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Abstract

The growing demand for urban freshwater supply often corresponds to rising electrical
and labor costs for pump stations. Optimizing the operation of water pumps, ensuring
they run at their most efficient working points, and improving their scheduling systems
offer effective ways to mitigate costs and conserve water resources. These water pump
stations and their associated systems can be mathematically modeled, enabling the use
of optimization algorithms to assess optimal operating conditions. Conventional opti-
mization methods often fall short when dealing with such complex models, underscoring
the significance of investigating recent algorithms. In this study, we expand the research
on the cross-entropy method and introduce an improved version to address water pump
scheduling optimization. Notable enhancements include an improved update step for the
multivariate normal distribution used in sampling, resulting in faster and more accurate
outcomes, as well as reduced susceptibility to local minima. Moreover, our adaptive ob-
jective function takes into account various cost factors and penalty functions associated
with complex constraints, with the primary aim of further minimizing power consumption
costs. To validate our approach, we conducted a series of experiments within a simulated
environment and on a real-life-inspired scenario modeled after a water pump station lo-
cated in Shanghai. The results of these experiments demonstrate the adaptability of our
optimization method to complex models and constraints and highlight its satisfactory
performance outcomes.

Keywords: Cross-Entropy method; WDS; water pump scheduling; optimization





Abstract in lingua italiana

La crescente domanda di approvvigionamento di acqua dolce nelle aree urbane spesso
corrisponde all’aumento dei costi elettrici e del lavoro per le stazioni di pompaggio. Ot-
timizzare il funzionamento delle pompe dell’acqua, garantendo che operino nei punti di
lavoro più efficienti e migliorando i loro sistemi di pianificazione, offre modi efficaci per
ridurre i costi e preservare le risorse idriche. Queste stazioni di pompaggio dell’acqua e i
relativi sistemi possono essere modellati matematicamente, consentendo l’uso di algoritmi
di ottimizzazione per valutare le condizioni operative ottimali. I metodi di ottimizzazione
convenzionali spesso non sono sufficienti quando si tratta di modelli così complessi, sot-
tolineando l’importanza di indagare su algoritmi recenti. In questo studio, ampliamo la
ricerca sul metodo cross-entropy e ne presentiamo una versione migliorata per affrontare
l’ottimizzazione della pianificazione delle pompe dell’acqua. Miglioramenti significativi
includono una fase di aggiornamento migliorata per la distribuzione normale multivariata
utilizzata nel campionamento, che porta a risultati più rapidi e precisi, oltre a una minore
suscettibilità ai minimi locali. Inoltre, la nostra funzione obiettivo adattiva tiene conto
di vari fattori di costo e delle funzioni di penalizzazione associate a vincoli complessi,
con l’obiettivo principale di ridurre ulteriormente i costi di consumo energetico. Per con-
validare il nostro approccio, abbiamo condotto una serie di esperimenti in un ambiente
simulato e su uno scenario ispirato alla realtà, modellato su una stazione di pompaggio
d’acqua situata a Shanghai. I risultati di questi esperimenti dimostrano l’adattabilità del
nostro metodo di ottimizzazione a modelli e vincoli complessi, evidenziando i suoi risultati
soddisfacenti in termini di prestazioni.

Parole chiave: Metodo Cross-Entropy; WDS; pianificazione delle pompe d’acqua, ot-
timizzazione
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1. Introduction
In urban areas facing rising demand due to
population growth, water is a crucial resource.
While expanding water distribution systems is
necessary, the challenge of high-power consump-
tion and energy waste in water pump stations
must be addressed. Research highlights that a
substantial portion of industrial electricity usage
is due to electric motors [1], with water pumps
accounting for a significant fraction [2]. Effi-
cient water pump scheduling is vital for optimiz-
ing distribution systems. Traditionally, manual
methods for pump activation often result in sub-
optimal scheduling, leading to increased costs
and negative impacts on resource management
and water quality. Researchers aim to find op-
timal operating conditions for pumps, focusing
on minimizing power consumption and maximiz-
ing system efficiency. However, achieving con-
sistently optimal solutions in complex scenarios
remains a challenge for existing methodologies.
In the context of water pump scheduling, the
Cross-Entropy (CE) method is a niche approach.
Introduced by Rubinstein in 1997 [3], the CE
method iteratively refines the probability distri-
bution of solutions, ultimately leading to opti-

mal or near-optimal solutions. A key strength
of the CE method is its capacity to analyze so-
lutions without relying on derivative functions,
distinguishing it from traditional optimization
methods. However, since the classic version of
the CE method is better suited for system mod-
els with relatively simple constraints, an im-
proved version of the CE method proves more
suitable for addressing the problem of water
pump station optimization.
This work makes three primary contributions.
First, it expands the research on the CE method
applied to the optimization of water pump
scheduling. Second, it introduces the use of an
asymmetric smoothed updating step to enhance
the algorithm’s performance, with the ultimate
aim of finding the most efficient operating point
for the pumps and thus minimizing pump sta-
tion costs. Third, it empirically demonstrates
the practical effectiveness of the improved opti-
mization method in reducing costs for a real-life
water pump station, achieved through the im-
plementation of an adaptive cost function.
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2. The pump station model
The model considers the simultaneous operation
of multiple pump types to meet system require-
ments while minimizing operational costs. It
considers the total power consumption for each
pump, hourly electricity price variations, and
introduces penalty functions to address com-
plex constraints. Ultimately, by solving the
model, we can determine the optimal states of
the pumps, including their head, flow, power,
and speed.

2.1. The affinity laws
The affinity laws govern the behavior of water
pumps. They describe the fundamental relation-
ships between the pump’s head, flow, power, and
speed.
Considering the following measures:

• Flow, Q (m3/h): liquid volume.
• Head, H (m): liquid force measured.
• Speed, S (rpm): shaft speed.
• Power, P (kW ): energy needed to pump a

liquid.
the affinity laws state that:

Q1

Q2
=

S1

S2
;

H1

H2
= (

S1

S2
)2;

P1

P2
= (

S1

S2
)3 (1)

Eqs. (1) show how a 3% increase in speed re-
sults in a significant 9% surge in power consump-
tion. In the industrial sector, this translates to
a substantial rise in costs, highlighting the im-
portance of optimal solutions.

2.2. The system and pumps curve
In water distribution systems, water pumps re-
spond to the system’s operational requirements
to meet the supply demands. Changes in the
system’s characteristics, such as an increased
flow demand affect the total dynamic head
(THD). The THD is a parameter associated with
the system’s requirements and is composed by
the static head (Hs), friction head (Hf), velocity
head (Hv), and pressure head (Hp).

TDH = Hs+Hp+Hf +Hv (2)

Eq. (2) characterizes the dynamics of the sys-
tem and plays a fundamental role in establishing
the best efficiency point (BEP) of water pumps,
which is located by intersecting the system curve
with the pump family curve.

Fixed-frequency pumps maintain a constant
speed ratio. Their performance curves for head
and flow, as well as power and flow, can be de-
fined with:

H = h1 + h2Q+ h3Q
2

P = p1 + p2Q+ p3Q
2

(3)

Where h1, h2, h3, p1, p2, p3 are fitting parame-
ters. Combining the pump affinity laws and the
equations (3), the expressions for the variable
frequency pumps are found.

H = s2h1 + h2Q+ h3Q
2

P = s3p1 + s2p2Q+ s3p3Q
2

(4)

Where s is the speed ratio of the pump.

2.3. The objective function
The objective function used for optimizing the
water pump scheduling problem takes various
factors into account. The total power consump-
tion is calculated as the sum of contributions
from each operational pump.

J = min

{
m∑
i=1

ωi(s
3
i p1 + s2i p2Qi + sip3Q

2
i )

+
m+n∑

i=m+1

ωi(p1 + p2Qi + p3Q
2
i )

}
(5)

The status coefficients ωi represent the on-off
status of each pump and are pivotal in determin-
ing the optimal combination of pumps within
the scheduling solution.

2.4. The constraints
Constraints establish the boundaries and limita-
tions within which a solution must operate.

2.4.1 Speed ratio constraint

Variable speed pumps can be controlled to
change their speed ratio in the interval s ∈ [0, 1].
However, to increase efficiency and prevent is-
sues like cavitation and shortened life cycles, the
speed ratio of each pump has been constrained.

smin,i ≤ si ≤ 1, for i = 1, 2, ...,m+ n (6)

Where m,n are, respectively, the number of vari-
able speed pumps and fixed speed pumps.

2
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2.4.2 Flow balance equation

The balance equation for the water pump flow
states that the output flow of the system Qs

must be equal to the sum of the input flow gen-
erated by the pump station.

Qs =
m∑
i=1

Qi +
m+n∑

j=m+1

Qj (7)

2.4.3 Parallel operation of pumps

Pumps operated in parallel will increase the flow
but not the head. When this requirement is not
met, there is the risk of water flowing backward
toward the pump with lower head, potentially
causing significant damage. As a result, this
condition is imposed as a constraint.

Hs = H1 = H2 = ... = Hm+n (8)

2.4.4 High-efficiency area

It is crucial to operate the pumps such that the
control variables maximize the machine’s effi-
ciency. For fixed frequency pumps, this corre-
sponds to an interval defined by a maximum
value, Qmax,i, and a minimum value, Qmin,i, of
pump flow.

Qmin,i ≤ Qi ≤ Qmax,i, for i = 1, 2, ..., n (9)

In the case of variable frequency pumps, the
speed parameter extends the interval to encom-
pass a ’best efficiency area’ (BEA). The BEA is
delimited by flow and speed constraints, which
are indicated by the curves connecting the four
points A, B, E, and F.
This region determines the area where the pump
efficiency, η is equal to or greater than 85%.
The curves AB and EF are the head-flow curves
of the pump, respectively, at the maximum
speed ratio and the minimum speed ratio. The
parabolic curve EA corresponds to an efficiency
of η = 85%, while the FB curve to an efficiency
of η = 89.2%.
The two boundary curves OA and OB, where O
is the origin and which contain the curves EA
and FB, are described by the equations:

HOA = k1Q
2

HOB = k2Q
2

(10)

Figure 1: BEA delimited by A, B, E, F.

Where k1, k2 are fitting parameters.
Finally, the maximum and minimum flow values
are found using equations (1), (9) and (10).

Qmax,i =


√

h1−Hs
h3

QA Hs ≥ HB√
Hs
HB

QB Hs < HB

Qmin,i =


√

Hs
HA

QA Hs ≥ HE√
h1s2min−Hs

h3
Hs < HE

for i = 1, 2, ...,m+ n

(11)

where HS is the system’s operating head value.

2.5. Summary
The general model is characterized as a non-
linear, multi-objective, multi-variable combina-
torial problem, encompassing both equality and
inequality non-linear constraints.

J = min

{
m∑
i=1

ωi(s
3
i p1 + s2i p2Qi + sip3Q

2
i )

+

m+n∑
i=m+1

ωi(p1 + p2Qi + p3Q
2
i )

}

such that

Qs =
m∑
i=1

Qi +
m+n∑

j=m+1
Qj

Hs = H1 = H2 = ... = Hm+n

smin,i ≤ si ≤ 1, i = 1, ...,m+ n
Qmin,i ≤ Qi ≤ Qmax,i, i = 1, ...,m+ n

Therefore, in addressing such a problem, the CE
method proves to be suitable, whereas classical
methods frequently falter when faced with intri-
cate models.

3
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3. The improved cross-entropy
method

The Cross-Entropy (CE) method derives from
the Monte Carlo method and was introduced
by Rubinstein in 1997 [3]. Its central concept
involves iteratively refining the probability dis-
tribution of solutions, starting from an initial
parameter distribution. This refinement process
directs the focus toward the most promising re-
gions within the solution space, ultimately lead-
ing to convergence towards an optimal or near-
optimal solution.

3.1. The population
The initial step in the CE method is to define
the probability density function (pdf) that char-
acterizes the set of solutions and from which the
initial population is sampled. A multivariate
normal distribution is employed to sample the
initial population.

3.2. Multivariate normal distribution
We can define each population member with a k-
dimensional random vector X = (x1, x2)

T sam-
pled from the initial multivariate normal distri-
bution N.

X ∼ N (µ,Σ) (12)

µ =

[
s̄
h̄

]
, Σ =

 (
smax−s̄

3

)2
0

0
(
headmax−h̄

3

)2


s̄, h̄ are the mean values between the upper
and lower bounds of the speed and head limi-
tations given by the constraints. This ensures
the proper coverage of the search region.

3.3. Asymmetric smoothed update
In the CE method, the update step is responsible
for retaining a record of the best solutions found
and for the refinement of the pdf used in the
subsequent iteration.
In the classic version of the CE method this
step is straightforward. The parameter vector
v̂t, which comprises the mean and covariance
matrices, is updated at each iteration accord-
ing to v̂t−1 = ŵt, where t is the iteration and ŵt

is the new parameter vector that describes the
mean and standard deviation of the elite sam-
ples. This update method shows to be ineffi-

cient and renders the algorithm vulnerable to
local minima.
Decomposing the parameters vector into its its
mean and covariance components and introduc-
ing a second parameter β, the previous issue is
addressed by providing an asymmetric smoothed
update.

v̂µ,t = αŵµ,t + (1− α)v̂µ,t−1 0.4 ≤ α ≤ 0.9
v̂σ,t = βŵσ,t + (1− β)v̂σ,t−1 0.3 ≤ β ≤ 0.7

In optimization problems, the factor (1 − α) is
commonly employed in smoothed update steps.
In this context, our focus extends beyond the
introduction of a second parameter β, which en-
ables an asymmetric smoothed update. The CE
method samples from a Gaussian pdf, which, in
2 dimensions, forms a bell-shaped curve (Fig. 2).
When using a single parameter α, in each up-
date step, the bell-shaped curve ’moves towards
the best solution’ as the mean matrix updates
and ’reduces in size’ when the covariance ma-
trix updates. Unfortunately, this simultaneous
movement and scaling can lead the algorithm to
converge into local minima, compromising accu-
racy. By applying two parameters instead, we
enable the Gaussian pdf to ’move’ and ’scale’ in
an asymmetric manner, as shown in Fig. 2. This
results in faster convergence, reduced suscepti-
bility to local minima, and an improved ability
to explore better solutions, particularly when
specific directions offer a higher probability of
yielding superior results.

3.4. Adaptive objective function
To achieve a faster and more accurate optimiza-
tion a different parametrization has been applied
to the expression (5) by reformulating the flow
values Qi in terms of Hs and si.

Qi =

√
h1s2i −Hs

h3

The constraints and the choice of their math-
ematical representation can significantly impact
the feasibility and quality of the solution. There-
fore, two penalty functions Pe1 and Pe2 that
take into account the constraints expressed by
the equations (7) and (9) are introduced in the
model.
The penalty function Pe1 represents the BEA

4
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(a) Frontal representation. (b) Iteration 1.

(c) Iteration 5. (d) Iteration 15.

Figure 2: ’Moving’ and ’resizing’ in the update
step.

constraint.

Pe1 =
n+m∑
i=1

(∆Qi)
2

=



n+m∑
i=1

(Qi −Qmin,i)
2, Qi < Qmin,i

0, Qmin,i < Qi < Qmax,i
n+m∑
i=1

(Qi −Qmax,i)
2, Qi > Qmax,i

The penalty function Pe2 represents the flow
balance constraint.

Pe2 = (

n+m∑
i=1

ωi

√
h1s2i −Hs

h3
−Qs)

2

Therefore, the problem’s mathematical formula-
tion to be solved with the CE method is sum-
marized in:
Where σ is a weight coefficient that decreases
with the iterations, giving less importance to the
penalty functions as the solutions converge to
the optima. It is characterized by an initial value
σ0 and a cooling parameter γ.

σ = σ0
1
γT , γ ∈ [0, 1]

4. Comparative analysis of per-
formance

The improved CE method has introduces en-
hancements that improve best existing solutions.

Figure 3: Comparison of the improved CE
method in a single pump case.

Table 1: Comparative analysis

CEM ICEM
Flow demand (m3/h) 6000 6000

Computed flow (m3/h) 6004.0 6000
Power (kW ) 526.77 472.43
Iterations 30 32

Its performance is thoroughly analyzed from var-
ious perspectives to highlight its contributions
and improvements. Fig. 3 shows the comparison
between the classic CE method (CEM) and im-
proved CE method(ICEM). Furthermore, Tab.
I shows the their operational parameters under
the condition of system flow demand equal to
6000m3/h.
The improved CE method performs better com-
pared to the classic CE method, as shown in
Tab. 1. The improved CE method is able to
converge to the global minima in power con-
sumption, achieving a remarkable reduction of
approximately 11%, in the 6000m3/h case. Fur-
thermore, it demonstrated superior effectiveness
in refining its search for the optimal working
point, resulting in a very accurate flow value.
The differences in convergence observed can be
directly attributed to the fundamental princi-
ples underlying the improved CE method. By
smoothing the update of the multivariate nor-
mal distribution, the algorithm doesn’t rapidly
converge toward the best-found solution but al-

5
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lows room for exploration in the proximity of the
current optimal point. This approach enhances
the algorithm’s capability to search for global
minima and improves its overall accuracy.

5. Practical implementations
The model has been adapted to optimize a real-
life-inspired scenario featuring the water pump
station of a megalopolis equipped with four
pumps, including two variable frequency pumps
(pump 1, 2) and two fixed frequency pumps
(pump A, B). Their real performance curves
have been incorporated, and the operation of
the water pump station over several months has
served as the foundation for the database in use.
With the application of the improved CE
method, effective working points for these set
of pumps have been defined, ensuring compli-
ance with all constraints, especially their opera-
tion within the BEA (Fig. 2). Additionally, the
method has provided insights into the pumps’
statuses (on-off), indicating the optimal com-
bination of pumps that should be operated to
minimize the costs of the pump station.
Since the system flow demand is constantly vary-
ing, a key flow demand value of 25000m3/h have
been chosen. The respective performance values
are detailed in Table II and the optimal operat-
ing condition for the variable-speed pumps are
indicated with a star symbol in Fig. 4. The
efficiency of the variable-speed pumps consis-
tently exceeds 85%, and the head constraint is
respected. The implementation of the resulting
scheduling system effectively reduces the opera-
tional and maintenance costs of the water pump
station.
In conclusion, the application of the improved
CE method results in the successful operation
of the pumps within their best efficiency area,
while satisfying the water system constraints
and requirements of head and flow.

6. Conclusions
The optimization of the water pump station
scheduling was explored using an improved CE
method. The algorithm was developed and sim-
ulated in MATLAB, and its performance was
tested in a real-life-inspired scenario, represent-
ing a megalopolis water pump station. The
results of this study were highly satisfactory,
with the system and its components operating

Figure 4: Working points when Qs =
25000m3/h.

Table 2: Pump station parameters when Qs =
25000m3/h.

Pump A B 1 2
Status On On On On

Output flow 24969.7 (m3/h)
Power 2394.05 (kW )
Head 32.33 (m)

Flow (m3/h) 4196 3902 8299 8570
Speed ratio 0.92 0.87 0.87 0.89

Efficiency (%) 75.83 75.83 90.95 90.51

at their most efficient points while adhering to
all specified constraints.
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1

Introduction

Water is an essential resource in contemporary society. It holds the utmost importance for
the well-being of urban inhabitants and for its influence over their daily lives and activities.
The exponential rise in urban populations has prompted a matching escalation in water
demands. In the context of China, boasting approximately 2.8 trillion cubic meters of
freshwater resources, constituting 6% of the global total, the challenges are particularly
pronounced. The demographic surge in China, with a population of approximately 1.4
billion in 2019 and an anticipated surge in urban population of roughly 600 million by
2050, underscores the pressing need for the efficient management of urban fresh water
distribution systems as an integral aspect of urban planning endeavors.

A water distribution system (WDS), is a set of hydraulic components efficiently linked to
convey water from sources to end consumers. This intricate network comprises an array of
electromechanical constituents, including pipes, pumps, valves, and storage tanks. Typi-
cally, such systems are modeled as graphs, wherein nodes signify sources and consumers,
while links represent the connecting components encompassing pipes, pumps, and valves.
Its behavior is governed by three main aspects: the physical laws that describe flow and
pressure distributions; the consumers’ demands; and the system layout.

A WDS has to adhere to the established system requirements and specifications, such
as continuity of supply, minimum delivery pressure, compliance with regulations, and
response to changing demand. Reliability and risk considerations are integral to all aspects
of WDS management. Therefore, to solve this crucial optimization problem, engineers
have to resolve to holistic optimization approaches.

In the last decades, optimization methods garnered significant attention from researchers.
They have been employed in various fields, including engineering, logistics, machine learn-
ing, and WDSs, to make informed decisions and improve the efficiency of processes. Tra-
ditional approaches such as linear programming, non-linear programming, and dynamic
programming, which were once considered effective, now are seen as dated and the focus
has shifted to more intuitive and high-performing algorithms like metaheuristic methods.
Metaheuristic algorithms are versatile and heuristic-driven problem-solving strategies used
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Figure 1: A water distribution system model.

to tackle complex optimization problems where finding an exact solution is impractical
due to large search spaces or the absence of a known mathematical model. Two notable
paradigms were developed during the first half of the last century and became important
branches of metaheuristics: Evolutionary Computation (EC) and Swarm Intelligence (SI).
These nature-inspired techniques derive from observing the analogous collective behav-
iors that flocks of birds, swarms of ants or bees, and schools of fish have when engaged in
group activities, whether it’s searching for food or safeguarding their species. This phe-
nomenon, related to their innate mechanisms of natural selection and genetics, act as an
active force that favors the selection of the most adept individuals within their respective
groups. Consequently, these intricate systems evolve over time, adapting and enhancing
their abilities to increase their prospects of survival. The researchers, have sought to com-
prehensively study, analyze, and model these mechanisms, and proposed such techniques
to offer effective ways to solve complex and constrained mathematical problems.

This research aims to investigate and implement the CE method, contributing to the
existing literature by applying this algorithm to the specific scenario of the water pump
scheduling problem. The study introduces an innovative approach: employing an asym-
metric smoothed updating step to enhance the algorithm’s performance. The primary
goal is to identify the most efficient operating point for the pumps, thereby minimizing
costs associated with pump station operations. To validate the algorithm’s performance,
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this study proposes a comparative analysis between the CE method, Genetic Algorithm
(GA), and Ant Colony Optimization (ACO) methods. By undertaking this comparative
analysis, the aim is to highlight the strengths and potential advantages of the CE method
in this context. Moreover, the research demonstrates the practical efficacy of the improved
optimization method by reducing costs in a real-life water pump station. This is achieved
through the implementation of an adaptive cost function, providing empirical evidence
of the algorithm’s effectiveness in practical settings. This comprehensive approach not
only explores the application of the CE method to the water pump scheduling problem
but also aims to enhance its performance and validate its efficiency through comparative
analysis and real-life implementation.
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Energy wastage is a common problem in water pump stations. A comprehensive research
conducted by Shankar et al. [1] found that almost 70% of industrial electricity usage
is attributed to electric motors (see Fig. 1.1), with water pumps alone accounting for
about one-fifth of the energy consumed by electric motors worldwide, according to the
European Commission [2]. This energy imbalance is a common problem in water pump
stations. Among the numerous approaches available for optimizing system operation and
reducing both electric and maintenance costs, the most impactful one is the optimization
of the water pump scheduling system. Optimizing pump scheduling has emerged as a
practical and highly effective strategy for reducing operational, electrical, and mainte-
nance costs without necessitating extensive modifications to the existing infrastructure.
Pumping stations function with multiple pumps working in tandem to fulfill the required
pressure or water flow output. As a consequence, some pumps remain active while oth-
ers remain inactive at any given moment. The challenge in scheduling pump operations
revolves around identifying the most optimal combination of pumps to operate during
specific time intervals within a scheduling period. A pump schedule includes the selection
of pump combinations designated for each time interval within this scheduling horizon.
Traditionally, pump stations have relied on empirical methods, where personnel manually
activate pumps based on their experience. However, this conventional approach often
yields suboptimal and inefficient scheduling, leading to escalated costs and detrimental
impacts on resource management and water quality.

Figure 1.1: Energy consumption of pumping systems.
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1.1. Metaheuristic methods

Starting from the 1960s, both domestic and international scholars embarked on research
activities concerning the optimal regulation of urban water pumping unit scheduling. Over
time, diverse methodologies have been employed to address this problem. These method-
ologies encompass linear approaches [3], like in Joewitt et al. [4], nonlinear approaches
[5], as well as metaheuristic techniques, which started to gain popularity during the last
decades. These algorithms explore the solution space iteratively, guided by a set of rules
or principles, with the goal of finding near-optimal solutions within a reasonable time
frame. Unlike traditional algorithms, they do not guarantee global optimality but offer a
trade-off between solution quality and computational resources, making them invaluable
tools for addressing real-world optimization challenges.

Within the landscape of EC and SI methodologies, Genetic Algorithm (GA) [6] and Ant
Colony Optimization (ACO) [7, 8] stood out for their effectiveness. The genetic algorithm
is a type of optimization and search algorithm inspired by the process of natural selection
and genetics. It is used to find approximate solutions to optimization and search prob-
lems by mimicking the process of evolution within a population of candidate solutions. It
utilizes mechanisms such as selection, crossover, and mutation to iteratively refine solu-
tions with the hope that over time, the population converges toward better results. GA is
particularly useful in optimization problems where the search space is large, complex, and
poorly understood, or when gradient-based optimization techniques are not applicable.
ACO is a computational optimization technique that draws inspiration from the foraging
behavior of ants. It replicates the way real ants find the shortest path between their nest
and a food source by laying pheromone trails and making informed decisions based on
these trails. In the realm of computational problem-solving, ACO mimics this behavior
by utilizing artificial ants to explore solution spaces and discover optimal or near-optimal
solutions.

To establish a comprehensive foundation, it is worthwhile to consider certain prominent
sources that offer an extensive background. We can mention Goldberg [9], who developed
a comprehensive review of how to solve combinatorial optimization with GA. Hajela et al.
[10] discuss how GA can be employed to find optimal designs for complex structural sys-
tems, Fonseca [11] introduces the concept of multi-objective optimization GA and several
authors developed hybrid or improved versions of this methodology to address specific
systems and problems [12–14].Similarly, Torregrossa et al. [15] proposed an innovative
way to solve the scheduling problem with a similar nature-inspired metaheuristic. Mam-
bretti, Villacampa, and their team employed GAs to optimize the scheduling of as many
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as 31 pumping stations within the city of Milan. They further demonstrated the validity
and reliability of this methodology through rigorous testing in a chosen set of field pump-
ing stations [16]. In the field of SI instead, Jang et. al [17] implemented a novel binary
ACO to solve the unit commitment problem in power systems. Several applications of
ACO to the optimal control of water pumps in water distribution networks can be seen in
[18, 19]. Zheng et al. [20] used an adaptive convergence-trajectory controlled ACO and
applied it to WDSs. Improved and hybrid versions have been proposed as well, such as in
López-Ibáñez et al. [21], where the optimal control of water pumps in a water distribution
network was achieved using a hybrid ACO.

The random search method plays a key role within the domain of metaheuristic algorithms.
It imparts a crucial element of randomness to the search process to further progress,
making the methods less susceptible to modeling inaccuracies and affording them the
capacity to break free from local optima, thus converging towards global optima. It is
shared among a broad spectrum of metaheuristic algorithms such as GA, ACO and the
Cross-Entropy method.

Introduced by Rubinstein in 1997 [22], the cross-entropy (CE) method iteratively refines
the probability distribution of solutions, ultimately leading to optimal or near-optimal
solutions. It has been used in a variety of fields, such as signal detection by Liu et
al. [23]; vehicle routing optimization with stochastic demands by Chepuri and Homem-
de-Mello [24]; power system combinatorial optimization problems by Ernst et al. [25];
multidimensional independent component analysis by Szab’o et al. [26]. Additionally,
it has been successfully applied by Busoniu et al. [27] to optimal policy search; by
Kothari and Kroese [28] to mixed integer nonlinear programming; by Kroese et al. [29]
to continuous multi-extremal optimization. In the context of water pump scheduling, the
CE method is a niche approach. It excels in handling, multivariable cost functions and
a key strength of the CE method is its capacity to analyze solutions without relying on
derivative functions, distinguishing it from traditional optimization methods. However,
it’s important to acknowledge that the initial version of the CE method is better suited
for system models with relatively simple constraints. Consequently, an improved version
of the CE method proves more suitable for addressing the problem of water pump station
optimization.

1.2. The water pump station

A water pump station, also known as a pumping station or water pumping facility, is a
critical infrastructure component designed to efficiently transport and distribute water
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from its source to various points of use or storage within a municipal or industrial water
supply system. These facilities play a vital role in ensuring a reliable supply of clean
and potable water to homes, businesses, and other consumers. Water pump stations are
strategically located within the water distribution network to maintain adequate pressure,
overcome elevation differences, and facilitate the movement of water across vast distances.

In essence, water pump stations are the workhorses of water supply systems, as they are
responsible for boosting the pressure of water, often originating from reservoirs, wells, or
treatment plants, to ensure it reaches consumers at a sufficient flow rate and pressure.
They come in various sizes and capacities, ranging from small, locally situated stations
serving neighborhoods to massive facilities that serve entire cities or regions.

The urban raw water supply system primarily draws water from sources such as rivers,
lakes, and groundwater, which often exhibit complex natural conditions marked by nu-
merous uncertain factors. This complexity adds a layer of intricacy to the water supply
process, necessitating passage through several key facilities, such as the intake pumping
station, booster pumping station, and raw water plant. These crucial stations work to-
gether to transform raw water into a clean and safe product for consumers. Raw water,
at its source, typically contains a variety of impurities, including organic decomposition
byproducts, sand particles, algae, iron, bacteria, and viruses. The fundamental phases of
a raw water treatment system include:

• Introduction of chemical agents to aid in the flocculation or coagulation of suspended
solids.

• Employment of a clarifier to effectively remove larger solid particles.

• Implementation of filtration mechanisms to eliminate smaller particulate matter.

The comprehensive treatment process encompasses several key stages to ensure the pu-
rification of raw water for urban consumption:

1. Raw water intake: at the initial stage, untreated water is sourced from natural
bodies like rivers, oceans, lakes, or groundwater. Large debris and objects are
typically removed at this point to initiate the treatment process.

2. Coagulation: coagulation commences by using mixing reactors and introducing spe-
cific chemical agents capable of aggregating smaller particles into larger, more man-
ageable particles that can be easily separated. Slight adjustments in water pH may
aid in this coagulation process.

3. Flocculation: after coagulation, the treated water enters a flocculation chamber,



1| Background 9

where longer-chain polymers facilitate the gathering of larger particles. This process
results in the formation of visible, snowflake-like particles that readily settle.

4. Sedimentation: the sedimentation device, often a large circular structure, directs
the water flow into the chamber, allowing it to circulate. This circulation enables
the solid particles to settle to the bottom of the clarifier, forming a sludge blanket.
The clarified water is then separated from the sludge through a filtering process.

5. Filtration: filtration involves the use of substantial filtration areas, typically filled
with two to four feet of sand. The processed water passes through these filters, effec-
tively trapping any remaining particles. In more recent water treatment methods,
membranes are employed as a cutting-edge technology for efficient filtration.

6. Disinfection: the disinfection stage serves to cleanse and eliminate any bacteria
present in the water, ensuring it is safe for consumption.

7. Distribution: the treated water is pumped into a holding tank and subsequently
distributed throughout the urban area through a network, creating a continuous
supply loop that serves the needs of the city’s residents.

A schematic example of a urban freshwater distribution network in Shanghai is shown in
Fig. 1.2.

J1

J2

J3

J4

J5

J6

J7

W – Intake 
pumping station

Forebay

N2
Water plant

N1
Water plant

C
Water plant

J
Water plant

C9

C10

C8

C7

N6

N5

N4
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N2

N1

C district path

N district path

Figure 1.2: Scheme of a WDS located in Shanghai, China.

The raw water system comprises an intake pumping station that conveys raw water from
the forebay to the pressurized pumping station, W, and the water treatment plant, J.
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The intake station’s main role is to acquire raw water, and it involves multiple pumps, a
lengthy pipeline, and complex water dispatching. Due to the vast network and distance to
downstream water plants, relying solely on the intake station to increase system pressure
can be challenging and costly. To address this, booster pumping stations are strategically
placed to ensure adequate pressure at each plant, considering the network’s characteristics
and plant demands. The booster pumps are grouped into two sets, pumps N (N1 through
N6) and pumps C (C7 through C10). These pumps are responsible for directing water
to their designated districts. The raw water treatment plant is essential for converting
raw water into clean water through clarification, sedimentation, and filtration. Regular
maintenance is necessary, and the design includes various types of reservoirs with different
functionalities.

1.3. The water pump principles

A centrifugal pump is a mechanical device that uses the principles of fluid dynamics to
transport liquids from low-pressure zones to high-pressure zones. It may also accelerate
liquids through pipes or move them from a low elevation into a higher elevation. A pump
works by converting the mechanical energy from a rotating impeller into kinetic energy
in the fluid, which then causes the fluid to be displaced and pumped through a system.
The central component of a centrifugal pump is the impeller, which is a rotating wheel
with curved blades or vanes. The impeller is typically mounted on a shaft connected to
a motor. As the impeller rotates, it generates a high-velocity flow of fluid. The pump
has an inlet or suction side where the liquid to be pumped enters the pump. This fluid is
drawn into the pump by the rotating impeller due to the low-pressure area created at the
center of the impeller. The rotation of the impeller imparts centrifugal force to the liquid
particles, causing them to move outward from the center of the impeller. The directional
movement is illustrated by the arrows depicted in Fig. 1.3, available for reference in [30].
The pressurized liquid exits the pump through a discharge nozzle. The pressure at the
discharge is higher than the pressure at the inlet due to the conversion of kinetic energy
into pressure energy. Finally, as the impeller continues to rotate, a constant flow of fluid
is drawn in from the inlet and discharged from the outlet achieving the pump’s main
operation, which is to provide a continuous, consistent flow rate and pressure.
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Figure 1.3: Impeller and casing of a centrifugal pump.

1.3.1. The affinity laws

The affinity laws are a set of rules that govern the behavior of water pumps [31]. They
served, in the past, to guess the pump’s working point when the exact pump parameters
were not available, such as when working with different electricity standards in foreign
countries. In recent decades, with the development of the variable speed electric motor
and the Variable Frequency Drive (VFD), the affinity laws became increasingly important.
They describe the fundamental relationship between the pump’s head, flow, power and
speed.

Considering the following operational characteristics:

• Flow, Q: the liquid volume, measured in cubic meters per hour (m3/h).

• Head, H: the liquid force, measured in meters (m).

• Speed, S: the shaft speed, measured in revolutions per minute (rpm).

• Power, P: the energy needed to pump a liquid, measured in kilowatts (kW ).

the affinity laws state that:

• The flow, Q, is directly proportional to the velocity variation.

• The head, H, is directly proportional to the square of the velocity variation.

• The power, P, is directly proportional to the cube of the velocity variation.
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which can be expressed by the their equation form:

Q1

Q2

=
S1

S2

H1

H2

= (
S1

S2

)2

P1

P2

= (
S1

S2

)3

(1.1)

Where the subscrips ’1’ and ’2’ denote the initial and new values of the parameters. It can
be noted from equation (1.1) that a simple 3% increase in speed results in a significant
9% surge in power consumption. In the industrial sector, this translates to a substantial
rise in costs, highlighting the importance of optimal solutions.

The affinity laws also describe the relationships between the pump’s impeller diameter,
flow, head and power. Considering a constant operational velocity, a variation in the
impeller size would affect the pump such that:

• The flow, Q, is directly proportional to the diameter variation.

• The head, H, is directly proportional to the square of the diameter variation.

• The power, P, is directly proportional to the cube of the diameter variation.

which, in their equation form are expressed by:

Q1

Q2

=
D1

D2

H1

H2

= (
D1

D2

)2

P1

P2

= (
D1

D2

)3

(1.2)

The clear implication is that adjusting the flow and pressure by altering the impeller
diameter can significantly save kilowatts of energy. For example, a 10% reduction in
impeller diameter could lead to a 30% decrease in power consumption. This reduction in
energy usage, eventually, not only offsets the expenses associated with additional labor
and the maintenance of multiple impeller pumps but also makes it a cost-effective solution.

1.3.2. The system curve

The Affinity Laws provide intuitive insights and a practical understanding of the operation
of centrifugal pumps. However, to develop a useful and optimized model, it is essential
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to understand the system curve.

Water pumps serve as reactive elements in WDSs, responding to the system’s operational
requirements to meet the supply demands. For instance, an increased flow demand would
affect the pressure head (Hp), while the addition of pipes to the network would impact
the friction head (Hf). Deteriorated or undersized pipes influence both flow and velocity
head (Hv), and elevated water levels in storage tanks introduce static head (Hs). The
parameter that sums up the requirements of each pumping system and characterizes its
dynamics is known as the Total Dynamic Head (THD).

TDH = Hp+Hf +Hv +Hs (1.3)

The TDH is composed of the following four head values:

1. Hp — The pressure head: describes the pressure changes across the system. It is
expressed in meters of head. In case there is no pressure change, then this term
doesn’t exist. Consider a water recirculation filter pump, commonly utilized in
swimming pools to both drain and replenish water within the same container as an
example.

Hp =
∆psi× 2.31

sp.gr.
(1.4)

Where ∆psi is the pressure difference and ’sp. gr.’ is an abbreviation for specific
gravity or relative density.

2. Hf — The friction head: describes the system head losses caused by the friction
between the internal walls of the pipes, valves, and the water. It is expressed in
meters of head. It is an important factor to take in consideration during the design
of the systems since the energy losses in the system can not be avoided.

Hf =
Kf × L

100
(1.5)

In equation (1.5) Kf is the friction constant for every 38.48m of pipe according to
tables, and L is the actual length of the pipe.

3. Hv — The velocity head: describes the energy lost within the system as a result of
the fluid’s motion through the pipelines.

Hv =
V 2

2g
(1.6)
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Where V is the velocity of the fluid moving through the pipe.

While its magnitude may be relatively small, Hv plays a significant role as it is
necessary for calculating the friction head.

Hf = K ×Hv (1.7)

with K a constant derived from tables.

4. Hs — The static head: describes the variation in liquid elevation throughout the
system. It is expressed in meters of elevation change. It represents the difference
in liquid surface levels between the point of origin, typically at the suction source,
and the point where the pump discharges the liquid.

The system curve plays a fundamental role in establishing the best efficency point (BEP)
at which the pumps are expected to operate. The BEP is the working point of the pump
in which the operational parameters have values such that the efficiency is maximized. It
is located by intersecting the system curve with the pump performance family curve, as
shown in the following graph.

Figure 1.4: The best operational point (BEP).

1.3.3. The performance curves

The pump performance curves provide detailed information about the performance char-
acteristics of the pump. These curves typically display how the pump behaves under
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different operating conditions. The key elements typically found on a pump curve in-
clude:

• Head (H) vs. Flow rate (Q).

• Power (BHp) vs. Flow rate (Q).

• Efficiency (η) vs. Flow rate (Q).

• NPSH vs. Flow rate (Q).

Understanding these curves is essential for selecting the right pump for a specific appli-
cation and for optimizing its performance within a given system. They provide insights
into how the pump will perform under various conditions and help in making informed
decisions regarding pump selection and operation. In this section the performance curves
of centrifugal pumps with negligible static head are presented.

(a) Summary of the key curves. (b) Highlight of the specific points A, B, C.

Figure 1.5: The pump performance curves.

The Head and Power curves

The head-flow curve, commonly know as HQ curve, shows how the pump’s total head, the
energy imparted to the fluid, changes as the flow rate through the pump varies. It helps
in understanding how the pump handles different flow rates and pressure requirements.

The power-flow curve shows the power consumption of the pump at different flow rates.
It’s essential for assessing the energy requirements of the pump under different conditions.
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As variable frequency pumps see greater adoption in the industrial sector, it becomes
increasingly important to discern them from conventional fixed frequency pumps. Fixed-
frequency pumps maintain a constant speed ratio. Their performance curves for head and
flow, as well as power and flow, can be defined with:

H = h1 + h2Q+ h3Q
2

P = p1 + p2Q+ p3Q
2

(1.8)

Where h1, h2, h3, p1, p2, p3 are fitting parameters. Combining the pump affinity laws and
the equations (1.8), the expressions for the variable frequency pumps are found.

H = s2h1 + h2Q+ h3Q
2

P = s3p1 + s2p2Q+ s3p3Q
2

(1.9)

Where s is the speed ratio of the pump.

In variable frequency pumps, alterations in speed significantly influence the pump’s oper-
ating point due to the quadratic and cubic relationships of the head and power functions
with the speed. As depicted in Fig. 1.6, a decrease in operating speed causes a down-
ward shift in both the head vs. flow curve and the power vs. flow curve. Consequently,
when confronted with a constant flow demand, lowering the operating speed can result
in reduced power consumption. However, it’s crucial to note that this adjustment also
decreases the head value, therefore, exercising careful consideration is essential when uti-
lizing speed control to operate a pump.
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Figure 1.6: The effect of speed variation on the head and power curves.

The Efficiency and NPSH curve

The efficiency vs. flow curve is an essential component of the performance curves for
water pumps. This curve shows how the pump’s efficiency changes as the flow rate varies.
A fundamental goal in the operation of water pumps is to maintain the pump’s working
point close to the BEP, which corresponds to the peak of the efficiency curve.

Unlike the head and power curves, small variations in speed do not significantly impact
the pump’s efficiency. For instance, when the speed is reduced, it moves the intersection
point on the system curve along a line of constant efficiency, as illustrated in Fig. 1.7.

Several factors that influence efficiency also include:

• The diameter of the eye of the impeller.

• The angle of the impeller blades.

• The thickness of the impeller.
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Figure 1.7: The effect of speed variation on the pump efficiency η.

• The impeller velocity.

• The size of solid particles in the pump casing.

• Mechanical losses.

• Viscosity of the liquid.

Another crucial parameter in centrifugal pump operation is the net positive suction head
(NPSH). The NPSH value of a pump specifies the minimum pressure at the suction nozzle
required for the pump to function properly, often set at a specific condition like a 1%
reduction in head. Failure to meet NPSH requirements, which means insufficient liquid
supply to the pump’s suction side, can result in undesirable and costly consequences, such
as cavitation, leading to increased maintenance expenses.
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optimization problem

The water pump scheduling optimization problem involves finding the most efficient and
cost-effective way to operate multiple water pumps in a WDS to meet demand while min-
imizing energy consumption, operational costs, and other constraints. Currently, in most
Chinese cities, water distribution scheduling is managed by dispatcher teams who activate
valves and pumps based on predefined shifts. While this ensures continuous system oper-
ation, it has drawbacks related to human intervention, team management, and long-term
system stability. Dispatchers rely on past experiences to estimate water demand, leading
to biased decisions. This approach can result in fluctuations in water supply pressure,
requiring adjustments that decrease the quality of the urban water supply. Therefore, it is
crucial to introduce optimization methods, such as the cross-entropy method, along with
an accurate mathematical model of the problem. These tools enable more precise and
efficient decision-making, addressing the challenges associated with human intervention
and leading to improved water supply stability and quality. This benefits both the urban
water systems and the consumers they serve.

2.1. A combinatorial optimization problem

The water pump scheduling is a well-known combinatorial optimization problem in the
WDS domain. It is a type of mathematical problem in which the goal is to find the best
possible solution from a finite set of discrete choices.

Considering a model P = (S,Ω, f), a combinatorial optimization problem is characterized
by the following properties:

• The search space, denoted as S, encompasses a finite collection of components or
discrete decision variables C = {c1, c2, ..., cn}.

• A finite set L is established by selecting values from the elements within C̃, where
C̃ is a subset of the Cartesian product C × C. This set is represented as L =
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{lci,cj |(ci, cj) ∈ C̃}, |L| ≤ N2
C , where NC denotes the cardinality of C.

• A finite set of constraints, denoted as Ω, is assigned among the elements.

• The model comprises an objective function f that maps from the search space S

to non-negative real numbers (R+
0 ) and is designed to be minimized, serving as the

central focus of the model.

• A reasonable solution s ∈ S is a solution that complies with all the constraints
defined within the model.

• A global optimal solution s∗ is found if a solution s is unique and satisfies the
expression s∗ ∈ S ⇔ f(s∗) ≤ f(s), ∀s ∈ S.

A crucial aspect of combinatorial problems revolves around the management and han-
dling of constraints within the problem-solving process. The manner in which constraints
are mathematically modeled significantly impacts the performance of optimization al-
gorithms. It’s crucial to differentiate between direct and indirect constraints. Indirect
constraints can be assimilated into the objective function, where optimizing the objective
function inherently meets these constraints. In contrast, direct constraints stand apart
from the objective function and are incorporated to ensure optimal outcomes.

Many optimization models integrate both direct and indirect constraints. Implementing
indirect constraints in optimization involves reshaping the problem and employing the
optimization function to penalize any breaches of constraints. These penalties represent
the expense of narrowing the discrepancy between achieved and desired outcomes. They
can be adjusted using two distinct penalty factors: one for constraint violations and the
other for inaccurately initialized variables. We can express mathematically such conditions
as in expressions (2.1).

Considering a set of constraints ci (i = 1, ...,m) applied to a set of variables vj (j =

1, ..., n), assuming Ci a set of constraints directly related to vj, and wi the parameters
that determine the magnitude of the penalty imposed, the constraint conditions can be
represented by the following penalty functions.

f1(s) =
m∑
i=1

wiχ(s, ci) with χ(s, ci) =

1, if s violates ci

0, otherwise

f2(s) =
m∑
i=1

wiχ(s, ci) with χ(s, Ci) =

1, if s violates at least one c ∈ Ci

0, otherwise

(2.1)
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2.2. The objective function

In combinatorial optimization, the objective function plays a central role in defining the
goal of the problem and guiding the search for an optimal solution. This numerical value
represents the quality or cost of the solution with respect to the problem’s optimization
goals. The goal of our combinatorial optimization problem is to find the best solution,
which is the one that minimizes the value of the objective function, while respecting the
constraints.

The objective function utilized to optimize the water pump scheduling problem consid-
ers several factors, with the primary focus being the power consumption of each pump.
The total power usage is computed by summing the individual contributions from all
operational pumps.

J = min

{
m∑
i=1

ωi(s
3
i p1 + s2i p2Qi + sip3Q

2
i ) +

m+n∑
i=m+1

ωi(p1 + p2Qi + p3Q
2
i )

}
(2.2)

By utilizing equation (2.2), we may calculate the total power consumption of all pumps.
The coefficients ωi represent the on-off status of each pump and are pivotal in determining
the optimal combination of pumps within the scheduling solution. The values p1, p2, p3

represent the parameters of the power function associated with each particular type of
pump.

2.3. The constraints

Constraints in optimization problems serve to capture the limitations and requirements of
the problem at hand. Their role is to narrow down the solution space, ensuring that the
final solution optimizes the objective function. Constraint modeling involves translating
these real-world limitations into mathematical equations, inequalities, or logical expres-
sions that can be integrated into the optimization problem. This process is crucial due
to the fact that an accurate model is able to affect the optimization algorithm positively,
for example, by improving its performance and accuracy.

In the water pump scheduling optimization problem, the main constraints are four, the
speed ratio constraint, the flow balance constraint, the parallel operation of pumps, and
the limitation related to the high-efficiency area.
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2.3.1. Speed ratio constraint

Variable speed pumps can be controlled to change their speed ratio within the interval
s ∈ [0, 1]. However, to increase efficiency and prevent issues like cavitation and shortened
life cycles, the speed ratio of each pump has been constrained to the interval shown in
(2.3).

smin,i ≤ si ≤ 1, for i = 1, 2, ...,m+ n (2.3)

Where m,n are, respectively, the number of variable speed pumps and fixed speed pumps.
In the present project the interval has been set to s ∈ [0.8, 1].

2.3.2. Flow balance constraint

The flow balance equation is a fundamental principle that describes how a fluid flows
through a system while maintaining mass conservation. It states that the output flow of
the system Qs must be equal to the sum of the input flow generated by the pump station,
which is the sum of the output flows from both the variable and fixed speed pumps.

Qs =
m∑
i=1

Qi +
m+n∑

j=m+1

Qj (2.4)

2.3.3. Parallel operation of pumps

A pump station typically employs multiple pumps operating in parallel. When these
pumps run in parallel, it’s essential that they operate at the same head. The total output
flow of the system is calculated as the sum of the discharges from all the active pumps.
In other terms, the discharge is obtained by superimposing the characteristic curves of
all active pumps on the same horizontal axis. Fig. 2.1 illustrates this concept with two
pumps running in parallel.

Figure 2.1: Pumps in parallel scheme.
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Pumps operated in parallel will increase the flow but not the head. When this requirement
is not met, there is the risk of water flowing backward toward the pump with lower
head, potentially causing significant damage. As a result, condition (2.5) is imposed as a
constraint.

Hs = H1 = H2 = ... = Hm+n (2.5)

Where Hs is the system’s operating head.

2.3.4. High-efficiency area

It is crucial to operate the pumps such that the control variables maximize the machine’s
efficiency. For fixed frequency pumps, this corresponds to an interval defined by a maxi-
mum value, Qmax,i, and a minimum value, Qmin,i, of pump flow.

Qmin,i ≤ Qi ≤ Qmax,i, for i = 1, 2, ..., n (2.6)

In the case of variable frequency pumps, the speed parameter extends the interval to
encompass a ’best efficiency area’ (BEA). The BEA is delimited by flow and speed con-
straints, which are indicated by the curves connecting the four points A, B, E, and F.

Figure 2.2: BEA delimited by A, B, E, and F.
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This region determines the area where the pump efficiency, η, is equal to or greater than
85%. The curves AB and EF are the head-flow curves of the pump, respectively, at
the maximum speed ratio and the minimum speed ratio. In this particular setting, the
minimum speed has been limited to Smin = 0.8, in relation to equation (2.3) and to
decrease maintenance costs associated to shortened life cycles. The parabolic curve EA
corresponds to an efficiency of η = 85%, while the FB curve to an efficiency of η = 89.2%.
It can be observed that as the pump’s speed decreases, the parabolic curves EA and FB
also exhibit a narrowing effect on the BEA.

The two boundary curves OA and OB, where O is the origin, and which respectively
contain the curves EA and FB, are described by the equations:

HOA = k1Q
2

HOB = k2Q
2

(2.7)

By reformulating the head expression in equation (1.9), we get the flow value Q.

Q =

√
h1s2 −Hs

h3

(2.8)

In the case of the AB curve, given that the maximum operating frequency sets s = 1, the
flow value assumes the form (2.9).

Q =

√
h1 −Hs

h3

(2.9)

Whereas the EF curve, corresponding to the minimum operating frequency of smin = 0.8,
is described by the expression:

Q =

√
h1s2min −Hs

h3

=

√
h1 × 0.64−Hs

h3

(2.10)

Therefore, it is possible to pinpoint the points A, B, E and F of the BEA specified in Fig.
2.2 by using equations (2.7), (2.8), (2.9) and (2.10). Finally, the maximum and minimum
flow values in equation (2.6) are found by combining the parabolic curves in equations
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(2.7) and the pump affinity laws described in equations (1.1).

Qmax,i =


√

h1−Hs

h3
QA Hs ≥ HB√

Hs

HB
QB Hs < HB

Qmin,i =


√

Hs

HA
QA Hs ≥ HE√

h1s2min−Hs

h3
Hs < HE

for i = 1, 2, ...,m+ n

(2.11)

Where HB, HF are the head values at point B and point F, respectively.

2.3.5. Alternated pump usage

In the context of a water pumping station’s crucial task to continuously meet the water
demands of its customers for the entire day, prolonged operation of a water pump carries
the risk of damage. Such damage could disrupt the station’s normal operation and lead
to undesired faults. Water consumption varies across seasons and weather conditions,
prompting water plants to maintain surplus pump capacity to cover daily water supply
demands.

To maximize the lifespan of each pump and reduce energy consumption, station dispatch-
ers may periodically rotate which pumps are active. This rotation is not executed with
every new dispatching instruction but is determined based on a chosen time frame. In
our current project, we opt to select pumps based on the specific demand and date. For
example, in a pumping station equipped with four pumps, if only two pumps are required
to meet the daily demand, we run pumps 1 and 2 on even-numbered dates and pumps 3
and 4 on odd-numbered dates.

2.4. Mathematical model summary

Once the constraints and the objective function related to the characteristic curves and
the Affinity Laws have been defined, we obtain the final problem formulation. The gen-
eral model is characterized as a non-linear, multi-objective, multi-variable combinatorial
problem, encompassing both equality and inequality non-linear constraints.

J = min

{
m∑
i=1

ωi(s
3
i p1 + s2i p2Qi + sip3Q

2
i ) +

m+n∑
i=m+1

ωi(p1 + p2Qi + p3Q
2
i )

}
(2.12)



26 2| The pump scheduling optimization problem

such that

Qs =
m∑
i=1

Qi +
m+n∑

j=m+1

Qj

Hs = H1 = H2 = ... = Hm+n

smin,i ≤ si ≤ 1, i = 1, 2, ...,m+ n

Qmin,i ≤ Qi ≤ Qmax,i, i = 1, 2, ...,m+ n

(2.13)

Therefore, in addressing such a problem, the CE method proves to be suitable, whereas
classical methods frequently falter when faced with intricate models.
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Method

The water pump scheduling optimization problem poses difficult challenges due to its high
non-linearity and its complex system constraints. In the recent decades, it has been tackled
by researchers and engineers with a variety of algorithms. Traditional methods such as
linear programming and dynamic programming often show to be ineffective or unable to
deal with complicated mathematical models, while more recent metaheuristics, such as the
genetic algorithm or the ant colony optimization method, despite many improvements and
adaptations, still face hardships while dealing with complex constraints. In this section,
the cross-entropy method is presented, together with its improved version, with the aim of
solving the pump scheduling optimization problem effectively. This work has also the goal
of expanding the literature and background on the CE method and to provide guidelines
on its application, eventually, for other scholars and future researches.

3.1. The classical CE method

The cross-entropy method is a relatively recent algorithm derived from the Monte Carlo
method. The CE method initially proposed by Rubinstein was meant to be applied for
rare event simulation, but it soon became clear that with slight adaptations it could be
applied to combinatorial and multi-extremal optimization. The name derives from the
process of minimization of the Kullback–Leibler divergence (or cross-entropy), defined
as the distance or closeness between two sampling distributions. The key idea behind
the cross-entropy method is that starting from an initial distribution of parameters, it
iteratively refines the probability distribution of solutions to focus on the most promising
regions of the solution space, ultimately converging towards an optimal or near-optimal
solution. Over time, this process can converge to an optimal or near-optimal solution for
the problem, making it suitable in domains where traditional optimization methods may
struggle due to high dimensionality or non-convexity.

The CE method can be employed to solve two types of problems:
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1. Estimation problems: it involves determining l = E[H(X)], where X represents
a random object with values in a set X and H is a function defined on X . A
significant case is the estimation of a probability, l = P (S(X) ≥ γ), where S is
another function defined on X , and γ is a threshold value.

2. Optimization problems: the goal is to maximize or minimize a specified objective
function S(x) across the entire set x ∈ X . This function S might be a deterministic
known function or subject to noise, introducing uncertainty into its evaluation.

To understand the logic behind the algorithm it is helpful to understand first how it is
used to estimate the probability of rare events. Afterwards, it will be modified in order
to be applied in combinatorial optimization problems.

3.1.1. Principles and mathematical formulation

Importance sampling

The foundation of the CE method is the concept of importance sampling. Consider the
goal of wanting to compute the expectation of a function z(x) when x ∼ P with the
density function p(x). The expectation is found according to

Ep[z(x)] =

∫
z(x)p(x)dx. (3.1)

Now, let’s estimate this expectation through a Monte Carlo estimator, in other words,
a sampling technique. By drawing samples xi from P it is possible to estimate the
expectation in the following way:

r = Ep[z(x)]

r̂ =
1

n

n∑
i=1

z(xi)
(3.2)

Consider a scenario where we find it impractical to utilize distribution P, perhaps due to
difficulties in sampling from it due to an unknown exact form. In response, we introduce an
alternative distribution, Q, accompanied by a straightforward density function q(x). For
instance, we may opt for a simple parametric distribution such as a Gaussian distribution.
Employing this approach allows us to simplify our expectation computation, making it
more manageable.
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Ep[z(x)] =

∫
z(x)p(x)dx,

=

∫
z(x)

p(x)

q(x)
q(x)dx,

= Eq[z(x)
p(x)

q(x)
]

(3.3)

As a result, the expectation under distribution P has undergone a transformation to
become an expectation under distribution Q, denoted as x ∼ q(x). To calculate this
expectation through sampling, we generate samples xi from Q and employ a correction
factor known as the likelihood ratio. This correction factor is applied to compute the
expectation.

r = Ep[z(x)] = Eq[z(x)
p(x)

q(x)
] (3.4)

r̂ =
1

n

n∑
i=1

z(xi)
p(xi)

q(xi)
. (3.5)

Now, it’s important to select the optimal choice of q. By recalling the fact that an
estimator for r is:

r̂ =
1

n

n∑
i=1

z(xi)
p(xi)

q(xi)
(3.6)

We may choose the value q∗(x), shown below, apply the importance sampling methodol-
ogy, and substitute it into equation (3.6).

q∗(x) =
z(x)p(x)

r

r̂ =
1

n

n∑
i=1

z(xi)
p(xi)

q∗(xi)

r̂ = r

(3.7)

In this analysis, it becomes evident that the estimator r̂ perfectly recovers r, resulting
in zero variance. Consequently, in general the importance density q(x) from which we
draw samples should closely approximate q∗(x). This is where the concept of cross-
entropy becomes crucial, as it serves as a metric quantifying the dissimilarity between
distributions.
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Rare event probability estimation

Now, in the context of rare event probability estimation, suppose to estimate the proba-
bility l.

l = Pu(S(x) ≥ γ) (3.8)

where x ∼ f(·;u).

In this context, S represents a function of x, which will subsequently evolve into the
objective function of the optimization problem. The variable x adheres to the distribution
f(·;u), where u serves as the parameter determining the probability distribution f .

To find this probability, we consider the equivalent expectation finding problem, which is
derived from the observation that

l = Eu[I(S(x)≥γ)] (3.9)

The Monte Carlo estimate of the above expression is

l̂ =
1

n

n∑
i=1

I(S(xi)≥γ) (3.10)

with xi ∼ f(·;u) and I representing the indicator function.

Give the assumption that the problem faced is a rare event estimation problem, the
instances in which S(xi) ≥ γ are very few. Therefore, it is useful to introduce another
distribution g(x) and substitute it into equation (3.10) to obtain the new estimator l̂.

l̂ =
1

n

n∑
i=1

I(s(xi)≥γ)
f(xi;u)

g(xi)
(3.11)

where xi ∼ g(x).

The problem of the optimal choice of the density function g(x) remains and the solution
to it comes from the importance sampling technique, which suggests the optimal function:

g∗(x) =
I(s(xi)≥γ)f(x;u)

l
(3.12)

The objective is to discover an importance sampling density that closely aligns with g∗(x).
Recognizing that the space of density functions is infinite, we simplify our task by confining
ourselves to the same family as the original problem, f , as we have a known sampling
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method for it. Consider our importance sampling density function to be parameterized
by v, such that g(x) = f(x; v). Therefore, our focus shifts to finding the optimal v that
minimizes the cross entropy between g∗(x) and f(x; v), denoted as D(g∗(x), f(x, v)).

Therefore, the problem becomes the following minimization problem:

v∗ = argmin
v

D(g∗(x), f(x, v))

= argmin
v

Ev[ln
g∗(x)

f(x; v)
]

= argmin
v

∫
g∗(x)ln g∗(x)dx−

∫
g∗(x)ln f(x; v)dx

= argmin
v

−
∫

g∗(x)ln f(x; v)dx

(3.13)

Now reformulating the expression into a maximization problem, multiplying by a minus
sign, and substituting the expression of g∗(x), the expectation l becomes independent
from v.

v∗ = argmax
v

∫ I(s(xi)≥γ)f(x;u)

l
ln f(x; v)dx

= argmax
v

∫
I(s(xi)≥γ)f(x;u)ln f(x; v)dx

= argmax
v

Eu[I(s(xi)≥γ)ln f(x; v)]

(3.14a)

(3.14b)

(3.14c)

Hence, we are now faced with a maximization problem, the solution of which provides
us with a density function for sampling x. This density function is aimed at closely
approximating the optimal importance sampling density function. Equation (3.14c) is
solvable analytically, in particular for distributions falling within the natural exponential
family. The best way to find its solution is in an iterative way and through the refinement
steps we may find compute the value vt+1 according to:

vt+1 = argmax
vt

Evt [I(s(xi)≥γt)ln f(x; vt)] (3.15)

The process involves selecting elite samples based on their performance in S(x), a cru-
cial step where these elites establish the threshold level γt. This threshold is used to
transform the original problem into a less rare scenario through the modified problem
S(x) ≥ γt, where x follows the distribution f(x; vt). Remarkably, the solution to equation
(3.15) constitutes the maximum likelihood estimate derived from the elite samples. Con-
sequently, a new threshold γt and parameter vt is found at each iteration. This iterative
approach incrementally improves the threshold γt and the distribution f(x, vt) gradually
concentrating it more around the points x where S(x) ≥ γ.
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CE method for combinatorial optimization

The CE method methodically reshapes the distribution over the independent variable x,
gradually focusing its entire mass on the realization of the targeted event. This approach
can be adapted for combinatorial optimization problems, leveraging a modification of its
scheme. Such adaptability is feasible when optimization problems can be adjusted and
reformulated in a manner akin to a rare event estimation problem.

Considering the objective function

max
x

S(x) (3.16)

suppose that its maximum value γ∗ is found at the maximum x∗. Hence, we have:

x∗ = argmaxS(x)

γ∗ = S(x∗)
(3.17)

As shown in the previous sections, consider

l(γ) = Pu(S(x) ≥ γ) (3.18)

in which γ acts as the variable and its precise value is not known, which is the first
difference from the rare event simulation scheme.

Our objective in this context is to determine γ∗. At very few points in the search space over
x, S(x) equals γ∗. Consequently, S(x) ≥ γ∗ qualifies as a rare event under the uniform
distribution, given that only a limited number of points x∗ will achieve the optimum.

By doing so, we have transformed our optimization problem from equation (3.16) into a
rare event simulation problem. The goal is to estimate l(γ∗) under x ∼ unif. It has to
be noted that this approach makes sense also when γ∗ is unknown, because we gradually
increase the threshold value γ. The anticipation is that this incremental adjustment of γ
will eventually lead to γ∗. Simultaneously, our distribution over x becomes increasingly
focused, concentrating all its probability mass on x∗.

3.1.2. The CE method algorithm

Here the pseudo-algorithm of the cross-entropy method is presented. After defining the
maximum number of iteration, the size of the population, the percentage of the elite
elements to be considered and the boundaries of the variables, the algorithm proceeds in
the following scheme.
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• Initialization: the initial mean and covariance matrices are defined. This ensures
that the search space is covered properly. Afterwards, a random generation of the
initial population is obtained from the multivariate normal distribution.

• Iterative phase: until the convergence or stopping criteria is met, the algorithm loops
over the same steps in order to achieve better solutions at every iteration. Given
the initial population, their fitness is evaluated and are sorted by performance. In
case the stopping criteria is met, the loop stops and the best value among the found
elite population is returned.

• Selection phase: an elitist selection method is applied. Various iterations of the
algorithm suggested that the elite percentage of 10% would be convenient.

• Update phase: the level counter t and other parameters are prepared for the next
iteration. The mean and covariance parameters are updated according to the elite
population set and according to v̂t = αŵt. Here, α is the update speed coeffi-
cient, which is bounded between α ∈ [0.4, 0.9] and ŵt represent the new mean and
covariance parameters related to the elite population set.

• new population sampling: A new population is sampled from the updated multi-
variate normal distribution. This population will be concentrated more around the
best solutions found on the search space in the iteration.

Note that except for the initial parameters of mean, covariance, and other required to run
the algorithm, the rest are "self-tuning" as they modify and improve at every iteration.
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Algorithm 3.1 Cross-Entropy Method
Require: max_iterations, population_size, elite_percentage, variable_boundaries

1: Initialize:
2: Define initial mean and covariance matrices: v̂0 = u. Set level counter t = 1.
3: Randomly sample an initial population from the density f(·; vt−1).
4: while stopping criteria not met do
5: Evaluate the current population
6: Sort the population by performance
7: Select the elite subset:
8: elite_count = elite_percentage × population_size
9: elite_set = top elite_count individuals

10: Estimate the distribution of the elite set:
11: Update the mean and covariance parameters based on elite_set.
12: Sample a new population from the estimated distribution:
13: Generate new candidates using the estimated distribution
14: Replace the current population with the new population
15: end while
16: Return Best individual/solution found

3.2. Improvements on the CE method

In the CE method, the update step is responsible for retaining a record of the best
solutions found and for the refinement of the probability density function (pdf) used in
the subsequent iteration. The objective function is also important as it impacts directly
the efficacy and performance of the optimization algorithm. An improved version of the
CE method is proposed that enhances both aspects in order to yield superior results.

3.2.1. Application on the water pump station

One primary goal of the CE method is to minimize the power consumption related to
water pumps in pump stations. Therefore, it’s fundamental to apply it correctly taking
in consideration all the characteristics of the model, such as the search space and the
constraints. The initial step in the CE method is to define the pdf that characterizes
the set of solutions and from which the initial population is sampled. To accomplish
this, a multivariate normal distribution is employed for sampling the initial population,
which is set to contain 1000 elements, taking into account the trade-off between com-
putational cost and execution time. As the CE method progresses through its iterative
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updates, the multivariate normal distribution dynamically adjusts itself relative to the
best solutions discovered through elitist selection. With each update, a new population
is drawn from this adapted distribution. The primary objective here is to guide the set
of solutions towards converging to the optimal point. This adaptive approach helps the
CE method refine and improve its solution space, ultimately working to achieve more
favorable outcomes.

We can define each population member with a two dimensional random vector X =

(x1, x2)
T and sample the initial population X1,X2, ...,XN from the multivariate normal

distribution:
X ∼ N (µ,Σ) (3.19)

µ =

[
s̄

h̄

]
, Σ =

 ( smax−s̄
3

)2
0

0
(

headmax−h̄
3

)2
 (3.20)

where s̄, h̄ are the mean values between the upper and lower bounds of the speed and
head limitations, which are given by the constraints. This ensures the proper coverage of
the search region.

s̄ =
smax − smin

2
, h̄ =

hmax − hmin

2
(3.21)

Afterwards, the fitness of each individual is evaluated according to the cost function
described in equation (2.12) and the individuals with the highest fitness are included in
the elite population set. To account for the scheduling problem, which is to understand
which pump combination results in the lowest power consumption while satisfying the
requirements, the values of the status parameters ωi are sampled from a binary uniform
distribution.

The elite samples, which are composed by one tenth of the total population, are then used
to compute the mean and covariance parameters implemented in the update step. In the
classical CE method, the new multivariate normal distribution is equal to the one that
best represents the elite population. The update step is computed by the expression:

v̂t = αŵt, (0.4 ≤ α ≤ 0.9) (3.22)

Where wt represents the mean and covariance matrices of the elite set and α is the learning
rate coefficient. The updated multivariate normal distribution will be used in the next
iteration to sample the new population.
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3.2.2. The asymmetric smoothed update

In the classic version of the CE method this step is straightforward. The parameter
vector v̂t, which comprises the mean and covariance matrices, is updated at each iteration
according to v̂t−1 = ŵt, where t is the iteration and ŵt is the new parameter vector that
describes the mean and standard deviation of the elite samples. This update method
shows to be inefficient and renders the algorithm vulnerable to local minima.

Decomposing the parameters vector into its its mean and covariance components and
introducing a second parameter β, the previous issue is addressed by providing an asym-
metric smoothed update.

v̂µ,t = αŵµ,t + (1− α)v̂µ,t−1 (0.4 ≤ α ≤ 0.9)

v̂σ,t = βŵσ,t + (1− β)v̂σ,t−1 (0.3 ≤ β ≤ 0.7)
(3.23)

In optimization problems, the factor (1− α) is commonly employed in smoothed update
steps. In this context, our focus extends beyond the introduction of a second parameter β,
which enables an asymmetric smoothed update. The CE method samples from a Gaussian
pdf, which, in 2 dimensions, forms a bell-shaped curve (Fig. 3.1 (a)). When using a single
parameter α, in each update step, the bell-shaped curve ’moves towards the best solution’
as the mean matrix updates and ’reduces in size’ when the covariance matrix updates.
Unfortunately, this simultaneous movement and scaling can lead the algorithm to converge
into local minima, compromising accuracy. By applying two parameters instead, we enable
the Gaussian pdf to ’move’ and ’scale’ in an asymmetric manner, as shown in Fig. 3.1
(b)-(d). This results in faster convergence, reduced susceptibility to local minima, and an
improved ability to explore better solutions, particularly when specific directions offer a
higher probability of yielding superior results.
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(a) Frontal representation. (b) Iteration 1.

(c) Iteration 5. (d) Iteration 15.

Figure 3.1: ’Moving’ and ’resizing’ in the update step.

3.2.3. The adaptive cost function

To achieve a faster and more accurate optimization a different parametrization has been
applied to the expression (2.12). The constraints in the equations (2.13) are reformulated
by writing flow values Qi in terms of Hs and si.

Qi =

√
h1s2i −Hs

h3

(3.24)



38 3| The Improved Cross-Entropy Method

In this way the head constraint, equation (2.5), is implemented directly in the model by
setting for all pumps the system head value of Hs. In result, we obtain:

J = min

{
m∑
i=1

ωi(s
3
i p1 + s2i p2

√
h1s2i −Hs

h3

+ sip3
h1s

2
i −Hs

h3

)

+
m+n∑

i=m+1

ωi(p1 + p2

√
h1s2i −Hs

h3

+ p3
h1s

2
i −Hs

h3

)

}
(3.25)

The constraints and the choice of their mathematical representation can significantly
impact the feasibility and quality of the solution. Therefore, two penalty functions, Pe1

and Pe2, that take into account the constraints are introduced in the model.

The penalty function Pe1 represents the BEA constraint.

Pe1 =
n+m∑
i=1

(∆Qi)
2 =

=



n+m∑
i=1

(
√

h1s2i−Hs

h3
−Qmin,i)

2,
√

h1s2i−Hs

h3
< Qmin,i

0, Qmin,i <
√

h1s2i−Hs

h3
< Qmax,i

n+m∑
i=1

(
√

h1s2i−Hs

h3
−Qmax,i)

2,
√

h1s2i−Hs

h3
> Qmax,i

(3.26)

The penalty function Pe2 represents the flow balance constraint.

Pe2 = (
n+m∑
i=1

ωi

√
h1s2i −Hs

h3

−Qs)
2 (3.27)

Therefore, the problem’s mathematical formulation is summarized by:

F = min

{[
m∑
i=1

ωi(s
3
i p1 + s2i p2

√
h1s2i −Hs

h3

+ sip3
h1s

2
i −Hs

h3

)

+
m+n∑

i=m+1

ωi(p1 + p2

√
h1s2i −Hs

h3

+ p3
h1s

2
i −Hs

h3

)]

]

+ σ

[
Pe1 + (

n+m∑
i=1

ωi

√
h1s2i −Hs

h3

−Qs)
2

]}
(3.28)

Where σ is a weight coefficient that decreases with the iterations, giving less importance
to the penalty functions as the solutions converge to the optima. It is characterized by
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an initial value σ0 and a cooling parameter γ.

σ = σ0
1
γT

, γ ∈ [0, 1] (3.29)

3.3. Comparison with other metaheuristics

Comparative analysis in optimizing methods is crucial. It helps identify the best method
for a specific problem, considering variations in structure, size, and constraints. By eval-
uating efficiency, solution quality, and reliability, it guides decision-making. In in this
section two other metaheuristic algorithms, namely, the ant colony optimization and the
genetic algorithm are presented with the aim of comparing thoroughly the improved CE
method’s performance.

3.3.1. The Ant Colony Optimization (ACO)

Ant System (AS) algorithms, classified as metaheuristic methods, draw their inspiration
from the study "Self-organized shortcuts in the Argentine Ant" conducted by Goss et al.
in 1989 [32]. This research delved into the foraging behavior of the Argentine ant, and
its remarkable ability to optimize pathfinding through the use of trail pheromones. The
ants’ proficiency in identifying the shortest route between their nest and a food source
was thoroughly examined and was used as an idea for the development of optimization
algorithms.

Among AS algorithms, the Ant Colony Optimization (ACO) method received particular
attention. Developed in the early 1990s by Marco Dorigo, ACO is an optimization algo-
rithm that draws its inspiration from the foraging behavior of ants. It is a powerful and
versatile method used to solve a wide range of combinatorial optimization problems. Its
potential was analyzed in the double bridge experiments, which provided clear evidence
of the inherent optimization capabilities of ant colonies. Given an arbitrary setting, ants
were able to determine the shortest path between two points within their environment
using probabilistic rules that rely on locally available information [33]. Notably, the study
involved an environment featuring a bridge structure comprising two identical modules,
as illustrated in Fig. 3.2.
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Figure 3.2: The double bridge experiment used to study the ants’ behaviour.

Fig. 3.2 (a) shows a draft of the connection between the ant colony’s nest and their food
source. Image (b) is a snapshot taken four minutes after the bridge was placed. During
this period, the ants’ movement appears evenly distributed across both modules of the
bridge. Image (c) is a photograph at the 8-minute mark following the bridge’s placement.
It reveals a change in behavior as the ants begin to preferentially use the shortest paths
on both modules of the bridge.

The probability of ants choosing a shorter path increases as the difference in path lengths
becomes more pronounced. This behavior is achieved through indirect communication
within the ant colony. When argentine ants traverse the bridge, each ant deposits a
chemical substance on the ground, which serves as a pheromone, triggering a social re-
sponse in their fellow colony members.

Upon reaching a bifurcation point, which can be denotes with (j = 1, j = 2), each
ant makes a choice between the long and short paths based on a probability, pj. This
probability is directly linked to the amount of pheromone present on each module of the
bridge. Since ants taking the shorter path reach the nest first, the short bridge accumulates
a higher concentration of pheromone compared to the longer one. Consequently, the
shorter path gains a higher probability of being selected by subsequent ants.

This natural behavior of the ants results in an autocatalytic process, where, as long as the
food source remains available, an increasing number of future ants will opt for the paths
with a higher probability, thus reinforcing the colony’s efficient pathfinding behavior.
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It is possible to quantify the probability pj of choosing path j = 1 or j = 2 by setting
a parameter, χs,that accounts for the amount of pheromone deposited on the short path
and another parameter, χl for the longer path. Therefore, the probability that each ant
chooses a certain path is:

p1 =
(k + χs)

h

(k + χs)h + (k + χl)h

p1 + p2 = 1

Where the coefficients k, h are related to the particular system settings. In the case
depicted in Fig. 3.2 the optimal value of k = 20 and h = 2 were found.

It is possible now to summarize the structure of the ACO algorithm into three key phases:

• Solution construction, where artificial ants iteratively construct solutions to the
given problem, moving through adjacent states according to transition rules, which
determine how ants make decisions about the next step to take.

• Pheromone updating, where pheromone trail reinforcement and pheromone trail
evaporation occur.

• Deamon action, which is an optional step that involves applying global updates to
the pheromone trail from a broader perspective, such as pheromone promotion and
pheromone re-initiation.

The combination of local construction heuristics, pheromone communication, and optional
global actions makes ACO a robust and adaptable optimization approach, applicable to
a wide range of combinatorial problems.

The principles and mathematical formulation

The ACO algortihm searches iteratively for optimal or near-optimal solutions by simu-
lating the foraging behavior of ants. The primary step of the ants before they deposit
pheromone on the ground is to identify the shortest path connecting a pair of nodes
within a graph. In this context, we define a construction graph as G = (V,E), where V

represents the set of vertices, and E denotes the set of edges. This graph, G, encompasses
n = |N | nodes. The optimization problem’s solution is determined by the shortest path
within this graph that can connect an initial node, i, to a final node, f . The artificial
ants navigate from one vertex to another along the edges of the graph, incrementally
constructing a partial solution.

For each arc (i, j) in the graph, a specific amount of pheromone is deposited and saved
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by the variable τi,j. The quantity of pheromone on a given arc is directly linked to the
quality of the solutions found by the ants. Consequently, the presence and concentration
of pheromone guides the ants towards regions in the search space where better solutions
are likely to be discovered.

The solutions are constructed by the ants in a stepwise manner during each iteration of
the algorithm. The decision regarding which node to move to is made probabilistically,
adhering to a specific rule. For instance, when an ant k is located at node i and needs
to determine the probability of choosing node j = Ni as the next node to traverse, the
ant considers the set of neighboring Ni associated with node i and takes into account the
pheromone level τi,j found on the trail to calculate the probability.

pkij =

τij, if j ∈ N

0, if j /∈ N
(3.30)

After several iterations, the pheromone levels deposited on the arc (i, j) get updated
according to the following expression.

τij(t) = τij(t) + ∆τ (3.31)

From equations (3.30), (3.31), it becomes evident that as the number of ants utilizing the
connection between node i and node j increases, so does the likelihood that subsequent
ants will opt for the same arc.

Nonetheless, updating pheromone levels by merely adding new amounts to arcs explored
by new ants can lead to premature convergence. In such cases, local optimal solutions may
mistakenly be regarded as the global optimal solution, which is contrary to the desired
outcome of the model. Moreover, the behavior of real ants’ pheromone does not mirror
this simplistic approach. In reality, the pheromone deposited on a path naturally begins
to evaporate over time. To counteract premature convergence and encourage exploration,
in alignment with the natural behavior of pheromone and real ants, ACO incorporates
a pheromone evaporation mechanism. This intentional reduction of pheromone intensity
serves to promote the exploration of new arcs in the process. As a result, equation (3.31) is
transformed into equation (3.32), facilitating a more dynamic and realistic representation
of the pheromone update process in the ACO algorithm.

τij(t) = (1− ρ)× τij +
m∑
k=1

∆τ kij (3.32)
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In which ρ is the evaporation rate coefficient, with ρ ∈ (0, 1], and m is the number of ants.
∆τ kij is the amount of pheromone deposited on the trail (i,j) by the ant k, according to:

∆τ kij =


Q
Lk
, if ant k used arc (i,j)

0, otherwise
(3.33)

Where Q is a constant and Lk is the length of the trail covered by the ant (k).

The probability of equation (3.30) can also be reformulated. Assuming that ants construct
solutions and select nodes to visit through a stochastic mechanism, when ant k is situated
at node i and has constructed the partial solution SP , the probability of transitioning to
node j is expressed by the equation below.

pkij =


ταij×ηβij∑

cil∈N(SP )
ταil×ηβil

, if cij ∈ N(SP )

0, otherwise
(3.34)

Here, N(SP ) represents the set of neighbors or feasible components of node i in the context
of the partial solution SP . When considering arcs (i,j), the node l is one that has not
been visited by ant k. The parameters α and β play a significant role in controlling the
balance between the influence of pheromone, represented by τij, and heuristic information,
represented by ηij in (3.35), during the decision-making process.

ηij =
1

dij
(3.35)

where dij is the distance between i and j.

The ACO algorithm

This section presents the basic structure of the ACO and its pseudocode. At the start
of the algorithm, initial pheromone levels are assigned to all edges in the problem graph.
These pheromone levels represent the information that ants use to make decisions about
their paths. Afterwards, the ants are positioned randomly in the search space and each
ant will the problem graph to find a solution.

The basic ACO parameters to be defined are:

• α: pheromone influence, controls the impact of pheromones on ant decision-making.

• β: heuristic influence, determines the influence of heuristic information, such as the
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distance, on ant decisions.

• Q: total pheromone deposit, represents the total amount of pheromone deposited
by ants on their paths.

• ρ: evaporation rate, controls the rate at which pheromone evaporates over time.

The main loop of the algorithm contains the three key steps of ACO. The construction
of solutions, in which the ants probabilistically select paths based on the combination of
pheromone information and heuristic values. The probability of choosing a path is influ-
enced by both the amount of pheromone on the edge and the heuristic information. The
pheromone update step, in which the pheromone deposition is based on the quality of the
solutions found by the ants. Better solutions result in higher pheromone deposition. The
pheromone evaporation step, in which the global pheromone levels based on the solutions
found by the entire ant colony are adjusted according to an evaporation coefficient. Fi-
nally, when the stopping or convergence criteria is met, the algorithm stops and return
the optimal solution.
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Algorithm 3.2 Ant Colony Optimization
Require: population_size, variable_boundaries, termination_criteria

1: Initialize:
2: Initialize pheromone levels on all edges in the graph
3: Initialize ant population, best solution and ACO core parameters:
4: Set parameters: α, β, ρ, Q.
5: while termination criteria not met do
6: for each ant in the population do
7: Initialize ant’s current position
8: Initialize an empty solution for the ant
9: while solution is not complete do

10: Compute probabilities for unvisited neighbors using α and β

11: Select the next node to visit based on the probabilities
12: Add the selected node to the ant’s solution
13: Update pheromone level on the chosen edge
14: end while
15: Evaluate the fitness of the ant’s solution
16: if ant’s solution is better than the best solution then
17: Update the best solution
18: end if
19: end for
20: Evaporate pheromone on all edges
21: Deposit pheromone on edges of the best solution found
22: end while
23: Return Best individual/solution found

3.3.2. The Genetic Algorithm (GA)

Evolutionary Computation (EC) is an reknown branch in the field of metaheuristic op-
timization. It started to gain popularity in recent decades due to its versatility and its
heuristic-driven problem-solving strategies, which showed to be effective in tackling com-
plex optimization problems. Within the EC landscape, the genetic algorithm (GA) stood
out for its effectiveness.

Developed by John Holland in the 1960s, the GA is a type of optimization and search
algorithm inspired by the process of natural selection and genetics. It is used to find
approximate solutions to optimization and search problems by mimicking the process
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of evolution within a population of candidate solutions. It utilizes mechanisms such
as selection, crossover, and mutation to iteratively refine solutions with the hope that
over time, the population converges toward better results. GA is particularly useful in
optimization problems where the search space is large, complex, or when gradient-based
optimization techniques are not applicable. Furthermore, due to the fact that it allows
for a family of solutions, it can obtain various optimal solutions or solutions close to the
optimal case. GA only employs the information given by the objective function and thus
avoids complications associated with the determination of derivatives and other auxiliary
functions.

The algorithm generates a population composed of candidate solutions for the specified
optimization problem by emulating the characteristics of gentic selection. Each individual
in the population is marked by its own features, which results in being more or less prone
to survive in the next generation. The individuals with the fittest or best chromosomes
have an edge compared to other weaker individuals and so, the algorithm increases their
chances of reproducing. As the chromosomes of the best individuals get passed to future
generations, the population gets fitter. This procedure, observed from nature, is one of
the key characteristics of GA, together with the reproduction, crossover and mutation
steps. This algorithm offers the GA method a remarkable degree of versatility, making it
adaptable to a diverse spectrum of optimization challenges.

The principles and mathematical formulation

The first step of the GA method is the generation phase, in this step the population
is defined. The initial population in GA can be chosen using various techniques, but
the most straightforward one is the through random generation, which is implemented
in this work. It is known that characteristics related to the initial population affect the
search capabilities of optimization algorithms. Fore example, if a large population is
considered, a higher amounts of computations are needed and the algorithm might have
a slow execution time. In case a small population is taken, it might not be enough to
cover the search space effectively, with the risk of not finding the optima or falling into
a local minima. Therefore, as summarized in Fig. 3.3, it’s important to pay attention to
the aspects that might influence the population initialization.
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Figure 3.3: Influence of the problem’s characteristics on of the initial population.

In accordance with the mathematical model of the problem, the pump station incorporates
m variable speed pumps and n fixed speed pumps, hence, we can adapt the GA for this
specific circumstance. During the generation phase, the information of each individual is
represented by a binary string, containing the pumps’ configuration, speed and system
head value.

ω1ω2...ωm+nS1S2...Sm+nHs (3.36)

Where ωi is the binary status of the pump i, which is 1 for ’On’ and 0 for ’Off’, Si is the
speed ratio of the pump i, and Hs is the system head value. In this case, the system head
value constraint is implemented directly in the formula (3.36), instead of defining all the
values HS,1, HS,2, ..., Hs,m+n and then imposing the condition of equation (2.5). In order
to cover effectively the search space, traced by the speed and head boundaries given by
the system constraints, each value of the speed ratio is represented with 8 bits and the
head value with 12 bits. Since the algorithm uses a binary encoding, an effective decoding
method is important in order to smoothly proceed to the selection phase. For each of the
variables S and Hs, the following decoding formula is applied.

S = Smin + (
8∑

i=1

bi × 2i)× Smax − Smin

28 − 1

Hs = Hmin + (
12∑
k=1

bk × 2k)× Hmax −Hmin

212 − 1

(3.37)

In which the variable boundaries, S ∈ [Smin, Smax] and Hs ∈ [Hmin, Hmax] are indicated
by the system constraints.

The next step is the selection phase, which chooses the fittest individuals and dictates a
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string’s eligibility for involvement in the reproductive phase. Occasionally referred to as
the reproduction operator, this step significantly influences GA’s convergence rate, which
hinges on what’s termed as selection pressure. Various established methods of selection
include the roulette wheel, rank-based selection, tournament selection, Boltzmann selec-
tion, and stochastic universal sampling. In the roulette wheel selection, each potential
string is represented on a wheel proportional to its fitness value. A random rotation of this
wheel determines the selection of particular solutions contributing to the formation of the
subsequent generation. The main drawbacks of this method are related to its stochastic
nature, which may introduce errors and making the algorithm more sensible to local min-
ima. These issues are avoided with the use of the tournament selection technique, which
dates back to Brindle’s proposal in 1983. This method involves the selection of individ-
uals based on their fitness values using a stochastic roulette wheel mechanism applied
to a pair of population members. Subsequently, individuals with superior fitness values
are incorporated into the succeeding generation’s pool. Within this selection approach,
each individual is evaluated against all but one other individuals, should it advance to
the ultimate population of solutions [34]. The advantages of the implementation of the
tournament selection method is that is preserves the the genome diversity and does not
require a preventive sorting step, which slows down the execution time.

Figure 3.4: A 3-way tournament selection.

The crossover operation is a key step in the GA. It is used to generate the population
of offspring by merging the genetic data of a pair or multiple parents. In other words, it
mixes the genetic information of the best found solutions in the hope of providing a fitter
population for the next iteration [35]. Among a variety of crossover methods, common
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ones include the single-point, k-point, or the shuffle method. For a clearer understanding
of the crossover operator, we may consider an example applied to the single water pump
case, which utilizes the k-point crossover method. Given to candidate solutions for the
operation of a water pump, the crossover operator swaps genetic information in

Figure 3.5: Crossover of the genome containing the operational parameters of a single
water pump.

Mutation involves the random alteration of components within a solution, enhancing the
population’s diversity and offering a means to break free from a local optimal solution.
Without it, the GA might converge prematurely to suboptimal solutions, as it would lack
the exploration needed to discover potentially better solutions. The mutation rate, pm,
is a parameter that determines the probability of mutation occurring in each gene of an
individual’s chromosome. It’s usually kept low to balance exploration and exploitation,
since too high a mutation rate may lead to excessive randomness, hindering convergence
towards good solutions, while too low a rate might limit exploration. In Fig. 3.6 is shown
the effect of the simple inversion mutation method applied to a chromosome representing
the operational parameters in the case of a single water pump.

Figure 3.6: Mutation of the genome containing the operational parameters of a single
water pump.
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The GA algorithm

This section presents the basic structure of the GA and its pseudocode. The first step is
the generation of the initial group of potential solutions, the starting population. Each
solution is represented as a set of parameters or characteristics, often called chromosomes
or genes, which contain the values of the operational parameters of the pumps in a bi-
nary format. The evaluation step assesses how well each solution performs regarding the
problem’s cost function and computes a fitness score or evaluation metric for every indi-
vidual in the population based on how close its solution is to the desired outcome. After
a termination criterion check, the algorithm proceeds to the three key operators of the
GA, the selection step, the crossover step and the mutation step. In the first, individuals
are selected to act as parents for the next generation based on their fitness scores. Higher
fitness individuals are more likely to be selected, according to a tournament selection
method. In the second, new solutions are created by combining genetic information from
the selected parents. The crossover technique takes parts of two parents’ genome and
swaps or combines them to create the offspring, hoping to combine advantageous traits
from both parents. In the third, small, random changes in the genetic material of the
offspring are made. This random alteration is applied with a low probability to maintain
genetic diversity within the population and explore new potential solutions. Finally, the
performance of the newly created offspring solutions is assessed and compared with the
parents. Based on the fitness scores, the most performing among the parents and offspring
will populate the next generation of population. When the termination criteria is met,
the loop breaks and the best found solution is returned.

Algorithm 3.3 Genetic Algorithm
Require: population_size, variable_boundaries, termination_criteria
1: Initialize population
2: Evaluate fitness of each individual in the population
3: while termination criterion not met do
4: Tournament selection of parents based on fitness
5: Perform crossover to create offspring
6: Apply mutation to offspring with a certain probability, pm
7: Evaluate fitness of new offspring
8: Select individuals for the next generation
9: end while

10: Return Best individual/solution found
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3.4. Benchmarking and validation

Benchmark functions provide a common ground for comparing the performance of differ-
ent optimization algorithms. Since these problems have known solutions, they are used
to assess and validate the performance of optimization methods. The validation step is
important in order to ensure generalizability and to allow the comparison of newly devel-
oped optimization techniques against established standards, ensuring the reliability and
credibility of their results. In the present work, six benchmark functions are applied to
analyze the improved CE method. Each of them presents specific characteristics that
provide an unbiased evaluation of the algorithm.

Figure 3.7: The Ackley function plot.

The Ackley function is a multimodal function with a global minimum at f(0, 0) = 0,
characterized by a nearly flat outer region and a large hole at the center.

f(x) = −a× exp

−b×

√√√√ 1

n

n∑
i=1

x2
i

− exp

(
1

n

n∑
i=1

cos(c× xi)

)
+ a+ exp(1) (3.38)

Where x = (x1, x2, ..., xn) represents the n input variables, a, b, and c are constants
typically set to a = 20, b = 0.2, c = 2π in many implementations.



52 3| The Improved Cross-Entropy Method

Global minimum Optimal solution Search space

f(x∗) = 0 x∗ = (0, ..., 0) xi ∈ [−32.768, 32.768]

Table 3.1: The Ackley function characteristics.

Figure 3.8: The Booth function plot.

The Booth function is a two-dimensional function with a single global minimum f(1, 3) =

0, characterized by a well-defined, valley-shaped search space.

f(x, y) = (x+ 2y − 7)2 + (2x+ y − 5)2 (3.39)

Global minimum Optimal solution Search space

f(x∗) = 0 x∗ = (1, 3) xi ∈ [−10, 10]

Table 3.2: The Booth function characteristics.
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Figure 3.9: The Goldstein-Price function plot.

The Goldstein-Price function is another two-dimensional function with a single global
minimum f(0,−1) = 3.

f(x, y) =
[
1 + (x+ y + 1)2 ×

(
19− 14x+ 3x2 − 14y + 6xy + 3y2

)]
×[

30 + (2x− 3y)2 ×
(
18− 32x+ 12x2 + 48y − 36xy + 27y2

)]
(3.40)

Global minimum Optimal solution Search space

f(x∗) = 3 x∗ = (0,−1) xi ∈ [−2, 2]

Table 3.3: The Goldstein-Price function characteristics.
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Figure 3.10: The Beale function plot.

The Beale function is a two-dimensional function with a single global minimum f(3, 0.5) =

0, characterized by a well-defined, valley-shaped search space.

f(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2 (3.41)

Global minimum Optimal solution Search space

f(x∗) = 0 x∗ = (3, 0.5) xi ∈ [−4.5, 4.5]

Table 3.4: The Beale function characteristics.
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Figure 3.11: The De Jong function N.5 plot.

The De Jong function N.5 is a multimodal function also known as a particular version
of the Shekel’s Foxhole function. The function has multiple local minima located in a
narrow, deep structure, making it challenging for optimization algorithms to find the
global minimum.

f(x) =

(
0.002 +

25∑
i=1

1

i+ (x1 − a1i)6 + (x2 − a2i)6

)−1

(3.42)

where,

a =

(
−32 − 16 0 16 32 − 32 − 16 ... 0 16 32

−32 − 32 − 32 − 32 − 32 − 16 ... 32 32 32

)
(3.43)

Global minimum Optimal solution Search space

25 local minima 25 optim. sol. xi ∈ [−65.536, 65.536]

Table 3.5: The De Jong function N.5 characteristics.
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Figure 3.12: The six-hump camel function plot.

The Six-Hump Camelback function is a two-dimensional function with multiple global and
local minima and maxima, making it a challenging function to optimize. The function has
six prominent peaks and is typically defined in the domain (−3 ≤ x ≤ 3), (−2 ≤ y ≤ 2).

f(x, y) =

(
4− 2.1x2 +

x4

3

)
x2 + xy +

(
−4 + 4y2

)
y2 (3.44)

Global minimum Optimal solution Search space

f(x∗) = −1.0316 x∗ = ±(0.0898,−0.7126) x1 ∈ [−3, 3], x2 ∈ [−2, 2]

Table 3.6: The Six-Hump Camelback function characteristics.

The improved cross-entropy method has been applied to the six benchmark functions
and it returned favorable outcomes, successfully converging to the global minimum and
achieving the optimal solution for each function. The results are reported in the tables
below. The results given by the ACO and GA are also provided for a comparative analysis.
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Improved cross-entropy Method

Function Global minimum Optimal solution Search space

Ackley 0 (0, 0) [−32.768, 32.768]

Booth 0 (0.999, 3) [−10, 10]

Goldstein-Price 3 (0,−0.990) [−2, 2]

Beale 0 (2.999, 0.499) [−4.5, 4.5]

De Jong 5th 1.990 (−15.900,−31.600) [−65.536, 65.536]

Six-Hump
Camelback

−1.0315 (−0.0895, 0.7124) x1 ∈ [−3, 3], x2 ∈ [−2, 2]

Table 3.7: Benchmark performance of the improved CE method.

Ant Colony Optimization

Function Global minimum Optimal solution Search space

Ackley 0.180 (−0.032, 0.032) [−32.768, 32.768]

Booth 0 (1.006, 3.001) [−10, 10]

Goldstein-Price 3 (0,−0.990) [−2, 2]

Beale 0 (3.020, 0.500) [−4.5, 4.5]

De Jong 5th 0.998 (−31.960,−31.960) [−65.536, 65.536]

Six-Hump
Camelback

−1.030 (0.1026,−0.7059) x1 ∈ [−3, 3], x2 ∈ [−2, 2]

Table 3.8: Benchmark performance of the ACO method.



58 3| The Improved Cross-Entropy Method

Genetic Algorithm

Function Global minimum Optimal solution Search space

Ackley 0.180 (0.032, 0.016) [−32.768, 32.768]

Booth 0 (1.006, 3) [−10, 10]

Goldstein-Price 3 (0,−1) [−2, 2]

Beale 0 (2.986, 0.497) [−4.5, 4.5]

De Jong 5th 1 (−31.900,−31.900) [−65.536, 65.536]

Six-Hump
Camelback

−1.031 (0.0967,−0.7135) x1 ∈ [−3, 3], x2 ∈ [−2, 2]

Table 3.9: Benchmark performance of the GA method.
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on a pump station

The model has been adapted to optimize a real-life-inspired scenario featuring the water
pump station of a megalopolis equipped with four pumps, including two variable frequency
pumps, referred to as pump ’1’ and ’2’, and two fixed frequency pumps, referred to as
pump ’A’ and ’B’.

The real performance curves of each pump have been incorporated. It is a common issued
in pump stations not to have the actual performance curves of each pump, in many cases,
caused by the fact that once the pumps have been put in operation their charts are no
longer taken in consideration.

A preliminary data collection step was needed to gather the values of head, power and
efficiency at different flow values. Afterwards, through polynomial interpolation, the real
performance curves were obtained reflecting the functions expressed in equations (1.9).

Two types of pumps were analyzed. The variable frequency pumps showed to be larger in
size, capable of a higher flow output, a higher power consumption and could reach a higher
efficiency with respect to the other. The other type represented the fixed frequency water
pumps, which were smaller in size and their speed could not be modified once activated.
The characteristic functions of the two types of pumps are reported below.
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Figure 4.1: Performance curves of the variable frequency pump.

Figure 4.2: Performance curves of the fixed frequency pump.
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Fig. 4.1 depicts the variable frequency pump curves showcasing two distinct speed ratios:
one at S = 1 (shown in black) and another at S = 0.8 (highlighted in red). The plotted
data points, represented by small circles, were effectively interpolated to derive the head,
power, and efficiency curves. Notably, the fitted curves demonstrated a strong alignment
with the data points. For instance, the head-flow curve exhibited excellent goodness of fit
with an RMSE (Root Mean Square Error) of 0.2432 and a R − square value of 0.9988,
indicating the high quality of the fit. As the speed varies, the curve smoothly transitions
from the black to the red curve. This dynamic movement through speed control enables
attainment of any value between these two curves. In contrast, Fig. 4.2 showcases the
fixed frequency pump curves obtained through a similar methodology.

The water pump station’s operation across multiple months forms the foundation of the
database in use. This comprehensive database catalogs system flow demand values at five-
minute intervals. Notably, the flow demand pattern displayed consistent daily cyclicality,
repeating itself day after day. Given this repetitive nature, it proves both interesting and
valuable for this project to analyze and consider the daily water flow demand chart.

Figure 4.3: Water flow demand fluctuations in a day.

Fig. 4.3 reveals a discernible pattern recurring consistently each day. The peak demand
for water aligns roughly around 13:00 and 18:00, corresponding to meal times when the
population’s water usage surges. Additionally, peaks at 8:00 and 21:00 coincide with
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periods when people typically use water for personal hygiene and household appliances.
In contrast, the valley points consistently occur during nighttime, likely corresponding
to sleeping hours, or during typical working hours when water consumption tends to
decrease.

Through the implementation of the improved CE method, optimal operational points for
the pump set have been successfully established, prioritizing adherence to all constraints,
notably ensuring operation within the BEA as illustrated in Fig. 2.2, while meeting
the flow demand requirements. Additionally, the method has provided insights into the
pumps’ statuses (on-off), indicating the optimal combination of pumps that should be
operated to minimize the costs of the pump station.

The subsequent sections detail the outcomes related to the improved CE method’s perfor-
mance, the resolution of the pump scheduling problem, and the comprehensive enhance-
ments achieved within the water pump station.

4.1. Comparative analysis of performance

The improved CE method has introduced enhancements that improve best existing so-
lutions achieved by other metaheuristic methods, including the GA and ACO. In this
section, its performance is thoroughly analyzed from various perspectives to highlight its
contributions and improvements.

The core part of the objective function is the quantity describing the power consump-
tion of each pump. Therefore, it is meaningful to understand the effectiveness of the
improved CE method on minimizing the power function of the single pump, since the
overall optimization is directly related to how well the algorithm optimizes the single
variable frequency pumps. Therefore, the improved CE method is applied to find the best
operational values of speed and head that minimize power, while providing the required
amount of output flow. Since in general the flow varies in time, two key flow demands are
considered, the first at 6000m3/h and the second at 8500m3/h, which show the effective-
ness of the algorithm in different conditions. The improved CEM is compared with its
classic version, with the ACO and with the GA. The resulting graphs are provided and
the numerical values are organized in tables for a clear understanding. Due to the fact
that the graphs for the two flow demand conditions are similar from a performance point
of view, just the ones related to the 6000m3/h are reported.

The central focus of the objective function lies in quantifying the power consumption of
each pump. Consequently, it holds significance to evaluate the efficacy of the improved
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CE method in minimizing the power function of individual pumps, as this directly influ-
ences the overall optimization process. This section employs the improved CE method to
identify the optimal operational values of speed and head, aiming to minimize power while
meeting the required output flow. Given the time-varying nature of the flow, we assess
two key flow demands: 6000m3/h and 8500m3/h, showcasing the algorithm’s performance
under diverse conditions. Comparisons between the improved CEM, its classic counter-
part, ACO, and GA are illustrated through graphs, and accompanying numerical values
are organized in tables for clarity and comprehension. As the performance graphs for both
flow demand conditions exhibit similar trends, only those corresponding to 6000m3/h are
detailed herein.

4.1.1. Comparison with the classic CE method

The improved CE method (ICEM) performs better compared to the classic CE method
(CEM), as reported in Fig. 4.4. The improved CE method is able to converge to the
global minima in power consumption, achieving a remarkable power reduction of approx-
imately 11% in the 6000m3/h case, where the classical CE method converged to a local
minima with a higher power value equal to 526.77kW . Furthermore, it demonstrated
superior effectiveness in refining its search for the optimal working point, resulting in a
very accurate flow value. Even though both results are satisfactory, it’s meaningful to
note that the increased accuracy of the improved CE method in both cases of 6000m3/h

and 8500m3/h to reach the required flow demand indicate that in real case scenarios the
improved version might be more robust to noise or sudden variations.

The improved CE method performs better compared to the classic CE method, as evi-
dent in Fig. 4.4. Notably, the improved CE method exhibits the capability to converge
to the global minimum in power consumption, achieving a substantial power reduction
of approximately 11% in the 6000m3/h scenario. In contrast, the classical CE method
converged to a local minimum with a higher power value of 526.77kW . Moreover, the im-
proved method showcases superior efficacy in refining its search for the optimal operating
point, resulting in a highly accurate flow value. While both methods yield satisfactory
outcomes, it’s worth highlighting that the improved CE method’s increased accuracy in
meeting the required flow demand for both 6000m3/h and 8500m3/h cases suggests its
potential robustness in real-world scenarios, particularly when faced with noise or sudden
variations.
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Figure 4.4: Comparison of the improved CE method in a single pump case.

Table 4.1: Comparative analysis with classic CEM.

Classic CEM Improved CEM
Flow demand (m3/h) 6000 8500 6000 8500

Computed flow (m3/h) 6004.0 8499.87 6000 8499.88
Power (kW ) 526.77 708.42 472.43 708.42
Iterations 30 12 32 22

The disparities in convergence are a direct consequence of the underlying logic of the
improved CE method. By smoothing the update of the multivariate normal distribution,
the algorithm doesn’t converge directly toward the best solution but has a margin to
explore possibilities in the vicinity of the current optimal point. Consequently, it exhibits
improvements in its ability to search for global minima and accuracy.
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4.1.2. Comparison with ACO

The comparison against ACO presents promising findings. As depicted in Fig. 4.5, the
improved CE method exhibits faster convergence and greater accuracy in both flow and
power metrics. Notably, its superior effectiveness in setting a more precise operational
flow stems from the heightened efficiency of its search algorithm compared to ACO. Specif-
ically, in the 8500m3/h scenario, the improved CE method identifies a better minimum,
showcasing the CE method’s ability to explore potential solutions around the current
best-found solution. This emphasizes its capacity for exhaustive evaluation and optimiza-
tion.

Figure 4.5: Comparison of the improved CE method with ACO in a single pump case.

Table 4.2: Comparative analysis with ACO.

Improved CEM ACO
Flow demand (m3/h) 6000 8500 6000 8500

Computed flow (m3/h) 6000 8499.88 6000 8500.6
Power (kW ) 472.43 708.42 472.43 727.78
Iterations 32 22 71 32
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In comparison to ACO, the improved CE method showcased a slight but noticeable advan-
tage in terms of convergence speed and accuracy. Specifically, the improved CE method
achieved convergence in 32 iterations, whereas ACO required 71 iterations to reach the
specified flow demand of 6000m3/h. Similarly, in the alternative scenario, it required
31% fewer iterations to achieve convergence. This efficiency translated into a substantial
reduction of 480kW in power consumption during the transition period, a trend similarly
observed in the 8500m3/h case. This highlights the improved method’s efficacy in achiev-
ing faster convergence and minimizing power consumption during transitional phases,
illustrating its superior performance compared to ACO.

4.1.3. Comparison with GA

The graphs in Fig. 4.6 illustrate the analysis conducted against GA. A notable observa-
tion is the improved CE method’s swifter convergence, particularly evident in the power
consumption graph. Remarkably, it achieves convergence in roughly two-fifths fewer it-
erations compared to GA while reaching the necessary operating flow condition. This
accelerated convergence results in a quicker transition period, ultimately reducing power
costs by 2.2%. This highlights the improved CE method’s efficiency in achieving faster
convergence and consequent cost reduction compared to GA.
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Figure 4.6: Comparison of the improved CE method with GA in a single pump case.

Table 4.3: Comparative analysis with GA

Improved CEM GA
Flow demand (m3/h) 6000 8500 6000 8500

Computed flow (m3/h) 6000 8499.88 6000.63 8500.66
Power (kW ) 472.43 708.42 472.84 709.16
Iterations 32 22 77 47

Indeed, it is interesting to observe the distinctive graphical representations between the
GA and CE method. The GA tends to showcase an iterative refinement process resembling
a ladder, whereas the CE method’s graph appears notably smoother. This difference in
graphical patterns could have practical implications. The smoother trajectory of the CE
method potentially enhances its robustness in real-world scenarios by exhibiting resilience
against biases or outliers in the data. This smoother nature might offer a more stable
and reliable optimization process, proving advantageous when dealing with diverse or less
predictable datasets.
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4.2. Optimized water pump scheduling

The incorporation of the enhanced CE method leads to the effective operation of the
pumps within their optimal efficiency range. This accomplishment is achieved while
adhering to the water system’s constraints and fulfilling the necessary head and flow
requirements.

Since the system flow demand is constantly varying, three key flow demand values have
been chosen to describe the workings of the pump scheduling system: 11000m3/h, 17000m3/h

and 25000m3/h. For each case its respective performance values are detailed in the as-
sociated tables, which report the actual values of the pumps’ parameters present in the
pump station. Among the various indexes, the key ones include the pump status, the rota-
tional speed ratio, and the power consumption. The optimal operating conditions for the
variable-speed pumps are shown in Figs. 4.7, 4.8, 4.9 and are pinned with a star symbol.
The graphs are related only to the variable frequency pumps since the fixed speed pumps,
once activated, will operate at their maximum efficiency, providing constant output flow
and head values.

Figure 4.7: Working points when Qs = 11000m3/h.



4| Experimental implementation on a pump station 69

Table 4.4: Pump station parameters

System flow demand = 11000 (m3/h)
Pump A Pump B Pump 1 Pump 2

Status On Off Off On
Tot. output flow (m3/h) 11005.0

Power (kW ) 975.78
Head (m) 40.1

Pump flow (m3/h) 3128.20 0 0 7876.86
Speed ratio 0.90 0 0 0.99

Efficiency (%) 75.83 - - 91.70

Figure 4.8: Working points when Qs = 17000m3/h.
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Table 4.5: Pump station parameters

System flow demand = 17000 (m3/h)
Pump A Pump B Pump 1 Pump 2

Status On On Off On
Tot. output flow (m3/h) 17052.6

Power (kW ) 1283.07
Head (m) 33.2

Pump flow (m3/h) 4027.88 4100.57 0 8924.20
Speed ratio 0.91 0.92 0 0.93

Efficiency (%) 75.83 75.83 - 90.07

Figure 4.9: Working points when Qs = 25000m3/h.
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Table 4.6: Pump station parameters

System flow demand = 25000 (m3/h)
Pump A Pump B Pump 1 Pump 2

Status On On On On
Tot. output flow (m3/h) 24969.7

Power (kW ) 2394.05
Head (m) 32.33

Pump flow (m3/h) 4196.71 3902.94 8299.98 8570.11
Speed ratio 0.92 0.87 0.87 0.89

Efficiency (%) 75.83 75.83 90.95 90.51

Figs. 4.7 to 4.9 delineate the BEA marked by points A, B, E, and F, signifying the
intersections between pump performance curves at various speeds and boundary curves
ensuring optimal operational efficiency. These results are notably satisfactory within this
context. The variable-speed pumps consistently exhibit efficiency surpassing 85%, while
adhering to the head constraint.

Fig. 4.9 illustrates how pump 1 and pump 2 operate simultaneously while maintaining the
equal system head value constraint. The scheduling problem, tackled using the improved
CE method, effectively recommends activating the minimum number of pumps necessary
to meet flow demand and minimize power consumption.

The accompanying tables reveal that as the output flow demands increase, the power
consumption of the pump station also rises. However, the results ensure the concurrent
minimization of maintenance costs. Furthermore, the data suggests that, for a fixed
flow value and pump sizes, activating a fixed frequency pump consumes less power than
its variable-speed counterpart. In the particular case reported in Table 4.5, the fixed
frequency pump B, gets activated before the variable speed pump 1, because the variable
frequency ones are smaller, hence consume less power.

This implementation of the resultant scheduling system effectively slashes operational and
maintenance costs for the water pump station, all while meticulously adhering to system
constraints and demands.
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5| Conclusions

The optimization of the water pump station scheduling was explored using an improved
CE method. Among the improvements made on the classical version of the cross-entropy
method, a key one is the asymmetric smoothed update of the mean and covariance ma-
trices parameters. By introducing a smoothed update mechanism for the multivariate
normal distribution, the algorithm doesn’t directly converge to the optimal solution. In-
stead, it allows for exploration around the current optimal point, enhancing its ability to
search for global minima and improve accuracy.

To evaluate the effectiveness of this method, it was compared against the classic CE
method, ant colony optimization, and the genetic algorithm. In all instances, the en-
hanced CE method consistently outperformed the others, successfully minimizing power
consumption for the considered water pumps. Moreover, its generalizability was tested
across six benchmark functions, demonstrating its credibility, reliability, and reproducibil-
ity.

Applied to a real-world scenario involving a major water pump station within a large city,
the improved CE method was tailored to determine optimal operational values for each
pump, including head, operating speed, and pump status. Leveraging this information, a
pump scheduling system was developed. This system dictates the most efficient combina-
tion of active pumps to minimize power consumption while meeting required water flow
for various demand scenarios. It also assists in determining pump activation during peak
and off-peak hours, aiding human operators in decision-making processes and directly
impacting maintenance and labor costs associated with the pump station.

The algorithm was developed and simulated in MATLAB, and its performance was tested
in a real-life-inspired scenario, representing a megalopolis water pump station. The results
of this study were highly satisfactory, with the system and its components operating at
their most efficient points while adhering to all specified constraints.
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