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ABSTRACT

New technologies and new policies have favor the increase in electric cars sales.
The absence of noise generated by the heat engine, gives more importance to
the noise generated by aerodynamics. In this context, reducing noise means
considerably increasing comfort and therefore having more competitive cars
for the market. The main goal of this project is to develop a methodology for
noise reduction based on the adjoint operator for the shape optimization. This
thesis can be divided into two sections. In the first, a briefly recap of CFD meth-
ods and aeroacoustic state-of-the-art is presented. Afterwards the continuous
adjoint formulation for field integral objective functions used in steady-state,
incompressible aerodynamic optimization is developed. The formulation in-
cludes the full differentiation of the Spalart–Allmaras turbulence model based
on wall functions. In the second part, in order to reduce the noise generated,
the developed adjoint method is used for optimize a cube using volumetric
B-Splines as parameterization tool. Starting from literature and analyzing its
reliability, an appropriate objective function to be minimized has been defined.
It is expressed by the integral of the squared turbulent viscosity over a volume
residing next to the geometry. It should be stressed that if the commonly used
“frozen turbulence” assumption was made, the adjoint method would not have
been able to provide any kind of sensitivity derivatives. This objective function,
in fact, depends exclusively upon the turbulent viscosity. After successfully
optimize the cube, the developed methodology is then applied to a wheel where
some different settings has been tested in order to explore the formulation
limits.

Keywords: CFD, adjoint method, optimization, RANS, CAA, aeroacoustics,
splines, wheel
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SOMMAR IO

Le nuove tecnologie e le nuove politiche hanno favorito l’ascesa delle auto
elettriche che annullando il rumore generato dal motore termico hanno aumen-
tato l’importanza del rumore generato dall’aerodinamica. In questo contesto
ridurre il rumore significa aumentare considerevolmente il confort e quindi
avere automobili più vendibili. L’obbiettivo principale di questa tesi consiste
nell’introdurre una formulazione aggiunta per l’ottimizzazione in campo aeroa-
custico. Questa tesi può essere divisa in due parti. Nella prima viene presentato
un breve riassunto dei metodi CFD e dello stato dell’arte in campo aeroacus-
tico. Successivamente viene sviluppata la formulazione aggiunta continua per
funzioni obiettivo basate su integrali di volume, utilizzate nell’ottimizzazione
aerodinamica di flussi incomprimibili e stazionari. La formulazione include la
differenziazione completa del modello di turbolenza di Spalart-Allmaras basato
sulle funzioni di parete. Nella seconda parte, con lo scopo di ridurre il rumore
generato, il metodo aggiunto sviluppato viene utilizzato per ottimizzare un
cubo utilizzando B-Spline volumetriche come strumento di parametrizzazione.
Partendo dalla letteratura e analizzandone l’affidabilità, un’opportuna seppur
approssimata funzione obiettivo da minimizzare, è espressa dall’integrale su un
volume posto vicino alla geometria del quadrato della viscosità turbolenta. Va
sottolineato che se fosse stata fatta l’assunzione comunemente usata della “tur-
bolenza congelata”, evitando cosı̀ la differenziazione del modello di turbolenza,
il metodo aggiunto non sarebbe stato in grado di fornire alcun tipo di derivata
di sensitività, poiché tale funzione obiettivo dipende esclusivamente dalla vis-
cosità turbolenta. Dopo aver ottimizzato con successo il cubo, la metodologia
sviluppata viene quindi applicata ad una ruota in cui sono state testate alcune
impostazioni diverse per esplorare i limiti della formulazione.

Parole chiave: CFD, metodologia aggiunta, ottimizzazione, RANS, CAA, aeroa-
custica, splines, ruota
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1 I N TRODUCT ION

1.1 electric vehicles

Electric vehicles (EV) sales are growing up in the global market. In 2020 they
grew up of 41% (20 millions of new ones sold) while the global automotive
industry has lost the 16%. If the current trends and polices hold, it is estimated
that the green vehicles will reach 145 millions sales without considering two
and three wheels, which is the 7% of the road fleet. This number could be
highly underestimated if the governments will commit to zero greenhouse gas
emissions by 2050, reaching picks of 230 millions sales according to [1]. Road
transport is one of the largest contributors to global CO2 emissions. Despite
the expected rapid rise in EV sales, most countries are still not on track to bring
road transport emissions to zero by mid-century. Bloomberg’s new Net Zero
Scenario looks at what is needed to reach ‘net-zero’ emissions in road transport
by 2050. In this scenario, 100% of the world’s road fleet runs on electricity or
hydrogen by that year. As soon as 2030, nearly 60% of new car sales must be
zero emissions, to stay on track for the Net Zero Scenario [1].

Figure 1.1: Zero-emission vehicle sales by segment: Economic Transition Scenario and
Net Zero Scenarios [1]
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2 introduction

The forecast on the trend of the electric vehicle market comes from the
International Energy Agency (AIE) contained in the report “Global Electric
Vehicle Outlook 2021”. According to the intergovernmental organization,
which deals with energy policies, the electric fleet of cars in circulation was ten
millions at the end of 2020 to which must be added one million vans, trucks and
buses. In the first quarter of this year, explains the IEA, the momentum of the
sector continued with sales increased by 140 % compared to the same period of
2020 (500 thousand in China and 450 thousand in Europe) [2]. Electric cars,
despite the need for more and more efficient charging infrastructures and more
powerful batteries, are popular, regardless of state subsidies, notes the IEA.

Figure 1.2: Electric vehicle sales growth from 2020 [3]

In 2020 the public columns were 1.3 million, of which 30 % fast, marking
an increase of 45 % compared to 85 % in 2019, with China in the lead. Italy
(with 0.13) is above the EU target for the end of 2020 which was a column for
10 vehicles (0.01 in 2020) and also exceeds the European average 0.09. The
automakers, for their part, offered 370 models of electric cars in 2020, with an
increase of 40 % on an annual basis, explains the AIE adding that eighteen of the
20 largest manufacturers (representing 90 % of world sales of cars) announced
their intention to increase the number of models and the production of light
vehicles. The shift from Internal Combustion Engines (ICE) to electrified
vehicles will bring not only the challenge to the new powertrain development,
but also a new cabin environment will be introduced. The passenger might
receive some newly unwanted noise perceptions that was covered by the ICE
one.



1.2 vehicle noise 3

1.2 vehicle noise

The consideration of noise in or from a car hasn’t always been as it is today. For
a long time a loud engine expressed power and the speed of the car. Today,
cars are widely used for commuting and long business trips and therefore a
higher demand is on comfort. Too much noise is shown to cause tiredness,
headaches, irritation and even if much is done to reduce known sources new
ones always appear. Nowadays the focus is mainly to improve the environment
for the customers inside the cars and to increase their comfort. But, there is a
world outside.
In the European Union (EU) noise policy, it is stated that “65% of Europeans
living in major urban areas are exposed to high noise levels” which are more
than 55 dB Lden (day-evening-night level), and the main part of that noise
comes from transportation [4]. At the same time World Health Organization
(WHO) reports that, environmental noise causes 43 000 hospital admissions
and 10 000 cases of premature deaths related to coronary heart disease every
year. In addition, not only humans are affected by environmental noise but
recent research shows harmful effects on wildlife as well because many animals
rely on acoustic communication for e.g. mating or finding food [5].
The noise generated from vehicles can be divided into three main categories
whose effect depend on the vehicle speed and type:

• drivetrain noise

• tyre-road interaction noise

• aerodynamic noise

The significance of aeroacoustics for the exterior noise of motor vehicles has
been known for a long time; as early as 1983 Dobrzynskii found that from a
speed of approx. 130 km/h and higher the induced aerodynamic noise was
louder than all other noise sources of the vehicle combined [6]. For aerodynamic
noise researchers originally attempted acoustic optimization in conventional
wind tunnels. Especially with respect to the aerodynamic exterior noise this
proved to be from difficult to impossible, due to the strong interference caused
by the wind tunnels’ inherent noise.
The use of psychoacoustic methods of assessment usually failed due to exceed-
ingly high background noise. Normal wind tunnels are characterized by a lot
of noise generators such as the fans, the circulating flow and the reflections
regarding the test chamber and the relative channels; so more and more special
aeroacoustic wind tunnels have been brought into operation in recent years.This
has led to new discoveries in the field of aeroacoustics.
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Figure 1.3: Royal NLR Anechoic wind tunnel which shows a particular use of sound
absorbing materials.

Examinations considering the relevance of aerodynamic noise in relation to
the overall noise have also been carried out with various vehicles and it turned
out that in the case of quiet tire-road combinations the threshold velocity
beyond which aerodynamic noise dominates both exterior and interior noise
lies at approx. 130 km/h for passenger vehicles (Figure 1.4).

Figure 1.4: Aerodynamic interior noise measured in an aeroacoustic wind-tunnel and
interior noise measured during driving; D-segment vehicle [6]

At low speeds (< 20km/h) and high engine load it is the drive train that
dominates the cabin noise. At low speeds and with a low engine load tire-road
noise contributes the greatest part to the overall noise (Figure 1.5).
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Figure 1.5: Overall noise and noise components of an upper middle-class passenger
vehicle (D-segment) at v = 50km/h [6]

At full-load acceleration this noise can play a dominant role due to the
occasional sharp increase in generated noise caused by the high tractive forces
acting on the tires. By increasing speeds the aerodynamic (Figure 1.6) noise of
the vehicle becomes more significant as its acoustic power increases at about
the 5th to 6th power of speed, whereas tire-road noise generally only increases
at the 3rd to 4th power [6].

Figure 1.6: Overall noise and noise components of an upper middle-class passenger
vehicle (D-segment) at v = 160km/h [6]
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Aeroacoustic noise in a vehicle has a lot of sources which has been studied by
wind tunnel tests ([6]), by road tests ([7], [8]) or by Computational Aeroacoustic
Approach ([9], [10]).
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1.3 tyre noise

Among all the noise sources in a vehicle (for example the side mirror [11] or
the A-pillar [9]) this thesis focus is on the noise generated by aerodynamic in-
teraction. For completeness a brief description of the different noise generation
processes of a wheel will follow.

1.3.1 Air Pumping

Air pumping is widely considered one of the most critical noise mechanism
contribution not only in tyre acoustic category but also in the entire tyre noise
category. It happens due to groove deformation which squeezes out the air or
sucks it into the tread grooves when tyre and pavement roll together. Compres-
sion and release of the air will result in a sizzling sound and the flow would
accelerate due to the compressed air.

Figure 1.7: Air Pumping mechanism steps [12]

1.3.2 Pipe Resonance

Pipe resonance is considered an amplification phenomenon related to aeroa-
coustics of the tyre because the resonance itself doesn’t generate sound until
something excites the airflow in the tread voids near the resonance frequency.
There are a lot of different kinds of grooved tyre: longitudinal grooves, lateral
and/or diagonal (with respect to the rolling direction) and they can be open or
closed end grooves.
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Figure 1.8: Different tyre treads pattern [13]

These pipes have resonances as the pipes of musical instruments. In the
open ones a standing wave with anti-nodes(maximum air displacement) may
create at the open ends; it has a wavelength of twice the length of the pipes,
which is called a half-wavelength resonator. In the most of the studies the
general approach is to start from a simple definition of the half-wavelength
and then an end correction of the resonance frequency is made comparing the
result, as explained by Sandberg [13].

Figure 1.9: Idealized tyre footprint [13]
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1.3.3 Horn effect

The geometry of tyre/road interaction is similar to a horn and this causes a
bigger radiation efficiency of the tyre/road emitted noise than in the free field.
It increases the coupling efficiency between the sound source and the air; in
fact an impedance matching between air and the source is provided.

Figure 1.10: Horn amplification [14]

1.3.4 Air turbulence

Tyre noise due to air turbulence was not analyzed deeply previously because of
its dependency on the each tyres’ geometrical properties. The wake generated
by the separation of the boundary layer from the wheel will introduce high
energy of the shear layer, and two shoulder vortices are formed. The contact
patch on the ground detaches two vortices but if an isolated tyre is rotating, a
stagnation point horseshoe vortex cannot form, as the boundary layer near the
ground does not separate in front of the wheel. By considering the aeroacoustic
mechanism, these vortices are one of the primary sources contributing to tyre
noise so that the wake and the turbulence will significantly contribute to tyre
aeroacoustics.
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Figure 1.11: Difference between a rotating wheel and a fixed one [15]

In the context of this thesis, an isolated and not rotating wheel is consid-
ered with the aim of reduce the complexity and of mantain the focus on the
optimization. Next in Ch.2 there will be a brief recall of flow simulations. Then
in Ch.3 some tools for aeroacoustic will be presented while in Ch.4 the adjoint
method and its formulation will be detailed. In Ch.5 it will be presented how it
is implemented in OpenFoam and how I managed it while numerical tests and
result will be in Ch.6, concluding in Ch.7 with the final thoughts.
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There are many opportunities to observe turbulent flows in our everyday sur-
roundings, whether it be smoke from a chimney, water in a river or waterfall, or
the buffeting of a strong wind. In observing a waterfall, we immediately see that
the flow is unsteady, irregular, seemingly random and chaotic, and surely the
motion of every eddy or droplet is unpredictable. In engineering applications
turbulent flows are prevalent, but less easily seen. In the processing of liquids
or gases with pumps, compressors, pipe lines, etc., the flows are generally
turbulent. Similarly the flows around vehicles such as airplanes, automobiles,
ships, and submarines are turbulent. The mixing of fuel and air in engines,
boilers, furnaces and the mixing of the reactants in chemical reactors take place
in turbulent flows.

An important characteristic of turbulence is its ability to transport and mix
fluids much more effectively than a comparable laminar flow. This is well
demonstrated by an experiment first reported by Osborne Reynolds (1883).
Dye is steadily injected on the centerline of a long pipe in which water is
flowing. As Reynolds (1894) later established, this flow is characterized by a
single non-dimensional parameter, now known as the Reynolds number Re. In
general, it is defined by Re = Ul

ν , where U and l are characteristic velocity and
length scales of the flow, and ν is the kinematic viscosity of the fluid.

Figure 2.1: Visualization of flow at different Re number in a Reynold’s experiment
reptition

Turbulence is also effective at “mixing” the momentum of the fluid. As a
consequence, on aircraft’s wings and ships’ hulls the wall shear stress (and

11
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hence the drag) is much larger than it would be if the flow were laminar. Simi-
larly, compared with laminar flow, rates of heat and mass transfer at solid-fluid
and liquid-gas interfaces are much enhanced in turbulent flows.
The major motivation for the study of turbulent flows is the combination of the
three preceding observations: the vast majority of flows is turbulent; the trans-
port and mixing of matter, momentum, and heat in flows is of great practical
importance; and turbulence greatly enhances the rates of these processes.

Many different techniques have been used to address many different questions
concerning turbulence and turbulent flows. The first step toward providing a
categorization of these studies is to distinguish between small-scale turbulence
and the large-scale motions in turbulent flows. At high Reynolds number there
is a separation of scales. The large-scale motions are strongly influenced by the
geometry of the flow (i.e., by the boundary conditions), and they control the
transport and mixing. The behavior of the small-scale motions, on the other
hand, is determined almost entirely by the rate at which they receive energy
from the large scales, and by the viscosity. Hence these small-scale motions
have a universal character, independent of the flow geometry.

For fluid flows, be they laminar or turbulent, the governing laws are embodied
in the Navier-Stokes equations which, despite considering the diversity and
complexity of fluid flows, describe them accurately and in complete detail. The
governing equations used are the fundamental equations of fluid dynamics: the
continuity, momentum and the energy equation [16]. They are here written
for completeness in conservative form for a compressible fluid using the index
notation and Einstein convention even if the thesis will focus on incompressible
flows.

• continuity equation:
∂ρ

∂t
+
∂(ρui)

∂xi
= 0 (1)

• momentum equation:

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= −

∂p

∂xi
+
∂τij
∂xj

(2)

• energy equation:

∂(ρe0)

∂t
+
∂(ρe0ui + puj)

∂xj
=
∂(τijui − qj)

∂xj
(3)

with
e0 = e+

1
2
uiuj (4)
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In order to close the system there’s the necessity to introduce two other equa-
tions: viscous stress tensor (τij) and the heat flux (qj):

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
∂uk
∂xk

δij

)
(5)

qj = −
µcp
σ
∂T
∂xj

(6)

where cp is the specific heat and σ is the Prandtl number.
The equations describe every detail of the turbulent velocity field from the
largest to the smallest length and time scales, so the amount of informations
contained in the velocity field is vast, and as a consequence (in general) the
direct approach of solving the Navier-Stokes equations is quite hard.
A powerful research tool for investigating simple turbulent flows at moder-
ate Reynolds numbers is DNS. For the high-Reynolds-number flows that are
prevalent in applications and interest, the natural alternative is to pursue a
statistical approach. It consists in describing the turbulent flows, not in terms
of the velocity, but in terms of some statistics as the mean velocity field. A
model based on such statistics can lead to a tractable set of equations, because
statistical fields vary smoothly in position and time.

2.1 turbulence simulations

Figure 2.2: Turbulence simulation approaches [17]
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2.1.1 Direct Numerical Simulation

Direct Numerical Simulation (DNS) consists in solving the Navier-Stokes equa-
tions, resolving all the scales of motion. Each simulation produces a single
realization of the flow. Conceptually it is the simplest approach and, when it
can be applied, it is the best in accuracy and in the level of description provided.
However, it is important to understand that the cost is extremely high. The
computer requirements increase so rapidly with Reynolds number so that the
DNS approach was infeasible until the 1970s when computers of sufficient
power became available (HPC).
In DNS the governing equations (Eq.1-3) are solved without using physical
simplifications therein resolving the physical phenomena without modeling.

DNS requires a computational grid resolving the entire span from the Kol-
mogorov micro-scale η to the large size eddies, Λ. This presents an inherent
multi scale problem where A. Johansson in [18] writes that the ratio of η the
smallest to the largest scales of turbulence can be estimated as:

Λ

η
∼ Re

3
4
Λ

(7)

For a grid spanning in three directions and resolved down to the Kolmogorov

scale this would account in a grid-point-growth of Re
9
4
Λ

, or taking temporal
resolution into account Re3

Λ
.

2.1.2 Large Eddy Simulation

Large Eddy Simulation, or LES, is a model where the equations are filtered.
This is done on the Navier-Stokes equations and the results are variables that
depend on both space and time. Filtering of variables is a part of a hybrid
method where large eddies are resolved and small sub-grid scale information is
modeled. The modeling errors introduced are usually small. In fact, turbulence
at the Kolmogorov scale is more isotropic and contains less energy than the
large scale turbulence [18]. The small scales are usually modeled using the
Boussinesq hypothesis (2.1.5). Although LES are less expensive than DNS, they
still need to satisfy the y+ requirement, leading to important computational
costs.

2.1.3 Detached Eddy Simulation

Detached Eddy Simulation (DES) is a combination of Unsteady RANS (URANS)
and LES. URANS is very similar to RANS since they both solve for the time-
averaged flow but differs in the sense that URANS keeps the transient term
[19]. DES models the boundary layer using RANS while the outer eddies are
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resolved using LES. This method is very interesting also under a computational
cost point of view because the y+ of the LES simulation hasn’t to be respected
everywhere.

Figure 2.3: DES scheme [20]

2.1.4 Reynolds Averaged Navier Stokes

Reynolds averaged Navier-Stokes equations (RANS) are a time averaged version
of the instantaneous Navier-Stokes equations. The velocity vector u and the
pressure p are divided into a steady (time-averaged) and a fluctuating part to
cut down on computational cost .

ui = Ui + u
′
i (8)

p = P + p
′

(9)

This decomposition is known as the Reynolds decomposition, with Ui = ui ,
P = p and where ·means averaged.

Incorporating the fluctuating velocity u
′
i and pressure P components into the

incompressible Navier-Stokes equation the resulting mean flow equation can
after time averaging be written as:

∂Ui
∂t

+Uj
∂Ui
∂xj

= −1
ρ
∂P
∂xi

+
∂
∂xj

(
ν
∂Ui
∂xj
−u ′iu

′
j

)
(10)

Finally, through Boussinesq hypothesis and adding the incompressibility equa-
tion, the RANS problem becomes: ∇ ·U = 0 in Ω

(U · ∇)U+∇p = ∇ · (2νeD(U)) in Ω
(11)
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where

• p = P
ρ is the ratio between pressure and density

• U is the flow speed

• D(U) = 1
2 [∇U+ (∇U)T ] is the stress tensor

• νe = ν+ νt is the effective viscosity, with ν that is the kinematic viscosity
and νt the turbulent viscosity

The system of Eq.11 is solved for u and p but a new term u
′
iu
′
j is found on

the right-hand-side (RHS) describing the relationship between fluctuating ve-
locities[21]. This term is often referred to as the Reynolds stress tensor and
introduces a closure problem where six additional unknown turbulent stresses
arise.

2.1.5 Boussinesq Approximation

One of the early attempts of modeling the turbulent shear stress was made
by the French 19th century scientist Boussinesq who described the Reynolds
stresses using mean velocity gradients [18], as follows:

− ρu ′iu
′
j = ρνtSij −

2
3
ρKδij (12)

Here νt is the kinetic eddy viscosity, K the kinetic energy and Sij the mean
strain rate tensor:

K =
1
2
u
′
iu
′
j (13)

Sij =
1
2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(14)

Using the Boussinesq model the closure problem is reduced to model the eddy
viscosity. Since the eddy viscosity is dominated by the length Λ and velocity
V scale of the large turbulent eddies this assumption brings about a huge
reduction in computational cost.

2.2 turbulence model for rans

In order to close the set of equations a wide variety of turbulence models are
available [16]:

• Algebraic models/zero equation models: Specific case and not very gen-
eral, they work well for the scenario they were created for but need
additional informations such as velocity gradients or geometry specifica-
tions.
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• One-equation models: Like the name a one-equation model usually
solves a transport equation for one turbulent variable like the turbulent
kinetic energy K, or the eddy viscosity νt . Somewhat more general but case
specific input is still required. An example of a common one-equation
model is the Spalart-Allmaras model.

• Two-equation models: Two transport equations are solved for two differ-
ent variables. Isotropic turbulence is generally assumed and no additional
information is needed; hence the model is ”completely formulated in
terms of local quantities”. Example of common two-equation models are
k − ε and k −ω.

2.2.1 Spalart-Allmaras

The Spalart-Allmaras (SA) model [22] is a one-equation model that solves for ν̃,
which is referred to as nuTilda in OpenFOAM but is often called the Spalart-
Allmaras variable [23]. The SA model drops the last part in Eq.12 when solving
for the eddy viscosity. The following relations are found in the SA model:

νt = ν̃fv1 (15)

where the viscous damping functions are fv1 =
X3

X3+C3
v1

with X = ν̃
ν .

The transport equation is written as:

∂ν̃
∂t

+ uj
∂ν̃
∂xj

= cb1Sν̃+
1
σ

[
∂
∂xj

(
(ν+ ν̃)

∂ν̃
∂xj

)
+ cb2

∂ν̃
∂xj

∂ν̃
∂xj

]
− cw1fw

( ν̃
d

)2
(16)

In the RHS of Eq.16 the first is the Production term, the second one is the
Diffusion and the last one is the responsible of Destruction.
The vorticity term S̃ is modelled to keep its long-layer characteristics:

S̃ =
√

2ΩijΩijfv3 +
ν̃

k2d2 fv2 (17)

where

Ωij =
1
2

(
∂ũi
∂xj
−
∂ũj
∂xj

)
(18)

fv2 = 1− x
1+ xfv1

(19)

fv3 = 1 (20)

fw = g

1+C6
w3

g6+C6
w3


1
6

(21)

g = r +Cw2(r
6 − r) (22)
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r =
ν̃

S̃k2d2
(23)

And the coefficients has the following default values:

σ Cb1 Cb2 Cw1 Cv1

2/3 0.1355 0.622 Cb1
k2 + 1+Cb2

σ 7.1

Following the recommendations in [19] for an adequate ratio of turbulent
kinematic viscosity to kinematic viscosity (νtν = 3÷5), nut(ν̃) is set to 7.45×10−5.

2.2.2 Spalart-Allmaras DES

Detached Eddy Simulation (DES) was originally formulated for the Spalart-
Allmaras model (2.2.1).

∂ρν̃t
∂t

+
∂ρuj ν̃t
∂xj

=
∂
∂xj

(
µ+ µt
σν̃t

∂ν̃t
∂xj

)
+
Cb2ρ

σν̃t

∂ν̃t
∂xj

∂ν̃t
∂xj

+ P −Ψ (24)

where

νt = ν̃tfi (25)

P = Cb1ρ

(
s+

ν̃t
∂k2d2f2

)
ν̃t (26)

s = (2sijsij)
1
2 (27)

Ψ = Cw1ρfw

( ν̃t
d

)2
(28)

From the RANS SA model the distance, d, stems from the distance to the nearest
wall, while in the DES model the distance d comes from the minimum of the
cell length ∆ and the turbulent length scale d. Hence

d̃ =min(d,Ddes∆) (29)

This means that in the case where d < Cdes∆, which would occur in the boundary
layer, the DES model switches to RANS model [19].
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The compressible continuity, momentum, and energy equations describe the
motion in a fluid. Hence, the solution to these equations, subjected to boundary
conditions, will include not only convection and diffusion, but also acoustic
wave propagation. The acoustic part of the solution can not, in general, be sepa-
rated from the rest of the solution but in many cases, it is possible to view the
flow and the acoustics as two different fields. Depending on the characteristics
of the interaction between the flow and the acoustics, aeroacoustic problems
can be divided into two main categories:

• two-way coupled case, if there is a mutual dependence of the flow and
the acoustic (i.e. that energy is being transferred both from the flow to
the acoustic and vice versa);

• one-way coupled case, if the acoustic part is dependent on the flow, but
the flow is independent of the acoustic.

Most of the low Mach number flows exhibit a one-way coupling (e.g. vortex
shedding around a cylinder at low Mach numbers), which is the basis for most
aeroacoustic modeling. However, there are some flows that are exceptions. For
instance, the ”booming noise” that happens on driving with an open sunroof.

In one-way coupling cases the problem can be divided in flow problem and
acoustic problem with a way to transfer energy from the flow to the acoustic
side. This splitting can be performed thanks to the physical difference between
flow (e.g. turbulence) and acoustic (e.g. wave propagation) phenomena which
is advantageous for an understanding and computational point of view. While
considering the split equations, however, it is important to remember that flow
and acoustics, in reality, are coupled. The “booming” noise mentioned above,
for example, can not appear without the transfer of energy from the acoustics
to the flow.

It’s possible to divide the flow in three main regions that can be divided looking
at the acoustic wavelength [24]:

• Size of an acoustic wavelength: it’s called flow region and it’s dominated
by hydrodynamic phenomena. Even if there are some acoustic waves
in this region the pressure fluctuations are due to turbulence or larger
unsteady features as separations. Here the energy of the acoustic fields
is about 1% of the total energy so hydrodynamic pressure fluctuations
dominate.

19
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• Many acoustic wavelengths out: it’s called far field and its mean flow is
typically homogeneous so turbulence can be neglected. The only phe-
nomena to be considered here are the acoustic waves propagation and so
there’s no generation of sound.

• near field: is the overlapping area between the other two and here both
hydrodynamics and acoustics phenomena are important.

Figure 3.1: Regions in CAA [25]

Focusing on the sound generation and its propagation various methods can
be used varying in computational effort and accuracy. Two main numerical
Computational Aero Acoustic (CAA) approaches can be distinguished:

• Direct Methods: A transient solution is calculated where the source and
its propagation is resolved out to the far field. In DNS the interest is on
the flow but aeroacoustics studies the propagation too and the problem
becomes a big multiscale problem. This method, in fact, requires a very
fine grid for the spatial and temporal resolution which places stringent de-
mands on computational resources. X. Gloerfelt in [26] writes that direct
methods can only predict good acoustic results for simple configurations
at moderate Re numbers.

• Hybrid methods: A CFD method is used to solve the flow in the source
region, up to the near field region. Then, a transport problem is solved in
order to compute the pressure fluctuations in the far field region. Hybrid
methods significantly reduce the computational demand since only the
near field needs to be spatially and temporally resolved.
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Figure 3.2: Overview of CAA method [24]

Since the sound is generated in the flow region and propagated through the far
field, hybrid methods decouple the flow generation from the acoustic propaga-
tion in the far field; consequently allowing for methods adapted for the various
regions.

Figure 3.3: Different CAA method [27]

Finally, in Figure 3.3 there is a schematic review of several possible CAA
methods; in section 3.1 there is a brief explanation of how the flow can be
simulated while in section 3.2 the focus will be only on the main Hybrid
methods. For further informations refer to [28] and [29] in addition to the
already cited sources.
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3.1 large scale simulation

A Direct Simulation (DS) solves the Navier-Stokes equations without modeling,
and hence solves for the acoustic field as well as for the turbulence. If traditional
DNS, which solves for the turbulence but not for the acoustics, is considered
a subset of DS, one could imagine another subset that solves for the acoustics,
but not for the turbulence. This subset lacks a descriptive name, but Mankbadi
et al in [30], called it Large Scale Simulations (LSS). All methodologies that
compute the sound field directly but that don’t resolve all of the turbulence, can
be considered as LSS. A compressible Unsteady RANS (URANS), for example,
where the pressure fluctuations are recorded during the simulation and taken
as the sound field, would belong to the LSS category of methodologies.

The main strength of LSS is, of course, that the computational cost is con-
siderably smaller than in DS, while still computing the sound field directly.
Since the small scales of the turbulence, believed to have only a very modest
influence on the radiated sound, LSS is a promising approach.

3.2 hybrid methods

James Lighthill laid the groundwork for the models of sound generation and
is today considered the father of aeroacoustics [31]. To reduce the generated
sound from jet engines, Lighthill developed analogies uncoupling the sound
field from the source field. He used the fundamental equations (Eq.1, Eq.2,
Eq.3) of fluid dynamics to model the source field as an inhomogeneous wave
equation.

3.2.1 Lighthill’s Acoustic Analogy

Differentiating the continuity equation (Eq.1) with respect to time, and the
momentum equation (Eq.2) with respect to space, while subtracting the latter
from the differentiated continuity equation one gets:

∂2ρ

∂t2
−
∂2ρuiuj
∂xi∂xj

=
∂2p

∂xi2
−
∂2τij
∂xi∂xj

(30)

If we subtract c2
0
∂2ρ
∂xi2

from Eq.30 it can be re-formulated as Lighthill’s wave
equation:

∂2ρ

∂t2
− c2

0
∂2ρ

∂xi2
=

∂2Tij
∂xi∂xj

(31)
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where Tij is defined as:

Tij = ρuiuj − τij + (p − c2
0ρ)δij (32)

with

• ρuiuj : non-linear convective forces described by the Reynolds stress tensor

• τij : viscous forces

• (p − c2
0ρ): deviation from a uniform sound velocity c0 or the deviation

from an isentropic behaviour

A distinction between the sound sources and the propagation of sound sources
has been made but no assumptions so Eq.31 is exact. The left hand side is an
ordinary wave operator whereas the right hand side is the acoustic source term.
For Lighthill’s equation to be applicable the right hand side should be known
as well as decoupled from the acoustic field. By comparing the magnitude of
the three terms in the stress tensor Lighthill deduced that the momentum flux
tensor ρuiuj is the only significant contributor to sound production Tij for cold
jets. The acoustic wave equation can be solved analytically if the right hand
side is assumed known [24].
A common approach is to integrate the sources using a free field Green function.

ρ(x, t)− ρ0 =
1

4πc2
0

∫
∞

1
r

∂2Tij
∂yi∂yj

∂V (y) (33)

where τ = t − rc , Tij = Tij(y, t) and r = |x− y|.

3.2.2 Curle’s Analogy

Lighthill’s theory was further extended by Curle to incorporate the presence of
solid boundaries upon the aerodynamic sound. Curle’s approach was to find a
solution to the inhomogeneous wave equation where the double divergence of
Eq.31 can be taken outside the integral sign. The derivation is carried out in a
similar way as Lighthill’s original work [31] but with two additional steps. To
account for solid boundaries a surface integral is added through the Kirchoff-
Helmholtz formula [32], then a coordinates transformation from source to
observer ones is done. Starting with the general solution of the inhomogeneous
wave equation previously mentioned but this time on a bounded domain

ρ(x, t)− ρ0 =
1

4πc2
0

∫
V

1
r

∂2Tij
∂yi∂yj

∂V (y)

− 1
4π

∫
S

(
1
r

∂ρ

∂n
+

1
r2
∂r
∂n
ρ+

1
c0r

∂r
∂n

∂ρ

∂t

)
∂S(y)

(34)
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Using partial integration and symmetrical properties from the Green’s function
G0 [33]:

∂G0

∂xi
=
∂G0

∂yi

∂G0

∂τ
= −∂G0

∂t
(35)

it becomes:

ρ(x, t)− ρ0 =
1

4πc2
0

∂2

∂xi∂xj

∫
V

Tij
r
dV (y)

− 1

4πc2
0

∂
∂xi

∫
S

nj
r
[ρuiuj + pδij − τij ]dS(y)

+
1

4πc2
0

∂
∂t

∫
S

ρuini
r

dS(y)

(36)

The second surface integral in Eq.36 characterizes the monopole field created
by fluid vibrations of the body which in many cases can be neglected. So in
the case of solid surfaces where the velocity on the surface is zero Curle’s final
equation reads:

ρ(x, t)− ρ0 =
1

4πc2
0

∂2

∂xi∂xj

∫
V

Tij
r
dV (y)

− 1

4πc2
0

∂
∂xi

∫
S

nj
r
(pδij − τij)dS(y)

(37)

3.2.3 Ffowcs-Williams and Hawking Analogy

Ffowcs-Williams and Hawkings (FW-H) extended the work that Curle had
published by taking into account the sound generation from arbitrary motion
of a body in a turbulent flow. FW-H equation is a generalization of Curle’s
analogy where the governing equations are rewritten in such a way that the
source terms will account for boundary effects and the result is an equation
valid for a continuous infinite space.

ρ(x, t)− ρ0 =
1

4πc2
0

∂2

∂xi∂xj

∫
V

T
′∗
ij

r(1− ljvjc0 )
dV (y∗)

− 1

4πc2
0

∂
∂xi

∫
S

F∗j

r(1− ljvjc0 )
dS(y∗)

+
1

4πc2
0

∂
∂t

∫
S

Q∗

r(1− ljvjc0 )
dS(y∗)

(38)
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where the source terms in a moving reference frame are:

T
′∗
ij =ρ(u

∗
i + vi)(u

∗
j + vj)− τ

∗
ij + (p − c2

0(ρ − ρ0))δij

F∗i =(ρ(u∗i + vi)u
∗
j + pδij − τij

∗)nj

Q∗ =(ρ0vi + ρu
∗
i )nj

(39)

The three source terms T
′∗,F∗,Q∗ are associated with quadrupole, dipole, and

monopole source mechanisms respectively. The quadrupole source mechanism
is due to fluctuating stresses in the fluid (unsteady Reynolds stresses) while
dipole sources are created by external unsteady forces, or fluid pressure on a
solid boundary and monopole sources are due to volume flow or fluctuating
mass injection.

(a) Monopole (b) Dipole (c) Quadrupole

Figure 3.4: The most prominent sources within a fluid flow and the propagation pat-
tern [34][35]

In the case of an impermeable surface simplifications can be made; focusing
on the dipole term which is of most importance to this work, u∗i is by definition
equal to zero on the surface, and F∗i can therefore be written as:

F∗i = (pδij − τ∗ij)nj (40)

Numerical implementation of Eq.38 can be difficult due to the combination of
spatial and temporal derivatives with respect to the observer frame of reference.
Later formulations by Bretner and Farassat [36] resolve the Ffowcs-Williams
and Hawkings analogy in the frequency domain to circumvent the problem
of emission time. With the implementation of the FW-H analogy isotropic
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wave propagation is considered, and can hence only be expected to provide
good results in flows with zero or low mean motion. To incorporate mean flow
the convected FW-H analogy can be used where Gloerfelt et al. introduces the
concept of having the observer move with the mean flow. The derivation can be
found in [26] and the convected FW-H equation for the frequency domain is
written as following:{

∂2

∂xi2
+ k2 − 2iMik

∂
∂xi
−MiMj

∂2

∂xi∂xj

}
[H(f )c2

0ρ
′
(x,ω)]

=− ∂2

∂xi∂xj
[Tij(x,ω)H(f )]− ∂2

∂xi2
[Fi(x,ω)δ(f )]− iωQ(x,ω)δ(f )

(41)

From the integral solution in [26] the source terms can be rewritten as:

Tij =ρ(ui −U∞i )(uj −U∞j ) + (p − c2
0ρ)δij − τij

Fi =− [ρ(ui−2U∞i
)uj + pδij − τ∗ij ]nj

Q =ρuiuj

(42)

It should be noted that here, instead of using the free-space Green’s function,
the convective Green’s function should be used.

3.3 proudman noise source model

To estimate the level of acoustic noise within a turbulent area Proudman based
his work [37] on the methods developed by Lighthill combined with techniques
from the statistical theory of isotropic turbulence. He also proposed that the
turbulent eddies generating noise are mainly the ones that do not dissipate
energy. The noise source model derived defines the Intensity of sound

I(x, t) =
c3

0

ρ0
(ρ − ρ)2 (43)

where overbars denote mean values.

The Acoustic Power per unit volume is derived from the Acoustic Intensity
after that the Lighthill’s formula (Eq.33) has been substituted in and can be
written as:

AP = αρ0
u3
rms

l
u5
rms

c5
0

(44)

where α was proposed to be approximately 38.
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In OpenFoam it is implemented in proudmanAcousticPower post process func-
tion as:

PA= αερεM
5
t (45)

where αε = 0.1 , Mt =
√

2k
c0

.

The dB output instead is:

LP = 10log
PA
P ref

(46)

where Pref = 1× e−12[W/m3] is a constant.





4 ADJO INT METHOD BACKGROUND

The use of CFD tools in aerodynamic design optimization has grown in im-
portance within the last decade. In gradient-based optimization techniques,
the goal is to minimize a suitable cost or objective function (drag coefficient,
deviation from a prescribed surface pressure distribution, etc.) with respect
to a set of design variables (defining, for example, an airfoil profile or aircraft
surface). Minimization is achieved by means of an iterative process which
requires the computation of the gradients or sensitivity derivatives of the cost
function with respect to the design variables. Gradients can be computed in
a variety of ways, the most actively pursued recently being adjoint methods.
These allow the solution of general sensitivity analysis problems governed by
fluid dynamics models ranging from the full potential equation to the full
compressible Reynolds-averaged Navier-Stokes equations.

4.1 adjoint equations

The mathematical formulation of this problem is part of the Operative non
linear Research problems; in fact there is a certain objective function F(β,u,p)
which has to be optimized but under the limit that the RANS equations (consid-
ered as R) have to be satisfied. The mathematical problem can be formulated
as:

minimize F(β,u,p) w.r.t. β

s.t R(β,u,p) = 0
(47)

To simplify the problem let’s consider the case with displacements parallel to
the local normal direction

b = βn (48)

where n is the local normal.

Adjoint methods are conventionally divided into continuous and discrete. In
the former, the adjoint equations are derived from the governing PDEs and then
subsequently discretized. In the latter, the adjoint equations are directly de-
rived from the discrete governing equations. While, the discrete adjoint method
should give gradients which are closer in value to exact finite-difference gradi-
ents, the continuous adjoint method has the advantage that the adjoint system

29
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has a unique form independent of the scheme used to solve the flow-field
system. Numerical studies have shown that in typical shape optimization
problems in transonic flow the differences are small enough that they have no
significant effect on the final result [38].

4.1.1 Objective function

The continuous adjoint method, including the adjoint wall functions technique,
for objective functions defined as integrals over the boundary S of the com-
putational domain is presented in detail in [39], while here the focus will be
on functions defined as integral over the computational domain Ω. A general
objective function F consisting of a volume integral can be expressed as:

F =

∫
Ω

FΩdΩ (49)

Differentiating F with respect to theN design variables bn, after taking into con-
sideration the Leibniz theorem for volume integrals with variable boundaries,
yields

∂F
∂bn

=

∫
Ω

∂FΩ
∂bn

dΩ+

∫
S
FΩnk

δxk
δbn

dS (50)

In Eq.50, the symbol δ(.)δbn
denotes the total (or material) derivative with respect

to the design variables and represents the total change caused by variations
of bn. The partial derivative ∂(.)

∂bn
represents the variation caused purely due to

changes in the flow variables (in turn, caused by the geometry deformation)
without considering space deformations.
The partial and total derivatives of an arbitrary variable Φ are linked through:

δΦ
δbn

=
∂Φ
∂bn

+
Φ

xk

δxk
δbn

(51)

It is possible to expand Eq.50 by taking into consideration the dependency of F
on the flow variables:

δF
δbn

=

∫
Ω

F́νΩ,i
∂νi
∂bn

dΩ+

∫
Ω

F́
p
Ω

∂p

∂bn
dΩ+

∫
Ω

F́ν̃Ω
∂ν̃
∂bn

dΩ

+

∫
S
FΩnk

δxk
δbn

dS +

∫
S
F́νS,i

∂νi
∂bn

dS +

∫
S
F́
p
S
∂p

∂bn
dS +

∫
S
F́ν̃S

∂ν̃
∂bn

dS
(52)

where F́Φ
Ω

includes the partial derivative ∂FΩ
∂Φ plus any term that might re-

sult from the use of the Gauss divergence theorem for integrals of the form∫
Ω

∂
∂bn

( ∂Φ∂xj
)dΩ. The last three integrals on the right hand side of Eq.52 are non

zero only if FΩ includes differential operators of the flow variables. It should
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be noted that since F might depend on ν̃ the equation includes also integrals
containing ∂ν̃

∂bn
.

When dealing with turbulent flow problems, the state equations comprise
the mean-flow and turbulence model equations. Computing accurate sensitiv-
ity derivatives requires the differentiation of all state PDEs. However, in the
majority of articles based on the continuous adjoint method, it is a common
practice to avoid the differentiation of turbulence models [40],[41], [42], [43].
This simplification is often referred to as the “frozen-turbulence” assumption.
The differentiation of the turbulence model equations using the continuous
adjoint method was initially addressed in [44], for the low turbulence Reynolds
number variant of the Spalart–Allmaras model for incompressible flows. Later
on, the continuous adjoint approach with the same turbulence model for com-
pressible flows was also presented in [45].

4.1.2 Continuous adjoint method development

The starting point for the derivation of the adjoint equations is the augmented
objective function, defined by expanding F with the volume integral of the state
equations multiplied by the corresponding adjoint variables:

Faug = F+

∫
Ω

uiR
v
i dΩ+

∫
Ω

qRpdΩ+

∫
Ω

ν̃aR
ν̃dΩ+

∫
Ω

∆aR
∆dΩ (53)

where ui is the adjoint velocity component, q is the adjoint pressure and ν̃a is
the adjoint to ν̃. The latter is neglected in the commonly used “frozen turbu-
lence” assumption. In addition, following [45] and [46], Eq.53 also includes the
adjoint to the distance field ∆a.

The last integral is included in order to make the final sensitivity expression
independent of variations in the distance field. Differentiating this equation
with respect to bn and applying the Leibnitz theorem:

δFaug
δbn

=
δF
δbn

+

∫
Ω

ui
∂Rνi
∂bn

dΩ+

∫
Ω

q
∂Rp

∂bn
dΩ+

∫
Ω

ν̃a
∂Rν̃

∂bn
dΩ+

∫
Ω

∆a
∂R∆

∂bn
dΩ

+

∫
Sw

(uiR
ν
i + qR

p+ ν̃aR
ν̃ +∆aR

∆)nk
δxk
δbn

dS

(54)

where:

• Rp = −∂νj∂xj
= 0



32 adjoint method background

• Rvi = νj
∂vi
∂xj
− ∂τijxj + ∂p

∂xi
= 0

with i = 1,2(,3) and τij = (ν+ νt)(
∂vi
∂vj

+
∂vj
xi
) that is the stress tensor

• Rν̃ = vj
∂ν̃
∂xj
− ∂
∂xj

[(
ν+ ν̃

σ

)
∂ν̃
∂xj

]
− cb2

σ

(
ν̃
∂xj

)2
− ν̃P + ν̃D = 0

with ν̃ is the turbulence state variable (see section 2.2.1).

• R∆ =
∂(cj∆)

∂xj
−∆ ∂2∆

∂xj2
= 0

it is the so-called Hamilton-Jacobi equation where cj =
∂∆
∂xj

, is solved to

provide the distance to the wall field (∆) at all interior cell-centers.

After some passages that can be found in [47], it is possible to obtain the
following expression for the gradient of F:

δFaug
δbn

=

∫
S
BCui

∂vi
∂bn

dS +

∫
S
(ujnj + F́

p
S)
∂p

∂bn
dS +

∫
S
BCν̃a ∂ν̃

∂bn
dS

+

∫
S

2∆a
∂∆
∂xj

nj
∂∆
∂bn

dS −
∫
S
uinj

∂τij
∂bn

dS −
∫
S
ν̃a

(
ν+

ν̃
σ

) ∂
∂bn

(
∂ν̃
∂xj

)
njdS

+

∫
Ω

Rui
∂vi
∂bn

dΩ+

∫
Ω

Rq
∂p

∂bn
dΩ+

∫
Ω

Rν̃a
∂ν̃
∂bn

dΩ+

∫
Ω

R∆a
∂∆
∂bn

dΩ

+

∫
Sw

(uiR
v
i + qR

p+ ν̃aR
ν̃ +∆aR

∆+ FΩ)
δxk
δbn

nkdS

(55)

where

BCui = uivjnj + τ
a
ijnj − qni + ν̃aν̃

CY
Y
emjk

∂vk
xj
emlinl + F́

v
S,i (56)

BCν̃a = ν̃avjnj + (ν+
ν̃
σ
)
∂ν̃a
∂xj

nj −
ν̃a
σ
(1+ 2cb2)

∂ν̃
∂xj

nj + F́
ν̃
S (57)

and τaij = (ν+ νt)(
∂ui
∂vj

+
∂uj
xi
) are the components of the adjoint stress tensor.

Setting to zero the multipliers of ∂vi
∂bn

, ∂p∂bn , ∂ν̃∂bn , ∂∆∂bn in eq.55 we obtain:
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Rq = −
∂uj
∂xj

+ F́
p
Ω
= 0 (58)

Rui = uj
∂vj
∂xi
−
∂vjui
∂xj

−
∂τaij
∂xj

+
∂q

∂xi
+ F́νΩ,i

+ ν̃a
∂ν̃
∂xi
− ∂
∂xl

(ν̃aν̃
CY
Y
emjk

∂νk
∂xj

emli)︸                                     ︷︷                                     ︸
A1

= 0 (59)

Rν̃a = −
∂vjν̃a
∂xj

− ∂
∂xj

[(
ν+

ν̃
σ

) ∂ν̃a
∂xj

]
+

1
σ
∂ν̃a
∂xj

ν̃
∂xj

+2
Cb2

σ
∂
∂xj

(
ν̃a
∂ν̃
∂xj

)
+ ν̃aν̃Cν̃ +

∂νt
∂ν̃

∂ui
∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
︸                    ︷︷                    ︸

Pa

+(−P +D)ν̃a+ F́
ν̃
Ω = 0 (60)

R∆a = −2
∂
∂xj

(
∆a
∂∆
∂xj

)
+ ν̃ν̃aC∆ = 0 (61)

The adjoint momentum equation (Eq.59) includes terms resulting from the
differentiation of the turbulence model equation marked as term A1. These
terms depend on the adjoint turbulence variable ν̃a, computed by solving the
adjoint turbulence model PDE (Eq.60). The latter is coupled to (Eq.59) through
the adjoint turbulence production term marked as Pa, while the last term in
Eq.60 summarizes the contribution of the objective function differentiation to
the adjoint turbulence model. In the end Eq.61 is the adjoint Hamilton–Jacobi
equation which is solved at a post-processing step, after solving the coupled
system of Eq.58-61. [39]

After satisfying the adjoint equations (Eq.58, 59, 60, 61):

δFaug
δbn

=

∫
S
BCui

∂vi
∂bn

dS +

∫
S
(ujnj + F́

p
S)
∂p

∂bn
dS +

∫
S
BCν̃a ∂ν̃

∂bn
dS

+

∫
S

2∆a
∂∆
∂xj

nj
∂∆
∂bn

dS −
∫
S
uinj

∂τij
∂bn

dS −
∫
S
ν̃a

(
ν+

ν̃
σ

) ∂
∂bn

(
∂ν̃
∂xj

)
njdS

+

∫
Swp

(uiR
v
i + qR

p+ ν̃aR
ν̃ +∆aR

∆+ FΩ)
δxk
δbn

nkdS

(62)
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4.1.3 Sensitivity derivatives

Once the field adjoint equations and their boundary conditions are satisfied,
the remaining terms concern the sensitivity derivatives expression:

δFaug
δbn

= TWF
SD +

∫
SWp

uI〈t〉
∂τij
∂xk

njt
I
i
δxk
δbn

dS +

∫
SWp

uI〈t〉τij
δ(njt

I
i )

δbn

δxk
δbn

dS

+

∫
SWp

SDivI〈t〉
δtIi
δbn

dS −
∫
SWp

SDi
∂vi
∂xk

δxk
δbn

dS

−
∫
SWp

[
ν
∂ν̃a
∂xj

nj + F́
ν̃
S

]
∂ν̃
∂xk

δxk
δbn

dS −
∫
SWp

2∆a
∂∆
∂xj

nj
∂∆
∂xk

δxk
δbn

dS

+

∫
SWp

u〈n〉

(
τij
δ(ninj)

δbn
+
∂τij
∂xk

δxk
δbn

ninj

)
dS

+

∫
SWp

(uiR
v
i + qR

p+ ν̃aR
ν̃ +∆aR

∆+ FΩ)
δxk
δbn

nkdS

(63)

where

• SDi = τaij − qni + F́
v
SWp,i

• TWF
SD results from the differentiation of the law of the wall and the result-

ing correlation between the variation of the friction velocity, the velocity
magnitude and distance of the first cell off the wall.

4.2 adjoint implementation

The OpenFOAM executable adjointOptimisationFoam performs an optimiza-
tion cycle whose main steps can be summarized in Fig.4.1 and they will be
further explained in the following paragraph. The first step consists in defining
the design variables and so running the primal solver in order to solve the
flow equations. The objective (or cost) function value is calculated for each
step of the primal solver, the values are averaged and subsequently is time for
the adjoint equations to be solved. Once the adjoint equations are solved, the
distance sensitivities are calculated and, basing on them, the design variables
and the mesh are updated.
Obviously the executable can be set also to do not perform an optimization
loop but only a single run in order to obtain just the maps of sensitivities without
moving the mesh.
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Figure 4.1: The adjoint-based shape optimisation loop executed by adjointOptimisa-

tionFoam when run in steadyOptimisation. [48]

In this thesis has been performed a shape optimization based on noise reduc-
tion. The study starts with a simple geometry, a cube, ending up with different
settings of a wheel. The iterative procedure has been useful, at the beginning,
to understand the adjointOptimisationFoam code which is implemented in
OpenFOAM and the sensibility of the results on different parameters:

• Primal solver (section 4.2.1)

• Adjoint solver (section 4.2.2)

• Objective function definition (section 4.2.3)

• ATC Model (section 4.2.4)

• Sensitivities calculation method (section 4.2.5)

• Controlpoints (section 4.2.6)

• Mesh update method (section 4.2.7)
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4.2.1 primal solver

Solution algorithm used to solve the primal equations which is based on sim-

pleFoam. It is a steady-state solver for incompressible, turbulent flows, using
the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm.

The solver follows a segregated solution strategy which means that the equa-
tions for each variable characterizing the system (the velocity u , the pressure
p and the variables characterizing turbulence) are solved sequentially and the
solution of the preceding equations is inserted in the subsequent equation. The
non-linearity appearing in the momentum equation (the face flux φf which is
a function of the velocity) is resolved by computing it from the velocity and
pressure values of the preceding iteration. The dependence from the pressure
is introduced to avoid a decoupling between the momentum and pressure equa-
tions and hence the appearance of high frequency oscillation in the solution
(check board effect). The first equation to be solved is the momentum equation.
It delivers a velocity field u* which is in general not divergence free, so it does
not satisfy the continuity equation. After that the momentum and the conti-
nuity equations are used to construct an equation for the pressure. The aim is
to obtain a pressure field pn , which, if inserted in the momentum equation,
delivers a divergence free velocity field u . After correcting the velocity field,
the equations for turbulence are solved. The above iterative solution procedure
is repeated until convergence.

4.2.2 adjoint solver

Solution algorithm, used to solve the adjoint equations, has been constructed
for managing multiple objective functions and sensitivities calculation instead
of a straight line solver.

It starts by defining the time step calculation followed by taking the results
of the state equations variables and calling them φ. After that, the adjoint
variables to be used are defined and the new term, the adjoint turbulence
τ̃a appears due to the differentiation of the turbulence [39]. So after adding
the source term to the adjoint equation it ends up with a proposed “adjoint”
Pressure-Velocity SIMPLE corrector[49]. All the steps can be found and ex-
plored in the adjointSimple.C file [50].

4.2.3 Objective function

As already seen in section 3.3 Proudman defines a formulation for the Acoustic
Power generated by isotropic turbulence, starting from the Acoustic Intensity,
which is based on Lighthill’s results.
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Linking Eq.33 and Eq.43 there is a direct connection between the Acoustic
Power and the Lighthill’s tensor Tij .

Tij = ρuiuj − τij + (p − c2
0ρ)δij (64)

where, as explained in [28], the last term can be neglected for isoentropic flows.
Applying the Reynold’s decomposition to ρ and u

ρ = ρ+ ρ′ (65)

u = u+ u′ (66)

a reasonable estimation of the quadrupole source can be

Tij = ρuiuj + ρuiu
′
j + ρu

′
iuj + ρu

′
iu
′
j (67)

where the first term does not contribute to the production of sound, while the
second and third terms will contribute only if there is a shear layer.
So

Tij ≈ ρu
′
iu
′
j (68)

This formulation of Tij is correlated to the Reynold’s stress tensor which ap-
pears on the left hand side of the Boussinnesq equation (Eq.12) linking it with
turbulent viscosity and turbulent kinetic energy as visible in Fig.4.3.

Figure 4.2: Left figures representing iso-surfaces of Proudman Acoustic Power at 70dB
and the right ones showing iso-surfaces of Turbulent Kinetic Energy at 40
J/kg for closed rims. [34]



38 adjoint method background

Figure 4.3: Left figures representing iso-surfaces of Proudman Acoustic Power at 70dB
and the right ones showing iso-surfaces of Turbulent Kinetic Energy at 40
J/kg for open rims. [34]
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Cost function correlations

To verify the correlations mentioned above I performed an unsteady 2D simula-
tion of the flow around a cylinder with the following settings:

• Domain dimensions: 0.8× 0.6 m ;

• Number of cells: 123200;

• Cylinder diameter: 0.04 m

• Re: 100

• Turbulence model: k − ε;

Figure 4.4: 2D cylinder computational domain

I computed the Proudman Acoustic Power through the proudmanAcousticPower
explained in 3.3. The correlation is easily visible comparing the trend of PA or
LP with the ones of turbulent kinetic energy K and the turbulent viscosity nut,
as in the following figures.
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(a) Proudman Acoustic Power (PA)

(b) Proudman Acoustic Power in dB (LP )

Figure 4.5: PA and LP trends in the domain
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(a) Comparison between the isoline of k = 1.2e−6 and a range of isolines for PA

(b) Comparison between the isoline of k = 1.2e−6 and a range of isolines for LP

Figure 4.6: The correlation between PA, LP and k
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(a) Comparison between the isoline of k = 1.2e−6 and nut

(b) Comparison between the isoline of k = 1.2e−6 and a range of isolines of nut

Figure 4.7: The correlation between k and nut

In order to capture the noise generated by the wheel, the objective function
is formulated as the volume integral of the square of the turbulent viscosity over
an arbitrary domain according to [47]. Since the highest levels of turbulence
appear at the lower frequencies of the energy spectrum, this is a good surrogate
model for low frequency noise.

F =

∫
Ω
′
ν2
t dΩ (69)
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where Ω
′

is a volume defined by the user.

The differentiation gives:

δF
δbn

=

∫
Ω
′
2νt

∂νt
∂ν̃

∂ν̃
∂bn

dΩ+

∫
S ′
ν2
t nk

δxk
δbn

dS (70)

stating that an extra source term(F́ν̃
Ω
= 2νt

∂νt
∂ν̃ ) must be added to the turbulence

model equation (Eq.60), in the cells contained in Ω
′
. This term, in fact, triggers

the development of the adjoint flow. If the frozen turbulence assumption would
have been made, the adjoint method would not have been able to provide
any kind of sensitivity information, since the objective depends exclusively on
turbulence.

nutSqrZone

As just explained the cost function is defined over a user defined domain. Its
dimensions are inserted in topoSetDict file which is in the system folder and
through the setsToZones function the zone is created. In this case the domain
Ω is represented by a box behind the geometry as visible in Fig.4.8 for the cube
and in Fig.4.9 for the wheel.

(a) xz plane

(b) xy plane

Figure 4.8: nutSqrZone for the cube of dimension 5× 0.19× 0.62 m
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(a) xz plane

(b) xy plane

Figure 4.9: nutSqrZone for the wheel of dimension 5× 2× 2 m

4.2.4 ATC Model

The ATCModel dictionary provides the available options for the so-called Ad-
joint Transpose Convection (ATC) term, existing in the adjoint momentum
equations. It is numerically stiff and can often cause convergence difficulties
for the adjoint equations because the gradient has to be expressed in explicit
form but the adjoint velocity is an unknown.
The ATCModel dictionary provides some options to smooth it in order to facili-
tate convergence in industrial cases.

In order of decreasing robustness they are:

• cancel: This option excludes the ATC term from the adjoint momentum
equations during the solution of the adjoint PDEs (at the same time, of
course, loosing some accuracy depending on the case);

• standard: It is formulated by differentiating the non-conservative form
of the convection term in the primal momentum equations. ATC term is

computed as uaj
∂uj
∂xi

;
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• UaGradU: It is formulated by differentiating the conservative form of the
convection term in the primal momentum equations. The ATC term is

computed as uj
∂uaj
∂xi

.

In the following simulations the standard option has been selected because
it uses the correct explicit discretization of the gradient which is on the ve-
locity calculated with RANS so it neither looses accuracy, nor increases the
convergence difficulties.

4.2.5 Sensitivities calculation method

Sensitivities will be computed after all adjoint PDEs are solved. If the interest
is on the sensitivity maps surface or surfacePoints has been selected, while
for the optimization followed by the mesh morphing has been used volumet-

ricBSplinesFI:

• surface: It is used to compute the so called sensitivity maps, i.e. the
derivative of the objective function with respect to the normal displace-
ment of the boundary wall faces;

• surfacePoints: Same as surface, but sensitivities are computed with
respect to the normal displacement of boundary points, not faces. This
option should be preferred to surface since some of the terms included
in the computations (e.g. variation in the normal vector) are better posed
when differentiating with respect to points;

• volumetricBSplinesFI: This option computes sensitivity derivatives
with respect to the control points of a volumetric B-splines morpher.
Sensitivities are computed using the chain rule

δJ
δbn

=
δJ
δxi

δxi
δbn

(71)

when δJ
δxi

is the sensitivity map and δxi
δbn

is computed analytically on the
surface, by differentiating the volumetric B-splines morpher. For further
informations [51] and [52].

They also compute and write the displacement of all mesh points for each
geometry generated by the optimization loop, from the initial geometry. The
vectorial difference of all mesh points (xnew−xold) is written in a pointVectorField
named displacement whereas the projection of this difference to the normal
vector of the boundary mesh points in the initial geometry ((xnew − xold)nold)
is written in a pointScalarField named normalDisplacement. Keeping in mind
the convention for the surface normal unit vector, facing from the fluid to
the solid boundaries, positive normal displacements indicate a movement
aligned to the geometry normal (“inwards” or “outwards”, for external or
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internal aerodynamics, respectively). Negative normal displacements indicate
a movement opposite to the geometry normal (“outwards” or “inwards” for
external or internal aerodynamics, respectively).

4.2.6 Controlpoints

A box of n control points in each direction is placed where the shape op-
timization has to be performed and the mesh is then parametrized using
B-splines. When the control box separates the mesh in parameterized and
non-parameterized regions, the boundary control points of the control grid
have to be fixed in order to ensure C0 continuity at the interface of the two
regions.

Definition

Let bijkm be the Cartesian coordinates of the i, j and k-th control points of the
3D structured control grid. I , J and K are the number of control points per
control grid direction. The Cartesian coordinates x = [x1,x2,x3]

T = [x,y,z]T of
a CFD mesh point residing within the boundaries defined by the control grid
are given by

xm(u,v,w) = Ui,pu(u)Vj,pv(v)Wk,pw(w)b
ijk
m (72)

Here u = [u1,u2,u3]
T = [u,v,w]T are the mesh point parametric coordinates, U ,

V and W are the B-Splines basis functions and pu, pv and pw their respective
degrees, which may be different per control grid direction. Computing the
Cartesian coordinates of any parameterized mesh point is straightforward, at
a negligible computational cost, as long as its parametric coordinates u are
known. Mesh parametric coordinates can be computed with accuracy, since a
mapping fromR3(x,y,z)→R3(u,v,w) is required. This means that volumetric
B-Splines can reproduce any geometry to machine accuracy. Given the control
points position, the knot vectors and the basis functions degrees, the parametric
coordinates (u,v,w) of a point with Cartesian coordinates r = [xr ,yr ,zr ]T can
be computed by solving the system of equations

R(u,v,w) =


x(u,v,w)− xr = 0
y(u,v,w)− yr = 0
w(u,v,w)−wr = 0

 (73)

where xm = (u,v,w) are computed through Eq.72, based on the known b values.

The 3x3 system of Eq.73 can be solved independently for each parameter-
ized mesh point using the Newton–Raphson method, after computing and
inverting the Jacobian ∂xm

∂uj
,m, j ∈ [1,3]. The Jacobian matrix has a closed form

expression resulting by differentiating Eq.72 with respect to the components
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of u. Since the evaluation of the parametric coordinates of each point is inde-
pendent from any other mesh point, these computations may run efficiently
in parallel. The aforementioned process has to be done only once and can be
seen as the “training phase” of the method. Then, after moving the control
points b, the Cartesian coordinates of each (internal or boundary) mesh point
residing within the control grid can be computed through Eq.72 at a very low
cost, making volumetric B-Splines a powerful surface parameterization and
mesh displacement tool.

In addition, since xm depends only on (u,v,w) (which remain unchanged
whatever the change in b might be) and b, the deformed meshes are step-
independent. This facilitates the mapping of a geometry parameterized using
volumetric B-Splines from one CFD mesh to another. Provided that the initial
control grid for the two CFD meshes is the same, the control points displace-
ment computed over the first mesh can be applied to the second too. Then the
CFD mesh point positions of the second mesh can easily be computed through
Eq.72.

The control point box is created starting from a Python script developed for
this thesis. Defining the box extremes in cartesian coordinates (U ,V ,W ) and
the number of layers inside the box, it generates a file called boxcpsBsplines0.
This file is read by the dynamicMeshDict which contains the dictionary for the
control points management and it is located in the constant folder of Open-
Foam.
Herein it is possible to define the number of points in each direction nCPs (the
same as the layers of the boxcpsBsplines0), the basis function degree for each
direction (the max is nCP s − 1) and which movements are allowed.

The control points confinement has different options:

• to confine just the movement in one of the three cartesian directions;

• to confine all the boundary points to ensure that mesh elements will
not overlap in the boundaries of the control grid (even if gradient and
curvature continuity might not be guaranteed);

• to define more layers of control points to be kept fixed starting from the
confine.
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Cube

Figure 4.10: dynamicMeshDict settings for cube simulation

For the cube optimization, as visible in Fig.4.10 the basis function degree has
been set to 3 and the box is of 9 points in each direction. The points are confined
so that the first two rows corresponding to Umin, Vmin, Vmax, Wmax and the first
row of Umax and Wmin are locked.

(a) yz plane (b) xz plane

Figure 4.11: Control points for cube
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Wheel

Figure 4.12: dynamicMeshDict settings for wheel simulation

For the wheel optimization, as visible in Fig.4.12 the basis function degree has
been set to 3 and the box is of 10×6×10 points. The points are confined so that
the first two rows corresponding to Umin, Vmin, Vmax, Wmax and the first row of
Umax and Wmin are locked. Moreover the movement of all the points in U and
W directions are confined in order to obtain a more “realistic” configuration.

(a) front (b) xz plane (c) back

Figure 4.13: Control points for wheel



50 adjoint method background

4.2.7 Mesh update method

The mesh update method follows the scheme

bnewi = boldi + ηpi (74)

where b are the design variables, p the update direction and η a user-defined
step. It can be performed with different method:

• steepestDescent: the simplest and robust method but also the slowest
in convergence. The update vector is computed as pi = − δJδbi ;

• conjugateGradient: much faster than the previous one and can tolerate
discrepancies in the sensitivities, so it should be chosen when a balance
between accuracy and stability is required;

• BFGS: is a quasi-Newton method and it is probably the most widely used
method to update the design variables in general optimization problems.
The update is done with

δ2J̃
δbiδbj

pj = −ηH
δJ
δbi

(75)

where δ2 J̃
δbiδbj

is an approximation of the objective function Hessian and ηH
is a user defined constant. Its convergence is significantly faster than the
others two but it requires highly accurate sensitivity derivatives.

For this thesis the maxAllowedDisplacement, (/system/optimisationDict),
has been set equal to 2e−3. As the comparison between conjugateGradient

and BFGS has shown no significative differences, the last one has been selected
in order to achieve a faster convergence.

4.2.8 Boundary conditions

Boundary conditions (BC) are formulated by appropriately treating the surface
integral of Eq.62 that contains variations in the flow variables.

Inlet boundaries (SI)

Imposing Dirichlet conditions on vi and ν̃ along SI , makes the first and third

integral of Eq.62 vanish. To make it independent of ∂
∂bn ,

∂τij
∂bn and ∂

∂bn
( ∂ν̃∂xj

)nj
along SI the following BC have to be imposed:

• ujnj = u〈n〉 = −F́
p
SI

• uI〈t〉 = 0
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• uII〈t〉 = 0

• ν̃a = 0

where u〈n〉, u
I
〈t〉 and uII〈t〉 are respectively ua, va, wa, the adjoint velocity compo-

nents.

Outlet boundaries (SO)

Zero Neumann conditions are imposed on vi and ν̃, with a zero Dirichlet condition
on p along SO, so that the second and sixth integral of Eq.62 vanish.
The fifth integral can be considered to be negligible by assuming a developed
velocity profile at SO. After zeroing the multiplier of ∂ν̃

∂bn
in the third integral, a

Robin-type BC is imposed for ν̃a

BCν̃a = ν̃avjnj +
(
ν+

ν̃
σ

) ∂ν̃a
∂xj

nj + F́
v
SO

= 0 (76)

The first integral must be eliminated by satisfying the following equation in
order to make Eq.62 independent from ∂vi

∂bn

BCui = uivjnj + τ
a
ijnj − qni + F́

ν
SO,i

+ ν̃aν̃
CY
Y
emjk

∂vk
∂xj

emlinl = 0 (77)

In order to formulate the BC for the outlet adjoint pressure and the outlet
adjoint tangential velocity, Eq.77 is decomposed into its normal and tangential
components:

q = u〈n〉v〈n〉+ 2(ν+ νt)
∂u〈n〉
∂n

+ F́νSO,i
ni + ν̃aν̃

CY
Y
emjk

∂vk
∂xj

emlinlni (78)

0 = νnu
l
〈t〉+ (ν+ νt)

∂ul〈t〉∂n
+
∂u〈n〉
∂tl

+ F́vSO,i
tli

−ν̃aν̃
CY
Y
emjk

∂vk
∂xj

emzinzt
l
i , l = I , II (79)

At the end to close the adjoint system a zero Neumann BC is imposed on u〈n〉.

Fixed(SW ) and controlled(SWp
) wall boundaries

• Along SW , due to the Dirichlet condition imposed on ν̃, the third integral
in Eq.62, vanishes, while a zero Dirichlet condition is imposed on ν̃a to
make it independent of ∂

∂bn
( ∂ν̃∂xj

)nj .

ν̃a = 0 (80)
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• To eliminate the dependency of
δFaug
δbn

on ∂p
∂bn

the normal adjoint velocity
has to be equal to

u〈n〉 = −F́
p
SW

(81)

• Further developing the first and fifth integral, it gives a zero Dirichlet
condition for uII〈t〉 and an expression for uτ which is the adjoint friction
velocity

uII〈t〉 = 0 (82)

u2
τ = −τaijnjt

I
i = F́vSW ,i

tIi (83)

where the adjoint friction velocity is an indispensable part of the adjoint
system of equations to the Spalart–Allmaras model with wall functions.
In fact, due to the long distance between f and P , differentiating normal
to the wall is prone to important errors. For further informations about
the effects of neglecting the adjoint law of the wall see [47].



5 NUMER ICAL MODEL

This chapter shows how the problem has been modeled and set for the simu-
lations. For both the cube and the wheel cases there will be the explanation
of the meshing strategy, of the grid convergence analysis and of the procedure
used to set the primal and adjoint solvers. At the end the boundary conditions,
which have been defined in section 4.2.8, will be presented in detail.

5.1 cube

5.1.1 Domain and geometry

(a) Computational domain

(b) Geometry

Figure 5.1: Computational domain and geometry for the cube

53
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The computational domain has the following dimensions: 20 × 8 × 8 m. The
cube, instead, is characterized by a 1 m side.

5.1.2 Mesh

In order to analyze the grid convergence three simulations have been performed
with three different meshes. The solver selected is simpleFoam with 18000 iter-
ations, which is the primal solver of the adjointOptimisationFoam.

Ncells Fx Fy Fz

MeshA 1103149 219.257 -0.091 -0.7506

MeshB 2120186 220.510 -0.028 -1.001

MeshC 3888029 216.926 0.047 -1.042

Table 5.1: Comparison of the mesh

Observing the values of the force decomposed in the three cartesian direc-
tions in Tab.5.1 and plotted in Fig.5.2, it is easy to note how the differences are
so small to be negligible. The counterpart of increasing the mesh resolution is
the increase of computational cost. Thus considering the various cycles to be
performed, the computational requirements would be too high.

Figure 5.2: Comparison of the forces between 1M, 2M and 4M meshes

The optimization loop has been developed on MeshB because, as already
seen in the grid convergence analysis, the differences among the calculated



5.1 cube 55

forces are negligible. Moreover, as suggested in [47], it is better to use a coarse
mesh in order to reduce the computational cost and time. In this way only
geometries which provide remarkable results are tested with a finer mesh.

The mesh has been developed using the OpenFoam tools BlockMesh and Snap-

pyHexMesh. The refinement has been performed through some refinementBox
so that the resolution is increased without getting worse the scaling of the cells.

(a) Mesh slice xy plane

(b) Mesh slice xz plane

Figure 5.3: Slice of the meshed domain
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The quality parameters of the mesh are:

Aspect ratio max 1.23925

Non-orthogonality
max 25.267

average 3.99447

Skewness max 0.333363

Table 5.2: Cube mesh quality parameters before optimization

5.1.3 Solvers setting

A crucial parameter to set was the max number of iterations for the primal
solver. They had to be enough to reach a stable solution but not so much to
spread up the computational cost. This last aspect is of fundamental importance
because the max number of iterations, in the worst case, is repeated for each
cycle. In order to define how many iterations set for the primal solver, I analized
the residuals of the simulation (Fig.5.4) performed for the grid convergence on
MeshB. Taking care of the balance between computational time and stability of
the initial residuals, I defined the max number of iterations at 7000 with the
averaging starting from iteration number 1000 for both the primal and adjoint
solvers.

Figure 5.4: simpleFoam residuals on a 2M mesh

The stopping criteria for the primal and adjoint solvers have been imposed
on the residualControl. For the former they are 1e−5 both for P and u. For
the latter the same value but for Pa, ua and nuaTilda.
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5.2 wheel

5.2.1 Domain and geometry

(a) Computational domain

(b) Geometry-Front (c) Geometry-Back

Figure 5.5: Computational domain and geometry for the wheel

The computational domain has the following dimensions: 40× 16× 16 m. The
wheel, instead, is characterized by an external diameter of 0.65 m, a width of
0.24 m and a height of 0.06 m.

5.2.2 Mesh

In order to analyze the grid convergence three simulations have been performed
with three different meshes as for the cube. The solver selected is simpleFoam
with 18000 iterations, which is the primal solver of the adjintOptimisation-

Foam).
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Ncells Fx Fy Fz

MeshA 4228526 7.358 -4.218 0.274

MeshB 8449427 7.320 -3.644 0.344

MeshC 16449918 7.182 -2.712 0.247

Table 5.3: Comparison of the mesh

Observing the values of the force decomposed in the three cartesian direc-
tions in Tab.5.3 and plotted in Fig.5.6, it is easy to note how the differences are
so small to be negligible. The advantage of increasing the mesh resolution is
cancelled by the increase of computational cost also in this case.

Figure 5.6: Comparison of the forces between 4M, 8M and 16M meshes

The optimization loop has been developed on MeshB because, as already
seen in the grid convergence analysis, the differences among the calculated
forces are negligible.

The mesh has been developed using the OpenFoam tools BlockMesh and Snap-

pyHexMesh. The refinement has been performed, as for the cube, through some
refinementBox so that the resolution is increased without getting worse the
scaling of the cells.
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Figure 5.7: Wheel mesh slice xy plane

Figure 5.8: Wheel mesh slice xz plane

In Fig.5.9 and Fig.5.10 there is a focus on the cells near the wheel. This area
is very critical in order to obtain a good mesh because of the edges and grooves.
A few amount of cells here would not reproduce the exact geometry but too
much cells would rise up the computational cost.
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Figure 5.9: Detail in the mesh slice xy plane

Figure 5.10: Detail in the mesh slice xz plane

The wheel geometry has been refined a lot in order to help the convergence
and increase the sensitivities quality. Here I imposed a level 7 which means
that the smallest cell on the wheel is 3.9× 10−3 m.



5.2 wheel 61

(a) Front (b) Back

Figure 5.11: Wheel geometry

The quality parameters of the mesh are:

Aspect ratio max 4.47395

Non-orthogonality
max 39.7099

average 5.19576

Skewness max 1.0613

Table 5.4: Wheel mesh quality parameters before optimization

5.2.3 Solvers setting

In order to define how many iterations set for the primal solver, a simulation
of the wheel baseline running a simpleFoam up to 18000 iterations has been
performed as for the cube.

Figure 5.12: simpleFoam final residuals
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Analyzing the initial residuals in Fig.5.12 can be observed a big difference
with respect to Fig.5.4. Here residuals are less smooth and it is possible to see
how, if in the case of the cube after about 7000 iterations they go to convergence,
here they continue to oscillate around a value.
In order to mitigate this effect an average of the flow parameters has been
performed during both the primal and adjoint simulations.

The stopping criteria for the primal and adjoint solvers have been imposed,
as for the cube, on the residualControl. For the former they are 1e−5 both for
P and u. For the latter the same value but for Pa, ua and nuaTilda. The primal
solver has been set to perform 9000 iterations at the first cycle and 5000 for the
following. The adjoint solver has been set to perform 9000 iterations in each
cycle.
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5.3 boundary conditions

5.3.1 Velocity u

Inlet
type fixedValue

value (41.67, 0, 0)

Outlet
type inletOutlet

value (41.67, 0, 0)

UpperWall type slip

LowerWall
type fixedValue

value (41.67, 0, 0)

FrontAndBack type slip

Wheeel type noSlip

Table 5.5: BC for u

5.3.2 Pressure p

Inlet type zeroGradient

Outlet
type fixedValue

value 0

UpperWall type slip

LowerWall type zeroGradient

FrontAndBack type slip

Wheeel type zeroGradient

Table 5.6: BC for p
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5.3.3 Turbulent viscosity nut

Inlet
type calculated

value uniform 0

Outlet
type calculated

value uniform 0

UpperWall
type calculated

value uniform 0

LowerWall
type nutSpaldingWallFunction

value uniform 0

FrontAndBack
type calculated

value uniform 0

Wheeel
type nutSpaldingWallFunction

value uniform 0

Table 5.7: BC for nut

5.3.4 Spalart-Allmaras variable nuT ilda

Inlet
type fixedValue

value 1.5e-04

Outlet
type inletOutlet

inletValue 1.5e-04

value 1.5e-04

UpperWall type slip

LowerWall
type fixedValue

value uniform 0

FrontAndBack type slip

Wheeel
type fixedValue

value uniform 0

Table 5.8: BC for nuT ilda
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5.3.5 Adjoint velocity ua

Inlet
type adjointInletVelocity

value uniform (0 0 0)

Outlet
type adjointOutletVelocity

inletValue uniform (0 0 0)
value uniform (0 0 0)

UpperWall type slip

LowerWall
type adjointWallVelocity

value uniform (0 0 0)

FrontAndBack type slip

Wheeel
type adjointWallVelocity

value uniform (0 0 0)

Table 5.9: BC for ua

5.3.6 Adjoint pressure pa

Inlet type zeroGradient

Outlet
type adjointFarFiedlPressure

inletValue uniform (0)

UpperWall type slip

LowerWall type zeroGradient

FrontAndBack type slip

Wheeel type zeroGradient

Table 5.10: BC for pa
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5.3.7 Adjoint Spalart-Allmaras variable nuaT ilda

Inlet
type adjointInletNuaTilda

value uniform 0

Outlet
type adjointOutletNuaTilda

inletValue uniform 0

UpperWall type slip

LowerWall
type fixedValue

value uniform 0

FrontAndBack type slip

Wheeel
type zeroGradient

value uniform 0

Table 5.11: BC for nuaT ilda

For further details on the different Boundary Condition type listed refer to [23],
[53] and [39].
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Firstly a cube has been successfully optimized with a loop of 10 cycles. Subse-
quently the focus moved on an isolated, non rotating road car wheel. The first,
among the wheel simulations, has been done with the setting used for the cube
while in the following something has changed.

The analysis has been developed initially on CINECA HPC Galileo (1022 com-
pute nodes, 2x18-core Intel(R) Xeon E5-2697 v4 @2.3GHz and 128GB RAM) and
at the end on Marconi (288 compute nodes, 68-core Intel(R) Knights Landing
@1.4GHz, 96 GB RAM and 6GB MCDRAM).

6.1 cube

6.1.1 Primal and Adjoint solvers

Figure 6.1: Cube primal solver initial residuals

67
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Cycle 1 2 3 4 5 6 7 8 9 10

Iterations
(x/7000)

4449 1981 2710 3454 7000 3522 7000 3119 7000 7000

Table 6.12: Number of iterations of the primal solver for each optimization cycle

Comparing Tab.6.12 with Fig.6.1 a difference among the different steps pops up.
Some steps last all the 7000 iterations while other reach the stopping criteria
before. However the fundamental aspect is that in each step the trend of the
inistial residuals are, for the most, linear.

The “stability” and magnitude of the primal solver initial residuals are fun-
damental for the adjoint solver which is based on the nutSqr value calculated
by the primal. Analyzing Fig.6.1 and Fig.6.2 can be noted how starting from
the end of the third cycle, as the residuals of the prima solver increase, the
residuals for the adjoint solver increase too.

Figure 6.2: Cube adjoint solver initial residuals

As the cycles proceed and the geometry is modified, it’s easy to understand
the strong dependency of the two solvers residuals on the geometry. This is a
consequence of the fact that the mesh has been developed and customized on
the initial geometry so modifying the geometry also the mesh is modified but,
at the moment, there’s not an active control on the final mesh parameters. The
simulation gives quality mesh parameters at the beginning of each cycle but a
way to directly ”control” them hasn’t been implemented yet. As will be better
explained in 6.2 in simple cases this isn’t such a big problem because, even after
the morphing the mesh, it maintains a good quality. In complex ones, instead,



6.1 cube 69

this represents a big problem for the accuracy of the sensitivities and so for the
mesh updating.

The computational time has been of ≈ 12 h using 136 cores with a parallel
calculation.

6.1.2 nutSqr

The objective function, which has been described in 4.2.3 by formulas is here
presented numerically.

Opt. cycle 1 2 3 4 5 6 7 8 9 10

nutSqr 8.22 8.25 8.36 7.94 7.54 7.88 7.74 7.90 7.62 7.12

nutSqrcycle 8.20 8.25 8.36 7.94 7.54 7.88 7.74 7.90 7.62 7.12

Table 6.13: Values of nutSqr and nutSqrcycle to be multiplied by e−2

In Tab.6.13 there are nutSqr, which is the value of the cost function in the
last iteration of each cycle and nutSqrcycle, which is the mean value among all
the iteration of that cycle. A more panoramic view of its value can be seen in
Fig.6.3 where the value in all the iteration of each cycle is presented. Observing
the trend it’s possible to see some positive or negative peaks at the beginning of
each cycle which explain the choice of averaging nutSqr value for each cycle.

Figure 6.3: Objective function nutSqr

Even if in some steps the nutSqr increases because of the already mentioned
limits of the mesh morphing, a decreasing trend is denoted. The initial value
of 0.0820142 is at the end reduced to 0.0712472, so it means a reduction of
13,13% as visible in Fig.6.4.
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Figure 6.4: Objective function nutSqr reductions

6.1.3 Geometry upgrade

Figure 6.5: Cube optimisation results at the end of the 10th cycle

In Fig. 6.6 there will be different views of the morphed geometry at the 10th

cycle and in particular it will be shown the normalDisplacement. Geometry of
cycle n means geometry modified at the beginning of cycle n basing the mesh
movement on the values calculated in cycle n− 1.
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(a) normalDisplacement xz plane

(b) normalDisplacement yz plane

(c) normalDisplacement xy plane

Figure 6.6: Cube optimisation results at the end of the 10th cycle, plane
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6.2 wheel

The wheel has been studied with different settings:

• u = (20 0 0), which corresponds to a suburban speed of 72 km/h (Section
6.2.1);

• u = (41.67 0 0), which corresponds to a motorway speed of 150 km/h
(Section 6.2.2);

• Different nutSqrZone with respect to the one presented in section 4.2.3
(Section 6.2.3);

• The same nutSqrZone as the previous case but decreasing the limitations
on controlpoints movement (Section 6.2.4).

6.2.1 Wheel u = (20 0 0)

Primal and Adjoint solvers

As visible in Tab.6.14 the cycles performed all the iterations. In Fig.6.7 the
trend of each cycle’s initial residuals is no more linear as in the cube (Fig.6.1).

Cycle 1 2 3

Iterations 9000 5000 5000

Table 6.14: Number of iterations of the primal solver for each optimization cycle

Figure 6.7: Primal solver initial residuals



6.2 wheel 73

Figure 6.8: Adjoint solver initial residuals

The computational time has been of ≈ 14 h using 136 cores with a parallel
calculation.

nutSqr

Opt. cycle 1 2 3

nutSqr 5.90 6.51 8.34

nutSqrcycle 2.78 6.59 8.29

Table 6.15: Values of nutSqr and nutSqrcycle to be multiplied by e−4

As show in Fig.6.9 the objective function increases its value instead of reducing
it.

Figure 6.9: Objective function nutSqr
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Geometry upgrade

(a) front view, solid (b) front view, normalDisplacement

(c) back view, solid (d) back view, normalDisplacement

(e) yz plane, solid (f) yz plane, normalDisplacement

(g) xy plane, solid (h) xy plane, normalDisplacement

Figure 6.10: New geometry for the 3rd optimisation cycle. On the left there is the
geometry view while on the right side the normalDisplacement is visual-
ized
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(a) solid (b) normalDisplacement

Figure 6.11: New geometry for the 4th optimisation cycle, xz plane. On the left there
is the geometry view while on the right side the normalDisplacement is
visualized

(a) solid

(b) normaldisplacement

Figure 6.12: New geometry for the 4th optimisation cycle, yz plane. On the left there
is the geometry view while on the right side the normalDisplacement is
visualized
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Fig.6.10 clearly shows how the wheel starts to be deformed in one direction. In
this case, as already explained in section 6.1.3, 3rd cycle geometries means the
geometry modified at the beginning of cycle 3 basing the mesh movement on
the values calculated in cycle 2 and so on. In Fig.6.11 and Fig.6.12 there is the
geometry obtained by the 4th cycle where how it “explodes” giving something
no more linked to a conventional wheel is clearly visible.

As already mentioned at the beginning of each cycle an evaluation of the
mesh quality parameters is performed and, in this case, the “extreme” mesh
movement of cycle 4th is denoted by the following parameters:

Aspect ratio max 7.502e+97

Non-orthogonality
max 179.996

average 67.601

Skewness max 22654.043

Table 6.16: Wheel mesh quality parameters at 4th optimisation cycle

6.2.2 Wheel u = (41.67 0 0)

Primal and Adjoint solvers

As visible in Tab.6.17 the cycles performed all the iterations in this case too.
In Fig.6.13 the trend of each cycle’s final residuals is no more linear as in the
previous case.

Cycle 1 2 3

Iterations 9000 5000 5000

Table 6.17: Number of iterations of the primal solver for each optimization cycle
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Figure 6.13: Primal solver initial residuals

Figure 6.14: Adjoint solver initial residuals

The computational time has been of ≈ 18 h using 136 cores with a parallel
calculation.

nutSqr

The objective function, which has been described in section 4.2.3 by formulas
is here presented numerically.
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Opt. cycle 1 2 3 4

nutSqr 1.78 2.51 2.60 2.48

nutSqrcycle 0.85 2.36 2.57 2.54

Table 6.18: Values of nutSqr and nutSqrcycle to be multiplied by e−3

From the theoretical part I understood that the aerodynamic noise enhances
if speed increases.(Fig.1.6). Comparing Tab.6.18 with Tab.6.15 it has to be noted
that nutSqr increases of one order of magnitude, according to theory. Observing
Tab.6.18 and the nutSqr trend in Fig.6.15 can be seen that after reaching a
maximum level during the third cycle the cost function start decreasing.

Figure 6.15: Objective function nutSqr

Geometry upgrade

(a) front view, 3rd cycle (b) front view, 4th cycle (c) front view, 5th cy-
cle

Figure 6.16: New geometry for the 3trd , 4th and 5th optimisation cycle, front view of
normalDisplacement
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(a) front view, 3rd cycle (b) front view, 4th cycle (c) front view, 5th cycle

Figure 6.17: New geometry for the 3rd , 4th and 5th optimisation cycle, back view of
normalDisplacement

(a) xy plane view, 3rd cy-
cle

(b) xy plane view, 4th cy-
cle

(c) xy plane view, 5th cycle

Figure 6.18: New geometry for the 3rd , 4th and 5th optimisation cycle, xy plane view
of normalDisplacement

(a) yz plane view,
3rd cycle

(b) yz plane view,
4th cycle

(c) yz plane view, 5th cycle

Figure 6.19: New geometry for the 3rd , 4th and 5th optimisation cycle, yz plane view
of normalDisplacement
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Looking at the previous figures (Fig.6.16 - 6.19) has to be noted that there is
an alternation between inwards and outwards movement. The zones that in
the 3rd cycle has been moved in one direction, in the 4th has been moved in the
opposite. It’s the same passing from 4th to 5th cycle. The last cycle, as in the
previous case for the 4th, hasn’t been performed because of the worst geometry
update. The 5th cycle mesh quality parameters, in fact, are the follows:

Aspect ratio max 3.833e+96

Non-orthogonality
max 179.999

average 43.897

Skewness max 273283.056

Table 6.19: Wheel mesh quality parameters at 5th optimisation cycle

6.2.3 Wheel - nutSqrZone

This case has the same setting of the baseline (section 6.2.1) but I modified the
nutSqrZone with a smaller and closer one to test its influence on the results.
The new nutSqrZone is 0.3× 0.6× 0.7 m.

(a) xz plane

(b) xy plane

Figure 6.20: New nutSqrZone for the wheel
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Primal and Adjoint solvers

Cycle 1 2 3

Iterations 9000 5000 5000

Table 6.20: Number of iterations of the primal solver for each optimization cycle

Figure 6.21: Primal solver initial residuals

Figure 6.22: Adjoint solver initial residuals
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Observing Fig.6.22 the non convergence of the adjoint solver is explained by
the instability of its initial residuals.

The computational time has been of ≈ 14 h using 136 cores with a parallel
calculation.

nutSqr

Opt. cycle 1 2 3

nutSqr 1.52 2.01 1.60

nutSqrcycle 1.41 1.87 1.61

Table 6.21: Values of nutSqr and nutSqrcycle to be multiplied by e−5

Comparing the values in Tab.6.21 with the baseline ones in Tab.6.14 has to be
noted how the reduction of the nutSqrZone reduce the nutSqr values of one
order of magnitude.

Figure 6.23: Objective function nutSqr

Geometry upgrade

In this case only the front and back views will be presented because the geome-
try modifications are so small that can’t be seen in pictures.



6.2 wheel 83

(a) front view, 2nd cycle (b) front view, 3rd cycle

Figure 6.24: New geometry for the 2nd and 3th optimisation cycle, front view of
normalDisplacement

(a) front view, 2nd cycle (b) front view, 3rd cycle

Figure 6.25: New geometry for the 2nd and 3th optimisation cycle, back view of
normalDisplacement

Comparing this sensitivity map evolutions (Fig.6.24, 6.25) with the previous
case ones (Fig.6.16 - 6.19) has to be noted how the normalDisplacement has
the same trend passing from a cycle to the next. Areas in blue/red remain in
blue/red there, is no more the alternation seen before but a gradual increasing.

6.2.4 Wheel - free controlpoints

After obtaining a unidirectional geometry modification with the previous set-
ting, the idea has been to correct what was gone wrong maintaining the new
nutSqrZone. Considering that the maxAllowedDisplacement was maintained
equal to 2e−3 as for the first two simulations, the small movement of the geome-
try for the previous case let me think to relax the constraints of the points as in
Fig.6.26.
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Figure 6.26: dynamicMeshDict settings

Primal and Adjoint solvers

Cycle 1 2 3 4 5 6

Iterations 9000 5000 5000 5000 5000 5000

Table 6.22: Number of iterations of the primal solver for each optimization cycle

Figure 6.27: Primal solver final residuals
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Figure 6.28: Adjoint solver final residuals

Using 136 cores with a parallel calculation the computational time reached the
daily limit of CINECA fixed at 24 h .

nutSqr

Opt. cycle 1 2 3 4 5 6

nutSqr 1.52 1.78 1.62 1.98 1,95 1.92

nutSqrcycle 1.41 1.78 1.58 1.84 1.79 1.84

Table 6.23: Values of nutSqr and nutSqrcycle to be multiplied by e−5

Figure 6.29: Objective function nutSqr.



86 results

Figure 6.30: Objective function nutSqr percentage of modification

In Fig.6.29 and Fig.6.30 has to be noted, once again, how the nutSqr value
oscillates cycle by cycle. It increases up to 30% more of the initial configuration.

Geometry upgrade

(a) front view, 1tst

cycle
(b) front view, 2nd

cycle
(c) front view, 3rd

cycle

(d) front view, 4th

cycle
(e) front view, 5th

cycle
(f) front view, 6th

cycle

Figure 6.31: New geometry for the 6 optimisation cycles, front view of normalDis-
placement
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(a) front view, 1tst

cycle
(b) front view, 2nd

cycle
(c) front view, 3rd

cycle

(d) front view, 4th

cycle
(e) front view, 5th

cycle
(f) front view, 6th

cycle

Figure 6.32: New geometry for the 6 optimisation cycles, back view of normalDis-
placement
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6.3 final remarks

Analizing the results of the different simulations for the wheel I noted that they
have in common the oscillation of nutSqr and its non-reduction. The oscilla-
tory behaviour has as consequence the movement , among the cycles, in one
sense and in the opposite. This phenomena which is particularly visible in the
Geometry upgrade sections of 6.2.2 and 6.2.4 where, in the normalDisplacement
maps, same areas have opposite values going from one cycle to the other.

Comparing all the results obtained in the wheel and the cube simulations
there is a substantial difference in the primal solver stability convergence. The
primal solver initial residuals in the cube are more smooth and linear with
respect all the wheel ones.

Figure 6.33: Forces trends of flow around the wheel.

Observing the forces sampling for the wheel in Fig.6.33 is clearly visible how
their trend is not linear and far from convergence. This observation suggested
me that a problem was occurring with the use of simpleFoam and matching
Fig.6.34 and Fig.6.35 is clear how it worked better for the cube than for the
wheel.
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(a) Fx

(b) Fy

(c) Fz

Figure 6.34: Force components of flow around the wheel
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(a) Fx

(b) Fy

(c) Fz

Figure 6.35: Force components of flow around the cube
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Considering that simpleFoam has been set in the same way in both the sim-
ulations the difference must be in the flows.
The cube has edges that impose the separations points so the flow is non-
stationary but more stable than the one around the wheel. Performing a simu-
lation with a stationary solver is enough for the cube but in the wheel case the
simulation can’t converge. This is also the answer to the non optimization of
the cost function. If the primal solver, that calculates the cost function, doesn’t
converge, it gives to the adjoint solver wrong values and so this results in wrong
sensitivities.

The difference in the two flows is understandable also looking at the effect
of reducing the volume of nutSqrZone in sections 6.2.3 and 6.2.4. Speed and
the other parameters are the same of section 6.2.1 but the cost function is
calculated on a smaller and nearer domain so that a minor part of the wake is
caught.





7 CONCLUS IONS

The main objective of this thesis was the developing and testing of a continuous
adjoint method for shape optimization applied to noise reduction. This method-
ology not only provides a sensitivity maps but it foresees the mesh morphing
too. The mesh movement refers on the sensitivities calculated and it is based
on a previous mesh parametrization through B-splines. All the simulations has
been performed in OpenFoam and post processed with Matlab and Python
scripts. This analysis was heavy for computational cost but it has been possible
thanks to CINECA’s HPC. The objective function based on the turbulent viscos-
ity found in literature was defined through some experimental tests. Thus I
analyzed its theoretical background and performed a CFD simulation to show
its correlation with kinetic energy and Proudman acoustic power. A cube has been
successfully optimized with a loop of 10 cycles. Considering the maximum
allowed displacement of the mesh, the noise reduction of 13% with respect to
the initial geometry is remarkable. The same setting has been applied to a wheel
without a satisfactory result. Subsequently I performed three other simulations
with three different settings. I tested the effects of increasing the free velocity
and it resulted in an overall minor cost function values but without an effective
optimization. After noticing the oscillatory movement of the mesh, the next
step has been to modify the cost function domain of integration (nutSqrZone)
which gave a monotone mesh modification but it performed only 3 cycles. In
the end the controlpoints were let free to move. The adjoint solver, thanks
to the constraints relax, resulted to be more stable and so more cycles has
been performed. From the 4th to the 5th cycle the mesh movement direction
changed representing the oscillatory movement. This kind of recurring mesh
movement let me think about the complexity of a wheel wake with respect to
the cube. As already state at the end of chapter 6, I end up stating that simple-
Foam can’t converge for the wheel due to its wake’s high non-stationary behavior.

The approach followed in this thesis is very worthwhile for optimizations.
It reduces the computational cost and the total time with respect to a classic
optimization process based on the running of several simulations interspersed
by manual modifications of the geometry. Thus, the mesh morphing process is
remarkable because not only the simulation gives a sensitivity map but also a
new geometry based on it. In this thesis I highlighted the difficulties of deal-
ing with aeroacoustic optimization based on the adjoint method, providing a
methodology to approach the problem. The results are not satisfactory at all
for complex flows, but I believe that this approach could improve our design
knowledge on aeroacoustic optimization.

93
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7.1 future development

Starting from my work there could be a lot of developments and improvements.
For instance performing a non-stationary simulation on the wheel to better
understand its wake complexity.

As already inquired by [34], other steps could be to apply this method to
an open rim wheel, a grounded wheel or a rotating wheel and study how these
modifications affect the optimization process.

Further interesting work could be the idea of inserting a vehicle geometry
like DriveAer and to check how the wheel arch presence influences the hy-
pothesis done on the wheel wake. In chapter 3 I briefly explained the basis
of computational aeroacoustics, so could be newsworthy to perform a CAA
simulation of the first and optimized geometries; or even better to directly
interface the two kinds of simulations.

Focusing more on the code itself I think that the updating mesh control could
be improved. In order to have a better control and a more realistic mesh modifi-
cation, I developed a Python code to generate control points in a circular crown
(Fig.7.1) instead of a box. The next step could be to find a way to let this new
definition of points link with the points management in the meshDict file.

(a) front view (b) xy plane (c) yz plane

Figure 7.1: Circular crown of control points

This thesis has not the aim to be a turnkey work but a starting point for
aeroacoustic optimization based on the adjoint method.
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[25] Sjöberg, E. “Implementation of Aeroacoustic Methods in OpenFOAM”. MA thesis. KTH
Kungliga Tekniska Högskolan, 2016.
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