
i
i

“output” — 2020/9/22 — 21:19 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

TRANSFER LEARNING FOR ANTICIPATING

MOBILE NETWORK PERFORMANCE

Doctoral Dissertation of:
Claudia Parera

Supervisor:
Prof. Matteo Cesana

Tutor:
Prof. Carlos Giussepe Riva

The Chair of the Doctoral Program:
Prof. Matteo Cesana

Year 2019 – Cycle 32

i
i

“output” — 2020/9/22 — 21:19 — page 2 — #2 i
i

i
i

i
i

i
i

“output” — 2020/9/22 — 21:19 — page 1 — #3 i
i

i
i

i
i

Acknowledgements

I would like to thank the following people for their continuous support
throughout this project:

My main supervisor Prof. Matteo Cesana from Politecnico di Milano
for his patience, motivation and the fruitful technical discussions.

My other supervisors Alessandro Redondi from Politecnico di Milano,
Ilaria Malanchini and Qi Liao from Nokia Bell Labs, Stuttgart for their
continuous guidance and feedback throughout this project.

Markus Gruber and the rest of the Radio Network Automation team at
Nokia Bell Labs, Stuttgart who, in one way or another, supported me during
my two years internship at Bell Labs.

Dan Wellington, Arto Sakko and Praveen Bezawada from Nokia Soft-
ware for the insightful technical discussions and their willingness to collab-
orate.

Karin Wrobel who made me feel at home in Germany for the last two
years.

My parents, especially my mum, for their patience and encouragement.
My parents in laws for their support and care.

My husband Robert Norvill for his unwavering support and love.

i
i

“output” — 2020/9/22 — 21:19 — page 2 — #4 i
i

i
i

i
i

i
i

“output” — 2020/9/22 — 21:19 — page I — #5 i
i

i
i

i
i

Abstract

MACHINE learning will play a major role in handling the complexity
of future mobile wireless networks by enhancing network man-
agement and orchestration capabilities. Due to the large number

of parameters that can be configured in the network, collecting and process-
ing high volumes of data is often unfeasible during network runtime. This
calls for taking resource management and service orchestration decisions
when only a partial view of the network is available, and multiple decisions
need to be taken within a limited period of time.

Transfer learning is a machine learning paradigm that aims at improv-
ing the prediction performance of a learning task by applying knowledge
previously gained in a related learning task or domain. Motivated by this
fact, in this thesis we provide a transfer learning framework that can be ap-
plied to anticipate and further adapt network decisions when only a partial
network view is available. Predictions can be carried out with improved
performance when information in the target network domain is limited, and
multiple decisions need to be made in a small time frame. To this end,
we evaluate the proposed framework in three different industry provided,
real world use cases, using data collected from commercial 4G networks.
Namely, they are: (i) Tilt-Dependent Radio Map Prediction, (ii) Mobile Ra-
dio Networks Key Performance Indicator Anticipation and (iii) Multi-Step
Resource Utilization Prediction.

The main contribution of this thesis is the introduction of transfer learn-
ing to anticipate network performance in mobile communication networks
achieving improved accuracy and complexity time.

I

i
i

“output” — 2020/9/22 — 21:19 — page II — #6 i
i

i
i

i
i

i
i

“output” — 2020/9/22 — 21:19 — page III — #7 i
i

i
i

i
i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Thesis Outline . 4
1.4 Publications . 4

2 State of the Art 7
2.1 Transfer Learning . 7

2.1.1 When to Transfer? 8
2.1.2 What to Transfer? 8
2.1.3 How to Transfer? 8

2.2 Deep Transfer Learning 10
2.2.1 Transfer Learning in Computer Vision 11
2.2.2 Transfer Learning in Natural Language Processing . . 12
2.2.3 Transfer Learning in Time Series Analysis 13
2.2.4 Transfer Learning and Reinforcement Learning . . . 13

2.3 Transfer Learning in Mobile Communication Networks . . . 14
2.3.1 Transfer Learning for Network Optimization 14
2.3.2 Transfer Learning for Network Performance Antici-

pation . 14

3 Deep Transfer Learning 17
3.1 Transfer Learning Background 17

3.1.1 Traditional Machine Learning vs. Transfer Learning . 18

III

i
i

“output” — 2020/9/22 — 21:19 — page IV — #8 i
i

i
i

i
i

Contents

3.1.2 Transfer Learning Research Questions 18
3.2 Transfer Learning Pipeline 19

3.2.1 Use Case Identification 19
3.2.2 Exploratory Data Analysis 19
3.2.3 Baselines . 19
3.2.4 Transfer Learning 20
3.2.5 Performance Evaluation 21
3.2.6 System Deployment 21

4 Applications to Tilt-Dependent Radio Map Prediction 23
4.1 Motivation . 23
4.2 Related Work . 24
4.3 Problem Statement . 25
4.4 Data Collection . 25

4.4.1 Data Preprocessing 26
4.5 Prediction Approaches . 27

4.5.1 Transfer Learning Approach 30
4.5.2 Baseline Methods 32

4.6 Experimental Setup . 34
4.6.1 Domain Distance 35
4.6.2 Parameters Optimization 36

4.7 Results . 40
4.7.1 Single Tilt Transfer 40
4.7.2 Tilt Augmentation Transfer 44

4.8 Summary . 47

5 Applications to Key Performance Indicator Anticipation 49
5.1 Motivation . 49
5.2 Related Work . 50
5.3 Problem Statement . 51

5.3.1 Notation . 52
5.4 Prediction Approaches . 52

5.4.1 Deep Learning . 52
5.4.2 Transfer Learning 54
5.4.3 Baselines . 55

5.5 Experimental Setup . 56
5.5.1 Parameter Optimization 56

5.6 Results . 58
5.6.1 City Models Transfer 58
5.6.2 Frequency vs. City Models Transfer 59

IV

i
i

“output” — 2020/9/22 — 21:19 — page V — #9 i
i

i
i

i
i

Contents

5.6.3 Complexity Analysis 60
5.7 Summary . 64

6 Applications to Multi Step Resource Utilization Prediction 65
6.1 Motivation . 65
6.2 Related Work . 66
6.3 Problem Statement . 66

6.3.1 Notation . 66
6.4 Prediction Approaches . 67

6.4.1 Baselines . 67
6.4.2 Multi Step LSTM 68
6.4.3 Transfer Learning 69

6.5 Experimental Setup . 70
6.5.1 Performance Evaluation 70
6.5.2 Parameters Optimization 70

6.6 Results . 71
6.6.1 Multi-Step Forecasting 71
6.6.2 Error Analysis . 74
6.6.3 Complexity Analysis 75

6.7 Summary . 77

7 Conclusions 79
7.1 Conclusions . 79
7.2 Discussion and Future work 81

Bibliography 89

V

i
i

“output” — 2020/9/22 — 21:19 — page VI — #10 i
i

i
i

i
i

i
i

“output” — 2020/9/22 — 21:19 — page 1 — #11 i
i

i
i

i
i

CHAPTER1
Introduction

1.1 Motivation

The fifth generation wireless networks (5G) are expected to improve the
performance of cellular systems, achieving higher data rates, reduced la-
tency, higher reliability and support for a greater numbers of users. To
achieve this, 5G makes use of dense and heterogeneous deployments, cou-
pled with higher flexibility in the network access and core domains, which
can be dynamically managed in either a centralized or distributed manner.

To cope with such a challenging scenario, it is foreseen that machine
learning tools will play a major role in enabling the transition from cur-
rent mobile networks to 5G architectures [46]. Moreover, by exploiting the
increased availability of data in 5G coming from network devices and user
terminals, machine learning tools will be able to assist network operators in
dealing with the increasing complexity of configuring parameters for net-
work optimization. Thus, machine learning tools will form the basis for
automated and smart network management techniques. Machines learning
faces two major challenges in this regard: i) Data availability and ii) Time
complexity.

• Data availability: Although the amount of data available is expected

1

i
i

“output” — 2020/9/22 — 21:19 — page 2 — #12 i
i

i
i

i
i

Chapter 1. Introduction

to increase in 5G networks and beyond, collecting and storing high
volumes of data with the required quality is often unfeasible for the
operator.
For instance, conventional “drive tests” are carried out to collect data
and improve network coverage and quality of service (QoS). How-
ever, this requires large Operational Expenditure (OPEX) and pro-
vides only limited snapshots of the entire network [40]. Other strate-
gies such as crowdsourcing, can be effective, however they still raise
questions in terms of security, privacy and trust [30].
In addition, mobile networks are constantly changing and evolving,
which means the operator is constantly taking decisions to optimize
network performance, making it impossible to collect and store data
from all the possible network configurations at all time intervals. For
instance, in [10], cells are turned off for energy saving purposes based
on traffic demand, therefore no data can be collected when the cells
are turned off.
Similarly, data quality problems, such as higher variance or sparsity
can arise when data collection is carried out at different network lay-
ers, since propagation characteristics of components carriers working
at different frequencies varies significantly. For instance, a component
carrier working at 800 MHz has different propagation to a component
carrier working at 2.5 GHz [59].

• Time complexity: To fulfill the requirements of 5G networks and
beyond, fast and scalable anticipation and network optimization de-
cisions are of vital importance. For instance, when carrying out Key
Performance Indicator (KPI) anticipation, which is an essential task
to enhance self organizing networks (SON) capabilities, thousands of
predictions need to be carried out simultaneously for all the active
cells in the system within a given timeframe. As a result, the main
goal is not just achieving a “good” prediction error but also decreas-
ing the prediction time, such that the system is capable of reacting on
time (e.g., fault detection and mitigation as part of SON self-healing
functionalities). Moreover, it is expected that in such a system, the
number of cells will increase in the future, therefore scalability is an-
other key requirement in order to anticipate the network performance
and react accordingly.
Similar requirements are encountered when carrying out network plan-
ning in order to handle network capacity, specifically for decentral-
ized architectures, where a first processing step can be performed in

2

i
i

“output” — 2020/9/22 — 21:19 — page 3 — #13 i
i

i
i

i
i

1.2. Contributions

a central unit and minimal post processing can be carried out on a
distributed manner on the network nodes.

The evolving 5G ecosystem calls for rethinking the way anticipation and
optimization decisions are taken when only a partial view of the network is
available and multiple decisions need to be taken simultaneously. To this
end, in this thesis, we introduce and propose transfer learning, which is
a machine learning paradigm that has received a lot of attention over the
past few years, specifically in the industry [67]. Transfer learning seeks
to improve the performance of a learning task by using knowledge gained
in another related but different learning task or domain. Recently, transfer
learning has been used with great success for use cases where a model is
trained with sufficient data from a source domain and retrained and applied
to another related task or domain with limited data, significantly improving
the performance on the target task [50, 69].

1.2 Contributions

The main contributions of this thesis are summarized as it follows:

1. We propose the use of transfer learning for network performance an-
ticipation by designing and developing a deep transfer learning frame-
work that can be used when only a partial view of the network is avail-
able and multiple predictions need to be taken within a limited period
of time.

2. In particular, the proposed transfer learning framework has been val-
idated on real world data collected from Long Term Evolution (LTE)
networks. The framework was built to solve three industry problem,
namely they are: (i) Tilt-Dependent Radio Map Prediction, (ii) Mo-
bile Radio Networks Key Performance Indicator Anticipation and (iii)
Multi-Step Resource Utilization Prediction.

3. For all the tested scenarios, the proposed approach is shown to achieve
state of the art results in terms of prediction error while significantly
reducing the amount of labeled data required to carry out predictions.

4. For each use case, we answer the main transfer learning research ques-
tions such as: What, When and How to transfer? We accomplish this
firstly by: i) Finding a neural network architecture and combinations
of hyperparameters which improves the learning task on the target
domain and ii) Selecting the source domain based on predefined sim-
ilarity metrics tailored to the problem at hand.

3

i
i

“output” — 2020/9/22 — 21:19 — page 4 — #14 i
i

i
i

i
i

Chapter 1. Introduction

5. Finally, by using transfer learning we significantly reduce the total
amount of parameters that need to be found during training, thus de-
creasing the overall time complexity and increasing scalability.

6. The transfer learning solution has been adopted for integration on the
Nokia portfolio on new use cases such as cell congestion and network
capacity prediction. It will form part of Nokia’s decision making pro-
cess in the future.

1.3 Thesis Outline

The rest of this thesis is divided in chapters as it follows:

• Chapter 2, summarizes the state of the art on transfer learning as well
as its applications in the area of mobile wireless networks.

• Chapter 3, formalizes transfer learning and describes the main com-
ponents of the proposed transfer learning framework.

• Chapter 4, 5 and 6 describe different use cases in mobile network com-
munications where transfer learning has been successfully applied.

• Chapter 7 concludes the work and summarizes further research direc-
tions.

1.4 Publications

The content in chapters 4, 5 and 6 has been submitted and accepted to
international peer reviewed journals and conferences. Below the detailed
list of authors, publications and venues:

• C. Parera, A. E. C. Redondi, M. Cesana, Q. Liao, L. Ewe, C. Tatino,
"Transferring Knowledge for Tilt-Dependent Radio Map Prediction",
IEEE Wireless Communications and Networking Conference (WCNC),
Barcelona, Spain, 2018

• Parera, C., Liao, Q., Malanchini, I., Tatino, C., Redondi, A.E. and Ce-
sana, M., 2020. Transfer Learning for Tilt-Dependent Radio Map Pre-
diction. IEEE Transactions on Cognitive Communications and Net-
working

• C. Parera, A. E. C. Redondi, M. Cesana, Q. Liao, I. Malanchini,
"Transfer Learning for Channel Quality Prediction", IEEE Interna-
tional Symposium on Measurements and Networking, Catania, Italy,
2019

4

i
i

“output” — 2020/9/22 — 21:19 — page 5 — #15 i
i

i
i

i
i

1.4. Publications

• C. Parera, Q. Liao, I. Malanchini, "Anticipating Mobile Radio Net-
works Key Performance Indicators with Transfer Learning" (Pending
Submission)

• C. Parera, Q. Liao, I. Malanchini, D. Wellington, A. E. C. Redondi,
M. Cesana, "Transfer Learning for Multi-Step Resource Utilization
Prediction", IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications, London, 2020 (Submitted)

5

i
i

“output” — 2020/9/22 — 21:19 — page 6 — #16 i
i

i
i

i
i

i
i

“output” — 2020/9/22 — 21:19 — page 7 — #17 i
i

i
i

i
i

CHAPTER2
State of the Art

In this chapter we review the state of the art for transfer learning with par-
ticular focus on its application to mobile wireless networks.

2.1 Transfer Learning

Transfer learning has been applied with great success to supervised, unsu-
pervised and reinforcement learning. Three seminal papers review the state
of the art of transfer learning and its applications in those areas [74,93,102],
respectively. More recently, deep transfer learning has gained a lot of atten-
tion [67], due to its success in Computer Vision (CV) and Natural language
processing (NLP), among others. Main works in the area of deep transfer
learning are reviewed in [91].

The literature related to transfer learning uses various terms interchange-
ably, such as: covariance shift, bias and domain adaptation. In this thesis,
we follow the definition of transfer learning given in [74], where trans-
fer learning aims at extracting knowledge from one or more source tasks
and applies the extracted knowledge to a target task; allowing the domains,
tasks and distributions of source and target domains being different (see
Section 3.1 for a formal definition of transfer learning).

7

i
i

“output” — 2020/9/22 — 21:19 — page 8 — #18 i
i

i
i

i
i

Chapter 2. State of the Art

The main research questions when dealing with a transfer learning prob-
lem, are: When to transfer?, What to transfer? and How to transfer?. In the
sections below we explain and show through examples how these questions
have been addressed in the literature.

2.1.1 When to Transfer?

The question When to transfer? is mainly related to the issue of avoid-
ing negative transfer, which happens when transfer learning has a negative
impact on the performance of the target learning task.

The literature is primarily focused on the first two questions. In contrast,
in this thesis, we show through the examples in Chapters 4, 5 and 6, the
scenarios where transfer learning is carried out successfully and negative
transfer is avoided.

2.1.2 What to Transfer?

For the purpose of studying What to transfer?, we will use the categoriza-
tion found in [74], where transfer learning can be divided into:

• Inductive transfer: Different source and target tasks and same or
different source and target domains.

• Transductive transfer: Same source and target tasks but different
source and target domains.

• Unsupervised transfer: Similar to inductive transfer, with different
but related source and target tasks. The focus is solving an unsuper-
vised learning task on the target domain. There is no labeled data
available from source and target domains during training.

Following this categorization, our work is an example of transductive
transfer learning. We always have the same learning problem for the source
and target tasks. Moreover, we assume that the distributions of the data in
source and target domains are “related” but not exactly the same.

2.1.3 How to Transfer?

To answer the question How to transfer?, the most common transfer learn-
ing approaches are:

• Instance transfer: Labeled samples in the source domain are reweighted
and used in the target domain. It can be applied to inductive and trans-
ductive learning.

8

i
i

“output” — 2020/9/22 — 21:19 — page 9 — #19 i
i

i
i

i
i

2.1. Transfer Learning

In [21] the authors propose TrAdaBoost, which is the transfer learning
version of AdaBoost [32]. Assuming the data distribution in training
and testing domains are different, TrAdaBoost re-weights the samples
in the source domain in an iterative manner. This reduces the effect of
the “bad” instances and empowers the effect of the “good” ones in the
final classification.

A similar approach is used in [47], where the authors use heuristics
to remove instances from the source domain in order to minimize the
difference between the conditional probabilities in source and target
domains.

In contrast, in [14] the authors correct the differences between the con-
ditional probability distribution in source and target domains without
removing instances. They develop CP-MDA and 2SW-MDA algo-
rithms assuming a limited amount of labeled data in the target do-
main. This extends [27], where source instance weights are defined as
a function of the conditional probability distribution.

• Feature transfer: Aims at finding a “good” feature representation
that can minimize the domain difference. It is applied to inductive and
transductive learning.

In [55], a convex optimization algorithm is proposed to learn the fea-
ture weights and meta-priors that are going to be transferred to differ-
ent tasks whereas in [23], feature augmentation is used as a solution
to the feature bias problem.

In [73], the authors propose Transfer Component Analysis where com-
mon latent features with the same marginal probability distributions
are learned by reproducing a kernel space. Then, traditional machine
learning is applied, using the learned feature space as input. The
Maximum Mean Discrepancy (MMD) is used to measure the differ-
ences between probability distributions.

In [35] the authors propose a Stacked Denoising Autoencoder to solve
the difference between marginal distributions in source and target do-
mains. The input space is transformed to discover a common invariant
latent feature space, and then a classifier is trained on the source do-
main using the new set of features and the target domain used for
predictions.

• Parameter transfer: Works under the assumption that individual
models for related tasks share parameters or a combination of hyper-

9

i
i

“output” — 2020/9/22 — 21:19 — page 10 — #20 i
i

i
i

i
i

Chapter 2. State of the Art

parameters. It is mostly applied to inductive and transductive transfer
learning.
Most of the work related to parameter transfer referenced in [74] is
within the scope of regularization and Bayesian theory. In [28] and
[34], higher weights to the loss function in the target domain can lead
to performance improvements.
In addition, parameter transfer algorithms work well in multi-task
learning tasks, where a classifier learns from source and target do-
mains at the same time [94] and [95]. It is worth mentioning that
in these works negative transfer effect is mitigated by increasing the
weighting of the instances that makes source and target domains more
related, thus making the algorithm more robust to the addition of sam-
ples that are unrelated to the source domain.

• Relational knowledge transfer: Is applied to problems where there
is some kind of relation in the data (e.g. network or social network
data). It is mostly applied to inductive transfer learning.
First-order and Second-order Markov Logic Networks are used in [65]
and [24], respectively. Assuming that source and target domains are
related, the proposed algorithms find a way of connecting entities and
relationships between the source and the target domains.

The solution proposed in this thesis fits in the parameter transfer cate-
gory since the neural network architectures and parameters used to solve
source and target learning tasks are the same.

Remark 1. The work carried out in this thesis fits in the transductive learn-
ing and parameter transfer categories.

2.2 Deep Transfer Learning

Transfer learning has been applied with great success, improving the state
of the art in a wide range of fields such as CV, NLP and Speech Recog-
nition. Due to recent advances in deep learning, new approaches combine
deep and transfer learning.

Three major approaches are identified when using deep neural networks
and transfer learning together, in particular Convolutional Neural Networks
(CNNs) for CV:

• Fixed feature extractor: Takes a pretrained CNN and removes the
last layer. This pretrained CNN is used as feature extractor and a
linear classifier is trained on the new dataset.

10

i
i

“output” — 2020/9/22 — 21:19 — page 11 — #21 i
i

i
i

i
i

2.2. Deep Transfer Learning

• Fine-tuning: Not only is the classifier on top of the new CNN trained,
but also the weights on the pretrained layers are retrained through back
propagation.

• Pretrained models: The pretrained CNN weights are shared at differ-
ent checkpoints in time and used for fine-tuning on the new dataset.

These same techniques have been extended to other application fields
such as NLP, Speech Recognition and Time Series Analysis where Long
Short-Term Memory (LSTM) architectures are predominant. It is worth
mentioning that, deciding the new neural network architecture, as well as
finding a systematic approach to select the number of layers to fine-tune,
remains an open research question. Current solutions are tailored to a par-
ticular domain. In the following sections, we discuss through examples,
how deep transfer learning is applied in the different application domains.

2.2.1 Transfer Learning in Computer Vision

CV is one of the areas of application where transfer learning is widely used.
The general approach is training a model on the new dataset by using a
pretrained model on ImageNet [86] and fine-tuning a few layers. ImageNet
is a largely annotated database used as benchmark for CV tasks. It allows
researchers to train large models using Graphics Processing Units (GPUs)
and share them with the community such that they can be used as a starting
point for transfer learning.

As an example, in [69], mid-level image representations are learned on
a large-scale annotated dataset. A CNN is trained on ImageNet and the
learned image representations are transferred to different visual recogni-
tion tasks with limited amounts of training data. The authors significantly
outperform the state of the art in object and action classification despite the
difference in images statistics and tasks.

Motivated by the success of transfer learning in image classification,
in [51], the authors leverage CNNs and transfer learning by training in a
dataset of 1 million YouTube videos. They significantly improve the state
of the art for video classification.

In [108], the authors analyze how transferable CNN features in CV are
when training on ImageNet. Results show that, the transferability of fea-
tures decreases when the distance between tasks increases, however trans-
ferring features, even from tasks that are distant, is better than random ini-
tialization. Moreover, they find a systematic way of quantifying the trans-
ferability of features from each layer in the neural network.

11

i
i

“output” — 2020/9/22 — 21:19 — page 12 — #22 i
i

i
i

i
i

Chapter 2. State of the Art

Transfer learning has also turned into the de-facto deep learning stan-
dard for medical imaging [82]. The authors use pretrained models on Im-
ageNet for medical image classification. Unlike in the previous examples,
here experiments show there are no significant benefits in terms of perfor-
mance when using transfer learning in comparisons to more lightweight
approaches. They propose weight transfusion and feature reuse in order to
reduce convergence time as an alternative to transfer learning.

As noted before, even though more work on transfer learning has been
carried out in the field of CV than in other fields, research questions such
as how to fine-tune the new model remain open.

2.2.2 Transfer Learning in Natural Language Processing

Transfer learning has been successfully used in a variety of tasks in NLP
such as general language understanding, question answering and natural
language inference. The most successful approach so far is sequential trans-
fer learning [85]. A model is pretrained on a large unlabeled text corpus and
the resulting representations are adapted to a supervised target task .

Examples of pretrained models are: ELMo [78], Universal Language
Model Fine-tuning (ULMFiT) [44], Bidirectional Encoder Representations
from Transformers (BERT) [25] and Generative Pretrained Model (GPT-2)
[81]. Before, the state of the art in NLP was dominated by simple two or
three layer bidirectional LSTMs. Nowadays, the complexity has increased,
for instance BERT and GPT-2 consist of 24 Transformer [98] blocks con-
taining 1.5 billion of parameters.

The success of transfer learning in NLP is mainly due to the increasing
model complexity of pretrained architectures and the large amount of train-
ing data used. For instance, in ULMFiT [44] the authors show that there
are no big differences in performance when the amount of data used for the
pretrained model is similar to the amount of data used for training a model
from scratch. Similarly, Robustly-optimized BERT (RoBERTa) [60] out-
performs BERT by training the same BERT model for a longer period of
time.

Finding a systematic way of choosing the amount of network layers to
fine-tune, as in CV, remains an open research question. In contrast, in NLP,
fine-tunning layers progressively in time or intensity (i.e., at different learn-
ing rates) [44] has been shown to be successful improving the performance
of the network on the new dataset.

Finally, some approaches look at reducing the complexity of the pre-
trained models. For instance in DistilBERT [87], the authors propose the

12

i
i

“output” — 2020/9/22 — 21:19 — page 13 — #23 i
i

i
i

i
i

2.2. Deep Transfer Learning

use of distillation techniques [41] to reduce the size of BERT without sac-
rificing much accuracy.

2.2.3 Transfer Learning in Time Series Analysis

Transfer learning has also been used for time series analysis, for classifica-
tion and forecasting.

For instance, in [29] CNNs are used for time series classification. The
authors propose Dynamic Time Warping (DTW) to measure the inter-dataset
similarity and select the most appropriate source dataset. It is worth men-
tioning that, computing DTW is expensive since it is an Non-Deterministic
Polynomial Time (NP)-hard problem, therefore heuristics are used. Due to
this, in Chapters 5 and 6 instead, we propose the Euclidean Distance (ED).
In our case we do not consider time delay since source and target time series
should be as similar as possible for transfer learning.

Transfer learning for time series forecasting is proposed in: [83] for en-
ergy forecasting, [107] for financial time series and [63] for air quality pre-
diction. As in NLP, this last work leverages pretrained LSTMs for transfer
learning.

It is worth mentioning that, the application of transfer learning to time
series analysis is not as widely explored as its application to CV and NLP.
Transfer learning is a promising tool to solve the cold start problem [103]
in time series forecasting. This happens when predictions need to be car-
ried out for time series from which past observations are unavailable. In
Chapters 5 and 6 of this thesis, we model the KPI prediction problem as
a time series forecasting problem and use transfer learning to address cur-
rent constraints in terms of data availability and time complexity of current
approaches.

2.2.4 Transfer Learning and Reinforcement Learning

Another major trend is the joint application of transfer learning and Re-
inforcement Learning. Training a Reinforcement Learning agent can be
infeasible due to data limitations, safety concerns, among other reasons.

For instance, in [75] training a self driving vehicle in a real life sce-
nario would require non-affordable trials and errors. Therefore, the authors
propose a translation network to make the model trained in a virtual envi-
ronment workable in the real world.

13

i
i

“output” — 2020/9/22 — 21:19 — page 14 — #24 i
i

i
i

i
i

Chapter 2. State of the Art

2.3 Transfer Learning in Mobile Communication Networks

The applications of transfer learning in mobile communication networks
are yet to be fully explored [15]. Two major areas of application are identi-
fied, with works focusing on either: (i) network optimization or (ii) network
performance anticipation. In the sections below, we discuss relevant works
in each area of application.

2.3.1 Transfer Learning for Network Optimization

The first major area of application includes studies focusing on the use of
transfer learning for network policy optimization. This area of work is
sometimes associated with reinforcement learning, where the main goal is
as follows: given a set of possible short term decisions to take, find the
optimum network policy in an autonomous manner such that the long term
network performance improves.

Examples of this approach are the works in: [33] for network optimiza-
tion, [7, 43] for caching, [111] for wireless networks design, [16] for re-
source management in Wireless Virtual Reality and [88] for resource allo-
cation.

It is worth observing that one of the main motivations of this type of
approach is decreasing the time complexity of algorithms when trying to
find the best optimization policy. For instance in [88], the authors propose
transfer learning for resource allocation as an alternative to Mixed Integer
Nonlinear Programming (MINLP) problems, which are NP-hard.

Finally, other works focus on improving time complexity of evolving
architectures in the 5G ecosystem. For instance, in [20] the authors pro-
pose transfer learning to create a collaborative system in the edge cloud for
Multi-access Edge Computing (MEC), in which models at each edge can
adapt to changes; obtaining significant improvements with regard to a more
traditional centralized learning approach.

2.3.2 Transfer Learning for Network Performance Anticipation

In this second area of application, transfer learning is mostly used to an-
ticipate a quantity of interest based on previous observations (e.g., user
position, network KPI, etc.). Predicted values can be used by the operator
to take an informed decision in order to optimize the network performance.
This area of works applies supervised learning and makes different assump-
tions about the similarity between source and target tasks and domains.

14

i
i

“output” — 2020/9/22 — 21:19 — page 15 — #25 i
i

i
i

i
i

2.3. Transfer Learning in Mobile Communication Networks

In [70–72,114], transfer learning is used for localization by transferring
knowledge across devices, time and space.

Similarly, transfer learning has been used for outdoor position recovery
in [113], traffic prediction in [112], fault classification in [100] and spec-
trum sensing in [77].

Our work is along the same line of the work carried out in [112], where
deep learning is leveraged to anticipate a quantity of interest in the net-
work. Network parameters are shared across architectures trained on dif-
ferent types of network traffic datasets. For instance, a network pretrained
on the SMS dataset can be used to carry out predictions on a dataset con-
taining calls traffic. In contrast, we utilize deep neural networks and select
source and target domains according to domain distance metrics tailored to
the kind of data. In Chapter 4, we also study the effect of data augmenta-
tion in the source domain when using transfer learning. In Chapters 5 and
6, we model the KPI prediction problem as a transfer learning time series
forecasting problem and study the factors that affect the transfer learning
error.

Remark 2. The transfer learning approach proposed in this thesis utilizes
deep learning and different domain similarity metrics which are tailored to
the type of data, to address the existing challenges of data availability and
complexity time of current anticipation approaches.

15

i
i

“output” — 2020/9/22 — 21:19 — page 16 — #26 i
i

i
i

i
i

i
i

“output” — 2020/9/22 — 21:19 — page 17 — #27 i
i

i
i

i
i

CHAPTER3
Deep Transfer Learning

In this chapter we introduce transfer learning and describe the main steps
followed when applying transfer learning to different use cases in mobile
communication networks.

3.1 Transfer Learning Background

A domain D := {X , P (X)} consists of a feature space X and its prob-
ability distribution P (X), X ∈ X . A task T := {Y , f(·)} consists of a
label space Y and a predictive function f(·), where f(·) can be written as
P (Y |X), Y ∈ Y and X ∈ X . Formally, the definition of transfer learning
is given as follows:

Definition 3.1.1 (Transfer Learning [74]). Given a source domain DS and
learning task TS , a target domain DT and learning task TT , transfer learn-
ing aims to improve the learning of the target predictive function fT (·) in
DT using the knowledge in DS and TS , where DS 6= DT , or TS 6= TT .

17

i
i

“output” — 2020/9/22 — 21:19 — page 18 — #28 i
i

i
i

i
i

Chapter 3. Deep Transfer Learning

Model A Model B Model A

Domain/Task A Domain/Task B Domain/Task A Domain/Task B

Figure 3.1: Traditional machine learning vs. Transfer learning

3.1.1 Traditional Machine Learning vs. Transfer Learning

Unlike transfer learning (see Definition 3.1.1), in traditional machine learn-
ing, source and target domains (i.e., DS = DT) and source and target tasks
are the same, (i.e., TS = TT). Figures 3.1 shows the difference between
both machine learning approaches.

In this thesis, we focus on cases where the source and learning tasks are
the same (i.e., TS = TT), but source and target domain are “related” but
different (i.e., DS 6= DT).

3.1.2 Transfer Learning Research Questions

According to [74], in a transfer learning problem, the main research ques-
tions to solve are:

1. What to transfer?: It refers to which part of the knowledge is going to
be transferred across domains/tasks.

2. How to transfer?: It refers to the kind of algorithm that is going to be
used for the transfer learning task.

3. When to transfer?: It refers to the situations in which transfer should
be performed or not. It is highly related to avoid the negative transfer
(i.e., hurting the performance of the transfer learning task on the target
domain).

18

i
i

“output” — 2020/9/22 — 21:19 — page 19 — #29 i
i

i
i

i
i

3.2. Transfer Learning Pipeline

Use Case
Identification

Exploratory
Data Analysis Baselines Transfer

Learning
Performance
Evaluation

System
Deployment

Figure 3.2: Transfer Learning pipeline

In this thesis, we model different use cases in the area of mobile wireless
networks, as transfer learning problems. For each use case we provide
answers to the research questions mentioned above.

3.2 Transfer Learning Pipeline

The main steps of our transfer learning pipeline are detailed in Figure 3.2.
In the sections below we explain each step in detail.

3.2.1 Use Case Identification

Here, we identify potential use cases where the application of transfer learn-
ing could lead to improved performance in terms of accuracy, time com-
plexity or data requirements. In all cases source and target domains are
different but “related” and source and target tasks are the same. The se-
lected use cases are summarized below:

• Tilt Dependent Radio-Map Predictions

• Anticipating Mobile Radio Networks KPIs with Transfer Learning

• Transfer Learning for Multi-Step Resource Utilization Prediction

3.2.2 Exploratory Data Analysis

We then carry out Exploratory Data Analysis (EDA) to gain the first in-
sights from the data, evaluate its quality and studying the feasibility of us-
ing machine learning and specifically transfer learning. Examples of the
techniques and tools used here are: boxplots, histograms and scatter plots
as well as correlograms and hypothesis testing to assess stationarity in case
of using time series data.

3.2.3 Baselines

Once the required data quality is achieved, we use statistics and traditional
machine learning algorithms tailored to the type of data and the machine

19

i
i

“output” — 2020/9/22 — 21:19 — page 20 — #30 i
i

i
i

i
i

Chapter 3. Deep Transfer Learning

learning problem to solve. Linear Regression [31], Random Forests [12]
and k-nearest neighbors (k-NN) [19] are among the most popular algo-
rithms used as benchmarks when working with categorical data in regres-
sion tasks (see Chapter 4). Similarly, Autorarima [11] and Moving Av-
erage [64] are popular for time series forecasting (see Chapter 5 and 6).
These methods are used as benchmark to understand whether deep learning
algorithm such as CNNs or LSTMs will have an impact on the prediction
error and they are required.

In addition, we use a models with the same deep learning architecture
used for transfer learning as benchmark. However, these models are either
trained and tested on the available data from the target domain or trained on
the source domain and applied to the target domain without the retraining
step. In the next chapters, these two baselines are denoted with the suf-
fixes S and BS, respectively. By using the S baselines, we can understand
whether negative transfer is happening or not, since we compare the per-
formance of transfer learning against the performance of the same method
without transfer. By using the BS baselines, we can understand the benefits
of using transfer learning (i.e., whether the retraining a model on the avail-
able data from the target domain improves the performance of the learning
task in the target domain).

3.2.4 Transfer Learning

Firstly, we define source and target domains according domain distance
metrics tailored to the type of the data. Finding the right domain distance
metric for a given machine learning task is still an ongoing area of research.
Proposed metrics in the literature vary depending on the dataset used for
machine learning. For instance, the ED is used to measure the distance
between two points in a n-dimensional space whereas the Cosine Similar-
ity [97] can be used to measure the distance between documents or the Jac-
card index [45] the distance between sets, just to mention a few. Similarly,
metrics such as the Kullback-Leibler divergence index (KL), the MMD and
the Jensen-Shannon divergence (JSD) can be used to measure the distance
between data distributions [1]. In Chapter 4, we define our domain distance
metric, namely the SDKL, which is the symmetric version of the KL and
it is used to measure the distance between the different probability distri-
butions representing the different tilt-dependent radio maps. In Chapters 5
and 6, we use the ED, which is a common and efficient way of measuring
similarity between time series in comparison to the DTW or the Pearson
Correlation [97]. The main goal when using transfer learning is having

20

i
i

“output” — 2020/9/22 — 21:19 — page 21 — #31 i
i

i
i

i
i

3.2. Transfer Learning Pipeline

source and target domains as similar as possible.
Secondly, we carry out the transfer learning step by adapting traditional

machine learning algorithms for the transfer learning task by freezing and
retraining different parts of the system. Finding source and target domains
as well as the neural network architecture that better fits the learning task,
addresses the main transfer learning questions of What, When and How to
transfer?. Common architectures adapted for the use of transfer learning
are Feed-Forward Neural Networks (FFNs), CNNs and LSTMs. More de-
tails about each architecture and how they are adapted for transfer learning
are shown in Chapters 5, 6 and 7, respectively.

3.2.5 Performance Evaluation

Finally, we carry out performance evaluation according to well known per-
formance metrics such as Mean Absolute Percentage Error (MAPE) and
Root Mean Squared Error (RMSE) tailored to the type of data. We also
measure the training duration to evaluate the time complexity of each ap-
proach. If there are advantages in using a transfer learning, then the pro-
posed algorithms can be deployed to production.

3.2.6 System Deployment

The system deployment phase comprises the implementation of the train-
ing, retraining and prediction functionalities as decoupled containerized
microservices and their deployment as Representational State Transfer
(REST) Application Programming Interfaces (APIs), endpoints which are
suitable for integration with the rest of the Nokia portfolio.

21

i
i

“output” — 2020/9/22 — 21:19 — page 22 — #32 i
i

i
i

i
i

i
i

“output” — 2020/9/22 — 21:19 — page 23 — #33 i
i

i
i

i
i

CHAPTER4
Applications to Tilt-Dependent Radio Map

Prediction

In this chapter we propose a transfer learning framework for radio map
reconstruction.

4.1 Motivation

Machine learning tools will be able to assist network operators in dealing
with the increasing complexity of configuring parameters for network opti-
mization by exploiting the increased availability of data in 5G coming from
network devices and user terminals. Among the manifold parameters that
can be configured at the base station (BS), one of the most important is the
antenna tilt, which is the angle formed by the vertical direction which the
antenna is facing and the horizon. Antenna tilt can be controlled either me-
chanically (by physically tilting the antenna up or down) or electronically
(relying on beam-forming techniques that steer the main beam of the an-
tenna towards a desired vertical direction), or by a combination of the two.
The antenna tilt directly impacts the performance of the cell served by the
BS in terms of network coverage, signal strength and inter-cell interference,

23

i
i

“output” — 2020/9/22 — 21:19 — page 24 — #34 i
i

i
i

i
i

Chapter 4. Applications to Tilt-Dependent Radio Map Prediction

and therefore determines the quality of service experienced by end users.
In particular, when the antenna tilt is changed in the BS, its effect on the
antenna gain over distance also changes, which further leads to a change
of the Reference Signals Received Power (RSRP) values [22]. Therefore,
different radio maps can be generated as a function of the selected tilt con-
figuration. We refer to these as tilt-dependent radio maps.

From an operator’s perspective being able to predict cell performance
without carrying out extensive trials or measurement campaigns is of key
importance for two reasons: firstly, extensive measurement campaigns,
such as test driving, are time consuming and costly. Secondly, even if
measurements were obtained inexpensively (e.g., directly from user termi-
nals through crowd-sourcing), testing all possible antenna configurations
might still be impractical at network runtime. Given such difficulties, a so-
lution which is particularly appealing to network operators is transferring
the knowledge acquired from a single measurement campaign (for a given
antenna tilt setting) to a new domain (a new tilt setting) without needing to
acquire a complete set of additional measurements. Therefore, in this chap-
ter, we formalize and solve this problem via transfer learning, a paradigm
that has received increasing attention in the last few years [74].

4.2 Related Work

Tilt-dependent radio map prediction plays a crucial role in the context of
network planning and proactive network optimization [66]. The predicted
propagation condition can be exploited for a reliable decision making pro-
cess to dynamically optimize antenna tilts in a time-varying network en-
vironment [66, 68]. Although radio map prediction has been extensively
studied [79], its dependency on antenna tilt has been investigated only in
few works. The authors in [84] propose a geometrical-based extension to
various traditional log-distance path loss models (Okumura-Hata, Walfisch-
Ikegami) to take into account the antenna tilt during the prediction of the
signal strength at a given distance from the BS. The proposed extension,
named vertical gain correction (VGC), is calculated directly from the an-
tenna patterns provided by the manufacturer and is added to the signal
strength estimated by the path loss models to compensate for the antenna
tilt. Experimental results on data collected from LTE BSs show that VGC
improves the performance of signal strength prediction when compared to
traditional models. Similarly, the work in [52] investigates the effect of
antenna tilt on radio maps, comparing the path loss models developed by
the 3rd generation partnership project (3GPP) [2] for different propagation

24

i
i

“output” — 2020/9/22 — 21:19 — page 25 — #35 i
i

i
i

i
i

4.3. Problem Statement

environments. The results were obtained using a ray tracing tool able to
take into account antenna tilts and demonstrate that changing antenna tilt
has a significant impact on the shadowing map. This calls for a rethinking
of currently available 3GPP propagation models and assumptions, which
apply an identical shadowing map independently from the antenna tilt.

4.3 Problem Statement

We address the following problem: “how to predict the performance of a
given network configuration by leveraging information from different net-
work configurations.” The performance measure that we target is the re-
ceived signal strength in the downlink. The network configuration domains
include the tilting configurations of the transmitting BSs.

We consider a BS that can work in H different tilt configurations, in-
dexed by h = 1, . . . , H . Let sh(xi) be the measured signal strength re-
ceived at location xi = {yi, zi} when the h-th tilt configuration is selected
at the BS, where yi and zi indicate the latitude and the longitude of the
i-th location, respectively. Let Mh be the set of location indexes where
measurements have been taken with configuration h.

The problem at hand can be defined as follows: given {sh(xi) : i ∈Mh},
estimate the unknown signal strength ŝn(xj) at the same or different loca-
tions, xj , with j ∈ Mn, under different network configuration domains,
n 6= h.

4.4 Data Collection

The dataset used in this work is composed of reference signal received
power (RSRP) outdoor measurements collected in Espoo, Finland, in Novem-
ber 2016 from two commercial LTE BSs with three different 120◦ sectors
each and operating at 2.6 GHz. Figure 4.1 shows the positions of the two
antennas and the representation of the target area. The measurements were
collected from three different physical cell identifiers (PCIs), which will be
referred to as PCI 1, 2 and 3. PCIs 1 and 2 refer to two different sectors of
the same BSs, whereas PCI 3 is a sector of a different BS.

RSRP measurements were collected using an Android device equipped
with an application capable of storing the RSRP from all the received cells,
the cell identifier, the global positioning system (GPS) position of the de-
vice and the timestamp. Such measurements were carried out at a frequency
of 1 Hz while walking along routes of 8 km within each cell coverage area,
with a minimum and maximum distance from the BS of 30 m and 900 m,

25

i
i

“output” — 2020/9/22 — 21:19 — page 26 — #36 i
i

i
i

i
i

Chapter 4. Applications to Tilt-Dependent Radio Map Prediction

Figure 4.1: Map showing the BS positions and the PCIs in the reference dataset

respectively. By design, the testing paths were planned to include different
propagation conditions: university campus with two or three-story build-
ings, residential areas, parking lots, lower density rural and open areas with
different types of roads (e.g., pedestrian, cycling and main roads). Each
testing path was walked once for each electronic tilt setting. The available
tilt settings are 2, 3 and 6 degrees for each PCI, respectively. The receiver
was placed at the height of 1.5 m and always kept at the same orientation.
The weather conditions were stable and cloudy, and the route was covered
by snow for most of the measurement campaign. The RSRP values were
collected from an operating mobile network. According to [4], these values
include the power from co-channel serving and non-serving cells as well as
adjacent channel interference, but only on the resource elements that carry
reference signals. Since these values are measured only in the symbols car-
rying the reference signal, they exclude most of the wide band noise and
interference from other cells. Overall, they are proportional to the SNR on
average [5]. Therefore, they are still a good indicator to be used in radio
map reconstruction, reflecting the channel propagation conditions.

4.4.1 Data Preprocessing

In total, about 3 ·105 RSRP measurements were obtained. Each observation
contains the following fields:

• Measurement position (latitude and longitude coordinates)

• RSRP value (downlink signal strength)

• PCI (physical cell identifier)

26

i
i

“output” — 2020/9/22 — 21:19 — page 27 — #37 i
i

i
i

i
i

4.5. Prediction Approaches

The raw dataset was preprocessed to remove corrupted samples: for ex-
ample, at the beginning of each experiment the GPS receiver requires some
initialization time during which position is recorded incorrectly. Moreover,
we overlaid the considered area with a grid. For each grid element of size
20 m × 20 m, we replaced the RSRP values with their average to reduce
noise. After the preprocessing steps, the reduced dataset consisted of ~600
observations per PCI and per tilt configuration, for a total of ~5.8 ·103 mea-
surements. Before training, the data is scaled between 0 and 1 by using a
Min-Max scaler, which is fitted to the training set and applied to the cross
validation and test sets. The scaling transformation is then reversed before
evaluating the algorithm performance. In our previous work [76], we ana-
lyze the transferability across different tilt settings of the same PCI as well
as the transferability across different PCIs. In particular, we show that the
transferability within the same PCI is much higher than the transferability
across different PCIs. Therefore, we focus hereafter on the task of transfer-
ring the knowledge from one tilt configuration to another within the same
PCI. Unlike our previous work, in which the standard machine learning
tools are used, we apply transfer learning with deep neural networks.

Figure 4.2 shows a representation of the data collected for different tilt
configurations of PCI 1. Figures 4.2a, 4.2c, 4.2e show RSRP values (in
dBm) over the considered geographic area, when the antenna was tilted at 2,
3 and 6 degrees, respectively. It can be observed that the spatial distribution
of the data follows a similar pattern for different tilt configurations of PCI
1. For example, points located in the main direction of the antenna have
higher signal strength values than the rest of the points. In addition, points
closer to the antenna also follow a similar pattern, while points which are far
apart have lower RSRP values. To give an idea of the domain differences,
in Figures 4.2b, 4.2d, 4.2f we show the normalized histograms, and the
continuous approximations of the PDFs of the azimuth, distance and RSRP
for the different tilt configurations of PCI 1.

Even if some similarities can be observed between the statistical char-
acteristics of the data collected under different tilt configurations, the data
does not come from the same distributions. For example, the azimuth dis-
tribution for a greater tilt value (Figure 4.2f) has a lower standard deviation
than the distributions for lower tilt values (Figures 4.2b and 4.2d).

4.5 Prediction Approaches

Given the base station location xA, let x and h be the target position and the
configured antenna tilt, respectively. The following set of features, derived

27

i
i

“output” — 2020/9/22 — 21:19 — page 28 — #38 i
i

i
i

i
i

Chapter 4. Applications to Tilt-Dependent Radio Map Prediction

24.805
24.810

24.815
24.820

24.825
24.830

Longitude
60.180
60.182
60.184
60.186
60.188
60.190

La
tit

ud
e

RSRP
Antenna location
Antenna direction 120

110

100

90

80

70

dBm

(a) RSRP values at the sampled points, Tilt 2

200 0 200 400 600 800 1000
Features

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pd
f

Azimuth
Distance
RSRP

(b) probability density function (PDF), Tilt 2

24.805
24.810

24.815
24.820

24.825
24.830

Longitude
60.180
60.182
60.184
60.186
60.188
60.190

La
tit

ud
e

RSRP
Antenna location
Antenna direction 120

110

100

90

80

70

dBm

(c) RSRP values at the sampled points, Tilt 3

200 0 200 400 600 800 1000
Features

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pd
f

Azimuth
Distance
RSRP

(d) PDF, Tilt 3

24.805
24.810

24.815
24.820

24.825
24.830

Longitude
60.180
60.182
60.184
60.186
60.188
60.190

La
tit

ud
e

RSRP
Antenna location
Antenna direction

120

110

100

90

80

70

dBm

(e) RSRP values at the sampled points, Tilt 6

200 0 200 400 600 800 1000
Features

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pd
f

Azimuth
Distance
RSRP

(f) PDF, Tilt 6

Figure 4.2: Tilt-dependent radio maps, normalized histograms and PDFs for three metrics
RSRP, azimuth and distance, PCI 1

28

i
i

“output” — 2020/9/22 — 21:19 — page 29 — #39 i
i

i
i

i
i

4.5. Prediction Approaches

(a) Relative distance (b) Relative azimuth

Figure 4.3: Relative angles on the vertical (left) and horizontal (right) planes between the
antenna pointing direction and the direction towards the test position x

from (x, h) and shown in Figure 4.3, is considered for the prediction task:

• the physical distance between the antenna and the measurement posi-
tion, d(x) := d(x,xA)

• the relative elevation angle between the down-tilt of the antenna and
the vertical direction from the antenna emitting element to the mea-
surement position, defined as:

δ1(h,x) = 90◦ − (αA + αE(x,xA))

= 90◦ − (h+ αE(x,xA)),
(4.1)

where αA := h is the antenna down-tilt (mechanical plus electrical)
and αE is the angle at which the antenna ‘sees’ the target position
depending on the antenna position xA and the target location x

• the relative azimuth between the horizontal orientation of the antenna
and the horizontal direction to the measurement position defined as:

δ2(x) = βA − βE(x,xA), (4.2)

where βA denotes the horizontal orientation of the antenna and βE
is the horizontal orientation of the target position with respect to the
antenna position

Each sample in the training dataset is, therefore, associated with a tu-
ple of values (d, δ1, δ2) . The logarithmic transformation is applied to d
since the RSRP values are measured in dBm. Finally the feature vector
[d(x), δ1(x, h), δ2(x)]T is obtained and used as input to our models.

29

i
i

“output” — 2020/9/22 — 21:19 — page 30 — #40 i
i

i
i

i
i

Chapter 4. Applications to Tilt-Dependent Radio Map Prediction

j retrainable layers

Input Layer Dense 1 Dense 2 Dense 3 Dense 4

i frozen layers

Ms n layers

Input Layer Dense 1 Dense 2 Dense 3 Dense 4

Mt m layers

Figure 4.4: Transfer learning model

4.5.1 Transfer Learning Approach

The proposed transfer learning approach has been inspired by the fields
of computer vision and natural language processing [69] [18], where deep
neural networks constitute the state of the art for classification and predic-
tion tasks. The core idea of our approach is to train a neural network for
the signal strength prediction task in a source domain (reference tilt config-
uration) and then build a new neural network to obtain fine-grained predic-
tions in the target domain (target tilt configuration). More details on how
both neural network architectures and parameters are obtained are shown
in Section 4.6.2. The neural network architectures used in our approach
are FFNs, which are well-known for being powerful nonlinear function ap-
proximators [36]. We opt for FFNs instead of more complex network ar-
chitectures, such as CNNs or Recurrent Neural Networks (RNNs) for two
main reasons. Firstly, from preliminary experimental results (see Figure
4.6), we observed that the achieved training and cross validation losses are
already very low and close to each other for the problem at hand. There-
fore, using a more complex architecture with the same limited amount of
data available for training could lead to a bigger gap between training and
cross validation, causing overfitting and thus worsening the performance.
Secondly, more complex architectures would require more parameters and
hyperparameters to be found, causing an increased training time.

We use the mean square error (MSE) as loss function, which is the stan-
dard metric used in regression tasks. Here the goal is to minimize the dif-
ference between the real and predicted RSRP values. It is worth noting
that the MSE is well known for being sensitive to outliers, however this
is not a concern in this case since outliers have been removed in previous
preprocessing steps (see Section 4.4.1). By using FFNs as the basic build-
ing blocks of our architecture, the flow of information only travels forward,
and the layers of the network are fully connected. Formally, FFNs learns a

30

i
i

“output” — 2020/9/22 — 21:19 — page 31 — #41 i
i

i
i

i
i

4.5. Prediction Approaches

combination of parameters to find the best function approximation. In our
case, we aim at finding a set of parameters θ for the hidden layers and a set
of parameters w for the output layer to estimate ŝ(x) ∈ Rq for x ∈ Rp, as
shown in Eq. (4.3):

ŝ(x) = f(x;θ,w) = φ(x,θ)Tw (4.3)

where φ : Rp → Rq, is a nonlinear transformation defining the hidden lay-
ers, and parameters w ∈ Rq map from φ to the desired output. Each input
is represented by a tuple containing distance, relative azimuth and relative
angle (i.e., (d, δ1, δ2)) and each output is the RSRP value ŝ(x) associated
to a given input. Therefore, p = 3 and q = 1 are the input and output
dimensions, respectively.

The proposed transfer learning approach is composed of the following:

• DS: source domain which consists of the feature space of the reference
tilt configuration and its marginal probability distribution

• DT : target domain which consists of the feature space of the target tilt
configuration and its marginal probability distribution

• MS = f̂S(·): an FFN with n layers approximating the predictive func-
tion in the source domain fS(·)

• MT = f̂T (·): an FFN with m layers approximating the predictive
function in the target domain fT (·)

• {p1, ..., pK}: the best combination of hyperparameters shared by both
FFNs associated with the source and target domains respectively1.

The steps of our transfer learning algorithm are defined as follows:

1. We select the source domain DS and train MS on DS , finding the
best combination of hyperparameters {p1, ..., pK}. We use Bayesian
optimization [90] since it is an effective way of finding a suboptimal
solution in less time, when compared to random search [8], for exam-
ple. The problem of choosing the hyperparameters is modeled as a
sample of a Gaussian process (GP). We start with an initial combina-
tion of hyperparameters and dynamically update the searching space
based on the built surrogate probability model mapping from hyper-
parameters to the probability of a score on the objective function (see

1For parameter transfer we assume that the models for source and target domains share a combination of
hyperparameters.

31

i
i

“output” — 2020/9/22 — 21:19 — page 32 — #42 i
i

i
i

i
i

Chapter 4. Applications to Tilt-Dependent Radio Map Prediction

Section 4.6.2 for numerical results). It is worth noting that the opti-
mization process has been carried out on DS since we assume we do
not have enough data available from DT to find a model that perform
well on DT . Moreover, the main goal of our approach is learning the
best model possible on DS by using sufficient data and transferring
this knowledge to DT which has limited data. After the Bayesian op-
timization step, MS is trained on DS .

2. Once we have obtained MS , we model MT by taking the first i ≤ m
layers of MS with the associated weights and adding new j ≤ n layers
that are initialized with random weights. The reason for this is that
the first layers of the network can capture more general characteristics
about the feature space, while the latter ones capture more specific
behaviors. For choosing the best values of i and j, we tried all possible
combinations of values such that 0 ≤ i ≤ m and j = m − i and
selected the one that led to the best accuracy (details are provided in
Section 4.6.2). Figure 4.4 shows a graphical representation of MS

and MT , where MT contains the first three layers of MS and two new
layers.

3. Finally, we train MT on the few data available from DT using the
hyperparameters {p1, ..., pK}. We freeze the first i layers and retrain
only the last j layers of MT with data from DT . We refer to this
approach as DNN T. MS and MT have the same complexity (i.e.,
number of layers and hidden units) in order to ensure fairness when
comparing MS and MT . In addition, using a much more complex
architecture with a limited amount of data on DT is more likely to
increase overfitting and worsen the performance, while using a much
simpler architecture does not improve performance (see DNN T 2F
1R on Figure 4.7).

We use the Keras framework [17] on top of TensorFlow [3] due to its
flexibility for implementing this transfer learning approach and performing
hyperparameters search. In total, the training and testing phases of the two
models do not last more than two minutes. We use a laptop with 16 GB of
RAM and a 7th generation, Intel Core i7 processor.

4.5.2 Baseline Methods

In this section, we describe the baseline methods used to benchmark our
work: heuristic (H) using data provided by antenna manufacturer as well

32

i
i

“output” — 2020/9/22 — 21:19 — page 33 — #43 i
i

i
i

i
i

4.5. Prediction Approaches

as k-NN and Random forest (RF), which performed the best for the task at
hand in our previous work [76].

Heuristic

This is the simplest baseline method, where the predicted values are ex-
tracted from the data sheets provided by the antenna manufacturer. Given
a set of locations at a given tilt configuration, for each sample we create
the feature vector by calculating distance, relative angle and relative az-
imuth (Section 4.5). In a second step, we use the data sheets provided by
the antenna manufacturer to extract the antenna gain on the vertical and
horizontal planes. Finally, we apply the path loss model to calculate the
predicted values. Formally, the process is defined as follows:

1. GivenMh as the set of location indexes where measurements for the
considered base station running configuration h have been taken, we
calculate for each location x ∈ Mh a tuple of values (d, δ1, δ2). Then
we create the feature vector z := [d(x), δ1(x, h), δ2(x)]T as shown in
Section 4.5.

2. Let η(x) and γ(x) be the horizontal and vertical gain of the antenna
in dB, respectively, as taken from the manufacturer antenna sheets.
Given the known position x, we formally define ∆(x) as:

∆(x) = η(x) + γ(x) (4.4)

3. Given ∆(x), we use the path loss model to generate the labels, ŝ(x),
by applying the following:

ŝ(x) = φ0 + φ110 log(d(x))−∆(x), (4.5)

where φ0 and φ1, similar to [84], are the linear regression coefficients
calculated for the reference dataset.

k-Nearest Neighbors with Inverse Distance Weighting

This technique is one of the simplest multivariate interpolation methods
which extends the classical nearest neighbor approach [19]. We apply the
technique on the same feature vector z(x) := [d(x), δ1(x), δ2(x)]T as de-
fined in the above-mentioned Heuristic approach. It predicts the signal at
an unknown target location x (corresponding to a feature vector z(x)) as a

33

i
i

“output” — 2020/9/22 — 21:19 — page 34 — #44 i
i

i
i

i
i

Chapter 4. Applications to Tilt-Dependent Radio Map Prediction

weighted average of the signals at the k locations with the closest distances
calculated based on feature vectors.

ŝ(z) =
∑

i∈M(z)

ωis(zi) (4.6)

The setM(z) includes the feature vectors which are the closest to the un-
known target vector z, with cardinality |M| = k. Weights ωi are chosen to
be inversely proportional to the distance d(zi, z) and their sum is normal-
ized to one, using the equation below:

ωi =
d(zi, z)−1∑

j∈M(z) d(zj, z)−1
. (4.7)

Random Forest

Is one of the ensemble methods used for classification and regression pur-
poses. The algorithm was introduced by Ho [42] in 1995, and later ex-
tended by Breiman and Cutler [58], it uses the idea of bagging to perform
predictions. During the process several trees are grown independently using
different bootstrapped samples of the data and majority voting or averaging
is used for the final prediction. In contrast to traditional trees, the variable
used to perform the split in each node is chosen randomly from a set of pre-
dictors [58]. RF is known to sometimes outperform other machine learning
techniques, such as neural networks, due to its resistance to overfitting [12].

4.6 Experimental Setup

In this section, we describe the set of experiments carried out. We compare
the prediction error of our transfer learning method (i.e., DNN T in Section
4.5.1) against the baseline methods (i.e., H, k-NN, RF in Section 6.4.1). In
the following, the suffix T is used to denote the transfer learning approach
(i.e., DNN T). Similarly, the suffix S is used to denote the methods that
do not use transfer learning (i.e., H S, k-NN S, RF S and DNN S). It is
worth noting that DNN T is trained on data from a different tilt configura-
tion (source domain) whereas H S, k-NN S, RF S and DNN S are trained on
data from the same tilt configuration (target domain). In this way, we com-
pare the performance of the proposed transfer learning solution against the
performance of traditional machine learning solutions to reveal the scenar-
ios where a transfer learning solution is preferred. We also train a model on
the source domain and apply it to the target domain without the retraining
and fine tuning step. This last approach is referred as DNN BS. It does not

34

i
i

“output” — 2020/9/22 — 21:19 — page 35 — #45 i
i

i
i

i
i

4.6. Experimental Setup

require data from the target domain since no retraining is performed. In this
case, the purpose is carrying out comparisons against the transfer learning
solution to evaluate the real need for the retraining and fine tuning step.

We carry out two different sets of experiments that differ in the way
the source domain is built. In Section 4.7.1, the source domain consists
of measurements from a single tilt configuration, which differs to the one
used for target domain. In Section 4.7.2 we augment the source domain by
adding measurements from other available tilt configurations of the same
PCI. In both cases, we analyze the impact on the performance when a lim-
ited amount of data from the target domain is available in the training phase.
We study two strategies to select data from the target domain: (i) uniformly
distributed in the reference area or ii) non-uniformly distributed according
to a predefined sampling strategy (i.e., different distance ranges from the
antenna location).

For each tilt configuration the amount of data available is about 600
measurements. In all the experiments, the data is divided into training,
cross validation and test sets. We use 80% of samples for training, 10% for
cross validation and 10% for testing. We vary the quantity of data taken
from the target domain for training or fine tuning. For the DNN T, this is
the number of samples used to train and fine tune MT . For the k-NN S,
RF S and DNN S this is the quantity of data available for training a model
on the target domain using data from the same target domain. In contrast,
H S does not need training data. One of the main objectives is to map the
amount of labeled data required from the target domain and corresponding
performance, assessed in terms of MAPE, which is defined as:

MAPE =
100

k

k−1∑
i=0

∣∣∣∣si − ŝisi

∣∣∣∣ , (4.8)

where k is the number of target positions in the testing dataset.

4.6.1 Domain Distance

Since the performance of the transfer learning approach depends on the
similarity between the training and testing sets on the target domain, we in-
troduce a measure of the degree of similarity between datasets which is then
used throughout this section. We quantify similarity in terms of KL diver-
gence index [48], which measures the relative entropy of a given probability
distribution with respect to another one. Given two reference datasets, one
used for training and one used for testing (both in the target domain), we

35

i
i

“output” — 2020/9/22 — 21:19 — page 36 — #46 i
i

i
i

i
i

Chapter 4. Applications to Tilt-Dependent Radio Map Prediction

derive the KL divergence indexes of the probability distributions of the log-
arithm of the distance (d), relative angle (δ1) and relative azimuth (δ2) of the
two datasets. Formally, the symmetric KL divergence index of the distance
probability distributions is given by:

SDKL(d) =
k∑

i=1

P
(tr)
d (i) log

P
(tr)
d (i)

P
(te)
d (i)

+
k∑

i=1

P
(te)
d (i) log

P
(te)
d (i)

P
(tr)
d (i)

,

(4.9)

where P (tr)
d (i) and P (te)

d (i) with i = 1 . . . k define the discrete probability
distributions of the distance in the training and testing sets of the target do-
main, respectively and k is the amount of bins used to estimate either P (tr)

d

or P (te)
d . Similar definitions hold for the KL divergence indexes related to

the relative angle δ1 and relative azimuth δ2. Finally, to give a more succinct
representation of domain similarity, we introduce the domain distance (DD)
measure by summing the three indexes together:

DD = SDKL(d) + SDKL(δ1) + SDKL(δ2). (4.10)

Figure 4.5 shows the average DD across PCIs for all the possible combi-
nations of training and testing sets on the target domains and the amount of
points from the target domain used for training. The solid curve in Figure
4.5 shows the DD when the available samples taken from the target domain
for training or fine tuning are uniformly sampled in the reference area. The
dashed curve in Figure 4.5 shows the DD when the samples are taken be-
tween 300 m and 600 m of distance from the antenna location. Smaller
DD values indicate higher domain similarity and vice versa. For instance,
when the samples are uniformly distributed the similarity between training
and testing sets in the target domain is higher, which makes the DD val-
ues lower, i.e., they range from 0.8 to 1.3 (see Figure 4.5 solid curve). In
contrast, when the available measurements are located at a certain distance
range from the antenna (i.e., 300 to 600 m), similarity is lower, meaning
the DD values are higher ranging from 1.5 to more that 2 (see Figure 4.5
dashed curve).

4.6.2 Parameters Optimization

Network parameters are chosen in a hybrid manner by using a mixture of
Bayesian optimization and manual fine tuning.

36

i
i

“output” — 2020/9/22 — 21:19 — page 37 — #47 i
i

i
i

i
i

4.6. Experimental Setup

20 40 60 80 100
Measurements taken from the target domain

 for training

0.8

1.0

1.2

1.4

1.6

1.8

2.0

DD

DD uniformly sampled
DD non-uniformly sampled, same PCI

Figure 4.5: Domain distance

Parameters search on DS

Bayesian optimization requires, as starting point, a network architecture
that converges. It also requires that the hyperparameters search space is
specified. We begin with an architecture that contains 4 layers with 4, 10, 4
and 1 hidden units, respectively, 1e−3 as the initial learning rate and ReLu
as the initial activation function. The activation function search space con-
tains Sigmoid and ReLu, and the learning rate search space goes from 1e−7
to 1e− 1. After 50 iterations the process converges and we find out that for
all the tilt configurations and PCIs the best learning rate is approximately
0.099, and the choice of activation function that leads to the minimal error
is Sigmoid. During this process, the model is shown to achieve good perfor-
mance in the source domain. Figure 4.6 shows the training and cross vali-
dation errors for PCI 1 and tilts 2, 3 and 6. Comparable results are achieved
for the rest of the PCIs and tested tilt combinations. It can be observed
that the training and cross validation errors decrease dramatically during
the first 150 epochs for tilts 2 and 3 and the first 20 epochs for tilt 6. After
this they keep decreasing steadily, becoming very close to 0, which means
the chosen architecture fits the data coming from DS . We note that both er-
rors are close to each other, meaning that our model is not overfitting. Once
the learning rate and activation functions are chosen, we carry out experi-
ments on DS , increasing and decreasing the model complexity by adding
and removing layers and hidden units, respectively. Table 4.1 shows the
MAPE obtained leveraging the tested architectures. The reported MAPE is
an average across all the available PCIs and all the available combinations
of tilt configurations as source and target domain. It can be observed that

37

i
i

“output” — 2020/9/22 — 21:19 — page 38 — #48 i
i

i
i

i
i

Chapter 4. Applications to Tilt-Dependent Radio Map Prediction

DS Network architecture Avg. across Tilts
4, 10, 4, 1 4.30

4, 10, 4, 4, 1 11.94
4, 10, 1 5.58

4, 20, 8, 1 6.82
4, 5, 2, 1 5.59

Table 4.1: MAPE for variations in the amount of layers and hidden units for PCI 1, Tilt 2,
3 and 6

Number of epochs 500
Batch size 128

Number of inputs 3
Number of layers 4

Hidden units per layer 4, 10, 4, 1
Activation function Sigmoid

Optimizer Adam
Learning rate 0.099

Table 4.2: Hyperparameters found by Bayesian and manual optimization

increasing or decreasing complexity worsens the performance for all the
tilt configurations on average, therefore the initial combination of 4 layers
containing 4, 10, 4 and 1 hidden units respectively is the one that leads to
the best performance. Table 4.2 summarizes the best combination of hyper-
parameters found by a mixture of Bayesian and manual optimization.

Frozen and re-trainable layers

As explained in Section 4.5.1, the amount of layers to freeze and retrain is
chosen through an empirical approach, trying all possible combinations and
choosing the best one. Figure 4.7 reports the MAPE averaged across all the
PCIs and all the possible combinations of tilt configurations as source and
target domain when using different numbers of layers to freeze, i and the
number of retrainable layers, j. DNN T method indicates that the weights
in the retrainable layers ofMT are randomly initialized, whereas the DNN
T W indicates that the weights in the retrainable layers are initialized with
the weights fromMS after training. We use F and R to denote the number
of layers to freeze and retrain on MT , respectively. We select i = 2 and
j = 2 (i.e., DNN T 2F 2R), since it is the combination of values that leads
to the best MAPE on DT .

38

i
i

“output” — 2020/9/22 — 21:19 — page 39 — #49 i
i

i
i

i
i

4.6. Experimental Setup

0 100 200 300 400 500
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

Training loss
Test loss

(a) Tilt 2

0 100 200 300 400 500
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

Training loss
Test loss

(b) Tilt 3

0 100 200 300
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

Training loss
Test loss

(c) Tilt 6

0 10 20 30 40 50
Number of calls n

0.00

0.05

0.10

0.15

0.20

0.25

m
in

f(x
) a

fte
r n

 c
al

ls

Convergence plot

(d) Tilt 2

0 10 20 30 40 50
Number of calls n

0.00

0.05

0.10

0.15

0.20

0.25

m
in

f(x
) a

fte
r n

 c
al

ls

Convergence plot

(e) Tilt 3

0 10 20 30 40 50
Number of calls n

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

m
in

f(x
) a

fte
r n

 c
al

ls

Convergence plot

(f) Tilt 6

Figure 4.6: Training curves and Bayesian convergence on the source domain, PCI 1

20 40 60 80 100
Measurements taken from the target domain

 for training

4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

M
AP

E

DNN T 2F 2R
DNN T 1F 3R
DNN T 3F 1R

DNN T W 2F 2R
DNN T 2F 1R

Figure 4.7: MAPE for the different values of frozen (F) and retrainable (R) layers using
random or source domain weights initialization

39

i
i

“output” — 2020/9/22 — 21:19 — page 40 — #50 i
i

i
i

i
i

Chapter 4. Applications to Tilt-Dependent Radio Map Prediction

0 20 40 60 80 100
Measurements taken from the target domain

 for training

4

6

8

10

12

M
AP

E

DNN T
DNN BS

k-NN S
RF S

DNN S
H S

Figure 4.8: MAPE when training or fine tuning on uniformly sampled measurements

4.7 Results

4.7.1 Single Tilt Transfer

We use a dataset obtained under a given tilt setting (source domain) to pre-
dict the performance of the same antenna under a different tilt configuration
(target domain). In particular, we consider two different scenarios: when
the data available from the target domain is limited and sampled uniformly
(see Section 4.7.1) and when the data is still limited but sampled according
certain criteria, for instance at a given range of the antenna location (see
Section refsssec:limnonuniform).

Limited and uniformly sampled measurements

In this case measurements represent a wide range of relative distances, az-
imuth and RSRP values. The amount of instances taken for training or fine
tuning varies between 0 to 100. Figure 4.8 shows the average MAPE across
all the PCIs and possible pairs of training and testing tilt combinations, ob-
tained by the different prediction approaches described in Section 4.5. We
can draw the following conclusions:

• All the machine learning methods (i.e. k-NN S, RF S, DNN S, DNN
T) outperform the heuristic approach (i.e. H S) for any number of
instances taken from the target domain for training or fine tuning.
Therefore, the machine learning algorithms trained on real data are
more effective at capturing the non linearity of RSRP values than the

40

i
i

“output” — 2020/9/22 — 21:19 — page 41 — #51 i
i

i
i

i
i

4.7. Results

heuristic approach which uses the path loss model to extract RSRP
values from the sheets provided by the antenna manufacturer.

• The prediction error is impacted by the amount of samples taken from
the target domain. In particular, the amount of data taken from the
target domain can be decreased by up to 90%, if we consider an initial
amount of 590 instances taken for training or fine tuning, with a max-
imum increase in error rate of 2% for the transfer learning approach.
It is worth noting that if no data is taken from the target domain, the
transfer learning approaches must be used under the assumptions of
traditional machine learning, where source and target domain are sim-
ilar. As this is not the case, DNN T outperforms DNN BS when the
amount of instances taken for training is more than 20. This justi-
fies the need to model our problem under the framework of transfer
learning in order to decrease the prediction error.

• The transfer learning approach (i.e., DNN T) outperforms the methods
that use data from the same tilt configuration (k-NN S, RF S and DNN
S) for training, when the amount of samples taken from the testing set
is less than 40 instances out of 590. This is because, transfer learning
approaches better capture the physical properties of antenna propaga-
tion. Thus, being more robust when information is missing from the
cross-domain.

• When the number of data samples is larger than 60, transfer learning
performs worse than the non-transfer methods. This indicates, more
than 60 points chosen uniformly for training a model are enough to
capture all the possible patterns (different RSRP values) in a given
radio map while achieving good prediction error (see DD values uni-
formly sampled curve in Figure 4.5 for more than 60 measurements).
In contrast, if less than 60 points are taken, which accounts for 12% of
the total amount of points initially used for training, there are too few
points to capture all the possible patterns. Therefore, using data from
DS and retraining via transfer learning leads to performance improve-
ment when the number of data samples is less than 12%.

Limited and non-uniformly sampled measurements

We define different antenna distance ranges since we assume to have avail-
able only measurements collected in one of those locations. Figure 4.9
shows the obtained average MAPE across all PCIs and all possible combi-
nations of training and testing tilts. Figures 4.9a, 4.9b and 4.9c show the av-

41

i
i

“output” — 2020/9/22 — 21:19 — page 42 — #52 i
i

i
i

i
i

Chapter 4. Applications to Tilt-Dependent Radio Map Prediction

erage MAPE for measurements collected between 0 to 300, 300 to 600, and
more than 600 m from the antenna location, respectively. In addition, we
consider in Figure 4.9d, the case where we take points from all of the three
ranges with probability 0.1, 0.1 and 0.8, respectively. This set of experi-
ments, is motivated by the fact that in a realistic scenario points at a given
distance range might be the only ones available to carry out predictions.
For instance, in some areas it might not be possible to take measurements
due to the existence of obstacles or private properties. In other cases there
might be budget constraints (both in terms of resources and time) which do
not allow for an extensive measurement campaign of the whole area. These
scenarios are particularly challenging, because traditional methods do not
work at their best. Therefore we focus on these to highlight the benefits of
transfer learning. To study these cases, we consider two possible options:
(i) we use the available points as the training set to carry out predictions un-
der the same tilt configuration (i.e., H S, k-NN S, RF S, DNN S) or (ii) we
use the available points as part of the retraining step in the transfer learn-
ing pipeline (i.e., DNN T). In both cases, the model output is the predicted
radio map for the whole area.

We can draw the following conclusions:

• As before, all the machine learning methods (i.e., H S, k-NN S, RF S,
DNN S and DNN T) outperform the heuristic approach (i.e., H S) and
are impacted by the amount of instances taken from the target domain
for training or fine tuning the models.

• The prediction error is never more than 2% higher than when using
uniformly sampled data. An increase in error is expected since train-
ing and testing sets in the target domain are more dissimilar than when
samples are taken uniformly (see DD values in Figure 4.5). However,
depending on the application and data restriction when collecting sam-
ples, non-uniformly distributed data could still be used to carry out
predictions when uniformly sampled data is not available.

• The transfer learning approach (i.e., DNN T) outperforms the meth-
ods that use data from the same tilt configuration (i.e., k-NN S, RF S
and DNN S) to carry out predictions by a larger margin than with uni-
formly sampled data. This method is proven to be robust against the
bias introduced between training and test sets in the target domain.
As such, it performs extremely well when there is a large different
between the training and testing sets in the target domain.

• In Figure 4.9d, where points are taken with different probabilities over

42

i
i

“output” — 2020/9/22 — 21:19 — page 43 — #53 i
i

i
i

i
i

4.7. Results

0 25 50 75 100 125 150
Measurements taken from the target domain

 for training

6

7

8

9

10

11

12

M
AP

E

DNN T
DNN BS

k-NN S
RF S

DNN S
H S

(a) 0− 300 m

0 50 100 150 200
Measurements taken from the target domain

 for training

6

7

8

9

10

11

12

M
AP

E

DNN T
DNN BS

k-NN S
RF S

DNN S
H S

(b) 300− 600 m

0 50 100 150 200
Measurements taken from the target domain

 for training

6

7

8

9

10

11

12

M
AP

E

DNN T
DNN BS

k-NN S
RF S

DNN S
H S

(c) Above 600 m

0 20 40 60 80 100
Measurements taken from the target domain

 for training

6

7

8

9

10

11

12

M
AP

E

DNN T
DNN BS

k-NN S
RF S

DNN S
H S

(d) Probability 0.1, 0.1 and 0.8

Figure 4.9: MAPE when training or fine tuning on non-uniformly sampled measurements

43

i
i

“output” — 2020/9/22 — 21:19 — page 44 — #54 i
i

i
i

i
i

Chapter 4. Applications to Tilt-Dependent Radio Map Prediction

all distance ranges, the gains of using transfer learning are higher than
in the case where the data is uniformly sampled (see Figure 4.8).

In conclusion, the proposed transfer learning approach is able to out-
perform other methods when using real measurements for both uniformly
and non-uniformly sampled data. It has benefits compared to the bench-
mark methods in both of the following situations: (1) when the available
samples of the target domain data are sampled uniformly, but the number
of the samples is limited, and (2) when the available measurements used
for training or fine tuning on the target domain are non-uniformly sampled.
Moreover, considerable accuracy gains are achieved when augmenting the
source domain with data coming from other available tilt configurations of
the same antenna. This is discussed in the next section.

4.7.2 Tilt Augmentation Transfer

Data augmentation has been shown to be successful in the area of com-
puter vision. By augmenting an existing dataset with new data that follows
the same distribution as the data used for training, overfitting can be re-
duced [53]. In our case, we take inspiration from this idea and we augment
the source domain by adding data from other available tilt configurations
within the same PCI (i.e., suffix A SP on the graphs below) and from dif-
ferent PCIs (i.e., suffix A OP). We map the obtained MAPE to the DD to
analyze the cases where data augmentation improves performance. Table
4.3 shows the DD between the training set inDS and the test set inDT both
before data augmentation and after data augmentation. Data augmentation
is performed by either adding data from the same PCI or adding data from
the same and different PCIs. Table 4.3 also shows the total amount of train-
ing samples used in each case in DS . It can be noted that, DD values are
much higher when using data from different PCIs than in the rest of the
cases. This is because adding data from a different PCI will increase the
difference between the training set in DS and the test set in DT , therefore
overfitting will be increased in DT . However, the degree of similarity be-
tween radio maps coming from the same PCI is higher, thus adding data
with a greater similarity to the training set inDS and test set inDT can help
to reduce overfitting and improve accuracy. We evaluate the gains of per-
forming transfer learning from a bigger and more diverse source domain.

44

i
i

“output” — 2020/9/22 — 21:19 — page 45 — #55 i
i

i
i

i
i

4.7. Results

0 20 40 60 80 100
Measurements taken from the target domain

 for training

4

5

6

7

8

9

M
AP

E
DNN T
DNN T A SP
DNN T A OP

DNN BS
DNN BS A SP
DNN BS A OP

(a) Limited uniformly sampled data

0 50 100 150 200
Measurements taken from the target domain

 for training

4

5

6

7

8

9

M
AP

E

DNN T
DNN T A SP
DNN T A OP

DNN BS
DNN BS A SP
DNN BS A OP

(b) Limited non-uniformly sampled data

Figure 4.10: MAPE with and without data augmentation

Algorithm DD DS Number of samples
No augmentation 1.15 600

Augmentation same PCI 1.39 1200
Augmentation other PCIs 3.53 4800

Table 4.3: DD values before and after data augmentation

Figure 4.10 shows the average MAPE across all the PCIs and pairs of
training and testing tilt combinations possible when performing data aug-
mentation on the source domain. Figure 4.10a shows the average MAPE
when the instances taken from the target domain for training or fine tun-
ing are limited and sampled uniformly. In contrast, Figure 4.10b shows the
average MAPE for cases when the measurements taken from the target do-
main were collected at a distance range from the antenna between 300 and
600 m. We can draw the following conclusions:

• When using data augmentation on the source domain, the prediction
error decreases by more than a 1% when the amount of instances taken
from the target domain varies between 10 and 40 (see Figure 4.10a).

• In Figure 4.10b we can also observe a performance improvement when
compared to the performance achieved without augmenting the source
domain.

• In both cases, the performance improvement can be explained by the
fact that data augmentation reduces overfitting. Figure 4.11 shows
the training and cross validation curves for PCI 1 when Tilts 6 and
2 are used as source and target domains, respectively. Figures 6.3a

45

i
i

“output” — 2020/9/22 — 21:19 — page 46 — #56 i
i

i
i

i
i

Chapter 4. Applications to Tilt-Dependent Radio Map Prediction

0 20 40 60 80
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

Training loss
Test loss

(a) Without data augmentation

0 100 200 300 400 500
Epochs

0.00

0.02

0.04

0.06

0.08

0.10
Lo

ss
Training loss
Test loss

(b) With data augmentation

0 20 40 60 80 100
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

Training loss
Test loss

(c) Without data augmentation

0 100 200 300
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

Training loss
Test loss

(d) With data augmentation

Figure 4.11: Training curves on the target domain, PCI 1 and Tilts 6 and 2: (a), (b) Limited
uniformly sampled data, (c), (d) Limited non-uniformly sampled data

46

i
i

“output” — 2020/9/22 — 21:19 — page 47 — #57 i
i

i
i

i
i

4.8. Summary

and 6.3b illustrate the training and cross validation losses without and
with data augmentation, respectively, when a limited number of sam-
ples are taken uniformly. Figures 6.3c and 6.3f show the training and
cross validation losses without and with data augmentation, respec-
tively, when samples are taken at a distance between 300 and 600 m
from the antenna location. In both cases, the gap between training
and cross validation errors decreases when the source domain is aug-
mented by adding data available from other tilt configurations, from
the same PCI. This ensures the transfer learning model is less prone
to overfitting.

• Adding data from different tilt configurations from different PCIs (i.e.,
DNN T A OP) does not lead to performance improvements. This is
expected since the DD between the training set in DS and the test set
inDT is much higher (see Table 4.3, DD = 3.53) than in the rest of the
cases (see Table 4.3, DD = 1.39), therefore overfitting is more likely
to happen.

4.8 Summary

In this chapter, we addressed the problem of predicting the signal strength
in the downlink of a real LTE network, where the antennas can be tuned
to operate with different antenna tilt configurations. Different approaches
were considered as candidates for predicting the signal strength. All of
them were based on refined features related to propagation and antenna
configuration. As opposed to other works in the field of radio map infer-
ence, we studied the quality of prediction of the aforementioned approaches
when the datasets used for training and testing are related, but not sam-
pled from the same distribution. We observed that the performance of the
predictive models is dependent on the amount of data taken from the test-
ing domain for training or fine tuning. Furthermore, the proposed trans-
fer learning algorithms are shown to be more efficient in cases where the
amount of data available from the target tilt configuration is very limited, or
available at different distance ranges from the antenna location. Finally, we
have shown how augmenting data from the source domain by adding data
available from other tilts configurations of the same antenna improves the
performance of the proposed transfer learning approaches. Augmenting the
source domain decreases the prediction error by 1% when the data available
from the target domain for training or fine tuning is limited, or at a distance
range between 300 and 600 m from the antenna location.

47

i
i

“output” — 2020/9/22 — 21:19 — page 48 — #58 i
i

i
i

i
i

i
i

“output” — 2020/9/22 — 21:19 — page 49 — #59 i
i

i
i

i
i

CHAPTER5
Applications to Key Performance Indicator

Anticipation

In this chapter we focus on the problem of KPI prediction in mobile radio
networks.

5.1 Motivation

Anticipating the network performance with high accuracy and low over-
head can boost the proactive optimization of mobile radio networks. For
instance, channel quality prediction (CQP) has been proposed for efficient
resource allocation of video streaming traffic [96]. Similarly, cell load pre-
diction in [56], has been proposed to minimize network element sleeping
time.

Traditional approaches to network performance prediction, leverage past
information from the network node to predict. This is not always feasible,
since the network is constantly evolving by adding new cells for which we
have no previous performance history. At the same time, the amount of cells
to predict simultaneously is in the order of thousands. It is envisaged that
this number will keep growing in the future due to the current requirements

49

i
i

“output” — 2020/9/22 — 21:19 — page 50 — #60 i
i

i
i

i
i

Chapter 5. Applications to Key Performance Indicator Anticipation

of 5G networks and beyond.
This calls for new and efficient ways of predicting the network perfor-

mance when limited information is available and the performance of mul-
tiple cells needs to be predicted simultaneously. To this end, we study net-
work performance on fourth generation wireless networks (4G) LTE cells
operating at different frequencies (i.e. 1.8 GHz and 2.1 GHz) and located
in several areas of the city. In particular, we focus our analysis on the
channel quality indicator (CQI) and user equipment (UE) KPIs, since they
are among the most important KPIs metrics the operator could use to mon-
itor the network status and optimizing accordingly. The CQI reflects the
channel status provided by the UEs to their respective cells, ranging from 0
to 15 in LTE. The UE measures the cell load, which is given as the amount
of UEs connected to a given cell.

In this chapter, we introduce a transfer learning framework to predict
the CQI and UE for the different cells across the city. We design and test
several strategies for picking candidate cells across the city for the transfer
learning task.

The proposed framework can be conveniently used by a network opera-
tor to make educated decisions in a number of relevant situations:

• Network optimization/management: Only a sub-Gig frequency carrier
is active at one cell, and the network operator needs to decide whether
to activate higher layers by anticipating their expected quality.

• Radio resource/energy management: The higher frequencies carriers
of cells perform duty cycling for energy management purposes, and
the network operator needs to decide when to switch them on/off.

5.2 Related Work

Techniques to anticipate the network performance have been widely in-
vestigated in multi-fold network environments; either to take advantage of
future link improvements or to counter bad conditions before they impact
the system [13]. Techniques can be divided in two categories: (i) the ones
that use traditional machine learning or statistical approaches and (ii) the
ones that use deep learning.

In the former category, Wiener filters, cubic spline extrapolation and
short-term average are used in [105] for CQP. Other studies exploit the
nonlinear characteristics of the channel. For instance, in [104] the spectrum
sensing process is modeled as a non-stationary Hidden Markov Model. In
[57], spatial and temporal correlation are taken into account to model the

50

i
i

“output” — 2020/9/22 — 21:19 — page 51 — #61 i
i

i
i

i
i

5.3. Problem Statement

CQP as a multivariate Gaussian Process. As for the cell load, similar kinds
of studies have been carried out. In [39] the authors use k-Means and SVM
classifiers on CDR data to predict the cell load in order to improve network
planning. Similarly, in [61], the authors use regression including spatio
temporal features for cell load prediction.

In the second category, the major trend is modeling the prediction prob-
lem as a sequence problem using RNN architecture variations that have
been shown to be successful for this problem setting. As as example, [110]
uses Taguchi optimization, and LSTMs for spectrum prediction, specifi-
cally for channel quality as well as channel occupancy. In [9] KPI pre-
diction is performed by stacking multiple LSTM building blocks together.
Similar to our case, cell load and channel quality are used for results valida-
tion. Another approach has been proposed in [62] for 5G, where CNNs and
LSTMs are used for making predictions. For a comprehensive overview
on channel quality prediction the interested reader may refer to the survey
in [13]. The same kind of algorithms have also been used for cell load pre-
diction. For instance, in [6] CNNs, LSTMs and the combination of both are
used for traffic prediction evolution. As in our case, the authors comment
on the complexity overhead of their approach.

5.3 Problem Statement

In this chapter, we propose the application of machine learning algorithms
to predict the channel quality and cell load, which is given by the amount
of active users, in 4G LTE wireless networks. The problem at hand can be
defined as predicting future CQI or UE values when having limited data
available from the cell to predict.

To this end, we use a dataset containing past CQI and UE observations
from a live 4G LTE network deployed in a medium-size city in Northern
Italy. The reference dataset contains data from 100 cells working at 0.8, 1.8
and 2.1 GHz of frequency, respectively. For each of the 100 cells, 2 time
series are recorded. Each time series element reports the hourly average of
the CQI and UE. The total amount of data is equivalent to 583 CQI or UE
measurements per time series. The data was recorded between January 8,
2017 and February 1, 2017, for a total of 24 days and 7 hours.

The following pre-processing steps were carried out:

• Missing value and outlier detection: No missing values and outliers
were found.

51

i
i

“output” — 2020/9/22 — 21:19 — page 52 — #62 i
i

i
i

i
i

Chapter 5. Applications to Key Performance Indicator Anticipation

• Stationary assessment: Most of the methods for time series forecast-
ing work under the assumption that the time series is stationary. By
using Dickey-Fuller [26] and KPSS [54] statistics tests, we found that
in the majority of cases the data was already stationary. However, to
avoid non-stationary cases, a first order difference transformation is
carried out to the whole dataset.

5.3.1 Notation

Let (xi)
T−1
i=0 = {x0, x1, . . . , xT−1} be the sequence of CQI or UE values

obtained for a cell c during T hours.
The CQP and UE prediction problems can be formalized as follows:

given no or a limited amount (i.e. t− l) of CQI or UE observations from a
target cell c, (xi)

t−1
i=l , we aim to forecast future CQI or UE values (ŷi)

t+N
i=t ,

where N denotes the forecasting horizon. For this purpose, we leverage
CQI or UE observations from different cells c′ chosen according to different
selection criteria.

5.4 Prediction Approaches

In this section, we describe the proposed deep transfer learning method as
well as the baselines used for benchmarking our approach.

5.4.1 Deep Learning

Deep Neural Networks have significantly improved the state of the art in
a variety of fields such as Computer Vision or Natural Language Process-
ing. For instance, CNNs are powerful feature extractors for hierarchical
data since the lower layers of the network capture more general patterns,
whereas the deeper layers extract the more specific ones. Inspired by this
fact, we use CNNs as the building blocks of our transfer learning pipeline.

The deep learning pipeline consists of the following steps:

1. Preprocessing: First, the general time series forecasting problem is re-
framed as a supervised machine learning problem. For this purpose,
we use sliding windows of size w = 24 by shifting the original time
series one step to the right T times. Fig. 6.1 shows the process in
detail. The resulting supervised machine learning problem is defined
as finding the function g(x,θ) = y, x ∈ Rw and y ∈ R that maps w
hours of CQI or UE observations to the CQI or UE value on the next
hour. Each input vector x is given by the sub-sequence (xi)

t−w
i=t−1, y is

given by yt and θ represent the neural network weights. Then the data

52

i
i

“output” — 2020/9/22 — 21:19 — page 53 — #63 i
i

i
i

i
i

5.4. Prediction Approaches

yt

x1x0 x23 y24

xT-wxT-1-w yT-1

...

...

x1x0 x23... ...x24 xt xT-1

xT-1-1

window size (amount of lagged features) w=24

xt+1-wxt-w ... xt-1
...

Figure 5.1: Sliding windows for time series forecasting

is divided into training, cross validation and test sets. Before training,
the data is scaled between−1 and 1 by using a min-max scaler, which
is fitted to the training set and applied to the cross validation and test
sets.

2. Training: During training, a model g(x,θ) is created by fitting the
selected architecture on the training set.

3. Cross Validation: The cross validation set is used at a later stage by
the network to select a good combination of hyperparameters.

4. Testing: At testing time, g(x,θ) is applied to data coming from the
same or a different frequency carrier. The data is projected onto the
original space by reversing the scaling and first order difference trans-
formations. It is worth noting that the first order difference and scaling
transformations should be reversed before evaluating the performance
of our algorithms.

5. Performance Evaluation: The prediction accuracy is measured by the
RMSE between real and predicted values in the test set (with size
Ttest = N) defined by Eq. 5.1:

RMSE =

√√√√ 1

N

t+N∑
i=t

(ŷi − yi)2. (5.1)

Fig. 5.2 shows the one dimensional (1D) CNN architecture proposed
in this work. It is comprised of 7 layers; the first 5 layers of the network
are a combination of 1D convolutional layers followed by a 1D max pool-
ing layer. Finally, a flatten layer as well as a dense layer are stacked for
producing the final output. We apply rectified linear unit (ReLU) nonlinear

53

i
i

“output” — 2020/9/22 — 21:19 — page 54 — #64 i
i

i
i

i
i

Chapter 5. Applications to Key Performance Indicator Anticipation

CONV
1D

CONV
1D

CONV
1D

Max Pooling Flatten Dense

ytxt-w, xt+1-w, ...xt-1

Retrainable layers

Figure 5.2: CNN architecture

transformations as the activation function. We use 256 filters and a kernel
size of 3. For the max pooling layers we use stride s = 2 and pool size
δ = 2. The dimension of the first convolutional layer corresponds to the
dimension of the feature space, which is the window size w = 24, in our
casse.

5.4.2 Transfer Learning

Given a source domain DS with enough data and a target domain DT with
limited data, for the transfer learning task on DT , we first train a model MS

on DS . Then, we create a new model MT by taking the previous model
MS , freezing its first layers and adding new layers. The weights on the
new layers of MT can be either randomly initialized or initialized with MS

weights. Finally, we retrain MT on the available data from DT . As an ex-
ample, we show in Fig. 5.2 a CNN architecture, where we freeze the first
2 convolutional layers and retrain and randomly initialize the last convolu-
tional layer. The idea behind this is transferring the more general features
learned by the first layers of the network in a richer DS (i.e. longer time
series) to a limited DT (i.e shorter time series). For comparison fairness we
use the same architecture for MS and MT .

We developed and tested several transfer learning methods. They differ
in the way DS cells are chosen to train MS . In the following we describe
how DS cells were selected:

1. Transfer Frequency Model (CNN TFM): DS contains one cell at a
lower frequency in the same geographical location.

2. Transfer Random Model (CNN TRM): DS contains 5 cells chosen
randomly across the city.

3. Transfer City Model (CNN TCM): First, we cluster all the cells across
the city to identify similar groups of cells. Then, we choose DS cells
as the closest cell to the centroid of each cluster in order to have the
model as “representative” of the whole city as possible. Below, we
give more details on the clustering approach and distance metric to
select the closest cell.

54

i
i

“output” — 2020/9/22 — 21:19 — page 55 — #65 i
i

i
i

i
i

5.4. Prediction Approaches

4. Transfer Cluster Model (CNN TCLM): We also cluster all the cells
across the city. Then, we train a model per cluster by choosing DS

cells as the 5 closest cells to the centroid of each cluster. For instance,
if the number of clusters is 2, we will have 2 source models, MS1

and MS2 , trained on cells from clusters 1 and 2, respectively. For the
prediction task on DT , if a cell is in cluster C, with C = 1 or C = 2,
then MSC

is chosen as source model.

5. Transfer Hybrid Model (CNN THM): Similar to CNN TCM. In addi-
tion, we embed the cluster information as an input feature to the model
in a different CNN channel. The cluster label is a categorical variable
added as one-hot encoding.

6. Transfer Hybrid Model with Correlated Counters (CNN THM CC):
Similar to the CNN TCM but instead we add the correlated counters
as input features to the model. Each correlated counter represents a
new feature in a different CNN channel.

Below we use the term city models to denote CNN TRM, CNN TCM,
CNN TCLM, CNN THM and CNN THM CC, since these models use in-
formation from other cells across the city for transfer learning.

Unsupervised Learning: CNN TCM, CNN TCLM and CNN THM use
cell cluster information as shown before. We identify the different cell
clusters across the city by grouping the raw time series that represent each
cell. This is done for each KPI independently. We use k-Means [49] with
the Euclidean Distance, since we are interested in clustering based on the
similarity of time series data without taking time delay into account. After
trying different values of k (number of clusters), we chose 2 and 5 as the
number of clusters.

5.4.3 Baselines

As baselines, we use traditional time series forecasting methods such as
Autoarima and two CNNs methods, without using transfer learning. By
selecting Autoarima, as baseline, we assess whether a deep neural network
should be trained or linear methods such as Autoarima are sufficient for
prediction task at hand. If deep learning methods achieve better prediction
error, we compare the performance of transfer learning models (see Sec-
tion 6.4.3) against the performance of similar models trained on data from
DT (i.e., CNN S) or trained on data from DS and applied to DT without
retraining (i.e. CNN BS). The goal is assessing whether negative transfer

55

i
i

“output” — 2020/9/22 — 21:19 — page 56 — #66 i
i

i
i

i
i

Chapter 5. Applications to Key Performance Indicator Anticipation

will happen and the retraining step in transfer learning is really needed. The
baseline methods are described as it follows:

1. Autoarima: Auto-Regressive Integrated Moving Average (ARIMA)
introduced by Jenkins in [11]. Seasonal ARIMA models are usually
denoted by ARIMA(p, d, q)(P,D,Q)m, where coefficients p, d, q are
the order of the autoregressive model, the degree of differencing, and
the order of the moving-average model, respectively. m refers to the
number of periods in each season and P,D,Q refer to the autoregres-
sive, differencing, and moving average terms of the seasonal part of
the model, respectively. By using grid search we optimize the ARIMA
coefficients (p, d, q,m, P,D,Q) that fit our data.

2. CNN S: We train a model with limited data from the same cell in DT .

3. CNN BS: We train a model with enough data from a different cell in
DS and use it to carry out predictions on DT without the retraining
step on DT .

5.5 Experimental Setup

The reference dataset is comprised of 100 time series per KPI. Each time
series contains 583 samples with 1 h of time granularity (see Section 5.3).
Every time series is divided into training, cross validation and test sets con-
taining 535, 24 and 24 samples, respectively. For each of the algorithms
tested, we show the average RMSE across cells when changing the amount
of days taken from DT for training a model without transfer (i.e., CNN S),
or for retraining a model as part of the transfer learning pipeline (i.e., CNN
TFM, CNN TRM, CNN TCM, CNN THM, CNN TCLM, CNN THM CC).

Experiments were performed on a PC with three Intel Xeon E5 v3/v4
CPUs, one GeForce RTX 2080Ti GPU card and 16 GB of RAM.

5.5.1 Parameter Optimization

The different prediction approaches encompass different parameters, which
require fine tuning for further optimization. Auto ARIMA requires m = 24
to be set a priori (Section 6.4.1). For the CNNs, we use w = 24 h to pre-
dict the next hour. We fix the batch size to 128, manual cross validation is
carried out in order to choose a good architecture for this problem. The sec-
tions below show the hyperparameters selection process for MS and MT ,
respectively.

56

i
i

“output” — 2020/9/22 — 21:19 — page 57 — #67 i
i

i
i

i
i

5.5. Experimental Setup

Hyperparameter Default Values
Lag Number Input 24
Number of Epochs 300

Learning Rate 0.001
Number of Layers 3
Number of Filters 256

Dropout 0

Table 5.1: Default combination of hyperparameters

KPI 24 48 96
CQI 1.70 1.74 1.74
EU 1.80 1.83 1.80

Table 5.2: Lag number input

MS Parameter Optimization

In order to find the best architecture for the CQI and UE prediction prob-
lems we begin with the default configuration shown in Table 5.1. We try
different combinations of hyperparameters using all available data (i.e 22
days). We choose the setting that performs the best on average for the 100
available cells. Below we show the different values tried and highlight the
best configuration for each step. We can conclude that less than 300 epochs
and a learning rate smaller than 0.001 improves performance for both KPIs.
For the CQI a smaller architecture leads to better result, whereas for UE a
more complex architecture helps reducing the error as well as adding 0.2%
of dropout.

MT Parameter Optimization

To find the best architecture for MT , we use the same architecture as MS to
ensure comparison fairness. We optimize the following parameters in MT :

• Number of frozen and retrainable layers: The amount of layers to
freeze or retrain on MT largely dictates the amount of knowledge to
transfer from DS to DT . Depending on the data, if the number of
layers to retrain is not the “optimum”, negative transfer can happen.

• Weight initialization: The weights in the retrainable layers ofMT , can

KPI 100 300 500
CQI 1.64 1.70 1.69
EU 1.81 1.80 1.83

Table 5.3: Number of epochs

57

i
i

“output” — 2020/9/22 — 21:19 — page 58 — #68 i
i

i
i

i
i

Chapter 5. Applications to Key Performance Indicator Anticipation

KPI 0.0001 0.001 0.01 0.1
CQI 1.40 1.64 1.57 1.75
EU 1.84 1.80 2.08 3.31

Table 5.4: Learning rate

KPI 2 3 4
CQI 1.30 1.40 1.44
EU 1.94 1.80 1.71

Table 5.5: Number of layers

be either randomly initialized or taken from MS . This also affects the
amount of knowledge transferred from DS to DT .

We tried all possible combinations of layers to freeze and retrain, as
well as random and non random initialization. We carried out this pro-
cess on CNN TCM, where just one model is trained for DS , since doing
this for every transfer learning model in DS and DT would be extremely
time consuming (more details about training times can be found in Section
5.6.3). Figure 5.3 shows the results for the different days taken from DT .
Results indicate that for CQI the best transfer learning model is that which
has the first 3 layers frozen, and the last 2 are retrained. Overall, using
random initialization leads to improved performance. In contrast, we can
observe that for the UE KPI, freezing a high number of layers, which means
transferring more knowledge from DS , worsens the performance. There is
no significant difference between using random initialization, or taking the
weights from DS . This is expected since a higher number of layers need to
be retrained on MT .

5.6 Results

5.6.1 City Models Transfer

In this section we show the performance of the transfer learning approach
for the available 100 cells. Fig. 5.4 shows the average RMSE when ap-
plying the different models (see Section 6.4.3 for more details about the
different models). The x-axis shows the amount of samples (measured in

KPI 128 256 512
CQI 1.32 1.30 1.32
EU 1.71 1.71 1.73

Table 5.6: Number of filters

58

i
i

“output” — 2020/9/22 — 21:19 — page 59 — #69 i
i

i
i

i
i

5.6. Results

KPI 0 0.2 0.5
CQI 1.30 1.30 1.31
EU 1.71 1.68 1.89

Table 5.7: Dropout

2 3 4 5 6 7
Days taken from the target domain for training

1.4

1.6

1.8

2.0

2.2

RM
SE

CNN T 1F 4R SW
CNN T 1F 4R RW

CNN T 3F 2R SW
CNN T 3F 2R RW

(a) RSME CQI

2 3 4 5 6 7
Days taken from the target domain for training

2.2

2.4

2.6

2.8

3.0

3.2

RM
SE

CNN T 7F 5R SW
CNN T 7F 5R RW
CNN T 10F 2R SW
CNN T 10F 2R RW

CNN T 4F 8R RW
CNN T 4F 8R SW
CNN T 1F 11R RW
CNN T 1F 11R SW

(b) RSME UE

Figure 5.3: MT Parameter optimization

days) available from the target domain that was used for training or fine
tuning the models accordingly. The S curves refer to cases where the pro-
posed methods are applied by leveraging only data available from the same
cell. The TL curves are related to the transfer learning scenarios, where the
model is pretrained on DS , then retrained on DT .

We can draw the following conclusions:

• All the deep learning methods, whether they use transfer learning or
not, outperform traditional forecasting methods such as Autoarima.
This different is slightly more significant when a limited amount of
data is taken from DT .

• For the CQI, the transfer learning methods outperform CNN S, which
does not use transfer learning. For UE CNN TRM, CNN TCM and
CNN THM outperform CNN S.

• For CQI, CNN TCLM 2, CNN TCLM 5 and CNN THM are the mod-
els that perform the best according to RMSE values. In contrast, for
UE, CNN THM CC is the model with the best performance.

5.6.2 Frequency vs. City Models Transfer

In this section, we compare the city models performance with the CNN
TFM performance. The CNN TFM requires that data from the same lo-

59

i
i

“output” — 2020/9/22 — 21:19 — page 60 — #70 i
i

i
i

i
i

Chapter 5. Applications to Key Performance Indicator Anticipation

2 3 4 5 6 7
Days taken from the target domain for training

1.3

1.4

1.5

1.6

1.7

1.8
RM

SE

Autoarima
CNN S
CNN TCM

CNN TRM
CNN TCLM 5
CNN TCLM 2

CNN THM
CNN TCCM

(a) RSME CQI

2 3 4 5 6 7
Days taken from the target domain for training

2.0

2.5

3.0

3.5

4.0

RM
SE

Autoarima
CNN S
CNN TCM

CNN TRM
CNN TCLM 5
CNN TCLM 2

CNN THM
CNN TCCM

(b) RSME UE

Figure 5.4: City models

2 3 4 5 6 7
Days taken from the target domain for training

0.74

0.76

0.78

0.80

0.82

0.84

0.86

RM
SE

CNN S
CNN TFM
CNN TCM

CNN TRM
CNN TCLM 5
CNN TCLM 2

CNN THM
CNN TCCM

(a) RSME CQI

2 3 4 5 6 7
Days taken from the target domain for training

1.2

1.4

1.6

1.8

2.0

RM
SE

CNN S
CNN TFM
CNN TCM

CNN TRM
CNN TCLM 5
CNN TCLM 2

CNN THM
CNN TCCM

(b) RSME UE

Figure 5.5: Frequency vs. city models

cation, at a higher frequency, as such, it cannot be used when the higher
frequency is turned off. More information is available in Section 6.4.3.
Fig. 5.5 shows the average RMSE over 100 cells when the higher frequency
is active. We can observe the following:

• In cells where both layers are active CNN TFM achieves comparable
performance to CNN TCLM 2 for CQI and CNN THM CC for UE.

• In addition, the amount of models to train when using CNN TFM to
carry out predictions on n cells fromDT is 2∗n, whereas with the city
model approaches this number decreased to 5 + n in the worse case
(see Section 5.6.3 for more details on model complexity).

5.6.3 Complexity Analysis

We compare all the approaches in terms of amount of parameters to find
and training times.

60

i
i

“output” — 2020/9/22 — 21:19 — page 61 — #71 i
i

i
i

i
i

5.6. Results

Model Total Parameters (CQI) Total Parameters (UE)

CNN S
n ∗ 20, 049

= 20, 044, 900
n ∗ 591, 873
= 59, 187, 300

CNN TFM
n ∗ 200, 449 + n ∗ 2, 561

= 20, 301, 000
n ∗ 591, 873 + n ∗ 590, 849

= 118, 272, 200

CNN TRM 1 ∗ 200, 449 + n ∗ 2, 561
= 456, 549

1 ∗ 591, 873 + n ∗ 590, 849
= 59, 676, 773

CNN TCM 1 ∗ 200, 449 + n ∗ 2, 561
= 456, 549

1 ∗ 591, 873 + n ∗ 590, 849
= 59, 676, 773

CNN TCLM 2
2 ∗ 200, 449 + n ∗ 2, 561

= 656, 998
2 ∗ 591, 873 + n ∗ 590, 849

= 60, 268, 646

CNN TCLM 5
5 ∗ 200, 449 + n ∗ 2, 561

= 1, 258, 345
5 ∗ 591, 873 + n ∗ 590, 849

= 62, 044, 265

CNN THM 1 ∗ 204, 289 + n ∗ 2, 561
= 460, 389

1 ∗ 595, 713 + n ∗ 590, 849
= 59, 680, 613

CNN THM CC 1 ∗ 205, 825 + n ∗ 2, 561
= 461, 925

1 ∗ 598, 785 + n ∗ 590, 849
= 59, 683, 685

Table 5.8: Trainable parameters

Trainable Parameters

Table 5.8 shows the total amount of parameters found during training by
each of the deep learning approaches with and without transfer learning.
The lower the amount of parameters to find, the lower the training time.
We use n = 100 to denote the number of cells, and c to denote the number
of clusters when using CNN TCLM. In Table 5.8, it can be observed that
CNN TRM, CNN TCM, CNN THM and CNN THM CC are the methods
with the smallest number of trainable parameters to be found since, for each
of them, just one model is trained on DS .

Cell Training Time

Given n cells to predict, training, retraining and inference can be carried
out either in parallel or sequentially. In this section, we show the training
and retraining times per cell, operations are carried out in parallel. For
transfer learning, we first train MS on DS and after that, for each of the n
cells on DT , we create n MT models that are retrained at the same time.
Once the retraining step is completed, we use the nMT models to carry out
predictions simultaneously. If we do not use transfer learning (i.e., CNN
S) we only train n models on DT at the same time. We believe that the
possibility of training and retraining different models in parallel is one of
the strengths of our transfer learning approach, specifically for use cases
where there is a central entity and retraining can be performed per network

61

i
i

“output” — 2020/9/22 — 21:19 — page 62 — #72 i
i

i
i

i
i

Chapter 5. Applications to Key Performance Indicator Anticipation

node at the same time. Figures 5.6a and 5.6b show the average training time
without transfer learning (i.e., CNN S), the initialization step of transfer
learning by training a model on DS (i.e., CNN SCM, CNN SRM, CNN
SCLM, CNN SHM, CNN SRM) and during the retraining step of transfer
learning (i.e., CNN TCM, CNN TRM, CNN TCLM, CNN THM, CNN
TRM). We can make the following observations:

• Training times for CQI are lower than for UE as the network architec-
ture is smaller.

• In Figure 5.6a the transfer learning retraining step (for CNN TCM,
CNN TRM, CNN TCLM, CNN THM, CNN TRM) is 1 second faster
than training a model without transfer learning (i.e., CNN S). This is
reasonable since during the retraining step we freeze the first layers
of the model and we just need to find parameters for the retrainable
layers, which are less. The retraining step for the UE (see Figure 5.6b)
is less than a second faster as we freeze less layers when retraining on
DT .

• There are no noticeable differences between the transfer learning mod-
els in terms of retraining time per cell.

• The total transfer learning training times, which comprise training
time on DS plus the retraining time on DT with limited data are going
to be considerably higher than not using transfer learning. However,
the training step on DS can be performed in the best case only once,
or in the worst case significantly less often than retraining, depending
on the use case requirements.

Total Training Time

If predictions are carried out sequentially, training, retraining and inference
per cell are performed one after each other. In Table 6.4 we show the total
training time if predictions are performed for a batch of 100 cells taking 7
days data from DT . We can conclude:

• The transfer learning approaches, specifically the city models (i.e.,
CNN TCM, CNN TRM, CNN TCLM, CNN THM, CNN THM CC)
are faster than the CNNS, which does not use transfer. However, this
is not the case for CNN TFM, since for each cell on DT a model has
to be trained on DS .

62

i
i

“output” — 2020/9/22 — 21:19 — page 63 — #73 i
i

i
i

i
i

5.6. Results

5 10 15 20
Days taken from the target domain for training

2

4

6

8

10

Av
g.

 T
ra

in
in

g
Ti

m
e

in
 S

ec
on

ds
 p

er
 C

el
l

CNN S
CNN SFM
CNN TFM
CNN SCM
CNN TCM

CNN SRM
CNN TRM
CNN SCLM 5
CNN TCLM 5
CNN SCLM 2

CNN TCLM 2
CNN SHM
CNN THM
CNN SCCM
CNN TCCM

(a) Duration CQI, DT

5 10 15 20
Days taken from the target domain for training

10

20

30

40

Av
g.

 T
ra

in
in

g
Ti

m
e

in
 S

ec
on

ds
 p

er
 C

el
l

CNN S
CNN SFM
CNN TFM
CNN SCM
CNN TCM

CNN SRM
CNN TRM
CNN SCLM 5
CNN TCLM 5
CNN SCLM 2

CNN TCLM 2
CNN SHM
CNN THM
CNN SCCM
CNN TCCM

(b) Duration UE, DT

Figure 5.6: Training times per cell in seconds

Model
Total Training

Time in Minutes (CQI)
Total Training

Time in Minutes (UE)
CNN S n ∗ 2.62s = 4.36 n ∗ 10.98s = 18.3

CNN TFM n ∗ 2.66s+ n ∗ 1.76s = 7.36 n ∗ 11.14s+ n ∗ 10.24s = 35.63
CNN TRM 1 ∗ 11.04s+ n ∗ 1.77s = 3.13 1 ∗ 41.77s+ n ∗ 9.99s = 16.67
CNN TCM 1 ∗ 10.57s+ n ∗ 1.67s = 2.95 1 ∗ 40.74s+ n ∗ 9.59s = 16.66

CNN TCLM 2 2 ∗ 10.38s+ n ∗ 1.77s = 3.29 2 ∗ 41.55s+ n ∗ 10.27s = 18.50
CNN TCLM 5 5 ∗ 9.39s+ n ∗ 1.74s = 3.18 5 ∗ 41.49s+ n ∗ 9.97s = 20.06

CNN THM 1 ∗ 11.04s+ n ∗ 1.83s = 3.23 1 ∗ 43.95s+ n ∗ 10.35s = 17.96
CNN

THM CC 1 ∗ 10.80s+ n ∗ 1.75s = 3.08 1 ∗ 43.35s+ n ∗ 10.14s = 17.62

Table 5.9: Sequential training time

• Among the transfer learning approaches, CNN TCM, CNN TRM and
CNN THM CC are the fastest models for both KPIs, with training
times around 3 and 16 minutes, respectively.

• We are able to make predictions for 100 cells with averages of 2.95
minutes for CQI, and 16.66 minutes for UE, when training on DS

every time a prediction is carried out on DT . If we just consider the
retraining time we can make predictions for 100 cells with averages of
2.78 minutes and 15.98 minutes.

• In terms of scalability, higher gains are expected when the number of
cells to predict is considerably higher than 100. For instance, consid-
ering n = 30000 for CQI, using CNN S the total training time would
be 21.83 hours, whereas using CNN TCM for the same amount of
cells the training time would be 13.91 saving 8 hours of training.

63

i
i

“output” — 2020/9/22 — 21:19 — page 64 — #74 i
i

i
i

i
i

Chapter 5. Applications to Key Performance Indicator Anticipation

5.7 Summary

We proposed a transfer learning framework designed to predict CQP and
UE in the challenging case where the amount of data available from a given
cell is limited, and a high number of predictions need to be carried out in
a short period of time. The proposed framework was tested on a dataset
from a commercial 4G LTE network, showing how transfer learning can
be carried out across cells working at different frequencies, or situated in
different locations around a city.

The obtained results show that the proposed deep transfer learning meth-
ods are particularly effective in terms of training time when the amount of
cells to predict is high. Therefore, we can conclude there are several advan-
tages in terms of performance and scalability on using transfer learning for
network performance prediction. Future work will include the application
of the proposed algorithms to predict a longer lookahead in the future.

64

i
i

“output” — 2020/9/22 — 21:19 — page 65 — #75 i
i

i
i

i
i

CHAPTER6
Applications to Multi Step Resource

Utilization Prediction

In this chapter, we leverage deep and transfer learning algorithms for multi-
step resource utilization prediction in mobile radio networks.

6.1 Motivation

Resource utilization predictions are of great importance to anticipate the
network status and trigger the optimization pipeline. For instance, accu-
rate Physical Resource Block (PRB) availability prediction has been used
to support the 5G network slice broker in making it more capable of provi-
sioning a slice and reducing over-provisioning [38]. Similarly, in [92] the
authors propose a Virtual Network Function (VNF) migration algorithm
based on the prediction of future resource requirements in 5G networks. In
both works, the authors define optimization functions using the predicted
values obtained a priori. In contrast, we focus on the anticipation pipeline
and the challenges that arise from it.

Traditional approaches to resource utilization prediction leverage the use
of different network KPIs such as cell load, network volumes or PRB per-

65

i
i

“output” — 2020/9/22 — 21:19 — page 66 — #76 i
i

i
i

i
i

Chapter 6. Applications to Multi Step Resource Utilization Prediction

centage utilization. However, when using KPIs data to monitor the network
performance and carrying out predictions at a large scale, two major chal-
lenges arise: (i) data efficiency (i.e., data storage and processing) and (ii)
time complexity. It is often unfeasible for the operator to record and store
data from thousands of cells at every time interval. Moreover, data pro-
cessing and predictions should be carried out in an efficient manner since
some optimization use cases, such as scheduling, require a response time
in seconds.

To cope with this complex scenario, we extend the transfer learning ap-
proach introduced in Chapter 5, by carrying out resource utilization predic-
tions for longer time intervals in the future and at a large scale in a city.

6.2 Related Work

Wireless network performance, such as traffic load, channel quality or re-
source utilization, is generally modeled as a time series forecasting prob-
lem. There are two predominant approaches:

• Statistical methods: Use of traditional statistical methods for time
series forecasting. Examples include ARIMA, Seasonal Autoregres-
sive Integrated Moving Average (SARIMA) and nonlinear variations
of these methods [89, 115], among others.

• Machine learning methods: Use of machine learning, mainly deep
learning, by modeling the time series forecasting problem as a se-
quence prediction problem. For instance, in [106] a Scalable Gaus-
sian Process is used for PRB percentage utilization prediction. Ex-
amples of deep learning architectures include RNNs in [80], LSTMs
in [38, 101], autoencoders in [99] and CNNs in [109].

6.3 Problem Statement

In this chapter we propose a machine learning approach for the prediction
of PRB percentage utilization in radio networks. We leverage past PRB
percentage utilization observations for predicting future values at different
lookaheads. Each lookahead is defined as the number of time intervals in
the future where predictions will be carried out.

6.3.1 Notation

Let (xi)
T−1
i=0 = {x0, x1, . . . , xT−1} be the sequence of PRB utilization val-

ues obtained for a given cell c ∈ during T time intervals, the multi-step

66

i
i

“output” — 2020/9/22 — 21:19 — page 67 — #77 i
i

i
i

i
i

6.4. Prediction Approaches

PRB prediction problem can be formalized as follows:
Given a limited amount (i.e. t − 1 − l) of PRB utilization observations

from a target cell c, (xi)
t−1
i=l , we aim to forecast future PRB values (ŷi)

t+L−1
i=t ,

where L denotes the forecasting horizon referred as lookahead. For the
transfer learning task, we leverage PRB utilization observations from a dif-
ferent cell ĉ, which is chosen according to different criteria based on the
Euclidean Distance between c and ĉ.

6.4 Prediction Approaches

In this section, we describe the prediction approaches used in this work.
We also introduce several benchmarks to validate the performance of the
proposed transfer learning approach.

6.4.1 Baselines

Most Recent Value

Every PRB sequence of values (ŷi)
t+L−1
i=t is predicted with the most recent

L available observations (yi)
t−1
i=t−L.

MLP-E

Each PRB sequence is predicted through a Multi-Layer Perceptron with
embeddings. This model takes as inputs: (a) time series data and (b) cat-
egorical data. The time series data contains (i) 5 ∗ 8 = 40 observations
corresponding to 5 additional KPIs with window size of 8 and (ii) 3 addi-
tional KPIs corresponding to the latest PRB utilization observations from
3 selected neighboring cells. The categorical data includes day of week,
quarter hour of day and cell index. These categorical features are mapped
to a trainable n-dimensional numerical vectors using the entity embedding
technique described in [37]. The output of the model is 5∗L forecasted KPI
values so that one of the KPIs is PRB utilization. The model has 4 layers in
total, where each layer contains 64 hidden units. We use ReLU activations
and add batch normalization to each layer. In this case, a single model is
trained with the data collected from all the cells.

Remark 3. The MLP-E is a multivariate model with entity embedding
trained on all available data from all the cells.

67

i
i

“output” — 2020/9/22 — 21:19 — page 68 — #78 i
i

i
i

i
i

Chapter 6. Applications to Multi Step Resource Utilization Prediction

yt

x1x0 x95 y96

xT+1-wxT-w yT+L-1

...

...

x1x0 x95... ...x96 xt xT-1

xT-1

Window size (amount of lagged features) w=96

xt+1-wxt-w ... xt-1
...

y97

yt+L-1

Lookahead L=2

yT

Figure 6.1: Sliding windows for multi step time series forecasting

LSTM-1H

Each PRB sequence is predicted via a multi-variate LSTM model with em-
beddings. The additional feature embeddings include one-hot encoding of
day of week and the PRB utilization observations of the 10 highest cor-
related neighbor cells. Unlike the MLP-E, the LSTM-1H model does not
include the cell index as information and needs to be trained per cell.

6.4.2 Multi Step LSTM

First, the general time series forecasting problem is reformulated as a super-
vised machine learning problem. For this purpose, we use sliding windows
of w time intervals by shifting the original time series one step ahead T
times. Figure 6.1 shows the process in detail. The resulting supervised
machine learning problem is defined as finding the function f(x,θ) = y,
x ∈ Rw and y ∈ Rv that maps w time intervals of PRB utilization observa-
tions to the PRB values on the next v time intervals, where v = L coincides
with the lookeahead. Each input vector x is given by the sub-sequence
(xi)

t−1
i=t−w, y is given by (yi)

t+L−1
i=t . As we use neural networks for the task

at hand, θ denotes the neural network weights. The data is divided into
training and test sets. Before training, the data is scaled between 0 and 1 by
using a min-max scaler. First, the scaler is fitted to the training set and then
the resulting function is applied to the test set.

During training, a model f(x,θ) is created by fitting the selected ar-
chitecture on the training set. At testing time, f(x,θ) is applied to data
coming from the same or a different cell. Finally, the data is projected to
the original space by reversing the scaling.

We choose LSTMs as the building blocks of our architecture, since they
shown great performance for sequence prediction. They contain logical
gates which make them capable of learning long term dependencies in a
sequence. We use a many-to-many LSTM architecture, which is comprised

68

i
i

“output” — 2020/9/22 — 21:19 — page 69 — #79 i
i

i
i

i
i

6.4. Prediction Approaches

LSTM

xt-w xt+1-w ... xt-1

yt

Dense
Retrainable

layers

LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

yt+1 ... yt+L-1

Figure 6.2: LSTM architecture

of 2 LSTM layers followed by 1 dense layer that produces the final output.
Figure 6.2 shows the unrolled architecture in time, as well as the inputs
and outputs. We use subsequences with a length equal to the selected win-
dow size w as inputs, to predict the next v samples in the sequence, which
correspond to the LSTM output.

6.4.3 Transfer Learning

Given a source domain DS with enough data and a target domain DT with
a limited amount of data, to transfer knowledge from DS to DT , we first
train a model MS on DS . Then, we create a new model MT by taking the
previous model MS , freezing its first layers and adding new layers. The
new layers of MT are going to be either randomly initialized or initialized
with MS weights. Finally, we retrain MT on DT . The goals is to trans-
fer the more general features learned by the first layers of the network on
a relatively larger source domain (i.e., longer time series) to a limited tar-
get domain (i.e., shorter time series). We keep the same architecture for
retraining MT on DT .

DS Selection Strategies

For every target cell c in DT we need to select a source cell ĉ on DS to
train MS . The selection of the source cell depends on the distance measure
ED(x, y) between the time series x, y that represent a given pair of cells.
The ED(x, y) between these two time series is calculated with Eq. (6.1):

ED(x, y) =

√√√√T−1∑
i=0

(xi − yi)2. (6.1)

We compute ED(x, y) for every pair of cells and select ĉ according to
one of the following criteria:

69

i
i

“output” — 2020/9/22 — 21:19 — page 70 — #80 i
i

i
i

i
i

Chapter 6. Applications to Multi Step Resource Utilization Prediction

• The closest distance: ĉ is the cell that has the minimum distance from
c according to the measure defined in Eq. (6.1) and it is referred to as
the closest cell.

• The most popular cell: ĉ is the “most popular” cell across the whole
dataset, which is defined as the one that recurs most often as closest
cell with respect to all the other cells.

6.5 Experimental Setup

In this section we describe the set of experiments carried out for the dif-
ferent lookaheads and we analyze the factors that affect the achieved per-
formance. We also comment on the training time and complexity of each
algorithm.

The dataset used here is comprised of time series data containing PRB
percentage utilization observations from 148 cells with 15-minute granu-
larity for a duration of 13 days in a 4G LTE network. Each time series
is divided in training and test sets containing 1152 and 96 samples, cor-
responding to 12 and 1 days of data, that are used for training and test,
respectively.

6.5.1 Performance Evaluation

We use the RMSE between real and predicted values to evaluate the perfor-
mance of our algorithms (see Eq. (6.2)).

RMSE(ŷi, yi) =

√√√√ 1

N

t+N−1∑
i=t

(ŷi − yi)2. (6.2)

6.5.2 Parameters Optimization

To find the “best” possible architecture MT , we tried several combinations
of hyperparameters and selected the one that led to the lowest RMSE across
all the cells.

MS Parameters

Table 6.1 shows the selection of hyperparameters for MS .

70

i
i

“output” — 2020/9/22 — 21:19 — page 71 — #81 i
i

i
i

i
i

6.6. Results

Batch size 128
Number of epochs 50

Total number of layers 2
Activation function Hyperbolic Tangent (TANH)

Optimizer Adam
Loss Mean Squared Error

Learning rate 0.001

Table 6.1: MS Hyperparameters

MT Retrainable
Layers

Weights
Initialization RMSE

1 From DS 8.67
1 Random 9.59
2 From DS 8.51
2 Random 8.77

Table 6.2: MT Hyperparameters

MT Parameters Optimization

In MT , we keep the same architecture of MS to ensure fair comparisons.
The amount of layers to freeze and retrain inMT tells how much knowledge
can be transfer from DS to DT . Therefore, we try different combinations
of layers to freeze and retrain. Similarly, MT layers can be either randomly
initialized or initialized with pretrained weights in MS . Table 6.2 shows
the RMSE achieved when we used different amount of layers to freeze and
retrain on MT with and without random initialization for L = 1 and using
the closest cell. It can be observed that the combinations of hyperparame-
ters leading to the best performance is when we retrain the last two layers of
MT and initialize the layers with the pretrained weights fromMS , therefore
this is the network setting used for MT in the rest of the chapter.

6.6 Results

6.6.1 Multi-Step Forecasting

In this section we show the algorithm performance for PRB percentage uti-
lization prediction for different lookaheads. Table 6.3 shows the RMSE for
all approaches when using the maximum amount of data available taken
from the target domain for training (i.e., 12 days) for all the 148 cells. Fig-
ure 6.3 shows the same figures when decreasing this number from 12 to
1 day of training data. In both cases, LSTM S refers to a model trained

71

i
i

“output” — 2020/9/22 — 21:19 — page 72 — #82 i
i

i
i

i
i

Chapter 6. Applications to Multi Step Resource Utilization Prediction

L Most Recent MLP-E LSTM-1H LSTM S LSTM T LSTM T 1G
1 9.24 8.30 9.45 8.77 8.51 8.55
2 11.26 8.92 10.33 10.09 9.87 9.7
3 12.42 9.18 10.72 10.72 10.3 10.35
4 13.36 9.36 10.84 11.18 10.52 10.51
8 17.28 9.93 11.43 11.57 11.15 11.53

16 23.43 10.42 11.77 12.11 11.57 11.86

Table 6.3: RMSE per lookahead,
12 days taken from the target domain for training

on data from DT without using transfer learning. In contrast, LSTM T and
LSTM T 1G refer to the transfer learning models when using the closest and
the most popular cells to train a model on DS (see Section 6.4.3), respec-
tively. For all LSTM networks (with or without transfer learning), a win-
dow sizew = 96 (namely, the number of time steps as one of the three input
dimensions of LSTM) is used. Each lookahead represents the sequence of
values to be predicted in the future. As an example when L = 1, we use
1 day of data, corresponding to 96 observations, to predict the value corre-
sponding to the next time interval (i.e., 15 minutes). Similarly, if L = 3,
we use 1 day of data to predict the sequence of values corresponding to the
next 3 time intervals, i.e., 15, 30 and 45 minutes, respectively. From Table
6.3 and Figure 6.3 we can draw the following conclusions:

• All the machine learning methods (i.e. MLP-E and LSTM with or
without transfer) outperform the Most Recent Value baseline.

• LSTM S, LSTM T and LSTM T 1G achieved comparable RMSE to
the MLP-E and LSTM-1H. This is not surprising for the MLP-E, since
it is a single model trained on muti-variate data (i.e., multiple KPIs)
from all the cells (cf. Remark 3). In addition, both MLP-E and LSTM-
1H have additional features such as the day of the week embedding, a
quarter hour embedding and information about neighbor cells. There-
fore, the clear benefit of using LSTM S, LSTM T and LSTM 1G over
MLP-E lies in the amount of training data required, which can be re-
duced significantly without sacrificing performance.

• Overall, the RMSE increases for bigger lookaheads. This is reason-
able since uncertainty increases over time in the future.

• The transfer learning methods (i.e., LSTM T and LSTM 1G) outper-
form the non transfer learning method (i.e., LSTM S) for almost all
the lookaheads. The difference is more noticeable for LSTM T and

72

i
i

“output” — 2020/9/22 — 21:19 — page 73 — #83 i
i

i
i

i
i

6.6. Results

2 4 6 8 10 12
Days taken from the target domain for training

8.5

9.0

9.5

10.0

10.5

RM
SE

LSTM S L1
LSTM T L1
LSTM T 1G L1

(a) L=1

2 4 6 8 10 12
Days taken from the target domain for training

10.0

10.5

11.0

11.5

RM
SE

LSTM S L2
LSTM T L2
LSTM T 1G L2

(b) L=2

2 4 6 8 10 12
Days taken from the target domain for training

10.5

11.0

11.5

12.0

12.5

RM
SE

LSTM S L3
LSTM T L3
LSTM T 1G L3

(c) L=3

2 4 6 8 10 12
Days taken from the target domain for training

10.5

11.0

11.5

12.0

12.5

13.0

RM
SE

LSTM S L4
LSTM T L4
LSTM T 1G L4

(d) L=4

2 4 6 8 10 12
Days taken from the target domain for training

11

12

13

14

15

RM
SE

LSTM S L8
LSTM T L8
LSTM T 1G L8

(e) L=8

2 4 6 8 10 12
Days taken from the target domain for training

12

13

14

15

16

17

RM
SE

LSTM S L16
LSTM T L16
LSTM T 1G L16

(f) L=16

Figure 6.3: RMSE per lookahead

73

i
i

“output” — 2020/9/22 — 21:19 — page 74 — #84 i
i

i
i

i
i

Chapter 6. Applications to Multi Step Resource Utilization Prediction

when the amount of data used for training or retraining from DT is
limited.

• Among the transfer learning methods, LSTM T leads to a lower RMSE
than LSTM T 1G. This is expected since the ED between DS and DT

is lower when picking the closest cell as DS than when using the most
popular cell across the whole dataset asDS (see Section 6.4.3 for more
details on DS selection strategies). However, in terms of complexity
LSTM T 1G is more efficient since the amount of models to train
on DS is significantly reduced (see Section 6.6.3 for more details on
training time and complexity).

6.6.2 Error Analysis

When carrying out exploratory data analysis on the achieved results, we
analyze the factors that affect the transfer learning accuracy (i.e., LSTM T
RMSE). In the following, MT refers to LSTM T and MS is used to denote
the model trained on DS , which is the first step of the transfer learning
pipeline (see Section 6.4.3). Finally, ML refers to LSTM S and it is used
to denote the model trained on the available data from DT without transfer
learning.

Figure 6.4 shows the RMSE when using MT plotted as a function of
both, ML and the ED to the closest cell. We can draw the following con-
clusions:

• There is a well defined linear trend between the ED and RMSE when
using MT , which means the closer the distance between the source
and the target cell, the smaller the MT error.

• A similar linear trend can be observed between ML RMSE and MT

RMSE. This means that if the prediction error in a given time series
is already high, we could expect a high transfer learning error even if
the similarity between the source and target cell is high.

• In contrast, we could not find any particular trend when plotting the
error of training MS on DS . Therefore, MS RMSE does not seem
to influence the performance of MT . Results are excluded here for
brevity.

• We can conclude that the ED between DS and DT and ML error are
the factors that influence the performance of MT . Moreover, due to
this strong correlation, we fit a linear regression model according to
Eq. (6.3) and Eq. (6.4), we find that we can predict MT RMSE with

74

i
i

“output” — 2020/9/22 — 21:19 — page 75 — #85 i
i

i
i

i
i

6.6. Results

ED

0 10 20 30 40 50 RMSE M L

0.02.55.07.510.012.515.017.520.0

RM
SE

 M
T

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Figure 6.4: Factors affecting LSTM T RMSE

RMSE = 0.81 and R2 = 0.93. This is useful to anticipate in O(1)
the gains of carrying out the transfer learning retraining step for a new
cell in the system.

RMSE(MT) = f(ED(DS, DT),

RMSE(ML)),
(6.3)

RMSE(MT) = 0.31− 0.02 ∗ ED(DS, DT)

+0.95 ∗ RMSE(ML)
(6.4)

6.6.3 Complexity Analysis

In this section, we analyze the training time of each approach for the dif-
ferent lookaheads. It is worth observing that, the inference time does not
represent a bottleneck in the system. This operation is carried out in O(1)
per cell, since it only depends on the sliding window size, which is fixed
beforehand. Therefore, the inference time results are not shown here. Ex-
periments were performed on a PC with three Intel Xeon E5 v3/v4 CPUs,
one GeForce RTX 2080Ti GPU card and 16 GB of RAM. We use Keras [17]
due to its flexibility in implementing the transfer learning approach.

Table 6.4 shows the training duration per cell in seconds, for LSTM S,
LSTM T and LSTM T 1G, for the different lookaheads and 12 days taken
from DT for training or retraining.

• It can be observed that the training time is not significantly affected
by the lookahead length. This is reasonable since the architecture and

75

i
i

“output” — 2020/9/22 — 21:19 — page 76 — #86 i
i

i
i

i
i

Chapter 6. Applications to Multi Step Resource Utilization Prediction

L LSTM S LSTM T LSTM 1G Reduction
in Hours

1
n ∗ 79.85s
= 3.28h

n ∗ 80.06s+ n ∗ 41.47s
= 4.99h

1 ∗ 80.56s+ n ∗ 41.27s
= 1.71h

1.57h

2
n ∗ 80.55s
= 3.31h

n ∗ 79.76s+ n ∗ 41.28s
= 4.97h

1 ∗ 80.35s+ n ∗ 41.21s
= 1.71h

1.6h

3
n ∗ 79.82s
= 3.28h

n ∗ 79.73s+ n ∗ 41.17s
= 4.97h

1 ∗ 80.83s+ n ∗ 41.22s
= 1.71h

1.57h

4
n ∗ 79.76s
= 3.27h

n ∗ 79.90s+ n ∗ 41.40s
= 4.98h

1 ∗ 80.08s+ n ∗ 41.16s
= 1.71h

1.56h

8
n ∗ 79.83s
= 3.28h

n ∗ 79.65s+ n ∗ 41.22s
= 4.96

1 ∗ 80.50s+ n ∗ 41.18s
= 1.71h

1.57h

16
n ∗ 79.08s
= 3.25h

n ∗ 79.06s+ n ∗ 41.18s
= 4.94h

1 ∗ 79.57 + n ∗ 40.69s
= 1.69h

1.56h

Table 6.4: Sequential training time for n = 148 cells

amount of training data remain almost the same for the different looka-
heads. The most noticeable difference is in the dimension of the last
dense layer, which is equal to the lookahead length.

• The time series length, which corresponds to the amount of data used
for training LSTM S or retraining LSMT T (see x-Axis in Figure 6.5),
considerably impacts the training time. For instance, in Figure 6.5, the
training time increases from less than 20 seconds for 2 days to more
than 40 seconds for 12 days for both LSTM S and LSTM T.

• The amount of time required for retraining (i.e., LSTM T) is consid-
erably smaller than the amount of time required for training a model
without transfer (i.e., LSTM S). This is because, when a model is
retrained for transfer learning, the majority of layers are frozen and
fewer parameters need to be found (e.g., 49, 473 parameters for LSTM
T against 116, 033 parameters for LSTM S per cell, for L = 1). This
is highly beneficial for architectures where MS is trained once as part
of an initialization phase and retraining needs to be performed often.

• Total training times significantly decrease when we use the most pop-
ular cell as DS (i.e., LSTM T 1G). In this case, we reduce the amount
of models to train on DS and therefore parameters to find for LSTM
T with regard to LSTM S. For instance, for L = 1 with LSTM S the
initial amount of models and parameters required to predict n cells is
n and 17, 172, 884, respectively. These numbers are nearly identical
for LSTM T, since for each cell onDT , training inDS and a retraining
step on DT need to be performed every time. In contrast, for LSTM T

76

i
i

“output” — 2020/9/22 — 21:19 — page 77 — #87 i
i

i
i

i
i

6.7. Summary

2 4 6 8 10 12
Days taken from the target domain for training

20

40

60

80

Av
g.

 T
ra

in
in

g
Ti

m
e

in
 S

ec
on

ds
 p

er
 C

el
l

LSTM S T L1
LSTM S L1

LSTM T L1

Figure 6.5: Average training time per cell L = 1

1G, we only train a model once on DS and retrain it n times on DT ,
thus decreasing the total amount of parameters to 7, 438, 037 and the
total training time by almost 2 hours.

• Higher gains in terms of training time reduction are expected if the
total number of cells to predict is larger than 148. For instance, for
400 cells and lookahead L = 16, training time decreases by almost
half, from 8.78h to 4.53h.

6.7 Summary

In this chapter, we leveraged the joint use of LSTMs and transfer learning
for PRB percentage utilization predictions for the different lookaheads in
the future. Our algorithm is shown to achieve state of the art results in
terms of accuracy while reducing the required amount of training data. In
addition, we nearly halve the amount of training time required by state of
the art approaches. Finally, we analysed the factors that led to the achieved
accuracy and provide guidelines to select the “best candidate” cells to be
used as source domain for the transfer learning task.

Future work will include evaluating the use of embedding and analyzing
the relationship between the amount of frozen layers and domain similar-
ity between source and target cells. It is worth noting that, the provided
solution could be extended to other network KPIs with minimal parameter
optimization.

77

i
i

“output” — 2020/9/22 — 21:19 — page 78 — #88 i
i

i
i

i
i

i
i

“output” — 2020/9/22 — 21:19 — page 79 — #89 i
i

i
i

i
i

CHAPTER7
Conclusions

In this chapter we summarize the main contributions of this thesis and dis-
cuss future research directions.

7.1 Conclusions

Accurate, fast and scalable predictions are of vital importance for anticipa-
tory networking tasks. In this thesis, we proposed the joint use of deep and
transfer learning for network performance anticipation in mobile wireless
networks. Furthermore, we addressed the two major challenges the mo-
bile operator faces when carrying out predictions to anticipate the network
performance, namely: (i) Data availability and (ii) Time complexity.

To this end, in Chapter 3, we detail a deep transfer learning framework
which we designed to answers the main transfer learning research ques-
tions, which are: What, When and How to transfer?. We showed how
to adapt and optimize several deep learning architectures such as FFNs,
CNNs and LSTMs for transfer learning. We also showed the cases where
transfer learning leads to improved prediction error, thereby avoiding neg-
ative transfer. In addition, every time a problem is identified as a possible
transfer learning use case we carried out systematic steps such as: EDA,

79

i
i

“output” — 2020/9/22 — 21:19 — page 80 — #90 i
i

i
i

i
i

Chapter 7. Conclusions

baselines selection, transfer learning, performance evaluation and finally
system deployment (see Section 3.2 for more details on each step).

In all the tested scenarios, we worked with real world data collected from
three different commercial 4G LTE networks. In all of them the distribu-
tion of the data on source and target domains is different but related, and
the source and target tasks are the same. Therefore, our transfer learning al-
gorithms can be seen as an example of transductive learning and parameter
transfer, but instead using deep learning (cf. 1 and 2). We tested algorithms
in three different real industry problems:

• Tilt-Dependent Radio Map Prediction: In Chapter 4, we proposed
transfer learning and FFNs to predict the performance of a given net-
work configuration by leveraging information from different network
configurations. We showed the advantages of the proposed solution
when the amount of data available from the target domain is very lim-
ited, or non uniformly sampled, which is useful to the operator for
reducing drive tests. In addition, we showed how data augmentation
can be carried out on the source domain, decreasing the prediction er-
ror by 1%. This means there is a trade off between amount of data
added to the source domain and domain similarity.

• Key Performance Indicator Anticipation: In Chapter 5, we mod-
eled the KPI prediction problem as a univariate time series forecasting
problem. The goal is to predict the value of the CQI or UE for the next
hour when a limited amount of past observations are available from
the target cell. For the task at hand, we adapted 1D CNNs and tested
several approaches that differ mostly in the way the source domain
cells are chosen. Results showed that, for the next hour forecast, there
are no significant differences in terms of prediction performance, how-
ever using transfer learning significantly decreases the training time,
thus there are benefits for the operators in terms of future scalability.

• Multi Step Resource Utilization Prediction: In Chapter 6, we fo-
cused on a similar problem to Chapter 5, we extended the work in
order to predict the PRB percentage utilization at longer lookaheads.
We developed two different strategies based on a pre-computed ED
similarity matrix to select the “best” candidate cells to use as a source
domain. This is useful for the operator due to the easy interpretability
of the approach, and it being decoupling from the rest of the pipeline
as it is a pre-computing step. Results show that, transfer learning
outperform the non transfer learning approaches especially at longer

80

i
i

“output” — 2020/9/22 — 21:19 — page 81 — #91 i
i

i
i

i
i

7.2. Discussion and Future work

lookaheads. Moreover, the amount of training time required by the
transfer learning approach is nearly halved in comparison to the rest
of the approaches. In addition, we analyzed the factors that led to the
achieved accuracy and proposed an analytical method that can reduce
the total training time per cell. Finally, higher gains are expected when
the amount of cells where predictions need to be carried out increases,
which is a promising result for further scalability.

The main novelty of this work is that, as opposed to other works in mo-
bile wireless networks, where traditional machine learning is applied, we
evaluated the performance of the proposed solution when no or a limited
amount of data is available from the domain where predictions are carried
out. We chose source and target domains based on similarity metrics tai-
lored to the kind of data and Machine Learning (ML) task to be solved. We
carry out parameter optimizations for the models in both domains. We then
elaborated on and discussed the time complexity of the proposed transfer
learning framework with regard to state of the art solutions, specifically
when multiple predictions should be carried out in the network simultane-
ously. Empirical results showed that time complexity can be nearly halved
by the use of transfer learning.

Ongoing work is being done in order to test and extend the current solu-
tion to other mobile anticipation use cases such as network capacity and cell
congestion. The solution is being integrated as part of the Nokia portfolio.

7.2 Discussion and Future work

The application of transfer learning to anticipate mobile network perfor-
mance is still in early stages. However, throughout this thesis, we have
shown that transfer learning is a promising tool to tackle current challenges
when carrying out predictions in the network in terms of data availability
and time complexity for 5G and beyond. Three main research directions
are envisaged for further study. They are summarized below:

• A different transfer task: In this thesis, we focused on cases where
source and target domains are different but “related” and source and
target tasks are the same. The proposed transfer learning framework
can be extended and evaluated with minimal modifications to cases
where source and target tasks are different. This can be done in two
different ways:

1. Transfer across KPIs: DA model could be trained on one KPI
(source domain) with sufficient data and retrained using limited

81

i
i

“output” — 2020/9/22 — 21:19 — page 82 — #92 i
i

i
i

i
i

Chapter 7. Conclusions

data available from a different KPI (target domain). As an exam-
ple, a model trained on CQI data can be adapted using a few UE
observations to predict UE. It is worth noting that, negative trans-
fer could happen if KPIs are too dissimilar. This is useful for the
operator in case of having a limited amount of UE observations.

2. Classification: The proposed transfer learning approach has been
tested for three use cases in mobile wireless networks. For this
purpose, different types of data have been used (i.e., spatial data
when predicting RSRP values and temporal data for KPI antici-
pation). As the predicted value has always been continuous, this
transfer learning framework has been tested for a ML regression
task. However, the same approach could be tailored, with mini-
mal configuration efforts, for classifications tasks. This could be
useful for expanding the application of transfer learning to other
use cases in mobile wireless networks such as anomaly detection.

3. Multitask learning: In Chapter 5, we investigated whether adding
different KPIs as new input features to the neural network de-
creases the prediction error when predicting future values for a
single KPI. It was shown that, by using correlated KPIs as ad-
ditional CNN input features, the RMSE decreases when predict-
ing future UE values. Future work could include the joint use of
transfer and multitask learning to predict not only one, but mul-
tiple KPIs at the same time. This is a promising approach, since
multiple KPIs could be predicted by training one single model,
which could decrease time complexity significantly. Based on
data availability, other variables (e.g., caching information) could
be also used as input features with minimal modifications to the
neural network architecture. However, whether this will lead to
performance improvement or not requires further investigation in
order to avoid negative transfer.

• Enhanced model adaptation: Well known distance metrics have
been used for the selection of source and target domains. The met-
rics have been tailored to the kind of data and the ML problem to be
solved. Further research could include the evaluation of different dis-
tance metrics or embedding techniques to study their influence on the
prediction error. Similarly, future work could include evaluating the
relationship between the amount of knowledge to transfer from the
source domain, which is given by the amount of layers to freeze in
the target domain model, and the domain similarity between source

82

i
i

“output” — 2020/9/22 — 21:19 — page 83 — #93 i
i

i
i

i
i

7.2. Discussion and Future work

and target domains. The main goal of such work would be to find a
more systematic and efficient approach to determining the amount of
knowledge to transfer. So far this has been accomplished by trying all
the possible combinations of layers to freeze and retrain.

• System deployment and integration: Finally, the main steps in the
anticipation pipeline (i.e., training, retraining and inference) can be
deployed as independent services behind an API and orchestrated ac-
cordingly. This is useful to give guidelines to the operator on how
often new KPI data needs to be collected and stored. Determining the
optimal number of cells to train, retrain and predict simultaneously,
when carrying out predictions at a large scale, is one of the remaining
challenges.

83

i
i

“output” — 2020/9/22 — 21:19 — page 84 — #94 i
i

i
i

i
i

i
i

“output” — 2020/9/22 — 21:19 — page 85 — #95 i
i

i
i

i
i

List of Figures

3.1 Traditional machine learning vs. Transfer learning 18
3.2 Transfer Learning pipeline 19

4.2 Tilt-dependent radio maps, normalized histograms and PDFs
for three metrics RSRP, azimuth and distance, PCI 1 28

4.3 Relative angles on the vertical (left) and horizontal (right)
planes between the antenna pointing direction and the direc-
tion towards the test position x 29

4.4 Transfer learning model 30
4.5 Domain distance . 37
4.6 Training curves and Bayesian convergence on the source do-

main, PCI 1 . 39
4.7 MAPE for the different values of frozen (F) and retrainable

(R) layers using random or source domain weights initial-
ization . 39

4.8 MAPE when training or fine tuning on uniformly sampled
measurements . 40

4.9 MAPE when training or fine tuning on non-uniformly sam-
pled measurements . 43

4.10 MAPE with and without data augmentation 45
4.11 Training curves on the target domain, PCI 1 and Tilts 6 and

2: (a), (b) Limited uniformly sampled data, (c), (d) Limited
non-uniformly sampled data 46

85

i
i

“output” — 2020/9/22 — 21:19 — page 86 — #96 i
i

i
i

i
i

List of Figures

5.3 MT Parameter optimization 59
5.4 City models . 60
5.5 Frequency vs. city models 60
5.6 Training times per cell in seconds 63

6.3 RMSE per lookahead . 73
6.4 Factors affecting LSTM T RMSE 75
6.5 Average training time per cell L = 1 77

86

i
i

“output” — 2020/9/22 — 21:19 — page 87 — #97 i
i

i
i

i
i

List of Tables

4.1 MAPE for variations in the amount of layers and hidden
units for PCI 1, Tilt 2, 3 and 6 38

4.2 Hyperparameters found by Bayesian and manual optimization 38
4.3 DD values before and after data augmentation 45

5.1 Default combination of hyperparameters 57
5.2 Lag number input . 57
5.3 Number of epochs . 57
5.4 Learning rate . 58
5.5 Number of layers . 58
5.6 Number of filters . 58
5.7 Dropout . 59
5.8 Trainable parameters . 61
5.9 Sequential training time 63

6.1 MS Hyperparameters . 71
6.2 MT Hyperparameters . 71
6.3 RMSE per lookahead, 12 days taken from the target domain

for training . 72
6.4 Sequential training time for n = 148 cells 76

87

i
i

“output” — 2020/9/22 — 21:19 — page 88 — #98 i
i

i
i

i
i

i
i

“output” — 2020/9/22 — 21:19 — page 89 — #99 i
i

i
i

i
i

Bibliography

[1] A note on the evaluation of generative models.

[2] 3GPP. Evolved universal terrestrial radio access (e-utra); further advancements for (e-utra)
physical layer aspects. TR 36.814, Techincal report, 2006.

[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[4] Evolved Universal Terrestrial Radio Access. Physical layer-measurements (3gpp ts 36.214
version 9.0. 0 release 9). ETSI TS, 136(214):V9, 2010.

[5] Farhana Afroz, Ramprasad Subramanian, Roshanak Heidary, Kumbesan Sandrasegaran, and
Solaiman Ahmed. Sinr, rsrp, rssi and rsrq measurements in long term evolution networks.
International Journal of Wireless & Mobile Networks, 2015.

[6] Imad Alawe, Yassine Hadjadj-Aoul, Adlen Ksentinit, Philippe Bertin, César Viho, and Davy
Darche. An efficient and lightweight load forecasting for proactive scaling in 5g mobile net-
works. In 2018 IEEE Conference on Standards for Communications and Networking (CSCN),
pages 1–6. IEEE, 2018.

[7] Ejder Baştuğ, Mehdi Bennis, and Mérouane Debbah. A transfer learning approach for cache-
enabled wireless networks. In 2015 13th International Symposium on Modeling and Opti-
mization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pages 161–166. IEEE, 2015.

[8] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Jour-
nal of Machine Learning Research, 13(Feb):281–305, 2012.

[9] Abhijeet Bhorkar, Ke Zhang, and Jin Wang. Deepauto: A hierarchical deep learning frame-
work for real-time prediction in cellular networks. arXiv preprint arXiv:2001.01553, 2019.

[10] Oliver Blume, Harald Eckhardt, Siegfried Klein, Edgar Kuehn, and Wieslawa M Wajda. En-
ergy savings in mobile networks based on adaptation to traffic statistics. Bell Labs Technical
Journal, 15(2):77–94, 2010.

[11] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[12] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

89

i
i

“output” — 2020/9/22 — 21:19 — page 90 — #100 i
i

i
i

i
i

Bibliography

[13] N. Bui, M. Cesana, S. A. Hosseini, Q. Liao, I. Malanchini, and J. Widmer. A survey of
anticipatory mobile networking: Context-based classification, prediction methodologies, and
optimization techniques. IEEE Communications Surveys Tutorials, 19(3):1790–1821, 2017.

[14] Rita Chattopadhyay, Qian Sun, Wei Fan, Ian Davidson, Sethuraman Panchanathan, and
Jieping Ye. Multisource domain adaptation and its application to early detection of fatigue.
ACM Transactions on Knowledge Discovery from Data, 6(4):18, 2012.

[15] Mingzhe Chen, Ursula Challita, Walid Saad, Changchuan Yin, and Mérouane Debbah. Arti-
ficial neural networks-based machine learning for wireless networks: A tutorial. IEEE Com-
munications Surveys & Tutorials, 2019.

[16] Mingzhe Chen, Walid Saad, Changchuan Yin, and Mérouane Debbah. Data correlation-aware
resource management in wireless virtual reality (vr): An echo state transfer learning approach.
IEEE Transactions on Communications, 2019.

[17] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[18] Dan C Cireşan, Ueli Meier, and Jürgen Schmidhuber. Transfer learning for latin and chi-
nese characters with deep neural networks. In IEEE Neural Networks (IJCNN), The 2012
International Joint Conference on, pages 1–6, 2012.

[19] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

[20] Harshit Daga, Patrick K Nicholson, Ada Gavrilovska, and Diego Lugones. Cartel: A system
for collaborative transfer learning at the edge. In Proceedings of the ACM Symposium on
Cloud Computing, pages 25–37, 2019.

[21] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for transfer learning. In
Proceedings of the 24th International Conference on Machine Learning, ICML ’07, pages
193–200, New York, NY, USA, 2007. ACM.

[22] M. Danneberg, J. Holfeld, M. Grieger, M. Amro, and G. Fettweis. Field trial evaluation of
ue specific antenna downtilt in an LTE downlink. In International ITG Workshop on Smart
Antennas (WSA), pages 274–280. IEEE, 2012.

[23] Hal Daumé III. Frustratingly easy domain adaptation. arXiv preprint arXiv:0907.1815, 2009.

[24] Jesse Davis and Pedro Domingos. Deep transfer via second-order markov logic. In ACM 26th
annual international conference on machine learning, pages 217–224, 2009.

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 4171–4186, 2019.

[26] David A Dickey and Wayne A Fuller. Distribution of the estimators for autoregressive time
series with a unit root. Journal of the American statistical association, 74(366a):427–431,
1979.

[27] Lixin Duan, Dong Xu, and Ivor Wai-Hung Tsang. Domain adaptation from multiple sources:
A domain-dependent regularization approach. IEEE Transactions on Neural Networks and
Learning Systems, 23(3):504–518, 2012.

[28] Theodoros Evgeniou and Massimiliano Pontil. Regularized multi–task learning. In ACM
SIGKDD, pages 109–117, 2004.

[29] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-
Alain Muller. Transfer learning for time series classification. In 2018 IEEE International
Conference on Big Data (Big Data), pages 1367–1376. IEEE, 2018.

90

https://github.com/fchollet/keras

i
i

“output” — 2020/9/22 — 21:19 — page 91 — #101 i
i

i
i

i
i

Bibliography

[30] Wei Feng, Zheng Yan, Hengrun Zhang, Kai Zeng, Yu Xiao, and Y Thomas Hou. A survey
on security, privacy, and trust in mobile crowdsourcing. IEEE Internet of Things Journal,
5(4):2971–2992, 2017.

[31] David A Freedman. Statistical models: theory and practice. cambridge university press,
2009.

[32] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning
and an application to boosting. In European conference on computational learning theory,
pages 23–37. Springer, 1995.

[33] Ana Galindo-Serrano, Lorenza Giupponi, and Gunther Auer. Distributed learning in multiuser
ofdma femtocell networks. In IEEE VTC Spring, pages 1–6, 2011.

[34] Jing Gao, Wei Fan, Jing Jiang, and Jiawei Han. Knowledge transfer via multiple model local
structure mapping. In ACM SIGKDD, pages 283–291, 2008.

[35] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sen-
timent classification: A deep learning approach. In Proceedings of the 28th international
conference on machine learning (ICML-11), pages 513–520, 2011.

[36] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, vol-
ume 1. MIT press Cambridge, 2016.

[37] Cheng Guo and Felix Berkhahn. Entity embeddings of categorical variables. arXiv preprint
arXiv:1604.06737, 2016.

[38] Craig Gutterman, Edward Grinshpun, Sameer Sharma, and Gil Zussman. RAN resource
usage prediction for a 5G slice broker. In Proceedings of the Twentieth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pages 231–240. ACM, 2019.

[39] Seif Eddine Hammami, Hossam Afifi, Michel Marot, and Vincent Gauthier. Network plan-
ning tool based on network classification and load prediction. In 2016 IEEE Wireless Com-
munications and Networking Conference, pages 1–6. IEEE, 2016.

[40] Wuri A Hapsari, Anil Umesh, Mikio Iwamura, Malgorzata Tomala, Bódog Gyula, and
Benoist Sebire. Minimization of drive tests solution in 3gpp. IEEE Communications Maga-
zine, 50(6):28–36, 2012.

[41] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[42] Tin Kam Ho. Random decision forests. In IEEE Document Analysis and Recognition, vol-
ume 1, pages 278–282, 1995.

[43] Tingting Hou, Gang Feng, Shuang Qin, and Wei Jiang. Proactive content caching by exploit-
ing transfer learning for mobile edge computing. International Journal of Communication
Systems, 31(11):e3706, 2018.

[44] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classi-
fication. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics, pages 328–339, 2018.

[45] Paul Jaccard. Étude comparative de la distribution florale dans une portion des alpes et des
jura. Bull Soc Vaudoise Sci Nat, 37:547–579, 1901.

[46] Chunxiao Jiang, Haijun Zhang, Yong Ren, Zhu Han, Kwang-Cheng Chen, and Lajos Hanzo.
Machine learning paradigms for next-generation wireless networks. IEEE Wireless Commu-
nications, 24(2):98–105, 2017.

[47] Jing Jiang and ChengXiang Zhai. Instance weighting for domain adaptation in nlp. In Pro-
ceedings of the 45th annual meeting of the association of computational linguistics, pages
264–271, 2007.

91

i
i

“output” — 2020/9/22 — 21:19 — page 92 — #102 i
i

i
i

i
i

Bibliography

[48] James M Joyce. Kullback-leibler divergence. In International Encyclopedia of Statistical
Science, pages 720–722. Springer, 2011.

[49] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman,
and Angela Y Wu. An efficient k-means clustering algorithm: Analysis and implementation.
IEEE transactions on pattern analysis and machine intelligence, 24(7):881–892, 2002.

[50] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and
Li Fei-Fei. Large-scale video classification with convolutional neural networks. In Proceed-
ings of the IEEE conference on Computer Vision and Pattern Recognition, pages 1725–1732,
2014.

[51] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and
Li Fei-Fei. Large-scale video classification with convolutional neural networks. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2014.

[52] Dereje W Kifle, Bernhard Wegmann, Ingo Viering, and Anja Klein. Impact of antenna tilting
on propagation shadowing model. In IEEE VTC Spring, pages 1–5, 2013.

[53] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[54] Denis Kwiatkowski, Peter CB Phillips, Peter Schmidt, and Yongcheol Shin. Testing the null
hypothesis of stationarity against the alternative of a unit root: How sure are we that economic
time series have a unit root? Journal of econometrics, 54(1-3):159–178, 1992.

[55] Su-In Lee, Vassil Chatalbashev, David Vickrey, and Daphne Koller. Learning a meta-level
prior for feature relevance from multiple related tasks. In ACM the 24th international confer-
ence on Machine learning, pages 489–496, 2007.

[56] Rongpeng Li, Zhifeng Zhao, Xuan Zhou, and Honggang Zhang. Energy savings scheme in
radio access networks via compressive sensing-based traffic load prediction. Transactions on
emerging telecommunications technologies, 25(4):468–478, 2014.

[57] Qi Liao, Stefan Valentin, and Sławomir Stańczak. Channel gain prediction in wireless net-
works based on spatial-temporal correlation. In IEEE SPAWC, pages 400–404, 2015.

[58] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R news,
2(3):18–22, 2002.

[59] Xingqin Lin, Jeffrey G Andrews, and Amitabha Ghosh. Modeling, analysis and design for
carrier aggregation in heterogeneous cellular networks. IEEE Transactions on Communica-
tions, 61(9):4002–4015, 2013.

[60] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[61] Enrico Lovisotto, Enrico Vianello, Davide Cazzaro, Michele Polese, Federico Chiariotti,
Daniel Zucchetto, Andrea Zanella, and Michele Zorzi. Cell traffic prediction using joint
spatio-temporal information. In 2017 6th International Conference on Modern Circuits and
Systems Technologies (MOCAST), pages 1–4. IEEE, 2017.

[62] Changqing Luo, Jinlong Ji, Qianlong Wang, Xuhui Chen, and Pan Li. Channel state in-
formation prediction for 5G wireless communications: A deep learning approach. IEEE
Transactions on Network Science and Engineering, 2018.

[63] Jun Ma, Jack CP Cheng, Changqing Lin, Yi Tan, and Jingcheng Zhang. Improving air quality
prediction accuracy at larger temporal resolutions using deep learning and transfer learning
techniques. Atmospheric Environment, 214:116885, 2019.

92

i
i

“output” — 2020/9/22 — 21:19 — page 93 — #103 i
i

i
i

i
i

Bibliography

[64] Spyros Makridakis, Steven C Wheelwright, and Rob J Hyndman. Forecasting methods and
applications. John wiley & sons, 2008.

[65] Lilyana Mihalkova, Tuyen Huynh, and Raymond J Mooney. Mapping and revising markov
logic networks for transfer learning. In AAAI, volume 7, pages 608–614, 2007.

[66] Jessica Moysen, Lorenza Giupponi, and Josep Mangues-Bafalluy. A mobile network planning
tool based on data analytics. Mobile Information Systems, 2017, 2017.

[67] Andrew Ng. Nuts and bolts of building ai applications using deep learning.

[68] Huan Cong Nguyen, Ignacio Rodriguez, Troels Bundgaard Sorensen, Jan Elling, Morten Brok
Gentsch, Mads Sorensen, and Preben Mogensen. Validation of tilt gain under realistic path
loss model and network scenario. In IEEE VTC Fall, pages 1–5, 2013.

[69] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-
level image representations using convolutional neural networks. In IEEE CVPR, pages 1717–
1724, 2014.

[70] Jialin Pan. Feature-based transfer learning with real-world applications. PhD thesis, Hong
Kong University of Science and Technology, 2010.

[71] Sinno Jialin Pan, James T Kwok, Qiang Yang, and Jeffrey Junfeng Pan. Adaptive localization
in a dynamic WiFi environment through multi-view learning. In Proceedings of the 22nd
National Conference on Artificial Intelligence, pages 1108–1113. AAAI, 2007.

[72] Sinno Jialin Pan, Dou Shen, Qiang Yang, and James T Kwok. Transferring localization
models across space. In AAAI, pages 1383–1388, 2008.

[73] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation via
transfer component analysis. IEEE Transactions on Neural Networks, 22(2):199–210, 2011.

[74] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2010.

[75] Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. Virtual to real reinforcement learning
for autonomous driving. arXiv preprint arXiv:1704.03952, 2017.

[76] Claudia Parera, Alessandro EC Redondi, Matteo Cesana, Qi Liao, Lutz Ewe, and Cristian
Tatino. Transferring knowledge for tilt-dependent radio map prediction. In IEEE WCNC,
pages 1–6, 2018.

[77] Qihang Peng, Andrew Gilman, Nuno Vasconcelos, Pamela C Cosman, and Laurence B Mil-
stein. Robust deep sensing through transfer learning in cognitive radio. IEEE Wireless Com-
munications Letters, 9(1):38–41, 2019.

[78] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Ken-
ton Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365, 2018.

[79] Caleb Phillips, Douglas Sicker, and Dirk Grunwald. A survey of wireless path loss prediction
and coverage mapping methods. IEEE Communications Surveys & Tutorials, 15(1):255–270,
2013.

[80] Chen Qiu, Yanyan Zhang, Zhiyong Feng, Ping Zhang, and Shuguang Cui. Spatio-temporal
wireless traffic prediction with recurrent neural network. IEEE Wireless Communications
Letters, 7(4):554–557, 2018.

[81] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

[82] Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. Transfusion: Understand-
ing transfer learning for medical imaging. In Advances in Neural Information Processing
Systems, pages 3342–3352, 2019.

93

i
i

“output” — 2020/9/22 — 21:19 — page 94 — #104 i
i

i
i

i
i

Bibliography

[83] Mauro Ribeiro, Katarina Grolinger, Hany F ElYamany, Wilson A Higashino, and Miriam AM
Capretz. Transfer learning with seasonal and trend adjustment for cross-building energy fore-
casting. Energy and Buildings, 165:352–363, 2018.

[84] Ignacio Rodriguez, Huan C Nguyen, Troels B Sørensen, Jan Elling, Morten B Gentsch, Mads
Sørensen, Lauri Kuru, and Preben Mogensen. A geometrical-based vertical gain correction
for signal strength prediction of downtilted base station antennas in urban areas. In IEEE VTC
Fall, pages 1–5, 2012.

[85] Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and Thomas Wolf. Transfer learn-
ing in natural language processing. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Tutorials, pages 15–18,
2019.

[86] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

[87] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[88] Yifei Shen, Yuanming Shi, Jun Zhang, and Khaled B Letaief. Transfer learning for mixed-
integer resource allocation problems in wireless networks. In ICC 2019-2019 IEEE Interna-
tional Conference on Communications (ICC), pages 1–6. IEEE, 2019.

[89] Yantai Shu, Minfang Yu, Oliver Yang, Jiakun Liu, and Huifang Feng. Wireless traffic mod-
eling and prediction using seasonal arima models. IEICE transactions on communications,
88(10):3992–3999, 2005.

[90] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of ma-
chine learning algorithms. In Advances in neural information processing systems, pages
2951–2959, 2012.

[91] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A
survey on deep transfer learning. In International conference on artificial neural networks,
pages 270–279. Springer, 2018.

[92] Lun Tang, Xiaoyu He, Peipei Zhao, Guofan Zhao, Yu Zhou, and Qianbin Chen. Virtual net-
work function migration based on dynamic resource requirements prediction. IEEE Access,
7:112348–112362, 2019.

[93] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

[94] Tatiana Tommasi, Francesco Orabona, and Barbara Caputo. Safety in numbers: Learning
categories from few examples with multi model knowledge transfer. In IEEE CVPR, pages
3081–3088, 2010.

[95] Tatiana Tommasi, Francesco Orabona, and Barbara Caputo. Learning categories from few
examples with multi model knowledge transfer. IEEE transactions on pattern analysis and
machine intelligence, 36(5):928–941, 2014.

[96] Dimitrios Tsilimantos, Amaya Nogales-Gómez, and Stefan Valentin. Anticipatory radio re-
source management for mobile video streaming with linear programming. In IEEE ICC,
pages 1–6, 2016.

[97] Stijn Van Dongen and Anton J Enright. Metric distances derived from cosine similarity and
pearson and spearman correlations. arXiv preprint arXiv:1208.3145, 2012.

[98] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural infor-
mation processing systems, pages 5998–6008, 2017.

94

i
i

“output” — 2020/9/22 — 21:19 — page 95 — #105 i
i

i
i

i
i

Bibliography

[99] Jing Wang, Jian Tang, Zhiyuan Xu, Yanzhi Wang, Guoliang Xue, Xing Zhang, and Dejun
Yang. Spatiotemporal modeling and prediction in cellular networks: A big data enabled deep
learning approach. In IEEE INFOCOM 2017-IEEE Conference on Computer Communica-
tions, pages 1–9. IEEE, 2017.

[100] Wei Wang, Jin Zhang, and Qian Zhang. Transfer learning based diagnosis for configuration
troubleshooting in self-organizing femtocell networks. In IEEE GLOBECOM, pages 1–5,
2011.

[101] Xu Wang, Zimu Zhou, Fu Xiao, Kai Xing, Zheng Yang, Yunhao Liu, and Chunyi Peng.
Spatio-temporal analysis and prediction of cellular traffic in metropolis. IEEE Transactions
on Mobile Computing, 2018.

[102] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning.
Journal of Big Data, 3(1):9, 2016.

[103] Christopher Xie, Alex Talk, and Emily Fox. A unified framework for missing data and cold
start prediction for time series data. In Advances in neural information processing systems
Time Series Workshop, 2016.

[104] Xiaoshuang Xing, Tao Jing, Yan Huo, Hongjuan Li, and Xiuzhen Cheng. Channel quality
prediction based on bayesian inference in cognitive radio networks. In IEEE INFOCOM,
pages 1465–1473, 2013.

[105] Xiang Xu, Mingjian Ni, and Rudolf Mathar. Improving QoS by predictive channel quality
feedback for LTE. In IEEE SoftCOM, pages 1–5, 2013.

[106] Yue Xu, Feng Yin, Wenjun Xu, Jiaru Lin, and Shuguang Cui. Wireless traffic prediction
with scalable Gaussian process: Framework, algorithms, and verification. IEEE Journal on
Selected Areas in Communications, 37(6):1291–1306, 2019.

[107] Rui Ye and Qun Dai. A novel transfer learning framework for time series forecasting.
Knowledge-Based Systems, 156:74–99, 2018.

[108] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in
deep neural networks? In Advances in neural information processing systems, pages 3320–
3328, 2014.

[109] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional neural net-
work: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875,
2017.

[110] Ling Yu, Jin Chen, Guoru Ding, Ya Tu, Jian Yang, and Jiachen Sun. Spectrum prediction
based on Taguchi method in deep learning with long short-term memory. IEEE Access,
6:45923–45933, 2018.

[111] Alessio Zappone, Marco Di Renzo, and Mérouane Debbah. Wireless networks design in the
era of deep learning: Model-based, ai-based, or both? arXiv preprint arXiv:1902.02647,
2019.

[112] Chuanting Zhang, Haixia Zhang, Jingping Qiao, Dongfeng Yuan, and Minggao Zhang. Deep
transfer learning for intelligent cellular traffic prediction based on cross-domain big data.
IEEE Journal on Selected Areas in Communications, 37(6):1389–1401, 2019.

[113] Yige Zhang, Aaron Yi Ding, Jörg Ott, Mingxuan Yuan, Jia Zeng, Kun Zhang, and Weixiong
Rao. Transfer learning-based outdoor position recovery with telco data. IEEE Transactions
on Mobile Computing, 2020.

[114] Vincent Wenchen Zheng, Evan Wei Xiang, Qiang Yang, and Dou Shen. Transferring local-
ization models over time. In AAAI, pages 1421–1426, 2008.

[115] Bo Zhou, Dan He, Zhili Sun, and Wee Hock Ng. Network traffic modeling and prediction
with arima/garch. In Proc. of HET-NETs Conference, pages 1–10, 2005.

95

	Introduction
	Motivation
	Contributions
	Thesis Outline
	Publications

	State of the Art
	Transfer Learning
	When to Transfer?
	What to Transfer?
	How to Transfer?

	Deep Transfer Learning
	Transfer Learning in Computer Vision
	Transfer Learning in Natural Language Processing
	Transfer Learning in Time Series Analysis
	Transfer Learning and Reinforcement Learning

	Transfer Learning in Mobile Communication Networks
	Transfer Learning for Network Optimization
	Transfer Learning for Network Performance Anticipation

	Deep Transfer Learning
	Transfer Learning Background
	Traditional Machine Learning vs. Transfer Learning
	Transfer Learning Research Questions

	Transfer Learning Pipeline
	Use Case Identification
	Exploratory Data Analysis
	Baselines
	Transfer Learning
	Performance Evaluation
	System Deployment

	Applications to Tilt-Dependent Radio Map Prediction
	Motivation
	Related Work
	Problem Statement
	Data Collection
	Data Preprocessing

	Prediction Approaches
	Transfer Learning Approach
	Baseline Methods

	Experimental Setup
	Domain Distance
	Parameters Optimization

	Results
	Single Tilt Transfer
	Tilt Augmentation Transfer

	Summary

	Applications to Key Performance Indicator Anticipation
	Motivation
	Related Work
	Problem Statement
	Notation

	Prediction Approaches
	Deep Learning
	Transfer Learning
	Baselines

	Experimental Setup
	Parameter Optimization

	Results
	City Models Transfer
	Frequency vs. City Models Transfer
	Complexity Analysis

	Summary

	Applications to Multi Step Resource Utilization Prediction
	Motivation
	Related Work
	Problem Statement
	Notation

	Prediction Approaches
	Baselines
	Multi Step LSTM
	Transfer Learning

	Experimental Setup
	Performance Evaluation
	Parameters Optimization

	Results
	Multi-Step Forecasting
	Error Analysis
	Complexity Analysis

	Summary

	Conclusions
	Conclusions
	Discussion and Future work

	Bibliography

