
A survey of Intrusion Detection

Systems for Controller Area Net-

works and FPGA evaluation

Tesi di Laurea Magistrale in

Computer Science and Engineering - Ingegneria In-

formatica

Author: Fabio Nappi

Student ID: 928245
Advisor: Prof. Michele Carminati
Co-advisors: Stefano Longari
Academic Year: 2020-21

i

Abstract

In the past few decades car manufacturers produced and distributed vehicles equipped

with a continuously growing number of electronic components, which allow modern vehi-

cles to provide appealing features to the customers. These components, mainly sensors,

actuators and Electronic Control Units (ECUs), require intra-vehicle networks to share

their information: Controller Area Network (CAN) is the de facto standard in the auto-

motive sector. This protocol was designed many years ago and security was not taken

into account because cars were isolated systems at that time. However modern vehicles,

despite using the CAN, are more and more connected to the outside world thanks to the

V2X technologies, which raise the automotive security threat exposing new attack sur-

faces. Therefore securing the CAN is of critical importance, to this end literature propose

many mechanisms to detect possible intrusions, i.e. Intrusion Detection Systems (IDSs).

This thesis o�ers a detailed review of the latest studies of IDSs for CAN, their strengths

and �aws; we propose this part as an extension and an update of Al-Jarrah et al. [4], also

providing comparisons with it. Moreover we carry out an analysis of Field Programmable

Gate Array (FPGA) systems to address the latency issue that a�ects most of the solutions

found in literature: the use of complex algorithms makes it di�cult to keep up real-time

tra�c. The analysis concludes providing an estimation of the hardware acceleration that

could be o�ered by FPGA platforms to CANova, a modular IDS designed for CAN.

Keywords: Security, Controller Area Network, Intrusion Detection System, Survey, Field

Programmable Gate Array, Latency

iii

Abstract in lingua italiana

Negli ultimi decenni le case automobilistiche hanno prodotto e distribuito veicoli equipag-

giati con un numero sempre maggiore di componenti elettronici, i quali consentono alle

auto di fornire funzionalità d'interesse per i consumatori. Questi componenti, principal-

mente sensori, attuatori ed ECU, hanno bisogno di una rete interna al veicolo per con-

dividere le informazioni: CAN è lo standard di fatto nel settore automobilistico. Questo

protocollo è stato progettato molti anni fa e poiché all'epoca le automobili erano dei sis-

temi isolati, la sicurezza non è stata presa in considerazione. Nonostante l'utilizzo di CAN,

i veicoli moderni sono sempre più connessi al mondo esterno grazie alle tecnologie V2X, le

quali aumentano i rischi di sicurezza poiché o�rono nuove super�ci d'attacco. Perciò pro-

teggere la rete CAN è di importanza cruciale, la letteratura propone diversi meccanismi

per rilevare le possibili intrusioni, tra questi ci sono gli IDS. Questa tesi mostra una revi-

sione dettagliata degli studi più recenti riguardo gli IDS per CAN, i loro punti di forza e

le loro debolezze; questa parte viene proposta come un'estensione e un aggiornamento del

lavoro di Al-Jarrah et al. [4], fornendo anche delle comparative con esso. Successivamente

si conduce un'analisi dei sistemi FPGA mirata ai problemi di latenza che colpiscono la

maggior parte delle proposte trovate nella letteratura: infatti con l'impiego di algoritmi

complessi è più di�cile mantenere il ritmo dei messaggi in tempo reale. L'analisi si con-

clude con una stima dell'accelerazione hardware che può essere fornita dalle FPGA a

CANova, un IDS modulare progettato per CAN.

Parole chiave: Sicurezza, Controller Area Network, Intrusion Detection System, Indagine,

Field Programmable Gate Array, Latenza

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1

2 Overview of Controller Area Network 5

2.1 CAN Protocol . 5

2.2 CAN Frames . 6

2.2.1 Frame Types . 6

2.2.2 Frame Format . 7

2.3 CAN Security . 8

2.3.1 Countermeasures against CAN attacks 9

3 Intrusion Detection Systems for CAN 11

3.1 Categories of CAN IDSs . 12

3.1.1 Flow-based IDSs . 14

3.1.2 Payload-based IDSs . 18

3.1.3 Hybrid IDSs . 20

3.2 Features and Feature Selection . 23

3.3 Datasets . 25

3.4 Examined Attack Types . 26

3.5 Evaluation Metrics . 27

3.6 Benchmark Models . 30

4 Research Gaps 31

4.1 Detection Techniques and Placement . 31

4.2 Features and Feature Selection . 36

4.3 Attack Types and Reactive Measures . 36

4.4 Performance Metrics and Benchmark Models 37

5 Field Programmable Gate Array for IDSs 39

5.1 FPGA Overview . 39

5.2 FPGA for CAN IDSs . 41

5.2.1 FPGA Implementation Examples 41

5.2.2 Examples Analysis . 44

5.3 FPGA for CANova . 45

6 Conclusions 49

Bibliography 51

A Appendix A 61

List of Acronyms 65

List of Figures 69

List of Tables 71

1

1| Introduction

The technological progress of the last few decades guided the automotive companies to

manufacture modern vehicles not only with mechanical components but also with elec-

tronic devices. These allow modern vehicles to provide new features that make them safer

(e.g. airbags, emergency brake assist), more comfortable (e.g. cruise control) and even

more entertaining thanks to infotainment systems.

Sensors, actuators, ECUs and communication devices are the electronic components inte-

grated in modern vehicles. In particular the number of ECUs went through a substantial

increase to enable the previously mentioned features on modern cars, the reason is that

each ECU delivers a single speci�c functionality. Intra-vehicle networks allow the informa-

tion exchange among di�erent ECUs, in particular, as depicted in Figure 1.1, the ECUs

are arranged into subnetworks based on their functionalities and these subnetworks can

communicate with each other through the use of several gateways.

Figure 1.1: CAN structure

Because of its cheapness, reliability and real-time capabilities, CAN is the de facto stan-

dard network protocol that ECUs use to communicate with each other. However when

CAN was designed (in 1983), the designer did not observe any security principle, indeed

the idea that the network could be externally accessible was not taken into account. At

that time vehicles were isolated systems, but nowadays vehicles are connected to the

outside world via many communication interfaces (e.g. Bluetooth).

2 1| Introduction

These communication interfaces lead to bigger attack surfaces, which, in addition to

missing security features, translate into signi�cant security threats. CAN vulnerability to

cyber attacks has been widely demonstrated; for example Miller and Valasek describe their

attacks in [51] and [50]. The missing message authentication and broadcast transmission

are the main security issues of the CAN protocol that allow intruders to deliberately send

messages on the CAN bus.

There are two types of security countermeasures that could be applied to manage CAN

vulnerabilities: proactive and reactive ones. The �rst method makes use of systems, such

as encryption, preventing cyber attacks; the latter instead is based on systems recogniz-

ing cyber attacks while they happen. Although these countermeasure methods are not

mutually exclusive, the low computational power available on vehicles makes the proac-

tive systems not a suitable solution. The most considered reactive countermeasure for

vehicular networks is the IDS: a technique able to detect attacks when they occur in

intra-vehicle networks.

The thesis proposes itself as an extension and a renovation of Al-Jarrah et al. [4]. Indeed

this paper examines articles published after Al-Jarrah et al. review, but also focuses on

the detection latency issue and studies the application of IDSs on hardware supports in

order to exploit hardware acceleration advantages (in particular low latency and reduced

power consumption).

The main contributions of the thesis are the following:

� Providing an overview of the CAN protocol, showing its properties and the security

�aws.

� Providing a classi�cation for latest studies of CAN IDSs based upon the type of

used features and the employed detection technique.

� Showing the research advancement comparing our survey outcomes with the ones

of Al-Jarrah et al. [4].

� Providing a comprehensive summary of the analyzed papers discussing intra-vehicle

IDSs (Tables 4.1 to 4.3).

� Discussing current gaps in the intra-vehicle IDS research �eld, with a particular

focus on the detection latency issue.

� Proposing a theoretical solution for the latency issue exploiting hardware supports.

The rest of the thesis is structured as follows: in Chapter 2 we present an overview of

the necessary knowledge to understand this paper. Chapter 3 provides the review of the

1| Introduction 3

researches analyzed and categorizes them into three main classes: �ow-based, payload-

based and others/hybrid. Chapter 4 identi�es current research gaps faced in the reviewed

papers. Then Chapter 5 gives an overview of FPGA platforms, their bene�ts for CAN

IDS research �eld and estimates the performance improvement for the CANova model.

Finally we present our conclusions in Chapter 6.

5

2| Overview of Controller Area

Network

In this chapter we introduce the main concepts necessary to understand the thesis, that

is the design and properties of CAN as well as an overview of CAN frames.

2.1. CAN Protocol

The CAN, also known as CAN-bus, is a serial, message-oriented communication protocol

that allows the connection among di�erent ECUs of the same vehicle. It was designed for

the �rst time in 1983 by ROBERT BOSCH GmbH [72] and later standardized and revised

in the standard ISO 11898-1 (2015). It is a very successful communication protocol, indeed

it became the de facto standard for vehicle networks, but it is also used for other purposes.

The notable features of the CAN protocol are:

� broadcast channel: the CAN-bus uses the broadcast message routing scheme,

i.e. any node can see and access any message sent in the network. In this way the

transmitting node just needs to send the message on the bus, then the other nodes in

the network decide to process it (or not) depending on the CAN Identi�er (CAN-ID)

of the message [20].

� priority-based bus access: each node can access the CAN-bus any time it is idle,

but in case multiple nodes want to communicate at the same time, an arbitration

mechanism based on priorities is employed: the message with higher priority is

transmitted. Message priority depends on its CAN-ID, lower CAN-ID means higher

priority; therefore �0� is the highest priority achievable [20].

� robustness: CAN can be considered a robust protocol, indeed it presents �ve error

checking mechanisms (operating at di�erent levels) which keep the bus running.

Three of them work at message level and two at bit level. Failing any of these

checks means the generation of an error message (see Section 2.2.1). Furthermore,

6 2| Overview of Controller Area Network

in case of repeated errors (i.e. error limit threshold is reached), the failing node is

disconnected from the CAN-bus [32].

� message request: each node can request the transmission of a precise message

from another node by sending a Remote message (see Section 2.2.1), i.e. a message

with a speci�c �ag [20].

It is also worth mentioning that the original version of CAN supports a baud rate higher

than 125Kbit
s

(later versions can even reach 1Mbit
s
), and that bit encoding uses the �0�

dominant and �1� recessive bits; where dominant means voltage put on bus while recessive

means no voltage on bus. Therefore in case of collisions the dominant bit gets through.

Another important feature of CAN is the so called bit stu�ng mechanism. This mecha-

nism inserts a dominant bit after 5 consecutive recessive bits and inserts a recessive bit

after 5 consecutive dominant bits. If 6 consecutive bits are dominant or recessive, the

frame containing this sequence is discarded by other nodes and then these transmit an

error frame (see Section 2.2.1).

Summarizing, the CAN is simple, cheap, centralized, robust and e�cient. These properties

make it a quali�ed candidate to operate in a real-time environment such as intra-vehicle

networks.

2.2. CAN Frames

As we said before, CAN is a message-oriented communication protocol; so in this section

we will go into detail of its messages. We de�ne CAN messages as frames.

2.2.1. Frame Types

There exist four di�erent types of frames that can be transmitted on the CAN-bus:

� Data frame: the most common type of frame on the bus, it carries information for

other ECUs.

� Remote frame: it is used to request data from another ECU, it carries no data.

� Error frame: it is sent by ECUs that detect an error in another frame. It causes

the transmitter of the malformed frame to send it again.

� Overload frame: it is used to signal that an ECU is becoming too busy. It is sent

by the overloaded ECU itself to add some extra delay among the following messages.

Frames can be transmitted on the CAN-bus only after an Inter-Frame Space (IFS), which

2| Overview of Controller Area Network 7

is used by the protocol to avoid collisions. In this thesis we will analyze only Data frames

as they constitute the almost totality of frames transmitted on CAN.

2.2.2. Frame Format

There exist two frame formats: the original one and the extended one. When CAN was

designed the authors thought that 11 bits for identifying the frame were enough, but the

increasing number of ECUs and their features led to an extension of the original structure

with additional bits to identify other functionalities. Next we will present the structure

of original frame format, the reason is that the extended format has just additional bits

for the CAN-ID �eld.

The original structure of frames consists of di�erent �elds, as represented in Figure 2.1.

Figure 2.1: Original (top) and extended (bottom) CAN frame format, extracted from [72].

The following list describes each �eld of the standard structure.

� Start of Frame (SoF): a single dominant bit that signals the start of the frame.

� CAN-ID: 11 bits representing the feature transmitted in the frame. The message

priority depends on this �eld, the lower the value the higher the priority.

� Remote Transmission Request (RTR): a single bit to distinguish between

Remote and Data frames. Dominant bit stands for Data frame, recessive bit means

Remote frame.

� Identi�er Extension Bit (IDE): a single bit to distinguish between standard

and extended CAN frame formats. Dominant bit means standard frame format.

� Reserved: a single reserved bit, should be dominant.

8 2| Overview of Controller Area Network

� Data Length Code (DLC): 4 bits specifying the number of bytes in the Data

�eld, thus Data length goes from 0 to 8 bytes.

� Data: from 0 to 64 bits with 8-bits steps. It contains the information that the

message wants to transmit. Multiple values can be packed inside a single Data �eld,

we de�ne them signals. Signals meaning is kept con�dential by vendors because it

is part of the Security by Obscurity approach that will be analyzed in Section 2.3.

The length inconstancy is handled by the CAN protocol employing the DLC �eld.

� Cyclic Redundancy Check (CRC): 16 bits representing the checksum (number

of bits transmitted) from SoF to Data �eld. It is used by other ECUs to detect

transmission errors. Last bit is a delimiter, should be recessive.

� ACKnowledge (ACK): 2 bits. The �rst bit is set recessive by the sender node,

and then overwritten with a dominant bit by the receiver. The other bit is a delim-

iter, should be recessive.

� End of Frame (EoF): 7 recessive bits that signal the end of the frame.

� IFS: 3 recessive inter-frame bits.

2.3. CAN Security

The CAN was designed for isolated systems, therefore security was not taken into account

during its development. The features it provides, reported in section 2.1, are suitable

for vehicle's real-time requirements, but at the same time they are source of security

vulnerabilities. Attackers can easily access the CAN-bus either physically or remotely:

On-Board Diagnostics (OBD) is a way for a physical attack as long as Wi-Fi or Bluetooth

are means for remote attacks. Indeed modern vehicles are equipped with both those

wireless interfaces and also with OBD, which is a computer-based system that can access

the CAN via a physical connection: it is commonly used to show emissions and perform

some troubleshooting [15].

We detailed below the most important security lacks of the CAN-bus with respect to

security's basic principles: con�dentiality, integrity, availability and non-repudiation.

� missing encryption: CAN cannot adopt message encryption of any type because

it has to keep its simplicity and speed to stick with real-time computing require-

ments. This absence violates the con�dentiality principle, allowing attackers to sni�

messages from the network.

� missing authentication: the CAN protocol also lacks of any authentication sys-

2| Overview of Controller Area Network 9

tem, violating this way the non-repudiation principle; attackers can easily inject

messages in the network impersonating another ECU.

� missing integrity checks: CAN-bus misses data integrity checks. The CRC �eld

of a CAN frame can be tampered without much e�ort because the standard explains

how to compute it. So attackers can manipulate any frame setting the right CRC

value. This vulnerability violates the integrity and availability security principles.

The combination of the vulnerabilities listed above allows hackers to misuse the protocol

performing di�erent types of attack, e.g. a Denial of Service (DoS) attack can be easily

achieved injecting messages with high priority at high frequency.

The vendors voluntarily hide the Communication Database for CAN (DBC) �le trying in

this way to make attacks more complicated for hackers. Anyway the Security by Obscurity

method has been rejected by security experts many years ago in place of Security by

Design, in fact the �rst approach alone is not enough for avoiding attacks.

2.3.1. Countermeasures against CAN attacks

In front of the CAN security threats described above, it is necessary to apply a defending

strategy to protect intra-vehicle networks from external attacks. There exist two main

countermeasure classes: the proactive and the reactive one. Their lifecycles are exposed

in Figure 2.2.

Figure 2.2: Reactive and proactive countermeasure lifecycles, extracted from [15].

The aim of proactive countermeasures is to avoid that an attack occurs, while the goal

of reactive countermeasures is to perform some actions when an attack is detected. The

designer of a proactive countermeasure �rstly models a hypothetical adversary and simu-

lates an attack, then �nds the best solution to avoid the attack itself. Instead the designer

of a reactive countermeasure �rstly detects an attack and then �nds a method to make it

10 2| Overview of Controller Area Network

harmless.

In literature, the most used countermeasure type for CAN-bus security is the reactive

one, because it is easier to implement and usually requires less computational power with

respect to the proactive alternative. In addition proactive countermeasures change the

system design, at the opposite of reactive ones which can be added without modifying

the network. Among the di�erent existing reactive countermeasures, the IDS is the most

common solution; this is the reason why part of this thesis focuses on a survey of IDSs

for securing CAN.

11

3| Intrusion Detection Systems

for CAN

IDSs are usually classi�ed with respect to the employed detection technique into knowl-

edge-based or anomaly-based IDSs.

The formers use some kind of knowledge to understand if an intrusion is happening, e.g.

a database with patterns of already known attacks, also called signatures. Thus a pattern

matching process, for each inspected sample, over the whole database is required to detect

intrusions. These operations do not scale well: having a large database implies high

resource requirements in terms of Central Processing Unit (CPU), memory and also power

consumption. Another signi�cant issue for knowledge-based IDSs is the limited detection

ability of novel attacks (especially zero-day attacks), because they are not included in the

knowledge possessed by the system. Database updates should be performed frequently to

mitigate this problem. On the other hand, knowledge-based IDSs are characterized by a

low False Positive Rate (FPR) as they are triggered only by already known attacks [4].

At the opposite there are anomaly-based IDSs: they compare the inspected tra�c with

the normal behavior of the system to identify intrusions, which are remarkable irregular-

ities. In order to identify the normal behavior of the system, it is necessary to have a

su�cient amount of attack-free data, which is not always available. Moreover they are

characterized by a relatively high FPR, as benign outliers can trigger them. On the other

hand, anomaly-based IDSs are able to detect novel attacks and do not need a storage for

attack signatures, which means that they require less memory than the knowledge-based

alternative [4].

Most of the IDSs reviewed in our survey belongs to the anomaly-based category, the main

reason is that securing CAN is a problem requiring the identi�cation of many and (too)

complex patterns necessary to the pattern matching process, incurring in the resource

limits issue previously mentioned. In addition, we are dealing with an evolving problem:

during the lifetime of a vehicle (about 10 years), novel attacks are likely to be disclosed.

12 3| Intrusion Detection Systems for CAN

3.1. Categories of CAN IDSs

In the current section we will review the analyzed IDSs following the classi�cation princi-

ples used by Al-Jarrah et al. [4], thus we will categorize IDSs with respect to two of their

characteristics, as follows:

1. features type: the main classi�cation is performed depending on the type of fea-

tures employed by the authors of the detection device. We identi�ed three main

classes:

� Flow-based : belong to this category those IDSs that use features not related

to the contents of CAN messages.

� Payload-based : belong to this category those IDSs that use features derived

from the contents of CAN messages.

� Hybrid : belong to this category those IDSs that use both features derived from

the contents of CAN messages and those not related to it.

2. detection technique: the subclassi�cation is performed depending on the cate-

gory to which the implemented detection technique belongs. We recognized these

categories:

� Rule-based : the detection technique compares CAN tra�c with prede�ned

rules. If messages match (or break, depending on the design) a rule, the IDS

reports an intrusion.

� Time and Frequency Analysis (T&FA) -based : the detection technique per-

forms time and/or frequency based analysis on CAN tra�c to recognize intru-

sions.

� Computational Intelligence and Information Theory (CI&IT) -based : the de-

tection technique belongs to the Computational Intelligence or Information

Theory research �elds (e.g. Machine Learning (ML)).

� Hybrid : the detection technique belongs to more than one of the previous

categories.

� Others : the detection technique does not belong to any of the previous cate-

gories.

The classi�cation model is also represented in Figure 3.1.

3| Intrusion Detection Systems for CAN 13

Figure 3.1: Categories of CAN IDSs.

Being an extension of Al-Jarrah et al. [4], this survey reports papers published after its

publication date: in particular this thesis covers papers published between the beginning

of 2019 and the end of 2021. Unlike the original survey, we will emphasize the detection

latencies obtained in each reviewed paper, indeed we believe that latency is one of the

most important metrics to take into account when designing a device for an environment

with such strict timing requirements like intra-vehicle networks.

Another metric that we will use in the reviews is the F1-score, also known as F-score.

The formula of F1-score comes from precision and recall:

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F1 − score = 2× Precision×Recall

Precision+Recall
.

(3.1)

(3.2)

(3.3)

We prefer to use this metric to brie�y describe the model's performances rather than

accuracy because accuracy does not take into account class imbalances in the dataset.

Indeed most of the datasets used in literature present much less attack messages than

normal messages, as it should also be in a real-world scenario. However, as mentioned in

Section 3.5, the evaluation of a model should not entirely rely on this only metric. The

Matthews Correlation Coe�cient (MCC) would probably be a better way to compare

the proposed models, but only 1 paper among the reviewed ones makes use of it; while

F1-score can be found in almost every document.

Despite our e�ort, this survey may not cover the entire research of CAN IDSs.

14 3| Intrusion Detection Systems for CAN

3.1.1. Flow-based IDSs

In our survey we found many Flow-based IDSs. Most of them employ detection techniques

from T&FA and CI&IT categories, but we found also a Rule-based sample, a hybrid

sample and a couple of models not belonging to any of the former categories.

Rule-based IDSs

Blevins et al. [12] implemented a Binning method that considers the number of messages

transmitted within a certain time window. A message is considered malicious when the

last 6 frames arrive in less than αiµ seconds, where αi = (2 + i)/2 for i = 1, ..., 18 is

the detection threshold and µ denotes the average inter-message time for each CAN-ID.

Experimental evaluation shows that the proposed model performs at its best, referring

to precision and recall metrics, with α = 3.5. The detection latency of this technique

ranges between 2 and 5 µ depending on the threshold (the minimum latency is obtained

for α ≥ 5). This means that many other messages get transmitted meanwhile, which

suggests that this IDS cannot be employed in real-world scenarios.

T&FA-based IDSs

Young et al. [86] developed an IDS that analyzes CANmessage frequencies. Frequency was

chosen in place of time-interval because the authors observed a more consistent behavior

for frequency, in particular during the switch of vehicle's mode of operation. An intrusion

alert is raised if the current frequency exceeds by 2 times the normal frequency, this

threshold was obtained from their message injection attack simulation which required a

frequency at least 2 times higher than the normal to succeed. It is worth noticing that

the simulation was carried out via an OBD port. Experimental evaluation proved the

proposed model as a quali�ed IDS. However there exist many types of CAN attacks, but

the authors evaluated the model only against injection. There is no information about

detection latency.

Olufowobi et al. [62] implemented a system building a timing model of CAN messages for

each vehicle, indeed, as they state, even vehicles from same brand and model have di�erent

timing characteristics. Frames can be labeled as delayed and dropped respectively if they

do not arrive by the maximum computed timestamp or if they do not arrive within the

minimum timestamp of the next frame. Nevertheless this method can be only applied to

those messages that show periodic behavior. The detection latency of this method ranges

between 0 and 10 ms, but the authors do not describe the platform used for evaluation.

3| Intrusion Detection Systems for CAN 15

The IDS developed by Han et al. [27] is based on periodic event-triggered intervals of

CAN messages. Ground truth of event-triggered intervals is measured for each CAN-ID:

a message is considered abnormal if its event-triggered interval does not fall within the

ground truth thresholds. The proposed model is also able to identify the type of attack

when detected, this is accomplished computing di�erent statistics and giving them in

input to a ML model. The evaluation was performed on a platform powered by Intel Core

i7-7500U with 16GB of RAM. The detection latency di�ers with respect to the size of

time window used, it can range between 1 ms to 15 ms. We remind that using windows

(except for backward sliding windows) is not the optimal solution as the IDS needs to

wait for next frames before evaluating the �rst one.

Bozdal et al. [14] proposed a model based on wavelet coe�cients of CAN frames. The

frequency pro�le is obtained with the Continuous Wavelet Transform (CWT), a tool

for the precise localization of frequency components on the time axis. Thresholds are

computed by the anomaly decision module and compared with CAN tra�c, values higher

than the threshold are denoted as anomalies. The evaluation, performed with windows of

128 frames, highlights the strong potential of the IDS and registered a detection latency

between 3-6 ms depending on attack types. However the authors do not specify the used

platform.

CI&IT-based IDSs

Ning et al. [60] built an IDS based on voltage waveform of frames transmitted on CAN-

bus. They divide each waveform into three parts: rising edge, falling edge and stationary

segment, where the rising and falling edges contain most of the feature information. The

used detection method is Local Outlier Factor (LOF), which is a distance-based anomaly

detection technique: points (i.e. frames) with signi�cant lower local density are considered

outliers (i.e. malicious). The data was gathered from real vehicles as it is not reliable to

simulate voltage waveforms: the authors used the OBD interface to access the CAN, an

oscilloscope to save voltage data, CANalyst II to send physical attacks and CANWIFI II

to send remote wireless attacks. No information about detection latency is provided.

The detection method developed by Song et al. [69] is based on Convolutional Neural

Networks (CNNs). The proposed ML technique is fed with a squared matrix of 29 ∗ 29 ∗ 1
dimensionality that contains the CAN-IDs of the last 29 frames. Indeed the model is

applied on a CAN-bus that uses frame's extended format, where CAN-IDs are made up

of 11 standard bits plus 18 additional bits (Section 2.2.2). The modeled CNN was called

Reduced Inception-ResNet, indeed it has been designed simplifying the original Inception-

ResNet which is fed with 299∗299∗3 image data. The evaluation shows a detection latency

16 3| Intrusion Detection Systems for CAN

of 5 ms per sample (29 frames) on a platform powered by 2 ∗ 2.30GHz Intel Xeon with

Nvidia Tesla K80. The model can test about 5800 frames per second (= 29frames∗ 1
0.005s

),

so it should accomplish real-world timing requirements.

Yu et al. [88] implemented a multiple Rényi entropy-based IDS. The authors provide anal-

ysis of entropies (Rényi included) with respect to changing attack rates, indeed only DoS

and Fuzzy attacks are analyzed. Moreover they provide an algorithm for the estimation

of Rényi entropies with orders 2, 3 and 4; signi�cant changes in entropies are reported as

attacks. No information about detection latency is provided.

Song and Kim [67] proposed a self-supervised anomaly detection model using noised

pseudo normal data. The model is divided in two modules: a generator module based on

Long Short-Term Memory (LSTM) that mimics real CAN tra�c and is used as abnormal

data for training and detection; an anomaly detection module, they used the CNN-based

model previously reviewed [69]. The evaluation shows strong performances with respect to

the other compared benchmark models. Although authors do not provide any information

about detection latency, we can con�dently suppose it is the same stated in [69].

Nam et al. [55] developed an IDS using a bi-directional Generative Pretrained Transformer

(GPT) network. The detection method works as follows: to detect whether a given

CAN-ID sequence shows evidence of attack behavior, it is provided as input to the bi-

directional GPT network to evaluate its Negative Log-Likelihood (NLL). If the value of

NLL is greater than a prespeci�ed threshold, then an attack is identi�ed. The model

proves to be very e�ective in the evaluation process with an F-score above 95.2% in the

Worst Case Scenario (WCS) (against spoo�ng attack). Unfortunately authors did not

include detection latency among the multiple evaluation metrics.

Mehta and Meyer [49] proposed three tree-based learning algorithms, they refer to them as

Decision Tree Ensemble-based Intrusion Detection System (DT-DS). The used algorithms

were Adaboost, gradient boosting and random forest ; each was tested with and without

message pro�le in input. Indeed, as the dataset used is simulated, the authors have the

message pro�le feature that reports which communication pro�le is sending the data.

CAN attacks were performed with Gaslighter, a predictive attacker that predicts the

arrival time and sequence number of the next message and injects a forged message,

misleading the system to reject the genuine message and accepting the malicious one.

It is worth noting that this IDS is developed and tested on aircraft's CAN tra�c which

is called CANaerospace: it is a simpli�cation of standard CAN. No information about

detection latency is provided by the authors.

3| Intrusion Detection Systems for CAN 17

Hybrid IDSs

Sunny et al. [71] designed a hybrid model based on the recurring patterns and time

intervals of individual CAN-IDs. The key features of this design are: compatibility across

di�erent vehicles, faster response time and localized anomaly detection. The model is

implemented through the use of a sliding window with di�erent sizes (from 1 to 4 frames);

during the so called training, unique CAN-ID sequences are stored in a tree data structure

and time interval are stored too. During detection the CAN-ID sequences are compared

with stored ones, if the pattern does not match any then it is �agged as anomaly; if the

sequence is known then a check of the time interval is performed, if the check fails then

it is �agged as anomaly. We classify this IDS as hybrid because its detection technique

is a mixture of rules and T&FA. However the evaluation process proves the model not

much e�ective: FPR increases too much in window size of 4, with small window sizes

it produces much less false positives but the True Positive Rate (TPR) decreases too.

The con�guration with window size of 2, which is the only one suitable, has the best

detection latency so far, with an average of about 0.05 ms
window

and 0.21 ms
window

in WCS.

Furthermore, to emphasize these results, the evaluation was performed on a low-end

device as a Raspberry Pi 3. Finally the use of a sliding window makes it able to operate

in a real-world scenario.

Others IDSs

Islam et al. [33] proposed a statistical analysis -based IDS. The method consists of

several steps: �rst of all CAN frames are transformed into a graph structure; then graph-

based features are extracted to import for anomaly characterization; after that a hypoth-

esis based on the safe population window is built; �nally the test population window is

compared to the base population. Speci�cally, values used in this last comparisons are

chi-square values. Population window is de�ned as a set of windows and each window

has a size of 200 messages. The model evaluation, carried out on a platform powered by

8∗3.8GHz Intel Xeon with 32GB of RAM, shows a detection latency of about 258.9 µs
window

;

even if this latency is extremely low, the IDS has to wait for many frames before building

the window and start the detection.

Aliyu et al. [5] proposed a Blockchain-based Federated Forest IDS (BFF-IDS) to address

the problem of sensitive CAN data sharing. The method makes use of Federated Learning

(FL) to create a random forest model starting from partially trained models provided by

individuals, keeping in this way underlying data con�dential. This IDS employs techniques

coming from both T&FA (Fourier transformation is applied to CAN-ID cycles to translate

18 3| Intrusion Detection Systems for CAN

them into the frequency domain) and CI&IT (the detection technique is a random forest),

but we choose to classify it in Others rather than Hybrid because of its peculiar blockchain

mechanism and distributed machine learning method. The evaluation was performed

using di�erent number of miners (i.e. partially trained models) ranging from 5 to 20: the

best performance was obtained with the minimum number of miners, an F-score of about

0.97; the authors explain this result with the less training data available to more miners.

Indeed the dataset used was always the same, so more subsets means smaller subsets. The

paper provides detailed information about the platform used for the evaluation process,

but no data related to detection latencies.

3.1.2. Payload-based IDSs

Here we give a brief review of Payload-based IDSs we have found. Unlike Al-Jarrah et al.

[4] we found only Payload-based IDSs employing detection techniques belonging to the

CI&IT category.

CI&IT-based IDSs

Zhang et al. [89] designed an anomaly-based IDS that uses Gradient Descent with Mo-

mentum (GDM) and Gradient Descent with Momentum and Adaptive Gain (GDM/AG)

to improve e�ciency and accuracy. The neural network is fed with vehicle CAN frames,

in particular the features used are speed, rpm, throttle pedal position and others. Indeed

this paper starts from the (weak) assumption of knowing what each CAN-ID stands for;

this assumption is almost never satis�ed in a real-world scenario because of the con�den-

tiality of the DBC �le. The detection latency of this IDS ranges between 2 and 4 ms on

a platform powered by a 1.80GHz Intel Core i5 with 8GB of RAM.

The IDS built by Hossain et al. [30] is based on LSTMs. The proposed model is able to

label CAN frames as benign, DoS, Fuzzing and Spoo�ng starting from their CAN-ID, DLC

and the 8 bytes of the data �eld. The ML algorithm uses batch sizes of at least 256 frames,

this means that the IDS has to wait for too many frames before executing the detection.

The evaluation process highlights the e�ectiveness of the model and the authors provide

much information about the platform used to build their model. Unfortunately they did

not provide detection latency metrics as well.

Minawi et al. [52] propose a modular IDS based on multiple ML algorithms. The model

consists of 3 layers: CAN Message Input Layer, Threat Detection Layer and Alert Layer.

The Threat Detection Layer is constituted by multiple Attack Speci�c Modules, the au-

thors propose four modules to detect gear spoo�ng, rpm spoo�ng, DoS and fuzzy attacks.

3| Intrusion Detection Systems for CAN 19

The chosen ML algorithms are Random Tree (RT), Random Forest (RF), Stochastic Gra-

dient Descent (SGD) and Naive Bayes (NB), and the chosen inputs of these algorithms

are CAN-ID and data �eld of CAN frames converted from hexadecimal to decimal values.

The IDS was evaluated on a machine with 6 ∗ 2.6GHz Intel Core i7 and 16GB of RAM.

It resulted in a detection latency between 2 µs
frame

and 2 ms
frame

.

Yang et al. [85] designed a multitiered IDS to detect known and unknown attacks on

intra-vehicle networks. This ability is given by the presence of a signature-based IDS

and an anomaly-based IDS. The paper describe accurately their implementation steps

motivating their decisions. The features used were CAN-ID and just 3 out of 8 bytes

from the data �eld of CAN frames: data[5], data[3] and data[1]. The model evaluation

proves its strength: it reaches a F-score close to 1 for known attacks, while the average

over unknown attacks is above 0.80. The authors provide also average detection latency

information, which is approximately 0.5 ms
frame

on a low end device as a Raspberry Pi 3.

The IDS proposed by Pascale et al. [64] is a model based on Bayesian Networks able

to understand if messages traveling on the CAN-bus are malicious or not. The model is

trained from simulated data, which is (in general) not a good practice, especially nowadays

that some real CAN datasets are published online. As the used dataset is simulated, the

authors assume to know the meaning of each CAN-ID like in [89]; therefore steering,

speedometer, gear, brake and many other basic data are known and used as inputs of the

model. Furthermore they feed their model with other derived data (like acceleration)

computed from the basic ones. It is worth noticing that the IDS is deployed on an

embedded device like the PYNQ-Z1 board, but no information about detection latency

is given.

Mehedi et al. [48] developed an IDS based on a deep transfer learning model named

LeCun Network. It is able to transfer the knowledge contained in the source domain

data to the target domain and combine the target domain data to build an e�cient IDS

to improve the detection accuracy for any vehicle. The model is fed with the following

features: CAN-ID, DLC and the data �eld of CAN messages. We have no information

about detection latencies of this method.

Kang and Shen [35] developed an IDS based on a LSTM network able to detect both

known and unknown abnormal messages. The model is fed with CAN-ID and the data �eld

of CAN messages; fabricated frames are produced by a Generative Adversarial Network

(GAN) to train the LSTM network. Unlike [48] this model has a network transfer learning

module which is able to transfer a pretrained neural network from a vehicle to others.

The authors describe the platform on which the evaluation was executed, but there is no

20 3| Intrusion Detection Systems for CAN

data about detection latencies.

Freitas De Araujo-Filho et al. [21] propose an Intrusion Prevention System (IPS) using

the Isolation Forest (IF) algorithm. An IPS is a tool that monitors a network (like an IDS)

and prevents malicious activity performing some actions. The authors base their design

on the peculiar assumption that malicious frames must be detected and discarded before

their transmission is completed. The chosen mechanism to discard a malicious frame was

bit stu�ng (see Section 2.1), so malicious frames must be detected before their last 6 bits

are transmitted. Therefore waiting for more bits to perform the detection implies less

time for detecting. This means that on a standard CAN which has a speed of 500Kbit
s
, a

bit is transmitted every 2µs; for example, according to the authors, an IPS waiting until

the �fth byte of the data �eld has only 86µs to detect a cyber-attack. The evaluation

process proves that this model is one of the best solutions found, with an F-score above

0.97 and a detection latency shorter than 79 µs
frame

for the IF using just the �rst 5 bytes

of the data �eld. Thus the model seems to be suitable for real-world application.

The IDS designed by Nazakat and Khurshid [58] can use either a MultiLayer Perceptron

(MLP) or a Decision Tree (DT) as detection algorithm. These algorithms take in input

the CAN-ID and the data �eld of CAN frames converted into decimal representation. The

model evaluation carried out by the authors reached an accuracy of 100% for both the

implementations; however such an impressive result may be biased by the test dataset

which was completely written by the authors with MATLAB's Vehicle Network Toolbox

and a DBC �le. Finally the paper does not provide any information about detection

latencies.

3.1.3. Hybrid IDSs

Now we talk about the Hybrid IDSs we reviewed in our survey. Most of the models found

for this category of IDSs use CI&IT-based detection techniques, but we also found an

instance making use of multiple techniques.

CI&IT-based IDSs

Khan et al. [38] developed an IDS based on a neural network composed by LSTM cells

followed by a fully connected layer. The used datasets are coupled with a respective DBC

�le, so the proposed model knows the contained features. The authors used the Pearson

Correlation Coe�cient (PCC) to select a subset of features to feed the neural network. It

is not clear the resulting subset, but some of these features are time-dependent. There is

no data about detection latencies, however the results of the evaluation process are quite

3| Intrusion Detection Systems for CAN 21

poor: the accuracy metric is always much lower than 90%.

Barletta et al. [8] proposed a model based on an unsupervised Kohonen Self-Organizing

Map (SOM) network integrated with the K-means algorithm. The SOM technique is a

nonlinear mapping network that aims at computing similarities among input data vectors.

The used input vector contains the following values obtained from CAN frames: CAN-ID,

DLC, data �eld and time interval. The proposed IDS reached an F-score of 1 for some

attack types (DoS and Spoo�ng), but the metric goes down to about 0.93 on a dataset

with mixed attacks. The authors do not specify any information about detection latencies.

The anomaly-based IDS presented by Park and Choi [63] employs a Multi-Labeled Hierar-

chical Classi�cation (MLHC) technique. The design of this type of technique is depicted

in Figure 3.2 alongside two similar approaches: the Single Layer Multi-class Classi�ca-

tion (SLMC) and the Two Layers Multi-class Detection (TLMD). This structure makes it

able to even classify the detected attack just like [27]. The MLHC takes in input the time

interval, the CAN-ID, the DLC and the data �eld of CAN messages; in particular the data

�eld is converted into a string of bytes as lengthy as stated by DLC value. The evaluation

of the model shows its strengths: using the RF algorithm the IDS reaches a F-score higher

than 0.999 and the average detection time is about 23 µs
frame

. Furthermore the evaluation

compares the MLHC technique against SLMC and TLMD: in both the comparisons the

model using MLHC has better metrics, especially detection latency. Unfortunately the

authors do not describe the platform used for evaluating.

Figure 3.2: Classi�cation methods comparison: (a) SLMC model; (b) TLMD model;

(c) MLHC model [63].

Javed et al. [34] developed an approach called CANintelliIDS, a combination of CNN

and Attention-based Gated Recurrent neural network (AGRU). The features sent in

input to CANintelliIDS are: time interval, CAN-ID, DLC and the eight byte of the data

�eld of CAN messages. However the performances of the model are not impressive: the F-

22 3| Intrusion Detection Systems for CAN

score metric is always below 0.94 in both single-attack scenario and mixed-attack scenario.

Finally the authors provide the speci�cations of the platform that executed the evaluation

process, but no data about detection latencies is given.

He et al. [28] proposed an IDS based on a DT algorithm. In this model the detection

algorithm is fed with the following features: time interval and Manhattan distance of

the data �eld, both computed for respective CAN-IDs. The evaluation was performed

on di�erent datasets, each containing an attack type. The F-score in injection dataset

is 1 and slightly lower (0.99) in camou�age dataset, but the value decreases to 0.90

in suspension dataset and 0.95 in tampering dataset. No information about detection

latencies is provided.

The IDS developed by Narasimhan et al. [56] is based on a Gaussian Mixture Model

(GMM). In order to learn the optimal features from CAN frames the authors employed

the Improved Deep Embedded Clustering (IDEC) approach, which clusters them using

an autoencoder and K-means respectively. The GMM helps to cluster frames data into

normal and attack. The evaluation results show that this model is not very e�ective. The

F-score was computed on di�erent datasets: its maximum (0.80) is reached in the same

dataset partially used for training; while in other datasets the value is always below 0.67.

Such performances are not suitable for real-world scenarios. Finally detection latencies

are not speci�ed.

Balaji and Ghaderi [7] designed NeuroCAN, an IDS based on linear embeddings and

LSTM units. In order to handle the di�erent characteristics of CAN messages, the authors

trained a separate network for each CAN-ID; in particular only the linear embedding

layer is separated into di�erent networks, indeed the LSTM layer is single and shared as

represented in Figure 3.3. The model is fed with the data �eld of a CAN frame alongside

the data �eld of others within the subsequent time step. The evaluation was performed

on two datasets containing di�erent spoo�ng attacks: the registered F-score goes from

0.95 to 1 between the two datasets. The authors do not provide any information about

detection latencies.

3| Intrusion Detection Systems for CAN 23

Figure 3.3: NeuroCAN network structure [7].

Hybrid IDSs

Nichelini and Pozzoli [59] proposed CANova, a classi�cation-based modular IDS for CAN.

The authors a�rm that messages with di�erent CAN-IDs have distinct characteristics,

thus a single IDS for all of them will never have satisfying performances. Their modular

structure allows to route each message through a sequence of IDS modules according to

the CAN frame characteristics (inherited from the CAN-ID). The modules proposed by

the authors are the following but others can be easily added: a �ow-based, a rule-based,

an Hamming distance -based, a Vector AutoRegression (VAR)-based and a Recurrent

Neural Network (RNN) autoencoder-based module. The model is fed with CAN-IDs,

time intervals and the data �eld of the CAN frame. The evaluation process was carried

out using a real dataset modi�ed with di�erent types of attack, e.g. DoS, fuzzy, replay

and others: the F-score reported by the authors varies depending on the attack type and

goes from 0.6036 to 0.9684. About latency, the average Testing Time per Packet (TTP)

ranges between 0.2113 to 0.2688ms on a high-end machine powered by a 3.70GHz Intel

Core i7-8700K, 32GB of RAM and a NVIDIA GeForce GTX 1080 Graphics Processing

Unit (GPU).

3.2. Features and Feature Selection

One of the most important characteristics to build successful IDSs is the selection of

proper features that will be used by the detection algorithm. We classify these features

into two main categories:

� physical features: belong to this type those features describing the physical state

of the system (e.g. speed, steering angle) [4].

24 3| Intrusion Detection Systems for CAN

� cyber features: belong to this type those features describing the communication

and data aspects of the system (e.g. message sequences, time intervals) [4].

Analyzing the reviewed papers we found out that most of them (28 out of 31) feed their

IDS with cyber features. Only two of them used physical features ([89] and [64]) an just

one makes use of both types of features ([38]). A summary of these results is represented

in Figure 3.4.

Figure 3.4: Distribution of

feature sets.

Figure 3.5: Comparison of dataset distribution with [4].

The feature selection process is a decisive step because it can reduce computational costs

and improve the detection ability of the IDS. One may think that providing more fea-

tures to an IDS implies a more e�ective detection, but in practice this is not the case.

Having features not relevant to the target variable or redundant features often in�uences

negatively the detection power of the system, and surely slows down the training and the

detection processes; thus it is crucial to select the right subset of features.

It follows the common classi�cation of the feature selection methods:

� supervised: these methods use the target variable to discover features not related

to it and excluding them.

� unsupervised: these methods ignore the target variable and compare the input

features with each other in order to �nd and remove the correlated ones.

Features selection techniques can be further distinguished into:

� �lter methods: these techniques select features without knowing the detection

algorithm. Features are selected on the basis of their scores in correlation with

the target value and the features scoring less than a certain threshold are removed.

3| Intrusion Detection Systems for CAN 25

These methods clearly belong to the supervised class.

� wrapper methods: these techniques select features optimizing the learning al-

gorithm. They test many models with di�erent subsets of features and select the

best performing one. On the other hand �nding an optimal feature subset becomes

infeasible when the number of features grows too much, therefore search algorithms

are used. Most of these methods are supervised as well.

� intrinsic methods: such techniques are the ones included in the learning algo-

rithms, i.e. the model is able to automatically pick the best feature subset. An

example of such algorithm is DT.

� manual: �nally feature selection can also be carried out manually. Indeed when the

designers have enough knowledge to understand the problem they are facing, they

can choose the most useful features by themselves. Nevertheless it is often di�cult

to understand deeply the dependency among features, especially when dealing with

high-dimensional datasets [4].

Among all the analyzed papers, we found that 25 out of 31 select features manually while

6 use some other methods. In [60] and [38] the PCC method was used; Information Gain

(IG) followed by Fast Correlation-Based Filter (FCBF) and Kernel Principal Component

Analysis (KPCA) was implemented in [85]; in [63] the authors employed Improved Feature

Selection (IFS); CNN was used as feature selection method in [34] and �nally in [56] the

IDEC method was used.

3.3. Datasets

The evaluation process performed in the reviewed papers is a very important step to un-

derstand the capabilities of the proposed IDS. The goal of every designer is to build a

solution that can be used in a real-world scenario, thus it is of critical importance the en-

vironment used for the evaluation. One of the most important environment characteristic

to take into account is the used data: evaluating a model on data that may not represent

appropriately a real-world scenario means a not valuable evaluation. For this reason we

categorize the datasets used into:

� real data: data recorded from real vehicles, usually extracted connecting a record-

ing device to the CAN via the OBD interface.

� simulated data: data generated by simulation applications.

� mixed data: data is a mix of real data and simulated data.

26 3| Intrusion Detection Systems for CAN

Obviously the best option is using real datasets because they provide perfect examples of

real-world scenarios, while simulated data can exhibit inexistent features or lack existing

ones.

As illustrated in Figure 3.5, most of the reviewed papers used real datasets (28 out of 31),

while 2 used simulated data ([49] and [64]) and only one employed mixed datasets [28].

Comparing these results with those obtained by Al-Jarrah et al. [4] we can observe a

positive trend toward the use of real datasets. This improvement is most likely due to the

sharing of data extracted from test vehicles during the last couple of years. We can also

notice that most recent works always describe the used dataset, we think that the reason

is a deeper knowledge of the problem achieved through time.

3.4. Examined Attack Types

Modern vehicles are vulnerable to di�erent types of cyber attacks with di�erent security

levels, from eavesdropping to road users safety threats. Cyber attacks are commonly

categorized into active and passive. Passive attacks usually just break the data con�den-

tiality of the system (e.g. accessing private CAN frames); while active attacks can cause

malfunctions or unintended actions (by inserting, modifying or deleting CAN frames).

To classify the cyber attacks examined in the reviewed papers and to compare our results

with [4], we follow their classi�cation method distinguishing the following categories:

� DoS attack: the goal of this type of attacks, as the acronym says, is to deny the

normal functionality of the CAN-bus sending more messages (not necessarily valid)

than the target system handling capabilities. CAN is vulnerable to this type of

attacks because of its trivial priority-based arbitration mechanism (see Section 2.1):

bursting messages with low CAN-IDs in the network (i.e. �ooding) is su�cient to

achieve a DoS attack. As a consequence, this attack can be launched even by an

inexpert attacker as it requires a very limited knowledge of the protocol. The bus-o�

attack [17] is another instance of DoS attack.

� Message Injection (MI) and Replay attack: both these types of attacks consist

of sending valid frames over the CAN, in particular the replay attack sends old,

recorded messages over the network. Fuzzy is an injection attack where messages are

randomly generated in order to make the system having strange and unpredictable

behavior. These attacks are possible because CAN frames are not authenticated,

therefore any node connected to the network can send any data.

3| Intrusion Detection Systems for CAN 27

� Message Manipulation: this attack breaks the integrity of transmitted messages

by modifying or deleting them. Attackers can perform this attack because CAN is

a broadcast channel, so any node can access and manipulate any message.

� Masquerade attack: this attack is also known as impersonation attacks, indeed

a malicious node can impersonate another ECU. This is possible because there is

no way to verify the sender of a message in the CAN. The authors of the reviewed

papers refer to this kind of attack also with spoo�ng attack.

� Malware attacks: this type of attacks makes use of malwares a�ecting some ECUs

in order to send malicious messages on the network.

We depicted in Figure 3.6 the distribution of attacks examined in the reviewed papers:

as we can notice the most considered attack type is the injection one (37 out of 88),

similarly to what happens in [4]; then we �nd DoS attacks close to masquerade ones; 5

manipulation attack examples (in [71], [14], [59] and [28]) and just one malware attack [38].

It can be observed that, di�erently from [4], we could classify each examined attack within

the previous categories. The total number of attacks is much higher than the number of

reviewed papers, this is due to the fact that each reasearch usually considered more the

one attack type.

Figure 3.6: Distribution of attack types considered in the reviewed papers and comparison

with results of [4].

3.5. Evaluation Metrics

Reading the papers of our survey we found many evaluation metrics, useful to understand

the strengths of the proposed models. Here we discuss the performance metrics used for

IDSs.

� Confusion Matrix: it is a table representing the performance of a classi�er. For

our purpose the classi�ers were binary, thus the confusion matrix has 4 di�erent

28 3| Intrusion Detection Systems for CAN

values. True Positive (TP) is the number of correctly identi�ed intrusions; True

Negative (TN) is the number of correctly identi�ed normal messages; False Positive

(FP) is the number of incorrectly indenti�ed normal messages as intrusions while

False Negative (FN) is the number of incorrectly indenti�ed intrusions as normal

messages. A good classi�er will have high TP and TN, and low FP and FN.

� Accuracy: it is a metric representing a classi�er's ability to correctly identify

normal messages and intrusions. Its formula is:

Acc =
TP+ TN

TP+ TN+ FP+ FN
. (3.4)

This metric is not appropriate when dealing with imbalanced/skewed datasets.

� Error Rate: it is a metric representing a classi�er's misclassi�cation rate. Its

formula is:

ErrorRate =
FP+ FN

TP+ TN+ FP+ FN
. (3.5)

� True Negative Rate (TNR): it is a metric representing the probability of a

normal message to be identi�ed as such. Its formula is:

TNR =
TN

TN+ FP
. (3.6)

� FPR: this metric represents the probability of a normal message to be classi�ed as

an intrusion. Its formula is:

FPR =
FP

TN+ FP
. (3.7)

� False Negative Rate (FNR): also known as Miss Rate, this metric represents

the probability of an intrusion to be classi�ed as a normal message. Its formula is:

FNR =
FN

TP+ FN
. (3.8)

� Recall: also known as TPR or Detection Rate (DR), it represents the probability of

an intrusion to be identi�ed as such. A recall of 1 means that the classi�er correctly

detects all intrusions, while a recall of 0 means that no intrusion is identi�ed. Its

formula has been de�ned in Equation (3.2).

� Precision: this metric represents the probability of a message identi�ed as intrusion

to actually be an intrusion. Its formula has been de�ned in Equation (3.1).

3| Intrusion Detection Systems for CAN 29

� F1-score: it is the harmonic mean of the precision and recall of the classi�er. Its

value ranges between 0 and 1, where higher is better. Its formula is:

F1 − score =
2 ∗ TP

2 ∗ TP+ FP+ FN
. (3.9)

Equation (3.3) and Equation (3.9) are equivalent. This metric is commonly used as a

single metric to evaluate the e�ectiveness of a classi�er, we used it too in Section 3.1;

however it ignores the TN metric which can vary without a�ecting F1-score. We

still used this metric in Section 3.1 to brie�y compare the proposed model because

authors report it very frequently.

� Receiver Operating Characteristic (ROC) and Area Under Curve (AUC):

ROC curve is a visualization of a classi�er's performances. It can be drawn plotting

FPR against Recall, a perfect classi�er will score in the top left corner of a ROC

curve while a random classi�er will score along the diagonal line of a ROC curve.

The AUC quanti�es the performance of a classi�er. It is the area under the ROC

curve, thus it is equal to 1 for a perfect classi�er, while it is equal to 0.5 for a random

classi�er.

� MCC: this metric considers every value expressed in the confusion matrix: TP,

TN, FP, FN; it is usually seen as an index wrapping them up into a single metric.

Its formula is:

MCC =
TP ∗ TN− FP ∗ FN√

(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
. (3.10)

Its value ranges between -1, meaning a bad classi�er, and +1, which stands for good

classi�er. As F1-score it is not in�uenced by dataset imbalances, always providing

a sound performance value [59].

However IDSs cannot be evaluated only by their classi�cation ability, indeed they also

need to satisfy time requirements. To this end, the Time To Detection (TTD) metric can

be found in literature: this metric represents the amount of time elapsed from receiving a

CAN frame to classifying it. In literature it is named in di�erent ways (e.g. testing time,

detection latency). It can be further distinguished in:

� Average TTD: the arithmetic mean of the detection time for each CAN frame.

� WCS-TTD: the maximum detection time recorded among all CAN frames.

An IDS meets time requirements only if the WCS-TTD is within time limits.

30 3| Intrusion Detection Systems for CAN

3.6. Benchmark Models

Comparing newly designed solutions with benchmark models is a useful practice to un-

derstand the performances of the proposed systems. This procedure can show if the new

IDS is better (or not) than the literature baseline, becoming the new best solution.

In our survey we found that most of the researches compare their IDSs against at least one

benchmark model, this was not the case in Al-Jarrah et al. [4]. In that survey the authors

found that just 6 out of 42 reviewed papers compared their solutions with literature's

ones, meaning that over the last few years the availability of benchmark models, and

the awareness about their importance for this research �eld, increased signi�cantly (see

Figure 3.7).

Figure 3.7: Distribution of reviewed papers using benchmark models.

Many types of benchmark models have been used in the reviewed papers, among these

you can �nd ML-based models such as Deep Neural Networks (DNNs), Support Vector

Machines (SVMs), K-Nearest Neighbors (K-NN), NB and others; but also traditional

algorithms such as interval-based models. Finally some of the most recent researches use

models proposed in other papers reviewed by us as benchmarks (e.g. Yang et al. [85]

compare their solution with SAIDuCANT from [62]).

31

4| Research Gaps

In this chapter we will analyze the strengths and weaknesses of the solutions found in our

survey highlighting the actual gaps from real-world applicability. The Tables 4.1 to 4.3

will help to follow the analysis.

4.1. Detection Techniques and Placement

Figure 4.1 compares the distribution of the detection techniques found by Al-Jarrah et al.

[4] with the ones found in the papers reviewed by us: rule-based, T&FA-based, CI&IT-

based, hybrid and others. We can observe that not only the CI&IT-based techniques

are still prevailing, but also that their predominance has increased. We think that this

trend is probably linked to the huge attention gained in the past few years by Arti�cial

Intelligence (AI), in particular ML algorithms, from both academia and industry. Indeed

these techniques proved their strength in many applications, intrusion detection included.

Nowadays, thanks to this great interest, the development of ML algorithms is accessible

to anyone with an easier and easier deployment (e.g. TensorFlow framework [2]).

Figure 4.1: Comparison of detection techniques distribution with [4].

Rule-based techniques are the best solutions as long as the problem does not evolve and

requires a small rule set, indeed this type of techniques are cheap and computationally

32 4| Research Gaps

Work Technique
Features/Feature
Selection

Dataset Attack Type Performance Metrics Benchmark Models

[12] Rule-based Cyber/NA ROAD (real data)
MI,
Masquerade,
Fuzzy

Precision (98.6%),
Recall (99.2%),
F-score (99.0%)

Mean inter-message
time IDS,
Fitting Gaussian IDS,
Kernel Density Esti-
mation IDS

[86]
Time and Fre-
quency Analysis

Cyber/NA ORNL (real data) MI
Acc (100%),
FPR (0.7-1.4%)

Interval-based IDSs,
GAN-based,
DNN-based IDSs

[62]
Time and Fre-
quency Analysis

Cyber/NA ORNL (real data)
Spoo�ng,
Fuzzy,
DoS

Acc (80.3-98.1%),
Recall (96.4-99.6%),
Precision (80.1-97.7%),
F-score (87.5-98.8%),
TTD (0-10ms),
FPBA (0-1)

Interval-based,
Frequency-based IDSs

[27]
Time and Fre-
quency Analysis

Cyber/NA
Hyundai YF Sonata
and Kia Soul (real
data)

Flooding,
Fuzzy,
MI,
Replay

Acc (99.1-100%),
Recall (92.8-99.0%),
Time-cost (1-10ms)

Entropy-based,
Sequence-based IDSs

[14]
Time and Fre-
quency Analysis

Cyber/NA
3 commercial vehicles
(real data)

DoS,
Dropping,
Fuzzy,
Replay,
Spoo�ng

Acc (87.8-99.3%),
TPR (83.4-98.9%),
FPR (≤ 0.04%),
Precision (98.0-99.9%),
Mean time-to-detection
(3-6ms)

Frequency-based,
GAN-based,
DCNN-based IDSs,
SAIDuCANT

[60]

Computational
Intelligence and
Information
Theory

Cyber/Pearson Cor-
relation Coe�cient

Luxgen and Buick (real
data)

Spoo�ng (physical
and remote),
Bus-o�

DR (≥ 96%),
FPR (≤ 1%)

SVM

[69]

Computational
Intelligence and
Information
Theory

Cyber/NA Real data
DoS,
Fuzzy,
Spoo�ng

FNR (0.05-0.35%),
Error rate (0.03-0-18%),
Precision (100%),
Recall (≥ 99.9%),
F-score (≥ 99.9%),
test-time (5ms per batch)

LSTM,
ANN,
SVM,
K-NN,
NB,
DT

[88]

Computational
Intelligence and
Information
Theory

Cyber/NA OTIDS [39] (real data)
DoS,
Fuzzy

Miss rate (0.49-0.58%),
FPR (0.41-0.79%)

NA

[67]

Computational
Intelligence and
Information
Theory

Cyber/NA Real data
DoS,
Fuzzy,
Spoo�ng

Acc (91.3-98.7%),
Precision (94.5-97.7%),
Recall (83.5-99.8%),
F-score (88.6-98.3%)

OCSVM,
Deep autoencoder

[55]

Computational
Intelligence and
Information
Theory

Cyber/NA
Hyundai Avante CN7
(real data)

Flooding,
Spoo�ng,
Replay,
Fuzzy

FNR (0.007-6.276%),
F-score (98.97-95.24%)

Bi-direction Markov
Method,
Uni-directional GPT,
Bi-directional LSTM,
GAN-based IDS,
LSTM-based IDS

[49]

Computational
Intelligence and
Information
Theory

Cyber/NA Simulated data
Masquerade with
Gaslighter

Acc (98.2-99.79%)
Time-interval IDS,
ARIMA model,
Z-score

[71] Hybrid Cyber/NA ReCAN C-1 (real data)

DoS,
Dropping,
Fuzzy,
Replay

Qualitative results,
Time (0.05ms per batch)

Sequence-based IDS

[33] Other Cyber/NA OTIDS [39] (real data)

DoS,
Fuzzy,
Spoo�ng,
Replay

Acc (94.74-100%),
TPR (90.91-100%),
FPR (0-100%),
TNR (0-100%),
FNR (0-7.14%),
Time (165.7-258.9µs)

Sequence-based IDS

[5] Other Cyber/NA OTIDS [39] (real data)
DoS,
Fuzzy,
Impersonation

Acc (98.1%)

Logistic regression,
K-NN,
DT,
CNN,
MBA-OCSVM,
SVM,
GAN

Table 4.1: Summary of Flow-based approaches.

4| Research Gaps 33

Work Technique
Features/Feature
Selection

Dataset Attack Type Performance Metrics Benchmark Models

[89]

Computational
Intelligence and
Information
Theory

Physical/NA Real data Replay
Qualitative results,
Latency (2-4ms)

2 unde�ned models

[30]

Computational
Intelligence and
Information
Theory

Cyber/NA NAIST (real data)
DoS,
Fuzzy,
Spoo�ng

Acc (99.6-100%),
Recall (97.6-100%),
F-score (97.8-100%),
FPR (0-0.2%),
FNR (0-2.4%)

Survival Analysis
Method

[52]

Computational
Intelligence and
Information
Theory

Cyber/NA OTIDS [39] (real data)
Spoo�ng,
DoS,
Fuzzy

Acc (97.55-100%),
TPR (97.6-100%),
FPR (0-0.1%),
F-score (97.5-100%),
Latency (0.002-2ms)

NA

[85]

Computational
Intelligence and
Information
Theory

Cyber/IG followed
by FCBF and
KPCA

GIDS and CI-
CIDS2017 (real data)

DoS,
Fuzzy,
Spoo�ng

Acc (99.895-99.999%),
TPR (99.806-99.999%),
FPR (0.0006-0.084%),
F-score (99.895-
99.999%),
Execution Time (365.3-
478.2s)

K-NN,
SVM,
XYF-K,
SAIDuCANT,
SSAE,
DCNN,
LSTM-autoencoder

[64]

Computational
Intelligence and
Information
Theory

Physical/NA Simulated data
DoS,
Fuzzy,
Impersonation

Precision (94.5-98.3%),
Recall (93-97.8%),
F-score (94-97.6%)

NA

[48]

Computational
Intelligence and
Information
Theory

Cyber/NA
Hyundai Avante CN7
(real data)

Fuzzy,
Spoo�ng,
Flooding

Acc (97.86-98.10%),
Precision (89.58-98.32%),
Recall (88.45-98.04%),
F-score (90.01-97.83%)

NA

[35]

Computational
Intelligence and
Information
Theory

Cyber/NA
Sonata, Soul and Spark
(real data)

DoS,
Fuzzy,
Impersonation

Qualitative results
Time interval IDS,
GAN-based IDS,
ML-based IDS

[21]

Computational
Intelligence and
Information
Theory

Cyber/NA Real data
Fuzzy,
Spoo�ng

Acc (99.24-99.85%),
Precision (94.79-98.97%),
Recall (99.93-100%),
F-score (97.33-99.48%),
Latency (0.079ms)

GIDS,
DCNN,
LSTM-based,
MTH-IDS

[58]

Computational
Intelligence and
Information
Theory

Cyber/NA
Hyundai YF Sonata
(real data)

DoS,
Fuzzy

Acc (100%)
SVM,
K-NN

Table 4.2: Summary of Payload-based approaches.

34 4| Research Gaps

Work Technique
Features/Feature
Selection

Dataset Attack Type Performance Metrics Benchmark Models

[38]

Computational
Intelligence and
Information
Theory

Cyber and Physi-
cal/Pearson Correla-
tion Coe�cient

OTIDS [39] (real data)
Replay,
Amplitude-shift

Acc (83.7-87.9%),
Precision (81.2-88.8%),
Recall (35.1-83.0%)

MLP,
SVM,
XGBoost,
K-NN,
RF,
NB

[8]

Computational
Intelligence and
Information
Theory

Cyber/NA Real data
DoS,
Spoo�ng,
Fuzzy

Acc (96.93-100%),
Precision (84.78-100%),
Recall (97.23-100%),
F-score (91.49-100%),
FNR (0-2.77%)

NA

[63]

Computational
Intelligence and
Information
Theory

Cyber/Improved
Feature Selection

Sonata, Soul and Spark
(real data)

Flooding,
Fuzzy,
Malfunction

Acc (93.36-99.99%),
Precision (90.01-99.93%),
Recall (91.71-99.98%),
F-score (90.85-99.95%),
Detection time (0.023ms)

TLMD,
SLMC

[34]

Computational
Intelligence and
Information
Theory

Cyber/Convolutional
Neural Network

OTIDS [39] (real data)
Fuzzy,
DoS,
Impersonation

F-score (93.79%),
Precision (93.69%),
Recall (93.91%)

OCSVM,
IF,
OTIDS,
RNN+heuristics,
CANTransfer,
DCNN,
CANintelliIDS

[28]

Computational
Intelligence and
Information
Theory

Cyber/NA Mixed data

MI,
Camou�age,
Suspension,
Tampering

Precision (93.87-100%),
Acc (97.03-100%),
Recall (85.31-100%),
F-score (90.49-100%)

NA

[56]

Computational
Intelligence and
Information
Theory

Cyber/Improved
Deep Embedded
Clustering

Mercedes ML350,
ISCX,
KDDCup-99,
WSN_DS (real data)

DoS,
Fuzzy

Acc (78.6-80.3%),
Precision (72.8-74.7%),
Recall (85.2-86.3%),
F-score (78.5-80.1%)

Canet

[7]

Computational
Intelligence and
Information
Theory

Cyber/NA Real data Spoo�ng
TPR (90-100%),
FPR (0-0.007%),
F-score (95-100%)

LSTM

[59] Hybrid Cyber/NA ReCAN C-1 (real data)

MI,
Progressive MI,
DoS,
Dropping,
Fuzzy,
Replay

TPR (57.12-99.98%),
FPR (1.51-1.90%),
F-score (60.36-96.84%),
MCC (0.6506-0.9608),
TTP (0.2113-0.2688ms)

CANnolo,
RNN-based IDS

Table 4.3: Summary of Hybrid approaches.

4| Research Gaps 35

fast. Unfortunately securing CAN protocol seems to be still a problem able to evolve, we

can refer to the discovery of bus-o� attack [17] from a couple of years ago as an example

of evolving problem. Furthermore rule-based algorithms require prior knowledge to build

the rule set and they become heavy in terms of memory and computation when a large

rule set is employed, which may be the case for securing CAN.

T&FA-based techniques require prior knowledge like rule-based ones, in particular the

necessary knowledge is related to the system's normal behavior. At the opposite CI&IT-

based techniques do not require any prior knowledge because they set no assumptions

on the underlying distribution of the data [4]. CI&IT-based algorithms have the best

generalization capability, but most of them have high resource requirements.

It is clear that there is no perfect technique, each comes with some weaknesses. However

CI&IT-based techniques just require to operate on performing platforms, thus we will

describe a possible solution in Chapter 5.

Another important issue is the placement of the IDS. As depicted in Figure 4.2, the

detection device can be placed in two di�erent points: (a) on gateways or (b) on ECUs.

The former solution allows the IDS to access data transmitted over di�erent networks

making it possible to �nd correlations among them, on the other hand the IDS must

sustain high CAN tra�c intensity. With the latter solution the IDS has to classify less

CAN frames (only those transmitted to the speci�c ECU) but the detection algorithm

has to adapt to the low computational resources available on an ECU.

Figure 4.2: IDS placements: (a) IDS is placed on a gateway; (b) IDSs are placed on ECUs.

It is trivial to understand that the IDS placement depends also on the employed detection

technique, therefore detection technique and placement should be selected together.

36 4| Research Gaps

4.2. Features and Feature Selection

Most of the reviewed papers employ only cyber features in order to perform classi�cation

(see Figure 3.4). The use of physical features allows to know the current physical state

of the vehicle and thus it can improve signi�cantly the IDS performances. However

physical features are not always available, indeed their knowledge depends mostly on

the availability of the DBC �le, which is con�dential for vehicle vendors.

As declared by Al-Jarrah et al. [4], IDS research for computer networks has a well-de�ned

feature set, at the opposite there is no speci�c feature set de�ned for intra-vehicle IDS

research. As already stated in Section 3.2, having more features does not necessarily mean

stronger performances, but it surely means longer computation times. Therefore feature

selection is a critical step in the design process of an IDS and a potential future research

direction.

4.3. Attack Types and Reactive Measures

Most of the reviewed researches have designed IDSs targeting speci�c attacks (represented

in Figure 3.6). However new attack types are likely to show up during a vehicle lifetime,

thus another potential research direction can be the deep study of the CAN protocol

vulnerabilities in order to de�ne potential unknown attacks. To mitigate this problem we

suggest simulating unknown attacks: the simulation can be achieved training the IDS with

almost every known attack type and then evaluating the model even on the attack type

excluded from the training. In this way the model evaluation considers its performances

also on unknown attacks. In order to get a more solid evaluation, this process can be

iterated multiple times excluding each time a di�erent attack type.

Another research gap is the countermeasure to dispatch when an attack is detected, indeed

IDSs usually just identify intrusions but these are not prevented in any way. Even alerting

the vehicle users, as suggested in [4], would be a useless reaction: it is very unlikely that

vehicle users have the required knowledge to take the most appropriate action and the

alarm may distract the driver leading to a car crash. A more appropriate solution is the

IPS proposed in [21]: their method exploits the bit stu�ng mechanism to transform a

malicious CAN frame into an invalid message with the result that other ECUs reject it.

However invalidating frames may not always be the most �tting solution, thus establishing

a proper set of reactive measures can be the goal of another research direction.

4| Research Gaps 37

4.4. Performance Metrics and Benchmark Models

Even if most of the reviewed papers use di�erent performance metrics to benchmark the

e�ectiveness of their IDSs, detection latency is a critical metric that researchers rarely

report. Comparing with [4], we �nd that the current situation is slightly better: only 9

out of the 42 papers reviewed in [4] registered this metric, while we found the detection

latency reported in 12 out of the 31 reviewed papers, which means an increase of 17%.

To understand the importance of this metric we can suppose to have a perfect but very

slow intrusion detector: even if it could detect correctly every intrusion, the attacker may

already have damaged signi�cantly the targeted system by the detection time. An IDS

that does not meet time requirements is almost useless in a real-world scenario. Therefore

researchers should consider detection time as a fundamental metric to evaluate an IDS and

report it along with the hardware speci�cations of the platform used for the evaluation.

Indeed designers should take into account the reduced computational power available on

vehicles, e.g. an IDS that can barely keep up with the CAN tra�c operating on a high-

end modern machine will never sustain the same tra�c intensity running on the low-end

platforms available on vehicles.

Another important gap for intra-vehicle IDSs research is the lack of a standard bench-

mark detection model to compare with, as already stated in [4]. This problem still causes

inconsistencies in the results reported by di�erent works, which complicates the compari-

son among the proposed solutions. Therefore the establishment of a baseline model is one

more priority research direction because it can ease future developments with standardized

benchmarks.

39

5| Field Programmable Gate

Array for IDSs

In Section 4.1 we observed that among the di�erent categories of detection techniques,

the CI&IT-based ones are much more employed than others. Indeed these techniques

seem to be the most promising because of their e�ectiveness and their strong ability for

generalization. Moreover CI&IT-based techniques do not require any prior knowledge.

The only weakness of these algorithms is related to computation and memory complexity,

which means they are resource intensive, thus require powerful platforms in order to be

executed with an acceptable throughput. In this chapter we will address this problem

with FPGAs.

In the following sections we will analyze FPGAs and their main characteristics in order

to understand how they can contribute to the intra-vehicle IDS research �eld.

5.1. FPGA Overview

An FPGA is an integrated circuit designed to be con�gured after its fabrication. Con-

ventionally the con�guration is speci�ed with a Hardware Description Language (HDL),

a similar approach to the one used for Application-Speci�c Integrated Circuits (ASICs).

Unlike ASICs they allow �exible recon�gurable computing like in traditional software as

they can be reprogrammed to implement di�erent logic functions.

FPGAs contain a set of Con�gurable Logic Blocks (CLBs) which can be programmed

to carry out speci�c combinational functions. CLBs may also include memory elements,

usually basic �ip-�ops or data bu�ers. FPGA architecture also consists of routing channels

allowing these blocks to be wired together and I/O ports for external communications.

A basic CLB contains the following smaller components, as depicted in Figure 5.1:

� Flip-Flop: a circuit capable of two steady states representing a single bit.

� Look-Up Table (LUT): a collection of gates, storing a prede�ned list of outputs

40 5| Field Programmable Gate Array for IDSs

for every combination of inputs. LUTs provide a fast way to retrieve the output

of a logic operation because possible results are stored and then referenced rather

than calculated.

� Multiplexer: a circuit that selects and returns one between two or more inputs.

Figure 5.1: Basic CLB structure.

Most programmers are familiar with CPU or GPU -based architectures programming, but

developing for FPGAs is signi�cantly di�erent. As a consequence deploying an algorithm

on these platforms is a quite di�cult task and engineering costs are usually much higher

than instruction-based architectures. On the other hand FPGAs provide some advantages

which, depending on the targeted problem, can tip the scale in FPGA favor. These

advantages are:

� Latency: commonly FPGAs have shorter delays than high-end software-based ar-

chitectures. This result is a direct consequence of the exploitation of speci�c cir-

cuiting rather than relying on general-purpose operating system and communicating

over universal bus. Moreover their latency is often deterministic, which is of sub-

stantial importance for some use cases such as real-time systems.

� Energy E�ciency: FPGAs outperform remarkably CPUs and GPUs regarding

energy consumption for speci�c applications.

� Connectivity: any data source, such as a network interface or a sensor, can be

directly connected to an FPGA, while CPUs and GPUs use a di�erent approach.

For these architectures data sources are connected through standardized buses.

However development complexity and higher costs are not the only drawbacks of FPGAs,

indeed these platforms also su�er from lengthy compilation processes: a typical FPGA

5| Field Programmable Gate Array for IDSs 41

program compilation usually takes some hours to complete. The compilation process

requires a large amount of time and computing power because of its complex optimization

algorithm that aims at building the desired circuit con�guration with the shortest possible

paths.

5.2. FPGA for CAN IDSs

In Section 4.1 we concluded that the only apparent drawback of CI&IT-based detec-

tion techniques is their high resource requirements to cope with time restrictions, and in

Section 4.4 we explained the importance of detection latency for real-time systems such

as intra-vehicle networks. Given the FPGAs advantages over software architectures dis-

cussed in Section 5.1, latency in particular, we propose to implement and execute those

detection techniques over FPGA architectures.

In order to estimate the real acceleration provided by FPGAs we looked for documents

presenting real evaluations of Arti�cial Neural Networks (ANNs) implemented on a pro-

grammable logic board. None of the following papers designed an IDS for CAN: the

developed systems aim at di�erent classi�cation problems. Being the IDS a classi�cation

problem instance, we can still exploit their results for our estimations.

5.2.1. FPGA Implementation Examples

Nurvitadhi et al. [61] implemented a Gated Recurrent Unit (GRU)-based RNN with a

single hidden layer of 256 hidden units. The model was manually developed for the Al-

tera Stratix 5 and the Altera Arria 10 programmable logic boards. These platforms are

benchmarked against the Intel Xeon E5-2699v3 CPU clocked at 2.3GHz and the NVIDIA

GTX Titan X GPU. The authors observed that FPGAs have equivalent performances

and the same result is obtained for the CPU and the GPU models. The hardware ac-

celeration given by programmable logic is veri�ed by the energy e�ciency: the FPGAs

performance/Watt metric is 10 times higher than CPU and GPU platforms.

Chang et al. [16] designed a LSTM-based RNN consisting of 2 hidden layers of 128 hidden

units each. This model was manually implemented on the Xilinx Zynq-7000 board. The

performances were evaluated with respect to the following platforms:

� the board's CPU (dual-core processor clocked at 667MHz),

� Tegra K1 CPU (quad-core processor clocked at 2.3GHz),

� Tegra K1 GPU (Kepler with 192 cores),

42 5| Field Programmable Gate Array for IDSs

� Odroid XU4 Cortex-A15 (quad-core processor clocked at 2GHz),

� Odroid XU4 Cortex-A7 (quad-core processor clocked at 1.4GHz).

Because of the quantization process, the model executed on the FPGA su�ered from a

small accuracy degradation. The best platform among the benchmark models was the

Tegra K1 CPU; with respect to this system, the Zynq-7000 had 8 times better energy

e�ciency (Mops
s

/Watt) and registered half the execution time.

Another LSTM-based RNN model was built by Guan et al. [25]. Their model was struc-

tured di�erently from [16], the hidden layers were 3 and the number of hidden units per

layer was 250. The authors implemented the ANN on the Xilinx VC707 board manually

and compared the obtained results with two other platforms: the Intel Xeon E5-2430

CPU clocked at 2.2GHz and the FPGA proposed in [16]. The comparison shows that the

execution time of the proposed design is 20 times shorter than the one obtained with the

CPU running in single-thread, and 5 times shorter than the one obtained with the CPU

running in 16 threads. Finally the design proposed in this paper is 15 times more energy

e�cient than the one proposed in [16] and almost 2 orders of magnitude more e�cient

than the CPU-based one.

Wang and Gu [82] implemented the You Only Look Once (YOLO)v3 network, a CNN

model, on the Xilinx ZCU104 MultiProcessor System on a Chip (MPSoC). The imple-

mentation process was supported by the use of the Xilinx 's recent product, Vitis AI [1]:

a development platform for AI inference on Xilinx hardware platforms (see Figure 5.2).

The evaluation process was carried out on the FPGA platform and compared with a

NVIDIA GeForce GTX1080 GPU. The Xilinx ZCU104 reaches 2.4 times the Frames Per

Second (FPS) obtained by the GPU and the energy e�ciency (FPS/Watt) is 13 times

higher.

Tsantikidou et al. [78] built a ANN consisting of 6 layers: 3 dense layers, then 2 LSTM

layers and �nally another dense layer. The number of hidden units is 64 for every layer

but the last one, which has only 6 units. The model was manually implemented on a

Xilinx Alveo U200 board and its performances were compared with the ones obtained

with an Intel Xeon E5-2620 v4 CPU running in single-thread. The execution time on the

FPGA system was 39 times shorter than the one of the CPU and the energy e�ciency

(GFLOPS/Watt) registered a 67 times increase on the hardware platform.

Hussein et al. [31] designed a CNN-based autoencoder model where the encoder module

is structured by the following 6 layers:

1. First convolutional layer (16 ∗ 3 ∗ 3),

5| Field Programmable Gate Array for IDSs 43

Figure 5.2: Vitis AI overview from [1].

2. Second convolutional layer (8 ∗ 3 ∗ 3),

3. First downsampling layer,

4. Third convolutional layer (4 ∗ 3 ∗ 3),

5. Second downsampling layer,

6. Fourth convolutional layer (1 ∗ 3 ∗ 3).

The decoder structure coincides to the specular of the encoder one. The autoencoder

was implemented on the Xilinx ZCU104 MPSoC using the Application Programming

Interfaces (APIs) of the Vitis AI tool. The authors used a platform powered by an Intel

Core i7-4790 clocked at 3.6GHz with 16GB of RAM to benchmark the performances of

the FPGA. The evaluation resulted in an FPGA with 5.5 times faster throughput and a

39.8 times better energy e�ciency (J/Image) than the CPU platform.

The last reviewed FPGA implementation example is the one proposed by Trabelsi Ajili

and Hara-Azumi [77]. The ANN implemented in programmable logic is called DeepSense,

a multimodal framework (i.e. di�erent types of real-time sensing data are processed).

DeepSense is a CNN and RNN -based network composed by 8 layers: 3 individual con-

volutional layers, 3 merge convolutional layers and 2 GRU-based RNN layers. As in [82]

and [31], also the authors of this document make use of the Vitis AI APIs to develop the

model for 2 FPGAs: Avnet Ultra96-V2 and Xilinx ZCU102. These boards are evaluated

and compared with the Nexus 5 smartphone, powered by a quad-core processor clocked

44 5| Field Programmable Gate Array for IDSs

at 2.3GHz, and the Raspberry Pi 3 model B, powered by a quad-core processor clocked

at 1.2GHz. Di�erent con�gurations were evaluated for the boards, the best with respect

to latency is the Xilinx ZCU102 (Low-Power Mode is indi�erent) while the best platform

for energy e�ciency is the Avnet Ultra96-V2 with low RAM usage, high Digital Signal

Processor (DSP) usage1 and Low-Power Mode on. We report the performance increase

given by the Xilinx ZCU102 because our primary concern is latency. This platform re-

ported a 2.9 times shorter latency than Nexus 5 and a 4.4 times better energy e�ciency

(mJ/inference) than the baseline.

5.2.2. Examples Analysis

The results obtained from the FPGA implementation examples of the previous section are

quite variable: the hardware acceleration translates into a performance increase from 2

times to almost 2 orders of magnitude. This large variability is the consequence of di�erent

reasons, �rst of all the distinct classi�cation problems addressed by the documents. The

combination of the resources used for benchmarking also a�ects the comparisons: e.g.

comparing a high-end CPU against a low-end FPGA will result into a poor performance

enhancement.

Regarding latency, we noticed that the ANN models which were implemented in pro-

grammable logic employing Vitis AI APIs seem to su�er from milder performance boosts.

Indeed latency speed up in [82], [31] and [77] is restricted between 2.4× and 5.5×; while
in the other documents the latency registers even 39 times shorter values. We suppose

this is due to the automatic model optimization performed by Vitis AI , which may be

less e�ective than a manual model optimization. However much more samples should be

used to prove our hypothesis. Moreover we remind that Vitis AI is a recent product and

it is continuously developed and improved, thus such an analysis should also take into

consideration the used version.

Among the FPGA advantages described in Section 5.1, we can clearly assert that the most

noticeable performance improvement, found in these implementation examples, applies to

energy e�ciency. Even if the evaluation metrics used in the papers to evaluate the energy

e�ciency are always di�erent, we can observe that its boost is much more evident than

the one related to latency.

From the evaluations of the implemented examples, it should be noticed the accuracy

degradation phenomenon a�ecting FPGAs. Indeed, as speci�ed in [16], the implemen-

1DSP Usage represents a resource trade-o� for DPU's Processing Engine (PE) operations: using more
DSPs or LUTs.

5| Field Programmable Gate Array for IDSs 45

tation process for programmable logic boards usually foresees a quantization step. This

quantization procedure aims at reducing the model complexity in order to improve the

performances on the target platform. Quantization is mandatory in the Vitis AI work-

�ow. The accuracy loss should be considered when implementing such techniques on an

FPGA.

5.3. FPGA for CANova

In this section we will discuss about the RNN autoencoder-based module used in CANova [59]

and try to estimate its performance improvement thanks to FPGAs. Among the multi-

ple papers reviewed in Section 3.1 that make use of CI&IT-based detection techniques,

we choose to analyze the performance enhancements for [59] because we believe that its

modular approach is the most e�ective one for detecting a wide range of di�erent attack

types. Furthermore the document is much more detailed with respect to the others. The

RNN autoencoder-based module, although being an e�ective classi�er, is the bottleneck

of the CANova model; as a matter of fact it is used on all those CAN-IDs for which it does

not exist a more appropriate IDS module. Therefore we suggest executing this module

on a programmable logic board in order to address its latency issue.

The autoencoder module used in CANova is a reduced version of the original CANnolo

model [42]. The reduced model implemented in CANova has the following structure:

� Encoder

� An input layer of dimension n∗k, where n = 40 is the dimension of the window

of packets and k is the number of signals.

� A dense layer composed of 128 units with Exponential Linear Unit (ELU) as

activation function.

� A 20% dropout layer.

� Two LSTM layers with 64 units each. [59]

� Decoder

� Two LSTM layers with 64 units each.

� A dense layer composed of 128 units with ELU as activation function.

� An output dense layer composed of k units with sigmoid activation func-

tion. [59]

46 5| Field Programmable Gate Array for IDSs

The main di�erences with the original CANnolo version concern the number of units per

layer (it is halved in the reduced model) and the decoder input: in the reduced model the

decoder output is not sent back to the decoder input and the encoder output is reversed

so that the decoder output is ordered. This last step was not performed in the original

CANnolo version, indeed its output was in reversed order [42].

Among the di�erent ANN models proposed in the documents analyzed in Section 5.2.1,

we think that the one designed by Tsantikidou et al. [78] is the most similar to the RNN

autoencoder-based module of CANova. Their structures can be compared in Figure 5.3.

Figure 5.3: Structure comparison of: (a) Reduced CANnolo [59] and (b) Tsantikidou et al.

[78]'s model.

Considering the fact that the dropout layer of CANnolo is used only during the training

phase, we can notice that, even if the model proposed in [78] is not designed as an

autoencoder, the models have a very close number of layers (7 for CANnolo and 6 for [78])

and that the number of units per layer is equal or similar. Moreover the used layer types

are the same, dense and LSTM, and they are also arranged in a comparable way: LSTM

layers are surrounded by dense ones in both models.

5| Field Programmable Gate Array for IDSs 47

Given these similarities we suppose that the performance improvement provided by the

hardware acceleration of FPGAs will be reasonably analogous to the one obtained by

Tsantikidou et al. [78]. To support this hypothesis we highlight the fact that the authors

of [78] compared a high-end CPU against a high-end FPGA, so that the inequality given

by di�erent platform levels does not apply for this particular case. We also remark that the

performance enhancement stated in Section 5.2.1 for their design was measured comparing

the same optimized C/C++ model on both the platforms; however the RNN autoencoder-

based module of CANova is not the result of such an optimization process. Indeed the

reduced CANnolo model was implemented using the Python ML library TensorFlow, thus

we can consider it to be the corresponding implementation of the one referred as Original

Python Model in [78].

For this case the performance boost given by the FPGA reported in [78] is much more re-

markable. The comparison between the original Python model and the optimized C/C++

model resulted in an outstanding 152 times shorter latency and 300 times higher energy

e�ciency. On the other hand the optimized model su�ered from an accuracy degrada-

tion: the authors of [78] tried many quantization con�gurations and chose the best one

(accordingly to their goal) evaluating the trade-o� between latency and accuracy. In

particular the selected quantized model has a 5% lower accuracy than the non-quantized

con�guration.

Such an accuracy loss is not tolerable in our research �eld because human safety is in-

volved, thus a more accuracy-oriented trade-o� choice should be taken into account. As

a consequence the latency reduction will not be as marked as for the outcome of [78], but

still much appreciable: e.g. we refer to the 3rd quantization con�guration presented in

Tables 1-2 of [78] which has a 2% lower accuracy than the non-quantized one, but still a

comparable latency.

The conclusion of the analysis above is the following: given that the TTP of the RNN

autoencoder-based module of CANova is slightly higher than the average inter-arrival

time of CAN frames in the dataset considered in [59], the latency enhancement provided

by executing the module on an FPGA would be enough to make the model suitable for

real-time detection, and possibly even for more time-stringent scenarios than the one

examined in [59].

49

6| Conclusions

In this thesis we have given an overview of the CAN protocol currently used on modern

vehicles that allows ECUs to share information with one another, then we showed the

security risks related to this protocol as it lacks of security measures. This is the starting

point of our survey, which aims at the exploration of the state-of-the-art techniques from

the research �eld addressing the just mentioned security threats, renovating Al-Jarrah

et al. [4] work.

We recognized some advancements in the research, like the more frequent use of real

datasets for testing, and the increased awareness about detection latency that is leading

more and more researchers to evaluate their proposed IDSs with this metric. Another

signi�cant improvement obtained since the survey of Al-Jarrah et al. [4] is that nowadays

the majority of the papers (according to our review) benchmark their solutions against

other IDSs taken from literature, this is clearly represented in Figure 3.7.

Unfortunately there is still a lack of conventional baseline models to compare with, as

well as standardized test suites that would simplify the comprehension of the proposed

model's quality. Moreover the number of researches reporting a critical metric such as

detection latency is not big enough yet. For what concerns our survey, it was evaluated

only in less than half of the reviewed papers. Furthermore time requirements are very

changing from a document to another, making it harder to understand which IDS would

actually operate in a real-world environment.

Being latency a major issue for most of the reviewed IDSs, we analyzed FPGA platforms,

their bene�ts and �aws. Then we suggested using them in order to address the real-time

requirements of tra�c classi�cation. We investigated the supposed speed up provided

by such platforms and we supported our theoretical results with the assist of actually

implemented instances taken from literature. Our analysis leads to a realistic applicability

of CANova in a real-world scenario as long as its RNN autoencoder-based module (the

bottleneck) is deployed on an FPGA.

Therefore we can conclude that the application of programmable logic boards is a pos-

sible solution for addressing timing issues, indeed the hardware acceleration provided

50 6| Conclusions

by FPGAs seems to be enough to make many models (struggling with latency) able to

execute complying with real-world CAN tra�c intensity.

51

Bibliography

[1] Vitis ai, 2020. URL https://www.xilinx.com/products/design-tools/vitis/

vitis-ai.html. Software available from github.com/Xilinx/Vitis-AI.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-

war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,

M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine

learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/.

Software available from tensor�ow.org.

[3] S. Abbott-McCune and L. A. Shay. Intrusion prevention system of automotive net-

work can bus. In 2016 IEEE International Carnahan Conference on Security Tech-

nology (ICCST), pages 1�8, 2016. doi: 10.1109/CCST.2016.7815711.

[4] O. Y. Al-Jarrah, C. Maple, M. Dianati, D. Oxtoby, and A. Mouzakitis. Intrusion

detection systems for intra-vehicle networks: A review. IEEE Access, 7:21266�21289,

2019. doi: 10.1109/ACCESS.2019.2894183.

[5] I. Aliyu, M. C. Feliciano, S. Van Engelenburg, D. O. Kim, and C. G. Lim. A

blockchain-based federated forest for sdn-enabled in-vehicle network intrusion de-

tection system. IEEE Access, 9:102593�102608, 2021. doi: 10.1109/ACCESS.2021.

3094365.

[6] O. Avate�pour. Physical-�ngerprinting of electronic control unit (ecu) based on ma-

chine learning algorithm for in-vehicle network communication protocol �can-bus�.

2017.

[7] P. Balaji and M. Ghaderi. Neurocan: Contextual anomaly detection in controller

area networks. In 2021 IEEE International Smart Cities Conference (ISC2), pages

1�7, 2021. doi: 10.1109/ISC253183.2021.9562830.

[8] V. S. Barletta, D. Caivano, A. Nannavecchia, and M. Scalera. Intrusion detection

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.tensorflow.org/

52 | Bibliography

for in-vehicle communication networks: An unsupervised kohonen som approach.

Future Internet, 12(7), 2020. ISSN 1999-5903. doi: 10.3390/�12070119. URL https:

//www.mdpi.com/1999-5903/12/7/119.

[9] O. Berlin, A. Held, M. Matousek, and F. Kargl. Poster: Anomaly-based misbehaviour

detection in connected car backends. In 2016 IEEE Vehicular Networking Conference

(VNC), pages 1�2, 2016. doi: 10.1109/VNC.2016.7835978.

[10] A. Bezemskij, G. Loukas, R. J. Anthony, and D. Gan. Behaviour-based anomaly

detection of cyber-physical attacks on a robotic vehicle. In 2016 15th International

Conference on Ubiquitous Computing and Communications and 2016 International

Symposium on Cyberspace and Security (IUCC-CSS), pages 61�68, 2016. doi: 10.

1109/IUCC-CSS.2016.017.

[11] A. Bezemskij, G. Loukas, D. Gan, and R. J. Anthony. Detecting cyber-physical

threats in an autonomous robotic vehicle using bayesian networks. In 2017 IEEE

International Conference on Internet of Things (iThings) and IEEE Green Comput-

ing and Communications (GreenCom) and IEEE Cyber, Physical and Social Com-

puting (CPSCom) and IEEE Smart Data (SmartData), pages 98�103, 2017. doi:

10.1109/iThings-GreenCom-CPSCom-SmartData.2017.20.

[12] D. H. Blevins, P. Moriano, R. A. Bridges, M. E. Verma, M. D. Iannacone, and

S. C. Holli�eld. Time-based can intrusion detection benchmark. Proceedings Third

International Workshop on Automotive and Autonomous Vehicle Security, 2021. doi:

10.14722/autosec.2021.23013. URL http://dx.doi.org/10.14722/autosec.2021.

23013.

[13] A. Boudguiga, W. Klaudel, A. Boulanger, and P. Chiron. A simple intrusion detec-

tion method for controller area network. In 2016 IEEE International Conference on

Communications (ICC), pages 1�7, 2016. doi: 10.1109/ICC.2016.7511098.

[14] M. Bozdal, M. Samie, and I. K. Jennions. Winds: A wavelet-based intrusion detection

system for controller area network (can). IEEE Access, 9:58621�58633, 2021. doi:

10.1109/ACCESS.2021.3073057.

[15] T. C. Cañones. Benchmarking framework for intrusion detection systems in controller

area networks. Master's thesis, Politecnico di Milano, 2021.

[16] A. X. M. Chang, B. Martini, and E. Culurciello. Recurrent neural networks hardware

implementation on FPGA. CoRR, abs/1511.05552, 2015. URL http://arxiv.org/

abs/1511.05552.

https://www.mdpi.com/1999-5903/12/7/119
https://www.mdpi.com/1999-5903/12/7/119
http://dx.doi.org/10.14722/autosec.2021.23013
http://dx.doi.org/10.14722/autosec.2021.23013
http://arxiv.org/abs/1511.05552
http://arxiv.org/abs/1511.05552

| Bibliography 53

[17] K.-T. Cho and K. G. Shin. Error handling of in-vehicle networks makes them vulnera-

ble. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-

nications Security, CCS '16, pages 1044�1055, New York, NY, USA, 2016. Associa-

tion for Computing Machinery. ISBN 9781450341394. doi: 10.1145/2976749.2978302.

URL https://doi.org/10.1145/2976749.2978302.

[18] K.-T. Cho and K. G. Shin. Fingerprinting electronic control units for vehicle intrusion

detection. In Proceedings of the 25th USENIX Conference on Security Symposium,

SEC'16, pages 911�927, USA, 2016. USENIX Association. ISBN 9781931971324.

[19] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee. Voltageids: Low-level

communication characteristics for automotive intrusion detection system. IEEE

Transactions on Information Forensics and Security, 13(8):2114�2129, 2018. doi:

10.1109/TIFS.2018.2812149.

[20] Cia. Can data link layers in some detail. URL https://www.can-cia.org/

can-knowledge/can/can-data-link-layers/.

[21] P. Freitas De Araujo-Filho, A. J. Pinheiro, G. Kaddoum, D. R. Campelo, and F. L.

Soares. An e�cient intrusion prevention system for can: Hindering cyber-attacks with

a low-cost platform. IEEE Access, 9:166855�166869, 2021. doi: 10.1109/ACCESS.

2021.3136147.

[22] W. Fu, X. Xin, P. Guo, and Z. Zhou. A practical intrusion detection system for

internet of vehicles. China Communications, 13(10):263�275, 2016. doi: 10.1109/

CC.2016.7733050.

[23] A. Ganesan, J. Rao, and K. G. Shin. Exploiting consistency among heterogeneous

sensors for vehicle anomaly detection. 2017.

[24] M. Gmiden, M. H. Gmiden, and H. Trabelsi. An intrusion detection method for

securing in-vehicle can bus. In 2016 17th International Conference on Sciences and

Techniques of Automatic Control and Computer Engineering (STA), pages 176�180,

2016. doi: 10.1109/STA.2016.7952095.

[25] Y. Guan, Z. Yuan, G. Sun, and J. Cong. Fpga-based accelerator for long short-term

memory recurrent neural networks. In 2017 22nd Asia and South Paci�c Design

Automation Conference (ASP-DAC), pages 629�634, 2017. doi: 10.1109/ASPDAC.

2017.7858394.

[26] R. E. Haas, D. P. F. Möller, P. Bansal, R. Ghosh, and S. S. Bhat. Intrusion detection

https://doi.org/10.1145/2976749.2978302
https://www.can-cia.org/can-knowledge/can/can-data-link-layers/
https://www.can-cia.org/can-knowledge/can/can-data-link-layers/

54 | Bibliography

in connected cars. In 2017 IEEE International Conference on Electro Information

Technology (EIT), pages 516�519, 2017. doi: 10.1109/EIT.2017.8053416.

[27] M. L. Han, B. I. Kwak, and H. K. Kim. Event-triggered interval-based anomaly

detection and attack identi�cation methods for an in-vehicle network. IEEE Trans-

actions on Information Forensics and Security, 16:2941�2956, 2021. doi: 10.1109/

TIFS.2021.3069171.

[28] X. He, Z. Yang, and Y. Huang. A vehicle intrusion detection system based on time

interval and data �elds. In X. Sun, X. Zhang, Z. Xia, and E. Bertino, editors, Ar-

ti�cial Intelligence and Security, pages 538�549, Cham, 2021. Springer International

Publishing. ISBN 978-3-030-78612-0.

[29] T. Hoppe, S. Kiltz, and J. Dittmann. Applying intrusion detection to automotive

it-early insights and remaining challenges. Journal of Information Assurance and

Security (JIAS), 4:226�235, 01 2009.

[30] M. D. Hossain, H. Inoue, H. Ochiai, D. Fall, and Y. Kadobayashi. Lstm-based

intrusion detection system for in-vehicle can bus communications. IEEE Access, 8:

185489�185502, 2020. doi: 10.1109/ACCESS.2020.3029307.

[31] A. S. Hussein, A. Anwar, Y. Fahmy, H. Mostafa, K. N. Salama, and M. Kafafy.

Implementation of a dpu-based intelligent thermal imaging hardware accelerator on

fpga. Electronics, 11(1), 2022. ISSN 2079-9292. doi: 10.3390/electronics11010105.

URL https://www.mdpi.com/2079-9292/11/1/105.

[32] T. Instruments. Introductionto the controllerareanetwork(can). 2002.

[33] R. Islam, R. U. D. Refat, S. M. Yerram, and H. Malik. Graph-based intrusion

detection system for controller area networks. IEEE Transactions on Intelligent

Transportation Systems, pages 1�10, 2020. doi: 10.1109/TITS.2020.3025685.

[34] A. R. Javed, S. u. Rehman, M. U. Khan, M. Alazab, and T. R. G. Canintelliids:

Detecting in-vehicle intrusion attacks on a controller area network using cnn and

attention-based gru. IEEE Transactions on Network Science and Engineering, 8(2):

1456�1466, 2021. doi: 10.1109/TNSE.2021.3059881.

[35] L. Kang and H. Shen. A transfer learning based abnormal can bus message detection

system. In 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart

Systems (MASS), pages 545�553, 2021. doi: 10.1109/MASS52906.2021.00073.

[36] M.-J. Kang and J.-W. Kang. A novel intrusion detection method using deep neural

https://www.mdpi.com/2079-9292/11/1/105

| Bibliography 55

network for in-vehicle network security. In 2016 IEEE 83rd Vehicular Technology

Conference (VTC Spring), pages 1�5, 2016. doi: 10.1109/VTCSpring.2016.7504089.

[37] M.-J. Kang and J.-W. Kang. Intrusion detection system using deep neural network

for in-vehicle network security. PLOS ONE, 11(6):1�17, 06 2016. doi: 10.1371/

journal.pone.0155781. URL https://doi.org/10.1371/journal.pone.0155781.

[38] Z. Khan, M. Chowdhury, M. Islam, C.-Y. Huang, and M. Rahman. Long short-term

memory neural network-based attack detection model for in-vehicle network security.

IEEE Sensors Letters, 4(6):1�4, 2020. doi: 10.1109/LSENS.2020.2993522.

[39] H. Lee, S. H. Jeong, and H. K. Kim. Otids: A novel intrusion detection system

for in-vehicle network by using remote frame. In 2017 15th Annual Conference on

Privacy, Security and Trust (PST), volume 00, pages 57�5709, 8 2017. doi: 10.1109/

PST.2017.00017. URL doi.ieeecomputersociety.org/10.1109/PST.2017.00017.

[40] M. Levi, Y. Allouche, and A. Kontorovich. Advanced analytics for connected car

cybersecurity. In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring),

pages 1�7, 2018. doi: 10.1109/VTCSpring.2018.8417690.

[41] C. Ling and D. Feng. An algorithm for detection of malicious messages on can buses.

11 2012. doi: 10.2991/citcs.2012.161.

[42] S. Longari, D. H. Nova Valcarcel, M. Zago, M. Carminati, and S. Zanero. Cannolo:

An anomaly detection system based on lstm autoencoders for controller area network.

IEEE Transactions on Network and Service Management, 18(2):1913�1924, 2021. doi:

10.1109/TNSM.2020.3038991.

[43] G. Loukas, T. Vuong, R. Heart�eld, G. Sakellari, Y. Yoon, and D. Gan. Cloud-based

cyber-physical intrusion detection for vehicles using deep learning. IEEE Access, 6:

3491�3508, 2018. doi: 10.1109/ACCESS.2017.2782159.

[44] M. Marchetti and D. Stabili. Anomaly detection of can bus messages through analysis

of id sequences. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 1577�1583,

2017. doi: 10.1109/IVS.2017.7995934.

[45] M. Marchetti, D. Stabili, A. Guido, and M. Colajanni. Evaluation of anomaly de-

tection for in-vehicle networks through information-theoretic algorithms. In 2016

IEEE 2nd International Forum on Research and Technologies for Society and Indus-

try Leveraging a better tomorrow (RTSI), pages 1�6, 2016. doi: 10.1109/RTSI.2016.

7740627.

[46] M. Markovitz and A. Wool. Field classi�cation, modeling and anomaly detection

https://doi.org/10.1371/journal.pone.0155781
doi.ieeecomputersociety.org/10.1109/PST.2017.00017

56 | Bibliography

in unknown can bus networks. Vehicular Communications, 9:43�52, 2017. ISSN

2214-2096. doi: https://doi.org/10.1016/j.vehcom.2017.02.005. URL https://www.

sciencedirect.com/science/article/pii/S2214209616300869.

[47] F. Martinelli, F. Mercaldo, V. Nardone, and A. Santone. Car hacking identi�cation

through fuzzy logic algorithms. In 2017 IEEE International Conference on Fuzzy

Systems (FUZZ-IEEE), pages 1�7, 2017. doi: 10.1109/FUZZ-IEEE.2017.8015464.

[48] S. T. Mehedi, A. Anwar, Z. Rahman, and K. Ahmed. Deep transfer learning based

intrusion detection system for electric vehicular networks. Sensors, 21(14), 2021.

ISSN 1424-8220. doi: 10.3390/s21144736. URL https://www.mdpi.com/1424-8220/

21/14/4736.

[49] J. Mehta and B. Meyer. Dt-ds: Can intrusion detection with decision tree ensembles.

URL https://escholarship.mcgill.ca/concern/theses/f4752n789.

[50] C. Miller and C. Valasek. Adventures in automotive networks and control units. Def

Con, 21(260-264):15�31, 2013.

[51] C. Miller and C. Valasek. Remote exploitation of an unaltered passenger vehicle.

Black Hat USA, 2015(S 91), 2015.

[52] O. Minawi, J. Whelan, A. Almehmadi, and K. El-Khatib. Machine learning-based

intrusion detection system for controller area networks. In Proceedings of the 10th

ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Ap-

plications, DIVANet '20, pages 41�47, New York, NY, USA, 2020. Association for

Computing Machinery. ISBN 9781450381215. doi: 10.1145/3416014.3424581. URL

https://doi.org/10.1145/3416014.3424581.

[53] M. Müter and N. Asaj. Entropy-based anomaly detection for in-vehicle networks.

In 2011 IEEE Intelligent Vehicles Symposium (IV), pages 1110�1115, 2011. doi:

10.1109/IVS.2011.5940552.

[54] M. Müter, A. Groll, and F. C. Freiling. A structured approach to anomaly detec-

tion for in-vehicle networks. In 2010 Sixth International Conference on Information

Assurance and Security, pages 92�98, 2010. doi: 10.1109/ISIAS.2010.5604050.

[55] M. Nam, S. Park, and D. S. Kim. Intrusion detection method using bi-directional

gpt for in-vehicle controller area networks. IEEE Access, 9:124931�124944, 2021. doi:

10.1109/ACCESS.2021.3110524.

[56] H. Narasimhan, V. Ravi, and N. Mohammad. Unsupervised deep learning approach

https://www.sciencedirect.com/science/article/pii/S2214209616300869
https://www.sciencedirect.com/science/article/pii/S2214209616300869
https://www.mdpi.com/1424-8220/21/14/4736
https://www.mdpi.com/1424-8220/21/14/4736
https://escholarship.mcgill.ca/concern/theses/f4752n789
https://doi.org/10.1145/3416014.3424581

| Bibliography 57

for in-vehicle intrusion detection system. IEEE Consumer Electronics Magazine,

pages 1�1, 2021. doi: 10.1109/MCE.2021.3116923.

[57] S. N. Narayanan, S. Mittal, and A. Joshi. Using data analytics to detect anomalous

states in vehicles, 2015. URL https://arxiv.org/abs/1512.08048.

[58] I. Nazakat and K. Khurshid. Intrusion detection system for in-vehicular communi-

cation. In 2019 15th International Conference on Emerging Technologies (ICET),

pages 1�6, 2019. doi: 10.1109/ICET48972.2019.8994327.

[59] A. Nichelini and C. A. Pozzoli. Canova, a classi�cation-based modular intrusion

detection system for can. Master's thesis, Politecnico di Milano, 2021.

[60] J. Ning, J. Wang, J. Liu, and N. Kato. Attacker identi�cation and intrusion detection

for in-vehicle networks. IEEE Communications Letters, 23(11):1927�1930, 2019. doi:

10.1109/LCOMM.2019.2937097.

[61] E. Nurvitadhi, J. Sim, D. She�eld, A. Mishra, S. Krishnan, and D. Marr. Acceler-

ating recurrent neural networks in analytics servers: Comparison of fpga, cpu, gpu,

and asic. In 2016 26th International Conference on Field Programmable Logic and

Applications (FPL), pages 1�4, 2016. doi: 10.1109/FPL.2016.7577314.

[62] H. Olufowobi, C. Young, J. Zambreno, and G. Bloom. Saiducant: Speci�cation-

based automotive intrusion detection using controller area network (can) timing.

IEEE Transactions on Vehicular Technology, 69(2):1484�1494, 2020. doi: 10.1109/

TVT.2019.2961344.

[63] S. Park and J.-Y. Choi. Hierarchical anomaly detection model for in-vehicle networks

using machine learning algorithms. Sensors, 20(14), 2020. ISSN 1424-8220. doi:

10.3390/s20143934. URL https://www.mdpi.com/1424-8220/20/14/3934.

[64] F. Pascale, E. A. Adinol�, S. Coppola, and E. Santonicola. Cybersecurity in au-

tomotive: An intrusion detection system in connected vehicles. Electronics, 10

(15), 2021. ISSN 2079-9292. doi: 10.3390/electronics10151765. URL https:

//www.mdpi.com/2079-9292/10/15/1765.

[65] R. Rieke, M. Seidemann, E. K. Talla, D. Zelle, and B. Seeger. Behavior analysis

for safety and security in automotive systems. In 2017 25th Euromicro International

Conference on Parallel, Distributed and Network-based Processing (PDP), pages 381�

385, 2017. doi: 10.1109/PDP.2017.67.

[66] P. Sharma and D. P. F. Möller. Protecting ecus and vehicles internal networks.

https://arxiv.org/abs/1512.08048
https://www.mdpi.com/1424-8220/20/14/3934
https://www.mdpi.com/2079-9292/10/15/1765
https://www.mdpi.com/2079-9292/10/15/1765

58 | Bibliography

In 2018 IEEE International Conference on Electro/Information Technology (EIT),

pages 0465�0470, 2018. doi: 10.1109/EIT.2018.8500295.

[67] H. M. Song and H. K. Kim. Self-supervised anomaly detection for in-vehicle network

using noised pseudo normal data. IEEE Transactions on Vehicular Technology, 70

(2):1098�1108, 2021. doi: 10.1109/TVT.2021.3051026.

[68] H. M. Song, H. R. Kim, and H. K. Kim. Intrusion detection system based on the

analysis of time intervals of can messages for in-vehicle network. In 2016 International

Conference on Information Networking (ICOIN), pages 63�68, 2016. doi: 10.1109/

ICOIN.2016.7427089.

[69] H. M. Song, J. Woo, and H. K. Kim. In-vehicle network intrusion detection using

deep convolutional neural network. Vehicular Communications, 21:100198, 2020.

ISSN 2214-2096. doi: https://doi.org/10.1016/j.vehcom.2019.100198. URL https:

//www.sciencedirect.com/science/article/pii/S2214209619302451.

[70] D. Stabili, M. Marchetti, and M. Colajanni. Detecting attacks to internal vehicle net-

works through hamming distance. In 2017 AEIT International Annual Conference,

pages 1�6, 2017. doi: 10.23919/AEIT.2017.8240550.

[71] J. Sunny, S. Sankaran, and V. Saraswat. A hybrid approach for fast anomaly detection

in controller area networks. In 2020 IEEE International Conference on Advanced

Networks and Telecommunications Systems (ANTS), pages 1�6, 2020. doi: 10.1109/

ANTS50601.2020.9342791.

[72] C. P. Szydlowski. Can speci�cation 2.0: Protocol and implementations. In Future

Transportation Technology Conference and Exposition. SAE International, 8 1992.

doi: https://doi.org/10.4271/921603. URL https://doi.org/10.4271/921603.

[73] A. Taylor, N. Japkowicz, and S. Leblanc. Frequency-based anomaly detection for the

automotive can bus. In 2015 World Congress on Industrial Control Systems Security

(WCICSS), pages 45�49, 2015. doi: 10.1109/WCICSS.2015.7420322.

[74] A. Taylor, S. Leblanc, and N. Japkowicz. Anomaly detection in automobile control

network data with long short-term memory networks. In 2016 IEEE International

Conference on Data Science and Advanced Analytics (DSAA), pages 130�139, 2016.

doi: 10.1109/DSAA.2016.20.

[75] A. Theissler. Anomaly detection in recordings from in-vehicle networks. 09 2014.

[76] A. Theissler. Detecting known and unknown faults in automotive systems using

ensemble-based anomaly detection. Knowledge-Based Systems, 123:163�173, 2017.

https://www.sciencedirect.com/science/article/pii/S2214209619302451
https://www.sciencedirect.com/science/article/pii/S2214209619302451
https://doi.org/10.4271/921603

| Bibliography 59

ISSN 0950-7051. doi: https://doi.org/10.1016/j.knosys.2017.02.023. URL https:

//www.sciencedirect.com/science/article/pii/S0950705117301077.

[77] M. Trabelsi Ajili and Y. Hara-Azumi. Multimodal neural network acceleration on a

hybrid cpu-fpga architecture: A case study. IEEE Access, 10:9603�9617, 2022. doi:

10.1109/ACCESS.2022.3144977.

[78] K. Tsantikidou, N. Tampouratzis, and I. Papaefstathiou. A novel fpga-based intent

recognition system utilizing deep recurrent neural networks. Electronics, 10(20):

2495, 10 2021. ISSN 2079-9292. doi: 10.3390/electronics10202495. URL http:

//dx.doi.org/10.3390/electronics10202495.

[79] D. K. Vasistha, 2017. URL https://hdl.handle.net/1969.1/165769.

[80] T. P. Vuong, G. Loukas, and D. Gan. Performance evaluation of cyber-physical in-

trusion detection on a robotic vehicle. In 2015 IEEE International Conference on

Computer and Information Technology; Ubiquitous Computing and Communications;

Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Comput-

ing, pages 2106�2113, 2015. doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.313.

[81] C. Wang, Z. Zhao, L. Gong, L. Zhu, Z. Liu, and X. Cheng. A distributed anomaly

detection system for in-vehicle network using htm. IEEE Access, 6:9091�9098, 2018.

doi: 10.1109/ACCESS.2018.2799210.

[82] J. Wang and S. Gu. Fpga implementation of object detection accelerator based on

vitis-ai. In 2021 11th International Conference on Information Science and Technol-

ogy (ICIST), pages 571�577, 2021. doi: 10.1109/ICIST52614.2021.9440554.

[83] A. R. Wasicek, M. D. Pesé, A. Weimerskirch, Y. Burakova, and K. Singh. Context-

aware intrusion detection in automotive control system, 2017.

[84] M. Weber, S. Klug, B. Zimmer, and E. Sax. Embedded hybrid anomaly detection

for automotive can communication. 02 2018.

[85] L. Yang, A. Moubayed, and A. Shami. Mth-ids: A multitiered hybrid intrusion

detection system for internet of vehicles. IEEE Internet of Things Journal, 9(1):

616�632, 2022. doi: 10.1109/JIOT.2021.3084796.

[86] C. Young, H. Olufowobi, G. Bloom, and J. Zambreno. Automotive intrusion detection

based on constant can message frequencies across vehicle driving modes. URL https:

//dl.acm.org/doi/10.1145/3309171.3309179.

[87] C. Young, J. Zambreno, and G. Bloom. Towards a fail-operational intrusion detection

https://www.sciencedirect.com/science/article/pii/S0950705117301077
https://www.sciencedirect.com/science/article/pii/S0950705117301077
http://dx.doi.org/10.3390/electronics10202495
http://dx.doi.org/10.3390/electronics10202495
https://hdl.handle.net/1969.1/165769
https://dl.acm.org/doi/10.1145/3309171.3309179
https://dl.acm.org/doi/10.1145/3309171.3309179

60 6| BIBLIOGRAPHY

system for in-vehicle networks. In Proceedings of the Workshop on Security and

Dependability of Critical Embedded Real-Time Systems (CERTS), November 2016.

[88] K.-S. Yu, S.-H. Kim, D.-W. Lim, and Y.-S. Kim. A multiple rényi entropy based

intrusion detection system for connected vehicles. Entropy, 22(2), 2020. ISSN 1099-

4300. doi: 10.3390/e22020186. URL https://www.mdpi.com/1099-4300/22/2/186.

[89] J. Zhang, F. Li, H. Zhang, R. Li, and Y. Li. Intrusion detection system using

deep learning for in-vehicle security. Ad Hoc Networks, 95:101974, 2019. ISSN

1570-8705. doi: https://doi.org/10.1016/j.adhoc.2019.101974. URL https://www.

sciencedirect.com/science/article/pii/S1570870519304354.

[90] L. Zhang, L. Shi, N. Kaja, and D. Ma. A two-stage deep learning approach for can

intrusion detection. 2018.

[91] T. Zhang, H. Antunes, and S. Aggarwal. Defending connected vehicles against mal-

ware: Challenges and a solution framework. IEEE Internet of Things Journal, 1(1):

10�21, 2014. doi: 10.1109/JIOT.2014.2302386.

https://www.mdpi.com/1099-4300/22/2/186
https://www.sciencedirect.com/science/article/pii/S1570870519304354
https://www.sciencedirect.com/science/article/pii/S1570870519304354

61

A| Appendix A

In this appendix we report the summary tables detailed in [4] in order to allow the readers

to compare the papers reviewed by Al-Jarrah et al. with the ones analyzed in our survey.

62 A| Appendix A

Work Technique
Features/Feature
Selection

Dataset Attack Type Performance Metrics Benchmark Models

[80] Rule-based
Cyber and Physi-
cal/NA

Real data of 52,215
records of a small robot
vehicle

DoS,
MI,
2 Malwares

Acc (66.7-85.24%),
FPR (5.43-29.60%),
FNR (5.74-41.44%),
ROC,
AUC (0.73-0.97),
Latency (about 1 sec)

NA

[22] Rule-based Cyber/NA NA NA

Throughput (39Gbps),
Power consumption
(7.5W),
Latency (4µs)

Snort software

[29]
Time and Fre-
quency Analysis

Cyber/NA Simulated data MI NA NA

[41]
Time and Fre-
quency Analysis

Cyber/NA Simulated data NA NA NA

[73]
Time and Fre-
quency Analysis

Cyber/NA
Real data of a Ford Ex-
plorer 2011

MI,
Deletion

ROC,
AUC (0.8720-1.0000)

OCSVM

[68]
Time and Fre-
quency Analysis

Cyber/NA
Real data of an
anomanyised vehicle

MI Acc (36-100%) NA

[87]
Time and Fre-
quency Analysis

Cyber/NA NA
Replay,
MI

NA NA

[18]
Time and Fre-
quency Analysis

Cyber/NA
Real data of approx-
imately 2.25 million
messages

MI,
Deletion,
Masquerade

ROC,
FPR (0.055%),
TPR (100%)

NA

[24]
Time and Fre-
quency Analysis

Cyber/NA NA
MI,
Invalid messages

NA NA

[39]
Time and Fre-
quency Analysis

Cyber/NA
Real data captured
from a Kia Soul

DoS,
Fuzzy,
Masquerade

NA NA

[6]
Time and Fre-
quency Analysis

Physical/Joint Mu-
tual Information
Criterion

A dataset collected
from 16 di�erent chan-
nels and 4 identical
ECUs transmitting the
same message

MI
DR for channel (95.2%),
DR for ECU (98.3%)

NA

[53]

Computational
Intelligence and
Information
Theory

Cyber/NA Real data

MI,
DoS,
Plausibility of In-
terrelated Events

NA NA

[45]

Computational
Intelligence and
Information
Theory

Cyber/NA
Real data from 2011
Ford Fiesta

MI,
Fuzzy

NA NA

[40]

Computational
Intelligence and
Information
Theory

Cyber/NA Simulated data

USB �rmware
update,
Communication
with unknown
vendor,
OTA malicious
updates,
Malicious applica-
tion installation

AUC (0.81-0.96),
F-score (0.61-0.93)

NA

[65]

Computational
Intelligence and
Information
Theory

Cyber/NA
Real data from Re-
nault Zoe 2016

MI
Throughput and com-
plexity (> 2000events/s)

NA

[83]

Computational
Intelligence and
Information
Theory

Physical/NA
Real data of a 2015
passenger vehicle

Chip tuning (ma-
nipulation)

NA NA

[19]

Computational
Intelligence and
Information
Theory

Cyber/Sequential
Forward Selection

Real data from a pro-
totype setup,
from Hyundai Sonata
2010,
from Kia Soul 2014

Masquerade,
Bus-o�

F-score (54.24-99.61%),
Precision (92-99%),
Recall (92-99%),
FPR (0%)

NA

[13] Others/Hybrid Cyber/NA NA
Masquerade,
DoS,
Replay

NA NA

[44] Others/Hybrid Cyber/NA
Real data from an un-
modi�ed licensed vehi-
cle

Replay,
MI

DR (20-100%) NA

Table A.1: Summary of Flow-based approaches reviewed in [4].

A| Appendix A 63

Work Technique
Features/Feature
Selection

Dataset Attack Type Performance Metrics Benchmark Models

[10] Rule-based
Cyber and Physi-
cal/NA

NA

Replay,
MI,
Rogue node,
Compass manipu-
lation,
Broken wheel

ROC,
AUC (0.406-1)

NA

[3] Rule-based Cyber/NA Simulated data
Replay,
Invalid messages
(MI)

NA NA

[46] Rule-based Cyber/NA Mixed data MI
Field Classi�cation Dis-
tance (10-40.8%),
FPR (0.1-2.2%)

NA

[70] Rule-based Cyber/NA
Real data from 2011
Ford Fiesta

MI DR (20-100%) NA

[75]

Computational
Intelligence and
Information
Theory

Cyber/NA Real data Faults

Training Time (20843-
63631s),
Testing Time (4845-
24145s),
FN (0.0-10.5/hour),
TN (9-45/hour),
TNR (42.9-76.9%),
Precision (32.3-100%)

NA

[57]

Computational
Intelligence and
Information
Theory

Cyber/NA
Real data from Honda,
Toyota and Chevrolet

MI NA NA

[36]

Computational
Intelligence and
Information
Theory

Cyber/NA Simulated data
Field modi�ca-
tion,
MI

TPR (97.6-99.8%),
TNR (93.7-99.9%),
Training Time (4.741-
11.977s),
Testing Time (8.957-
8.120ms)

ANN

[37]

Computational
Intelligence and
Information
Theory

Cyber/NA Simulated data
MI,
Manipulation at-
tacks

ROC,
DR (99%),
FPR (1.6%),
Acc(97.8%),
Training Time (4.15-
10.81s),
Testing Time (2.05-
3.78ms)

SVM,
ANN

[74]

Computational
Intelligence and
Information
Theory

Cyber/NA
Real data from 2012
Subaru Impreza

Interleave,
Drop,
Discontinuity,
Unusual,
Reverse

ROC,
AUC (0.176471-1),
TPR (100%),
FPR (0.0010-0.6341%)

NA

[76]

Computational
Intelligence and
Information
Theory

Cyber/NA
Real data from 2002
Renault Twingo

Faults injection

TPR (80-100%),
Precision (35.4-100%),
F2-score (68.5-83.3%),
Diversity (0.093-0.223)

NA

[23]

Computational
Intelligence and
Information
Theory

Cyber/NA Real data MI NA NA

[47]

Computational
Intelligence and
Information
Theory

Cyber/NA Real data
DoS,
Fuzzy,
MI

FPR (0-0.038),
Precision (0.963-1),
Recall (0.823-1),
F-score (0.981-1),
AUC (0.986-1)

NA

[26]

Computational
Intelligence and
Information
Theory

Cyber/NA NA NA NA NA

[66]

Computational
Intelligence and
Information
Theory

Cyber/NA NA NA NA NA

Table A.2: Summary of Payload-based approaches reviewed in [4]. Part 1

64 A| Appendix A

Work Technique
Features/Feature
Selection

Dataset Attack Type Performance Metrics Benchmark Models

[81]

Computational
Intelligence and
Information
Theory

Cyber/NA
Real data from Subaru
Impreza

Field modi�ca-
tion,
Replay

AUC (0.85-1),
Recall (0.2-0.8),
Precision (0.95-1)

RNN,
Hidden Markov Model

[43]

Computational
Intelligence and
Information
Theory

Cyber and Physi-
cal/NA

Simulated data
DoS,
MI,
Malware

Acc (86.9%),
Testing Time (1.163-
1.704)

Logistic regression,
DT,
SVM,
RF,
MLP

[11] Others/Hybrid
Cyber and Physi-
cal/NA

Data of a robot vehicle

MI,
Rogue node,
Magnetic Interfer-
ence attacks

ROC,
AUC (0.995)

NA

Table A.3: Summary of Payload-based approaches reviewed in [4]. Part 2

Work Technique
Features/Feature
Selection

Dataset Attack Type Performance Metrics Benchmark Models

[54]
Detection sen-
sors

NA NA NA NA NA

[91]

A cloud-assisted
vehicle malware
protection
framework

Cyber/NA NA Malware NA NA

[9]

A back-end
Security In-
formation and
Event Manage-
ment System

NA NA NA NA NA

[79]

Cross-
correlation-
based detector,
Timing-based
detector,
Messages order
detector

Cyber/NA

Real data from Honda
Civic,
Toyota Camry,
Kia

MI,
Deletion,
DoS

Latency (2s),
FPR (0-3.5%)

NA

[84]

A hybrid ap-
proach of
speci�cation-
based and
ML-based
system

Cyber/NA Simulated data

Limitation of
value range,
Value freeze,
Alternative signal
sequence,
Peak signal,
Signal jump

NA NA

[90]

A hybrid ap-
proach of rule-
based and ML-
based system

Cyber/Forward Fea-
ture Seletion

Real data

MI,
Spoo�ng,
Replay,
Deletion

DR (99.91-99.97%),
FPR (0.18-0.090%),
Testing Time (0.53-061
ms/message)

NA

Table A.4: Summary of Others/Hybrid approaches reviewed in [4].

65

List of Acronyms

ECU Electronic Control Unit

CAN Controller Area Network

OBD On-Board Diagnostics

DBC Communication Database for CAN

SoF Start of Frame

CAN-ID CAN Identi�er

RTR Remote Transmission Request

IDE Identi�er Extension Bit

DLC Data Length Code

CRC Cyclic Redundancy Check

ACK ACKnowledge

EoF End of Frame

IFS Inter-Frame Space

IDS Intrusion Detection System

IPS Intrusion Prevention System

T&FA Time and Frequency Analysis

CI&IT Computational Intelligence and Information Theory

DT-DS Decision Tree Ensemble-based Intrusion Detection System

BFF-IDS Blockchain-based Federated Forest IDS

AI Arti�cial Intelligence

ML Machine Learning

66 | List of Acronyms

LOF Local Outlier Factor

ANN Arti�cial Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

DNN Deep Neural Network

LSTM Long Short-Term Memory

GPT Generative Pretrained Transformer

NLL Negative Log-Likelihood

ELU Exponential Linear Unit

FL Federated Learning

GDM Gradient Descent with Momentum

GDM/AG Gradient Descent with Momentum and Adaptive Gain

DT Decision Tree

RT Random Tree

RF Random Forest

IF Isolation Forest

SGD Stochastic Gradient Descent

NB Naive Bayes

GAN Generative Adversarial Network

MLP MultiLayer Perceptron

SOM Self-Organizing Map

MLHC Multi-Labeled Hierarchical Classi�cation

TLMD Two Layers Multi-class Detection

SLMC Single Layer Multi-class Classi�cation

GRU Gated Recurrent Unit

AGRU Attention-based Gated Recurrent neural network

| List of Acronyms 67

GMM Gaussian Mixture Model

SVM Support Vector Machine

OCSVM One Class Support Vector Machine

K-NN K-Nearest Neighbors

YOLO You Only Look Once

VAR Vector AutoRegression

MBA Modi�ed Bat Algorithm

TP True Positive

TN True Negative

FP False Positive

FN False Negative

DR Detection Rate

TPR True Positive Rate

TNR True Negative Rate

FPR False Positive Rate

FNR False Negative Rate

ROC Receiver Operating Characteristic

AUC Area Under Curve

MCC Matthews Correlation Coe�cient

FPBA False Positive Before Attack

TTD Time To Detection

TTP Testing Time per Packet

FPS Frames Per Second

FLOPS FLoating point Operations Per Second

PCC Pearson Correlation Coe�cient

IG Information Gain

68 | List of Acronyms

FCBF Fast Correlation-Based Filter

KPCA Kernel Principal Component Analysis

IFS Improved Feature Selection

IDEC Improved Deep Embedded Clustering

HDL Hardware Description Language

ASIC Application-Speci�c Integrated Circuit

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

CPU Central Processing Unit

CLB Con�gurable Logic Block

LUT Look-Up Table

MPSoC MultiProcessor System on a Chip

DSP Digital Signal Processor

PE Processing Engine

DPU Deep learning Processing Unit

DoS Denial of Service

MI Message Injection

CWT Continuous Wavelet Transform

WCS Worst Case Scenario

API Application Programming Interface

ORNL Oak Ridge National Lab

69

List of Figures

1.1 CAN structure . 1

2.1 Original and extended CAN frame format 7

2.2 Reactive and proactive countermeasure lifecycles 9

3.1 Categories of CAN IDSs. 13

3.2 Classi�cation methods comparison: (a) SLMC model; (b) TLMD model;

(c) MLHC model [63]. 21

3.3 NeuroCAN network structure [7]. 23

3.4 Distribution of feature sets. 24

3.5 Comparison of dataset distribution with [4]. 24

3.6 Distribution of attack types considered in the reviewed papers and com-

parison with results of [4]. 27

3.7 Distribution of reviewed papers using benchmark models. 30

4.1 Comparison of detection techniques distribution with [4]. 31

4.2 IDS placements . 35

5.1 Basic CLB structure. 40

5.2 Vitis AI overview from [1]. 43

5.3 Structure comparison of: (a) Reduced CANnolo [59] and (b) Tsantikidou

et al. [78]'s model. 46

71

List of Tables

4.1 Summary of Flow-based approaches. 32

4.2 Summary of Payload-based approaches. 33

4.3 Summary of Hybrid approaches. 34

A.1 Summary of Flow-based approaches reviewed in [4]. 62

A.2 Summary of Payload-based approaches reviewed in [4]. Part 1 63

A.3 Summary of Payload-based approaches reviewed in [4]. Part 2 64

A.4 Summary of Others/Hybrid approaches reviewed in [4]. 64

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Overview of Controller Area Network
	CAN Protocol
	CAN Frames
	Frame Types
	Frame Format

	CAN Security
	Countermeasures against CAN attacks

	Intrusion Detection Systems for CAN
	Categories of CAN IDSs
	Flow-based IDSs
	Payload-based IDSs
	Hybrid IDSs

	Features and Feature Selection
	Datasets
	Examined Attack Types
	Evaluation Metrics
	Benchmark Models

	Research Gaps
	Detection Techniques and Placement
	Features and Feature Selection
	Attack Types and Reactive Measures
	Performance Metrics and Benchmark Models

	Field Programmable Gate Array for IDSs
	FPGA Overview
	FPGA for CAN IDSs
	FPGA Implementation Examples
	Examples Analysis

	FPGA for CANova

	Conclusions
	Bibliography
	Appendix A
	List of Acronyms
	List of Figures
	List of Tables

