
Executive Summary of the Thesis

Characterizing Non Counting Operator Precedence Languages in a
Locally Testable manner

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Giorgio Corbetta

Advisor: Prof. Matteo Pradella

Academic year: 2022-2023

1. Introduction
The goal of this thesis is to expand the character-
ization of Operator Precedence Non-Counting
Languages, by considering local testability.
Operator Precedence Languages, introduced by
Robert W. Floyd in [1], are Structured Context-
Free Languages. This family, because of hav-
ing the local parsability property, may become
more important in a world in which the growth
of computing power is directed forward paral-
lelization. In the literature, there have been pro-
posed different characterizations for the class of
Operator Precedence Languages (OPL). In par-
ticular, in [3], there can be found different char-
acterizations inspired by the ones used for Regu-
lar Languages: Operator Precedence Grammars
(OPG), Monadic Second Order Logic (MSO);
also, Operator Precedence Expressions (OPE)
can be found in [3]. Moreover, for each one
of those characterizations, there has been found
a way to restrict it to represent only Operator
Precedence Non-Counting languages (NCOP),
and it turned out that those restrictions are sim-
ilar to the ones on Regular Languages and rela-
tive representations.
Among all those characterizations for the OPL
and NCOP families, inspired by the ones on
Regular Languages, there is not present any

representation for NCOP corresponding to the
Locally Testable one. The family of Locally
Testable Languages, as presented in [4], has
been proven to coincide with the family of Non-
Counting Regular Languages. For this reason,
this work aims to provide a characterization,
if exists, of Non-Counting Operator Precedence
Languages inspired by the Locally Testable one.

2. Background
In this section are reported the main definitions
and concepts present in the literature that are
necessary for this work.
The first concept to be introduced is the con-
cept of Non-Countingness. In particular, this
concept suits well Regular Languages, however,
it has been mutated also to fit other families of
languages, like Context-Free or Operator Prece-
dence Languages too. The family of Regular
Non-Counting Languages is important to be pre-
sented because it constitutes one of the pillars
on which the final result is built, and it is from
its characterizations that the ones of NCOP are
inspired.
Definition 2.1 (Non Counting). Given a lan-
guage η ⊆ Σ∗, η is Non Counting if there exists
a number n such that for all x, y, z ∈ Σ∗, m ∈ N
it holds x · yn · z ∈ η ⇔ x · yn+m · z ∈ η.

1

Executive summary Giorgio Corbetta

If η is not Non-Counting, then it is Counting.

2.1. Locally Testable
The class of Locally Testable Languages is a sub-
class of Regular Languages and provides a char-
acterization based on sets of substrings, differ-
ently from grammars, regular expressions, au-
tomata, or logic. Those languages, described
for example in [4], are defined starting from
the concepts of k -testable and languages Locally
Testable in the strict sense:
Definition 2.2 (k -testable). Given an alphabet
Σ and a character # /∈ Σ, a language η ⊆ Σ∗

is said to be k -testable if there exist a number k
and a set Y ⊆ ((

⋃
i∈N, i<k−1# · Σi · #) ∪ (# ·

Σk−1 ∪ Σk−1 ·#) ∪ Σk)
A language η ⊆ Σ∗ is said to be k -testable
if there exist a number k and a set Y ⊆
((
⋃

i∈N, i<k−1#·Σi·#)∪(#·Σk−1∪Σk−1·#)∪Σk)
such that the language η recognises the strings
s ∈ Σ∗ iff:
• |s| ≤ k − 2 → # · s ·# ∈ Y ;
• |s| > k − 2 → each substring of length k of

· s ·# is in Y .
If the language η is k -testable, then it is said to
be Locally Testable in the strict sense, or LT.
Starting from those concepts, there can be de-
fined the family of Locally Testable Languages
using the closure under boolean operations and
concatenation:
Definition 2.3 (Locally Testable Languages).
The class of Locally Testable Languages, or
LTO, is defined as the smallest set of languages
containing all the LT languages and such that
it is closed under the boolean operations and the
concatenation.
As previously stated, the main result that makes
this family important for our goal is:
Theorem 2.1 (LTO = NC). The class of Lo-
cally Testable Languages, LTO, coincides with
the class of Regular Non-Counting Languages.
Thus Locally Tesable languages provide another
different characterization for Non-Counting
Regular Languages with respect to Star Free
Regular Expressions, Aperiodic Grammars,
First Order Logic, and Aperiodic Finite State
Automata.

2.2. Operator Precedence Languages
Another crucial concept for this work is the one
of Operational Precedence Languages, or OPLs.
Those languages, presented by Robert Floyd in
[1], can be defined starting from the concept of
Operator Precedence Grammars, or OPGs. This
approach makes it easier to introduce the main
idea underlying OPLs: the Operator Precedence
Relations, or OPRs.
Definition 2.4 (Operator Precedence Gram-
mar, Relations and Language). Let G =
(Σ, VN , P, S) be a Context-Free grammar such
that, being V = Σ ∪ VN , for each rhs part α of
the rules in P it is valid that α /∈ V ∗VNVNV ∗,
i.e., at least one terminal is interposed between
any two nonterminals occurring in α.
Let Σ# = Σ ∪ {#}, a, b ∈ Σ, A,B ∈ VN ,
C ∈ VN ∪ {ε}, α, β ∈ V ∗, then:
LG(A) = {a ∈ Σ | ∃C : A ⇒∗

G Caα} and
RG(A) = {a ∈ Σ | ∃C : A ⇒∗

G αaC}.
The Operator Precedence Relations (OPRs) are
defined over Σ# × Σ# as:
• equal in precedence:
a

.
= b ⇔ ∃A → αaCbβ ∈ P ;

• takes precedence:
a⋗ b ⇔ ∃A → αBbβ ∈ P, a ∈ RG(B)
a⋗# ⇔ a ∈ RG(B), B ∈ S;

• yields precedence:
a⋖ b ⇔ ∃A → αaBβ ∈ P, b ∈ LG(B)
#⋖ b ⇔ b ∈ LG(B), B ∈ S.

The Operator Precedence Relations can be col-
lected into a |Σ#| × |Σ#| array, called Operator
Precedence Matrix of the grammar, OPM(G),
containing, for each ordered pair (a, b) ∈ Σ# ×
Σ# the sets of relations holding between the two
characters a and b.
If for each pair (a, b) ∈ Σ# × Σ#,
|OPM(G)(a,b)| ≤ 1, OPM(G) is said to be
conflict-free and the grammar G is an Operator
Precedence Grammar (OPG).
An Operator Precedence Language (OPL) is a
language expressible via an Operator Precedence
Grammar.
It is known, for instance from [3], that an
Operator Precedence Language is a Structured
Context-Free Language so that to each string
belonging to to an OPL, there can be associ-
ated a unique structure. For the sake of concise-
ness, the concept of structure is described only
for Operator Precedence Languages, and not for
general Context-Free Languages.

2

Executive summary Giorgio Corbetta

For OPLs, the structure of strings is associated
with the concept of chain, that can be defined
as:
Definition 2.5 (chain). Let M be an OPM
and Σ an alphabet such that M is defined over
Σ# × Σ#, then the couple (Σ,M) is called an
OP-alphabet.
• A simple chain is a word a0a1a2 · · · anan+1,

written as a0⌊a1a2 · · · an⌋an+1, such that:
a0, an+1 ∈ Σ#, ai ∈ Σ for every i : 1 ≤
i ≤ n, Ma0an+1 ̸= 0, and a0 ⋖ a1

.
= a2

.
=

· · · .
= an ⋗ an+1.

• A composed chain is a word
a0x0a1x1a2 · · · anxnan+1, with xi ∈ Σ∗,
where a0⌊a1a2 · · · an⌋an+1 is a simple chain,
and either xi = ε or ai⌊xi⌋ai+1 is a chain
(either simple or composed), for every
i : 0 ≤ i ≤ n. Such a composed chain will
be written as a0⌊x0a1x1a2 · · · anxn⌋an+1 .

• The body of a chain a⌊x⌋b, simple or com-
posed, is the word x.

The set of all the strings s ∈ Σ∗ that are bodies
of chains over the OP-alphabet (Σ,M) is defined
to be the Max Language of M .
Notice that the structure of a string belonging to
an OPL, relies only on the MaxLanguage, thus
on the OPM, and not directly on the grammar
itself.
Given an OPL η, a string s ∈ η, and being w
a substring of s such that it is preceded by the
character a and followed by the character b in-
side #.s.#, then w is said to be well chained
on s iff a⌊x⌋b is a chain. Trivially, a string is
well-chained iff it belongs to the MaxLanguage.
There have been presented all the concepts
needed to introduce how the Non-Counitngness
can be defined for OPLs.
Definition 2.6 (NCOP). Given a OP-
alphabet(Σ,M) and an OP language η ⊆ Σ∗,
η is Non-Counting Operator Precedence Lan-
guages iff ∃n > 1 such that, for all strings
x, u, w, v, y ∈ Σ∗

any, m ∈ N where w and uwv
are well chained on xunwvny w.r.t M then
xunwvny ∈ η ⇔ xun+mwvn+my ∈ η.

2.2.1 Operator Precedence Expressions
and Fence

In the literature, as in [3], different characteri-
zations for OPLs have been proposed and dis-
cussed. In particular, there are different rep-

resentations of OPLs inspired by the notori-
ous ones used for Regular Languages: Operator
Precedence Grammars (OPG), Operator Prece-
dence Expressions (OPE), and Monadic Second
Order Logic (MSO). From those characteriza-
tions, the OPE introduces the concept of fence
that reveals to be useful for the purposes of this
work.
The fence operation, in a few words, requests
that a certain substring is well chained on the
final string.
In particular, OPEs are defined as Regular Ex-
pressions expanded with the fence operation de-
fined as:
Definition 2.7 (fence over OPE). Given an OP
alphabet (Σ,M), where M is complete, an OPE
E and its language LM (E) ⊆ Σ∗ are defined as
follows.
The meta-alphabet of OPE uses the same sym-
bols as REs, together with the two symbols ’[’
and ’]’. Let E1 and E2 be two OPEs:
a[E1]b, called the fence operation, i.e., we say
E1 in the fence a, b, is an OPE with:
if a, b ∈ Σ: LM (a[E1]b) = a · {x ∈ LM (E1) |
M(a · x · b) = ⌊a ·M(x) · b⌋} · b;
if a = #, b ∈ Σ: : LM (#[E1]b) = {x ∈
LM (E1) | M(x · b) = ⌊M(x) · b} · b;
if a ∈ Σ, b = #: LM (a[E1]#) = a · {x ∈
LM (E1) | M(a · x) = ⌊a ·M(x)⌋}.
Where E1 must not contain #.
It has been proven that OPL family coincides
with the family of languages definable via OPEs,
OPGs, or MSOs, and that the NCOP , instead,
coincides with the Aperiodic OPGs, Star Free
OPEs, and First Order Logic.

3. Extending Locally Testable
Languages

A first attempt to define a subclass of NCOP

using an LTO-like manner consists of finding
the intersection of a Locally Testable language
and a MaxLangage. By noticing that MaxLan-
guages are Operator Precedence Non-Counting
Languages, and leveraging theorem 2.1, the lan-
guage defined in this way is trivially NCOP just
because the intersection of an NCOP language
and an NC language, is itself NCOP . Thus this
definition does not add any new characteristic
for the NCOP languages.
Thus, how can Locally Testable Languages be

3

Executive summary Giorgio Corbetta

expanded?
In order to extend the expressiveness of LTO,
there will be introduced the fence-subs, an oper-
ation whose intent is to bring the fence operation
in an LTO-like format. In order to introduce
the fence-subs, it is convenient to present before
the stringSub operation with the languages de-
finable with it, and then add the fence concept
to it.
Definition 3.1 (stringSub). Being Σ,Φ two al-
phabets such that Φ ∩ Σ = ∅, η ⊆ (Σ ∪ Φ)∗

a language, and map : Φ → ℘(Σ∗) a function
mapping characters of Φ into languages over Σ∗,
then the function stringSub(η,map) returns the
language composed by all the possible substitu-
tions in the strings of η of the characters − ∈ Φ
with any string in map(−).
By leveraging the stringSub concept, there can
be defined the class of Locally Testable Ex-
tended Languages, or LTEO as the smallest
set of languages, closed under boolean opera-
tions and concatenation, that contains both LT
languages and all the languages definable as
stringSub(η,map), where η ⊆ (Σ∪Φ)∗ is Locally
Testable, and the codomain of map is contained
in LTEO itself.
Notice that an LTEO language η is not NCOP

nor NC, and neither the intersection of η with
a Max Language results to be NCOP . How-
ever, the LTEO family showed to be a subfam-
ily of Regular Languages, which was quite unex-
pected.

3.1. Relation with Regular Lan-
guages

Given any alphabet Σ = {a, b, . . .} and any ele-
ment i, it is trivial to build a new melted alpha-
bet Σi = {ai, bi, . . .} such that Σ∩Σi = ∅. This
same process can also be applied on a set I of el-
ements, resulting in ΣI =

⋃
i∈I Σi. Moreover, it

is trivial to see that it is possible to map charac-
ters, strings, and languages, from being defined
over Σ to being defined over some ΣI and vice
versa.
In particular, two languages η1 ⊆ Σ∗ and η2 ⊆
Σ∗
I for some alphabet Σ and set I, they are said

to be f-equivlent if η1 corresponds to the map-
ping of η2 over Σ.
Relying on the f-equivalence concept, there have
been studied three operations such that, being
η, ξ ⊆ Σ∗ and ηm, ξm ⊆ Σ∗

I such that η is f-

equivalent to ηm and ξ isf-equivalent to ξm, then:
• η.ξ is f-equivalent to ηm.mξm;
• η ∩ ξ is f-equivalent to ηm ∩m ξm;
• ¬ξ is f-equivalent to ¬mξm;

Leveraging those newly defined operations, there
is defined the family of LTR languages as the
smallest set of languages defined over ΣI that
contains the strictly Locally Testable languages
and that is closed under .m, ¬m, and ∩m. Two
important results of LTR are:

1. Any LTR language is a Regular Language;
2. Any language that is f-equivalent to an LTR

language, is regular too.
is that any LTR language is a Regular Language.
Another essential result is that for any lan-
guage ξ = stringSub(η,map), with η that is LT,
and with map that has as codomain a set of
languages which are f-equivalent to LTR ones,
then there exists an LTR language ξm that is f-
equivalent to ξ. This implies that any LTOE lan-
guage is f-equivalent to an LTR language, thus
LTOE is a subset of Regular Languages.

4. Locally Testable over Opera-
tor Precedence Languages

There is now presented the fence-subs operation,
which is similar to stringSub, but it also checks
to substitute substrings that are well chained on
the final string. This check is the same that the
fence operation does, making fence-subs a mix
between fence and stringSub.
Definition 4.1 (fence-subs). Given:

an OP-alphabet (Σ,M);
two alphabets Σ,Φ such that Σ∩Φ = ∅ and
ΣΦ = Σ ∪ Φ;
a language η ⊆ Σ∗

Φ;
a function map : Φ → ℘(Σ∗) that maps
each character −i ∈ Φ to one language
map(−i) = ηi ⊆ Σ∗;

then fence-subs(η,map) defines the language
containing the strings s such that either s ∈
η or there exists s′ ∈ η such that s ∈
stringSub({s′},map) and, being the character
−j ∈ Φ occurring in # · s′ · # preceeded by the
character a and followed by the character b and
being substituted in s by the string xj ∈ ηj =
map(−j), then:
• if a, b ∈ Σ: M(a · xj · b) = ⌊a ·M(xj) · b⌋;
• if a = #, b ∈ Σ: M(xj · b) = ⌊M(xj) · b⌋;
• if a ∈ Σ, b = #: M(a · xj) = ⌊a ·M(xj)⌋.

4

Executive summary Giorgio Corbetta

However, even the family of languages defined
as LTOE using fence-subs instead of stringSub
is not a subset of NCOP family, and this is be-
cause also this definition is too expressive. To
reduce the expressiveness of this class, the fol-
lowing restriction is introduced:
Definition 4.2 (SubString Language). Given a
language η ∈ ℘(Σ∗), the SubString Language of
η is the language defined as:
SSL(η) = {x ∈ Σ∗ | ∃w ∈
η such that x is a substring of w}.

Definition 4.3 (Fence Substitution Restric-
tion). Given an OP-alphabet (Σ,M) and τ =
fence-subs(ξ,map), it is said that τ is Fence
Sub Restricted (FSR) iff, for each element s ∈
SSL(τ) ∩ (Σ3

· Σ∗) there exists at most one
string o ∈ SSL(ξ) ∩ Σ3

#,Φ · Σ∗
#,Φ such that

s = fence-subs(o,map).1

Considering this restriction, the following family
of languages can be defined:
Definition 4.4 (LTOP). Given an OP-alphabet
(Σ,M) it is defined as LTOP family of languages
the smallest set of languages that contains:
1. the empty language: ∅
2. any language τ = fence-subs(ξ,map) where

ξ is LTk,ΣΦ
and map : Φ → LTOP and

where there subsists the FSR on τ
And that it is closed under Boolean operations
and concatenation.
It is proven that the LTOP class of languages is
contained in the NCOP family:
Theorem 4.1 (LTOP ⊆ NCOP). The family
of languages defined by LTOP is a subset of the
NCOP family.
Thus LTOP definition is the Locally Testable
characterization of an NCOP family of lan-
guages, which was the aim of this work.
Moreover, comparing the newly defined LTOP
languages with the known characterizations, it
turns out that the family of languages express-
ible via Star Free OPE is contained in the family
of LTOP languages. This result, together with
those regarding Star Free OPE, and theorem 4.1,
make it trivial to state the following:
Theorem 4.2 (LTOP = NCOP). The class of
LTOP languages coincides with the class of Non-
Counting languages over OP.

1In this definition, as before, ΣΦ = Σ ∪ Φ, Σ# =
Σ ∪ {#}, and Σ#,Φ = ΣΦ ∪ {#}.

This result outperforms the original goal for this
work.
As the last step, it remains to prove that it is de-
cidable whether a language defined in an LTOP
manner satisfies the FSR property or not. In
order to answer this question, there are several
considerations, starting from a reformulation of
FSR property. Being η an LT language, it is
proven that also SSL(η) is an LT language. It
is also proven that the FSR relies only upon the
intersection of the fence-subs languages of the
substrings of length 3 of ξ with the fence-subs
language of SSL(ξ). Thus, being the substrings
of length 3 of the language ξ a finite number,
the FSR property relies on a finite number of
comparisons of languages defined via fence-subs
over LT languages.
Any language ξ = fence-subs(η,map), where η
is LT and each element of the codomain of map
is f-equivalent to the intersection of an LTR lan-
guage and a suitable Max Language, is such that
there exists a language ξ′ that is f-equivalent to ξ
and that is the intersection of an LTR language
and a suitable Max Language. Being the Max
Language a Context-Free Language, and being
a LTR Language a Regular Language, by lever-
aging the known fact that the intersection of a
Regular Language and a Context Free one re-
sults in a Context Free Language, there can be
applied the Pumping Lemma for Context-Free
Languages2 to prove that it is decidable if the f-
equivalent language is empty or not. By noticing
that a language η is empty iff it is empty also any
other language η1 that is f-equivalent to it, it is
trivial to see that the FSR property relies upon
the emptiness of a finite set of Context-Free Lan-
guages, thus FSR property is decidable.

5. Conclusions
In conclusion, the initial goal of the thesis has
been reached as it has been found an LTO-like
characterization of an NCOP family. The family
of languages definable via LTOP turned out to
be not only a subfamily of NCOP , but to coin-
cide with NCOP itself. This, together with the
fact that it is decidable whether or not a lan-
guage is LTOP, enriches the characterizations of
OPLs and in particular of NCOP .
Moreover, LTOP enriches the correlation be-
tween NCOP and NC families, bringing another

2The Bar-Hillel Lemma

5

Executive summary Giorgio Corbetta

representation from the word of Regular Lan-
guages to the Operator Precedence one, and ex-
pands the variety of known equivalent character-
izations, presented in [2], for the NCOP family.

References
[1] Robert W. Floyd. Syntactic Analysis and

Operator Precedence. J. ACM, 10(3):316–
333, 1963.

[2] Dino Mandrioli and Matteo Pradella. Gen-
eralizing input-driven languages: Theoreti-
cal and practical benefits. Computer Science
Review, 27:61–87, 2018.

[3] Dino Mandrioli, Matteo Pradella, and Ste-
fano Crespi-Reghizzi. Aperiodicity, star-
freeness, and first-order definability of
structured context-free languages. CoRR,
abs/2006.01236, 2020.

[4] Seymour Papert Robert McNaughton.
Counter-Free Automata. The MIT Press,
1971.

6

	Introduction
	Background
	Locally Testable
	Operator Precedence Languages
	Operator Precedence Expressions and Fence

	Extending Locally Testable Languages
	Relation with Regular Languages

	Locally Testable over Operator Precedence Languages
	Conclusions

