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Sommario

Un terzo dei consumi finali mondiali di energia è dovuto al settore delle costruzioni.
Sono quindi molti gli studi e sforzi volti ad incrementare i livelli generali di efficienza
energetica del settore e a limitarne le relative emissioni. Cosa comporterebbe tuttavia
un cambio strutturale dei profili di utilizzo degli edifici, residenziali e commerciali,
nei prossimi decenni? Il settore vedrà un aumento o riduzione netta dei consumi?
L’attuale pandemia da COVID19 ha costretto miliardi di persone a casa, ad Aprile
2020 nel suo apice il 50% della popolazione mondiale si trovava confinata. Il lavoro
remoto, o Work From Home (WFH), è stato largamente adottato e favorito dai governi
di tutto il mondo. In molti paesi OECD i livelli di telelavoro sono improvvisamente
cresciuti dal 10% pre crisi a soglie del 45% della popolazione lavorativa in poche
settimane. Come conseguenza dei cresciuti livelli di occupazione degli edifici, i consumi
residenziali sono cresciuti in tutto il mondo. Al contrario, la progressiva chiusura
delle attività commerciali e degli edifici pubblici ha causato una riduzione dei relativi
consumi. Questa ricerca si avvantaggia dell’esperimento naturale del COVID19 per
indagare il futuro del settore delle costruzioni in scenari di WFH. Abbiamo utilizzato
dati raccolti in tutto il mondo durante i primi mesi del 2020, cercando di individuare
patterns significativi. L’analisi empirica ha permesso di estendere ed integrare il
modello energetico globale per il settore delle costruzioni EDGE. Nello specifico, in
questa tesi abbiamo migliorato il modello EDGE e sviluppato un inedito scenario
di Work From Home, assumendo livelli sostenuti e strutturati di smart working nei
prossimi decenni. Abbiamo poi elaborato gli impatti del WFH sui consumi energetici
settoriali. I risultati mostrano variazioni nette tendenti globalmente a zero, a causa di
effetti di compensazione tra settore residenziale e commerciale e tra paesi in via di
sviluppo e sviluppati. Il modello indica variazioni nette intorno al -1% nel 2050, ma
con grandi differenze tra regioni e con incrementi per il settore residenziale tra il 2 e
il 5% e decrementi per quello commerciale intorno all’8%. Questa analisi può favorire
quindi la comprensione della futura domanda di energia del settore delle costruzioni.

Parole chiave: Work From Home, Building Sector, Smart Meter, COVID19
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Abstract

Around one third of world final energy use is in the Building Sector. It has been
therefore object of extensive research aimed at improving efficiency and reducing
sector emissions. But what if structural changes in the way people live and work in
buildings will take place in the next decades? Will the sector experience increasing or
decreasing consumption trends? The ongoing COVID19 pandemic forced billions of
people at home, roughly 50% of world population at its peak. Working from Home
(WFH) has become widely adopted and encouraged by governments all over the world.
In most of OECD countries WFH penetration suddenly went from levels well below
10% to peaks of 45% of total working population. As consequence of higher occupancy
levels, residential consumption rose all over the world. By contrast, the progressive
closure of commercial activities and only partial occupation of offices and publics
buildings allowed for decrease of energy consumption. This research work aims at
taking advantage of the natural experiment of COVID19 to understand the future
of the building sector under smart work. We exploit data collected for the building
sector from March 2020, with the purpose of extracting useful patterns. The empirical
analysis is used to extend and integrate the EDGE global building model. Specifically,
in this thesis we have improved the EDGE model and developed a novel Working From
Home Scenario, assuming sustained and projected reliance on smart working in the
next decades. We work out the impact of WFH on total sectoral energy consumption.
Results indicate that the energy demand impact of WFH is close to zero, due to the
compensating effect of increased residential consumptions and reduced commercial
ones, and to disparities between developed and developing regions. Model outputs
show net reductions centered around -1% for 2050, but with great variations across
regions and net increases for the residential sector of about 2 to 5% and decreases
for the commercial of about 8%. This analysis can help inform the future of building
energy demand.

Keywords: Work From Home, Building Sector, Smart Meters, COVID19.
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Extended Abstract

Scope of the work
The main objective of this research was to establish to what extent scenarios of
extensive Work from Home (WFH) could affect future energy consumption patterns
and relative emissions of the Building Sector.

The study was inspired by the ongoing Covid 19 pandemic. Most of the data and
of consulted literature was therefore produced after March 2020. The idea was to
make advantage of this unprecedent amount of data to explore correlations between
WFH and energy consumption, finding patterns to project possible future scenarios
in which WFH begins being structurally adopted. [1, 2] The strict measures imposed
by world governments in attempt to slow down the contagious curve forced billions of
people at home. Industries and offices were closed, and work from home began being
massively adopted to secure business continuity. [3] The increased number of people
staying at home, translated in higher levels of residential building occupancy, and led
to an increase in energy consumption. By contrast, the reduced presence of personal
in offices resulted in a net decrease of energy consumed by the commercial building
sector. [4, 5]

A vast majority of collected data reported however “raw” energy consumption
variations for residential and commercial building sectors. Possible correlations with
WFH penetration levels, as reported during Covid 19 pandemic, were initially hidden,
due to a simple constatation. Confined population cohort included both workers and
the rest of population. The same occurred for the commercial sector, forced closures
affected not only “teleworkable” sub sectors but also those normally not subjectable
to WFH, as food retail shops.

Methodology
EDGE Building Energy Demand GEnerator Model was chosen as modelling platform.
It was originally developed by the Potsdam Institute for Climate Impact Research,
and subsequently refined at Politecnico di Milano. In a thesis work of R.Davide (2018)
was investigated the role of building policies for long term efficiency, and upgraded
the computation of U-Values in the model. EDGE is a bottom-up, statistically-based
simulation model, which is multi-regional and allows for long term projections. The
model projects buildings energy demand across 11 regions and 5 end-uses. [6] In
this work the fundamental structure of the model was maintained; updates were
made to enhance EDGE with the new correlations and variables needed for a WFH
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implementation. Nine principal variables were added and the model was upgraded to
provide energy insights also for the commercial sector. First was identified the number
of home workers around the world (WFH level) according to the narratives of 5 different
SSP scenarios, and then modeled its evolution in the future with different methods.
Then, correlations were established between WFH levels and energy consumption
variations for Residential and Commercial sectors.

Work From Home
There have been many attempts to measure the percentage of workers that fully
operated from home during the pandemic. Dingel-Neiman [7] and International
Labour Organization [3] provided a comprehensive review of those methods along
with a methodology to calculate the work from home potential of countries in the
world. The method adopted by Dingel Neiman used occupational descriptions from
the Occupational Information Network (O*NET) to estimate the probability for an
occupation to be done remotely. To produce estimates for other countries than US
a similar use of the US O*NET surveys was done for the International standard
classification of occupations (ISCO). Final results showed a clear positive relation
between GDP per capita and the shares of job that can be done from home, as was
also confirmed by a World Bank study. [8]

International Energy Agency estimates, basing on Dingel-Neiman and ILO works,
that around 20% of jobs globally could be done from home, with values ranging
from 10% in Sub Saharian Africa to 45% in wealth EU countries. IEA also confirms
the positive correlation between WFH potential and GDP cap. [9] To transform an
extensive variable, the share of teleworkable jobs from Dingel Neiman, into an intensive
one, the number of home workers, and make it projectable, “ETPr” Employment
to Population Ratios were included. ETPr show the percentage of working age
population, aged 15 to 65, actually employed. Once obtained the number of workers
for a certain geographical region in a year, we derived the number of Home Workers by
multiplying with Dingel Neiman coefficients. ETPr were provided by World Bank while
population projections by IIASA’s World Population Program [10]. The two datasets
were matched to produce as output five different SSP Shared Socioeconomic Pathways
Work From Home penetration scenarios. Another method adopted consisted in an
“upgrade” of the Dingel Neiman method, done by adding more variables to the WFH
interpolation. The exploitation of the full potentials of the IIASA dataset allowed for
a WFH calibration based also on educational and age profiles, following the recent
evidences from World Bank. As modeled in this study, Work From Home depends
therefore from GDP per capita, higher values leading to higher overall teleworkability,
and from population composition and macro Labour Market structures.

Energy Consumption Variations
Data were collected for variations of both Energy Carriers and of End Uses. EDGE’s
architecture operates by defining five “Useful energy demands”; Cooking, Water
Heating, Space Cooling, Space Heating and Appliances and Lighting. They depend
on Socio-economic and climatic drivers such as Income, Population, Pop Density,
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Figure 1. WFH modeled from Dingel Neiman correlation

Cold Degree Days and Hot Degree Days. Those drivers were kept unaltered. Instead,
changes were necessary for the End Use generating functions. The assumption is that
Work From Home alters only End Use demands and not the underlying Energy Carrier
mix. For the Residential Sector it was possible to identify specific WFH variations for
each End Use, not so for the Commercial Sector.

By applying both End Use and Energy Carriers variations to an End Use-Energy
Carrier Matrix consistency was checked. This was necessary as reported increases
in End Use consumptions were mostly obtained by surveying or simulations, while
Energy Carriers variations were more trustworthy because reported by energy providers
themselves.

Energy Carriers Residential Variations
As anticipated, most of literature did not consider explicitly working from home during
COVID19 pandemic, energy consumption variations were reported as consequences of
confined population staying at home. [4, 11] Still, in order to assess general order of
magnitudes of WFH deltas, the relevance of these studies was high for the purpose of
the research.

However, to develop accurate WFH scenarios, data were needed for increases of
energy consumption specific per home worker. One study, made by Octopus Energy, a
British Energy Provider, tried to answer that question by analyzing domestic electricity
and gas consumption profiles of 115’000 of its clients, through access of their smart
meters [12] . Two weeks were considered, before and after the Shelter in Place (SIP)
national order of 16 March 2020. Octopus found 30% of its clients on WFH with
specific electricity increases per home worker ranging from 13% to 30% (1-2 KWh),
and gas increases of 20%.

The approach chosen by Octopus Energy was tested and reproduced on a sample
of 1230 clients of a large scale multi-utility group-Italy and restricted on Electricity
uses only. The two work weeks considered were the one from 24 to 28 February 2020

xi



Extended Abstract

(Week1) and the one from 16 to 20 March 2020 (Week2). Italian Shelter In Place order
was effective the 8th of March. [13] Temperature differences between the first and
second week were on average of about 1°C. The signal, having a daily hour resolution,
was then adjusted to isolate the increase due only to clients performing home working.
First, observing window was limited to hours from 9am to 5pm (working hours),
then consumption profiles were binned, and two cumulative distribution curves were
obtained, one for the week pre-lockdown and another with it in place.

P was defined as the percentage of clients working from home and Q their increased
electricity consumption. These parameters, applied to the Week1 distribution curve,
were varied so to minimize the Kullback Leibler divergence between the newly generated
distribution curve and the Week2 one. The optimum is to be found with 2 parameters
constrained Lagrangian optimization methods and results showed similarity with
Octopus findings. Around 20% of clients were estimated being in WFH with specific
increases in electricity consumption ranging from 1 to 2 KWh, equal to about 15%.
Another method adopted instead pointed to higher increases in consumption, between
25 to about 35%.

Figure 2. RES: KL, 100’000 simulations, from 1215 clients

End Uses Residential Variations
16 different data points were found from an extensive literature review and used for
the calibration. As anticipated before, most of papers retrieved data for increments in
End Use demands due to Shelter in Place orders basing on surveys or simulations.
The importance of a validation through Energy Carriers was therefore crucial. Finding
specific increments per home worker was not possible, and less needful. In fact,
variations were most of the cases already framed as increments in frequency of activity,
eg. 50% more Cooking meant adding around a meal a day. Apart from Cooking,
which increments varied from a +35% (Australia) to +100% (Serbia) all other End
Uses showed concordance and acceptable variance throughout papers.
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Validation Matrix
The validation of increments was performed on UK, after retrieving its End Use-Energy
Carrier Residential Matrix from Eurostat [14], where the i-rows represent 5 End Uses
and j-columns 5 Energy Carrier. The choice of UK as calibrating country was due to
the unique availability of both specific Electricity and Gas WFH increments. Moreover,
the presence of disturbing signals coming from possible undetected increments in other
energy carriers could easily be excluded. Gas and Electricity in UK are in fact by
far the most used energy carriers, Gas 63% and Elec 24%. Space and Water heating
account for 80% of residential energy consumption (63% SH and 15% WH) and are
provided around 80% by gas (75% SH and 85% WH). Applying a delta of +22% for
Electricity and +20% for Gas and the vector of average End Use increments found
from literature, errors were reduced to 1%. Overall the calibration showed stability
from perturbances.

Commercial Reduction
Finding accurate data for reported decrease in consumption due to enforced lockdowns
was not an easy task. The magnitude of deltas varied a lot in relation to local restricting
measures concerning commercial sectors. Some countries did not implement strict
WFH programs, others did not order the closure of most of commercial activities (as
Australia) and therefore an overall signal interpretation was not possible. As done for
the Residential sector, a general literature overview was nevertheless accomplished, to
define lower and maximum ranges. 19 Data points were in total collected.

The search for data was then restricted to papers providing analytics for commercial
subsectors related mostly to Real Estate and Public, the main sectors of interest for
a WFH scenario. The choice of six data points allowed the calibration of a curve of
“Energy Reduction” (mostly Electricity) as function of WFH potential. The correlation
is linear with intercept in 0. An office WFH level of 80% pointed to average energy
savings of only 20%. Such low saving performances occurred mostly because buildings’
HVAC systems, Elevators, Emergency Lights etc. still must function even if no personal
is physically on site. [15] Of great contribution were three data points provided by
a simulation performed by researchers at Dalarna University (Sweden) of a District
in Sweden (2020), aimed at understanding the impact of different lockdowns levels
(and therefore WFH potential) on Residential and Commercial local consumption
patterns. [16] Another data point came from own retrieved Electricity Bills (4 years
data) of an Office building located in Verona (Italy) hosting 80 workers. Monthly
consumption data were provided along with registered WFH levels, which reached a
peak of 70% in April 2020 and an associated Electricity reduction of 27%.

Most of literature highlighted the need of buildings adjustments to account for
structural higher levels of WFH. With such efficiency improvements, eg. less energy
intensive HVAC water circulating systems or zoning of lighting, expectations were
of energy reductions of at least 50% for WFH levels of 80% or more. [17,18] These
considerations allowed for the construction of a “future” commercial sector energy
reduction curve, function of WFH potential. Data were available and collected only
for Electricity and modeled in EDGE as a uniform reduction across all End Uses.
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Given the strong prevalence of Electricity as Energy Carrier in the commercial sector,
such forced approximation was considered acceptable.

Commercial Residential Separation
The EDGE model combines Residential and Commercial demands; End Use functions
are dependent on Floor Space, which is projected separately for the two sectors but
then summed before serving as input for End Use equations. I split the demand by
retrieving IEA data from ETP 2017. [19] Data were available for 12 World regions,
that mostly overlapped with EDGE ones. They originally extended to 2060 and were
projected through a Damped Holt’s method up to 2100. Commercial energy reductions
coefficients had to be multiplied by the total amount of Commercial Energy related
to WFH. In fact, subsectors like Food, Retailing or Lodging had very low WFH levels
and their relative sectorial energy consumptions were not accounted. The calibration
was made first on US and then on EU, India, Singapore and Australia, returning
shares ranging from 40% to 50%. For US energy consumption data were collected from
the EIA database [20] and then combined with respective WFH sub sectorial shares
as found by Dingel-Neiman. As first approximation the binding method was based
upon the definition of a threshold level of WFH, equal 14%, greater which its sub
sectorial energy was included. A second method instead went through the analysis of
the World Input Output Matrix (WIOD) modified by the European Commission Joint
Research Center to account for energy cross sectorial flows (NAMEA matrix). [21]
Results obtained with NAMEA confirmed trends observed with the first method.

Main Results and Conclusions
A Monte Carlo simulation was performed to account for the variability of the nine
principal parameters given as input to the model. The probability profiles were
normal distribution centered around the average of deltas found from literature and
own research. Commercial reduction curve had assigned a probability distribution
centered in a “medium energy savings” scenario, with a low case scenario equivalent
to the linear curve registered during COVID19 pandemic and a best case scenario as
prospected in case of structural higher levels of WFH. A sensitivity analysis performed
on the variables showed that 4 out of 9 parameters influenced most model output,
in particular, coefficients related to WFH levels and to commercial reduction curves.
Including as extra variable the set of coefficients for commercial and residential
separation it was found to be, by far, the most influencing parameter affecting model
output. Due to their strong disturbances in output induced by even small variations
(as max. linear identity magnification) they were not included in the Monte Carlo
simulation.

Across all 5 SSP scenarios, net variations due to Work From Home are projected to
be slightly negative by 2050, with more pronounced trends by the end of the century.
In all scenarios residential final energy is expected to increase by 2050 from 2% to 5%,
while commercial final energy to decrease of around 8%, with the greatest reductions
prospected in a SSP5 scenario, particularly if extended up to 2100. WFH should
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therefore impact globally, at net near zero (-2%) by 2050, considering building sector as
a whole, due to the compensation effect between commercial and residential sector (in
line with available literature). Analyzing however regional variations strong differences
appears in magnitude of changes, between developing and developed countries. Results
indicates that global net zero is also reached through a compensation between their
relative variations. In all scenario, particularly in the SSP4 “Inequality” and in SSP3
“Regional Rivalry” developing countries show net variations near zero or slightly
positive, while developed countries are denoted by net reductions of around 3% by
2050. This trend is mostly caused by the higher shares of Residential End Use in
Developing countries, due to lower commercial penetration and climatic differences.

A breakdown of Deltas by End Use and Energy Carrier highlights the net positive
contribution of Cooking and the strong negative one of Appliances and Lighting. The
former due to its unique presence in the Residential Sector while the latter due to its
prevalence in the Commercial sector. Space Cooling share in the residential sector
is projected to increase constantly throughout the century in developing countries,
and therefore its contribution span between slightly negative to positive values from
around the 50’s.

Lastly, we considered an extreme case of a global Lockdown COVID19 scenario.
Results showed reductions for the commercial sector of around 20% and increases in
residential sector of around 10%, leading to a net increase of final energy required by
the building sector of 0 to 5%. These numbers are comparable with the ones obtained
by two studies (Nature Climate Change-2020 [4, 11]), that indicated commercial
reduction in emissions of 20 to 50% and residential increases of 10 to 20%. This
provides confirmation of the accuracy of the calibration.

Overall, these results provide insights for thinking about future scenarios of energy
demand in the building sector which account for change of habits and technology.
A natural extension of the work should include the transportation sector. Although
transport is not included in EDGE it could contribute to significant energy and
emission reductions as commuting is reduced due to WFH. IEA estimates avoided
CO2 emissions due to less commuting being 3.6 times greater than those incremented
in the residential sector. [9] If this contribution was to be artificially included in the
model, net savings could reach 4 to 5% by 2050.
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(a) Res. Comm. Net deltas % (b) Regional differences

Figure 3. Final Energy variations
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Chapter 1

Introduction and Motivation

“No challenge poses a greater threat to future generations than climate change.”
United States President Barack Obama

1.1 General Context
Climate Change constitutes one of the biggest challenges humanity has ever faced.
In recent years, all major international forums saw it included in their agendas. It
has become subject of strong political discussions and motive of action for millions of
young students all around the world.

Most importantly, finance investments founds and corporations have begun to
reduce constantly their exposure toward fossil fuels, switching to greener portfolio
partially or totally. Climate Change is now a matter of National Security [22] and
existential level threat for many insurance firms and economic actors. [23] In 2019 US
Pentagon reported in a document [24] , detailing risks for US world strategic assets:
“The effects of a changing climate are a national security issue with potential impacts
to missions, operational plans and installations, DOD must be able to adapt current
and future operations to address the impacts of a wide variety of threats and conditions,
to include those from weather, climate, and natural events.” In September 2020, for
the first time a US Federal market regulatory agency, the C.F.T.C (Commodity
Futures Trading Commissions) concluded in a report [25], initiated by the Trump
administration, that “A world wracked by frequent and devastating shocks from
climate change cannot sustain the fundamental conditions supporting our financial
system.”

Scientific community is therefore increasingly asked by governments and institu-
tions to address Climate Change mitigation and adaptation issues. United Nations
Intergovernmental Panel on Climate Change (IPCC) was established in 1988 and has
so far produced five assessment report that constituted scientific basis for political
resolutions at United Nations Framework Convention on Climate Change (UNFCCC).
IPCC has currently 195 members from all over the world but thousands of researchers
contribute to its reports, the last one being currently prepared and expected for release
in 2022. IPCC reports do not constitute original research per se, their purpose is to
make extensive and methodologically accurate reviews of published literature, and
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Chapter 1. Introduction and Motivation

to interface with policymakers by including a special summary reports which goes
through a review and approval of delegates of more than 120 countries.

IPCC fifth Assessment Report AR5 [26] included critical contributions for UN-
FCCC’s Paris Agreement 2015, an international climatic and economic treaty that
set ambitious goals such as limiting global average temperature well below 2°C above
pre-industrial levels. IPCC highlighted the advantages of pursuing efforts not to
surpass a 1.5°C limit, for world ecosystems, human development and the containment
of natural hazards. Humanity is estimated to already having caused an increase
of 1°C above pre-industrial levels and it is currently depleting its carbon budget
at a rate of about 42 GtCO2 per year. Remaining carbon budget in 2020 to not
exceed a 1.5°C warming with a probability of between 66 to 33% is estimated to be of
230-440GtCO2, which is equivalent to between six and 11 years of global emissions at
current rates. [27, 28]

The most relevant sources of greenhouse gases emissions are related to agriculture
and land-use, industry, transport and buildings. Analysis of global carbon cycle for
2019 show that between 33-37 Gt CO2/yr are emitted from fossil fuel industry, while
land-use change (deforestation) are responsible for an additional release of 3-8 Gt
CO2/yr. CO2 sinks are instead related to the atmosphere, which keeps 44% (18
Gt CO2/yr) of these emissions, while oceans absorb 22% (7-11 Gt CO2/yr) and a
remaining 33% (9-14 Gt CO2/yr) is absorbed by the Earth biosphere. Global fossil
CO2 emissions have risen steadily over the last decades and had shown no sign of
decline until the world spreading of COVID19 pandemic in 2020. [26]

Temporary reduction in emissions registered during COVID19 pandemic of about
7% are indeed in line with the required rate of decrease. However, rather than casting
lights of optimism these data unveil the extent in magnitude of structural changes
needed to stay successfully below IPCC’s indicated thresholds. Moreover, history
shows the recurrence of energy intensive recovery plans that are often deployed as
economic stimulus after big-scale crisis events. More than ever now are required
economic recovery efforts targeted to drive emissions down, mainly through the
financing of high potential green investments. [29]

Reality is that chances of limiting temperature increase of 1.5°C are so low that
projections are of already exceeding the threshold within 10 years, with a central
estimate of between 2030 and 2032 [27], if emissions are not rapidly reduced, and
to exceed the threshold of 2°C in 30 years, in a scenario of modest mitigation, as
prospected in the latest IEA World Energy Outlook.

The dangers the world is facing from exceeding the threshold levels indicated
by IPCC are mostly due to the high sensitivity of physical systems to temperature
increases. Some cascade effects and tipping points can consequence in extreme impacts
and yet their activation mechanisms are still not well understood. They are simply
“too risky to bet against”. [30] These eventualities should justify the variety of economic
efforts and policies needed to reduce emissions as much as the state of art of technology
allows.

What makes so demanding the task of reducing emissions at the required extents
in such a short time is the complexity of the process as a whole. Technologies are
often available and in place, but strong inertia in sectorial conversions, low political
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Figure 1.1. Non linearity of climate risks, IPCC SR15

consensus and rivalries between world regions have often dumped, halted or reversed
green economy conversions. A well-known behavior that makes most of climatic treaty
so ineffective is the one of “free riding”, as stressed by W.Nordhaus (Nobel Prize in
Economic 2018), who address it as principal cause of failure in setting effective carbon
taxes over the world. [31]

The reduction of GHG emissions requires acting simultaneously on many sectors,
one of prioritizing criteria is their contribution to total emissions. Energy related
emissions accounted in 2016 for 73% of global GHGs. Singular biggest contributors
were Industry sector with a share of 24%, Building sector with a share of 18% and
Transport with a share of 16%. In Building sector a breakdown between Commercial
and Residential sector see the former responsible for 40% of Building emissions and
the latter for the remaining 60% (2016). With a focus on Energy and Process related
emissions IEA 2019 World Energy Statistics and Balances identifies Building and
Construction sector as first contributor in 2018 with a share of 39% of energy emissions
and of 36% of final energy use. Industry sector comes second with a share of 31% of
total energy emissions and 32% of final energy and last is Transport sector with a
share of 23% of energy emissions and 28% of final energy consumption. [32]

However, as highlighted in recent IEA World Energy Outlooks, the path for a
Sustainable Development Scenario and even more for a Net Zero Emissions by 2050
scenario, needs a strong implementation of many efficiency measures across all sectors,
that are projected to contribute in total for about 44% of cumulative CO2 emissions
savings. It is therefore important to adequately characterize and study in details each
of these efficiency improvements, despite their fractional modest contributions. [32–35]
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1.1.1 The Building Sector
Decarbonization of the Building sector is critical to achieve the ambitious goals agreed
by world national delegations at the Paris Agreement of 2015. Overall (including
embodied emissions) the sector contributes to almost 40% of energy related emis-
sions, and improvements could contribute to mitigation goals in a cost effective way.
According to most models the savings in energy costs typically more than exceed
the investment costs. [36,37]. IIASA GEA Global Energy Assessment assess that if
today’s best practices in construction were deployed cumulative energy savings would
near triple in economic value the costs of realization. [38]

IEA identifies as most important actions needed to decarbonize the sector:

• Switching to renewable energy sources

• Improving building design, while increasing thermal comfort

• Increase the efficiency of heating, cooling, ventilation systems and of appliances
and equipment.

Up to now however, registered emissions trends for the sector show persistent
increments. Final energy demand in buildings in 2018 rose of 1% from 2017, average
increases being of around 1%/yr, with a first time increase below 1% in 2019 due
mostly to milder weather. These increases sharply contradicts world goals of 7,6%/yr
emissions reductions, needed to not exceed a 1.5°C warming. Moreover the rate of
improvement in sectorial energy intensity has also slowed down, reduced to half the
average of the previous year from 2010. [39]

In 2018 a total of 136 countries mentioned buildings in their Nationally Determined
Contributions (NDC), that were due to revision in 2020. The importance of the sector
to tackle Climate Change and even foster national economies through incentives for
building renovation was recognized. Yet their NDC lacked specific descriptions on
how to decarbonize the sector and reverse the positive emissions trends.

Building stock is set to double by 2050, with some studies pointing to increases
in floor area of over 150% by half of the century, but this increase is not necessarily
related to an increase in final energy consumption; according to GEA “efficiency”
pathway heating and cooling energy uses could decrease of about 50% compared to
actual level by 2050 if all energy savings measures were deployed. In a scenario where
no energy savings policies are deployed, forecasts see increases in consumption of about
75% compared to 2010 levels, with some models projecting increases of over 150%. It
is therefore clear the importance and urgency of adequate policies and regulations for
the expanding building sector.

The 8% net increase in final energy demand that the sector has experienced over
the past ten years is mostly due to an increase in floor area/occupancy (+12%)
and population/building use (+4%). In the residential sector around 57% of energy
demand came in 2018 from heating and cooling, it is projected to increase of around
180% by 2050 in a scenario of frozen efficiency. Appliances had a share of 20%, Water
Heating of 16% and the remaining 7% was consumed for Cooking and Lighting. [36]
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Figure 1.2. Building Final Energy Demand projections, IPCC AR5-Ch.9

1.2 Research Question
“Covid 19 Pandemic, a mass experiment for the climate”

(BBC-Climate Change 25 June 2020)

Humanity is currently facing one of the biggest challenges from the end of World
War Two. The ongoing COVID19 pandemic, declared by World Health Organization
on 11 March 2020, has already caused, one exact year after, the death of over 2.5
Millions people and the greatest recession the world had ever experienced from the
Great Depression of 1929. First quarterly GDP variations of 2020 indicated an
astonishing world average of -17%. [40]

To contain the spread of the virus world governments had to put in place unprece-
dented restrictions on travel and work. Google mobility trends indicate that in April
more than 80% of the world population, 4 billion peoples, reduced their travel by
more than 50%. At its peak, on 3 April 2020, 90 countries had already called for
confinement of half of humanity. More than 3.9 billion people were confined at home.
Correspondingly, the fraction of global CO2 emissions produced in areas subjected
to confinement reached 89%. The 7 of April 2020 was estimated having the highest
daily change in CO2 emissions for the period from 1 January to 30 April 2020; in
fact emissions decreased that day of 17% (-11 to -25%) and reached their homologous
levels of 2006. [4]

Some countries reached maximum daily decreases of about 26%. Confinement
orders thereby drastically altered patterns of energy consumptions, proportionally to
the severity of country’s lockdowns. [41]
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Figure 1.3. Emission reductions due to first lockdowns, Le Quéré et al.

Some studies [11] tried to measure changes in “activities” and emissions of various
sectors as function of the confinement levels. By retrieving anonymized GPS data
from Google and Apple databases, referring to 4 billion of individuals, it was possible
to deduce estimates for specific emission variations. Surface transport saw decrease
of related emissions from 40 to 70%, Industry from 30 to 50%, Residential from 5 to
20% and Public/Commercial from 20 to 60%. Another study [4] obtained different
results with different methods; input data included for the power sector European
electricity trends and coal use data, traffic data for the transport sector, in a similar
way to the first study, and smart meter data for the residential sector. Variations
for the commercial sector were inferred. Their results show emission reductions for
the Power sector from 2 to 14%, for Industry from 10 to 30%, for surface Transport
from 30 to 50%, for Public and Commercial from 8 to 30% with a median on 20%
and increases for Residential sector from -1 to +7% with a median on 3%.

Table 1.1. Emissions variations during 2020 initial lockdowns

Paper Public and Commercial Residential Industry Transport Power
Le Quéré, C. et al. [4] -20 (-8 to -30) 3 (-1 to 7) -20 (-10 to -30) -36 (-28 to -46) -7,4 (-2 to -14)
M.Forster, P. et al. [11] -50 (-20 to -60) 15 (5 to 20) -40 (-30 to -50) -50 (-40 to -70) -

Even if the registered changes in emissions are entirely due to forced reductions
in energy demand, the overall effect may provide quantitative indications of the
potential impacts and limits that strong structural changes could deliver if persistent
and implemented in the future. Working from Home above all has the potential
of being structurally adopted by countries all over the world in the near future, as
demonstrated by multiple studies. The extent of disruptions caused by the pandemic
affects not only the technical and energy demand sides but even more prominently
involves behavioral aspects, induces legislative frameworks to adapt at new scenarios
and has the potential to accelerate changes in the job market and economy sectors
that were already taking place. [35, 42]

World nations are now (March 2021) struggling to vaccinate most of their pop-
ulation in the shortest time allowable, to be ready for the great economic recovery
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that will be financed with unprecedented investments worth trillions of dollars. The
biggest challenge for the World is to succeed in combining economic stimulus with
sustainable investments. [43] The next ten years will be crucial to avoid exceeding
the temperature thresholds limits of 1.5°C and 2°C set by the Paris Agreement of
2015. Emissions in late 2020 were seen beginning to rebound and so far “potentially
damaging contributions” label the stimulus packages of 21 major economies, including
United States, China and India. [44] Reality is that the longer-term shape of the
recovery is yet to be defined and most remain in the hands of policymakers who must
prioritize fundings with neutral or “friendly” contributions to carbon budgets.

The contribution of this research in an optic of first approach to the phenomena is
thereby to verify if Working from Home (WFH) can have a “friendly” or “damaging”
contribution to carbon budgets, and analysis will be restricted to the Building Sector.
If found to be overall energy saving, excluded others conveniency parameters, WFH
could be included among those measures that policymakers should favor in the next
years to comply with climate treaties. It must be highlighted that there is few or no
literature published yet, that try to frame a world energy-Work From Home scenario
as is done in this study. There is therefore space for many improvements, as will be
mentioned further in the document, and as is allowed by the flexibility of the EDGE
model upon which are based all the simulations.

1.3 Thesis Structure
The structure of the thesis report is the following:

• In Chapter 2 is performed a general description of Integrated Assessment Models
(IAMs), with a focus on the Energy Demand GEneration Model (EDGE) which
was used in this research.

• In Chapter 3 is presented the sequence of assumptions and changes to the EDGE
model that allowed for the simulation of a Work From Home Scenario in the
Building Sector.

• In Chapter 4 results from a Monte Carlo simulation are presented along with a
sensitivity analysis performed on the new model inputs. In a final section are
summarized the key findings.

In the next page is presented the general structure of this research, where blue-
coloured rectangulars represent source of data.
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Chapter 2

Methods

“The purpose of IAMs is not to figure out what is going to happen in the year 2100,
rather to figure what kind of steps we should do today, but that is impossible without

long term projections.” [45]
William Nordhause (2018 Nobel Prize in Economic Sciences, received for integrating

climate change into long-run macroeconomic analysis)

This chapter has the following paragraphers. Section 2.1 briefly presents a summary
of how Integrated Assessment Model perform world energy simulations. Section 2.2
introduces the set of Shared Socioeconomic Pathways upon which is based EDGE and
this research. Section 2.3 introduces Building Modeling as deployed in EDGE, with a
focus on sections of particular interest for this research.

2.1 IAM and global supply-demand energy models
IAMs were developed to provide long term analysis and strategies, in particular for
climate change mitigation. They are designed to favor science-based planning, with
the purpose of understanding how human development and societal choices may
interact and affect the natural world. The suffix “Integrated” signals that they include
contributions from different sciences, needed to grasp the complexity of Earth systems.
Most of IAMs include sub models that frame assigned phenomena. Energy models are
fundamentals blocks, as they directly relate to GHGs and given the relative weight of
energy related emissions. Some models are even more specific, as they model only
particular sub sectors. [46] It is the case for Building Energy models, that project
with high levels of detail energy demand and other indicators.

In order to reduce emissions in the Building Sector, inverting actual increasing
trends and reaching reductions of 7%yr (1.5°C scenario), it is needed a punctual
modeling of principal drivers for buildings energy demand. All principals Building
energy models try to provide the following insights:

• Estimations of baseline energy demands, through a review of existing building
stocks, with different spatial resolutions. They can be country specific, regional,
or having different aggregation criteria.

9
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• Estimations of the impacts that different policies and technological improvements
could deliver on the sector, with different spatial and time resolution. Projections
are often considered reliable for mid of the century while those extending up to
2100 bring increasing levels of uncertainties.

• Identification of the effects of emission reduction policies on indoor comfort.

Results provided by this groups of models, and IAMs in general are not to be taken
as exact projections of the futures, but rather serve to policymakers as indications
of which future scenario actual trends could lead to, and which countermeasures
should therefore be implemented. Building models projections should help politics
and planner to understand better the dynamics and fundamentals needed to reduce
emissions. Some adverse or beneficial processes results evident only when long term
projected and when provided with assumptions coming from other sectorial models.
It may be the case of energy demand projections taking into account population
projections produced by socioeconomic models.

Modeling of energy demands require a careful identification of the main drivers
and their selection as model inputs, with criteria that are often based upon their
associated confidence levels. Two main approaches can be identified:

• Top Down: they start from estimates of energy consumptions for the building
sector, and the review of a set of chosen variables allows to find structural
correlations.

• Bottom Up: they require the implementation of chosen “artificial” drivers,
energy demand for singular units is then calculated and results are aggregated
at the desired level. Iterative calculations allow for the calibration of equation
blocks.

EDGE Model is a Bottom Up approach, a brief review of those models is provided.
Main implementations of Bottom Up models are the following:

• Statistical Models: they are based on historical datasets and regression
analysis, with the purpose of linking Building final energy demand to End Uses
and Energy Carriers, and of estimating future levels of demand in relation to
variations of inputs. They are accompanied with relevant degree of uncertainty
but can incorporate significant temporal dimensions and spatial extensions.

• Engineering (thermal) Models: widely used by scientific community, they
account explicitly for energy consumptions of building structures. The set
of input parameters is composed by a wider variety of thermal coefficients,
accounting for specific efficiency performances or environment boundaries. They
can offer more accurate calculations, however they are rarely scalable (national
or regional level) and less flexible.
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2.1.1 Managing uncertainties in inputs
Variables are often highly intercorrelated and characterized with both temporal and
spatial dependence. Temporal resolution is often yearly based in global models, while
regional resolution can be increased at willing. As consequence, global analysis must go
through a careful review of parameters, to keep under control uncertainties. Increasing
complexity does not always increase neither the quality of results nor their informa-
tional contribution. Moreover unjustified complexities can harmer reproducibility
of the model and paradoxically augment the possibilities of injecting unwanted and
undetected dynamics in it.

The choice of a restricted set of well documented hypothesis can therefore be as
effective as the collection and interpretation of high resolution data. Building sector in
particular is affected by intrinsic difficulties in modeling due to the following reasons:

• Regional dependency of construction materials, techniques, regulations, floor
space and environmental feedbacks.

• Behavioral issues substantially affect building energy uses. In fact it has been
estimated that factors of 3 to 10 times differences may exists in residential
energy use for similar dwellings with same occupancy and comfort levels, and
10 times difference in office buildings. [36] Detailed data collection would cost
and require considerable amount of time and therefore is signaled the lack of
adequate datasets for bottom-up analysis. [36] Databases do not often provide
comprehensive capture of real building energy uses, and exceptions are confined
to few cases.

Behavioral and lifestyle issues are crucial drivers of building energy use and
quantitative modelling of the impact of future lifestyle show that, particularly in
developed countries where specific consumptions are high, margins for deep reductions
are possible. A comprehensive acknowledgment of their impact on Building sector
would affect also designing stages, as was demonstrated. The risks for example of
defining universal standards of “high efficiency”, in reality culturally biased, could
lead to local increases in energy consumption.

However studies that include reviews of behavioral factors are scarce. This research
has also faced the needs for a better understanding of cultural drivers. Uncertainties in
building models may derive also from a variety of sources, descripted in [47]. Scientific
community has therefore developed a set of scenarios, that should contribute in
limiting uncertainty in models. They also offer a common ground of discussion and
facilitate better understandability of different studies. These scenarios are temporally
and spatially defined and their evolution in time is modelled by coherent and validated
frameworks of hypothesis.

The Shared Socioeconomic Pathways (SSPs) are therefore powerful “tools” that
can be adopted at multiple regional resolution extents. [48] They are not assigned with
specific occurrence probabilities and propose the widest plausible variety of scenarios
that humanity may face during the century. EDGE make advantage of the SSPs
scenarios and produce different outputs coherently.
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2.2 Shared Socioeconomic Pathways
Literature and bibliography about SSPs is vast and well documented. They will be
used to produce the IPCC Sixth Assessment Report on Climate Change, which is due
in 2021. First efforts to create shared and common socioeconomic scenario begun in
the 1990s, when researchers from different modelling groups had developed the “SRES”
scenarios. [49] The necessity of updates was clear as the years after saw rapid and deep
changes in societies and world economies. Moreover a new way of tackling Climate
Change modeling began being adopted. A first group of researcher would develop four
Representative Concentration Pathways, or RPCs, spanning a broad range of human
induced radiative forcing (2.6,4.5,6.0,8.5 Watt per square meter). [50] A second group
of researcher would instead work on modelling how socioeconomic factors may change
during the century. Principal drivers being adopted were population, economic growth,
education, urbanization rate and technological development rates. The two model
branches would then provide the basis for a wide set of Climate Change mitigation
scenarios. RCPs would provide pathways for emissions trends and their temperature
increases, while SSPs would indicate the ways in which societies could reach those
emissions trends. Each SSP would therefore allow for different levels of climate
mitigation. In Figure 2.1 are shown the emissions over time under all SSP baselines
(grey lines) and under differrent mitigation targets (coloured lines), with radiative
forcing limits analogous to the RCPs.

Figure 2.1. SSPs and RCPs

Shared Socioeconomic Pathways are five and they reflect different world narratives.

• SSP1: Sustainability- Taking the Green Road (Low challenges to mitigation
and adaptation)

• SSP2: Middle of the Road (Medium challenges to mitigation and adaptation)

• SSP3: Regional Rivalry – (High challenges to mitigation and adaptation)
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• SSP4: Inequality – (Low challenges to mitigation, high challenges to adaptation)

• SSP5: Fossil fuel Development (High challenges to mitigation, low challenges
to adaptation)

In SSP1 the world shift toward a sustainable path, where inclusive development
is emphasized. Educational and health investments are strong and accelerate the
demographic transition. As a result, inequality is reduced across and within countries.
Energy intensities tend to decrease.

In SSP2 the world does not diverge significantly from historical trends. Inequalities
are reduced only slowly and environmental changes remain. Overall energy intensities
declines.

In SSP3 rivalries and conflicts push countries to close and focus on domestic
affairs. Investments in education and technological development declines and economic
development is low. The lack of shared efforts to reduce emissions leads to strong
local environmental degradations.

In SSP4 a gap widens between an acculturated society, internationally connected
and highly productive, and a lower income one, poorly educated and associated to
labor intensive markets, with low tech penetrations. Energy sector diversifies with
investments in both fossil fuels and low carbon technologies.

In SSP5 the world manages to reach high levels in health and education but
exploiting abundant fossil fuel resources. Energy intensive lifestyles are adopted, local
environmental problems are successfully managed. Economies see their highest growth
rates.

As will be analyzed further in the document, SSP3-SSP4-SSP5 are the most
interesting scenarios for this research. In figure are shown exogenous projections for
socio economic and climatic drivers at the global level used in EDGE. Population
shows a net increase in the SSP3 scenario, its growth is in this scenario low in
industrialized countries and high in developing countries. All other scenarios see
reductions, strongest in the SSP1 (sustainable) one. Income per capita strongly rump
up in the SSP5 scenario, thanks to a fossil fuel alimented growth, with the lowest
levels in the SSP3 scenario. CDD (Cooling Degree Days) and HDD (Heating Degree
Days) projections are computed from climate projections-SSP specific. Higher global
temperatures were applied for the SSP5 and lower for the SSP1. The choice of the
RCPs for each SSP implemented in EDGE is the following:

Table 2.1. RCPs and SSPs deployed in EDGE

SSP 1 2 3 4 5
RCP 4.5 6.0 6.0 4.5 8.5

As shown in Figure 2.2 the HDD and CDD trends do not reflect only climatic trends
but also demographic ones, because data are aggregated based on the geographical
distribution of the population. Expected demographic growth in Africa will bring down
estimates for Hot Degree Days and raise those for Cold Degree Days. Their trends
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are also influenced by some behavioral characterization. For example, temperature
thresholds change in the SSP1 scenario, which assumes the adoption of more sustainable
consumption patterns among the population. Therefore, in the course of the century,
the threshold of CDD will shift from 21°C to 25°C. Conversely, the reason why HDD
does not fall in SSP1 after 2050 as is the case of other scenarios is mainly due to the
reduced climate impacts (temperature growth) of SSP1.

Figure 2.2. Exogenous drivers in EDGE

2.3 EDGE model
Considering previous analysis of current Building Energy Demands models, EDGE
could be defined as a bottom-up, statistically-based simulation model, with a multi-
regional definition and built within a long-term time framework. By the extent
use of regression analysis it also makes advantage of macroeconomic indicators in
order to gain general robustness. Its flexibility and customizability allowed for
its integration in the REMIND (Regional Model of Investments and Development)
IAM, [51] which is one of the six modeling platform being used for the upcoming IPCC
sixth assessment report. [52] Both REMIND and sub-model EDGE were developed
by the Potsdam Institute for Climate Research (PIK) in Germany. EDGE was then
refined at Politecnico di Milano. In EDGE no price responsiveness was implemented.

Simulation mode: The model is executed sequentially, with no optimization.
Regression analysis calibrations of socio economic drivers are first computed to then
determine the evolutions of energy demands.

Time horizon: time step resolution is of 5 years, with a maximum time horizon
that reach year 2100. The 5 years step enriches the model of the advantages of a
long point of view while keeping at the same time reasonable computational times.
This peculiarity was useful for the research, particularly when many computations
were needed in Monte Carlo simulations. In this research time resolution was also
occasionally artificially incremented to perform extra calibrations. The model assumes
historical trends and relationship hold true in the short term, while longer in the future
was projected a convergence towards lifestyles and consumption patterns peculiar of
the SSPs narratives. (as was mentioned for the CDD,HDD).
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Multi-regional: EDGE is divided in 11 macro regions, as shown in Figure 2.3. ,
with a country level implemented resolution for 28 European Union nations. It must
be highlighted that most of data available in literature for the Building Sector derives
from US and EU databases, and this fact justify the increase in resolution for EU. In
fact, if needed, the same splitting could be applied within the United States, given
the abundance of data. In the research external data with slightly different mapping
were included.

Figure 2.3. EDGE regions

Energy carriers and end-uses: EDGE is implemented with a 7 Energy Carriers
resolution, that covers well world’s different Building’s energy portfolios. Electricity,
traditional biomass, modern biomass (including pellets and improved fuelwood), coal,
natural gas (also including biogas), liquids (including petrol, heating fuel oil and
biofuels) and heat (district heating). In OECD countries (2018) around 75% of FED
is covered by Electricity (37%) and Natural Gas (38%), while in developing countries
shares of others fuels are higher.

Consumer perspective: EDGE does not model the Supply Side (generation)
and therefore between-sector interactions or feedbacks are not contributing to the
results. The model projects which energy carriers will be adopted or discouraged in
time accordingly to the SSPs narratives.

2.3.1 Main concepts
EDGE documentation is available and provides clear explanations and justifications
for the choices of parameters and the results of all regression analysis. However a
brief review of the fundamental equations is presented. In this research most changes
are on adjustments of the equation blocks, their characterization is therefore needed.

One of the most important peculiarities of EDGE model is the introduction
of the concept of “Useful Energy”, which allows for the comparison of energy use
across regions at different stages of development. In the case of space heating, the
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Useful Energy is the heat required to heat the room, which is in turn coming from
a technology, eg. a boiler, alimented with an energy carrier, eg. natural gass or
biomass. Useful Energy in this way allows for the decoupling of energy needs and the
way in which these needs are satisfied. Useful Energy demands trends are computed
for five different End Uses, Cooking, Water Heating, Space Coolig, Space Heating,
Appliances and Lighting. The conversion in Final Energy Demand is made by relying
on assumptions on energy efficiencies (Final to Useful Energy Efficiencies).

In Figure 2.4 is presented the way in which computations are performed in EDGE.
Fundamentals drivers as Income, Population, Population Density, CDD and HDD are
used to project Floor Space Demand, which is in turn an important parameter of the
model, as it is used to perform many calibrations and to project FED. Then Useful
Energy Demand is projected, without yet considerations on the supply side. Lastly
Energy Carriers Shares are projected and Final Energy Demand is calculated. [53]

Figure 2.4. EDGE model logic flow chart
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2.3.2 Main equations
Calibration parameters shown in the following set of equations are determined by
imposing a match with present data and historical trends (that start from 1960-1990
and ends in 2015) and a convergence over long period (after 2100) to a certain value
dependent on the SSP scenario. An example is presented in Figure 2.5. for the
calibration of Space Heating.

Figure 2.5. EDGE regression analysis for Space Heating

Floor Space per capita “F” is one of the most important equation in the model
and will be further discusses as it includes both residential and commercial floor
space. In fact in EDGE the two sectors are merged into the Building Sector at early
stages. Historical data show that the positive relationship between wealth and floor
space per capita holds even at high level of income, and this behavior is shown in the
regressions. Floor Space is hence assumed to have a dependency on income per capita
I, on population density D, as shown in equation, where t is the timestep, beta and
gamma the elasticities of income and population density. These two parameters are
obtained through a regression made on historical data. A stepwise regression is used,
and future floor space demand is based on the value of the previous timestep. This
equation calculates the residential floor space, while the commercial one is calibrated
with a Gompertz function, by retrieving past data. For level of income per capita
above 20000 US dollar (2005) the commercial to residential area ratio levels off close
to 35%. Hence in developed countries growth in commercial space is projected to
close growth levels of residential space, being saturation levels far in the future.

Ft = Ft−1 + (
It

It − 1)βt(
Dt

Dt−1
)γ (2.1)

Space Heating demand is assumed to be influenced by income levels only
indirectly through the increasing demand for residential and commercial space. It is
computed basing on HDD, Floor Space per capita (total), U values and on a positive
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parameter deltaheat. The final convergence of this parameter is obtained through
regression on historical data.

SH

F · POP · U
= δheat ·HDD (2.2)

Space Cooling demand modeling is more detailed, as it reacts in complex manners
to electrification rates, purchasing power and to climate feedbacks (increase in air
temperature). As example of purchasing power influence, can be the penetration
of air conditioners in relation to income levels. Use of conditioners increase with
electrification rates, which ultimately increases with income. But, as in 2014, 1.2
billions people lived in hot regions without access to electricity. Moreover at low
income levels customers prioritize buying of other appliances instead, like refrigerators,
TV or fans. Both effects imply low conditioners penetration rates at low income
levels. Space cooling demand and CDD do not increase indefinitely with income. Once
reached a “satisfaction level” saturation occurs. These considerations are implemented
in the model through the definition of a “Climate Maximum” and of a logit cumulative
curve.

Climate Maximum (CDD) assumes that in regions with only few hot days a
year, the penetration of conditioners will remain low, independently from the growth
of income level. Economic availability does not imply per-se customers purchasing
products not needed. By contrary, installed air conditioners consumptions increase
linearly with CDD.The logit cumulative curve, function of income, is a way to model
a variable marginal willingness to install conditioners. Marginal willingness is low for
low and high levels of income and high for medium levels of income.

δcool =
φ1

1 + exp(
φ2 − I
φ3

)
(2.3)

SC

F · POP · U
= CDD · δcool · ClimateMax(CDD) (2.4)

ClimateMaximum(CDD) = 1− 0, 949 · e−0,00187·CDD (2.5)

Appliances and Lighting demand covers a range of devices that span from
refrigerators to computer and dishwasher. Lighting accounts for all energy consumption
producing light, however in EDGE they are grouped together and that is justified
by the small relative weight of Lighting in relation to Appliances (mostly 20% of
Appliances for OECD countries in residential sector and 30% in Commercial sector).
Energy demand for Appliances and Lighting is projected to grow with income levels
without saturation in EDGE. Share of electronic services in the commercial sector is
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projected to increase, as they will serve as tools to increase productivity. Commercial
sector itself is projected to increase along with income levels, and the two effects
combined justify the absence of a saturation level. The relationship between income
and energy demand is modeled through an income elasticity on demand which decreases
with increasing income levels. Beta is a parameter influencing the speed of convergence
and alpha is a scenario specific parameter.

σincome = φ1 +
β√
I

(2.6)

Appliances and Lighting = α · exp(φ2 + φ1 · log(I) +
γ√
I

(2.7)

Cooking is implemented through a simple relation and it is modeled as being
independent from income. Regional differences in cooking useful energy demand are
thus product of cultural and geographical patterns. All cooking demands converge
toward a value in the long term with differentiated speeds accordingly to scenario
assumptions. It is important for this research to evidence that in Africa two thirds of
final energy demand is due to cooking.

Cooking = α (2.8)

Water Heating useful energy demand is projected to increase with income,
however in a similar fashion to space cooling equation a saturation level is included
through the definition of a logit curve.

Water Heating =
φ1

1 + exp(
φ2 − I
φ3

)
(2.9)

FE UE Efficiencies conversions are modeled via functions that relate energy
efficiency to income and allow for a maximum of one, accordingly to energy con-
servation laws. The exception is for Heat Pumps and Air Conditioning systems.
The parametrization of efficiency functions is specific for each combination of energy
carrier-end use. Concerning energy carriers shares assumptions are made regarding
energy ladder and shifting of fuels in high income economies. It is first predicted that
the use of traditional fuels will decrease toward 1% as the income approaches 20000
dollars/cap. Then for modern fuels, the assumption is of an energy carrier specific
share convergence level.

efficiency = φ1 + (φ2 − φ1)exp(−exp(φ3)income) (2.10)
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EDGE advancements

“The amount of uncertainty and lack of consensus on the energy and environmental
benefits of teleworking has arguably contributed to the lack of coordinated promotion
of teleworking by business or government, even in countries where multiple studies

have been conducted.”
Hook A et.al (Environmental Research Letter, 2020) [54]

This chapter presents the contributions of this research in defining a coherent Work
From Home scenario for the Building Sector. In its nature of a sector-specific study,
it can be taken as one the very first modeling attempts, of recent years. A coherent
review work made by A.Hook et al. (Environmental Research Letter 2020) [54]
found 39 papers published in the last twenty years, that tried to grasp the effects
of teleworking on energy consumption and emissions. However, most of them were
published before 2010 and contained therefore old data, these papers moreover could
not forecast the abrupt exogenous shocks induced by the COV19 Pandemic. Lastly the
vast majority of them focused on commuting and transport side effects of teleworking
while only a minority, 8 studies, included consideration on Building consumptions. Of
these 8 papers all of them were country or region specific, and only 5 considered both
Home and Residential Consumption with a modeling approach. All these 5 papers
were published between 2003 and 2008. In this contest, the contribution of this work
is mainly to extend in a rigorous way modeling to a global level, coherently with
EDGE regional mapping, and to increase the informational resolution of analysis with
considerations on End Uses variations and Energy Carriers.

The structure of the chapter is the following: a first section 3.1 presents Working
From Home, and its modeling in EDGE. Section 3.2 the attempts of separating
commercial and residential sectors. Section 3.3 the subcommercial separation. Section
3.4 Commercial consumption variations observed and modeled in EDGE. Section 3.5
is dedicated to Residential consumption variations. In Section 3.6 is presented the
final set of new equations implemented in EDGE.
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3.1 Working From Home
Working From Home is by definition a work arrangement in which employees do not
commute, and so do not move from residential buildings to the place of work by means
of private or public transports. [55] Another term used for defining this emerging
trend is “telecommuting”, a word which pinpoints to the role of telecommunication
technologies in favoring WFH. Teleworking or “telecommuting” has been for almost
three decades forecasted to substitute ordinal work, and its presumed beneficial
impacts on environment, business and worker lifestyles were brought as justifications
for a quasi-obvious future adoption in world countries. In the 1990s slogan as “Work is
something you do, not something you travel to” were coined, in a general atmosphere of
enthusiasm and idealization. Yet, after 30 years, a considerable but surely lower than
expectations percentage of workers were in WFH regimes, around 5,2% in European
Union in 2018, accordingly to Eurostat. [56]

The concepts of Telecommuting and Telework are similar but yet some differences
are important for the purpose of this research. In fact all types of technology assisted
work conducted outside a centrally located work space are classified as Telework.
The substituting work place can be the worker house or others remote workplace
as shared coworking offices or coffee. However this research limits the complexity
of the phenomena and considers Work From Home (as the word says) having a
univocal possibility of substitution between an office workplace and home based
workplace. Coworking related issues, along with similar phenomena as “distributed
work”, “hoteling” and “digital nomadism” (referring to the possibility of working
almost everywhere in the world, travelling from location to location) are therefore not
analyzed. Their relative importance for the modeling of WFH could however increase
in the future, as they relate to behavioral and psychological wellbeing of workers. [57].
The sense of isolation and conversely the needs for social interactions hampered by
WFH were in fact among the factors that limited its adoption. [58].

Another simplification made in this model refers to the averaged working days in
WFH regime per home worker. Telecommuting does not require per se a fully work
at home regime, in fact a survey conducted by Linkedin in 2019 had found that of
2000 working professionals 82% preferred working at home at least one day a week
and 57% three days a week [59]. The majority of WFH simulations however, along
with this research, congruently with data taken as sources, consider WFH as a job
entirely performed at home.

3.1.1 WFH: Adoption Justifications
WFH is implemented in this research as a structural change. It is projected as a
long-lasting trend over the century and its adoption ratio are monotonically increasing
ones, as will be explained further in the chapter. Here is provided briefly a list of
considerations that justify the theory of the phenomena and try to answer the question
of “why is WFH being adopted”. The identification of drivers instead in a formal
approach is presented instead in other sections.

A way to explain potential benefits of Working From Home and therefore to
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justify its “reason” of adoption in countries around the world is to refer to the
“Job Characteristic Theory” (JCT), [60, 61] that explain how traits and tasks of
jobs may influence work attitudes and behaviors. In particular, the JCT identifies
five key characteristic of a job that, if present, have the potential to deliver higher
job performances, more internal work motivation, and improve general satisfaction
levels. Of these five characteristic, which are “Skill Variety”, “Task Identity”, “Task
significance”, “Autonomy” and “Feedback”, telework specifically affects Autonomy
and Feedback compared to traditional face to face (F2F) work. Not surprisingly,
according to JCT theory, changes in Autonomy influence work behavior more than
changes in other four characteristic.

Autonomy: One of the most evident and publicized benefits of WFH is the
relaxation of working routines and the possibility for a worker to manage in better
ways free time. If a job provides scheduling flexibility and more independence, the
worker should feel more responsibility on own outcomes. At the same time, more
independence would imply more accountability, which is a desired feature of work
processes. [60] The possibility of choosing the workplace, principally worker’s house,
allows also for the reduction of work-family conflicts.

Feedback is instead potentially negative affected by WFH, as digital communi-
cation may increase difficulties in interpreting and gaining information. Ambiguity
in processes could increase, as in jobs assignments. However with the increase in
technological progress the chances for better digital communication are higher, and
difficulties in communication may be resolved.

Other principal advantages that WFH could bring are relative to the company
side. Reduced personal in offices have the potential to imply lower operation and
maintenance costs, as electricity and gas bills. High levels of WFH for a company can
imply lower needs for office space, thus reducing also renting costs. Hiring professionals
from around the world becomes an option, that can in turn improve productivity,
which is also increased by workers potentially improved performances. [62] Other
benefits relates to lower traffic congestion rates and reduced pressure on transportation
infrastructure due to less commuting to work places.

3.1.2 Historical Trends
Interest in Working From Home has been growing constantly in the last ten years,
with shares of adoption increasing at constant rate, especially in developed countries.
Some historical trends are provided.

EUROPEAN UNION: As in 2017, European Union average share of WFH,
entirely performed from home, was of 5% (of employed population), while the share
of usual work from home was slightly higher, 9.6% [56]. A great variety in shares was
registered among member states, with countries as the Netherlands having levels of
14% and Greece of around 2%. Data from 2019 Eurostat datasets show that some
countries, as Austria and Norway, saw their WFH shares remain flat in the last ten
years, keeping on levels respectively of 10 and 5%. Others like Portugal and Finland
saw instead WFH increasing quite constantly from level respectively of 1 and 9% to
6.5 an 14.1%. The ninefold registered increase for Portugal and the 40% registered
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for the Netherlands, that saw a 10 year increase from levels of 10% in 2008 to 14%
in 2018, signal the presence of different marginal rates of WFH increase, as will be
discussed further in the chapter. In UK as is shown in picture Figure 3.1 , WFH rates
saw a sharp increment from 2010. Just one month before COV19 in February 2020,
around 5% of the employed population was exclusively working at home according to
a report released by WISERD (2020) [63].

Figure 3.1. WFH in UK prior 2020

UNITED STATES: According to a report released by the US Census in 2018,
5.4% of US employed population was working entirely from home, while the share of
American that spent at least some time working remotely was of 43% in 2017. The
share of WFH had been growing constantly in the last twenty years, from levels of
3% in the 2000s. In the years 2012-2016 it was registered a change also in average
time spent working remotely, if in 2012 the share of workers spending >80% of their
work time remotely was of 24%, four years later had increased up to 31%. The
chart in Figure 3.2 retrieved from a US Census 2010 report, [64] show that similarly
to European Union, great difference exist within US States (the chart shows US
Metropolitan Areas, colored), with states like California showing their metropolitan
areas average levels of WFH from 5% over, while others like New York State and
Maryland being below 5%.

Figure 3.2. WFH in US prior 2020, U.S Census
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Australia is cited as a data collection from this country will be performed as
explained further in the document. Work From Home historic data are scarce,
however Australian government reported for 2010 a share of 5% of WFH, while the
share of workers that spent at least 10 hours each week working from home was of
20% in 2016, and had remained constant throughout the previous ten years. Data
for developing countries were not found prior to COV19 pandemic, mostly because
registered levels were statistically unsignificant and for the absence of national accurate
census bureau.

3.1.3 WFH New Levels amid COV19
The spreading of the COVID 19 pandemic destroyed lives and ravaged economies all
over the world. Epidemiologist and World Health Organization experts highlighted
as first containment measures the importance of social distancing measures, that
eventually led to the installments of Shelter in Place orders (SIP) all over the world.
At its peak in April 2020 around 50% of world population was confined at home. [65]
As consequence, in order to secure continuity of business operations, governments
across the world encouraged those who could, to work from home. In mid-April 2020,
59 countries had already implemented telework. [3]

At European Union level, data are provided by the “Eurofound’s Living,Working
and COVID-19 survey”, [1] which received 62755 completed responses in the EU27
member states during the first wave of lockdowns and 24123 responses in a second
round in June-July 2020. Across Europe as a whole around 48% of employed population
was reported at WFH, 34% of whom were working exclusively from home and 14%
partially. Regional differences resembled the pattern pre crisis. In Finland WFH
levels reached 60%, in Luxemburg, Netherlands, Belgium and Denmark were of 50%.
Figure 3.3 In UK WFH skyrocketed from ten years levels of around 5% to 45% in less
than a month.

Figure 3.3. WFH in EU amid COV19, survey of April 2020

It must be stressed that the reliability of this data is only provided by the relatively
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high number of surveys responses, in fact official publication from EU bodies have yet
to be produced. Some contradictory data appears when the Eurofound survey dataset
is consulted upon the question “Location of Work-Home” for the period June/July.
Italy is shown having positive responses of 53%, while Finland, which was stated
having the highest WFH levels, is assigned a positive response ratio of 47%.

United States data were first released by the National Bureau of Economic Research
(NBER) in June 2020. [66] The surveys were collected in two rounds, a first in April
and a second in May 2020. The respondents were in both cases 25000. The fraction
of workers who switched to working from home was of 35%. An additional 15% of
workers indicated that was already in a WFH regime prior to the COVID19 pandemic.
Data would lead to a percentage of 50% of US employed workforce being at WFH.
However this percentage is significantly higher than others studies for which the
average was instead of 37% at WFH (Dingel Neiman, 2020) [7]. Moreover a prior
COVID19 percentage of 15% contradicts US Census prior COVID19 indicated levels of
5.4%. Reliability of US Census statistics is higher, a possibility is of misinterpretation
by survey’s respondents of questions regarding the extent of WFH in hours or days a
week. WFH stands in fact for a permanent full week working regime.

Some of the surveys mentioned in this section also contained useful information
about gender, employment status, age and economic availability of the respondents.
These data were usefully exploited by other studies and allowed for a calibration
of the probability of Working from Home, relatively to these and others macro
indicators. Moreover, the tenfold increases in WFH levels aforementioned show that
market structures and infrastructures needed for much higher WFH levels are already
available, at least in Developed Countries. COVID19 pandemic was therefore the
exogenous shock that allowed for the collapsing of social and economic inertias and
the reaching (and in some cases exceeding) of full WFH potential.

Data for Developing Countries are not reported in this section, considerations are
shown in the next one.

3.1.4 WFH Implementation
Work From Home was implemented in EDGE following two approaches. A first one
considered as theoretical justification a working paper published in April 2020 by the
National Bureau of Economic Research, NBER (Cambridge, Massachusetts, United
States), [7] a second one tried to upgrade the first implementation by relying on
a working paper published by the World Bank Group in May 2020. [8] The latter
included itself an extensive review of the paper published by the NBER. The most
cited works regarding WFH characterization following COVID19 pandemic of 2020
were respectively the work done by Jonathan I. Dingel and Brent Neiman of NBER,
“How many jobs can be done at home?” and the working paper of Fernando Saltiel
“Who can work from Home in Developing Countries” of Duke University, published in
April 2020 [67]. Dingel and Neiman working paper was then used for rough estimates
of working from home potential impacts on energy uses by the International Energy
Agency, (IEA) [9] it was also cited as most reliable data source by the International
Labor Organization (ILO). [3] References to this work were also present in the
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European Eurofound working paper published in 2020 [1] and mainly in every paper
consulted reporting analysis, considerations or data about allegedly registered WFH
national levels during COVID19 pandemic and about their relative future potentials.

For these reasons it was decided to model Work From Home in EDGE Buildings
giving more “weight” to Dingel and Neiman (DN) model. However, being DN
work one of the first of its kind, it contains simplifications and assumptions about
work type descriptions that are mostly US based. In this sense upgrades to this
model were already available as in mid-2020 and were mostly contributes from the
others working papers mentioned. In a second round outputs produced by the DN
model were therefore slightly corrected to account for these improvements. However
purpose of these corrections in EDGE model was not the production of more accurate
outputs, given related uncertainties, but rather providing the general structure of a
more complex modeling framework that could possibly be exploited by future works.
Scenarios are therefore presented separately, first with only DN implemented, then
DN plus possible improvements in WFH phenomenology.

First Method

Dingel and Neiman tried to answer a fundamental question, “How many jobs can
be performed at home?”. To do so they used surveys describing the tasks of more
than 1000 US occupations and they classified each of them as able or unable to be
done entirely from home. Data for US shown that around 37% of jobs in the US
could be WFH occupations, with variations across metropolitan areas and industries.
Then they extended their method to other 85 countries and they found a strong
correlation between WFH levels and GDP per capita. Developing countries with
per capita GDP levels below a third of US ones resulted having around half WFH
potential levels. The correlation found by Dingel and Neiman, made available on
GitHub to scientific community were then inserted in EDGE, which includes GDP
and Population Projections SSP specifics, and projected for all EDGE regions. In
order to understand the robustness of this method a brief review on why GDP and
WFH levels correlates must first be presented.

Classification of Occupations The underlying logics of all recent works that tried
to grasp correlations useful to predict WFH levels among population groups and
countries was the following:

1. Extract information about working population, collecting data mostly about
gender, age and education levels of each surveyed worker.

2. Develop a method to define if a specific occupation can be done from home.

3. Aggregate data and find the probability of an occupation to be WFH in relation
to the drivers (plus other) identified in 1.

4. Identify macro patterns from aggregating shares relative to occupational groups.
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A fundamental source of data was the O*NET database, developed and maintained
by the US Department of Labor. It contains descriptors and standardized surveys
for 1000 occupations that allow to understand if a job can be performed at home
from listing the tasks usually required to be performed. Generally, the higher the
necessity of physical contacts or face to face interactions (F2F) with clients the lower
the probability of the job to be WFH (teleworkable). Dingel and Neiman decided to
interpret the O*NET database by establishing a binary relationship between certain
survey’s question and the possibility of a job to be WFH.

Out of 57 questions present in the O*NET “Work Context Questionnaire” (WCQ)
survey, seven of them were assigned a binary coding. Out of 41 questions present in
the O*NET “Generalized Work Activities Questionnaire” (GWA), eight of them had
binary coding. For example, if any of the three-following WCQ questions had positive
answers, relative respondent occupation was assigned a probability equal zero to be
performed at home.

• Do you use email less than once per month?

• Do you spend the majority of time wearing common or specialized protective or
safety equipment?

• Do you work outdoors every day?

Also, as example, if any of the three following GWA questions had positive answer,
the relative occupation was labeled as not teleworkable.

• Performing General Physical Activities is very important.

• Inspecting Equipment, Structures or Materials is very important.

• Operating Behicles, Mechanized Devices or Equipment is very important.

Dingel and Neiman then tried to asses the robustness of this method by following
a semi-“Delphi” procedure, assigning arbitrarily probabilities (0-0.5-1) of WFH for
each Standard Occupational Classification (SOC). [68] Results agreed for an 85%
of cases with those provided by the O*NET method. By binding SOC database
with the O*NET results, emerged that managers, educators, IT and finance workers,
and lawyers were the occupations most likely to be performed at home. At contrary
farmers and occupations in the construction and production sectors were the least.
Overall, 37% of US occupations, basing on this method, was reported having high
WFH potentials. Moreover, a strong relationship was found between income and
WFH. The higher the wages, the higher the WFH probability. It was also found a
strong positive relationship between education levels (college degree).

Critics to this method as chosen by Dingel and Neiman regard particularly the
arbitrary choice of the number of surveys questions having a binary output. In fact,
the higher this number, the higher the possibility of having at least one positive (zero
WFH probability) answer. [8]

28



3.1. Working From Home

The way in which these results were extended to other world regions is straightfor-
ward. Statistics found for US were aggregated (also) per US Occupation (SOC), these
data were then bonded with the International Standard Classification of Occupations
(ISCO). As Dingel and Neiman reports in their paper, this method involves the
extensions of US based assumptions on a world level, possibly causing distortions in
results.

In fact critics highlight that despite having the same Occupational description
(SOC and ISCO), the nature of tasks, upon which is based the WFH probability
method, could vary among countries. This in particular is the reason why in EDGE
was implemented also the second method.

Results obtained by correlating SOC inferences to the ISCO one were then aggre-
gated by country and then at world level. In the next page are shown the datapoints
and a comparison performed by Dingel Neiman between potential (EU) WFH levels
and those found during COVID19 pandemic, that shows a clear correlation pattern,
with slightly higher percentage of registered WFH COVID19 levels.

First Method, EDGE In Figure 3.5 is shown the correlation implemented in
EDGE in this research by extracting datapoints from GitHub and interpolating them
in “R” program. Each dot represents an interpolating point (a country in the Dingel
Nieman dataset). In order to project WFH levels in the future the model needed a
function that could relate GDP per capita levels, region and time specific, to WFH
levels. The interpolation function was found applying a General Additive Model
(GAM) within the “mgcv” package in “R”. GAM solves the smoothing parameter
estimation by using a Generalized cross Validation criterion (GCV). R square was
equal to 0,84 and RMSE (Root Mean Square Error) 0,048. The advantage of using
the “mgcv” package is that the choice of the regression splines is automatic and made
by assigning penalization criteria in a contest of general optimization. The obtained
interpolation function, having ten coefficients was then called by the program each
time it was needed the calculation of a WFH potential. The general shape of the
interpolating function shows a particular behavior. First it grows rapidly with the
increase of GDP per capita, then the derivative decrease until a plateau is reached
for values of approximately 60000 dollars/cap. Then it starts to grow again with
derivative circa constant. Four important considerations must be highlighted:

First Consideration: The behavior of the curve is still yet to be explored. A
necessary premise is that purpose of this research was not strictly a WFH charac-
terization but rather a study of the energy consequences of a wide WFH adoption
around the world, therefore the following hypothesis are to be taken as speculative
and not necessarily accurate. With this assumption some hypothesis can yet be made
about the non-linearity of the curve. The theory of Economic Convergence (“catch-up
effect”) assesses that poorer economies’ per capita income tend to grow at faster rates
than richer economies, and as a result all economies tend to converge to similar value
over time, provided regional exceptions. [69] As was found in Dingel Neiman, WFH
is linearly related to the median hourly wage, where median means the average of
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(a) WFH gdp regression

(b) WFH amid COVID19, EUR only

Figure 3.4. Dingel Neiman Results
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Figure 3.5. WFH correlation

the same occupation wages. Figure 3.6. Assuming, as the economy grows, a shift
from low wage low productivity jobs towards higher wage higher productivity jobs
(eg less workers in the agriculture sector), also the average value of WFH should
increase. Average here means all occupations-average. But the speed of economic
growth in the convergence theory is higher for lower value of GDP per capita, therefore
also the growth of WFH should be higher for lower value of GDP per capita, as the
interpolating curve show.

Figure 3.6. WFH and hourly wage correlation, Dingel Neiman
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Second consideration: the interpolating curve is kept constant over the century.
The underlying modeling assumption is the following. If a country X reaches a GDP
per capita level of eg. 30000 dollars in year 2050, it will have an assigned WFH
potential level of 31%. If a country Y reaches the same GDP per capita level but in
the year 2080, it will reach again a WFH pot level of 31%. Another example the case
in which GDP per capita does not grow, also WFH levels remain the same. It may
be a too strong hypothesis, and in fact some corrections were made in Method 2 to
account for other drivers. However, in the last twenty years, US and EU data have
shown, as was reported in the “Historical Trend” section, a relatively small increase
in WFH levels, in absolute values. Reported average values of WFH were both for
EU and US of about 5% pre COVID19. This despite a constant GDP increase, a part
from the recession and stagnation occurred in years 2008-2011. It could therefore
be not unrealistic a modeling choice of stagnating WFH levels with stagnating GDP
levels.

Third consideration: the behavior of the curve on its upper end is derived from
only one observational point, which is Luxemburg, reported having a WFH potential
of around 0,6 in 2019. The speculative nature of this behavior is clear yet it was
decided to keep this datapoint in the model to simulate a sort of “best/worst case
scenario” (it depends on final results in term of energy savings). The interpretation
could be the following, after a “saturation” zone that stretches from 50000 to around
80000 dollars per capita, unknown dynamics in the fundamental of economies occur
that favor WFH potential. They could be related to technological adoption rates
suddenly increasing, purpose of this model was not the exact identification of such
drivers. Moreover, in the absence of valid alternatives offering explanations on the
relationship WFH GDP, it was decided to keep this behavior and see how the model
would react to it.

Fourth consideration: WFH potential levels indicate the maximum rate of
adoption allowed by Dingel Neiman interpolation. It could also be possible a scenario
where in reality adopted shares are higher than those interpolated, this was considered
in a Monte Carlo simulation performed on the results.

• In a first scenario all regions start in 2020 with WFH levels equal zero to reach
their allowed potential in 2050. This scenario is equivalent to a one where
WFH “boosted” COVID19 shares return to the pre pandemic levels. The choice
of the “learning period” would be crucial in a model trying to simulate the
exacts dynamics of working from home around the world, however EDGE is an
energy model and thus of more relevance for the research were more the energy
consequences, in magnitude.

• In a second scenario all countries start in 2020 with their real WFH levels equals
to the potential one. Adoption trends than follow exactly those generated by the
interpolating function. This scenario is a one where COVID19 induced WFH
levels remain structural over time. It must be stressed that COVID19 per se
in this second scenario only allowed countries to reach their potential, which is
independent and has no relation with the pandemic.
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The “learning period” included in the first scenario is modeled with a logistic
function, where the output of the logistic function define the share of adoption of
the WFH potential. It therefore starts with 0% in 2020, reaches 30% in 2030 and
90% in 2040. The choice of a logistic function is justified by the need of simulating
lower initial shares of adoption and faster rates of adoption once the mechanism
favoring WFH start acting, until “normal” mechanism dominate again and the rates
of adoption decrease.

Second Method

As mentioned in the “Classification of Occupations” section, most of criticism sur-
rounding Dingel and Neiman attempt to extend the SOC classification to the ISCO
one relates to the diversity of jobs tasks around the world associated to the same
job classification. This complicates the efforts of extending WFH statistics at world
level. In particular, differences in the organization of production or in the level of
technological adoption may imply more face-to-face interactions or physical task in
poorer economies. As consequence, method 1 may results particularly inaccurate in
predicting WFH shares for poorer economies (developing countries in this model).

A Policy Research Working Paper published by the World Bank in May 2020 [8]
after recognizing the work done by Dingel Neiman proposes an alternative way to
better grasps WFH drivers among countries. Jobs tasks do not vary at the occupational
level, as in the SOC classification, but rather at the individual one. Some individual
characteristics correlates better with the likelihood of being able to work from home.
Skill surveys from 53 countries were analyzed and a new method for interpreting the
questionnaire answers was chosen. Instead of adopting a binary method as DN, a
continuous one was preferred, the higher the number of positive answers to criteria
satisfying questions, the higher the probability of WFH. In this way the final measure
can take a value from 0 to 100. The surveys used were the PIAAC (Program for the
International Assessment of Adult Competencies) for 35 countries, mostly developed
ones, the STEP (Skills Towards Employability and Productivity) for 15 developing
countries and the LMPS (Labor Market Panel Surveys) for three countries in Middle
East and North Africa. Data included employed individuals ages 16 to 64 years.

Cross country results: Results again confirm, as in method 1, the positive
relationship between F2F task indexes and GDP per capita. Richer countries have
less jobs physical/manual intensive, at contrary, they show higher intensity of jobs
requiring F2F. Figure 3.7. Therefore two opposite forces are in place in defining the
relationship between GDP and WFH. However, F2F occupations also tend to be more
intensive in the use of ICT, and this factor reduces negative F2F effects on WFH
probability. The World Bank paper show some differences from DN. However within
country results are more useful to the purpose of this research and their outcomes
were applied in EDGE.

Within country results: The availability in the PIAAC, STEP and LMPS
datasets of data regarding gender, age and education of the respondents allowed for
the inferring of correlations WFH-driver. Results show large disparities in WFH
probabilities, in brief:
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Figure 3.7. Cross Country results, World Bank

• Across countries, women are more likely to have teleworkable jobs. This emerges
as consequence of their less presence in physical/manual job.

• Educational attainment also strongly favor WFH amenability, across all 53
countries college graduates are more amenable to WFH. This result was also
found in DN. This effect was found to be the most impacting one.

• Older workers are less likely to have teleworkable jobs. Two counteracting forces
are at play. In fact F2F intensity increases with age, while physical/manual
intensity decreases with age. The first effect prevails.

• Last two drivers impacting WFH probabilities were related to job characteristics,
namely Self-Employment (or not) and Formal and Informal status. However
it was not possible to insert these two drivers in EDGE and therefore are not
discussed.

These inferences are country group specific (PIAAC,STEP,LMPS) and are shown
in the next page. Figure 3.8.

An implementation in EDGE followed these steps:

1. Extract population data from the International Institute for Applied Systems
Analysis (IIASA) dataset reporting country specific projections up to 2100. This
dataset provides information about gender, education and group age. [10]

2. Extract the coefficients as shown in the next page.

3. Bind the two data frame in a unique dataset having temporal, regional and SSP
resolution.

4. Correct WFH values projected by method 1, therefore applying the interpolation
function, with the “within country” coefficients found with method 2 and
contained in the dataset produced in point 3.
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Figure 3.8. Method 2 Coefficients
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Second Method, EDGE The importance of the dataset made available IIASA is
crucial in this research, as it is used for two different purposes in the model. Data
were produced in 2014 and published in a paper on “Global Environmental Change”,
“The human core of the shared socioeconomic pathways: Population scenarios by age,
sex and level of education for all countries to 2100”. [10] The advantage of this dataset
is that it provides results ready to be used as inputs in EDGE, due to their grouping
by SSP. The type of information it provides is the following:

Population|”Gender”|Aged”XX-YY”|”Type Of Education” |value|

“Gender” can be Male and Female, “Type of Education” can be No Education,
Primary Education, Secondary Education and Tertiary Education, and age takes
values from 15 to 64 with a time step of 4 years. Grouping education groups a part
from Tertiary Education, the total number of combinations for a specific year is 40.
They were reduced to 20 as the World Bank coefficients adopts the same year values
from 16 to 65 but with an 8 years time step. Years span in EDGE (projections) from
2020 to 2100 and therefore values for this time range were extracted, with a time step
of 5 years, which is also the one of EDGE. Values were also country and scenario
specific for a total of around 330 thousand combinations.

“Within country” coefficients as found by the World Bank are expressed as standard
deviations of the country group WFH mean. Calculating the mean of PIAAC countries’
WFH was not possible, however their WFH interpolated values obtained from the
method 1 function were not so different, due to their relatively similar GDP per cap.
The choice was therefore to refer them to the WFH country specific coefficients. The
formula implemented in EDGE is the following, where coefWFH is the new WFH
potential level calibrated with method 2, value is the old WFH potential level from
method 1, and “i” form 1 to 20 is the element of the calibration vector shown before.

coefWFHscen,reg,yr =
20∑
i=1

valuescen,reg,yr · coefSDreg,i · coefSSPscen,reg,yr,i (3.1)

coefSD is obtained from the World Bank inferences by applying this conversion:

coefSDreg,i = 1 + 1
2 · erf(coef√

2
) (3.2)

Where erf is the standard error function, coef is the corrected standard deviation
of the mean taken by the World Bank. CoefSSP is instead obtained with this formula:

coefSSP scen,reg,yr,i = populationscen,reg,yr,i
populationscen,reg,yr

· (3.3)

The “coef” corrected standard deviation of the mean is calculated considering
that each age group (5) can be either Man or Female and can have a Tertiary o Non
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Tertiary Education, for a total of 5x4 combinations. Their relative three standard
deviations (Gender, Education, Age) were then summed.

Country mapping is shown in Figure 3.9 All countries had their pair in the IIASA
dataset. However EDGE WFH coefficients calculated with method 1 were expressed
in EDGE regions. Therefore multiple countries in World Bank were assigned to values
in EDGE datasets (eg OCD countries), and then averaged to return a unique value
for the region. Some regions in EDGE were not included in the World Bank surveys,
it’s the case of China, and were therefore not corrected.

Figure 3.9. Second Method regional mapping

3.1.5 Employment to Population Ratio
All WFH coefficients obtained so far are expressed as shares of Employed Population.
EDGE equations however are expressed as function of population. A conversion was
therefore needed to obtain the share of total population working at home. At this
scope it was again consulted the IIASA dataset. The formula implemented in EDGE
is the following:

WFHscen,reg,yr = coefWFHscen,reg,yr · ETPreg ·WPscen,reg,yr (3.4)

ETP is the Employment to Population ratio and is the greatest source of uncertainty
in this equation. It refers to the share of Working Age Population (WP) employed.
Data were obtained from the World Bank dataset and were country specific. [70]
The average ETP values for the World in 2019 was of 57% and it had been declining
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constantly in the last 30 years, with a value in 1990 of 62,5%. Similar trends were
presents at country level, however in this research it was chosen to average the last 30
years entries to a unique value and assume it constant throughout the century. The
assumption is certainly strong, however last 30 years ETP trends show, on average,
very small change in magnitude. The World ETP average declined of 9% in 30 years,
at a constant rate of 0,3%/yr. Longer term ETP predictions were beyond the scope
of this research and considered its relatively low influence on the model outputs the
assumption was judged acceptable. It must be highlighted still, the collapsing of ETP
of 5 percentage points in 2020 due to COVID19 pandemic, equivalent to 15 years of
previous reduction.

Working Age Population (WP) is instead the share of population between 16-65
years old, and was obtained summing all respective values in the IIASA dataset.
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3.1.6 WFH Potential Projections
In the next pages are shown the results of WFH implementation in EDGE. In a first
page are shown the figure from 1 to 4, in a second those from 5 to 8. In a third are
shown the share of WFH on total global population and in a fourth page projections
up to 2100.

Table 3.1. List of Figures

Number Content
1 IIASA Scenarios
2 IIASA-EDGE Female and Tertiary Ed.
3 GDP pop
4 ETP*WP ratios
5 WFH potential, first method
6 WFH potential, second method
7 WFH % total population, first method
8 WFH % total population, second method
9 WFH % total population, globe, first method
10 WFH projections for 2100, first method

In order to clarify the reading of the graphs, the curves are evidenced in two
colors, where blue stands for Developed Countries and Yellow for Developing countries.
Table show the choice of the countries. Italy is also included separately for research
purposes, as well as South Africa which was considered separately from Africa. For
the sole purpose of plotting, European countries WFH results are averaged, while all
flow calculations in the code (WFH and Energy) are European Country specific. A
discussion of the results is performed in the next chapter.

Table 3.2. Regions definitions

Developed Developing
European Union EUR Africa AFR

Italy ITA Brazil BRA
Japan JPN India IND

Other OECD OCD Mexico MEX
Russia RUS Middle East MIE

United States USA Other Non OECD NCD
Other South and Asia OAS

South Africa ZAF
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3.2 Commercial Separation

3.2.1 EDGE, overview of commercial sector
As was mentioned in Chapter 2, EDGE model through is coding is not able to diversify
outputs between Commercial and Residential projections. Total Final Energy as well
as all others indicators are computer for the Building Sector as a whole. However for
the purposes of this research such separation was crucial, because early data were
suggesting two counteracting forces taking place, related to the same phenomena.
WFH would increase consumptions in the residential sector but decrease those of
the commercial one. Of course, net effects would not only depend on the absolute
magnitude of changes but also, and mainly, on the shares on total Building energy
consumption of the two sectors. To clarify, if commercial final energy consumption
is 30% of total Building final energy consumption, even a stronger than residential
reduction in consumption would rarely imply net negative effects on the total.

EDGE takes in consideration the commercial sector by summing its projected floor
space to the residential one, and then compute energy demands by including total floor
space F in the equations requiring it. Namely “Space Heating” and “Space Cooling”.
Residential floor space is obtained through the definition of the equation descripted
in chapter 2 and its calibration (income and population elasticities) on historical data.
Commercial floor space calibration in EDGE is performed by retrieving data from the
IEA 2014 “Tracking Clean Energy Progress” dataset. [71] Data in this dataset are
available for the US, EU, China, India, OECD, OAS and NCD relative Commercial
and Residential 2011 floor space. The calibration is then performed by EDGE and the
resulting interpolation is shown in Figure 3.10 . The trend is similar to the one found
in this research for the WFH coefficient, with developing economies showing higher
rates of increase in commercial shares and developed countries leveling off around
values of 35% independently from the GDP per capita. The non linear regression
is performed by EDGE with a “Non Linear Gompertz Growth Model”. (An almost
identical regression was obtained applying the Generalized Additive Model used for the
WFH regression). In the next page are shown floorspace and commercial floorspace
predictions in EDGE, SSP specific.
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Figure 3.10. Calibration of commercial floorspace

3.2.2 Data retrieving
In this research it was required an End Use level detailed separation between com-
mercial and residential sector. Data and drivers already implemented in EDGE were
not sufficient to provide reliable projections for commercial consumption patterns.
A considered approach was the separation of the End Uses equations by using the
floor space shares, corrected with some calibrations. However this would have implied
assigning a direct relationship between floor space shares and energy consumption
commercial/residential shares. Moreover, some equations in EDGE are not related to
floor space and therefore a forced relationship may have led to great errors in final
results. It was hence chosen to make use of the IEA “Energy Technology Perspec-
tive” (ETP) of 2017, [19] which provide data for End Use consumptions both for the
residential and commercial sector, at IEA Regions level. It was then performed the
calculation of the shares.

IEA ETP 2017 provides three future scenario, named “Reference Technology
Scenario” (RTS), “Two Degree Scenario” (2DS) and “Beyond Two Degree Scenario”
(B2DS). Data were retrieved for all three IEA scenario, however, a simple “manual”
sensitivity analysis showed very little variations in the shares and it was thus decided
to keep only the RTS Scenario in the model. Additionally, merging RTS with SSP
scenario has a logic, that may be undermined by the use of the 2DS or B2DS.

IEA Reference Technology Scenario takes into account today’s commitments by
countries to limit emissions and improve efficiency. NDCs as submitted in the Paris
Agreement are also considered. RTS is not thus a Business as Usual scenario, as
it represents already a major change from historical trends. It needs substantial
accelerations in policies all over the world for greater pledges in emissions reductions.
IEA states that if successfully adopted, these efforts would likely result in an average
temperature increase of 2,7°C by 2100. 2DS and the B2DS instead are implemented
with technology improvements pushed to their maximum practicable limits so to
achieve net zero emissions by around the mid of the century (2060). It must be
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highlighted again that the only intakes from IEA models in this research were the
Residential FC shares, and most noticeably the fact that they did not vary much
between IEA scenarios. This means that drivers of Residential shares do not vary with
the various IEA scenario’ assumptions, thus reducing the probabilities of IEA-SSP
incompatibilities.

IEA has its own IAM, enabled with different sub models specialized in a particular
sector. The End Uses shares introduced in EDGE were derived from the IEA’s “Useful
Energy Demand” block. The main difference with the EDGE model is the detailed
characterization of the Commercial Sector and of its specific End Use drivers, allowed
by IEA’s capability of retrieving official data from national energy agencies. However
also IEA states that the availability of historical trends for the Building sector was
scarce, thus they also relied on multilinear regressions based on GDP, GNI per capita,
urbanization and electrification rates to fill gaps in data, mostly confined to developing
countries. The projection of Space Heating and Space Cooling demand, per unit
of floor area and specific for the residential and commercial sectors, is made basing
on estimations of buildings stock characteristics and building end use technologies.
Buildings were broken down into three categories, near-zero energy buildings, buildings
in compliance with energy codes and buildings without coding. A similar break down
was made for building end use technologies. This methodology was then applied to
estimate historical trends, calibrate regressions and project future demands. Three
main adjustments were made prior to the calculation of the shares:

• IEA Regions did not coincide with EDGE ones, a matching was needed

• IEA time range extends up to 2060 while EDGE needed inputs for up to 2100.

• IEA considers separately Appliances and Lighting while EDGE binds them
together.

Regional Mapping: In table is shown the adopted mapping, IEA 2017 dataset
did not report explicitly data for Africa and thus the choice was to assign the continent
the world average.

Time range: time span was extended up to 2100 by using a “Holt’s Linear
Trend Method” (1957) and manually correcting those trends which showed unwanted
patterns. In order to provide the Holt algorithm with a sufficient set of datapoints,
shares’ data were artificially increased in resolution, increasing time span from 5 to 1
year. The interpolation was performed through spline regressions, using exact cubies
with the method of Forsythe, Malcolm and Moler (1977). [72]

“Holt” method is implemented in R within the package “forecast”. [73] It was
chosen for the prediction of shares due to their smoothness and relatively high linearity
(in the trends). However, due to its tendency to over-forecast, it was adopted a damped
trend method (Gardner, McKenzie 1985) with a phi smoothing parameter equal 0.95.
Still, trends for Space Cooling shares of NonOECD, ASEAN, Brazil and Mexico were
still exhibiting apparent over-forecasting trends and their phi parameter was thus
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Table 3.3. Regional Mapping

EDGE IEA
European Union European Union
Unites States United States

China China
Brazil Brazil
India India
Russia Russia
Mexico Mexico

South Africa South Africa
OCD OECD
Japan OECD
MIE World
OAS ASEAN
NCD NonOECD
Africa World

corrected to 0.8. The choice of high damping parameters may produce paradoxically
too conservatives trends, in particular for the share of Space Cooling.

Appliances and Lighting: The computation of shares was done by dividing
Final Energy Consumption of the residential sector by Final Energy Consumption of
Building sector as a whole. In order to bind together Appliances and Lighting shares
in EDGE, it was followed this formula, where all index “share” refers to the share of
residential consumption on the total and FC is Final Energy Consumption:

shareAL =
shareappliances · FCappliances + sharelighting · FClighting

FCappliances + FClighting
(3.5)

3.2.3 Shares, results
First is presented a table in the next page summarizing the obtained shared for EDGE
regions for the year 2020, 2050 and 2100. Values for 2020 and 2050 are calculated
directly from the IEA dataset, while values for 2100 are obtained through the method
introduced in the previous section. It follows a brief analysis of the results and in the
last section part are shown the relatives graphs, first with a 2050 time span and then
a version extended up to 2100.
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Table 3.4. EU shares, results

Region Year AL SC SH WH

AFR
2020 49 40 66 84
2050 52 66 64 79
2100 57 74 62 73

BRA
2020 43 18 12 93
2050 44 51 2 91
2100 49 67 0 88

CHN
2020 74 52 65 88
2050 68 65 71 78
2100 66 67 70 70

EUR
2020 61 13 71 66
2050 42 12 68 65
2100 40 13 66 62

IND
2020 41 74 38 93
2050 66 92 28 82
2100 73 93 23 68

JPN
2020 57 29 69 70
2050 37 29 67 69
2100 36 34 66 67

MEX
2020 49 23 55 74
2050 37 62 45 68
2100 29 73 40 66

MIE
2020 62 40 66 84
2050 53 66 64 79
2100 57 74 62 73

NCD
2020 57 53 63 90
2050 65 78 60 83
2100 67 87 58 76

OAS
2020 41 50 33 93
2050 52 76 29 88
2100 47 78 26 82

OCD
2020 56 29 69 70
2050 37 29 67 69
2100 35 34 66 67

RUS
2020 40 33 78 82
2050 43 17 72 74
2100 40 18 72 71

USA
2020 46 34 70 72
2050 36 29 69 72
2100 35 31 67 70

ZAF
2020 50 15 43 85
2050 50 60 40 85
2100 58 75 41 86
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Appliances and Lighting (AL): Residential sector account for around 75% to
50% of Building energy AL FC in developing countries. Developed countries instead
have shares between 50 to 40%, and thus a greater prevalence of AL in the commercial
sector. Trends for Developing countries are different for two groups. A first group
composed by three countries included China and India converge increasing toward
values of 70% in 2100, a second included MIE and OAS converge decreasing to values
of around 50% in 2100. Developed countries instead all show a decreasing tendency
towards values of 40% by 2050 and to remain stable until 2100%. Within AL FC,
Lighting accounts for around 20 to 30% of consumptions, while Appliances for 70 to
80%.

Cooking (CK): Cooking was modeled by IEA as present only in the residential
sector, it is certainly a simplification but it was decided to keep this assumption also in
EDGE, as the type of commercial sector analyzed is certainly restricted to subsectors
where cooking End Use has not related FC. (eg. offices).

Space Cooling (SC): Space Cooling trends are strongly diversified between
developing and developed countries. Countries like Russia and US decline from values
of around 33% in 2020 to values of 18 and 30% in 2100. EU remains stable at values
of about 10%. Developing countries instead show net increases, as is the case for
MIE and Africa region, which rise both from 40 to 74% (modeled from the World
IEA region). China rises from 50 to 70% in 2100 while India from 70 to 90%. IEA
projections for developing countries Space Cooling showed a strange behavior from
2050 to 2060, with first a declining trend and then a new rise close to 2060. The
Holt’s forecasting algorithm interpreted this behavior as a temporary fluctuation
and assigned increasing values up to 2100. As projected by IEA thus, space cooling
residential shares are to increase constantly throughout the century.

This behavior is coherent with the one projected in EDGE through the equation
descripted in chapter 2. Overall cooling demand is dependent on income per capita,
with the effects of marginal income being high for medium income levels and on a
“Climate Maximum” which depends on the number of CDD in a region. It was not
possible to asses whether or not IEA model includes Climate Change (CC) feedback
in its coding (the IAM code is kept private), however, independently from CC the
Climate Maximum of mid latitude regions-developing countries is higher than the one
of high latitudes-developed countries. CC, if not considered by IEA, would augment
the increasing trend by increasing CDD.

Income levels are projected to increase substantially in developing regions, par-
ticularly in the first half of the century. An increasing share in residential cooling,
signals that the increasing shares of commercial floor space are not sufficient to
balance the net increase in residential cooling. Indeed commercial floor space shares
of developing regions should increase with greater rates in the first half of the century,
if the calibration found in EDGE for commercial floor space shares holds true also
in the IEA models. The three forces identified for developing regions are thus the
following:

• A negative force due to increasing shares of commercial floor space.
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• A positive force due to the reaching of Climate Maximum, which should though
affects both residential and commercial cooling demand.

• A positive force due to increasing GDP per capita. Cooling demand will rise
accordingly to GDP both in residential and commercial sector.

The trend for residential demand is therefore explained by a greater impact of
GDP per capita and Climate Maximum on residential demand than on commercial
demand. This could be so explained:

• Commercial cooling demand is less dependent from GDP per capita, it is likely
than even in regions with overall low income per capita levels, commercial
standards and regulations lead to an adoption of conditioners in work spaces,
offices etc. Hence, commercial cooling demand reaches early saturation levels.

• Residential cooling demand on the contrary is likely to be more dependent on
income per capita, or purchasing power, of people/customers.

The higher shares of commercial space cooling in developed countries are therefore
probably explained by higher shares of commercial floor space (they should level off
around 40%) and lower CDD and Climate Maximum.

Space Heating (SH): Overall, shares are projected to decrease of a few percentage
points for all regions throughout the century, with some developing regions experiencing
greater trends, as is the case for India, which decreases from values of 38% in 2020
to 23 in 2100%. Also India show a decrease from values of 12 to 0. In general mid
latitudes countries show a net shift in Space Heating from residential to commercial.
This trend confirm the hypothesis that IEA models already include CC feedback
effects. An expected decrease in HDD due to CC should indeed contribute to a
reduction on residential heating demand, while the commercial sector is probably less
sensitive than the residential to HDD (and CDD).

Water Heating (WH): Water Heating trends are also decreasing for most
countries, with levels for developing countries being from 75 to 90% while those of
developed countries from 60 to 75%. India in particular is projected to decrease from
93% in 2020 to 70% in 2100. This trend could be explained again by CC effects on
the demand, with higher temperatures leading to lower heating needs in residential
and a lower sensitivity of commercial/public sector on external temperature profiles.
As example, water heating needs of an hospital are mostly independent from external
temperature profiles, being more related to sanitation needs (eg boilers to sterilize
equipment, washing machines etc.).Summarizing three main considerations regard
residential end uses can be made:

• Cooking and Water Heating show the greatest shares, respectively of 100 and
around 75% (rough estimates).

• Appliances and Lighting is the End Use most balanced in share between resi-
dential and commercial, with world (rough) averages around 50%.
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• Space Cooling and Space Heating show the greatest variations in magnitude
between developing and developed countries, with higher shares of space cooling
and lower shares of space heating for developing countries.
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3.3. Subcommercial separation

3.3 Subcommercial separation

3.3.1 Introduction
The splitting of End Use equations in a residential and commercial part was not
sufficient to perform analysis on WFH penetration in the Building sector. The model
needed a parameter that could relate the shares of WFH to the relative energy
consumption reductions of the commercial sector. However, not all commercial sub
sectors are amenable to teleworking, as was introduced in the WFH section. Some jobs
may require more physical and F2F tasks while others may totally be teleworkable.
Moreover the calibration for commercial energy reductions in relation to WFH was
made with data relative only to some subsectors, as is explained in the next section.

Hence, the commercial part of the End Use equations had to be split in two parts,
through a coefficient, equal for all five equations, that accounted for the share of
commercial sector final energy consumption subjectable to WFH. To clarify, let’s
assume 100 the FC of commercial sector, 50 the amount related to Hospitals, Food
Retail and Hotels and 50 the one related to Public sector and Offices. Let’s assume
the average WFH probability for Hospitals, Food Retail and Hotels of around zero,
while the one for Public and Office substantially higher. The WFH probability of zero
for the fist group is considered structurally zero, this mean that those sectors will
never be teleworkable. Instead the averaged WFH probability of the second group
may vary in the future, with the correlation found between WFH potential and GDP
per capita. In this ideal case, the coefficient for subcommercial separation would be
0,5 or 50%. Fluctuations in commercial energy demand due to WFH will therefore
affect only the WFH energy related part.

3.3.2 Calibration
Data reporting sub commercial energy consumptions are scarce, even European
databases do not offer a comprehensive collection for all EU countries. For example,
it was not possible to find data for Italy, even in old datasets. Data were found for
the United States, Singapore, India, European Union, Australia and China. The most
important dataset for this research (and most cited in literature found) was the United
States one, because it offered an almost direct linkage to the methodology adopted by
Dingel Neiman in their WFH work. The method applied to the US dataset was then
extended to the others found.

United States

Data for the United States were available in the Energy Information Administration
(EIA) “Commercial Buildings Energy Consumption Survey” (CBECS) database. [20]
In this database, buildings are classified according to the principal business, commerce
or functions performed. In table is shown the CBECS classification, and some sub
categories are shown if the definition of the commercial sub sector is not clear:
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Table 3.5. CBECS classification

Building Type Definition Sub categories
Education Academic or technical classroom Schools, Universities
Food Sales Retail or wholesale of food Grocery, food market

Food Services Preparation and sale of food Bar, restaurant, catering
Health Care Treatment facilities Hospitals, medical offices, clinics
Lodging Accommodation, residential care Hotels, retirement home, convents

Mercantile Sale of goods, shopping malls Retail stores, malls.
Office Office space, administrative Gov office, administrative
Public Law and order, recreational Jails, Police stations, culture

Religious Religious activities
Service All but not food or retail sales Repair shop, car wash, barber

Warehouse and Storage Store goods Shipping centers, warehouse
Other 50% commercial floor space Data center, laboratory
Vacant More vacant floorspace than used

For each building type the CBECS provides the sum of major fuel consumptions
for a period ranging from 1992 to 2018. The dataset chosen was the 2012 one. Dingel
and Neiman in their working paper propose a method to cluster WFH job’s data into
WFH industry data. It consists in the merging of the derived WFH-SOC dataset
(standard occupational classification), obtained from the of O*NET surveys, with
the SOC relative 2-digit sector’s employment classification from the Bureau of Labor
Statistics (BLS) Occupational Employment Statistics (OES) dataset. [74] Once bonded
the CBECS and the WFH-SOC-OES datasets together, it was needed a method to
compute the share of final energy consumption associated to the WFH “teleworkable”
commercial sector. Multiplying the sub sectorial energy consumptions by the WFH
shares is wrong, for many reasons:

• A sector’s WFH share is not strictly an indicator of how much of the sector
related energy can “float” in relation to variations of its value.

• The WFH shares are US and year specific, the same classification performed
on a developing country would have returned near zero WFH shares for all
the subsectors. In fact the Dingel Neiman national WFH potential could be
calculated by first obtaining data for the total number of workers in each industry.
Then is obtained the number of workers at WFH by multiplying the number of
workers for the indicated Dingel Neiman shares. Dividing the total number of
WFH workers with the total number of workers would result in a share similar
to the 37% which is the US national WFH level calculated by Dingel Neiman.
(To get the exact value should be added to the computation also the remaining
noncommercial sectors). Therefore, the multiplication of energy values by WFH
values would get a temporal WFH fixed information, not useful for the purpose
of this research.

• Of interest was instead the identification of those commercial subsectors “struc-
turally” inadequate to host WFH.

The choice was therefore the identification of an arbitrary cut-off WFH levels that
would identify those subsectors likely to be never teleworkable. Their relative energy
FC would then be summed and the total divided by total commercial FC. The cut-off
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WFH level was set to 14%, equal to the Retail trade one’s. Under this method would
result not teleworkable “Food Sales and Service”, “Lodging” (Hotels), “Mercantile”
and “Religious worship”. The Health care sector, however, needs considerations.

It was chosen not to include Health sector related energy despite it having a
WFH value greater than the cut off one. In fact, most of health care facilities related
consumptions are needed to support machineries and a comfortable environment to
patients. [75] In other words, the assumption is that energy savings due to some
personal (probably high figures who do not perform physical tasks in the hospital)
being at WFH are nulls. In table is shown the final binding performed on US, where
the last column indicates whether a sub sector is not teleworkable (very low VL) and
the overall level of teleworkability (high H, medium M). The so found sub commercial
coefficients for US was of 0.53.

Table 3.6. EIA - SOC binding

Energy Information Administration Dingel-Neiman (National Bureau of Economic Research) WFH
Building Activity Trillion Btu Industry Share of jobs from home Assigned

Education 842 Educational Service 0,83 H
Food sales 262 Accomodation and food service 0,04 VL
Food service 514 Accomodation and food service 0,04 VL
Health care 718 Health care and Social Assistance 0,25 VL*
Lodging 564 Accomodation and food service 0,04 VL

Mercantile 1.008 Retail trade 0,14 VL
Office 1.241 Management,Services,Finance,Information 0,76 H

Public assembly 480 Federal,Local Government 0,41 M
Public order and safety 133 Federal,Local Government 0,41 M

Religious worship 173 0 VL
Service 272 Management,Services,Finance,Information 0,76 H

Warehouse and storage 429 Warehousing,Transportation,Construction 0,19 M
Other 286 Other Services 0,31 M
Vacant 41 Other Services 0,31 M

European Union

For European countries it was consulted the official European Union “EU Building
Database”, [76] which is publicly available on the European Commission portal. The
database can be consulted directly online and most of its data are derived from the
“Odyssee” database, which is a project financed by the Commission within “Horizon
2020”. 36 European nationals’ universities or Efficiency Agency (ENEA for Italy)
cooperate in the Odyssee-Mure project. The Building subdivision is similar to the
CBECS one, though less detailed. In table are shown the sectors and their relative
WFH teleworkability, as was done for the US, subsectors having a VL labeling were
not included in the energy summation.
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Table 3.7. European Union classification

Sub Sector WFH
Private Offices H
Public Buildings H

Wholesale and trade VL
Hotels and restaurants VL

Health care VL
Education H

Full datasets reporting energy consumptions for each of the sub commercial sectors
were found for Denmark, Germany, Netherland, Sweden and United Kingdom. The
results are shown in Figure 3.11 , and show sub commercial coefficients ranging from
0.4 to 0.5, exhibiting almost constant trends throughout the period 2000-2013.

Figure 3.11. sub-commercial WFH coeff. European Union

Australia

Data for Australia were collected from the “Baseline Energy Consumption and Green-
house Gas emissions, for commercial buildings” reports of 2012. [77] It was released
by the Council of Australian Governments and was part of the National Strategy on
Energy Efficiency. The report was a study of the Department of Climate Change and
Energy Efficiency. Projections made in 2012 were up to 2020 and with a sub commer-
cial level resolution. In the table is reported the commercial Building subdivision and
its WFH assigned classification.
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Table 3.8. Australia classification

Sub Sector WFH
Stand Alone Offices H

Hotels VL
Retail VL

Hospitals VL
Education H
Public H

Vocational Education H

The results show sub commercial coefficients ranging from 0.42 to 0.4, exhibiting
almost constant trends throughout the period 2009-2020. However these data were old
projections of 2012. Historical trends were therefore retrieved from the Department
of Climate Change and Energy Efficiency database. Building mapping was not the
same, as in the historical database were both present retail and tertiary subsectors. In
Figure 3.12 is shown a combination of historical trends and “future” projections from
the 2012 report. They are comparable in magnitude, yet they substantially differ in
trends. “History” is slightly increasing, with shares from 40% in 2000 to 44% in 2011.
“Future” is instead slightly decreasing, with shares of 43% in 2011 and of 40% in 2020.
However, changes are small considered the time range of 20 years.

Figure 3.12. sub-commercial WFH coeff. Australia

Singapore, China and India

Data for Singapore were retrieved from the Singapore “Building and Construction
Authority” (BCA). [78] BCA published the Building Energy Benchmarking Report
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(BEBR) annually since 2014, to monitor the building energy performances of Sin-
gapore’s building stock. Only publications from 2016/2017 however included also
healthcare facilities and civic buildings, sports and recreation centers. The BEBR
reports dataset reports Building Type, Floor Area in square meters and the Energy
Use intensity in KWh/floor area. Therefore the analysis was limited to electricity
consumption. The BEBR dataset is the most detailed one, with a building resolution
of 17 use types. In the table is reported the commercial Building subdivision and its
WFH assigned classification:

Table 3.9. Singapore classification

Sub Sector WFH
Mixed Development H

Retail VL
Office H
Hotel VL

Community Hospital VL
Private Clinic VL
Polytechnic H

General Hospital/ Specialist Centre (Public) VL
Nursing Home VL
Private School H
University H

Specialist Centre (Public) H
TCM Clinic VL

ITE H
Private Hospital (Private) VL

Private College H
Polyclinic VL

Data for 2018 were then aggregated and a resulting WFH subcommercial coefficient
of 0.48 was found. Data for China and India are highly unreliable, since they were
not collected from an official source while instead from two unique papers reporting
a rough estimation of commercial energy consumptions. The index obtained for
India [79] was of 0.42 while the one obtained for China, [80] obtained through a reverse
energy calculation using carbon emissions as a proxy, was of 0.45.

3.3.3 NAMEA - WIOD Calibration
The trends obtained from method 1 showed a particular constant behavior in recent
years, the reliability of data source, excluded India and China, was very high, being
all produced by officials governments agency or partnerships. Yet, it was required a
greater geographical resolution to apply the commercial sub coefficients to all EDGE
regions. The second method adopted consisted in obtaining data from the World Input
Output Database (WIOD). [81] An extensive literature on the WIOD can be found at
the official website. Yet, a standard Input Output matrix does not contain energy
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values on FC but only economic transactions from an i-sector to another j-sector.
European Commission Joint Research Centre (JRC) released in 2019 a restricted
version of the WIOD dataset reporting estimations for embodied energies within
cross sectorial transactions, the “National Accounting Matrix with Environmental
Accounts” (NAMEA). [21] It was applied to the database a similar classification as
performed in method 1. NAMEA dataset adopts the same industry classification of
the WIOD, and therefore includes all of national sectors. 19 sectors were labeled as
“commercial”, while 14 as teleworkable sub commercial sectors. Classification criteria
were the same adopted previously.

For each region in the database was provided a time span ranging from 2000 to
2016. For each year was calculated the subcommercial coefficient and the GDP per
capita information (country and year specific) was added. Data were then aggregated
by EDGE region. European Unions data were averaged by year to reduce the relative
weight of the EU dataset in relation to others world regions. A GAM (General
Additive Model) with a smoothing gamma parameter equal 3 was then used to infer a
correlation. Results are shown in Figure 3.13

Figure 3.13. NAMEA WFH coeff.

The obtained calibration shows results similar to those obtained with method
1. From values of GDP per capita of 10000 dollars the subcommercial coefficient
fluctuate from values of 0.5 to 0.6 independently from the GDP. However a slightly
increasing trend can be observed, with the median for higher GDP per capita closing
values of 0.6. This could be explained by higher shares of office floor space in more
advanced economies. Moreover India results having a coefficient of around 0.3, much
lower than the one obtained in method 1 (though unreliable). China instead show
high values of around 0.6.
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At this point, results obtained with method 1 were on average lower, ranging
from values of 0.4 to values of 0.5, while results of method 2 were on average higher,
from values of 0.5 to values of 0.6. In the NAMEA related publication is shown a
reliability test performed comparing energy results obtained form the modified WIOD
database and official energy reports from National Statistical Institutes. According to
the authors of the study, a quasi-perfect accordance level should be guaranteed by
NAMEA.

Both method 1 and 2 therefore should rely on highly thrustable database, dif-
ference in results are thus to be caused by slightly difference SOC and/or industry
classifications. In EDGE it was therefore chosen to assign a median value of 0.55 to
the subcommercial coefficients, with an adequate variance to be provided in a Monte
Carlo simulation.
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3.4 Commercial Reductions
Collecting data for Commercial Energy Consumption’s variations due to WFH was not
an easy task due to the extreme variety in boundary conditions. All found literature was
produced amid COVID19 pandemic and reported registered or estimated consumption
variations for the entire commercial sector. Two main issues had to be solved:

1. Avoid comparing data collected from countries in very different SIP (shelter in
place) regimes.

2. Extract data reporting variations only for the WFH or teleworkable commercial
sector as defined in the previous section. Eg. excluding food retails etc.

Then it had to be modeled a function that correlated WFH levels with energy
reductions, in this way a spatial and temporal component could be added and thus
connected to the EDGE equations. Out of 18 collected data points, 6 relatives to
four nations satisfied both condition 1 and 2. Data collected for the others countries
were useful to estimate upper boundaries for reductions in commercial consumptions.
First is therefore presented an overview of some of registered energy variations
during COVID19 pandemic, not satisfying conditions 1 and 2. Then is presented the
performed calibration and addition in EDGE.

3.4.1 Collection of Data
Italy was the firs western country to be hit severely by COVID19 pandemic. The
implementation of the national lockdown order forced most of Italian population at
home (around 40% of the employed population was at WFH [1,82]) and the closure
of “non essential” activities. The order was implemented on 8 March 2020 through
a Decree of the President of the Council of Ministers (DPCM). [13] A second order
was issued the 22 of March 2020. All commercial and industrial activities were forced
to closure for a period extending at first from that day to the 3 of April 2020, and
significant effects on the national power grid were registered. [83] Some exceptions
were made for the production and industry sector. The energy and food industry were
kept open, but most of the commercial sector was limited. Providing a percentage is
not possible, the DPCM’s list of “exceptions” for the commercial sector is shown in
Table 3.10.

The number and entity of exceptions could be misleading. For example, schools
and university were closed from the beginning of March, and access to scientific
laboratories was very limited. Also, the same DPCM encouraged the adoption as
wide as possible of WFH, for all categories, included those in the privileged list.

“Unareti” and “Research on the Energy System) RSE released in June 2020 a
report that analyzed energy consumptions variations for the city Milan and Brescia
in concomitance with the first lockdowns of March 2020. [84] The analysis consisted
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Table 3.10. DPCM exceptions

Commercial sector “exceptions” as of 22 March 2020 DPCM
Repairing of machines and equipments Instruction

Energy operators Social assistance
Water and sewage operators Postal service

Engineering Research and development
Wholesale trade (most of) and warehousing Professional activities

Information Hotels
Finance

Call Center (inbound call)
Public Administration, Defense

in a review of data coming from the Medium Voltage electric distribution grids. The
reference week was the one of 10-16 February 2020 (no SIP). Data for Milan consented
only an analysis of overall electricity consumption variations, while those for Brescia
allowed for a breaking in sectorial consumptions. In Figure 3.14 is shown the partition
of total electricity consumption for the two cities.

Figure 3.14. Milan and Brescia sectorial bd. GWh/Yr

Brescia has a much higher share of Industry type load, while Milan a much greater
Commercial and Domestic load types. In the next figures are shown the variations.
The four vertical red lines indicate different levels of SIP orders:
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Table 3.11. Lockdown’s timeline, Italy

24 February 2020 Closure of all schools and universities
DPCM 3 March 2020 Establishment of first Red Zones
DPCM 8 March 2020 Stay at Home

DPCM 22 March 2020 “Close Italy” General Lockdown and closure of activities

For the city of Milan was registered a peak coinciding with the 22 of March in
electricity reduction equal to -19,4%. Data were corrected for temperature variations.

Figure 3.15. Milan electricity reduction, RSE

The 20% reduction in electric consumption is due mostly, according to the report,
to a reduction in commercial electricity energy consumption, that accounts for 51%
of Milan city. Yet, the real reduction for the commercial sector could be greater,
considered the counteracting effect of the residential sector (which accounts for 20%
of electricity consumptions).

For Brescia it was possible identifying which Medium Voltage lines were connected
to specific types of clients. Thus, variations were disaggregated by sector. At its peak
on 22 March 2020, with most activities closed, Brescia commercial sector registered a
reduction of 44% of electricity consumption, while Industry experienced a minus 80%.
The data obtained from this report were not used in the EDGE calibration since no
information were provided for the various commercial sub sectors.

65



Chapter 3. EDGE advancements

Figure 3.16. Brescia, Commercial and Industrial reduction, RSE

3.4.2 Nature Climate Change
Estimations for the reductions of commercial energy consumption in the world, due
to COVID19 related lockdowns, were performed by Le Quéré C. et al (Temporary
reduction in daily global CO2 emissions during the COVID-19 forced confinement,
Nature Climate Change July 2020) [4,85] and by M. Forster P. et al. (Current and
future global climate impacts resulting from COVID-19, Nature Climate Change
October 2020). [11]

Le Quéré et al. method to estimate commercial variations is based on surface
transport data for the upper limit, with the assumption of it being proportional to
the change in the workforce, and on electricity changes for the lower limit. A central
value is then interpolated. In such a way the study correlates three confinement levels
to changes in “activity” and calculates a maximum decrease in sector world emissions
of 21% (-8 to -33) for the 7 of April 2020. Level 2 of confinement already impacts
extensively on the commercial sector, and in particular on WFH related sub sectors
(offices, schools, public buildings).

Table 3.12. SIP levels

Level Policy example – commercial related
1 None

2 Closure of schools, universities, public buildings, religious or
cultural buildings, restaurants, bars and other non-essential businesses.

3 Confinement for all but key workers

Table 3.13. SIP’s activity variations

Level 1 Level 2 Level 3
Public and Commercial,

activity variations -5 (0 to -10) -22,5 (0 to -40) -32,5 (-15 to -50)

66



3.4. Commercial Reductions

The second study performed by M. Forster P. et al. take advantages of the
enormous amount of mobility data collected from the Google and Apple mobility
database. Data are relatives to 114 countries and tracks movements of 4 billion
users. The sector approach adopted is the same of Le Quéré et al. but substitute the
percentage changes in the emissions with Google mobility changes in transit. The
authors report that the estimates produced with the Google transit method are likely
to overestimate the emission change from the sector. Results should thus agree more
with the high estimates from Le Quéré. In table are shown the projections made by
M. Forster, where "peak" stands for the peak of a probability distribution (not the
mean). Results are overall similar to the one found for Brescia (-44%).

Table 3.14. M.Forster et al. CO2 reductions

Le Quéré et al. M. Forster et al.
Peak % -50 -45
Max % -50 -80
Min % -30 -20
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3.4.3 Other Data
A review of source of data estimating energy or emissions variations for the commercial
sector during lockdowns are shown in the table below. Those used for the EDGE
calibration are reported in the next paragraph.

Table 3.15. Other commercial data

Ref Description Country Delta
[86] HIS market research China -3,1% elec.
[87] EIA US -8% elec.

[84,88] Unareti – RSE Italy -Brescia -44% elec.
[4] Le Quéré et al. World -50% emissions
[11] P. M.Forster et al. World -21% emissions
[89] Stark Energy Provider UK -29% elec.
[90] Food, Retail Sales and Services ARG -16% elec.
[91] Energy Network Australia AU -7% * soft lockdown

[92]
OLADE
Latin America Energy Organization
”Energy consumption” Mtep

BR -26%
MX -39%

Central Am -16%
Zona Andina -24%
Cono Sur -21%
El Caribe -26%
Latin Am -25%

3.4.4 Calibration
Italy

In order to grasp the dynamics involved in an office during lockdown and its energy
impacts, it was chosen to monitor a building in Verona (Italy). The building host
an ITC company involved in the provision of management software and business
development assistance. It has good overall energy performances and was certified
with a more than sufficient “sustainability rating” by the Italian private company “SI
Rating” (Sustainability Impact Rating). The ITC agency had also been experimenting
WFH or greater levels of work flexibility in the last years. WFH was never adopted
systematically, and only for some days a week. However this past “training” facilitated
a fast and efficient adoption once it became mandatory the 22 of March 2020. In
fact the agency had already placed more than half of its 80 workers in WFH from
the beginning of March. A level of 70%-80% of personal at WFH was reached at its
peak in late March, some personal was still coming at office because the agency was
included in the list of those “exceptions” listed by the DPCM of 22 March 2020.

Energy consumption were of about 80 MWh a year in the last four years, [93]
with no increasing nor decreasing trends signaled. Usual profiles of consumption show
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increases of about 14% in concomitance with the hotter months of the year. The
relatively modest increase in summer proof that cooling energy demand does not
play a significant role on overall consumptions. Hence variations registered during
the first lockdown of March-April 2020 are potentially valid for the rest of the year.
Results indicate average reductions of about 27% of total electricity consumption in
concomitance with WFH levels of 70-80%. This result is discussed later.

Figure 3.17. Office consumption profiles

Figure 3.18. Electricity variations with COVID19-WFH
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Sweden

Zhang X, Pellegrino F. SHen J and others from the Department of Energy and
Community Buildings of Dalarna University, in Sweden have investigated in a pilot
study the impact of confinement measures due to COVID19 on energy demand of a
building mix in a district (non-existing virtual community). [16] This work turned
out to be of great use for the purpose of this research, as it offered insights also on
the dynamics involved in the residential sector. To simulate the energy performances
of the district was used “Urban Modeling Interface” (UMI) a free modelling tool
developed by the MIT Sustainable Design Lab. One of the key parameter modified
to account for energy variations was the occupancy profile, that due to the different
confinement levels, differed from the conventional one. To exemplify the level of
thermal details implemented in this model, must be mentioned the fact that offices
and school show lower thermal gain with increasing level of unoccupancy. The different
types of commercial buildings modeled are school, offices and retail shops, the first
two being of interest for this WFH research.

In a similar way to the method adopted by Le Quéré et al. three different levels of
confinement are modeled, the most important scenario property being the unoccupancy
hours, is reported in the table below:

Table 3.16. Zhang et al. classification

Closures ratio Office Building WFH equivalent
Level 1 base case no COVI19 15hr - 9hr of work 0

Level 2 19.5hr - 4.5hr of work 0.5
Level 3 21.75hr – 2.25hr of work 0.75
Level 4 Full closure 1

For office building type (8.1% of total district area) the following results are
provided in the study, with total energy expressed in KWh/m2 but being equal to
the sum of Lighting, Equipment, DHW, Heating and Cooling energy demand:

Table 3.17. Zhang et al. FC variations, tot

Closures ratio WFH Total Energy demand Variation
Level 1 base case 0 72.1 0

Level 2 0.5 60.6 -16%
Level 3 0.75 58.9 -18%
Level 4 1 53.7 -25%
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For electricity demand the pattern is the following:

Table 3.18. Zhang et al. FC variations, EL

Closures ratio WFH Delivered Electricity Variation
Level 1 base case 0 48.5 (70% total) 0

Level 2 0.5 29.9 -38%
Level 3 0.75 26.7 -44%
Level 4 1 17 -65%

While for the system energy demand, equal to the sum of DHW, Heating and
Cooling:

Table 3.19. Zhang et al. FC variations, Heat and Cooling

Closures ratio WFH Total Energy demand Variation
Level 1 base case 0 23.6 (30% total) 0

Level 2 0.5 30.7 +30%
Level 3 0.75 32.2 +36%
Level 4 1 36.7 +55%

From the results its clear the strong reduction in appliances and equipment energy
demand due to their progressive unuse. Levels of reduction reach -65% in a case of
full office closure. However this demand reduction is counterbalanced by a decrease
in thermal gain due to the less occupancy and equipment switched off. Total energy
reductions were used as three points of calibration, for the three respective levels of
WFH. It was chosen not to consider separately electricity and system energy demand
to avoid being too specific and risking of giving too much weight to environment or
climatic local parameters.
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Figure 3.19. Sweden,(district) office energy reductions

UK and US

Data for United States and United Kingdom were retrieved from two energy providers
and research utilities, respectively “Hatch Data” [18] and “Carbon Intelligence”. [15]
Hatch Data supports building operations teams and owners in managing energy
performances and in identifying potential building quality improvements. Their
platform captures building data for more than 400 million square foot of occupied
space. They report having a database containing 14 billion hours of property operating
data collected over 10 years. In order to identify energy reductions due to forced
closure of US commercial office space it was performed an aggregation of minute-by-
minute data received from utility meters and other building equipment. Their report
“How is U.S Office Building Energy Use Being Affected by the Coronavirus Crisis?”
compare the last three weeks of March 2020 and the first of April with the weeks prior
to March 1 and therefor to the public health crisis. On a national basis they found
office building electricity consumption declined of 22% in the weeks analyzed, with
the reductions being correlated with the timing of setting of SIP orders, which began
effective in US from the 19-24 March 2020.

Data for UK were retrieved from Carbon Intelligence, an energy performance
consultants. In a report released in August 2020 the founder of the agency reports:
“Unfortunately the vast majority of buildings are not well managed and that has
become really obvious during the lockdown. The average building, despite being
empty, is still using over 80% of the energy it consumes when it is full, and that is
mad”. In fact across a sample of 300 offices and hotels, the average energy consumption
dropped of only 16% in the last week of March, when the government had ordered
work from home, social distance and banned travels. Despite these measures the
worst 10% of buildings still used around 97% of their typical energy demand. The
assignment of WFH levels for the US and UK data points was based on assumptions
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Figure 3.20. US, office energy reductions

on national SIP orders, which were at this point of time (second half of March 2020)
similar to those registered in Italy. It was therefore decided to assign a conservative
value of 65% of WFH.

Office energy consumption

“It was a bit surprising, looking at the data, that these reductions were not larger”

(Hatch Data report, August 2020)

The collection of data points for UK, US, Sweden and Italy allowed the calibration
of an “WFH commercial subsectors energy reduction curves”. Datapoints for Sweden
as mentioned before refer to total energy consumption, however due to the simulation
nature of that study and to some peculiarities involved, (like different levels of WFH)
it was decided to include them in the calibration. The so obtained calibration show
a linear increasing trend in “energy” reductions with respect to WFH levels. In
EDGE it was decided to simulate such energy reduction as a total one, approximation
allowed by the nature of commercial energy carrier mix, which is mostly composed by
electricity, all over the world.

The reasons for a so humble reduce in consumption despite high levels of WFH
is to be found by a breakdown of commercial final consumption per end use. An
estimation performed by the EIA on 2007 data show that only a minor part is due to
consumptions by the personal. Computers and office equipment, account for about
20% of total commercial energy consumption. The vast majority of consumptions is
related to space heating, cooling ventilation, lighting, which are often centralized etc.
In particular Heating, Ventilation, and Air Conditioning (HVAC) systems account
at least for a third of building consumption. The mechanics and substances used for
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Figure 3.21. WFH sub sector, calibration curve

(a) Commercial sector energy use, IEA 2007
(b) Office End Use bd. US DOE 2008

Figure 3.22. Commercial sector
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their operation need to be always active to avoid damaging the systems. For example,
uncirculated water could lead to corrosion phenomena. [15,18,94] Elevators shut off
for long periods require a technical supervision for their new activation, emergency
lights must be always active to comply with regulations, security systems can never
be switched off. Moreover some companies may have servers or data processing and
storing units inside buildings, and their functioning must be guaranteed to allow
workers operating at WFH. Lighting is most of the cases centralized, which means
that zoning is not at place. Therefore even if 20 or 30% of the personal is inside the
building, all lights will likely be on. Furthermore, as Hatch Data reports, in the rush
out of the office as lockdowns were put in place, millions of coffee machines, water
coolers, computers and other appliances were left plugged in, resulting in a significant
cumulative stand-by power. “Commercial buildings are way more complex than home.
Unless you are totally mothballing a building, it’s very hard to switch off everything”,
reports Carbon Intelligence.

Yet there is a wide margin for improvements, considered that the commercial sector,
and in particular the WFH one (as defined in this research) had never experienced such
high levels of unoccupancy before. Both Carbon Intelligence and Hatch Data report
that the building industry should develop a sort of stand-by mode for buildings. A
“single button” that can reduce energy consumption down to a minimum, for different
levels of occupancy, like 50% or zero. Carbon Intelligence sets as an efficiency optimal
performance, reductions in the region of 50% for levels of unoccupancy (WFH) around
100%, and provides examples of improvements that could be related to low-energy
water circulating HVAC mode, elevator hibernating settings and emergency and
security lights that can turn off when there is no personal at office.

Equations in EDGE

In light of the previous consideration it was decided to model in EDGE two curves
relating energy savings and WFH potential levels, calculated with the Dingel Neiman
or DN and World Bank methods. A first curve was the linear one interpolated during
COVID19 lockdowns, assumed to be the worst case scenario, where systems and
HVAC are not adapted to the new buildings operating conditions. A second curve
represents instead a sort of best case scenario, a future where a “stand-by building
mode” is developed and savings for about 60% are reached for levels of WFH equal to
50%. The choice of the curve was for a logistic one, that allowed to add a “learning”
and temporal dimension to the phenomena. In fact as GDP per capita of a country
increases, also WFH potential increases. First buildings are following the “COVID19”
calibration curve, than as the economy grows, more attention is given to energy saving
performances and stronger improvements are implemented. For higher levels of GDP
per capita a saturation efficiency level is reached and marginal improvements are
lower. The delta between the logistic curve and the COVID19 curve was equally
discretized (with N equal 50 being the same for all levels of WFH) and 50 possible
curves were implemented in the model. The set up was then implemented in a Monte
Carlo method that assigned a different efficiency curve at a world level according to a
probability distribution. The equations implemented are the following, where the first
one is calibration curve, the second the logistic curve and the third the discretized
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curves implemented in EDGE. In the third equation α equal 0 returns the COVID19
curve while α equal 50 returns the logistic curve.

coefCM = 0.27 ·WFH (3.6)

coefCM =
1

1 + e−0.12(x−0.5) (3.7)

coefCM = 0.27 ·WFH + α · (
1

1 + e−0.12(x−0.5) − 0.27 ·WFH)/N (3.8)

Figure 3.23. Coefficient of sub comm. (WFH) reduction
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3.5 Residential Increases
The most demanding part of this research was the definition of a coherent method to
estimate the increases in residential consumption due to increased occupancy levels,
as consequence of higher WFH levels. In particular the most challenging issue was
discriminating among the different sets of data collected during COVID19 lockdowns
which where more likely to contain WFH related information. The issues to be solved
were:

1. Most data refer to all-clients, averaged increase in consumption.

2. Lack of information about weather and seasonality.

3. Extremely scarce literature.

Figure 3.24. Residential, main issues

The first issue requires a brief explanation and is showed in a scheme. A full
characterization of the phenomena would have required a much longer and statistically
accurate analysis of data and in particular the retrieving of official data reporting
employment rates, local cultural preferences (eg use of TV), indications about the
number of family members, the floor space per capita etc. These analyses were nor
possible nor needed, at such level of details, since the purpose of this pilot research was
to provide a first quantification of the impact of WFH at a world level. Nonetheless,
the series of assumptions made is here presented:
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• Working hours are assumed to be from 9am to 17pm.

• As a reminder, students and in general the Education comm. sub sector is
considered a WFH sub sector.

• It is assumed that the types of customers analyzed are two, a first group at
WFH and a second at work. Those staying at home during lockdowns but not
working are not considered.

• The increments registered during working hours are consequences of WFH
activities (equipment, more cooking etc.) and are not related to behavioral
shifts. (eg. starting doing laundry during the day instead that at evening)

• Change in behaviors and energy uses before or after working hours could be
relevant but were not analyzed due to the possible bias brought by the group
of clients returning from home but forced to stay at home due to lockdown
measures. For instance, it could be that a client at WFH after being all the
day at home adopts different behavior the evening and reduces his/her energy
consumption in that time window by watching less TV or going to sleep at
different hours. [5, 95–97] In this case energy consumptions variation from 9am
to 17pm would not be fully representative of his/her energy variations.

These issues could have been managed better if instead of a top down statistical
approach, it was chosen a bottom up approach, that went through the characterization
of profiles of consumptions, differentiating by type of appliance etc. However the
weak side of such approach would be the relying on cultural and behavior specific
consumption pattern, provided that a full world-region analysis is not performed. It
was therefore chosen to adopt an easy scalable and less specific statistical approach by
trying to estimate the incremental consumption in electricity use of a smart worker.
As is shown in the diagram, the analysis was therefore limited to working hours,
including in such a way possible clients staying at home (due to lockdown) but not
working. Yet the effect of this group on the results was assumed to be not influent.

The method adopted consisted in obtaining rough estimates of the increase in
residential consumption sources of energy, namely Electricity and Gas. These data
would provide the subsequent found data about End Use variations of higher degree
of reliability. In fact the two types of variations were cross checked through their
application into an End Use (EU)-Energy Carrier (EC) matrix. For the EC variations
statistical approach were used, with the method aforementioned. A first block of data
was obtained from an external source, Octopus Energy, which was cited by most of
2020 literature regarding COVID19 lockdown energy implications. A second one was
obtained through personal analysis of a smaller dataset, performed with the same
method implemented by Octopus. For the EU variations instead, it was not possible
to define a method for the separation of the cohorts of WFH and normal workers.
However the legitimacy of these data was provided by the EC-EU method.
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3.5.1 Energy Carrier
Here is provided the set of data collected for Electricity and Gas consumption variations
but not exploited in the calibration. The reason for their non-utilization is to be
found in the absence of WFH separation or in the presence of strong local peculiarities
potentially affecting (greatly) the results. Some of these data are explained in the
next paragraphers.

Table 3.20. EC variations in residential sector

Ref Description Country Increment
[98] Sperimental S4 EnergyPlus simulation Serbia +55% S4
[99] 352 “representative customers” China +40% * lighting
[100] 300 apartments US, New York +23%
[101] Energy provider utility Singapore +16%
[16] Sperimental simulation for a building mix at a district Sweden +18% S2
[102] 113 Homes, 3 years data collection US, Texas +20%
[103] 700’000 Homes US +25%
[104] 80 Homes India +26%
[105] India India +13%

Electricity

Studies with few houses sampled: India, a +26% in use of electricity was registered
during the first lockdown period, but the sampled homes were only 80. [104] Others
studies made in the US, Texas, [102]revealed a +20% in electricity consumption.
Yet, the samples houses were only 113, plus half of them had EV with possible
consequences on consumption behavior (eg. possible different cost of electricity and
higher propension to consumptions). Data from New York evidence an increase in
consumption of 23%, yet only 300 apartments were sampled. [100]

Study with higher sampled house but no WFH indications: Another
study from India revealed an increase at national level of 13%. [105] A very good data
source from US was provided by “Uplight”, [103] whose data team collected readings
from two different US geographies, using over seven billion hourly Advanced Metering
Infrastructure (AMI) , commonly known as smart meters, data points for more than
700’000 homes. They confronted data for the first four weeks of US lockdown with the
previous year data point and corrected these data for temperature, weather, daylight
savings times and weekend versus weekday use. The study found out that residential
usage was up more than 20% in one region a 30% in another, with respect to normal
levels. The company projected these trends to hold in the hotter months of the year,
due to higher levels of electricity utilization needed for cooler.

Also the same study presented before in the commercial sector, focused on simulat-
ing a district in Sweden, provided results for the increase in residential consumption.
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However only data regarding electricity consumption were collected as heat demand
was biased by the presence of a district heating systems that caused zero variations
on the heat demand. The increment found was thus of 18% for electricity at a level 3
of confinement. [16]

Lastly, Singapore energy provider registered a national 16% increment in electricity
consumption. [101]

Study that could offer insights on WFH: A study was performed by Cvetkovic
D. et al. from the University of Kragujevac, Serbia and published in October 2020
on “Energy and Buildings” [98] that tried to simulate with EnergyPlus the effect of
lockdowns on a household located in Kragujevac. This study “Impact of people’s
behavior on the energy sustainability of the residential sector in emergency situations
caused by COVID19” thus had the potential for being included in the calibration in
EDGE, however the strong local nature of assumptions and the fact that the simulation
involved only one household did not allow for it. In the study, in an approach similar
to the Swedish one, four different levels of confinement were defined. A reference
case S1, a mild protection scenario S2, a semi-quarantine scenario S3 and a complete
lockdown S4. The time resolution implemented in EnergyPlus was of one minute and
occupant’s age, occupation, lifestyle, habits and lockdown measures were taken into
account. Habits were chosen in accordance with cultural and socio-economic local
environment. According to the study, the increase in electricity consumption could
increase of 58% in the case of a full lockdown. The S4 scenario involves a total ban of
movements and only one person is allowed to leave the house once a week for a period
of 2 hours to go to the store. The results are shown in the picture below, where is
evident the S4 58% increment in electricity consumption. The result differentiates
from the others found as it refers to a WFH scenario, while the others were national
averages. Yet the reliability of this data point is unclear, for example, the increase in
electricity consumption does not change between scenario. Some local dynamics may
be involved.

Figure 3.25. Residential increases in an household, Serbia
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Gas

The collection of data for gas consumption was more difficult, probably because gas
smart meters are not in use as the electricity ones. The same study performed on a
Serbian household returned increments in gas consumption due to lockdowns equal to
21%, with little variations across the scenarios. Singapore energy provider reported
increments of 34%, while “Tado”, a provider of smart thermostat, announced on its
online platform a review of readings streaming from 100’000 Tado homes. According
to Tado, UK experienced a 15% increase in “heating consumption”, while Italy and
Spain of 41%. Tado did not provide any insight on what they meant with “heating
consumption”. These datapoints were thus not taken into account.

Table 3.21. Gas variations in residential sector

Ref Description Country Increment

[98] Sperimental S4
EnergyPlus simulation Serbia +21%

[99] 352 “representative customers” China +60% cooling heating
* number of hours/d

[101] Energy provider utility Singapore +34%

[106] Tado® smart thermostat.

Sample of 100’000 Tado® homes.

UK +15%
* “heating consumption”

IT - SPAIN +41%
* not confirmed by SNAM raw data

Gas and Electricity

An average of the collected datapoints for electricity and gas is shown, with the
relatives standard deviations. An average increase of 22% was registered for electricity,
while the one for gas was of around 20%. These data are not the one implemented in
EDGE. As is shown in the next paragraph though, results obtained through a more
rigorous method that tried to separate WFH and normal workers cohorts did not
diverge from these data. This could suggest that real increments per home workers
are higher than those obtained through statistical methods implemented by Octopus
and in this research.

In fact, average increments cannot mathematically be higher than the WFH group
restricted ones. The reason why they do not diverge is also to be found in the fact
that around 40% of the population was at WFH, and the rest of the population not
at WFH also likely increased its consumption.
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Figure 3.26. Average EC Residential increases

3.5.2 EC, Octopus Energy
“Octopus Energy”, a British energy provider, tried to measure the impact of COVID19
lockdown to its client, and in particular developed a method to analyze readings from
smart meters and infer the share of clients at WFH and the extra energy that they
consumed. The report [12] published in its website was highly cited in literature
throughout all 2020, and its results served as input data for the two Nature Climate
Change articles mentioned before in this thesis. Moreover, IEA updated “Work From
Home” energy scenario included Octopus data points as calibration parameter.

Octopus collected data from 115000 clients both for Electricity and Gas consump-
tions. The week starting on 16 of March saw in UK a rapid escalation in measures
designed to halt the spread of Covid 19. On Monday 16th, the government ordered to
avoid social contact as far as possible, favored the adoption of WFH to work from
home and prohibited the access to pubs, clubs, restaurants and theatres. Octopus
compared usage data from the first week of lockdown with the week before and identi-
fied in increase in daytime energy usage that they attributed to more customers being
home during the day. They developed two methods to try to infer the incremental
energy per home worker. A first method “consistent increasers method” consisted in
defining a rule to profile a WFH worker. Only clients showing increments from 9am
to 5pm for all four working days were defined at WFH. A second method instead,
“mixture method” which is the one replicated by this research, consisted in analyzing
statistically the binned load profiles and inferring energy variations. The results
(weather and seasonality corrected) that Octopus obtained from these methods are
shown below:

Table 3.22. Octopus methods

Method WFH KWh per day Incremental usage

Electricity Increasers 17 3.2 32
Mixture 30 1.5 13

Gas Increasers 8 9.4 20
Mixture 25 11 20
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A first consideration can be made. The share of WFH found with all methods is
far below the estimated one for UK for that period of time, which was around 40%.
This difference could be due to the fact that the pool of analyzed Octopus Clients,
despite being reportedly representative of UK domestic users, show consumption
trends higher than the average, characteristic of an “high usage users” group. The
great difference between incremental usages obtained with the two methods signal the
noticeable amount of uncertainty surrounding these estimates. Also, an incremental
usage of 13% seems to be very unlikely, as also Octopus reports, being lower than
the mean increment of 20% presented in the previous paragrapher, which refers to
the average of all clients increased consumption. It would require that WFH and
normal clients increment in the non working hours offset by a lot the increments
during working hours, or that only the cohort of non WFH workers increment by a
lot consumptions in the evening while the WFH cohort does not. But neither the first
nor the second hypothesis are supported by data, as also the same Octopus load plot
demonstrates:

Figure 3.27. Load curves, Octopus

It is thus more likely for the real increment in electricity consumption per home
workers being closer to the 30% value.

Figure 3.28. Consistent increasers, Octopus
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3.5.3 EC, Italian multi-utility
Data were collected from 1215 unique clients residing in the geographic areas of
North-Central Italy for the week 24-28 of February (week 1) and the one of 16-20
March (week 2). The national full lockdown was in place from the 22 of March however
most of commercial activities were already closed as well as schools and universities
from the 11 of March. Average temperatures in week 1 and week 2 differed of about
1°C and therefore weather did not influence the results.

In figure are shown the load curves for the week 1 (black) and for week 2 (red). The
order of plotting is Sunday-Saturday, with the five central load curves representing
work days. Overall energy consumption increased of 5.8%. In a second picture are
instead shown the average consumption variations for each day hour from (from 0 to
24). The black line shows the average of all week days, and each point represents an
electricity consumption variation for that combination of day-hour. It was calculated
by aggregating together all customers consumptions by day-hour in the week 2 and in
the week 1. It shows average increments in working hours consumption from 15 to
20%, with decreases in the morning time. This trend was also observed by Octopus
and signaled a behavioral shifts of workers and occupants, that started to wake up
and work later due to the avoided commuting time.

Figure 3.29. Load curves, obtained from metering infrastracture (AMI)

It was then applied the “mixture method” from Octopus, that consisted in the
following phases:
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Figure 3.30. Average consumption variations, from AMI

1. Bin daily consumption for working days between 9am and 5pm, for week 1 and
week 2.

2. Estimate a percentage X of clients at WFH with an Y increase in electricity
consumption.

3. Model all clients at WFH with the same incremental consumption and reframe
the week 1 distribution curve with the new X and Y parameters.

4. Calculate the Kullback-Leibler divergence (KL) or relative entropy between the
so obtained distribution and the COVID19 registered one.

Point one led to the obtaining of the two curves shown below. The blue curve
represents binned daily consumption (KWh) between 9am and 5pm for the week 1.
The orange curve instead show the distribution curve obtained from week 2. It shows
again a shift towards higher consumptions of an unknown percentage of customers.

The calculation of the Kullback-Leibler divergence was performed by normalizing
binned value of consumption and so obtaining a probability distribution curve. For
the probability distribution curve of week 2 was at each iteration calculated the KL
with the new distribution curve obtained varying X and Y. The KL divergence has the
following mathematical formulation, where P and Q are the two distribution curves:

DKL(P ‖ Q) = −
∑
x∈X

P (x) log
(
Q(x)
P (x)

)
(3.9)

Here is provided as example a table with values obtained from applying the KL
divergence method to the Octopus dataset, as a test.
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Figure 3.31. Binned consumptions, from AMI

Figure 3.32. KL example on Octopus data
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In the next figure is instead shown a 3D plot where on the x label is assigned
the WFH level (X) and on the y label the increase in KWh (Y), thus the two
parameters varied in the optimization. On the (hidden) zeta axis is instead shown the
so calculated KL divergence. Darker colors show convergence toward an optimum area.
(minimization of KL). Results indicate about a 20% of clients at WFH consuming
around 1-1.5 KWh more each, an increase of about 15%.

Figure 3.33. KL on AMI data, 100’000 simulations

It was then also applied a method similar to the “consistent increasers” method of
Octopus Energy. It consisted in calculating the variations in energy consumption for
each costumer (in the previous method it was a binned distribution curve). According
to Octopus expected results with this method should be higher than those obtained
with the KL method. For each client was calculated the electricity consumed in
working week 1 and in working week 2, only in working hours 9am 17pm. Once
obtained the variations they were binned. The first “raw” distribution obtained
showed that some clients were consuming less electricity than before, an average of
the increases would return a +25% in consumption.

An explanation for clients consuming less energy (counterintuitive) could be related
to the nature of lockdown, that induced many students and workers to come back
with parents/family and leave houses empty. However a contribution to negative
consumptions comes also from the switch in working hours showed before, in fact
morning hours from 8 to 10 show at least 50% clients having negative changes, as is
shown in figure below:
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Figure 3.34. Binned consumption variations 9am 17pm

Figure 3.35. Binned consumption variations, 8am 10am
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It was thus decided to select only clients showing increases and at the same time not
greater than 2.5 (150%), thus excluding 50 clients (4%). Clients showing reductions
(cumulative of all working hours of working weeks) where 468. In such a way an
average of 687 clients increases equal 37% was obtained. Data from AMI showed
therefore a range of possible increases spanning from 15 to 25 to 37%, in a similar
way to what obtained by Octopus.

3.5.4 End Use
The collection of data for residential end use variations was less problematic than
the one for energy carriers. Literature available was less numerous than for EC, but
with the method adopted of verification through the EC-EU matrix, less accuracy was
requested. It was thus not required a breakdown of increments between WFH and
normal users. The resulting collection of data is provided in the table below, while
for two data source a brief explanation is provided.

Table 3.23. EU variations in residential sector

End Use function Paper/Document Value Country
Space Heating [96,98,106] +15%,+20%,+21% UK,US,RS
Space Cooling [102] +40% US

Appliances and Lighting [91,96,98,99,107] +25%,+40%(only lights),+3-10%,
+7%(all customers),+10% US,CHN,AU,ES,RS

Cooking [91,96,98,99] [5, 108,109] +50%,+40%, 100% ,+35% US,CHN,RS,AU
Water Heating [16,98,106] +15%,25% UK,RS,SW

The same study presented before, released on “Energy and Buildings” by Cvetkovic
D. et al. on October 2020, [98] thanks to the high levels of detail allowed by the
EnergyPlus simulation, presented data for variations in End Use due to the higher
occupancy in the household. As was mentioned, absolute variations in EC were not
deemed reliable due to the presence of local behavior and cultural elements. Yet, for
EU it was verified a greater similarity in values with those found in other studies.
The study provided the difference in use and final consumption associated with EU at
different levels of aggregation, per equipment type, per type of room of the house etc.
For example, cooking was provided in the house through the use of an electric stove,
with this being the likely cause of EC-Electricity variations being much higher for
this study. Energy consumption associated to the electric stove was of 200KWh for a
baseline scenario S1 while doubled to 400KWh for a scenario S2 to remain constant
independently from the severity of the SIP measures. For this study EU variations
where therefore found to be:
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Table 3.24. Cvetkovic D. et al

SH AL CK WH
Variation 21% 10% 100% 25%

Figure 3.36. End Use variations in an household, Serbia

Figure 3.37. End Use variations in an household (2), Serbia

The second study being briefly explained is a research released in July 2020 by
Zanocco C et al. of the “Civil and Environmental Engineering department” of Stanford
University (US) on “Renewable and Sustainable Energy Reviews”. [96] The study titled
“Exploring the effects of California’s COVID-19 Shelter in Place order on household
energy practices and intention to adopt smart home technologies” thus explored the
effects of SIP on consumptions and also on change in occupants behaviors. California
was the first state to impose COVID19 home confinement restrictions, with the state
of emergency declared on March 4 2020. On March 17, the San Francisco Bay Area
declared the SIP order which affected around 7 millions residents. The extent of
measures deployed was similar to the European ones, and therefore employees started
being at WFH (included students and education sector).
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To understand the impacts of SIP orders on household occupancy, behaviors and
energy profiles, they created a survey regularly filled by a panel of online participants
from California. The pool was selected to be the most representative possible. In
total they received 804 completed surveys. The study found that increased midday
occupancy was associated with respondents who hold a bachelor’s degree or higher
and households with higher income. This is directly correlated with the parallel
US studies performed on the likelihood of WFH, which is directly correlated with
education (tertiary) and income levels. The activities with the highest magnitude
of change (with over half of respondents signaling more frequent use) were “using
a computer, game console, tablet or TV”, “cooking with a stov top/range or over”
and “communicating by phone or video”. Overall variations in EU are reported in
the table below. Finding a unique value for AL was not possible as different types of
appliances were assigned with their variations. With a rough estimate, considering
that dishwasher and washing machines absorb much of an household consumption
and were assigned with a variation of less than 25% (in activity), computer and tv
with a variations of around 60% and lighting with a variation of 25% a weighted value
of around 25,30% should be reasonable.

Table 3.25. Zanocco C et al.

SH AL CK
Variation 20% 25%-30% 50%

Figure 3.38. End Use variations in 800 homes, California
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Finding values for space cooling variations was not easy, as COVID19 lockdowns
were in place during winter months of the year. A late research published in December
2020 on “Renewable Energy World” [102] relied on data from “Pecan Street” an energy
research utility which has monitored for nearly a decade hundreds of selected homes
for research purposes. The 113 houses were located in Texas, US. By performing a
breakdown of electricity usages it was possible to identify bizarre changes even in the
usage of refrigerators, whose consumptions went up considerably, indicating a more
frequent opening of the doors, and thus a more frequent cooking. Energy demand
in Austin (Texas) is reported being heavily influenced by air conditioning, even in
March, due to temperature swings that can produced significant spikes. However even
accounting for such weather swings, data showed that residents were using about 40%
more electricity to cool their homes. This data point was the only found for space
cooling and inserted in EDGE.

Figure 3.39. Cooling demand variations in 113 homes, Texas
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3.5.5 EU-EC Matrix
Overall End Use variations, taken as mean of data found in literature, are shown in
the picture below:

Figure 3.40. End Use variations, mean

End Use variations so obtained were inserted in the EU-EC matrix of UK for the
year 2018, obtained from Eurostat. [14, 110] In brief, the choice of UK EU-EC matrix
was done so to increase the reliability of outcomes. In fact EC – Electricity (WFH)
variations were found for UK and Italy while EC – Gas (WFH) variations only for
UK. Moreover the choice of UK is congenial as Electricity and Gas are by far the
most used EC (almost 90%), with Cooking EU accounting for around 3% of End Use
FC, SH for 63% and AL for 17%. This means that the great uncertainty on cooking
demand will not affect results on the EU-EC matrix while instead SH and WH needs
more accuracy. The structure of an EU-EC matrix is shown below, where the sum of
all elements is one:

∑
ij

aij = 1 (3.10)

By applying an increment in EC – Electricity of 22% and of 20% for Gas, and
a vector of EU changes shown before, but with an high range AL variation of 20%,
the mean error on Electricity and Gas consumption is of 0.15%. The sensitivity of
Electricity is low, for example changing its value to 40% returns a mean error of
7%. The one of Gas is a bit higher. Varying EU instead the error does not increase
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Figure 3.41. EU-EC Matrix

significantly. Overall the combination of EC and EU variations seems to be quite
stable and robust to perturbations (if a maximum error range of plus or minus 10% is
considered acceptable, and given the uncertainties mentioned before it certainly is,
according to this research).
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3.6 Final Equations in EDGE
Here are presented the final End Use equations as inserted in EDGE, summarizing
the advancements:

1. Separation of Residential and Commercial sector through coefficients region,
year and EU specific.

2. Separation of the Commercial part through a subcommercial WFH coefficient
which was found to be overall constant over years and was therefore assumed
independent from regions and years. The average value for this coefficient was
of about 0.55

3. Adding of a subcommercial WFH energy savings curve, it is dependent on WFH
potential and therefore the values it returns are region and year specific.

4. Calculation of the WFH potential through DN and DN-World Bank. Being
dependent from GDP per capita and IIASA population and educational profiles
it is region and year specific.

5. Calculation of the share of total population at WFH by multiplying WFH
potential by the ETP-WP ratio. ETP brings a region dimension while WP both
a region and year dimension. Overall ETP-WP is thus region and year specific.

6. Adding of Residential End Use variations. They are assumed to be constant in
time and region, indeed a strong assumption as some efficiency and behavioral
WFH induced improvements could manifest in the future, but considering the
pilot nature of this study the assumption was valuated overall acceptable.

Separation Residential Commercial:

shareAL =
shareappliances · FCappliances + sharelighting · FClighting

FCappliances + FClighting
(3.11)

Coefficient of subcommercial WFH energy savings, with the first two equations
being respectively the COVID19 calibration curve and the logistic future curve, and
the third one the final:

coefCM = 0.27 ·WFH (3.12)

coefCM =
1

1 + e−0.12(x−0.5) (3.13)
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coefCM = 0.27 ·WFH + α · (
1

1 + e−0.12(x−0.5) − 0.27 ·WFH)/N (3.14)

Coefficient of WFH potential, DN is interpolated and has a “value” dependent on
GDP per capita. This “value” is then inserted in the equation below to be corrected
with the World Bank method:

coefWFHscen,reg,yr =
20∑
i=1

valuescen,reg,yr · coefSDreg,i · coefSSPscen,reg,yr,i (3.15)

coefSDreg,i = 1 + 1
2 · erf(coef√

2
) (3.16)

coefSSP scen,reg,yr,i = populationscen,reg,yr,i
populationscen,reg,yr

· (3.17)

Coefficient of ETP-WP multiplied by the coefficient of WFH potential:

ETPreg =
Employedreg

WorkingPopulationreg
(3.18)

WPscen,reg,yr =
Population aged 16−64,reg,yr

Total Populationreg,yr
(3.19)

WFHscen,reg,yr = coefWFHscen,reg,yr · ETPreg ·WPscen,reg,yr (3.20)

The general structure of an End Use such modified equation is the following, with
ζ(q1) being the old End Use function, q1 representing the default set of variables, γ(q2)
the new End Use function and q2 representing the new set of variables (eg. shareEU
etc):

γ(q2) = γ(q2,res) + γ(q2,comm) (3.21)

γ(q2,res) = ζ(q1) · shareEUi, reg, yr · (1 +WFHscen,reg,yr ·∆EU,i) (3.22)
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γ(q2,comm) = ζ(q1) · (1− shareEUi, reg, yr) · (1− 0.55 · coefCMscen,reg,yr) (3.23)
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Chapter 4

Results

This chapter is so organized. First in section 4.1 is presented the sensitivity analysis
performed on the new model’s input. Then in section 4.2 is dedicated to the Monte
Carlo simulation and its results. In section 4.3 are presented results from similar
studies and a COVID19-lockdown simulation.

4.1 Sensitivity Analysis
In the WFH modified EDGE model was introduced a considerable amount of new
variables, and almost each was bringing its related uncertainty. The only variable for
which it was not possible to determine a probability distribution was the residential
share, obtained from the IEA ETP 2017. In fact in the official documentation no
indication was provided for it. Prior of the Monte Carlo analysis a sensitivity check was
however performed on the output, to figure the dynamics involved around parameter’s
uncertainties. Some considerations can be made:

• Expectations are that higher the level in the original equation, in which the
variable was introduced, higher should be its sensitivity for the output. As an
example, the commercial and residential separator, which splits the equation in
two parts, should affects greatly the result, because there are no other coefficients
dampening its variations. At the contrary, variations on the increments of
residential consumptions are expected to have a lower impact profile, being at
the lowest level in the equation.

• The only coefficients involved in nonlinear behavior should be the one affecting
the subcommercial energy savings curve, namely the coefficient of WFH potential.
In fact, for how it was built, positive variations on the function input (WFH
potential) should be reflected in higher general model output with respect
to reductions of its input (the curve was a logistic one). Instead, all others
coefficients should show symmetric effects between increments and decrements.

Coefficient of Commercial Residential separation: an increase in this coefficient
should affects strongly the result, toward greater consumptions, being given more
weight to the residential sector.
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Coefficient of WFH potential: an increase of the potential of work from home
affects both the energy savings in the subcommercial sector, in a positive way, and the
number of people at WFH, thus increasing residential consumptions. The net effect
depends on the others coefficients and can not be established a priori. As mentioned
before, it is the only one that should have a nonlinear behavior.

Coefficients ETP-WP: in increase in this group of coefficients should result in
higher level of residential consumption.

Coefficient of subcommercial reduction: the choice of the subcommercial reduction
curve is modeled in EDGE through the multiplication of the previously showed
equation by a parameter N, where N equal 50 returns the pure logistic equation, while
N equal 0 returns the baseline linear equation calibrated amid COVID19 pandemic.
An increase in the parameter N therefore imply higher levels of energy savings.

Coefficient of subcommercial separation: by increasing the parameter toward
values closer to the one predicted by the WIOD-NAMEA method, should be the
weight of the commercial WHF subsector higher and therefore overall energy savings
should be higher.

Coefficients of residential increase of consumption: an increase in these values
result in increasing residential consumption.

Others: For the coefficients included in the DN-World Bank method and for
other minors implemented in the code was not performed a sensitivity analysis. For
instance, the shape of the DN-WFH curve was not modified, assumptions relative to
the IEA-EDGE regional mapping could also affects the model’s result. The EDGE
region of Africa was in fact assigned with the IEA World average region, but that
caused some discrepancies on the assignment of the shares of space heating and water
heating. Trends for this region should be closer to the one of other developing-mid
latitude regions such India.

The sensitivity analysis was thus performed in a simple but still efficient way.
The predicted absence of strong non linearities justified an easy approach. It was
built a matrix where the j columns represented the new coefficients and nine rows
represented variations in absolute value spanning from +40% to -40%. Each value
of the 9x10 matrix was an input point for the algorithm. In total 90x5 (5 SSPs)
iterations were performed. The output was defined as the sum of all years 2020-2100
world total variations in Final Energy Demand. Possible undulating behavior could
not be registered with such an output formulation, however a prior group of runs
showed that “net energy variations” curve were showing almost pure monotone trends.

Results showed that the commercial residential separator is the coefficient impacting
most on results, with variations of its value of 40% impacting up to 100% on the results
in the SSP5 scenario. In all other scenario instead the ratio was more of 1:2 (20%
variation on the results for 40% on the input) or 1:4 (10%). Of all others coefficients,
the group of residential end use variables was the one impacting less on the results
with maximum variations of 3-5% on the output for 40% variations in the input. The
group of WFH, commercial reduction variables instead showed stronger effects. The
coefficient of WFH potential in primis along with the subcommercial separator. In
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(a) Nonlinear effects, WFHpot (b) Linear effects

Figure 4.1. Different effects of variable’s uncertainties

the SSP5 scenario variations for these two coeff. of 40% produced perturbances up to
60%. In the SSP4 of about 15% while for the other scenario were less than 5%. As
predicted, the WFH potential effects are asymmetrical, with increments resulting in
overall decrease of Global Final Energy consumption. This means that translating
vertically the WFH potential curve (therefore increasing values of WFH potential
but not modifying the shape of the function) have more effects on energy savings
than what a decrease of WFH potential would have on energy increases. In the
picture below are taken two example from the SSP1 scenario showing the nonlinear
behavior for WFH potential and the linear one for the other (it was chosen to show
the subcommercial energy saving coeff.)

4.2 Results with Monte Carlo

4.2.1 Simulation settings
A Monte Carlo analysis by definition “perform uncertainty analysis by building models
of possible results by substituting a range of values - a probability distribution – for
any factor that has inherent uncertainty.” It was chosen not to vary the commercial
residential separation for two main reasons:

1. Its related uncertainty was unknown.

2. Due to its large sensitivity on outputs, it would shadow most of the effects
caused by other’s variables variations.

The range chosen for the standard deviations was based on assumptions made on
the nature of data points and on their original distribution. As example, cooking had
a related high uncertainty, some data showed a 100% increase while others 50% or
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less. It was thus assigned a mean of 50% but with an higher SD of 5. The probability
distribution profile was set to be a normal one, in absence of better alternatives.

Here is shown the set of inputs and related uncertainties provided to the model,
and below a representation of the probability distributions:

Table 4.1. Monte Carlo settings

Variable Mean Standard Deviation
Space Heating incr. 20 2
Space Cooling incr. 40 2

Appliances Lighting incr. 15 2
Cooking incr. 50 5

Water Heating incr. 20 2
WFH pot var. 1 0.2
ETP-WP var. 1 0.1

Subcomm sep. var. 0.55 0.05
Subcomm red. var. 25 8

Figure 4.2. Probability distributions

Due to the large number of physical memory required for the Monte Carlo simula-
tion (between 10million-50millions rows) an optimum amount of 60 simulations was
found. Results did not vary much over that level.

4.2.2 Results - SSP
In this section are discussed the results of the Monte Carlo simulation, which number
of runs was set to an optimal value of 60. Higher numbers did not significantly change
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the quartile distribution of results. Plots are shown with uncertainty bars for the
most important variables.

1. A line represents the mean of all values.

2. A darker area surrounding the mean show values between the second and third
quartile. (50% of all values)

3. A lighter external area shows the values between the first and the second quartile
and between the third and the last quartile. (remaining 50% of all values). The
area between the second and third quartile is extremely thinner than the outer
one.

4. In regional plots, each line is the mean of N Monte Carlo simulations. Their
relative uncertainties are not shown for sake of clarity at a regional level of
aggregation. Uncertainty bars in global plots are thus not to be misunderstood
as representing the space for regional variations. For example, Net Changes in
the Residential sector in the SSP1 have a max. 4th quartile line reaching 6%,
while in the regional plot the maximum increase shown is of 5%.

The uncertainty distributions tend to increase in absolute amplitude with time.
This trend was expected and is due to the mathematical definition of some of the
newly added equations, for example the subcommercial reduction curve which has a
logistic behavior and the WFH potential which increase nonlinearly with GDP per
capita. Results are showed for each SSP, in order. First are shown in the next page
the results of the coefficients of commercial reduction, then is made a recap of the
specifics of each SSP, how drivers of Final Energy behave differently according to the
scenario narratives. Then variations of Final Energy are commented.

For a complete review of the behaviors of the Residential – Commercial shares it
should be consulted Chapter 3, section 2.3. For instead a review of the SSP scenarios’
definitions should be consulted Chapter 2, section 2.2.
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Figure 4.3. SSPs results

4.2.3 Subcommercial reduction results

Observing the trends for the coefficient of commercial reduction it is clear the similarity
with those for the WFH potential. The two coefficients were shown in the same page
to facilitate a comparison. Different behaviors start to show up whenever the level of
about 40% WFH are exceeded. This happens due to two reasons:

1. The interpolation for WFH potential had a null derivative for levels of WFH
40%, only to increase again for higher values of GDP per capita.

2. The curve of commercial reduction was constructed by adding to the COVID19
calibrated savings curve (worst case scenario) an optimistic “future” savings
logistical curve. For levels of WFH lower than about 40% “future” curve’s values
are only about double the value of the “baseline” curve, while for higher levels
of WFH the logistic curve’s strong increase starts to dominate and levels of the
“future” curve are three or four times higher than the “baseline”. For a WFH
potential level of 40% the worst case curve predicts only reductions of about
10%, the best case about 30%, the median of 20%. Therefore explained values
for the coefficient of commercial reductions of about 20% maximum.

Levels of WFH higher than 0.4 are rarely reached or exceeded by world regions,
a part in the SSP5 scenario and for periods near the end of the century, hence the
logistic behavior of the coeff. commercial reduction is scarcely displayed. Reductions
in building consumptions of about 20% for levels of unoccupancy (WFH) of 40% is
already a considerable progress with respect to registered COVID19 reductions of 20
to 30% for levels of unoccupancy of 80 to 100%. Yet, a more accurate characterization
of energy savings buildings performances would require separate curves for different
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types of subcommercial buildings. In fact input levels of WFH potential are an average
of the full subcommercial sector (public buildings, services, educational etc.), but as
was shown in chapter 3 section 3.2 “Subcommercial separation”, some subsectors have,
on average, much higher levels of WFH potential, as for example offices, which values
are of about 80% for the US. According to the logistic curve, they could experience
reductions of up to 80% for equal levels of unoccupancy. This level of detail yet is not
implemented.

Other effects that could impact the commercial reduction curve but were not
implemented are:

1. As was introduced in the WFH chapter, human needs for social interactions
must be considered when analyzing remote work phenomena. A trend which was
registered in the last years, in parallel with the adoption of WFH, was the disposal
of common offices for coworking, were employee of different companies could
combine the benefits of avoided commuting (an employee can choose the nearest
coworking facility) with those coming from social interactions. The adoption
of coworking space could be allocated as a “virtual” increase in residential
consumptions, if increases in consumption are similar to the residential ones,
or more likely as increases in the commercial sector. Much thus depends on
the levels of energy efficiency of coworking facilities compared to the standard
commercial ones. One could image that due to the more rigid energy efficiency
regulations in place new coworking facilities should be less energy intensive than
old work places and therefore overall consumption should still decrease.

2. Commercial workplaces could foresee a decrease in floor space area as high WFH
levels become structural. The effects of this phenomena on the model are yet to
be assessed but are expected not to be high.

4.2.4 SSP1 results
The SSP1 scenario - “Sustainability” forecast a reduction in inequalities within and
across nations, the World follow an inclusive development path.

GDP per capita: After SSP5 and SSP4, SSP1 is the scenario forecasting the
highest GDP per capita increases, with levels comparable with the SSP4 scenario but
with a much higher convergence between developing and developed countries. In fact,
after SSP5 it is the scenario forecasting the strongest income convergence in 2100.
By the end of the century nations show income per capita levels differentiating by a
maximum of 15% from the mean, with starting values of around 100%.

Tertiary education levels: SSP1 is, along with SSP5, the scenario forecasting
highest education levels. By 2050 from 20 to 30% of world population is projected to
attend universities or specialization centers. A great convergence between developed
and developing countries is projected. This is consistent with the SSP1 narrative,
which project high investments in education and health sectors.

ETP-WP ratios: ETP-WP ratios are the product of a country specific em-
ployment index, which is assumed constant over years, with the share of working
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population WP country and year specific. Hence temporal trends are consequence
of the WP evolution over years. The SSP1 scenario forecast a strong reduction of
the share of population aged 16 to 64, with values for developed countries ranging
from levels of 25% in 2020 to 15% in 2100, while developing countries show decrease
from values of 30 to 50% in 2020 to about 20% in 2100. This is consistent with the
SSP1 narratives, which foresee in particular for developing countries a demographic
transition toward more “balanced” population, similar in composition to the one of
developed countries. In other words, as life expectancy increases and fertility decrease,
the share of population aged more than 64 years increases, while the share of those
aged less than 40 years decreases. In fact the same trend can be observed for the
SSP5 scenario.

WFH potential: According to Dingel Neiman method, which depends on GDP
per capita, the SSP1 and SSP5 scenario are the ones experiencing highest shares by
2050 due to a great economic growth. Moreover in the SSP1 WFH pot. is equally
distributed across developed and developing countries, with values spanning from 30
to 40% of employed population. Results from method 2 (DN-WB) are instead more
variegate as they depend on educational, gender and age pop. compositions. Yet, a
convergence between developing and developed countries towards levels of around
20% can be observed.

WFH total population: Here the trends from WFH potential and ETP-WP
ratios mix up. If in fact WFH potential was higher for developed countries, their
ETP-WP ratios were lower, with lower shares of population aged 15 to 65. In other
words, developed countries have an older population. These two counteracting effects
result in similar WFH shares across the world, in the SSP1 scenario. Median values
for developed countries are still slightly higher than those of developing countries.
Overall from 10 to 14% of world population is expected to be at WFH by 2050.

Coefficient of commercial reduction: thanks to the high levels of WFH
potential in the SSP1 scenario, a similar pattern is observed for this coefficient, which
depends on the first and as was mentioned in the previous paragraph does not exhibits
its logistic nature until levels of WFH pot. higher than 40% are reached.

Final Energy net variations for the Building sector in the SSP1 scenario are globally
zero for 2050, while could reach -2.5% in 2100. At a regional level, developed regions
experiences net reductions from -2.5 to -5% or more by 2100, while developing regions
experience mostly zero or increases up to 2% in the first half of the century to then
catch up in reductions (though reduced in magnitude) with developed countries. By
2050 the residential sector should experience an increase of about 3.5%, while the
commercial sector a decrease of around 8%. Trends for the residential sector are
expected to remain constant throughout the century, while those of commercial sector
to decrease up to levels of -12% in 2100. Here are shown only results obtained with
the WFH first method (DN). Labeled results for developed and developing countries
represent the space of national means and not uncertainties.
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Figure 4.4. SSP1 results

4.2.5 SSP2 results
The SSP2 scenario - “Middle of the Road” foresee general socioeconomic trends not
diverging much from the present ones.

GDP per capita: In the SSP2 GDP per capita is the second lowest across
scenarios, after SSP3. Inequalities in income distribution between developing and
developed countries are greater than in the SSP1 but still less than in the SSP3 and
SSP4. The group of developed countries by 2100 has average GDP cap. around 40%
higher than those of developing countries.

Tertiary education levels: In the SSP2 high education levels show constant
increasing trends throughout the century. Developed countries experience increases of
about 50% from 2020 to 2100 while developing countries on average about 100% from
values of 10% in 2020 to 20% of total population in 2100. The original differences
between rich and dev. countries is reduced only slightly.

ETP-WP ratios: Due to the same dynamics involved in the SSP1 scenario, the
share of working population (and thus employed) in developing countries reduces to
levels of about 30% in 2100. These levels are similar to the ones of the SSP4. Fertility
decreases less than in SSP1 and life expectancy increases less.

WFH potential: Levels of WFH, with the DN method, are forecast to increase
in a similar way to the SSP1 scenario but with lower maximum levels from 2060.
Developing countries reach the “saturation” level of 40% WFH around the end of the
century, while in the SSP1 it was reached around the 60s. This is due to the slower
GDP cap growth in the SSP2.

WFH total population: The share of total population at WFH ranges from
5 to 15% in 2050, with similar values throughout the century. Developed countries
show slightly decreasing trends while developed countries increasing ones. Again,
as explained for the SSP1, two counteracting effects are involved. (GDP and aging
population)

Coefficient of commercial reduction: Considerations are the same than for
SSP1, developing countries have though by 2050 much lower reductions in WFH
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subcommercial energy with respect to developed countries. The first on average 10%
while the second 20%. Commercial reductions for developed countries by 2100 are the
second lowest among SSPs. This is due to the much lower GDP cap growth of the
SSP2.

Final Energy net variations for the Building sector in the SSP2 scenario are
globally zero throughout the century. However strong differences occur between
regions. Developing countries have average reductions of 2.5% or more throughout
the century while developing countries all experience net increases up to 2% by 2050.
Around the 50s the residential sector should experience globally an increase of about
3.2%, while the commercial sector a decrease of around 8%. Trends for the commercial
sectors are expected to remain constant throughout the century. Yet the lower range
of commercial reduction reach -18 by 2100. Trends for the residential sector instead
are projected to increase for developing regions.

Figure 4.5. SSP2 results

4.2.6 SSP3 results
The SSP3 scenario - “Regional Rivalry” foresee a low economic development and high
levels of inequalities between world regions.

GDP per capita: The SSP3 scenario is, after the SSP4, the scenario with the
highest inequalities in GDP cap growth. Differences between developed and developing
countries by 2100 are of about 140%. Economic growth is the lowest across the SSPs,
even for rich countries. Developing countries do not increase their GDP cap levels
above 50’000 dollars/cap while in the SSP1 they are all above that level and in the
SSP5 above 100’000 dollars/cap.

Tertiary education levels: The share of population having an high education
is the lowest of all SSPs. Developing countries all stay below a threshold of 15%
throughout the century, while in the SSP1 they were above 20% by 2100. The SSP3
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scenario is also the one showing the highest disparities in education levels between
developing and developed countries, with the latter showing constant and slightly
decreasing (but higher in absolute value) trends throughout the century.

ETP-WP ratios: Trends for developed countries are mostly the same throughout
the SSPs. Instead developing countries in the SSP3 show constant levels from 2060
to the end of the century. Investment in health and education are low and so the
demographic transition. WFH potential: It is the lowest across all SSPs, with
levels reaching 40% only by the end of the century and only for developed countries.
Developing countries show the lowest increases, with a median value of 30% of
employed population by 2100.

WFH total population: A share between 7 to 12% of the population is at WFH
around 2050. Levels are constant throughout the century. Developed countries show
slightly decreasing trends, the opposite occurs for developing regions.

Coefficient of commercial reduction: This scenario sees the second greatest
differences between regions after the SSP4. Average WFH subcommercial reductions
are of 10% for developing regions by 2050 and of 20% for developed ones.

Final Energy net variations for the Building sector in the SSP3 scenario are almost
exactly zero throughout the century. Yet this trend hides strong differences between
developing and developed regions. In fact, they are the highest after those found in
the SSP4. Developed regions already by 2050 decrease consumptions of 2.5% while
developing regions show net increases from 0 to 2%. By 2050 the residential sector
should experience an increase of about 3%, while the commercial sector a decrease of
around 6%. Trends both for the residential and commercial sectors are expected to
remain constant throughout the century. Yet the lower range of commercial reduction
reach -18 by 2100.

Figure 4.6. SSP3 results
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4.2.7 SSP4 results
The SSP4 scenario - “Inequality” narrative is a one where a gap widens between
educated and uneducated population, rich and poor and high tech and low tech regions.
Hence, in this scenario are expected the biggest differences in WFH adoption levels.

GDP per capita: This scenario foresees the third highest GDP cap growth
for developed countries among SSPs and at the same time the second lowest for
developing countries. Half of developing regions does not exceed 50’000 dollars/cap by
2100. Some regions show GDP cap levels of 10’000 dollars/cap by 2100 while others
of 125’000.

Tertiary education levels: In the SSP3 the global share of highly educated
population is the second lowest after the SSP3. Developing countries show slightly
increasing trends throughout the century.

ETP-WP ratios: Developed and developing regions converge toward different
levels by 2100. The former around shares of 12% while the latter of 25%. The
considerations are the same of the SSP1 and SSP2.

WFH potential: In the SSP4 the greatest regional differences are shown, partic-
ularly by the end of the century where the strong GDP growth of developed countries
allow them to exceed the 40% threshold of WFH. Some regions never exceed 20%
while others reach about 60% by the 2100. By 2050 however, developing countries
show on average higher levels of WFH potential than in the SSP3 scenario.

WFH total population: As expected, strong differences emerge by the first half
of the century. In developed regions around 12% (from 10 to 15% by 2100) of the
population is at WFH while in developing regions shares are from 5 to 10%. By the
end of the century yet, the shares tend to converge between regions to values of 10%.

Coefficient of commercial reduction: Developed countries show average WFH
subcommercial reductions of 5 to 12% by 2050 while by the end of the century they
split up in two groups, one below levels of 15% and another already reaching 20% by
the 60s. This is coherent with the SSP4 narrative.

Final Energy net variations for the Building sector in the SSP4 scenario are almost
zero throughout the century. Yet, differences between developed and developing
regions are great. By 2050 the former group increase net consumptions or slightly
reduce them, while the latter on average see reductions of 5%. By 2050 the residential
sector experience an increase of about 3%, while the commercial sector a decrease of
8%. Trends both for the residential and commercial sectors are expected to remain
constant throughout the century.

4.2.8 SSP5 results
The SSP5 scenario - “Fossil fuel Development” foresee improvements in education
and health but at high environmental costs. A constant and rapid economic growth
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Figure 4.7. SSP4 results

takes place all over the world. This extreme scenario is of particular interest as the
new equations implemented in EDGE are tested almost at their limits. As example
WFH potential’s function rise after a plateau appears clearly for most of the country,
while in the previous SSPs it emerged less frequently and only closing to the end of
the century.

GDP per capita: In the SSP5 is foreseen the strongest and fastest economic
growth and convergence between regions. GDP per capita of the “poorest” region in
the SSP4 is eight times higher in the SSP5. Levels of GDP cap reached by developed
countries by 2100 in the SSP1 are now reached around the 60s, and those of developing
countries around the 70s. The richest and poorest region by 2100 differs by the mean
only of 25%.

Tertiary education levels: Along with the SSP1, the SSP5 foresee the highest
share of population with a tertiary education level. The trend is almost identical to
the SSP1 one. First is experienced a strong rise in the first half of the century, then
after the 60s the trends stabilize around values of 25% for developing regions and of
30% for developed ones.

ETP-WP ratios: In the SSP5, similarly to the SSP1, developed and developing
regions converge towards similar demographic patterns. Fertility is lower for developing
countries, and life expectancies increase. The fraction of population employed is
therefore lower than in the SSP2, SSP3 and SSP4, from 10 to 20%.

WFH potential: Developed regions exceed the 40% threshold by far around
the mid of the century. By 2100 about 70% of employed population is at WFH in
developed countries and around 60% in developing countries. This behavior is highly
speculative as was explained in the WFH chapter. The only interpolating point for
WFH levels higher of 40% was taken from Liechtenstein. Yet, it was kept to simulate
a sort of “highest WFH scenario”.

WFH total population: This extreme increase in the WFH potential however, is
not reflect in the share of total population, which is overall identical to the SSP1 one,
around 10 to 15%. This is due to the counteracting effects of GDP growth (positive)
and demographic transition (older population).
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Coefficient of commercial reduction: The logistic contribution of the coefficient
is showed clearly already from the mid of the century. A strong and fast rise followed
by slower growths. In fact the sigmoid midpoint is set to WFH pot. values of 50%.
Overall the coefficients takes values from 15 to 20% by 2050 and of about 50% (with
a max. of 60%) for developed regions and 40% for developing ones by 2100.

Final Energy net variations for the Building sector in the SSP5 scenario are of
about -1% by 2050 and of -5% (-10 to -3) by 2100. In the first half of the century, as
in the others SSPs, developed countries exhibit already reductions while developing
regions net increases. In the second part of the century instead this scenario differs
from the others due to the strong increase in the coefficient of subcommercial reduction.
Developed regions by 2100 decrease net consumptions of 15% while developing regions
of about 5%. By 2050 the residential sector should experience an increase of about
3.5%, while the commercial sector a decrease of around 10%. After the 60s the
reductions in the commercial sector reach a mean of 25% while increases in the
residential levels of about 5%.

Figure 4.8. SSP5 results

4.2.9 Q and A
Why does WFH show net global zero impacts on Final Energy?

1. Developing regions shares of Residential End Uses “Appliances and Lighting”,
“Space Cooling” and “Water Heating” are considerable higher than those of
developed countries. In chapter 3 section 2.3 are explained the reasons, mainly
correlated to commercial floor area and climatic/economic drivers. (eg. Space
Cooling residential share which see a tremendous rise in developing regions).
Any delta applied to the residential sector will therefore have a much higher
weight on developing countries.
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2. The shares of employed population are always higher for developing countries.
Those of WFH potential are instead lower due to lower GDP cap levels. The two
effects compensate and thus fractions of total population at WFH are similar for
developing and developed countries. However, the residential shift depend on
the ETP ratio while the commercial one only on the WFH potential, therefore
developing countries commercial reductions are always lower while the residential
shift is no affected by lower GDP cap thanks to the demographic compensation.

3. The contrary happens to developed countries.

4. The compensation is therefore: Within countries: between commercial and
residential sector. Across countries: between developed and developing regions.
Overall effects are therefore globally zero.

What is the explanation for regional differences being so sharp in all
scenarios, even in the SSP1 and SSP5?

The GDP per capita dimension, which tends to converge sharply between develop-
ing and developed countries in the SSP1 and SSP5 scenarios, drive the overall global
“mean” direction toward higher decrease or increase in FE consumptions. Yet, within
years differences are effects of drivers which are not dependent on GDP cap, as ETP
ratios, climatic drivers and shape of the implemented curves.

4.2.10 End Use, Energy Carriers results
In the next four pages are shown:

1. Global Final Energy (Building sector) in EJ/Yr, this graph is almost identical
to the Business as Usual one (No WFH scenario) as the scale of changes is of 2
to 20 EJ/Yr while global FE demands are of about 100 to 300 EJ/Yr. Below
are shown instead the deltas grouped by End Use.

2. Global Final Energy for the Commercial sector with below relative deltas.

3. Global Final Energy for the Residential sector and deltas.

4. Energy Carriers deltas.
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Global Final Energy

The major trends shown in the Global Final Energy graph are due mainly to the
behavior of the default equations implemented in EDGE and presented in chapter
2. The rise of cooling demand is clearly evident in those scenarios that fail to adopt
environmental CC policies and thereby to contain temperature increases. Its shares are
of about 4% of the 2020 FE demand, while 11 to 37% in 2100. Climate Maximum thus
tend to increase, driven by higher values of CDD, especially in mid latitude developing
regions. In the energy intensive SSP5 all End Use (except cooking) demands increase
in absolute values up to 2080. This is caused by

1. The strong economic growth.

2. Population increment up to the 60s.

3. Climate change induced temperature increases.

Lighting and Appliances tend to increase strongly in all scenarios. From values of
about 23 EJ/Yr in 2020 they reach a range of 70 to 200 EJ/Yr in 2100. In global per
capita terms this is equivalent to about (rough estimate) five times averages values
for 2020. This strong increase is an effect of the absence of saturation (see chapter 2)
in the AL demand equation.

The relative share of demand for heat, cooking, space heating and water heating
do not show the strong increase of AL and SC, this is due to:

1. Reduced heat demand in particular in mid latitude developing countries due to
CC.

2. Improvements in energy efficiency and shifts in regional energy ladder towards
more efficient fuels.

3. Saturation in the implemented equations. (Space Cooling was implemented with
a saturation effect but the Climate Maximum increase balances it)

Deltas were calculated as the difference between values obtained with the new
WFH equations and those resulted from the default settings. Thus trends showed
in delta, despite being similar to the one at an aggregated level, are in fact caused
exclusively by the new equations. These equations of course have assumptions in
commons with the EDGE default ones and so are explained similarities in graph. As
example, Cooling demand show a semi logistic increase both in the SSP2 scenario and
in the SSP2 delta graph. As is explained later, this is caused by identical assumptions
in the Cooling demand EDGE equation and Residential/Commercial shares.

Cooking demand show a net increase due to WFH. This is an effect of the choice
of assigning Cooking EU only to the residential sector, according to IEA projections.

Space Cooling instead show negative deltas up to 2040-2060 in most of the
scenario (excluded the SSP5) and positive deltas from that period on. This is an effect
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of the increasing shares of residential Space Cooling for developing regions (up to
80%). They are projected to increase strongly in the first half of the century, to then
reach economic and climate saturations. As was explained in the previous section,
residential consumption are to increase as an effect of WFH, and particularly in
developing countries. SC shares for developed regions are instead much higher in the
commercial sector (80%), therefore global SC trends are the results of a compensation
effect between strong net increases in developing regions and decreases in developed
ones.

Water heating demand show an opposite trend. First it increases in the first
half of the century due to its highest residential shares, from 60 to 90% for all regions,
then tend to decrease when more efficient reductions in the commercial sector start
to take place according to the logistic shape of the coefficient of subcommercial red.
Yet, this effect is extremely low and only in the SSP5 it is clearly displayed due to
the highest values of WFH potential and thus of commercial reductions.

Space Heating shares for the residential sector are instead high for developed
countries, about 75% but very diversified among developing, from near zero to 60%,
according to climatic patterns. On average the effects of commercial reductions prevail,
and SH consumption decrease due to WFH during the century.

Appliances and Lighting FE show a clear opposite trend to Cooking. It strongly
decreases throughout the century. This happens despite developing regions increasing
residential AL shares from about 50% in 2020 to 60-70% in 2100. At a global level
instead AL shares are constant over the century, as they decrease in favor of the
commercial sector in developed countries. But AL demand in developed regions
accounts for about 60% of FE in all SSPs but in the SSP3 where it’s about 30%. In
developing regions instead, they account for 60% of FE only in the SSP1 (convergence
between nations). Hence the weight of developed countries for AL is higher and
strongly contributes to overall global AL FE reductions.

Energy Carriers

The trends shown in the graphs are originated by the new WFH equations and by
EDGE assumptions on Energy Ladders shifts. To explain which kind of dynamics are
involved in those energy carriers showing increasing trends, two divergent scenarios are
analyzed, the SSP1 and the SSP3. Moreover, the focus is on a developing region, Africa,
and on one End Use, cooking. In fact, as is explained in the previous paragraphers,
Cooking is the End Use showing greatest increments and this is to occur mostly in
developing regions, where residential WFH induced increases weight more on the total
demand.

In the picture below are shown the shift in Cooking EC composition both for the
SSP1 and the SSP3.

In the SSP1 scenario general improvement in standard of livening, energy intensity
and sustainable development lead to a shift of the energy ladder in developing regions
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Figure 4.9. Energy Ladder shifts for CK

toward greater shares of electricity. From shares of about 0% in 2020 it constantly
increases up to levels of 75% in 2100. Conversely, traditional biomass, which nowadays
almost fully provides in Africa the energy needed for cooking, decrease constantly from
levels of 75% to zero around the mid of the century. Petrol and “improved” biomass
increase their share up to 25% by the 50s to then decline to zero by 2100. Natural
Gas slowly increases its shares in the first half of the century and then substitutes
the shares of Petrol and improved biomass. This behavior is reflected in the SSP1
graph for delta. It is in fact observed an initial increase in traditional biomass (due
mostly to the WFH induced increments in cooking in developing regions) that is then
substituted by petrol. Natural gas and electricity cooking-increments are not shown as
they also increase in the commercial sector and are hence “hidden” by their respective
strong decrease.

In the SSP3 scenario instead electricity is not used in developing regions as EC for
cooking. (extremely low increase). Most of FE is provided by 2050 still by traditional
biomass (70%) and by an heterogeneous mix of petrol, traditional biomass and natural
gas. However by the end of the century the decrease of traditional biomass becomes
more pronounced and natural gas “take-off” and substitute progressively its share.
By 2100 traditional biomass accounts for around 40% of cooking FE and natural gas
about 25%. The rest is provided mostly by petrol (17%) and traditional biomass. This
trend is clearly shown in the SSP3 delta graph. First the WFH induced increase in
cooking EU is fueled by traditional biomass, later in the century natural gas increases
its contribution followed by petrol, which shares remain constant throughout the
century, as is also evidenced in the Energy Ladder graph.

The strong decrease in electricity EC has a straightforward explanation and is
mostly explained by:

1. High shares of commercial AL in developed countries. (60% constant throughout
the century). Also, Space Cooling commercial shares are high with levels of
about 75%. SC in developed countries is mostly provided by electricity (around
90% constantly through the century for USA).

2. AL accounts for around 50% of building FE demand in developed regions (2100,
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rough mean between SSPs). SC much less (5 to 10%) but HVAC systems in the
commercial sector are the principal singular type of consumer.

3. Global Final Energy for the Residential sector and deltas.

4. Developed regions experience the strongest decrease in commercial reduction.

4.2.11 Results with DN-World Bank method(2)
Method 2 has been introduced in chapter 3. It is an experimental method that involves
the use of both Dingel Neiman interpolation and World Bank “within countries”
coefficients. Purpose of this method was adding a deeper demographic component to
the projection of WFH potential by linking it to “gender”, “education” and “age”. A
total of 20 country-region specific coefficients were deployed. However some countries
like China did not find a match in the World Bank dataset and were thus not modified.

WFH potential obtained with this method is almost reduced to an half with
respect to the one obtained with method 1. (From 40 with method 1 to levels of 20%).
This happens as the shares of population with a non-tertiary education are strongly
penalized. Yet they represent most of the population. Developed countries still show
higher levels of WFH potential but contrary to developing regions that increase their
WFH, even if by little, they show constant trends throughout the century excluded
the outlier SSP5 scenario. This behavior is so explained:

1. The shares of population with a non-tertiary education are higher.

2. Developed and developing regions show in all scenarios apart from the SSP3
and SSP4 similar trends and levels of tertiary education (% of total population).

3. The population of developed countries is getting older in most of the scenario
a part from the SSP5, also the one of developing countries, but at lower levels
and mostly in the SSP1 and SSP5 scenarios. Older shares of population are
penalized in WFH probability.

4. Therefore, the penalizing effects of an older population and of a majority having
non-tertiary education (around 70% in most of the SSPs) win the positive
contribution of the GDP growth, especially in developed countries. In the SSP5
scenario instead the GDP cap growth is strong enough to raise WFH potential
levels towards the ones of method 1, but only near the end of the century.

The impacts on global Final Energy nets are not significant, with respect to method
1. Some differences can be observed in the Residential increases of consumption.
Developed regions ones are almost an half (about 1.5%) of those of developing regions
(about 2 to 3%). This happens because the lower values of ETP-WP ratios of developed
regions are not balanced anymore by higher value of WFH potential. (see previous
paragraphers for explanations).
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4.3 Reliability of results

4.3.1 COVID 19 Simulation
In order to assert whether the model implemented can adequately reproduces the
dynamics involved in a WFH scenario, inputs parameters were modified basing on
available literature.

Residential deltas were kept unaltered. The coefficients WFHpot-ETP-WP ratio
instead were artificially corrected to simulate the number of people staying at home
due to confinement measures. At its peak around 50% of world population was under
SIP orders. The coefficient for subcommercial reduction was set equal to the one
found for COVID19 (linear savings trend, N equal 1). WFH subcommercial coefficient
was set to an higher value of 0.7, with the same standard deviation. This value was
inferred from literature. At their peak, lockdown measures involved about 70% of
world’s total emissions. It was therefore assumed that the share of commercial sector
forced to full or partial closures could have been of about 70%.

Results are shown in the next picture and show increases in residential consumptions
of about 10 to 15%, decreases in commercial sectors of about 15 to 25% and net
variations of 0 to 5% for the building sector.

These results are in line with those obtained by other studies published in 2020 on
Nature Climate Change (Le Quéré et al. and M.Forster et al.) In particular residential
variations are in line with the average increments of 10 to 20% calculated by the
others studies. By changing the subcommercial coefficient of separation to a value of
0.9 the reductions for the commercial sector result from 20 to 30%.
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Figure 4.10. Simulation for COVID19

4.3.2 Similar studies
Here is provided a list of studies collected from literature and summarized their
findings. All these studies modeled both the residential and commercial sectors, some
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of them included the transport sector on the overall balance. Some refer to total
national consumptions while other to the building sector. However, they all point to
the same conclusions, WFH does not seem to affect greatly net energy consumptions
due to the balancing effects of residential and commercial sectors.

Table 4.2. WFH-energy studies and results

Reference Impact Country Findings Net
M.Fu et al. [111]

2012 Reduce Ireland If 5% of the irish population teleworked full time,
final energy consumption would fall by 0.14%. -0.14%

H.Matthews and E.Williams [112]
2005 Neutral Usa, Japan

For 2005 estimated teleworking populations and practices
in the US (0.4% of total worker days, once a week) and Japan
(2.5 million workers, once a week), national level of energy
savings is of 0.01-0.4% in the US and 0.03-0.36% in Japan.
If 50% of information workers telework 4 days per week,
US and Japan national energy savings are estimated

at about 1% in both cases.

-1.2%

D.Röder and K.Nagel [113]
2014 Neutral Germany

WFH of 10% of the sampled population reduces commuter
mileage and transport energy consumption of 10% but
increases energy consumed at home of the same amount.

Office energy consumption is barely affected.

0%

K.Roth et al. [114]
2007 Reduce US

WFH in US by 3% of the total workforce one or more days
per week could reduce annual primary energy consumption

by between 0.13% to 0.18% and CO2 emissions
by 0.16% to 0.23%.

-0.13%

Y.Shimoda et al. [115]
2007 Reduce Japan

If the area of used office buildings decreases proportionally
to WFH, levels of 60% lead to energy consumption decreases

of 0.6% of building total energy consumption.
-0.6%

E.Williams [116]
2003 Reduce Japan WFH of 4 days per week by 37% of the total workforce reduces

national energy consumption of 2.2%. -2%
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4.4 Conclusions
The main research question this work was intended to answer was whether Work
From Home could be a valid option for policymakers to reduce Building sector energy
consumptions in the next decades.

Findings show that at “regional” level answers cannot be given disregarding
climatic patterns and general economic frameworks of the analyzed country. At a
global level instead results from this research confirm the evidence of previous studies
of almost net zero impacts of WFH on the Building sector. Yet, this research offers
new insights on the dynamics contributing to zero net energy savings. The balancing
effect between commercial and residential sectors was widely expected, instead the
one between developing and developed regions was less predictable.

Developing regions are expected to experience a strong rise in residential cooling
demand, due to improvements in income per capita, but also to Climate Change
induced increase in temperatures at mid latitudes. This strong increase is particularly
evident in the first half of the century, and the projected increase in commercial floor
demand is still not sufficient to balance it. Also, despite WFH potential being lower for
developing regions, their share of WFH on total population are higher, due to higher
ETP-WP ratios. This happens as their populations are younger and so the shares of
people aged 16 to 64. Hence commercial energy reductions for developing regions are
lower (being dependent on the unoccupancy levels of work places) while residential
reductions depend on the WFH-total population and are therefore unaffected by the
lower WFH potentials.

These effects contribute to higher overall residential increases and lower commercial
reductions in developing regions, while the contrary happens in developed ones.

An increase in Cooking End Use of about 50% per Home Worker contributes
along with Space Cooling to the residential increase both in developing and developed
regions. At an energy carrier level, this implies greater consumptions of biomass and
oil in the formers and of natural gas in the latter. Also, as improvements in the energy
ladder take place in Africa, India etc. Cooking natural gas and electricity gradually
substitutes inefficient EC.

This research did not include considerations on avoided commuting due to WFH.
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Yet, the conveniency of the adoption of WFH largely depends on energy savings in
the transportation sector, as most of the studies suggest. Also, developing regions
may result from this research less benefited from WFH, at least in the short term and
with a focus on the Building sector. However, road congestion issues in countries like
India are major problems that strongly affect business and life quality. The adoption
of WFH has therefore the potential to impact greatly, and in a positive way, in sectors
not considered by this research.

The adoption of more efficient appliances in the residential sector due to WFH is
also a possibility. As some studies indicate, residents give more importance to gas
and electricity bills reductions when they start to work from home. Higher interests
in the installation of solar panels and renewables were also registered by a research.

On the contrary, rebound effects such higher use of appliances not directly related
to WFH or increased miles per worker a day due the moving of WFH workers outside
cities were registered by other studies. Also, telework facilities are becoming an option,
for those workers who still feel the need for social interactions.

The results of this research on the Building Sector, and the considerations above,
seem to suggest that overall global strong improvements in energy savings are difficult
to reach by adopting WFH. Many counteracting forces are in place within countries
(between residential and commercial sectors) and across regions. Also, several cascade
effects (increased residential floor area per capita, telework facilities etc) tend to null
each other and the overall contribution. At a regional level, developed regions may
achieve net savings (in the Building sector) of about 1 to 5% over the century, while
developing regions changes from -2 to +2%, according to the SSP scenario. The
(extreme) SSP5 scenario is the most optimistic one, and foresee net savings in the
Building sector due to WFH of about 5% by 2100 for developing regions, and of 10%
for developed ones.
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4.5 Future work
Here are summarized the main improvements that could be made in the future on
this novel WFH-EDGE model. Some of them have already been discussed in the
document.

• WFH Drivers: The second method developed to project WFH shares in the
future was an initial attempt to incorporate a variety of drivers in addition to
the principal, GDP per capita. However, the binding of both Dingel Neiman and
World Bank methods into a unique model requires more calibrations to provide
greater levels of reliability for the results. In particular, the PIAAC, STEP and
LMPS dataset do not cover all EDGE regions, also the standard deviations
coefficients introduced in method 2 are referred to the respective country-group
survey’s averages, which were not calculated in EDGE. Such average, if added,
should include an additional GDP cap dimension (and thus temporal one) to
allow for its integration in the Dingel Neiman WFH-GDP interpolation.

• WFH-Productivity: Some researches have identified positive impacts of
WFH on productivity, [117] others instead highlighted negative impacts due
to increases in workload and technical issues. [118,119] Moreover, many of the
reports signaling increased productivity levels for WFH workers were produced
early in the pandemic, when the sudden shifts in the nature and location of jobs
may have “boosted” performances. [120] These variations on productivity could
impact on national GDP and hence on GDP per capita, which determine itself
WFH levels in this model. A recursive relation could thus be implemented. Yet
this improvement would require extent corrections in EDGE, as the algorithm
was built to follow a linear computational flow.

• Price Elasticities: In EDGE is not implemented any price responsiveness.
During the COVID19 pandemic electricity demand fluctuations caused noticeable
variations in elec. and gas prices. [121] Most of changes in demand were caused
by reductions in the industry sector, but also the commercial and residential
sectors played a minor role. The behavior of clients at WFH could have been
affected by price reductions, and these dynamics should be included in future
models. Moreover, as was mentioned in chapter 3, higher interest of WFH
workers for energy independency and self-generation mainly through solar panels
or other renewable sources could also affect energy prices. [96]

• En. Increases: Residential energy variations due to WFH could be modeled
according to projections for floor space per capita, worker’s behavioral changes
etc. Literature is scarce and attention should be given to cultural variables. [36]

• RES-COMM Separator: The commercial-residential separation could be
endogenized in EDGE by developing a more complex set of End Use generating
equations. They should be split in two distinct blocks, linked each other, one
for the residential and another for the commercial sector. As was discussed in
chapter 3, for example Cooling EU demand for the res. and comm. sectors
behave differently. In such a way it could also be added a recursive relationship
between WFH, commercial floor space and FED.
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Conclusions

• WFH-Floor Space: Residential floor space per capita may depend on WFH. [9]
As it becomes structural people may move outside cities, investing in bigger
houses and possibly increasing energy consumption per capita. Also commercial
floor space may depend on WFH, in complex ways. It could well decrease due to
WFH and unoccupancy of offices etc. However the exact dynamics are unclear,
due to phenomena like coworking that instead balance floor space reductions.
These linkages between floor space and WFH could be inserted in future models.

• En. Decreases: The curves of subcommercial reductions were calibrated
making assumptions valid for multiple sub commercial sectors, like “Offices”,
“Public Sector” etc. Ideally, if in the future more data will be available, specific
curves could be modeled, increasing overall levels of detail.
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Appendix A

Emissions in EDGE

This section was included in the Appendix as it constitutes a first exmperimental
attempt to include emissions in EDGE.

EDGE was not equipped with the tools required to calculate variations in emissions
due to WFH. In fact, EDGE only provided equations to obtain energy information.
However, IEA ETP2017 database, which was exploited previously for the separation
of commercial and residential shares, also contains data for emissions in the building
sector up to 2060. Results are shown only to 2050. Data are available per end-use and
at an IEA regional level. The sequence of steps implemented to allow an integration
in EDGE was therefore the following:

1. Calculate the energy intensities per end-use projected in the IEA RTS scenario.
Obtained coefficients are in MtCO2/PJ.

2. Merge IEA and EDGE regions and multiply energy variations due to WFH with
energy intensity coefficients.

This method requires more developing and ideally it should be favored an approach
fully integrating EDGE energy efficiency indicators with emission intensities coeffi-
cients. However, given the broad reliance of EDGE on IEA technological assumptions
(eg. floor space, efficiency coefficients, residential commercial separation), as first try
it can be accepted.

Emissions intensities are projected to decrease for all End Use a part from Ap-
pliances and Lighting, which coefficients stay stable up to 2050. Also Cooking EU’s
coefficients are projected to remain stable, with some regions showing instead in-
crements, as is the case for India and Brazil. AL and SC have very low energy
intensities, this happens as they are most linked to Electricity EC. IEA does not
consider Electricity embodied emissions, as they are accounted to the Power Sector.

Overall emission End Use intensities are higher for developed countries, according
to the IEA RTS scenario. Overall SSPs emissions for the Building sector are lowest
for the SSP1 (“Sustainability”) scenario, with a strong decrease in the first half of the
century from about 3000 Mt CO2 to less than 2000 in 2050. They gradually increase
in the SSP2, SSP3, SSP4 scenario. In the SSP3 and SSP4 scenarios the emissions
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Appendix A. Emissions in EDGE

are almost stable. In the SSP5 scenario (“Fossil fuel Development”) they reach about
3500 Mt in 2050.

Global variations in emissions seem to suggest small increments, between 0 and
0.6% in all SSP scenarios. Only in the SSP5 the contributions are slightly negative.
This happens as Cooking EU FED is projected to increase in all SSP due to WFH.
But Cooking is more carbon intensive, according to IEA projections, than other
End Uses. Thus, even if at an energy level net variations are slightly negative,
resulting net emissions variations result to be slightly positive due to a shift in the
EC shares (on the total FC). In the SSP5, as was explained in the “Result” section,
the strong economic growth leads to strong WFH commercial reductions and thus
overall emissions variations result negative.

These results seem to confirm the findings of the research: WFH is expected
to impact almost zero on energy savings in the first half of the century. Moreover,
emissions could even increase, due to shifts in the EC mix.

(The results shown graphically in the next pages are obtained from a Monte Carlo
simulation obtained from 60 iterations, uncertainties are not shown but of the same
magnitude of those obtained for net energy variations’ values)
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Appendix B

Regions Detailed

Here are presented results for all of EDGE regions plus Italy. The order is alphabetical:

1. AFR Africa

2. BRA Brazil

3. CHN China

4. EUR European Union

5. IND India

6. ITA Italy

7. JPN Japan

8. MEX Mexico

9. NCD Other Non OECD

10. OAS Other South and Asia

11. OCD Other OECD

12. RUS Russia

13. USA United States

14. ZAF South Africa
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