reduce the frequency of
the processor due to thermal reasons. In this case, we would expect that the application
notices a degradation in its performance and it reacts, by using a different configuration
to compensate. This adaptation is possible only if we have feedback information.

From the implementation point of view, mARGOt provides a suite of predefined
monitors with broad applicability both at high- and low-level. Some examples of
monitors implemented in mARGOt are listed in Table 2.2 with a brief description.

Moreover, the monitors are implemented using a modular approach. In this way,
application developers might implement a custom monitor for observing an application-
specific metric easily.

Application Manager

This component is the core of the mARGOt dynamic autotuner, which provides the
self-optimization capability using a lightweight framework. From the methodology
point of view, this component is in charge of solving the optimisation problem stated
in Eq. 2.1: to find the software-knobs configuration x̂, while reacting to changes in the
execution environment and adapting proactively according to input features.
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2.7. mARGOt Framework

Name Description

Time Monitor This monitor reads the time elapsed between a start point and a
stopping point.

Throughput Monitor This monitor computes the throughput as the amount of elabo-
rated data over the observed time interval.

Memory Monitor This monitor observes the resident set size of the virtual memory
that the process is using.

System CPU Usage Monitor This monitor computes the average utilisation of the processors
at the system-level.

Process CPU Usage Monitor

This monitor is similar to the System CPU Usage Monitor,
but it computes the average utilisation of the processor by the
application, defined as the time the application spent executing
on the processors over the elapsed time.

Table 2.2: List of some monitors implemented in mARGOt.

Data-Aware Application-Specific RunTime Manager 

Application-Specific RunTime Manager 1 ASRTM 2

Application 
Knowledge

Runtime 
Information 

Provider 
State 1 S2 SN

ASRTM M 

Figure 2.14: Overview of the Application Manager implemented in mARGOt, based on a hierarchical
approach.

From the implementation point of view, the application manager has a hierarchical
structure, as shown in Figure 2.14 where each sub-component solves a specific problem.
The Data-Aware Application-Specific Run-Time Manager (DA AS-RTM) provides a
unified interface to application developers to set or change the application requirements,
to set or change the application-knowledge and to retrieve the most suitable configuration
x̂. Internally, the DA AS-RTM clusters the application knowledge according to input
features f , creating an Application-Specific Run-Time Manager (AS-RTM) for each
cluster of Operating Points with the same input features. Therefore, the application
knowledge implicitly defines the clusters of Operating Points. Given the input features
of the current input, the DA AS-RTM selects the cluster with features closer to the ones
of the current input. Once the cluster for the current input is selected, the corresponding
Application-Specific Run-Time Manager (AS-RTM) solves the optimisation problem
relying on the following components.

The State element is in charge of solving the optimisation problem by using a
differential approach. The initial optimisation problem does not have any constraints (i.e.
C = ∅), and the objective function minimises the value of the first software-knob. From
this initial state, the application might dynamically add constraints, define a different
objective function or change the application-knowledge. The solver can find the new
optimal configuration efficiently, evaluating only the involved ones, by building an
internal representation of the optimisation problem.
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Chapter 2. Background and Previous Works

The Runtime Information Provider correlates an EFP of the application knowledge
with an application monitor. In particular, it compares the observed behaviour with
the expected one, and it computes a coefficient error defined as emi

= expectedi
observedi

, where
emi

is the error coefficient for the i-th EFP. To avoid the "zero trap", the numerator and
denominator are incremented by 1 when observedi is equal to zero.

2.8 Summary

In this chapter we have outlined the most recent works that can be found in literature,
which this thesis’ work is inspired to, describing the main differences and contributions.
After that, the reader has been introduced to a background of the main modules that
constitutes Agora and mARGOt. The next two chapters aim at describing their usage
and implementation.
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CHAPTER3
Methodology

This chapter describes the methodology behind Agora. First we introduce the archi-
tectural view in the context of the whole adaptive framework, highlighting the main
components and design choices. Then, we focus on the internal details of the adopted
approach leveraged to build the application-knowledge at runtime during the production
phase.

3.1 Framework Architecture

The approach proposed in Agora is based on the mARGOt autotuning framework, which
has been outlined in Section 2.7 of the previous chapter. mARGOt aims at enhancing a
generic target application with an adaptation layer to provide mechanisms to adapt in a
proactive and reactive way to potential environment changes.

As we’ve seen, for a generic application, the relationship between software-knobs,
EFPs of interest and input features is complex and unknown a priori. In order to solve
its optimization problem, mARGOt needs a model of the application extra-functional
behaviour: the application-knowledge. mARGOt interprets the application-knowledge
as a discrete set of Operating Points (OPs). A generic OP relates a software-knobs
configuration K with the expected metric values M (EFPs) and according to a set of
input features F (if available).

Operating_Point =< K, [F , ]M >

Most frameworks try to produce the application-knowledge leveraging a Design
Space Exploration (DSE). The main challenge of these general approaches is the expo-
nential growth of the Design Space and given the complexity of this process, the DSE is
usually done off-line prior to the application execution. Porting this phase online requires
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Figure 3.1: A simplified overview of the proposed methodology. The orange elements represent the
learning module components while the white ones represent external components (of the Agora and
mARGOt framework).

significant effort to minimize the tuning time and the overhead. The main goal of Agora
is to distribute the DSE among all the instances of an unknown application at runtime
with respect to their execution. This is done in order to obtain the application-knowledge
of the target application.

Agora tries to generate the application-knowledge during the production phase with-
out requiring any design-time profiling. Leveraging the underlying mARGOt infrastruc-
ture, the key idea is to explore the Design Space that has been considered by dynamically
updating the OPs list of the target application client, assigning every time a new software-
knobs configuration. Once the application-knowledge is obtained, it will be distributed
to the application client starting mARGOt’s autotuning process.

The methodology behind Agora’s approach is an iterative learning process and
Figure 3.1 gives the reader a simplified overview. The goal of this process is to learn as
accurate as possible the relationship between software-knobs configurations, EFPs and
input features. To achieve this Agora exploits an external learning module in which each
component performs a different task inside the learning process. The main challenges
that had to be faced can be summarized as follows:

• Since we’re stealing time to the application execution, there’s the need to reduce as
much as possible the time required in order to generate the application-knowledge.

• As previously highlighted, mARGOt can be exploited to force an application to
use a certain configuration during execution but on the contrary, the input set may
change at every production run. The input features are parameters describing the
input characteristics and we have no ability in controlling them, as opposed to the
software-knobs configurations.

To tackle the first challenge, the idea is to sample the Design Space of an unknown
application (which represents the set of all the possible software-knobs configuration
that the application can accept) using techniques from the Design of Experiments (DoE)
world, outlined previously in Section 2.3. Then, by distributing to the available clients
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Figure 3.2: The Agora framework overview.

the configurations, we collect the corresponding output values which composes the so
called response surface. In order to complete this surface we need to predict the missing
points leveraging process modeling techniques to build a model for each of the EFP of
interest. The solve the second issue, a solution is to cluster observed input features to
find suitable representatives.

Finally, if the best model we’ve found for each EFP is deemed valid, we use it to
predict the whole response surface and generate the application-knowledge as a list
of OPs to subsequently broadcast to the application clients. A different application-
knowledge is generated for each input cluster (if any). In case no valid model was
created, we iterate this process until we find a suitable one for each EFP, generating
additional software-knob configurations to be evaluated.

3.1.1 Components

Figure 3.2 shows the overview of the learning framework to guide the reader while
introducing the main internal components. Agora is designed to work in a distributed
context so we can look at it as a dedicated central server deployed inside a closed
network, while each application instance is being run locally on the client side. The
main actors are the Learning Module, the Plugin Launcher, the Storage Handler and the
Remote Message Handler, which represents the communication point with the outside.
Each of these components interacts with the central entities of Agora: the Remote
Application Handler and the Application Manager. Finally, the Logger component is
connected to the Application Manager.

The Learning Module is the core of the proposed approach. Its purpose is to model
and predict the relationship between the EFPs, the software-knobs configurations and
the input features clusters. It performs four main tasks:

1. It leverages some of the Design of Experiments techniques to sample efficiently
the Design Space to be explored.

2. It uses state-of-the-art modelling techniques to fit the explored configurations. This
is followed by a validation stage to test whether the quality of the obtained models
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is acceptable or not.

3. It analyses input features (if any) in order to find representative clusters to be
exploited inside the application-knowledge.

4. It interpolates out-of-sample predictions using the best models found.

This module has been designed as a plugin system in order to be both modular and
extensible. Each plugin represents one of the tasks listed above. The implementation is
pretty straightforward and the end-user who deems it necessary can extend/substitute
one using its preferred language and approach by following few input/output constraints.
Agora provides four default plugins that enforce the learning tasks. An extensive
description of this learning process is provided in Section 3.2.

Agora is able to interact with each plugin thought the Plugin Launcher component.
By managing their execution, the framework can orchestrate the whole learning process.
More details on this will be discussed in the next chapter. Data informations (e.g. the
application description, a list of configurations to explore, etc.) are stored inside an
external storage as CSV (Comma-Separated Values) files. This format has been chosen
for its simplicity and ease of use. During the framework design, the Apache Cassandra
database [40] was also considered as a potential storage system for its great features in
terms of scalability and high availability without compromising performance. At the
end, we opted for something with less requirements and memory consumption although
leaving a future integration still possible thanks to the flexibility of the Storage Handler.
The Storage Handler component indeed offers an abstraction of the main functionalities
in order to interact with the storage in use. This happens regardless of the chosen
implementation (e.g. CSV files, database tables or even a combination of the two).

Concerning the communications to the outside, as anticipated, Agora exploits the
MQTT protocol which key concepts have been described in Section 2.6. The Remote
Message Handler empowers Agora to send/receive messages to/from external application
instances in an asynchronous way. Every message encapsulate data infos that are
assigned to a specific topic, depending on the learning phase they are related to.

The whole learning process is managed and coordinated by the Remote Application
Handler. It has been designed as a thread pool for scalability reasons, managing
multiple (and potentially diverse) applications. Using the Remote Message Handler,
it communicates with the local application instances, sending new configurations to
explore and collecting their corresponding output (which from now on will be referred
to as observations). It coordinates the learning phase through the Plugin Launcher and
interacts with the storage via the Storage Handler in order to retrieve new configurations
to explore or store application description data. The glue of the whole framework is the
Application Manager. It is a resource manager which manages each internal instance
used by Agora and registers new applications. Finally a Logger component is attached
to the Application Manager. The Application Manager will dispatch a separate Logger
instance to every major component inside the framework in order to register their activity.
The next chapter will explain in details how it works.

Since we’re in a distributed context, Figure 3.3 gives a wider overview of a typical
interaction between the central dedicated server running Agora and an heterogeneous
pool of client machines, running multiple application instances. The communication
is happening through the exchange of MQTT messages along a shared communication
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Figure 3.3: A global overview of Agora interacting with external clients. The MQTT protocol performs
node communication between application instances.

channel set (by default) on port 1883. While the Remote Application Handler is running
on the server side, a Local Application Handler is simultaneously running on the
client side. This component is an asynchronous utility thread that sends out telemetry
informations and manipulates the client application-knowledge. In particular, it will
force the mARGOt autotuner to select the software-knobs configuration to be evaluated
by the application kernel and it will set the final application-knowledge produced at the
end of the remote learning process once received.

3.2 Iterative Learning Approach

This section describes in detail the online learning phase that generates the application-
knowledge during production time. We present and formalizes the main components
of this approach. Since the learning phase exploits a plugin system, the default plugins
offered in Agora are characterized in relation with the task implemented, their constraints
and the leveraged techniques. The main components are the followings: the DoE plugin,
the Modelling plugin, the Clustering plugin and finally the Predicting plugin. As
anticipated, the plugin creation is pretty straightforward and the end-user has total
freedom over its implementation. Nevertheless, there are some constraints that needs to
be taken into account:

1. Every plugin needs to parse a configuration file that is automatically set by Agora
before each launch. This configuration file is a list of environmental variables that
contains data like the application description or the storage address.

2. Data is stored as CSV files so the loading process inside each plugin should be
almost agnostic with respect to the language used for the implementation. Despite
this, in the future there might be added different storage implementations (e.g. a
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new database system) which require additional features/wrappers to handle them.
This remains up to the end-user.

3. The number and shape of the inputs and outputs is fixed, so it is mandatory for each
plugin to handle this requirement. On the following subsections every plugin’s
description includes details about the matter.

3.2.1 Design of Experiments

In order to reduce as much as possible the Design Space Exploration, it is important to
sample the Design Space accordingly and in an efficient way. The proposed DoE plugin
offers two well-known techniques: a full-factorial design and a latin hypercube design.
The methods have been described in Sub-Section 2.3.2.

Full-Factorial

This kind of design is pretty simple in its form and lets the user create a full grid
containing all possible combinations starting from the software-knobs’ domain space.
For each knob (or factor) one can specify its level (Li), which describes the number of
discrete values that the knob can obtain. In its simplest form the design is realized by
inputing a list of levels:

fullfact([L1, L2, ..., Ln])

where n is the total number of software-knobs for the application.

Latin-Hypercube

The Latin-Hypercube design tries to maximize the minimum distance between design
points subdividing the space into an orthogonal grid with N elements of the same length
per parameter. This randomized method follows a space-filling approach where each
configuration found is spaced out evenly over the region of interest. It is realized with
by following function:

lhs(n, samples[, criterion])

where n is the total number of software-knobs for the application, samples designates
the number of sample points to generate and criterion specifies how to perform the
sampling. If not specified, the algorithm simply randomizes the points within the
intervals. In addiction one can select:

• center: centering the points within the sampling intervals;

• maximin: maximize the minimum distance between points, but place them in a
randomized location within their interval;

• centermaximin: same as maximin, but centered within the intervals.

• correlation: minimize the maximum correlation coefficient between the points.

One issue behind this method is that the output design scales all the variable ranges from
zero to one, sampling a continuous Design Space. The application description provided
to Agora defines a discrete domain for each software-knob, therefore the selected samples
needs to be transformed afterwards. To achieve this, the DoE plugin performs an affine
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for kbi ∈ KNOBS do
max = maxkbi∈KNOBS(kbi);
min = minkbi∈KNOBS(kbi);
round(min+DoE[:, i] ∗ (max−min));

end
Algorithm 2: How the affine transformation with rounding discretizes the lhs design and maps the
[0, 1] values to the closest corresponding knob value.
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Figure 3.4: A flowchart diagram representing the DoE plugin process.

transformation with rounding which, after selecting the minimum and maximum value
from each software-knob’s domain, rounds the obtained design mapping the samples to
the closest available value. Algorithm 2 shows the pseudo code of this process. Another
significant problem that had to be tackled is the avoidance of repeated experiments.
Since the algorithm is not able to consider old design points when producing a new one,
the production of a set of experiments entirely unseen cannot be guaranteed. For this
reason, on the first call the plugin generates a number of configurations always assuming
the worst case scenario (i.e. reaching the maximum number of iterations) and removing
duplicates before returning the output design. Subsequent calls extracts a new subset of
configurations from the initial generated design. This hack let us avoid the production
of identical configurations but remains of course limiting. As outlined during this thesis’
conclusions 6.2, alternatives may be taken into consideration in the future.

Apart from which algorithm has been selected, on the first launch the plugin computes
a full-factorial design to obtain the list of all the possible configurations to be used during
the prediction phase in order to create the final application-knowledge. There is also
another reason behind this. The end-user might want to set restrictions on the software-
knobs domain a priori. More complicated Design Spaces could indeed require some
additional constraints to express linear or even nonlinear relationships between software-
knobs. To solve this, the plugin firstly applies those restrictions to the full-factorial
design computed beforehand, and secondly removes all the configurations that are not
inside the restricted space.

The end-user may also specify how many times each selected configuration needs
to be explored. This is a very important factor because on one hand it increases the
robustness of the modelling process in case of non-deterministic applications, while
on the other hand, given that the input features are not controllable, might learn the
knowledge from different feature sets over multiple runs of the same configuration.

Figure 3.4 shows the whole DoE generation process in a flowchart diagram.
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Input & Output

For what concerns the input, the plugin starts by reading a configuration file containing
the addresses of the required data-tables. At the end of the process, it is required to write
the generated design and the total configurations table in output. Table 3.1 summarizes
those tables along with a brief description.

Name Type Description

Properties Table Input
Contains some global parameter like the number of config-
urations to generate or how many observations to collect
for each configuration.

Knobs Table Input Contains the list of available software-knobs and their
domain space values.

Parameters Table Input
Contains the DoE parameters like the design algorithm to
use, the criterion to be adopted or the list of constraints to
be applied.

Total Configurations Table Output Contains all possible configurations that the target applica-
tion can set on its kernel.

DoE Table Output Contains the list of configurations to be explored.

Table 3.1: List of input/output tables for the DoE plugin.

3.2.2 Modelling

This plugin can be considered in a sense the core component of the learning module. All
the methods inside this plugin are expected to be part of the Supervised learning family.
Supervised machine learning algorithms are designed to learn by example. The name
"supervised" originates from the idea that training this type of algorithm is like having a
teacher supervise the whole process. When training a supervised learning algorithm, the
training data will consist of inputs paired with the correct outputs. During training, the
algorithm will search for patterns in the data that correlate with the desired outputs. In
this scenario we consider a subcategory called regression. Regression is a predictive
statistical process where the model attempts to find the important relationship between
dependent and independent variables. It out case it is used to learn the relationship
between EFPs, software-knobs and input features (if any). The learning process models
each EFP independently and therefore creates a separate model for each metric. In
mathematical notation, ŷ represents the expected value of the target EFP, while X
represents the matrix of predictors (i.e. software-knobs and input features) which is
extracted from the observations collected during the Design Space Exploration. In
particular, each EFP is modeled as

ŷ = m(X)

where function m is represented by a modelling technique.
The techniques considered inside this component are intended for regression in which

the target value is expected to be a linear or nonlinear combination of the predictors. For
this reason, this plugin exploits a set of different models in order to fit a much wider
range of data. This offers the possibility to select among these models the most accurate
one every time, with much more flexibility than testing just one single model. The
modelling algorithms inside the default plugin are the followings. An Ordinary Least
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Squares, a Ridge regression and an Elastic-Net, which are methods where the target value
is expected to be a linear combination of the features. In mathematical notation it means
that, if ŷ is the predicted value, then it is defined as ŷ(w, x) = w0 + w1x1 + ...+ wpxp.
Moreover, outside the linear models family, we can find a Support Vector Machines
method, a Neighbors-based regression and finally a Decision Trees regression algorithm.

Ordinary Least Squares

This method fits a linear model with coefficients w = (w1, ..., wp) to minimize the
residual sum of squares between the observed targets in the dataset, and the targets
predicted by the linear approximation. Mathematically it solves a problem of the form:

min
w
||Xw − y||22

The coefficient estimates for Ordinary Least Squares rely on the independence of the
features. When features are correlated and the columns of the design matrix have an
approximate linear dependence, the design matrix X becomes close to singular and as
a result, the least-squares estimate becomes highly sensitive to random errors in the
observed target, producing a large variance.

In order to mitigate some of the known issues of this method, we consider a variant of
it in which a preprocessing step takes place before fitting the model. We apply a power
transformation. Power transforms are a family of parametric, monotonic transformations
that aim to map data from any distribution to as close to a Gaussian distribution as
possible in order to stabilize variance and minimize skewness. In particular, we apply
the Box-Cox transformation which is defined in Equation 3.1. The transformation is
parameterized by λ, which is determined through maximum likelihood estimation.

x
(λ)
i =


xλi − 1

λ
if λ 6= 0,

ln (xi) if λ = 0,

(3.1)

Ridge regression

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing
a penalty on the size of the coefficients. The ridge coefficients minimize a penalized
residual sum of squares:

min
w
||Xw − y||22 + α||w||22

α is called the complexity parameter and it’s a positive value that controls the regulariza-
tion strength. Regularization improves the conditioning of the problem and reduces the
variance of the estimates. Larger values specify stronger regularization. Varying alpha
we change the amount of shrinkage: the larger the value of α, the greater the amount of
shrinkage and thus the coefficients become more robust to collinearity.

Elastic-Net

ElasticNet is a linear regression model trained with both `1 and `2-norm regularization
of the coefficients. This combination allows to learn a sparse model where few of the
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Figure 3.5: Decision function for a linearly separable problem, with three samples on the margin
boundaries, called "support vectors".

weights are non-zero, while still maintaining the regularization properties of Ridge.
Elastic-net is useful when there are multiple features which are correlated with one
another.

The objective function to minimize is in this case:

min
w

1

2nsamples
||Xw − y||22 + αρ||w||1 +

α(1− ρ)

2
||w||22

Support Vector Machines regression

A support vector machine (SVM) constructs a hyper-plane or set of hyper-planes in a
high or infinite dimensional space, which can be used for regression or even other tasks.
Intuitively, a good separation is achieved by the hyper-plane that has the largest distance
to the nearest training data points of any class (so-called functional margin), since in
general the larger the margin the lower the generalization error of the model. Figure 3.5
shows the decision function for a linearly separable problem, with three samples on the
margin boundaries, called "support vectors". In general, when the problem isn’t linearly
separable, the support vectors are the samples within the margin boundaries [41].

In particular, concerning the support vector regression (SVR), the problem can be
defined as follows. Given training vectors xi ∈ Rp, i = 1, ..., n and a vector y ∈ Rn,
ε-SVR solves the primal problem defined in Equation 3.2.

min
w,b,ζ,ζ∗

1

2
wTw + C

n∑
i=1

(ζi + ζ∗i )

subject to yi − wTφ(xi)− b ≤ ε+ ζi,

wTφ(xi) + b− yi ≤ ε+ ζ∗i ,

ζi, ζ
∗
i ≥ 0, i = 1, ..., n

(3.2)

Here, we are penalizing samples whose prediction is at least ε away from their true
target. These samples penalize the objective by ζi or ζ∗i , depending on whether their
predictions lie above or below the ε tube.
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max_depth=2
max_depth=5
data

Figure 3.6: Decision trees learning from data to approximate a sine curve. If the maximum depth of the
tree is set too high, the decision trees learn too fine details of the training data and learn from the
noise.

Nearest Neighbors regression

The principle behind nearest neighbor methods is to find a predefined number of training
samples closest in distance to the new point, and predict the label from these. The
number of samples can be a user-defined constant (k-nearest neighbor learning), or vary
based on the local density of points (radius-based neighbor learning). The distance can,
in general, be any metric measure: standard Euclidean distance is the most common
choice. In our case, we use a k-nearest neighbor algorithm with a user-defined constant
set by default to 5.

In the Neighbors-based regression, the label assigned to a query point is computed
based on the mean of the labels of its nearest neighbors. The basic nearest neighbors
regression uses uniform weights: that is, each point in the local neighborhood contributes
uniformly to the classification of a query point. In our case we choose a distance weight,
assigning weights proportional to the inverse of the distance from the query point.

This modelling technique exploits different algorithms to compute the nearest neigh-
bors, which we list without discussing further details: Brute Force, Ball Tree and K-D
Tree algorithm. The user has no control over this choice as an internal mechanisms will
attempt to decide the most appropriate algorithm based on the values passed to it.

Decision Trees regression

Decision Trees (DTs) are a non-parametric supervised learning method used for regres-
sion and more machine-learning problems. The goal is to create a model that predicts
the value of a target variable by learning simple decision rules inferred from the data
features. A tree can be seen as a piecewise constant approximation.

For instance, in Figure 3.6 we can see how decision trees learn from data to approxi-
mate a sine curve with a set of if-then-else decision rules. The deeper the tree, the more
complex the decision rules and the fitter the model. The tree depth is controlled by the
max_depth parameter.

From a mathematical point of view, given training vectors xi ∈ Rn, i = 1, ..., l and a
label vector y ∈ Rl, a decision tree recursively partitions the feature space such that the
samples with the same labels or similar target values are grouped together. Let the data
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at node m be represented by Qm with Nm samples. For each candidate split θ = (j, tm)
consisting of a feature j and a threshold tm, it partitions the data into Qleft

m (θ) and
Qright
m (θ) subsets defined as:

Qleft
m (θ) = {(x, y)|xj <= tm}
Qright
m (θ) = Qm \Qleft

m (θ)

The quality of a candidate split of node m is then computed using an impurity function
or loss function. In case of regression problems, the criteria used to minimize as for
determining locations for future splits is the Mean Squared Error (MSE).

Model Training

Since the goal is to broadcast to the application clients a reliable application knowledge,
it is crucial to evaluate the model quality and accuracy. Learning the parameters of a
prediction function and testing it on the same data is a methodological mistake: a model
that would just repeat the labels of the samples that it has just seen would have a perfect
score but would fail to predict anything useful on yet-unseen data. This situation is
called overfitting. To avoid it, it is common practice when performing a (supervised)
machine learning experiment to hold out part of the available data as a test set. This split
creates two partitions containing respectively 75% and 25% of the original data. This
test set of unknown data will be used at the end of the process to evaluate the model and
compute its accuracy. However, by partitioning the available data, we drastically reduce
the number of samples which can be used for learning the model, and the results can
depend on a particular random choice for the pair of (train, test) sets. Given that the
Agora approach is done online, especially at early stages we might have a small set of
observations for training and validation. This plugin applies a common solution to this
problem called cross-validation (CV for short). Using its basic approach, called K-fold
CV, the training set is split into k smaller sets named folds. The following procedure is
followed for each of the k "folds":

1. Each of the models is trained using k − 1 of the folds as training data;

2. The resulting model is validated on the remaining part of the data (i.e., it is used as
a test set to compute a performance measure such as accuracy).

Figure 3.7 provides a graphic visualization of the method.
The performance measure reported by K-fold cross-validation is then the average of

the values computed in the loop. This approach can be computationally expensive, but
does not waste too much data (as is the case when fixing an arbitrary validation set),
which is a major advantage in problems where the number of samples might be very
small.

The user-end can specify the number of cross-validation folds k to perform which by
default is set to 5. Moreover, if n is the number of explored software-knob configurations
and if the ratio n−k

n
is less than a 0.75 threshold, a Leave One Out (LOO) cross-validation

is used instead where each learning set is created by taking all the samples except one,
the test set being the sample left out. Thus, for n samples, we have different training
sets and n different tests set.
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All Data

Training data Test data

Test dataFinal evaluation

Split 1

Split 2

Split 3

Split 4

Split 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Figure 3.7: K-fold cross-validation example where the original dataset is partitioned into a training and
test set (75% - 25%). Then the training set is splitted into 5 folds. Finally the test set is used as final
evaluation.

Model Validation

To quantify the prediction quality of a model, by default two common regression metrics
are considered. The coefficient of determination R2 and the mean absolute percentage
error (MAPE). The reason behind this choice is that in this way the end-user has the
ability to set a threshold using a percentage value which can adapt to all kind of scenarios
and doesn’t require knowing the application behaviour a priori. For the same reason,
we also provide a variant of the mean absolute error MAE which normalizes the value
by the observed values range of the target metric: |max(EFPi)−min(EFPi)|. These
metrics have been described in Section 2.4 so they won’t be discussed again.

Once every model is evaluated, is deemed eligible if it has an R2 score and a MAPE
respectively higher and lower than a threshold. This threshold is set by default to 0.8 for
R2 and to 0.1 for the MAPE but the end-user has the ability to decide a custom value
for each at will. Finally, the plugin chooses as final model the best accurate one among
the models that have verified the quality thresholds. Alternatively, if the framework
reached the maximum number of iterations the best model found is returned bypassing
the threshold checks. See on Section 3.2 for more informations on this last event.

Name Formula

Coefficient of Determination R2(y, ŷ) = 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−y)2

Mean Absolute Percentage Error MAPE(y, ŷ) = 1
n

∑n−1
i=0

yi−ŷi
max(ε,|yi|)

Mean Absolute Error MAE(y, ŷ) = 1
n

∑n−1
i=0 |yi − ŷi|

Mean Squared Error MSE(y, ŷ) = 1
n

∑n−1
i=0 (yi − ŷi)

2

Mean Squared Logarithmic Error MSLE(y, ŷ) = 1
n

∑n−1
i=0 (loge(1 + yi)− loge(1 + ŷi))

2

Median Absolute Error MedAE(y, ŷ) = median(|y1 − ŷ1|, ..., |yn − ŷn|)

Table 3.2: List of available metrics for model validation.

Apart from the default metrics, Table 3.2 summarizes all available metrics with their
corresponding definition. Figure 3.8 shows an overview of the whole modelling process.
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Figure 3.8: A flowchart diagram representing the modelling plugin process.

Input & Output

The plugin reads a configuration file containing the required data-tables. Table 3.3
summarizes those tables along with a brief description. This plugin has quite some
different requirements on the output with respect to the others. Agora tries to persist the
models into storage for future use. This gives two major advantages: first of all in case
we’re recovering from a previous crash the models don’t need to be retrained and can
easily loaded up; second of all this allows us to compute the predictions only once at the
end of the learning process.

Name Type Description

Properties Table Input Contains some global parameter like the maximum number of
iterations to perform or the metric name.

Knobs Table Input Contains the list of available software-knobs and their domain
space values.

Features Table Input Contains a description of the input features specified by the
application.

Observations Table Input
Contains the list of the configurations explored and the corre-
sponding output that has been produced by the target application
(input features and EFPs).

Parameters Table Input Contains the modelling parameters like the model to use or a
metric threshold value limit.

Table 3.3: List of input tables for the modelling plugin.

3.2.3 Clustering

The main goal of this plugin is to find representative clusters based on the input features
to be exploited in the application-knowledge. The clustering plugin is a parallel process
with respect to the modelling phase since they can operate independently. Once a suitable
model have been selected for each EFP, the generated clusters are combined and used
to generate the application-knowledge. This is an optional process, in a sense that the
application may not have any features specified. Therefore, the plugin will be launched
only if there are input features enabled for the application. The proposed clustering
plugin offers two well-known techniques: the K-means algorithm and the DBSCAN
algorithm. A detailed description of each method have been provided in Sub-Section
2.5.1.
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K-means

The K-means algorithm divides a set X of N input features into K disjoint clusters C,
each described by the mean µj of the samples in the cluster. The means are commonly
called the cluster centroids and they are not, in general, points from X , although they
live in the same space. The algorithm clusters data by trying to separate the features in n
groups of equal variance, minimizing a criterion known as the inertia or within-cluster
sum-of-squares defined as:

n∑
i=0

min
µj∈C
||xi − µj||2

It requires the number of clusters to be specified and scales well to large number of
features. The following function finds a set of clusters and returns a centroid for each of
them:

kmeans(n,max_iter, init)

where n is the number of clusters to form as well as the number of centroids to generate
(default: 5), max_iter is the maximum number of iterations of the K-means algorithm
for a single run (default: 300) and init is the method of initialization to use. The
following methods are available:

• random: choose n input features (rows) at random from data for the initial centroids.

• k-means++ (default): selects initial cluster centers for K-means clustering in a
smart way to speed up convergence. Given enough time, K-means will always
converge, however this may be to a local minimum. This is highly dependent on
the initialization of the centroids. The k-means++ method initializes the centroids
to be (generally) distant from each other, leading to probably better results than
random initialization.

Inertia can be recognized as a measure of how internally coherent clusters are. One of
the drawbacks is that inertia is not a normalized metric: we just know that lower values
are better and zero is optimal. But in very high-dimensional spaces, Euclidean distances
tend to become inflated. Finally one thing to highlight is that the mARGOt autotuner
implicitly expects the application-knowledge to be composed by clusters of Operating
Points and selects the cluster with the features closer to the ones of the current input by
using an Euclidean distance between the two vectors or a normalized one in case one
vector is numerically different with respect to the other. Since K-means also focuses on
minimizing a squared euclidean distance in order to generate the final cluster centroids,
this is a well suited method for the clustering process and it is chosen by default.

DBSCAN

The DBSCAN algorithm views clusters as areas of high density separated by areas of
low density. Due to this rather generic view, clusters found by DBSCAN can be any
shape, as opposed to K-means which assumes that clusters are convex shaped. The
central component to the DBSCAN is the concept of core samples, which are samples
that are in areas of high density. A cluster is therefore a set of core samples, each close
to each other (measured by some distance measure) and a set of non-core samples that
are close to a core sample (but are not themselves core samples). More formally, a core
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Figure 3.9: A flowchart diagram representing the clustering plugin process.

sample is defined as a sample in the dataset such that there exist a minimum number
of other samples within a distance threshold, which are defined as neighbors of the
core sample. This tells that the core sample is in a dense area of the vector space. The
algorithm is being called with the following:

DBSCAN(eps,min_samples, algorithm)

where eps is the maximum distance between two samples for one to be considered as in
the neighborhood of the other (default: 0.5), min_samples is the number of samples
(or total weight) in a neighborhood for a point to be considered as a core point (default:
5) and algorithm specifies to be used to compute point-wise distances and find nearest
neighbors (default: automatic selection). While the parameter min_samples primarily
controls how tolerant the algorithm is towards noise (on noisy and large data sets it
may be desirable to increase this parameter), the parameter eps is crucial to choose
appropriately for the data set and distance function. It controls the local neighborhood of
the points. When chosen too small, most data will not be clustered at all. When chosen
too large, it causes close clusters to be merged into one cluster, and eventually the entire
data set to be returned as a single cluster. This is why it must be chosen properly and
leaving the default value may not work in some cases. As a final note, since DBSCAN
doesn’t provide a list of centroids as K-means does, these are found by computing the
mean value for each area (cluster). For these reasons, this why in a general scenario the
end-user is always recommended to select a K-means approach.

Regardless of the method used, by default the plugin carries out a scaling on the
input features before clusterizing them. This preprocessing step is always advisable in
order to to avoid biases imposed by the different value scales indifferent dimensions.
The plugin standardize features by removing the mean and scaling to unit variance. The
standard score of a feature f is calculated as:

z =
f − u
s

where u is the mean of the input features processed and s is their standard deviation.
Figure 3.9 shows the whole clustering process in a flowchart diagram.
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Input & Output

The plugin reads a configuration file containing the required data-tables. At the end of
the process it writes the list of the centroid representing each cluster found. Table 3.4
summarizes those tables along with a brief description.

Name Type Description

Features Table Input Contains a description of the input features specified by the
application.

Observations Table Input
Contains the list of the configurations explored and the corre-
sponding output that has been produced by the target application
(input features and EFPs).

Parameters Table Input Contains the clustering parameters like the algorithm to use or
if the preprocessing step has to be performed.

Centroids Table Output Contains a list of centroids found for each cluster.

Table 3.4: List of input/output tables for the clustering plugin.

3.2.4 Predicting

This last plugin is meant to be called once a model has been deemed acceptable for each
EFP and, in case of input features, there are clusters available. The task performed is
quite simple: it loads up all the final models that were stored and the total configurations
table that was created during the DoE initial phase; at this point, the configurations table
is transformed into a matrix-like dataset and used as input to the prediction method of
each model. In case of feature clusters, the matrix is merged with the centroids table with
a cross-product in order to have distinct predictions for each cluster representative. The
generated output is the application-knowledge that will be converted into a compatible
format before being distributed to the application clients. Algorithm 3 shows the pseudo
code of the plugin while Figure 3.10 displays the whole process in a flowchart diagram.

X = to_matrix(observations_table);
if FEATURES /∈ ∅ then

F = to_matrix(centroids_table);
X = X × F ;

end
predictions = ∅;
for mi ∈METRICS do

model = load_model(mi);
predictions = predictions ∪model.predict(X);

end
return predictions;

Algorithm 3: How the prediction process generates the final application-knowledge.

Input & Output

As usual, the plugin firstly reads a configuration file containing the required data-tables.
At the end of the process it writes a table containing all the predictions. Table 3.5
summarizes those tables along with a brief description. Please note that even if not
specified, the prediction plugin is also provided with the directory path of the selected
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Figure 3.10: A flowchart diagram representing the predicting plugin process.

plugins. This is agnostic with respect to the storage handler implementation since the
models will be always stored locally inside the Agora server machine.

Name Type Description

Knobs Table Input Contains the list of available software-knobs and their domain
space values.

Features Table Input Contains a description of the input features specified by the
application.

Metrics Table Input Contains a description of the EFPs specified by the application.

Observations Table Input
Contains the list of the configurations explored and the corre-
sponding output that has been produced by the target application
(input features and EFPs).

Centroids Table [opt] Input Contains a list of centroids found for each cluster.
Predictions Table Output Contains the predictions made for each EFP.

Table 3.5: List of input/output tables for the clustering plugin.

3.2.5 Iterating the learning process

After illustrating each of the learning module components, we can put the pieces together
to describe the learning process as a whole as previously outlined in Section 3.1. The key
idea is that given the description of an unknown application, first of all the DoE plugin is
used to sample efficiently the Design Space. After the experimental configurations have
been extracted, they are sent to the available clients in order to collect the corresponding
observations. Once a certain number of observations are retrieved, the modelling phase
and the clustering phase are started in parallel. Then, if the generated models and
cluster centroids are eligible for the final phase, the prediction plugin is launched to
generate the list of Operating Points to broadcast to the application clients. Otherwise,
the DoE plugin is started once again aiming at finding new software-knob configurations
to explore in order to restart the Design Space Exploration and hence improving the
models quality.

The operations described above are considered to be one iteration cycle. As the
experimental results will prove, increasing the number of iterations provide better results
on the final solution. The global parameters managing the whole cycle are three:

1. max_number_of_iterations (default: 100): the maximum number of iterations to
perform before stopping the learning process and generating the final predictions
using the best models found until that moment.
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Figure 3.11: A sequence diagram representing a typical interaction between the Remote Application
Handler, the Local Application Handler and the Learning Module.

2. number_of_configurations_per_iteration (default: 30): how many configurations
to explore (e.g. that has to be sent to the application clients) on each iteration.

3. number_of_observations_per_configuration (default: 2): how many times the same
configuration has to be explored.

Even if the parameters have a default value, the end-user has total freedom on them and
is invited to explicitly set them at will.

To end this section, a typical workflow of the framework is reported below during the
interaction with an unknown application that has just manifested itself. It is visualized
as a sequence diagram in Figure 3.11.

1. The client’s Local Application Handler notifies its presence to the server encapsu-
lating the application description inside the message sent.

2. The Remote Application Handler adds the new client and stores the received
informations such as the number of software-knobs and their domain, the DoE
technique to use, etc.

3. Once the data have been collected, the Plugin Launcher is used to call the corre-
sponding plugin inside the Learning Module to generate a set of configurations to
explore.

4. The Remote Application Handler dispatches to the client the configurations that
needs to be evaluated in a round robin fashion.
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5. Once the Local Application Handler receives a configuration, it forces the auto-
tuner to set it on the application kernel and waits for the output to be processed.
Afterwards it sends the result back to the server awaiting further instructions.

6. Once the server received enough observations, it starts the modelling procedure
while simultaneously generating a set of clusters in case there are input features
available.

7. If the quality of the derived model is above the acceptance criteria or we reached
the maximum number of iterations, the Remote Application Handler starts the
final prediction phase waiting for the application-knowledge to be broadcasted.
Otherwise, it restarts from Step 3 waiting for more observations to increase the
quality of the results.

3.3 Summary

In this chapter we’ve described the methodology behind Agora. The framework archi-
tecture is based on the mARGOt autotuning framework and its main goal is to distribute
the Design Space Exploration in order to obtain the application-knowledge of a target
application at runtime, with respect to its execution. To achieve this, Agora relies on an
iterative learning approach which leverages external modules that respectively:

• Apply DoE techniques in order to efficiently sample the Design Space and produce
a list of configurations to explore.

• Exploit known machine learning models to describes the relationship between
EFPs of interest, software-knobs and input features.

• Cluster the input features space in order to create representative centroids to be
used during the application-knowledge production.

After discussing these components, we’ve shown a typical workflow to give the reader a
detailed overview of the interactions between the main actors.

On the following chapter we will describe the framework’s internal components in
details and provide a deeper look into the technologies used and the most critical aspects
from the implementation point of view.
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CHAPTER4
Implementation

This chapter outlines Agora from the implementation point of view giving a deeper look
into the technologies and the most critical aspects faced during development. At first,
we give an overview on how the project has been structured, describing the technologies
used by each macro-component. Then, the reader is introduced to the Agora library,
its main entities and how every module interacts with each other. Following up we
describe the structure of the plugin system and the third-party libraries exploited. Then,
we briefly outlines the Agora server binary and how its deployment works. Finally, we
show a full integration example in order to outline the effort required from the end-users
and application developers to integrate Agora in their application.

4.1 Build System

This project was born as an enhancement of an already existing framework: mARGOt.
Agora can be seen as a separate module attached to it in the bigger picture. It is made
out of three main components:

1. The Agora binary: a console executable that is ideally deployed on a dedicated
server and which coordinates the learning process by reading and dispatching
MQTT messages.

2. The Agora library: exploited by the binary, exposes the main functionalities used
by the framework.

3. The plugin system: a separate module inside Agora that contains the plugins
leveraged during the learning process. Chapter 3 described the methodology
behind.
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The binary and the library have been developed in C++, a general-purpose programming
language created by Bjarne Stroustrup as an extension of the C programming language.
The language has expanded significantly over time, and modern C++ now has object-
oriented, generic, and functional features in addition to facilities for low-level memory
manipulation. In particular C++17 has been chosen as standard. Concerning the
learning module, as stated each plugin can be integrated inside the framework in a
language-agnostic fashion. Having said that, the default plugins shipped with Agora
have been written in Python. Python is an interpreted, high-level and general-purpose
programming language which is widely used in the machine learning field thanks to
its high readability and large support from third-party libraries that allows easy and
powerful implementations.

The compilation, linking and building process is managed by CMake. CMake is
an open-source, cross-platform family of tools designed to build, test and package
software. CMake is used to control the software compilation process using simple
platform and compiler independent configuration files, and generate native makefiles
and workspaces that can be used in the chosen compiler environment. It is also very
useful to automatically manage and check software dependencies during configuration
time.

The main repository of the project is online and public [9]. It is organised as follow:

heel mARGOt heel source files (lib + exe)
margot mARGOt autotuner source files (lib)
agora Agora source files (lib)
agora / server Agora binary source files (exe)
agora / plugins Agora plugins source files
doc The user manuals

4.2 Agora Library

This section describes the library components in details and how they interact with each
other. In the previous chapter, Section 3.1 gave a high level overview over the main
actors inside the framework: the Remote Application Handler, the Application Manager,
the Storage Handler, the Remote Message Handler, the Plugin Launcher and the Logger.
In Figure 4.1 it is provided a more in depth view of them as a UML (Unified Modeling
Language) class diagram showing their main interactions. This diagram shown is for
explanatory purposes only, hence every class doesn’t show any internal methods or
members since the goal is to offer a complete view of the internal structure without
going in too much details. The online repository can be inspected for further specifics.

During the design phase of the framework, we decided to apply a factory method
pattern to the main entities. In class-based programming, the factory method pattern is a
creational pattern that uses factory methods to deal with the problem of creating objects
without having to specify the exact class of the object that will be created. Object creation
is done by calling a factory method — either specified in an interface and implemented by
child classes, or implemented in a base class and optionally overridden by derived classes
— rather than by calling directly a constructor. This philosophy has been applied to the
main actors inside the framework (i.e. the Remote Message Handler, the Storage Handler,
the Plugin Launcher and the Logger). A new instance is created by packing together
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<<interface>>
Logger

FileLogger

Worker

1 *

<<singleton>>
ApplicationManager

ConsoleLogger

Launcher

<<wrapper>>
FsHandler

<<interface>>
FsDoe

LoggerConfiguration

<<interface>>
RemoteHandler

PahoRemoteHandler

RemoteConfiguration

application_id

LauncherConfiguration

PluginConfiguration

<<interface>>
FsDescription

<<interface>>
FsCluster

<<interface>>
FsPrediction

<<interface>>
FsObservation

CsvDoeStorageCsvDescriptionStorage CsvClusterStorage CsvPredictionStorage CsvObservationStorage

RemoteApplicationHandler

ThreadPool

Safe Queue

cluster_model prediction_model

message_model

doe_model

FsConfiguration

Figure 4.1: UML class diagram showing Agora internal entities and their interactions.

a specific Configuration object (e.g. LoggerConfiguration, RemoteConfiguration, etc.)
which describes the implementation features and the required parameters to construct
the object. This decision was made in order to acquire two major benefits:

1. Ease the Application Manager effort in managing internal instances for each
application. Creating an object often requires complex processes not appropriate to

49



i
i

“thesis” — 2021/4/5 — 20:40 — page 50 — #56 i
i

i
i

i
i

Chapter 4. Implementation

include within a composing object. The object’s creation may lead to a significant
duplication of code, may require information not accessible to the composing
object, may not provide a sufficient level of abstraction, or may otherwise not be
part of the composing object’s concerns. This approach handles these problems
by defining a separate method for creating the objects, which subclasses can then
override to specify the derived type of product that will be created.

2. Now every subclass of these entities can represent a new implementation to carry
out the task, leaving future developments and expansions a minimal integration
effort. New implementation details can be added to the configuration object and
just by overloading the factory method in the new subclass the integration process
is completed. This approach indeed relies on inheritance, as object creation is
delegated to subclasses that implement the factory method to create objects.

The factory method is defined as get_instance(configuration). By passing the config-
uration parameter the factory returns a C++ std::unique_ptr pointing to the new object
created. Without going into too much detail, a std::unique_ptr is a smart pointer that
owns and manages another object through a pointer and disposes of that object when the
unique_ptr goes out of scope. A unique_ptr explicitly prevents copying of its contained
pointer, so it is possible to have only one owner at the same time. A unique_ptr suits
C++ factory patterns well because once the pointer is returned, it is the caller’s duty to
decide on its ownership by maintaining the unique_ptr properties or by converting it to
a std::shared_ptr, which instead allows multiple owners. A shared_ptr uses reference
counting ownership of its contained pointer in cooperation with all copies and once that
counter reaches zero, the object gets destroyed.

This section concludes by discussing the relevant classes reported in Figure 4.1.

ThreadPool and Worker

As anticipated, Agora is based on a thread pool design. A thread pool is a software
design pattern for achieving concurrency of execution in a system. It maintains multiple
threads waiting for tasks to be allocated for concurrent execution by a supervisor. By
maintaining a pool of threads, the system increases performance and avoids latency in
execution due to frequent creation and destruction of threads for short-lived tasks. The
number of available threads is tuned to the computing resources available. If on one hand
this gives us great advantages, on the other hand it requires every exposed method to be
thread-safe. Thread-safe code only manipulates shared data structures in a manner that
ensures that all threads behave properly and fulfill their design specifications without
unintended interaction. Each thread is a C++ std::thread. The class thread represents a
single thread of execution. Threads begin execution immediately upon construction of
the associated thread object (pending any OS scheduling delays), starting at the top-level
function provided as a constructor argument.

Each thread perform the same task specified inside the Worker class. The task is a
continuous loop that waits for new incoming messages. Depending on the message type,
different actions are performed. Because of the synchronization requirements between
multiple threads, incoming messages are stored inside a message queue (SafeQueue)
which guarantees the thread-safety properties. Figure 4.2 exemplifies the message
pulling process happening inside Agora.
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Figure 4.2: How the thread pool handles incoming messages from the outside. Multiple Local Application
Handlers send messages towards the Agora server which puts them inside a synchronized queue. Every
free thread pulls out a new message in a safe way without rising race-conditions.

FsHandler

This component represents the Storage Handler described in the previous chapter. The
FsHandler is a wrapper that exposes an API with write/read methods for handling
the framework storage. Calling one of those methods leverages the corresponding
implementation based on the FsConfiguration specifications. A meaningful decision
was to split data into different parts based on common concepts. For example, every
application description data is managed by the FsDescription interface; DoE data tables
(i.e. total configurations and experimental configurations) are handled by the FsDoe
interface; and so on and so fort. This approach was made in order to modularize the
storage handling process. For instance, if we had three different storage implementations
available, we could decide to use the first one to manage application descriptions and
DoE data, the second for clustering informations and the third one for the remaining
data. Moreover, this means that new implementations are not obliged to specialize every
API method exposed by the FsHandler but can focus only on a specific subset, based on
the related interface.

The current storage handler uses CSV files to store informations. File paths and
directories are managed by the C++17 Filesystem library. The Filesystem library
provides facilities for performing operations on file systems and their components, such
as paths, regular files, and directories.

Besides this, the FsHandler is used to store the plugin configuration files containing
the list of required environmental variables. A PluginConfiguration object contains those
informations as a list of <key,value> pair, where the key is the parameter name. Since
the informations concern data tables location, depending on the storage implementation
the FsHandler will output the corresponding address (e.g. a file path for CSVs or the
table name for databases). Details about this part are outlined in Section 4.3.

RemoteHandler

This class represents the Remote Message Handler and exposes an API that manages
the communication channel based on the MQTT protocol. The implementation exploits
the Eclipse Paho MQTT C Client library [42] inside the PahoRemoteHandler class. The
Eclipse Paho project provides reliable open-source implementations of open and standard
messaging protocols aimed at new, existing, and emerging applications for Machine-to-
Machine (M2M) and Internet of Things (IoT). Paho contains MQTT publish/subscribe
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client implementations along with corresponding server support.
The client library supports two modes of operation. These are referred to as syn-

chronous and asynchronous modes and Agora exploits the latter. In asynchronous mode,
the client application runs on several threads. Messages are sent and subscribed to by
calling functions in the client library to publish and subscribe, which also happens in
asynchronous mode. Processing of handshaking and maintaining the network connec-
tion is performed in the background. Notifications of status and message reception are
provided to the client application using callbacks. This API is not thread safe however:
it is not possible to call it from multiple threads without synchronization and therefore,
when a new message is received, the corresponding callback function puts the message
inside the Safe Queue, which on the contrary is thread safe by design.

The message abstraction is defined inside the message_model data structure as a pair
of std::string <topic,payload>. Before pushing a new message into the queue, Agora
performs a filtering step in order to whitelist the topic and the payload from unaccepted
characters.

RemoteApplicationHandler

This component manage a generic application learning process, parsing its informations,
collecting observations and launching plugins. Since a RemoteApplicationHandler is
created as a shared_pointer, multiple threads might have mutual access on it. For this
reason, the std::mutex class is leveraged in order to synchronize them and avoid race
conditions. The mutex class is a synchronization primitive that can be used to protect
shared data from being simultaneously accessed by multiple threads.

Each application is identified uniquely by an application_id. The ID is composed by
the application name, the application version and the block name. This means that
the same application could be composed by more than one block. In this scenario each
block is handled independently. The concept of a block is better explained later on in
Section 4.5.

The logic that dictates the workflow exploits an Internal Status implemented as a
bitmask. Table 4.1 gives an overview on the states. Depending on which state the
handler finds itself involved, different actions are performed. A transition from a state to
another is performed if the action ends successfully.

The RemoteApplicationHandler is in charge of generating and broadcasting the
application-knowledge once the final predictions are available. mARGOt interprets the
application-knowledge as a list of Operating Points (OPs) in JSON (JavaScript Object
Notation) format. Each OP has up to three fields:

1. The feature section (if any).

2. The software-knobs section.

3. The metric (EFP) section.

Each section of the OP is a key-value pair, where the key is the name of the field and
the value is a number, which represents the average value. Figure 4.3 shows an example
of the application-knowledge syntax, that defines an OP list for a block named "foo". In
this case mARGOt reads it by identifying two feature clusters, one at (f1 = 30, f2 = 12)
and the other at (f1 = 10, f2 = 2).
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State Description

Clueless The handler has just been created and is waiting for new incoming mes-
sages.

Recovering Agora has been restarted and is trying to recover data from storage (if
any).

WithInformation Agora has retrieved the application informations.
BuildingDoe Agora is waiting the doe plugin for new configurations to explore.

WithDoe Agora has retrieved new DoE configurations.
BuildingCluster Agora is waiting the clustering plugin.

WithCluster Agora has retrieved new cluster centroids.
BuildingModels Agora is waiting the modelling plugin.

WithModels Agora has stored all the models required for the prediction phase.

BuildingPredictions The models have been deemed eligible and Agora is waiting for the final
predictions in order to broadcast the application-knowledge.

WithPredictions Agora has retrieved the final predictions.

Exploring Agora is performing the design space exploration and it’s waiting for new
observations.

Undefined Some undefined behaviour happened during execution and Agora has to
abort and restart.

Table 4.1: List of internal states that the RemoteApplicationHandler can take.

1 {
2 "foo":
3 [
4 {
5 "features": { "feature1": 30, "feature2": 12 },
6 "knobs": { "knob1": 1, "knob2": 3 },
7 "metrics": { "exec_time": 20000, "error": 10 }
8 },
9 {

10 "features": { "feature1": 30, "feature2": 12 },
11 "knobs": { "knob1": 3, "knob2": 8 },
12 "metrics": { "exec_time": 15000, "error": 2 }
13 },
14 {
15 "features": { "feature1": 10, "feature2": 2 },
16 "knobs": { "knob1": 2, "knob2": 1 },
17 "metrics": { "exec_time": 10000, "error": 4 }
18 }
19 ]
20 }

Figure 4.3: Example of an application-knowledge in JSON format for a block named "foo".

In order to create JSON data to inject into the message payloads, the RemoteApplica-
tionHandler exploits the boost::property_tree library. Boost [43] is a powerful set of
C++ libraries that provides support for tasks and structures.

ApplicationManager

The ApplicationManager is used to manage Agora’s internal instances. It is designed
following the Singleton pattern. The singleton pattern is a software design pattern that
restricts the instantiation of a class to one single instance. This is useful when exactly
one object is needed to coordinate actions across the system.

Being a singleton, from an implementation point of view is seen as an instance with a
global scope. It is in charge of storing the list of active RemoteApplicationHandlers and
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an instance of the RemoteHandler and Logger. These last two entities are dispatched as
shared_pointers to new application handlers once a new application connects to Agora.

Logger

This component is used by Agora to register events happening during execution. Table
4.2 summarizes the available logging levels. Specifying the minimum logging level tells
Agora which type of events to register and which to ignore instead.

Level Description
Info Logs the general flow of the application.

Warning Logs an abnormal or unexpected event in the application flow
that however do not cause the application execution to stop.

Pedantic Logs the most detailed messages. These messages may contain
sensitive application data.

Debug
Logs used for interactive investigation during development.
These logs should primarily contain information useful for de-
bugging and have no long-term value.

Table 4.2: List of available logging levels.

There are two Logger specializations: the FileLogger which saves the events to file
and the ConsoleLogger that prints the events to standard output (i.e. terminal/console).
The first type requires synchronization facilities to achieve thread safety while the
ConsoleLogger exploits the C++ std::cout global object which controls output to a
stream buffer of implementation-defined type, associated with the standard C output
stream. It is safe to concurrently access std::cout from multiple threads for both formatted
and unformatted output.

Launcher

This class is used by the Remote Application Handler to execute a generic plugin. It
exposes the following main methods:

• initialize_workspace: copies the plugin source directory into a user-specified
directory. This operation is performed in order to create a sandboxed environment
where the plugin can run isolated. The main reasons behind this are two: on one
hand this allows a developer to modify the plugin source code without worrying
about altering Agora’s workflow, on the other hand this keeps the working directory
clean with respect to potential temporary files.

• launch: forks the current thread to execute the main plugin script file asyn-
chronously and returns the process ID.

• wait: by specifying the process ID as input, this static method can be leveraged by
the caller to wait the specified process to end its computation. It adds a synchronous
feature to the plugin calls.

4.3 Plugin System

This section provides the implementation details for each of the default plugins shipped
along Agora. A generic plugin is called by the RemoteApplicationHandler by exploiting
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# ! / b i n / bash
ENVIRONMENTAL_FILE=$1
s o u r c e $ENVIRONMENTAL_FILE

# ###############################################################################
# THIS IS THE PLUGIN ENTRY POINT
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# The e n v i r o n m e n t a l f i l e p r o v i d e s t o t h i s s c r i p t t h e f o l l o w i n g v a r i a b l e s :
# − APPLICATION_NAME −> t h e name of t h e a p p l i c a t i o n
# − BLOCK_NAME −> t h e name of t h e b l o c k of code managed
# − VERSION −> t h e v e r s i o n number o f t h e a p p l i c a t i o n
# . . . . . . . . . . . . . . . . . more v a r i a b l e s . . . . . . . . . . . . . . . . .
# − WORKING_DIRECTORY −> t h e p l u g i n working d i r e c t o r y .
# − CONFIG_FILE_PATH −> t h e p l u g i n e n v i r o n m e n t a l c o n f i g u r a t i o n f i l e p a t h .
#
# I s up t o t h e p l u g i n w r i t e r t o use t h i s s c r i p t t o c a l l t h e t o o l s t h a t pe r fo rm
# t h e p l u g i n t a s k .
# ###############################################################################

# e x i t i f f a i l
s e t −e

py thon3 $WORKING_DIRECTORY/ main . py $CONFIG_FILE_PATH

Figure 4.4: Example of a generic plugin entry point script.

a bash script as entry point. The script sources a configuration file containing a list of
environmental variables that needs to be loaded by the plugin main script before being
launched. In Figure 4.4 an example is provided showing the syntax. The RemoteAppli-
cationHandler checks the return value of the script to make sure that everything went
fine. Once the script completes, it is assumed that the plugin has finished.

Every plugin exploits the DotEnv package [44] to read key-value pairs from .env
files. As stated during the introduction to this thesis’ work, the goal of the project was
developing a framework leveraging existing well-known technologies, not creating new
ones. Therefore each plugin methods are taken from the following sources.

DoE Plugin. DoE methods implementations are taken from the PyDoE package [45]
which is designed to construct appropriate experimental designs.

Modelling Plugin. The models are taken from the Scikit-Learn package [46] which
is an open-source project designed to offer simple and efficient tools for predictive
data analysis. The model persistence is achieved through the JobLib open-source
package [47].

Clustering Plugin. As for the modelling techniques, the clustering algorithms are
based on the Scikit-Learn package.

Some other worth-to-mention packages are Pandas [48] and NumPy [49]. Pandas is
a fast, powerful, flexible and easy to use open source data analysis and manipulation
tool, which is leveraged as a read/write mechanism for CSV tables. NumPy is a Python
library that provides a multidimensional array object, various derived objects (such as
masked arrays and matrices), and an assortment of routines for fast operations on arrays,
including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete
Fourier transforms, basic linear algebra, basic statistical operations, random simulation
and much more.

Finally, since software-knobs can also be a string type, the DoE and Modelling
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plugins needed a mechanism to map each string to a numeric value which their methods
could interpret correctly. The solution was to exploit the LabelEncoder utility class from
Scikit-Learn that helps normalize labels such that they contain only values between 0
and n_classes − 1. For instance, if we had a software-knob alghorithm defined as
[”number_1”, ”number_2”, ”number_3”], the LabelEncoder would map this list to
[0, 1, 2] before continuing the execution flow.

4.4 Agora Binary

This final section briefly describes the Agora executable. Once the binary is created
by the CMake script, ideally it should be deployed within the server machine. The
executable is named agora and expose several flags and options to configure its
behaviour. Using the –help command option provides the end-user with the full list of
available options. In particular, it is possible to configure parameters for the MQTT
connection or parameters to setup the storage configuration. The server requires only
three parameters to successfully start its execution:

• workspace-directory: where the plugins store logs and temporary files.

• plugin-directory: the directory containing the plugins implementations.

• models-directory: the location where the modelling plugin will store the models
once deemed eligible.

The program options are parsed using the boost::program_options library by Boost.
This library allows programs to obtain program options, that is (name, value) pairs
from the user, via conventional methods such as command line and configuration file.
It has been chosen in place of a straightforward hand-written code because it’s easier
syntax, error reporting is better and options can be read from anywhere. So if future
developments wanted configuration files or maybe even environment variables, these
could be added without any significant effort.

4.5 Integrating in a target application

This section describes the effort required from end-users and application developers to
integrate Agora in their application. In this scenario the end-users are seen as the final
utilizers of the application and therefore they are in charge of defining the application
requirements (e.g. which are the EFPs of interest and how the objective function is
defined) and identifying input features (if any). Application developers instead are the
ones that write the application source code; therefore they are in charge of identifying
software-knobs and extracting features from the input (if any). To ease the integration
process in the target application, Agora is packaged with a utility tool called mARGOt
Heel that starting from a JSON description of the extra-functional concerns, generates
a high-level-interface tailored for the target application. The main configuration file
describes the adaptation layer by stating:

1. the monitors of interest for the application;

2. the geometry of the problem (i.e. the EFPs of interest, the software-knobs and
features of the input);
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3. the application requirements (i.e. the optimization problem and the Agora required
informations to perform the online design space exploration).

Starting from this high-level description, mARGOt Heel generates a library with the
required glue code that aims at hiding, as much as possible, the implementation details.

The idea is to model an application as composed of several independent kernels,
named blocks. The following is a simple application model example that for simplicity
has a single block named foo but it is trivial to generalize the example with more than
one block.
main
{

loop
{

o u t p u t = foo ( IN i n p u t , IN knobs )
}

}

For each block mARGOt Heel generates the following functions meant to wrap the block
of code:

• init : the global function that initializes the data structures.

• update : updates the application software-knobs with the configuration provided.
This is used to force the kernel to explore a given configuration.

• start_monitors : starts the measurement of all the monitors that require a starting
point (e.g. Time monitor).

• stop_monitors : ends the measurement of all the monitors that require a stopping
point (e.g. Time monitor).

• push_custom_monitor_values : inserts a new value in a custom monitor (e.g.
Quality monitor) and sends a new observation to the Agora server corresponding
to the last software-knobs configuration set.

• log : prints runtime information on file and/or standard output.

These functions hide the initialization of the framework and its basic usage. For example
the update function takes as output parameters the software-knobs of the application and
as input parameters the features of the current input. In the event that we had already
received the application-knowledge, it would use the features to select the most suitable
cluster and then it would set software-knobs parameters according to the most suitable
configuration found. Considering the previous example, the following is the logical
integration that happens in the target application considering all the exposed functions
and their order.
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main
{

i n i t
l oop
{

update ( IN input , OUT knobs )
s t a r t _ m o n i t o r s
o u t p u t = foo ( IN i n p u t , IN knobs )
s top_moni tors
push_custom_mini tor_values
l o g

}
}

To show the integration effort, in the following example we focus on a toy appli-
cation with two software-knobs (knob1 and knob2) and two input features (feature1
and feature2). The application algorithm is rather simple: it is composed of a loop that
continuously elaborates new inputs. In this example, we suppose that the end-user is
concerned about execution time and the computation error. In particular, he/she would
like to minimize the computation error, provided an upper bound on the execution time.

In the context of this example, Figure 4.5 shows the main JSON configuration file that
states the extra-functional concerns. This file is composed of four sections: the monitor
section (lines 7 - 17) the application geometry section (lines 18 - 41) the Agora section
(lines 42 - 53) and the adaptation section (lines 54 - 65). For a detailed description of
the JSON syntax and semantics, please refer to the mARGOt Heel user manual in the
Agora repository [9].

The monitor section lists all the monitors of interest for the user. In this example,
there is an execution time monitor (lines 9 - 12) and a custom monitor for observing the
error (lines 13 - 16). All the monitors might expose to application developers a statistical
property over the observations, such as the average value in this example.

The application geometry section lists the application software-knobs (lines 18 -
22), the input features (lines 24 - 28) and the metrics of interest (lines 29 - 41). For each
software-knob it is required to specify its domain values (as a range or by expliciting
them one by one). Input features don’t have a domain but we must specify a type and
how to compute the distance between feature vectors (line 23) and constraints on their
selection. For instance, considering feature2, it is stated that a cluster is eligible to be
selected only if its feature2 value is lower or equal than the feature2 value of the current
input. No requirements are imposed for feature1 instead. Finally for every metric of
interest it is specified their type, the monitor which observes their behaviour and which
plugin will be used to find a suitable model. In this case the exec_time metric will be
predicted by "model_plugin_1" with an R2 threshold of 0.8 (lines 32 - 34). On the
other hand the error metric will be predicted by "model_plugin_2" using its default
parameters.

The Agora section contains the MQTT informations needed to connect to the Agora
server by specifying the broker url in the form <protocol>://<url>:<port>. One can
specify the broker username and password to log in, the QoS level and the paths to the
broker certificate, the client certificate and the client key leaving them empty if they’re
not required (lines 44 - 46). It is also required to specify the clustering plugin and the
DoE plugin to use. In this case it is specified which clustering method to leverage and
how many centroids to generate plus a constraint on knob1 and knob2.
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1 {
2 "name": "toy_app", "version": "1.0",
3 "blocks":
4 [
5 {
6 "name": "foo",
7 "monitors":
8 [
9 {

10 "name": "exec_time_monitor", "type": "time", "log": [ "average" ],
11 "constructor": [ "margot::TimeUnit::MILLISECONDS", 1 ]
12 },
13 {
14 "name": "error_monitor", "type": "float", "log": [ "average" ],
15 "stop": [ {"error":"float"} ]
16 }
17 ],
18 "knobs":
19 [
20 { "name": "knob1", "type": "int", "range": [ 1,32,1 ] },
21 { "name": "knob2", "type": "float", "values": [ 1,2,3,4,5 ] }
22 ],
23 "feature_distance":"euclidean",
24 "features":
25 [
26 { "name": "feature1", "type": "double", "comparison": "-" },
27 { "name": "feature2", "type": "double", "comparison": "le" }
28 ],
29 "metrics":
30 [
31 {
32 "name": "exec_time", "type": "float", "prediction_plugin": "model_plugin_1",
33 "prediction_parameters":
34 [ {"quality_threshold": "{’r2’:0.8}"} ],
35 "observed_by": "exec_time_monitor"
36 },
37 {
38 "name": "error", "type": "float", "prediction_plugin": "model_plugin_2",
39 "observed_by": "error_monitor"
40 }
41 ],
42 "agora":
43 {
44 "borker_url": "127.0.0.1:1883",
45 "broker_username": "margot", "broker_password": "margot_psw", "broker_qos": 2,
46 "broker_ca": "", "client_cert": "", "client_key": "",
47 "clustering_plugin": "cluster_plugin",
48 "clustering_parameters":
49 [ {"algorithm": "kmeans"}, {"number_centroids": 5} ],
50 "doe_plugin": "doe_plugin",
51 "doe_parameters":
52 [ {"constraint": "knob1 + knob2 < 40"} ]
53 },
54 "extra-functional_requirements":
55 [
56 {
57 "name":"my_optimization_problem",
58 "minimize":
59 {
60 "linear_mean": [ {"error": 1} ]
61 },
62 "subject_to":
63 [ { "subject":"exec_time", "comparison": "le", "value": 1000.0 } ]
64 }
65 ]
66 }
67 ]
68 }

Figure 4.5: The main JSON configuration file for the toy application, stating extra-functional concerns.

Finally, the adaptation section states the application requirements of the end-user.
In particular, it states the application goals (lines 62,63) and the constrained multi-
optimization problem (lines 57 - 61). It is declared that the objective is to minimize the
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Chapter 4. Implementation

1 # i n c l u d e <margot / margot . hpp >
2
3 i n t main ( )
4 {
5 margot : : i n i t ( ) ;
6
7 i n t knob1 = 4 ;
8 i n t knob2 = 2 ;
9 f l o a t e r r o r = 0 . 0 f ;

10
11 whi le ( work_to_do ( ) )
12 {
13 new_inpu t = g e t _ i n p u t ( ) ;
14 c o n s t do ub l e f e a t u r e 1 = e x t r a c t _ f e a t u r e 1 ( new_inpu t ) ;
15 c o n s t do ub l e f e a t u r e 2 = e x t r a c t _ f e a t u r e 2 ( new_inpu t ) ;
16
17 / / f o o b l o c k
18 {
19 margot : : foo : : u p d a t e ( f e a t u r e 1 , f e a t u r e 3 , knob1 , knob2 ) ;
20 margot : : foo : : s t a r t _ m o n i t o r s ( ) ;
21
22 do_ job ( new_input , knob1 , knob2 ) ;
23 e r r o r = c o m p u t e _ e r r o r ( new_inpu t ) ;
24
25 margot : : foo : : s t o p _ m o n i t o r s ( ) ;
26 margot : : foo : : p u s h _ c u s t o m _ m o n i t o r _ v a l u e s ( e r r o r ) ;
27 }
28
29 margot : : foo : : l o g ( ) ;
30 }
31 }

Figure 4.6: Stripped C++ code of the target toy application, after the mARGOt Heel integration.

error while keeping the execution time below 1000 milliseconds.
Starting from this configuration file, mARGOt Heel automatically generates the glue

code accordingly, exposing to application developers a high-level interface tailored for
the specific problem. Figure 4.6 shows the source code of the application after the
integration. To highlight the required effort, the application algorithm is hided in three
functions: work_to_do (line 11) tests whether input data are available, get_input (line 13)
retrieves the last input to elaborate and do_job (line 22) performs the elaboration. The
integration effort requires application developers to include the mARGOt header (line 1),
to initialize the framework (line 5) and to wrap the block of code managed by mARGOt
(lines 18 - 27). Note that even if we minimized the framework integration effort, it is still
needed that application developers identify and write the code that extracts meaningful
features from an input (lines 14,15); and a function that computes the elaboration error
(line 23).
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4.6 Summary

In this chapter we presented an overview on how Agora have been structured internally.
We gave a description of three of the main components that constitutes the proposed
framework at its core.

• The Agora binary: a console executable that is ideally deployed on a dedicated
server and which coordinates the learning process by reading and dispatching
MQTT messages;

• The Agora library: exploited by the binary, it exposes the main functionalities used
to achieve the goal;

• The plugin system: a separate module inside Agora that contains the plugins
leveraged during the learning process.

At the end, we’ve shown the effort required from end-users and application developers
to integrate Agora in their application through a toy example.

In the next chapter, we will focus on the experimental evaluations that have been
carried out to address the benefits and limitations of the proposed framework.
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CHAPTER5
Experimental Evaluation

This chapter aims at providing an experimental evaluation of the proposed framework,
highlighting its benefits and limitations. At first, we introduce the platform in which
Agora was deployed and the experiments took place. Next, we present an evaluation
of the framework’s scalability and overheads registered during a stress test benchmark.
Then, we outlines the target applications that were integrated with Agora. They are taken
from a benchmark suite composed of multithreaded programs. The suite focuses on
emerging workloads and was designed to contain a diverse selection of applications that
is representative of next-generation shared-memory programs for chip-multiprocessors.
Finally, we show how the runtime learning approach might be beneficial for each the
target applications.

5.1 Target Architecture

The target architecture in which Agora has been deployed is a cluster of virtual machines
to experiment features or run long background jobs, powered by PoliCloud. It is
composed by a login node and the Compute ARchitecture for Ligand Optimization
(carlo) partition. Figure 5.1 gives an overview over the cluster architecture, highlighting
the connections between different components. In particular, both the login node and
the computation nodes, share the file system through NFS (Network File System). NFS
is a distributed file system protocol allowing a user on a client computer to access files
over a computer network much like local storage is accessed. In this way all the active
nodes can access the same files as soon as they are available.

The login node and the carlo partition are based on Ubuntu 20.04 (Focal Fossa). To
provide different versions of compilers and libraries we use Environmental Modules [50].
This tool simplifies shell initialization and lets users easily modify their environment
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User PC Login node Computing nodes (carlo) 

SSH connection

SLURM managed connection

NFS connection

Shared storage

Figure 5.1: Overview of the cluster architecture.

during a session using module-files. Each module-file contains the information needed
to configure the shell for an application. Once the Modules package is initialized, the
environment can be modified on a per-module basis using the module command which
interprets module-files. For instance, loading gcc, cmake and boost by specifying their
version can be issued with the following command:

module load gcc/9.3.0 cmake/3.16.5 boost/1.72.0_gcc_9.3.0

The login node has a virtual processor @2.2Ghz with 32 GB of memory and 16
cores, with 1 thread per core. A user is allowed to submit jobs to a computing node
or to directly use the login node as computing machine if not interested on distributed
computation. In our scenario, the login node is exploited as the central server node in
which the Agora binary gets executed.

The carlo partition includes four computation node. Each computation node has a
virtual processor @2-2Ghz with 32 GB of memory and 8 cores, with 1 thread per core.
A user is not allowed to login to any computation node, but should submit a job using
the SLURM (Simple Linux Utility for Resource Management) manager [51], a free and
open-source job scheduler for Linux and Unix-like kernels. During experiments, each
computation node is used as a pool of clients running multiple instances of applications
and contributing to the application-knowledge production in a distributed way.

5.2 Evaluating the Framework Scalability and Throughput

Agora’s communication happens between the Remote Application Handler and the
Local Application Handler which are simultaneously running respectively on the server
side and on the client side. We tested the communication channel in order to get a
numeric evaluation about the CPU and memory consumption, as well as the maximum
throughput that the server can handle in terms of messages per second. One important
thing to stress is the fact that the bandwidth on the network and the NFS storage play
a large role in performance and different runs may behave differently with respect to
others. That’s why each experiment has been performed 10 times and the following
values refer to the total average. The same experiment could have different outputs in a
system with a different setup but since the goal is not a comparison between different
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Figure 5.2: CPU and Real Memory usage of Agora (a) and Mosquitto (b) during five minutes of message
production.

platforms, this was not investigated during this thesis.
The experiment in this section relies on a benchmark application that stresses the

MQTT channel sending ≈ 8000 msg/sec towards the server. This was a reasonable
value to saturate the channel and reach its limits. The application has been deployed
inside the carlo cluster and ran simultaneously on each of the four computing nodes
available, leading to an overall throughput of ≈ 32000 msg/sec in output. The MQTT
communication channel QOS level is set to 0 in order to simulate an HPC environment
and it is managed by the Eclipse Mosquitto [52] message broker. Mosquitto is an open
source message broker that implements the MQTT protocol versions 5.0, 3.1.1 and 3.1.
It is lightweight and is suitable for uses on all devices, from low power single board
computers to full servers.

The measurements start at the reception of the first observation. From this point
onwards Agora enters the "hot phase", which represents a loop over the following
operations:

1. Reception of an incoming observation.

2. Selection of a new eligible configuration to explore.

3. Dispatch of the configuration to a new active client.

The application has been designed with fake configuration points and fake observation
values in order to simulate the behaviour of a generic application during the DSE phase.
The message production lasted 5 minutes, which appeared to be long enough to reach a
steady state.

During the tests, both the Agora server and the Mosquitto processes have been
monitored, recording their CPU and Real Memory usage. Figure 5.2 shows the recorded
values. After an initial setup phase, both processes quickly reach a stable point. Since
the aim was to find Agora limits, the incoming message throughput is set high enough to
cap Agora CPU percentage to 100% as shown in Figure 5.2a. Figure 5.2b shows instead
that Mosquitto stabilizes around 20-23% during the benchmark. Data has been collected
exploiting PsRecord [53], a small tool utility that uses the psutil Python library to
record the CPU and memory activity of a process.
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Figure 5.3: Throughput and number of messages received by varying the number of workers inside the
thread pool (5 minutes time frame).

During the benchmark, we counted the number of messages M processed and the
corresponding throughput of each recording was calculated as follows:

throughputi =
M

(ti − t0)
where ti is the time of recording and t0 is the starting time (in seconds).

In order to show the scalability benefits of Agora, Figure 5.3 reports how the through-
put increases by varying the number of workers exploited by the server thread pool.
Each column correspond to the maximum value registered after reaching a stable phase
expressed as number of messages per second. The Agora disposal throughput is equal to
the input throughput. Increasing the thread-pool size the throughput increases as well.
The speedup is noticeable and starts decreasing from 4-5 threads which is probably
due to a higher number of lock primitives calls. Figure 5.4 shows the trend of the
process, highlighting how the stable phase is reached rather quickly while the number of
messages received increase linearly in time. We’ve shown only one plot since we have
the same trend regardless of the number of threads. The actual number of incoming
messages that Agora is able to manage, despite being more than sufficient during the
experiments, could be limiting with micro-kernels in systems with high parallelism.
Although that matter has not been further investigated, the main reason we can associate
this issue with is the I/O management system. CSV files despite being simple and easy,
require a thread-safe implementation and hence a high number of lock/unlock primitives.

As a final thought, on each machine the same application was executed. This means
that with a more heterogeneous pool of applications, Agora is capable of releasing the
pressure on internal locks primitives and experience a speedup which could grow linearly
with respect to the number of different applications.
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Figure 5.4: The throughput and number of messages trend during reception.

5.3 Target Applications

This section gives the reader an overview over the benchmarking application that have
been integrated with Agora in order to test the learning process approach. They are taken
from the Princeton Application Repository for Shared-Memory Computers (PARSEC)
benchmark suite [54]. As stated on the documentation page, PARSEC differs from other
benchmark suites in the following ways:

• Multithreaded: PARSEC is one of few benchmark suites that are parallel.

• Emerging Workloads: the suite includes emerging workloads which are likely
to become important applications in the near future but which are currently not
commonly used.

• Diverse: The selection of included programs is wide and tries to be as representative
as possible.

• Employ State-of-Art Techniques: The PARSEC suite not only represent emerging
applications but also use state-of-art techniques.

• Research: the suite is primarily intended for research. It can also be used for
performance measurements of real machines, but its original purpose is insight, not
numbers.

The following programs have been chosen to be evaluated. The same objective
function is defined for each of them and that is the minimization of their execution time.
Their description is primarily based on this paper [55]. A small summary that lists the
software-knobs exploited during DSE and their input characteristics is provided at the
end of each subsection.
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Chapter 5. Experimental Evaluation

5.3.1 Freqmine (Data Mining)

The freqmine application employs an array-based version of the FP-growth (Fre-
quent Pattern-growth) method for Frequent Itemset Mining (FIMI). It is an Intel RMS
benchmark which was originally developed by Concordia University. FIMI is the basis
of Association Rule Mining (ARM), a very common data mining problem which is
relevant for areas such as protein sequences, market data or log analysis. freqmine
was included in the PARSEC benchmark suite because of the increasing demand for
data mining techniques which is driven by the rapid growth of the volume of stored
information.

FP-growth stores all relevant frequency information of the transaction database in a
compact data structure called FP-tree (Frequent Pattern-tree). An FP-tree is composed
of three parts. First, a prefix tree encodes the transaction data such that each branch
represents a frequent itemset. The second component of the FP-tree is a header table
which stores the number of occurrences of each item in decreasing order of frequency.
The third component is a lookup table which stores the frequencies of all 2-itemsets. A
row in the lookup table gives all occurrences of items in itemsets which end with the
associated item. In order to mine the data for frequent itemsets, the FP-growth method
traverses the FP-tree data structure and recursively constructs new FP-trees until the
complete set of frequent itemsets is generate.

freqmine has been parallelized with OpenMP. It employs three parallel kernels:

• Build FP-tree header: scans the transaction database and counts the number of
occurrences of each item. This kernel has one parallelized loop.

• Construct prefix tree: builds the initial tree structure of the FP-tree. It performs
the second and final scan of the transaction database necessary to build the data
structures which will be used for the actual mining operation. The kernel has four
parallelized loops.

• Mine data: uses the data structures previously computed and mines them to
recursively obtain the frequent itemset information. Two parallelized loops are
employed.

The software-knobs and the input size are listed in the following table:

Name Type Values
num_threads int [1 - 8]
threshold int [100, 1000, 5000, 11000]

Input Size 990,000 transactions

5.3.2 Blackscholes (Financial Analysis)

The blackscholes application is an Intel RMS benchmark. It calculates the prices
for a portfolio of European options analytically with the Black-Scholes partial differential
equation (PDE)

∂V

∂t
+
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σ2S2∂
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where V is an option on the underlying S with volatility σ at time t if the constant
interest rate is r. There is no closed-form expression for the Black-Scholes equation and
as such it must be computed numerically. The blackscholes benchmark was chosen
to represent the wide field of analytic PDE solvers in general and their application in
computational finance in particular. The program is limited by the amount of floating-
point calculations a processor can perform.

blackscholes stores the portfolio with numOptions derivatives in array Option-
Data. The program includes fileoption-Data.txt which provides the initialization and
control reference values for 1,000 options which are stored in array datainit. The initial-
ization data is replicated if necessary to obtain enough derivatives for the benchmark.

The program divides the portfolio into a number of work units equal to the number
of threads and processes them concurrently. Each thread iterates through all derivatives
in its contingent and calls function BlkSchlsEqEuroNoDiv for each of them to compute
its price.

The software-knob and the input size are listed in the following table:

Name Type Values
num_threads int [1 - 8]

Input Size 65,536 options

5.3.3 Swaptions (Financial Analysis)

The swaptions application is an Intel RMS workload which uses the Heath-Jarrow-
Morton (HJM) framework to price a portfolio of swaptions. The HJM framework
describes how interest rates evolve for risk management and asset liability management
for a class of models. Its central insight is that there is an explicit relationship between
the drift and volatility parameters of the forward-rate dynamics in a no-arbitrage market.
Because HJM models are non-Markovian the analytic approach of solving the PDE to
price a derivative cannot be used. swaptions therefore employs MonteCarlo (MC)
simulation to compute the prices. The workload was included in the benchmark suite
because of the significance of PDEs and the wide use of Monte Carlo simulation.

The program stores the portfolio in the swaptions array. Each entry corresponds to
one derivative. swaptions partitions the array into a number of blocks equal to the
number of threads and assigns one block to every thread. Each thread iterates through all
swaptions in the work unit it was assigned and calls the function HJMSwaptionBlocking
for every entry in order to compute the price. This function invokes HJMSimPathFor-
wardBlocking to generate a random HJM path for each MC run. Based on the generated
path the value of the swaption is computed.

The software-knobs and the input size are listed in the following table:

Name Type Values
num_threads int [1 - 8]

trial_multiplier int [1 - 7]
Input Size 64 swaptions, 20,000 simulations
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5.3.4 Bodytrack (Computer Vision)

The bodytrack computer vision application is an Intel RMS workload which tracks a
3D pose of a marker-less human body with multiple cameras through an image sequence.
bodytrack employs an annealed particle filter to track the pose using edges and the
foreground silhouette as image features, based on a 10 segment 3D kinematic tree body
model. These two image features were chosen because they exhibit a high degree of
invariance under a wide range of conditions and because they are easy to extract. An
annealed particle filter was employed in order to be able to search high dimensional
configuration spaces without having to rely on any assumptions of the tracked body such
as the existence of markers or constrained movements. This benchmark was included
due to the increasing significance of computer vision algorithms in areas such as video
surveillance, character animation and computer interfaces.

For every frame set Zt of the input videos at time step t, the bodytrack benchmark
executes the following steps:

1. The image features of observation Zt are extracted. The features will be used to
compute the likelihood of a given pose in the annealed particle filter.

2. Every time step t the filter makes an annealing run through all M annealing layers,
starting with layer m = M .

3. Each layer m uses a set of N unweighted particles which are the result of the
previous filter update step to begin with.

St,m = {(s(1)t,m)...(s
(N)
t,m )}

Each particles s(i)t,m is an instance of the multi-variate model configuration X which
encodes the location and state of the tracked body.

4. Each particles s(i)t,m is then assigned a weight π(i)
t,m by using weighting function

w(Zt, X) corresponding to the likelihood of X given the image features in Zt
scaled by an annealing level factor. The result is the weighted particle set:

Sπt,m = {(s(1)t,m, π
(1)
t,m)...(s

(N)
t,m , π

(N)
t,m )}

5. N particles are randomly drawn from set Sπt,m with a probability equal to their
weight π(i)

t,m to obtain a temporary weighted particle set. Each particle s(i)t,m of the
temporary set is then used to produce particle

s
(i)
t,m−1 = s

(i)
t,m +Bm

where Bm is a multi-variate Gaussian random variable. The result is particle set
Sπt,m−1 which is used to initialize layer m− 1.

6. The process is repeated until all layers have been processed and the final particle
set Sπt,0 has been computed.

7. Sπt,0 is used to compute the estimated model configuration Xt for time step t by
calculating the weighted average of all configuration instances:

Xt =
N∑
i=1

s
(i)
t,0π

(i)
t,0.
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8. The set St+1,M is then produced from Sπt,0 using

s
(i)
t+1,M = s

(i)
t,0 +B0.

In the subsequent time step t+ 1 the set St+1,M is used to initialize layer M .

The likelihood w(Zt, s
(i)
t,m) which is used to determine the particle weights π(i)

t,m is com-
puted by projecting the geometry of the human body model into the image observations
Zt for each camera and determining the error based on the image features. The likelihood
is a measure of the 3D body model alignment with the foreground and edges in the
images. The body model consists of conic cylinders to rep-resent 10 body parts 2 for
each limb plus the torso and the head. Each cylinder is represented by a length and a
radius for each end. The body parts are assembled into a kinematic tree based upon the
joint angles. Each particle represents the set of joint angles plus a global translation.

bodytrack has a persistent thread pool. The main thread executes the program and
sends a task to the thread pool with method SignalCmd whenever it reaches a parallel
kernel. It resumes execution of the program as soon as it receives the result from the
worker threads. The program has three parallel kernels:

• Edge detection (Step 1): employs a gradient based edge detection mask to find
edges. The result is compared against a threshold to eliminate spurious edges. The
output of this kernel will be further refined before it is used to compute the particle
weights.

• Edge smoothing (Step 1): a separable Gaussian filter of size 7x7 pixels is used to
smooth the edges. The result is remapped between 0 and 1 to produce a pixel map
in which the value of each pixel is related to its distance from an edge. The kernel
has two parallel phases, one to filter image rows and one to filter image columns.

• Calculate particle weights (Step 4): valuates the foreground silhouette and the
image edges produced earlier to compute the weights for the particles. This kernel
is executed once for every annealing layer during every time step, making it the
computation ally most intensive part of the body tracker.

The parallel kernels use tickets to distribute the work among threads balance the load
dynamically.

The software-knobs and the input size are listed in the following table:

Name Type Values
num_threads int [1 - 8]
annealing int [1 - 8]
particles int [1000, 2000, 3000, 4000]

Input Size 4 frames, 4,000 particles
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5.3.5 Other Target Applications

The following applications are not part of the PARSEC benchmark suite and have been
included as additions.

Stereomatch

The stereomatch application is used in image-processing to compute disparities
between a pair of stereo images (the same scene observed by two cameras). The disparity
information can then be processed to calculate the depth of the objects in the scene,
given that objects close to the cameras are characterized by a higher disparity. The
output of this application is required for estimating the depth of the objects in the scene.
The application is based on the OpenCL library.

The algorithm derived from [56] builds adaptive-shape support regions for each pixel
of an image, based on colour similarity, and then it tries to match them on the other
image, computing its disparity value. The algorithm implementation [57] exposes three
application-specific parameters to modify the effort spent on building the support regions
and on matching them in the second image to trade off the accuracy of the disparity
image (the Stereomatching output) and the execution time (and thus the reachable
application throughput). The application-specific parameters are listed below:

• Confidence: defines a threshold for color similarity with respect to the anchor
pixel when building a support region.

• Max_arm_length: the support region for each pixel is encoded in a cross structure
and all pixels covered by the cross arms (left, right, up and down) are similar in
color to the anchor pixel. This parameter represents the maximum arm length and
can thus limit the size of support windows.

• Hypo_step: this parameter defines the set of integer disparities that the algorithm
should test for each pair of pixels. Each disparity value is a "hypothesis" that is
actually evaluated by the algorithm. The disparity hypotheses (in pixels) will range
from 0 to a fixed max value, with a given hypo_step step. The latter parameter
acts as the "resolution" of the algorithm, by setting the step between consecutive
disparity hypotheses.

In addition, the application has been parallelized by using OpenMP, making available
as fourth parameter the number of threads used for the computation. For each pair of
stereo images, the following five OpenCL kernels are executed.

• WinBuild (left and right cameras): two instances of the same OpenCL kernel
(one for the left and one for the right image) can be submitted in parallel to the
OpenCL command queue to build the local support regions for each pixel in the
image. The search span is limited by the application parameter max_arm_length
and the arms cover all the pixels that satisfy the condition of color similarity
specified by confidence.

• Matching-cost aggregation: this kernel evaluates all the disparity hypotheses by
computing the matching-cost associated with support regions of pixels on the same
line in the two reference images. A Winner-Takes-All (WTA) decision is then taken
for selection of the "cheapest" disparity hypothesis in terms of matching-cost.
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5.3. Target Applications

• FinalDecision: this kernel simply considers the results of all the workgroups
involved in the previous step and decides the global disparity result. It can be seen
as a reduction step.

• Refinement: it performs a regularization (smoothing) of disparities in the support
region.

The software-knobs and the input size are listed in the following table:

Name Type Values
num_threads int [1 - 8]
confidence int [14, 24, 34, 44, 54, 64]

max_arm_length int [1 - 17]
hypo_step int [1, 2, 3]

Input Size 15 image pairs (Left & Right)

K-means

The k-means application implements an iterative algorithm that tries to partition the
dataset into K pre-defined distinct non-overlapping subgroups (clusters) where each
data point belongs to only one group. We have already discussed about this algorithm in
Sub-Section 2.5.1 so we are not going in further details.

This application have been chosen manly because it enables us to enforce the input
features sensitivity of Agora. The input dataset is indeed heterogeneous and composed of
matrices of different size representing different sets of random points in two dimensions.
Unlike previous target applications, k-means defines, aside from the execution time,
an error metric which is a measure of the result accuracy with respect to a reference
scenario (i.e. another run on the same dataset using maximum number of iterations
available). The error E is defined as:

E =

∑Nrows

i

√∑Ncols

j (aij − rij)2

Nrows

where A is the input matrix, R is the reference matrix and Nrows, Ncols are respectively
the number of rows and columns. The input feature monitored during execution is size
that corresponds to the current input matrix size (num_rows · num_columns).

The software-knob and the input size are listed in the following table:

Name Type Values
num_iterations int [3, 5, 10, 30, 50, 70, 90, 100]

Input Size Heterogeneous data-points matrices with 20 features each
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Chapter 5. Experimental Evaluation

5.4 Evaluating the Iterative Learning Approach

This section aims at experimentally assessing the ability of Agora to learn the application-
knowledge at runtime using the applications described previously in Section 5.3. To
address this, the following experiments evaluate out-of-sample predictions during the
learning process by varying the number of iterations and therefore increasing the fraction
of design space considered over time. The bandwidth on the network and the HDD
play a large role in performance. Certain applications perform markedly different when
running locally versus having the executables and input files served over the target
platform (different bandwidth and I/O delays due to the NFS protocol). They might
indeed exhibit significant variations in execution time across multiple runs. For this
reason, each of the following experiments was repeated 10 times, taking the average of
the results.

5.4.1 Models Accuracy

For each application, Figure 5.5 shows the evaluation of all the available models outlined
in Sub-Section 3.2.2. The y-axis represents the model quality in terms of the coefficient
of determination R2 and the mean absolute percentage error MAPE computed. The
x-axis shows the number of iterations in the bottom part and the number of explored
configurations in the upper part. Every application reports a single metric which is the
execution time (in milliseconds). We omitted the k-means error metric for graphical
reasons since it displayed the same trend as the other. As stated in 3.2.2, the end-user
has the ability to specify a MAPE threshold with a percentage value. This quality
metric has general applicability and the end-user is not required to know the application
behaviour (i.e. the EFP output space) in advance anymore in order to quantify the
goodness of a model. Ideally the best model is expected to reach an R2 score of 1 and a
MAPE score of 0.

Every application has the max_number_of_iterations capped to 40 except
for stereomatch which was set to 80 due to a much larger Design Space. These
values have proved to be a good restriction in order to show the trend even beyond
the threshold limits. The number_of_observations_per_configuration
was set to 2 and that enables the framework to have more accuracy over the same
configuration. Moreover, in case of input features, this allows to potentially ex-
plore the same configuration on different inputs. To explore the DS in a reason-
able manner and to produce an output which could be graphically interesting, the
number_of_configurations_per_iteration ranged between 5 and 30 de-
pending on the application DS size. Big DSs like bodytrack or stereomatch are
set with higher values in order to explore more efficiently.

We start by quickly addressing the results obtained by each model separately remind-
ing that the objective of this thesis is not comparing different modelling techniques but
to provide a framework that exploits them in order to learn the application-knowledge at
runtime.
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Figure 5.5: Coefficient of determination R2 and mean absolute percentage error MAPE of the target
applications’ EFP models, by varying the number of iterations and the number of explored software-
knobs configurations during DSE.
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Figure 5.5: (cont.)
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From the experimental results, a trend on both the R2 and the MAPE metrics
is noticeable. It respectively increases and decreases with an increasing number of
iterations and hence an increasing number of configurations explored. A red vertical
line identifies the iteration number which produced an acceptable model depending on
the predefined limit threshold (set by default to R2 = 0.8,MAPE = 0.10 or 0.15).
A model is deemed acceptable if both metrics have verified the threshold limits. If a
modelling technique is able to achieve R2 > 0.8 it doesn’t mean that the MAPE will
be verified as well at the same iteration.

We can notice that the linear models perform, as expected, generally worse than the
others. For instance, in blackscholes and swaptions during the initial phase
there are notable negative spikes due to a probable insufficient number of data samples
that makes the validation phase behave irregularly. The SVR model while generally
maintaining the trend of the error below the linear ones, in some cases have a worst
R2 score in comparison. This is an important aspect to highlight since SVR internally
runs a kernel called Radial Basis Function (RBF). Without going into details, the
kernel is subject to two important parameters: the regularization parameter C and the
kernel coefficient gamma. Proper choice of C and gamma is critical to the SVM’s
performance. That’s why in this scenario the end-user should be required to find and
set a proper value for both but consequently losing the concept of auto-tuning itself.
An alternative could be exploiting a different plugin that performs a GridSearch cross-
validation which objective is to find the optimal hyperparameters of the model. However,
this approach is costly in terms of computational effort and was not investigated further
during this thesis’ work.

The selection of an heterogeneous pool of applications also wants to show how
the framework is able to adapt to different scenarios, going from applications that
require from 1 to 5 iterations in order to find a suitable application-knowledge (e.g.
blackscholes, freqmine or swaptions) and others that need a higher number
(e.g. bodytrack or stereomatch). Concerning the first type, one can notice how
the coefficient of determination and the mean absolute percentage error quickly achieve
a reasonable value. On the contrary the other type of applications struggles during
the initial phase, given most likely a nonlinear relationship between software-knobs
and EFP. For instance the R2 metric of bodytrack has an irregular progression even
with the best models and the MAPE takes much more time to reach the predefined
quality threshold. The stereomatch application despite having a huge Design Space,
registered quite good results overall and even if only the k-neighbors and decision-tree
regressors were able to achieve optimal results, the other linear models performed
decently as well. This means that the relationship between software-knobs and the EFPs
is much more linear and regular although having a number of configurations that big.

Finally, another aspect to highlight is that the learning process may lead to an
improvement beyond the threshold limit but the framework is designed to stop as soon as
the target quality is achieved for each of the available EFPs models. Being aware of this
behaviour is important because as a consequence the end-user is capable of managing
the trade-off between the learning phase duration and the quality of the results, by using
higher (or lower) threshold values.
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Figure 5.6: Coefficient of determination R2 and mean absolute percentage error MAPE of the best model
found, by varying the number of iterations and the number of explored software-knobs configurations
during DSE.
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Figure 5.7: The distribution of the mean absolute percentage error MAPE of the target applications’
EFPs models.

In Figure 5.6 we report for each application a trend of the quality metrics recorded by
the best performing model found at each iteration. The coefficient of determination and
the mean absolute percentage error are put together in the same graph in order to show
how they create a sort of horizontal "V" shape with an increasing number of iterations.
This proves on one hand how the same trend previously highlighted is reflected on the
final model as well, on the other hand that selecting the best model at each iteration
gives us a general approach that is flexible on different kind of applications/data and
performs significantly better during the whole phase with respect to every listed model
taken individually.

5.4.2 Error Distribution

In order to get a better grasp on the model accuracy, in Figure 5.7 we show a box-plot of
the error distribution registered during the best model validation for each application.

The box-plots show how the first iterations are subject to the presence of outliers.
An outlier is a value that lies in a data series on its extremes, which is either very small
or large and thus can affect the overall validation. The box-plot is a method typically
depicted by quartiles and inter quartiles that helps in defining the upper limit and lower
limit beyond which any data lying will be considered as outliers. The very purpose of
this diagram is to identify and discard them from the data series so that the conclusion
made from the study gives more accurate results not influenced by any extremes or
abnormal values.

As we can see, every application displays a trend of convergence, reducing the
boxplot height with an increasing number of iterations.
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Figure 5.7: (cont.)
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5.4.3 Prediction quality with respect to the percentage of explored Design Space

Another important aspect that must be considered is measuring the model quality with
respect to the Design Space explored percentage. Figure 5.8 aims at showing this matter.
The percentage value is calculated as:

ECi
TotConfigs

where ECi is the number of distinct configurations explored at iteration i and TotConfigs
is the total number of configuration inside the DS (i.e. the number of data points in a full-
factorial design). On the left the reader is presented with the mean absolute percentage
error trend registered at four levels: 20%, 40%, 60% and 80%; on the right a line plot
explains how fast Agora was able to cover the whole DS, which ideally is achieved by
reaching a value of 100%. As we identified already earlier, there is a common trend
among the applications: a decreasing MAPE with increasing number of configurations
explored (hence a bigger percentage of DS). One can notice how after exploring just
the 40% of the space we generally achieve a MAPE that verifies the thresholds and
consequently gives us satisfying prediction results. Continuing the DSE, the error keeps
decreasing but without manifesting a huge gap like between 20% and 40%.

The target applications which were tested are substantially monolithic programs
created to run on a different number of threads. Because they are simple, their corre-
sponding DS is small and Agora is generally capable of covering it in a small fraction
of time, depending of course on each application average execution time. However
this doesn’t generally hold with more complex applications (e.g. bodytrack or
stereomatch). As a matter of fact the number of configurations is so high that the
required number of iterations to explore the DS as a whole tends to grow a lot larger.
Even k-means requires more iterations due to the fact that we’re also considering
unbounded input-features which contributes in expanding the design space even more.
The real efficiency of the learning method proposed relies here. In a purely automatic
way Agora is able to provide a suitable application-knowledge by exploring just a small
percentage of the whole design space, gaining a clear advantage with respect to a full
exploration. Indeed, many other approaches consequently force the user to decide on
having a longer but useless exploring process or a short but inaccurate one.

Moreover, even by reaching almost a 100% percentage value, the MAPE is still
greater than zero (which ideally is what we could expect after exploring the whole
DS). This outlines that there is still a strong dependency on the analyzed data and that
the model could be fitting a function that is non-deterministic. This is especially true
for input-sensible applications like k-means. Therefore to increase the accuracy, one
should even go beyond the 100% and retrieve more observation of the same software-
knobs configuration. This is a fundamental aspect that give us an indication in order to
make a related decision. Dealing with non-critical applications, every decision taken
at runtime (e.g. the selection or understanding of which are the best performances)
can’t be achievable during design-time. Reaching the 100% doesn’t tell the whole story.
Collecting every point still remains sensitive to the dataset, to the system noise, etc. and
that’s why just one iteration is not enough.
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Figure 5.8: On the left: mean absolute percentage error MAPE trend with respect to the percentage of
explored DS. On the right: the percentage of explored DS with an increasing the number of iterations.
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Figure 5.8: (cont.)
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Figure 5.9: Execution trace showing the initial learning phase and the subsequent tuning phase for each
of the four application instances running on the carlo cluster. The blue line marks the separation
between the two phases and highlights the application goal (e.g. minimizing the execution time).

5.4.4 Execution Trace

To end this section, Figure 5.9 shows an execution trace for some of the target applica-
tions running simultaneously on the four computing nodes over the carlo cluster. We
omitted the rest of the applications since they exhibit a similar trend. Each sub-figure
represents the EFP behaviour of the four processes. The trace can be divided in two
phases: the training phase and the tuning phase. The length of the training phase is
determined by the model convergence time and on the input characteristics (i.e. the
k-means execution). During the first phase Agora performs the Design Space Ex-
ploration and each client is forced with a different configuration. Once the training
phase is terminated then the application-knowledge is produced. mARGOt receives
the knowledge and sets each application instance with a software-knob configuration
that verifies the user-defined objective function. It is worth to notice that on one hand
the same software-knob configuration is set on each instance because all of them are
part of the same experiment; on the other hand the training phase length is almost the
same for all the clients thanks to the configuration distribution performed by the Remote
Application Handler.

Concerning the k-means execution, one can appreciate how mARGOt exploits the
application-knowledge, which in that case is composed of multiple clusters of Operating
Points, by setting different configurations each time a new input feature is observed and
trying to minimize the error while keeping the execution time below 2 seconds.
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5.5 Summary

This chapter assessed the proposed framework by evaluating the iterative learning
approach, the features exposed and by measuring the introduced overheads inside
the communication channel. From the experimental results, it is possible to notice
how the proposed methodology is able to provide an application-knowledge that has
been correctly judged before broadcasting it, meaning that a good model is found and
it is able to make good quality predictions. Moreover, we’ve shown that the major
benefit is that Agora is able to drastically reduce the time required to perform a Design
Space Exploration, which can grow exponentially when considering several and usually
unbounded software-knobs.

In the final chapter we will summarize the achievements and provide recommenda-
tions for future works.
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CHAPTER6
Conclusions

Application autotuning is a promising path investigated in literature to improve com-
putation efficiency. The relationship between an application configuration and the
extra-functional properties might depend on the underlying architecture, on the system
workload and on features of the current input. The application-knowledge, which auto-
tuning frameworks rely on to drive their workflow, is typically produced off-line and
depends on an expensive phase called Design Space Exploration (DSE) whose fruition
requires significant effort in order to reduce its overhead. In this thesis, we addressed the
problem on how to contain the exponential growth of the Design Space when considering
several, and usually unbounded, application-specific parameters coupled with the input
features. This chapter summarizes the contributions and provides recommendations for
future works.

6.1 Main Contributions

The outcome of this thesis is a framework exploiting a model-driven approach to learn the
application-knowledge at runtime and in a distributed fashion. In order to minimize the
learning time, the framework applies known machine-learning techniques to determine
the relationship between software-knobs, extra-functional properties and input features,
leveraging an iterative procedure that samples the Design Space until the computed
models reach the target quality. We have experimentally evaluated the proposed approach
on some well-known benchmark applications, studying the consequent benefits and
limitations in terms of overhead and model quality. Considering the features introduced
by the proposed framework, their main results can be summarized as follows:

1. Since the framework is designed to be deployed mainly in a distributed context,
we evaluated its scalability and throughput inside a cluster environment with four
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virtual machines and one server node, powered by PoliCloud. Experimental results
show how by varying the work-group size we’re able to manage up to ≈ 20k
requests per second.

2. The framework capabilities have been evaluated by integrating it inside a pool
of applications taken from the PARSEC benchmark suite and some additional
(stereomatch and k-means). First, by evaluating the models accuracy in
terms of the coefficient of determination R2 and the mean absolute percentage error
MAPE, we have shown how the best resulting model was capable of learning
the EFPs relationships in a reasonable number of iterations, without exploring the
application design space in its entirety. By comparing the errors with respect to
the percentage of explored Design Space we addressed the real benefits introduced
by the iterative learning approach, showing how sampling the Design Space in an
efficient way, exploiting Design of Experiments methods and machine-learning
techniques, leads to significant benefits.

3. The execution trace monitored for some of the tested applications shows a clear
distinction between the learning phase and the tuning phase, demonstrating how,
after exploring different software-knobs configurations, the application-knowledge
is generated and the mARGOt autotuner is able to exploit it by setting the best con-
figuration that verifies the user-defined objective function. In particular, k-means’
trace shows how the input-features are considered during the application-knowledge
creation and, depending on the current input, the framework is able to dynamically
tune it setting different configurations based on each cluster representative.

6.2 Future Works

Although experimental evaluations have shown promising results, there are still limita-
tions and open questions that needs to be investigated. The most challenging points are
the following:

1. The throughput measurements reach a significant value but could remain a limiting
factor with micro-kernels running inside highly parallelized systems. To this end,
we believe that the main bottleneck resides in the type of storage that Agora exploits.
CSV tables are simple and easy to manage but inside a distributed context they
lead to a high number lock/unlock primitives calls. A potential improvement could
be integrating Agora inside a database context which should release a lot of I/O
pressure. For example, Cassandra seems to be a promising path to follow thanks to
its properties of fault tolerance, decentralization and scalability.

2. The design of experiment algorithms considered in this thesis rely on implemen-
tations taken from the PyDOE package [45]. The package offers other good
approaches which integration and comparison could be an interesting study to
perform (e.g. Box-Behnken design 2.3.2). As a negative note, they all remain
non-sequential design techniques. A DoE technique is deemed sequential if, by
providing an older design as input, is capable of producing a new design "on
top" of that input, meaning that only new unseen experiments are added while
still maintaining the old ones. The design of new techniques or modifications of
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existing ones exploiting this property may improve even more the experiments
selection prior to the DSE phase.

3. mARGOt can distinguish between deterministic EFPs and not. By specifying
a confidence level, the end-user is able to indicate the number of time that the
Operating Point standard deviation must be considered. Since Agora doesn’t
consider this aspect, a future improvement would be modifying the prediction
system in order to derive a standard deviation for each of the OPs before packing
them into the final application-knowledge.

4. The modelling phase is the core of the learning approach and also the most sus-
ceptible to changes. We have tested the framework on a relatively small pool of
target applications that, despite being as diverse and representative as possible, are
kind of the tip of the iceberg. There are lots of scenarios which could be interesting
to test Agora on, in the context of smart cities or drug discovery processes for
instance. This may need a more robust machine-learning procedure that makes the
current version insufficient.

We have decided to omit other minor improvements and fixes that could be performed
in future developments. They remain all listed and documented inside the project
repository [9], which is publicly disclosed.
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