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1. Introduction
6DoF pose estimation involves detecting the
pose of an object in three-dimensional space,
which includes the location and orientation with
respect to a reference point of view. This is of
crucial importance in the robotic field, where
robots need to interact with objects in the envi-
ronment. Robotic grasping is one of the funda-
mental and most challenging skills of robots, it
requires the coordination of robotic perception,
planning and control of the movements. Our
work inserts itself into the first step of the pro-
cess providing a system to determine the pose of
objects in the surroundings. This datum is then
fed to a solutor that computes the best trajec-
tory to reach the object. At this point, the end-
effector placed at the end of the robotic arm has
all the information it needs to pick up the object.
We propose a vision-based approach that in-
volves the use of particular cameras, called depth
cameras, for the task of detecting the object’s
pose. In addition to the well-known colored pic-
ture, depth cameras also provide distance infor-
mation for each pixel in the color frame. Our
solution involves the design of a neural network
model that extracts the 6 DoF pose of an ob-
ject, exploiting only the data provided from the
depth camera.

Figure 1: Upper body of a humanoid
robot called "Robee", developed by Oversonic
Robotics

This work has been realized as an application for
Oversonic Robotics. Oversonic Robotics is an
Italian robotics startup founded in 2021. Their
first project is a humanoid robot called "Robee",
shown in Figure 1. He operationally replicates
the mechanical structure of the human body, he
has arms and hands that allow him to cover
all kinds of tasks, from the simplest gestures
to a solid grip for handling objects. Robee is
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equipped with a set of different cameras used
for object detection to improve his awareness of
the surrounding environment.
The main contributions of this work are as fol-
lows:

• A quantitative analysis and comparison of
different depth cameras available on the
market.

• A flexible deep network for 6 DoF object
pose estimation that is capable of predicting
translation and rotation independently ex-
ploiting images captured from a depth cam-
era and that outperforms the state-of-the-
art models.

• A novel definition of a metric that describes
the accuracy of the predicted pose in case
of symmetric objects.

• An empirical study of performances of mod-
els trained with synthetically generated
data.

2. State of the art
In the computer vision sector, computing a
6DoF pose of an object is a challenging problem
that involves detecting both three-dimensional
orientation and position of an object with re-
spect to some reference camera coordinates. Ide-
ally, a solution should deal with objects of vary-
ing shape and texture, show robustness towards
heavy occlusion, sensor noise, and changing
lighting conditions, while achieving the speed
requirement of real-time tasks. More recently,
with the explosive growth of machine learning
and deep learning techniques, Deep Neural Net-
work based methods have been introduced into
this task and reveal promising improvements.
6 DoF object pose estimation methods in the
literature can be classified based on the input
they receive. Traditionally colored images are
used alone to estimate objects’ pose, for instance
PoseCNN network [5]. However, with the devel-
opment of cheaper and more accurate RGB-D
sensors, the depth information has been included
in the models and higher performance has been
reached. Researchers had to face the problem of
combining heterogeneous data that come from
color image and 3D point cloud. Xi et al. [6]
proposed the PointFusion network that extracts
point cloud features using a variant of Point-
Net and derives the image appearance features
from a CNN. The two vectors of features are

Figure 2: Intel RealSense D455 depth camera

then combined in a fusion network to extract
3D bounding boxes. Later, Wang et al., [4], refer
to the PointFusion network, introducing a novel
local feature fusion scheme and a fast iterative
refinement to further improve the pose estima-
tion, generating a network called DenseFusion.

3. Experimental setup
Standard digital cameras output images as a 2D
grid of pixels. Each pixel has three values associ-
ated with it that define red, green and blue color
components. Depth cameras, on the other hand,
have pixels with a different numerical value as-
sociated with them, that number being the dis-
tance of the corresponding pixel from the cam-
era, or “depth”. Some depth cameras have both
an RGB and a depth system, which can give
pixels with four values, therefore are referred to
as RGB-D images. There are a variety of dif-
ferent methods for calculating depth, all with
different strengths and weaknesses and optimal
operating conditions. We focus on stereo depth
cameras for their use in our application. A stereo
depth camera is a type of camera with two sepa-
rate image sensors, the distance between them is
called baseline. These sensors allow the camera
to simulate human binocular vision and achieve
the ability to capture depth. The distance these
cameras can measure is directly related to how
far apart the two sensors are: the wider the base-
line is, the further the camera can see.
For this work, we employ the Intel RealSense
D455 depth camera. This specific model has
a baseline of 95 mm, and its ideal range of ac-
tion lies between 0.6m and 6m. The choice of
this sensor has been performed after an accurate
analysis of its accuracy in depth reconstruction.
In our operating scenario, we positioned the sen-
sor on the robot’s chest. In this way, the camera
is fixed to the robot structure, and we can com-
pute the trajectory to reach the object based on
images captured by it.
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Figure 3: Model architecture

4. Model architecture
The objective of the network we propose is to
estimate the 6 degrees of freedom pose of an
object in the three-dimensional space with re-
spect to the camera. The 6dof pose is com-
monly represented with a homogeneous transfor-
mation matrix, composed by a rotation matrix
R ∈ SO(3), being SO(3) the group of all rota-
tions around the origin of a three-dimensional
Euclidian space, and a translation t ∈ R3

x. For
computational reasons, we prefer to work with
quaternions since they grant a more compact
representation of the rotation in the form of a
four-dimensional vector. Therefore, we aim to
build a network that outputs two vectors: one
representing the object’s position with respect
to the camera reference frame and one indicat-
ing its orientation. Regarding the data that we
use to feed the network, we have at our disposal
the frames from a depth camera that provides
a color image stream along with the per-pixel
depth information for each frame.
The general structure of the network is illus-
trated in Figure 3. It can be divided into three
almost independent blocks: a preprocessing seg-
ment that localizes in the color frame the object
for which we want to estimate the pose, a cen-
ter regression branch (called TNet) that esti-
mates the three-dimensional coordinates of the
object center and finally a pose estimation model
(called RNet) that predicts the object rotation.
Spitting the computation of the object trans-
lation from the rotation estimation generates a

more flexible architecture where each task can
be studied, trained and optimized separately.
Moreover, it gives the opportunity to the user
to apply only part of the whole model if the rest
is not needed.
Our implementation is based on a per-pixel ap-
proach. The main idea is that the network se-
lects a few pixels from both color and depth im-
ages and processes them separately to extract
two vectors of geometric and color features from
each pixel. The features are fused together to
derive a pose prediction from each pixel. The
final prediction is then selected as the pixel with
highest confidence.

4.1. Instance segmentation
The instance segmentation network is the first
component of our pipeline, being a preprocess-
ing tool for the model. Its purpose is to locate
an object in the image. In this way, we can
feed the rest of the network with a cut out im-
age that contains only the information regarding
the object so that we can isolate it from the en-
vironment. For this part, we employ an instance
segmentation network that predicts which pixels
of the image belong to the object. The network
that we select for image segmentation is Mask
R-CNN [2] developed by Facebook AI Research
in 2016.

4.2. Center regression - TNet
For this task we only exploit the depth image
that has been cut out using the output mask
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from the instance segmentation model. We ex-
tract a fixed number N of pixels randomly se-
lected from the depth frame and we use the cam-
era intrinsic parameters to reconstruct the 3D
coordinates corresponding to each pixel. In this
way we obtain a sparse point cloud restricted to
the visible object surface. Therefore, the input
of the center regression model is a 3xN matrix.
From this, the network performs a feature ex-
traction of local and global geometric structure
for each pixel and then it extracts an estimate
of the object center by predicting for each point
in the input its translation with respect to the
center.
For training this network we need to define a loss
function that computes the average prediction
error of each pixel. Let xi be the position of
the ith pixel, we define the distance between the
center xC as a vector ∆xi computed as follows:

∆xi = xC − xi for i = 1, ..., N. (1)

Then ∆x̂i represents the prediction of our model
from the ith pixel, while ∆xi is the target vector.
So, the loss function of the translation can be
defined as:

LT =
1

N

N∑
i=1

∥∆xi −∆x̂i∥1 . (2)

4.3. Rotation prediction - RNet
The rotation prediction network is a more com-
plex network that relies on both color and depth
images to predict the rotation of the object. As
for the center regression model, we randomly
pick N pixels between the once selected by the
instance segmentation pre-processing tool. We
extract the color data from the RGB frame and
the corresponding distance information from the
depth frame for each pixel. These are fed to two
different networks that compute the correspond-
ing embeddings which are then fused together
and processed by a final fully connected set of
layers that derive from each pixel an estimate of
the rotation in the form of quaternions.
For the task of extracting features from the
depth information, we use the same structure as
the initial layers of the TNet model. In this way
we can reuse the weights learned for the center
regression and the final model will share these
layers. The feature extraction for the colored
pixels is made with Resnet34 model, that is a

neural network with 34 layers widely employed
for learning the main attributes from an image.
The extracted color and pointcloud embeddings
are then combined and fed to a fusion module
that derives its structure from the DenseFusion
network. This part of the network concatenates
each pair of features and generates a fixed-size
global feature vector using an average pooling
layer. At the end, this global feature vector is
appended to the local feature vector for each
pixel. In this way, we enrich each dense pixel-
feature with the global fused feature to provide
a global context. We feed each of the resulting
per-pixel features into a final network that pre-
dicts the object’s 6D pose.
To train this network we need to define a dis-
tance between the predicted and the target ro-
tation. To this end, we define the per-pixel ori-
entation error as follows:

LR
i = 1− |⟨ qtarget, q̂i ⟩|. (3)

where ⟨ q1, q2 ⟩ denotes the inner product of the
corresponding quaternions.
The overall loss can be defined as a weighted
average of the per-pixel losses on the per-pixel
confidence ci with a regularization term, that
penalizes predictions with small per-pixel confi-
dences. We express the loss as:

L =
1

N

N∑
i=1

(Lici − ωlog(ci)) (4)

where N is the number of randomly sampled
pixels from the RGB-D image and w is a balanc-
ing hyperparameter. Intuitively, low confidence
would limit the impact of the corresponding per-
pixel loss but at the same time would incur a
high penalty from the second term.

4.4. 3D pose estimation – Full model
Incorporating the TNet module to the RNet,
sharing the same point cloud feature extraction
layers, produces a network that is able to fully
estimate the object 6 DoF pose. In this way,
we obtain a model that simultaneously computes
the center translation and the rotation of the ob-
ject. The full model can be trained from zero or
can benefit from the pre-trained weights of TNet
and RNet that together provide a well-suited ini-
tialization.
For training the complete model we need to de-
fine a loss function that takes into account the
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error on the translation and the error on the ro-
tation predictions at the same time. For this
purpose, we refer to [5] that proposes a loss
which has been extensively used in literature and
exploits the 3D objects model for the computa-
tion. We define the pose estimation loss as the
distance between the points sampled from the
3D objects model in the ground truth pose and
the corresponding points from the same model
transformed by the predicted pose. Specifically,
the loss to minimize for the prediction per-pixel
is defined as:

Li =
1

M

M∑
j=1

∥∥∥(Rxj + t)− (R̂ixj + t̂i)
∥∥∥
2

(5)

where xj denotes the jth point of the M ran-
domly selected 3D points from the object’s 3D
model, R and t are to rotational matrix and the
translation vector that define the ground truth
pose, and R̂i and t̂i define the predicted pose
generated from the ith pixel. For the overall loss
that combines all the per-pixel losses we can use
the same function 4 defined for RNet.
The loss function presented above is only well-
defined for asymmetric objects, where the object
shape or texture determines a unique canoni-
cal frame. Symmetric objects have more than
one and possibly an infinite number of equiva-
lent canonical frames, which leads to ambiguous
learning objectives. For this reason, we define
an ad-hoc loss function for symmetric objects
that computes the minimum error between all
the possible equivalent canonical frames base on
the object symmetries. We write the function as
follows:

Li = min
k ∈K

1

M

M∑
j=1

∥∥∥(Rxj + t)− Ek(R̂ixk + t̂i)
∥∥∥
2

(6)

where Ek(x) represents the equivalent canonical
frames of the object.

5. Synthetic dataset
Our model requires a large and accurately la-
belled dataset composed of at least 1000 images
to achieve good performances. However, it may
be time-consuming and expensive to collect and
annotate such a large dataset. To solve this

Real Synth. Train error Test error

1500 0 0.0222 0.0288
1250 250 0.0233 0.0280
1000 500 0.0237 0.0289
750 750 0.0235 0.0302
500 1000 0.0233 0.0321
250 1250 0.0203 0.0337
0 1500 0.0193 0.0395

Table 1: Prediction error on train and test set
using different compositions of real and syn-
thetic data

problem, we can replace a percentage of images
in our training set with synthetic data gener-
ated by a 3D rendering tool. For this purpose,
we use an open-source rendering software called
BlenderProc [1]. It provides a set of functions
to generate a scene where multiple objects can
be positioned and take virtual pictures of this
scene from different perspectives. Blenderproc
provides a render both for color and depth im-
ages as well as an automatic generation of per-
fect segmentation masks.
To understand how our network performs with
the use of synthetic data we prepare a series of
experiments for estimating the 6DoF pose of a
single object, each with a different composition
of real and synthetic images. From the results
summarized in Table 1, we derive that replacing
up to 30% of the dataset with synthetic images
does not limit the model accuracy, while reduces
the number of real images to be annotated.

6. Experimental results
We evaluate our solution using an empirical ap-
proach and then making a comparison with the
state-of-the-art works. Given a predicted 6DoF
pose [R̂, t̂ ] and ground truth pose [R, t ] we de-
fine the prediction error in the general case that
includes both symmetric and non-symmetric ob-
jects, as:

ADD = min
k ∈K

1

M

∑
x∈Θ

∥∥∥(Rx+ t)− Ek(R̂x+ t̂ )
∥∥∥
2

(7)

where x is a vertex of totally M vertexes on the
3D object mesh Θ.
We train our network to learn the position and
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Item DenseFusion Our model

Ape 0.6663 0.8651
Benchvise 0.7982 0.8852
Camera 0.6607 0.7993

Can 0.8277 0.8632
Cat 0.8832 0.9104

Driller 0.7889 0.8636
Duck 0.6629 0.7950

Eggobox 0.0056 0.9512
Glue 0.0348 0.9678

Holepuncher 0.6079 0.7644
Iron 0.9019 0.9351

Lamp 0.8829 0.9056
Phone 0.8347 0.9576

Total 0.8071 0.8769

Table 2: Percentage of correctly predicted poses
on Linemod test set of DenseFusion and our
model’s components (symmetric object in italic)

orientation of a drill and test the accuracy of our
model in a real application. On the drill dataset
we achieve an average prediction error smaller
than 2 cm on the test set (Figure 4).
Subsequently, we measure the performance of
our implementation confronted with DenseFu-
sion results on Linemod dataset [3]. The
Linemod dataset consists of 13 low-textured ob-
jects, and it is wildly adopted by state-of-the-art
pose estimation models. We summarize the out-
come of the comparison in Table 2. The results
show that our full model trained with viewpoint
loss significantly outperforms the DenseFusion
network trained on the same number of epochs.

7. Conclusions
In this work we propose a 6 DoF object pose
estimation network that uses RGB-D images to
predict object position and orientation with re-
spect to a reference frame. We design a flexible
model that can learn to predict object’s transla-
tion and rotation independently or else the full
pose jointly. In this way the model can easily
adapt to the user’s needs. We introduce a novel
approach that deals with symmetric objects. At
the end, we have generated an accurate and
adaptable network that outperforms the state-
of-the-art models and that can be employed to
simplify tasks such as robotic grasping.

Figure 4: Example of drill pose detection from
Intel D455 camera on robot chest
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