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Facoltà di Ingegneria Industriale

Corso di Laurea Magistrale in Ingegneria Aeronautica

Turbulent skin-friction drag reduction
described with AGKE and triple

decomposition

Relatore: Prof. Maurizio QUADRIO
Correlatore: Ing. Alessandro CHIARINI

Tesi di Laurea di:
Federica GATTERE

Matr. 905572

Anno Accademico 2019-2020





Contents

Abstract 4

Sommario 6

1 Introduction 8

2 Method 13
2.1 Anisotropic Generalised Kolmogorov Equations using triple

decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 AGKE tailored to turbulent channel flow . . . . . . . . 18

2.2 Simulation data . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Results 23
3.1 Diagonal components . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Structure functions . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Production, redistribution and dissipation . . . . . . . 27
3.1.3 Redistribution via pressure strain term . . . . . . . . . 28
3.1.4 Coherent and stochastic fluctuations interaction via co-

herent production term . . . . . . . . . . . . . . . . . . 30
3.1.5 Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Off-diagonal component . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Structure function . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Production, redistribution and dissipation . . . . . . . 37

4 Conclusions 40

A Budget equations for 〈δuiδuj〉 and 〈δũiδũj〉 43
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Abstract

A fully developed channel flow, subjected to oscillatory spanwise wall motion,
is studied with a focus on the interaction between the coherent velocity pro-
file introduced by the control, i.e. the Stokes layer, and the near-wall cycle.
Two Direct Numerical Simulations have been performed for the controlled
and uncontrolled flows at constant power input (CPI), such that at statis-
tical equilibrium both simulations have the same power input. Our study
relies upon the Anisotropic Generalised Kolmogorov Equations (AGKE),
the exact budget equations for the second-order structure function tensor
〈δuiδuj〉. The AGKE highlight the production, transport, redistribution and
dissipative processes of each component of the Reynolds stresses considering
simultaneously the physical space and the space of scales.

In the present work, we have derived and used the AGKE written for a
triple decomposition of the velocity which takes into account the presence
of mean, coherent and stochastic contributions. The effect of the control
on the terms of the AGKE has been described and linked to changes in the
near-wall cycle dynamics. The decreased intensity of the normal components
〈δuiδui〉 and the shift of their largest values towards smaller scales indicate
an overall weakening of the near-wall structures and a shrinking of their
sections. The Stokes layer transfers its energy to the stochastic turbulent
fluctuations directly interacting with 〈δwδw〉 only. This process occurs at
precise wall distances and scales — naturally highlighted by the AGKE —
that further elucidate the dynamics of the near-wall structures and their
interaction with the Stokes layer when the control is applied. The spatial
and scale fluxes show that the transport processes weaken in the controlled
case but qualitatively remain almost unchanged with the excess of〈δuiδui〉 in
the buffer layer transferred at all wall distances and in a wide range of scales.
For 〈δuδu〉 the fluxes feature a slight shift towards larger wall distances, in
agreement with the thickening of the viscous sublayer. However, the same
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does not hold true for 〈δvδv〉 and 〈δwδw〉 indicating that the thickening of
the viscous sublayer mainly influences the dynamics of 〈δuδu〉. The effect of
the control on the AGKE term for 〈−δuδv〉 is not trivial. In the controlled
case the production of 〈−δuδv〉 increases and its largest values shift towards
larger wall distances and smaller scales. On the other hand, the pressure
strain becomes more negative and its largest values shift towards the wall.
This leads to an increase of the negative sink of 〈−δuδv〉 in the buffer layer
accompanied by the increase of positive source of 〈−δuδv〉 at slightly larger
wall distances and smaller scales. Interestingly, in the control case, a new
region of positive source arises in the viscous sublayer.
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Sommario

Il seguente lavoro descrive una corrente turbolenta confinata tra due pareti,
modificata da un controllo volto alla riduzione d’attrito. Nello specifico,
l’analisi è focalizzata sull’interazione tra il profilo di velocità coerente, in-
trodotto dalla tecnica della parete oscillante (Stokes layer), e il ciclo di parete.
Sono state eseguite due simulazioni numeriche dirette (DNS) per una corrente
senza forzamento e una corrente controllata, mantenendo la potenza per il
pompaggio costante (CPI) in modo tale che all’equilibrio statistico esse ab-
biano la stessa potenza di pompaggio. Questo studio si basa sulle Anisotropic
Generalised Kolmogorov Equations (AGKE), le equazioni di bilancio del ten-
sore delle funzioni di struttura del secondo ordine 〈δuiδuj〉. Le AGKE de-
scrivono i processi di produzione, trasporto, redistribuzione e dissipazione di
ogni componente degli sforzi di Reynolds considerando simultaneamente lo
spazio delle scale e lo spazio fisico.

In questo lavoro sono state derivate le AGKE scritte per una tripla decom-
posizione della velocità in contributo medio, coerente e fluttuante. L’effetto
del controllo in termini di AGKE è stato descritto e associato ai cambia-
menti che esso impone alla dinamica del ciclo di parete. La diminuzione
dell’intensità delle componenti normali〈δuiδui〉e lo spostamento dei loro val-
ori massimi verso scale più piccole indica un indebolimento delle strutture vi-
cino a parete e una diminuzione della loro sezione. Lo Stokes layer trasferisce
energia alle fluttuazioni turbolente interagendo direttamente solo con〈δwδw〉.
Questo processo avviene a una precisa distanza dalla parete e a precise scale
– naturalmente descritte dalle AGKE – che chiariscono ulteriormente la di-
namica delle strutture del ciclo di parete e della loro interazione con lo Stokes
layer. I flussi spaziali e di scala mostrano che i processi di trasporto sono in-
deboliti dall’imposizione del controllo, sebbene qualitativamente rimangano
invariati, con l’eccesso di 〈δuiδui〉 che viene trasferito dal buffer layer verso
diverse distanze da parete e diverse scale. Le linee di campo dei flussi di

6



〈δuδu〉 vengono traslate a una maggiore distanza da parete, in accordo con
l’ispessimento del substrato viscoso. Lo stesso spostamento non avviene per i
flussi di〈δvδv〉e〈δwδw〉, indicando che l’ispessimento del substrato viscoso in-
fluenza prevalentemente la dinamica delle strisce ad alta e bassa velocità del
ciclo di parete. L’effetto del controllo su〈−δuδv〉mostra che la produzione di
questo termine aumenta e il suo valore massimo si sposta a distanze maggiori
dalla parete. Al contrario, il termine di interazione tra pressione e velocità
diventa maggiormente negativo e il suo massimo valore si sposta più vicino a
parete. Questo spostamento relativo tra produzione e pressure strain porta
all’incremento nel buffer layer dell’intensità sia del pozzo negativo di〈−δuδv〉,
sia della sua sorgente positiva. Inoltre, una nuova zona di sorgente positiva
viene creata nel substrato viscoso, quando il controllo è attivo.
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Chapter 1

Introduction

One of the characteristic features of turbulence is its ability to transport
and mix mass and momentum of the fluid more effectively than laminar
flows do. For wall-bounded turbulent flows, it is reflected in an enhancement
of the wall shear stress and hence drag (Fukagata et al., 2002), compared
to a comparable laminar flows. Flow control for drag-reduction aims to
suppress or mitigate the negative effects of turbulence near the wall, in order
to cut energy consumption and boost cost-effectiveness and environmental
efficiency.

Considering their energy expenditure and control nature, drag reduction
strategies can be classified into two categories, namely passive and active.
The former usually need a deformation of the surface of the wall, such as
riblets (Bechert et al., 1997) without the need for energy supply. Among
passive technologies, riblets are the closest to be implemented in practical
applications. Laboratory tests showed that they can reduce drag up to 8%,
but they have the main drawback of needing continuous maintenance. The
latter reach their goal by performing some sort of actuation on the fluid flow,
needing external energy to work. Among active strategies, the ones con-
cerning the motion of the walls seem promising. In this regard it is worth
mentioning spanwise wall oscillation (Jung et al., 1992), streamwise travel-
ling waves of spanwise velocity (Quadrio et al., 2009), spanwise travelling
waves (Du & Karniadakis, 2000; Du et al., 2002) and streamwise travelling
waves of wall deformation (Nakanishi et al., 2012). They share the property
of being predetermined strategies, meaning control parameters are decided a
priori, but they differ on the direction of the forcing created by the actua-
tion. The first three introduce a perturbation in the direction parallel to the
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wall, whereas the last introduce a perturbation in the perpendicular direction
through deformation of the wall. The in-plane actuation strategies impose
an unsteady transverse shear which continuously changes the inclination of
the near-wall structures in wall-parallel planes, destabilising the regeneration
mechanism of the near-wall cycle (Schoppa & Hussain, 2002). If actuation
parameters are properly tuned, this process can lead to the suppression of
turbulence. Quadrio & Ricco (2004) and Gatti & Quadrio (2013) carried out
a comprehensive parameter study to identify the optimal actuation scenarios.
Even though streamwise travelling waves are observed to attain a larger drag-
reduction rate (up to 48%), the present work focuses on harmonic spanwise
wall motion. The latter identifies the best trade-off between the simplicity
of the actuation law and the maximum achievable drag-reduction. It needs
only two control parameters, namely the amplitude and the period of the os-
cillation, yet it can reach a gross drag-reduction rate of 45%. If the balance
between the benefits and costs of the control is analysed, it is found that
the maximum saving is about 7%. These margins are reached around the
so-called ‘optimal’ actuation period T+ ≡ Tu2

τ/ν = 100− 125.
The imposed harmonic spanwise oscillation induces a transverse flow near

the wall, which agrees well with the exact laminar solution of the Stokes sec-
ond problem (Quadrio & Sibilla, 2000; Choi, 2002). The superposition of
the Stokes layer influences the low-speed streaks and the quasi-streamwise
vortices that have been identified to be part of the self-sustaining mechanism
of wall-turbulence, i.e. the wall cycle (Jeong et al., 1997). It has been repeat-
edly observed that the spanwise shear periodically changes the tilting angle
of the near-wall structures. However, whether this mechanism should be
studied with a focus on streaks or the quasi-streamwise vortices is still open
to question. On one hand, some works (e.g. Baron & Quadrio, 1996; Howard
& Sandham, 2000; Choi & Clayton, 2001; Karniadakis & Choi, 2003; Yakeno
et al., 2014) reported a weakening in the quasi-streamwise vortices intensity
when the control is active. Yakeno et al. (2014) proved that, when the span-
wise shear is in the same direction of the vortical motion, associated sweep
events are enhanced, while a half period later spanwise shear counteracts the
vortical motion and events of the fourth quadrant are drastically suppressed
(Wallace et al., 1972). Conversely, ejections are always damped regardless
of the phase. On the other hand, many authors (e.g. Laadhari et al., 1994;
Di Cicca et al., 2002; Touber & Leschziner, 2012; Blesbois et al., 2013) fo-
cused on the effect of spanwise oscillation on the streaky structures rather
than vortices. Blesbois et al. (2013), analysing the linearised Navier-Stokes
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equations, found out that the optimal perturbation to achieve drag reduction
agrees well with the characteristic time of the low-speed streaks observed by
DNS studies. Di Cicca et al. (2002) and Laadhari et al. (1994) associated
the observed larger decrease in streamwise Reynolds stresses with the con-
trol, damping primarily streaks rather than vortices. Touber & Leschziner
(2012) showed that when the spanwise shear changes rapidly across phases,
streaks do not have sufficient time to re-orientate properly, thus they are weak
and not well-established. This phenomenon interferes with the regeneration
mechanism of the near-wall cycle. Instead, if control frequency is far from
the optimum, there are phases for which the shear vector changes little in
time and streaks are allowed to re-organise themselves. In the latter scenario,
owing to the interaction of the fluctuating field with the Stokes layer, a new
production of turbulent spanwise stress arises, reducing the drag-reduction
margin.

To investigate how the Stokes layer communicates with the turbulent
structures, it can be useful to compare the behaviour of natural to drag-
reduced flows. Traditionally, the differences between the two cases have been
studied either through spectral analysis or single-point statistics. The former
has been applied by Choi (2002), Choi et al. (2002), Touber & Leschziner
(2012) in the frequency domain. Knowing the convective velocities of the
structures, their characteristic time scales can be associated with the corre-
spondent characteristic lengths. Spectra have been inspected by Touber &
Leschziner (2012), Agostini & Leschziner (2017) and Agostini & Leschziner
(2018) almost uniquely to address the problem of the footprinting of the
large scale motion on the small-scale fluctuations. When the near-wall struc-
tures are strongly damped by the control, the trace in the wall region of
the outer-layer structures is enhanced. In the context of spanwise oscillating
walls, single-point statistics has been employed by Baron & Quadrio (1996)
and Howard & Sandham (2000) to compare the budget of the turbulent ki-
netic energy along the wall-normal direction between natural and controlled
flows. Touber & Leschziner (2012) described the budgets of the entire set
of Reynolds stresses formed with the stochastic component of the velocity,
after performing a triple decomposition of the velocity field in mean, coher-
ent and fluctuating contributions. They identify the important interactions
within the various contributions of each budget and among budgets for differ-
ent stresses. The same decomposition strategy has been adopted by Agostini
et al. (2014) to analyse the phase-by-phase budgets of the fluctuating stresses.

A first step in the direction of unifying the dual vision, which counter-
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poses scale and physical spaces, has been done by means of the Generalised
Kolmogorov Equation (Hill, 2001). GKE is the exact budget equation for
the second-order structure function 〈δuiδui〉, i.e. the scale energy, that de-
scribes the amount of energy carried by certain scales at a certain location
in the space. Moreover, GKE, unlike spectra, properly defines the concept
of scale in the inhomogeneous wall-normal direction. This tool has been
extensively applied to several problems of different complexity, e.g. turbu-
lent channel flow (see for istance Marati et al., 2004; Cimarelli et al., 2016),
Rayleigh–Bénard convection (Rincon, 2006), turbulent wakes (Portela et al.,
2017, 2020). Portela et al. (2020) also applied a triple decomposition of
the velocity to the GKE to study quasi-periodic vortex shedding in the tur-
bulent wake of a square prism. However, GKE has been only marginally
applied to drag-reduced flows. Gatti et al. (2017) studied differences among
uncontrolled, opposition-controlled (Choi et al., 1994) and by spanwise wall-
oscillation controlled flows.

However, GKE can not properly account for the anisotropy of the flow,
thus it is unsuitable to highlight all the features of a flow under control.
To overcome this issue, Gatti et al. (2020) introduced an extension of the
GKE, namely the Anisotropic Generalised Kolmogorov equations (AGKE).
AGKE are the exact budget equations for each component of the second-
order structure function tensor of the fluctuating velocity 〈δuiδuj〉. They
study the production, transport, redistribution and dissipative processes of
every Reynolds stress tensor component considering the space of scales and
the physical space simultaneously. Unlike the GKE, AGKE allows the scale
and space investigation of the pressure strain term and feature the budget
equation for the off-diagonal component 〈−δuδv〉, which is responsible for
the turbulent drag enhancement (Fukagata et al., 2002). A first and non-
complete analysis of a channel flow subjected to oscillatory spanwise wall
motion via AGKE has been carried out by Chiarini et al. (2019).

The present investigates a turbulent channel flow subjected to oscilla-
tory spanwise wall motion, focusing on the interaction between the coherent
motion introduced by the control (i.e. the Stokes layer) and the velocity
turbulent fluctuations. For this purpose, AGKE are written for a triple de-
composition of the velocity, which takes into account the presence of mean,
coherent and stochastic contributions. Thus, the fluctuations of the natural
and controlled flow can be properly compared, and the interplay between
the coherent and fluctuating stresses can be revealed. Data used to carry
out this analysis result from two Direct Numerical Simulation (DNS) of a
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fully-developed turbulent channel flow for the controlled and uncontrolled
cases. The DNS has been performed under CPI condition to keep the power
input of both simulations unchanged.

The work is structured as follows. First, the AGKE written by means of
the triple decomposition are presented in § 2 and numerical datasets used
to perform the present analysis are described in § 2.2. In § 3 the main
differences between uncontrolled and controlled flows in the diagonal (§ 3.1)
and off-diagonal (§ 3.2) components of the terms involved in the budget
equations are highlighted. Lastly, results are briefly discuss in chapter § 4.
Additional material is included in the appendices. Appendix A reports the
complete derivation of the budget equations of the structure function tensor
of both the coherent and fluctuating velocities; appendix B describes the
solver specifically developed to carry out the present analysis and appendix
C the residuals computed to assess the statistical convergence of the code.
Appendix D reports the single-point statistics.
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Chapter 2

Method

2.1 Anisotropic Generalised Kolmogorov Equa-

tions using triple decomposition

When a turbulent flow exhibits a coherent periodic features (e.g. a periodic
wall oscillation in a controlled channel flow), it is useful to follow Hussain
& Reynolds (1970) and decompose the velocity field in its mean, coherent
and purely stochastic parts. According to this approach, the velocity ui
has been decomposed into the mean Ui, the periodic ũi and the chaotic u′′i
contributions:

ui = Ui + ũi + u′′i . (2.1)

The mean value Ui represents the time average of the velocity field,
namely:

Ui(x) =〈ui(x, t)〉= lim
τ→+∞

1

τ

∫ τ

0

ui(x, t)dt. (2.2)

The term ũi represents the coherent part of the velocity ui and it is defined
as:

ũi(x, φ) = ui(x, t)− Ui(x) (2.3)

where · denotes the phase averaging. The latter is defined as:
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ui(x, t) = lim
N→+∞

1

N

N∑
n=0

ui(x, t+ nT ) (2.4)

where T is the period of the coherent motion and the correspondent phase
is defined as φ = 2πt/T . The same decomposition applies to the pressure.
Therefore, velocity and pressure fields can be re-cast in two new sets of
equations:

{
u = U + u′

u′ = ũ+ u′′ (2.5)

{
p = P + p′

p′ = p̃+ p′′
(2.6)

In this work we write the Anisotropic Generalised Kolmogorov Equations
(AGKE), derived by Gatti et al. (2020), for the triple decomposition. As
shown in Gatti et al. (2020), the AGKE are the exact budget equations for
each component of the second-order structure function tensor

〈
δu′iδu

′
j

〉
where

δu′i is the difference of the ith fluctuating velocity component between two
points x and x0 identified by their midpoint X = (x + x0)/2 and separa-
tion r = x0 − x. Here the AGKE are derived for both the the coherent
and stochastic parts, i.e. 〈δũiδũj〉 and

〈
δu′′i δu

′′
j

〉
. The AGKE for

〈
δu′iδu

′
j

〉
are

recovered by summing the AGKE for the coherent and stochastic contribu-
tions.

The AGKE for 〈δũiδũj〉 and
〈
δu′′i δu

′′
j

〉
can be compactly written as:

∂φ̃ij,k
∂rk

+
∂ψ̃ij,k
∂Xk

= ξ̃ij, (2.7)

∂φij,k
∂rk

+
∂ψij,k
∂Xk

= ξij; (2.8)

here repeated indices imply summation. φ̃ij,k and φij,k denote the fluxes of
〈δũiδũj〉 and

〈
δu′′i δu

′′
j

〉
respectively, in the space of scale rk:
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φ̃ij,k = 〈δUkδũiδũj〉︸ ︷︷ ︸
Mean Transport

+ 〈δũkδũiδũj〉︸ ︷︷ ︸
Coherent Transport

+
〈
δu′′kδu

′′
i δũj

〉︸ ︷︷ ︸
Turbulent transport

+
〈
δu′′kδu

′′
j δũi

〉︸ ︷︷ ︸
Turbulent transport

−2ν
∂〈δũiδũj〉
∂rk︸ ︷︷ ︸

Viscous transport

k = 1, 2, 3 (2.9)

φij,k =
〈
δUkδu

′′
i δu

′′
j

〉︸ ︷︷ ︸
Mean transport

+
〈
δũkδu′′i δu

′′
j

〉︸ ︷︷ ︸
Coherent transport

+
〈
δu′′kδu

′′
i δu

′′
j

〉︸ ︷︷ ︸
Turbulent transport

−2ν
∂
〈
δu′′i δu

′′
j

〉
∂rk︸ ︷︷ ︸

Viscous transport

k = 1, 2, 3 (2.10)

ψ̃ij,k and ψij denote the fluxes in the physical space Xk:

ψ̃ij,k = 〈U∗k δũiδũj〉︸ ︷︷ ︸
Mean transport

+ 〈ũ∗kδũiδũj〉︸ ︷︷ ︸
Coherent transport

+
〈
u′′∗k δu

′′
i δũj

〉︸ ︷︷ ︸
Turbulent transport

+
〈
u′′∗k δu

′′
j δũi

〉︸ ︷︷ ︸
Turbulent transport

+
1

ρ
〈δp̃δũi〉δkj︸ ︷︷ ︸

Pressure transport

+
1

ρ
〈δp̃δũj〉δki︸ ︷︷ ︸

Pressure transport

−ν
2

∂〈δũiδũj〉
∂Xk︸ ︷︷ ︸

Viscous transport

k = 1, 2, 3 (2.11)

ψij,k =
〈
U∗k δu

′′
i δu

′′
j

〉︸ ︷︷ ︸
Mean transport

+
〈
ũ∗kδu

′′
i δu

′′
j

〉︸ ︷︷ ︸
Coherent transport

+
〈
u∗kδu

′′
i δu

′′
j

〉︸ ︷︷ ︸
Turbulent transport

+
1

ρ
〈δp′′δu′′i 〉δkj︸ ︷︷ ︸

Pressure transport

+
1

ρ

〈
δp′′δu′′j

〉
δki︸ ︷︷ ︸

Pressure transport

−ν
2

∂
〈
δu′′i δu

′′
j

〉
∂Xk︸ ︷︷ ︸

Viscous transport

k = 1, 2, 3 (2.12)
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and ξ̃ij and ξij denote the source terms:

ξ̃ij = −〈δũjδũk〉
(
∂Ui
∂xk

)∗
−〈δũiδũk〉

(
∂Uj
∂xk

)∗
−〈δũjũ∗k〉δ

(
∂Ui
∂xk

)
−〈δũiũ∗k〉δ

(
∂Uj
∂xk

)
︸ ︷︷ ︸

Mean production (P̃M
ij )

−
[
−
〈
δu′′i δu

′′
k

∂δũj
∂rk

〉
−
〈
δu′′j δu

′′
k

∂δũi
∂rk

〉
−
〈
δu′′i u

′′∗
k

∂δũj
∂Xk

〉
−
〈
δu′′ju

′′∗
k

∂δũi
∂Xk

〉]
︸ ︷︷ ︸

Coherent production (PC
ij )

+
1

ρ

〈
δp̃
∂δũi
∂Xj

〉
+

1

ρ

〈
δp̃
∂δũj
∂Xi

〉
︸ ︷︷ ︸

Pressure strain (Π̃ij)

−4ε̃∗ij︸ ︷︷ ︸
Dissipation (D̃ij)

(2.13)

ξij = −
〈
δu′′j δu

′′
k

〉(∂Ui
∂xk

)∗
−〈δu′′i δu′′k〉

(
∂Uj
∂xk

)∗
−
〈
δu′′∗j u

′′
k

〉
δ

(
∂Ui
∂xk

)
−〈δu′′i u′′∗k 〉δ

(
∂Uj
∂xk

)
︸ ︷︷ ︸

Mean production (PM
ij )

+

[
−
〈
δu′′i δu

′′
k

∂δũj
∂rk

〉
−
〈
δu′′j δu

′′
k

∂δũi
∂rk

〉
−
〈
δu′′i u

′′∗
k

∂δũj
∂Xk

〉
−
〈
δu′′ju

′′∗
k

∂δũi
∂Xk

〉]
︸ ︷︷ ︸

Coherent production (PC
ij )

+
1

ρ

〈
δp′′

∂δu′′i
∂Xj

〉
+

1

ρ

〈
δp′′

∂δu′′j
∂Xi

〉
︸ ︷︷ ︸

Pressure strain (Πij)

−4ε∗ij︸ ︷︷ ︸
Dissipation (Dij)

.

(2.14)
In these equations, ν is the kinematic viscosity, ρ is the density, δij is

the Kronecker delta and the (·)∗ operator is the arithmetic mean of a given
quantity between X ± ry/2; ε̃ij and εij are the pseudo-dissipation tensors
associated with the coherent and fluctuating velocity fields, respectively.

Coherent and fluctuating AGKE describe production, transport, inter-
component redistribution and dissipation of〈δũiδũj〉and

〈
δu′′i δu

′′
j

〉
considering

simultaneously the space of scales and the physical space. The AGKE for
〈δũiδũj〉 concern the budget of stresses arising from a periodic fluctuation of
the flow field, whereas the AGKE for

〈
δu′′i δu

′′
j

〉
describe the budget of the

fluctuating velocity field, after the contribution of the coherent motion has
been removed.

The six-dimensional vector fields of fluxes Φ̃ij = [φ̃ij; ψ̃ij] and Φij =
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[φij ;ψij ] represent the transport of 〈δũiδũj〉 and
〈
δu′′i δu

′′
j

〉
among scales and

positions. Turbulent transport for Φ̃ij and coherent transport for Φij are the
only terms where stochastic and periodic velocity fluctuations communicate.
Regarding Φ̃ij , turbulent transport in 2.9 and 2.11 describe how coherent
stresses are transferred by the stochastic flow field. Concerning Φij , the
coherent transport in 2.10 and 2.12 denote the transfer of turbulent stresses
due to the periodic motion.

The source terms ξ̃ij and ξij denote the net production of 〈δũiδũj〉 and〈
δu′′i δu

′′
j

〉
respectively. They can assume either positive or negative values

depending on the relative weight of the terms appearing on the right hand
side of equation 2.13 and 2.14. Among the terms involved in the production
process, the mean production term provides information on the scales and
position at which the mean flow feeds the fluctuating field; P̃M

ij deals with the
coherent fields, while PM

ij with the stochatic one. The coherent production
PC
ij indicates the interchange of stresses between the coherent and fluctuating

fields and it is present in both the budgets of 〈δũiδũj〉 and
〈
δu′′i δu

′′
j

〉
with op-

posite sign. PC
ij describes the process responsible for extracting energy from

the coherent motion and transferring it to the fluctuations and highlights
the characteristics scales and positions at which it takes place. Among the
terms involved in the source, the coherent production is the only one con-
necting coherent and fluctuating budgets. D̃ij and Dij denote the dissipation
by viscous effect. Lastly, the pressure strain terms Π̃ij and Πij describe the
interplay between the pressure and the velocity fields. These terms do not
concern neither production nor dissipation of energy, but they describe the
redistribution process among different components of the stress tensor.

Let u1 = u, u2 = v and u3 = w be the velocity components in the stream-
wise (x), wall-normal (y) and spanwise (z) directions of an indefinite channel
flow. In the most general case, the AGKE depend on seven independent
variables, namely the three space separation (rx, ry, rz), the three mid-point
positions (X, Y, Z) and the time. When tailored to the channel flow the
independent variables drop to four, namely (rx, ry, rz, Y ), as this flow is sta-
tistically stationary and both x and z are homogenoeus directions. Moreover,
the finite size of the separation between the two walls of the channel enforces
a physical constraint on two independent variables: Y > ry/2. The mean
wall-normal V and cross-stream W velocities are zero, as well as all mean
velocity derivatives with respect to the two homogeneous directions x and z,
namely ∂Ui/∂x = ∂Ui/∂z = 0. In the most general case of wall actuation, the
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coherent velocity can depend on the three directions if no homogeneity in the
forcing is present. In the specific case of spanwise time-oscillating walls, by
homogeneity in both the streamwise and spanwise directions, phase-averaged
velocities are also not function of neither x nor z, i.e. ∂ũi/∂x = ∂ũi/∂z = 0.
Therefore, the combination of the incompressibility constraint applied to the
coherent velocity vector which gives ∂ṽ/∂y = 0 and the no-penetration con-
dition at the wall, i.e. ṽ(y = 0, t) = 0, yields ṽ = 0. Albeit the streamwise
coherent velocity ũ does not vanish, in the spanwise wall oscillating case,
its value is observed to be two order of magnitude smaller than spanwise
coherent velocity w̃, therefore it can be neglected.

2.1.1 AGKE tailored to turbulent channel flow

In this subsection the AGKE tailored to the channel flow subjected to a
spanwise wall-oscillation are presented.

Budget equation for 〈δu′′δu′′〉
∂

∂rx
〈δUδu′′δu′′〉︸ ︷︷ ︸
Mean transport

+
∂

∂rz

〈
δw̃δu′′δu′′

〉︸ ︷︷ ︸
Coherent transport

+
∂

∂rj

〈
δu′′j δu

′′δu′′
〉︸ ︷︷ ︸

Turbulent transport

+

∂

∂rj

∂

∂rj
(−2ν〈δu′′δu′′〉)︸ ︷︷ ︸

Viscous transport

+
∂

∂Y

〈
v′′∗δu′′δu′′

〉︸ ︷︷ ︸
Turbulent transport

∂

∂Y

∂

∂Y

(
−ν

2
〈δu′′δu′′〉

)
︸ ︷︷ ︸

Viscous transport

=

−2

〈
δv′′δu′′

(
∂U

∂y

)∗〉
− 2

〈
δu′′v′′∗δ

(
∂U

∂y

)〉
︸ ︷︷ ︸

PM
11

+
2

ρ

〈
δp′′δ

(
∂u′′

∂x

)〉
︸ ︷︷ ︸

Π11

−2
(
ε+u′′u′′ + εu′′u′′

)︸ ︷︷ ︸
D11

(2.15)
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Budget equation for 〈δv′′δv′′〉
∂

∂rx
〈δUδu′′δu′′〉︸ ︷︷ ︸
Mean transport

+
∂

∂rz

〈
δw̃δv′′δv′′

〉︸ ︷︷ ︸
Coherent transport

+
∂

∂rj

〈
δu′′j δv

′′δv′′
〉︸ ︷︷ ︸

Turbulent transport

+
∂

∂rj

∂

∂rj
(−2ν〈δv′′δv′′〉)︸ ︷︷ ︸

Viscous diffusion

+
∂

∂Y
〈v′′∗δv′′δv′′〉︸ ︷︷ ︸

Turbulent transport

+
∂

∂Y

∂

∂Y

(
−ν

2
〈δv′′δv′′〉

)
︸ ︷︷ ︸

Viscous diffusion

+
∂

∂Y

〈
2

ρ
δp′′δv′′

〉
︸ ︷︷ ︸

Pressure transport

=

+
2

ρ

〈
δp′′δ

(
∂v′′

∂y

)〉
︸ ︷︷ ︸

Π22

−2
(
ε+v′′v′′ + εv′′v′′

)︸ ︷︷ ︸
D22

(2.16)

Budget equation for 〈δw′′δw′′〉
∂

∂rx
〈δUδw′′δw′′〉︸ ︷︷ ︸
Mean transport

+
∂

∂rz

〈
δw̃δw′′δw′′

〉︸ ︷︷ ︸
Coherent transport

+
∂

∂rj

〈
δu′′j δw

′′δw′′
〉︸ ︷︷ ︸

Turbulent transport

+
∂

∂rj

∂

∂rj
− 2ν〈δw′′δw′′〉︸ ︷︷ ︸

Viscous diffusion

+
∂

∂Y
〈v′′∗δw′′δw′′〉︸ ︷︷ ︸

Turbulent transport

+
∂

∂Y

∂

∂Y

(
−ν

2
〈δw′′δw′′〉

)
︸ ︷︷ ︸

Viscous diffusion

=

−2

〈
δv′′δw′′

(
∂w̃

∂y

)∗〉
− 2

〈
δw′′v′′∗δ

(
∂w̃

∂y

)〉
︸ ︷︷ ︸

PC
33

+
2

ρ

〈
δp′′δ

(
∂w′′

∂z

)〉
︸ ︷︷ ︸

Π33

−2
(
ε+w′′w′′ + εw′′w′′

)︸ ︷︷ ︸
D33

(2.17)
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Budget equation for 〈−δu′′δv′′〉
∂

∂rx
〈δUδu′′δv′′〉︸ ︷︷ ︸
Mean transport

+
∂

∂rz

〈
δw̃δu′′δv′′

〉︸ ︷︷ ︸
Coherent transport

+
∂

∂rj

〈
δu′′j δu

′′δv′′
〉︸ ︷︷ ︸

Turbulent transport

+
∂

∂rj

∂

∂rj
− 2ν〈δu′′δv′′〉︸ ︷︷ ︸

Viscous diffusion

+
∂

∂Y
〈v′′∗δu′′δv′′〉︸ ︷︷ ︸

Turbulent transport

+
∂

∂Y

∂

∂Y

(
−ν

2
〈δu′′δv′′〉

)
︸ ︷︷ ︸

Viscous diffusion

+
∂

∂Y

〈
1

ρ
δp′′δu′′

〉
︸ ︷︷ ︸

Pressure transport

=

−
〈
δv′′δv′′

(
∂δU

∂y

)∗〉
−
〈
δv′′v′′∗δ

(
∂U

∂y

)〉
︸ ︷︷ ︸

PM
12

+
1

ρ

〈
δp′′δ

(
∂u′′

∂y

)〉
+

1

ρ

〈
δp′′δ

(
∂v′′

∂x

)〉
︸ ︷︷ ︸

Π12

−2
(
ε+u′′v′′ + εu′′v′′

)︸ ︷︷ ︸
D12

(2.18)

Budget equation for 〈δw̃δw̃〉
∂

∂rx
〈δUδw̃δw̃〉︸ ︷︷ ︸

Mean transport

+
∂

∂rz
〈δw̃δw̃δw̃〉︸ ︷︷ ︸

Coherent transport

+
∂

∂rj
2
〈
δu′′j δw

′′δw̃
〉︸ ︷︷ ︸

Turbulent transport

+
∂

∂ry

∂

∂ry
(−2ν〈δw̃δw̃〉)︸ ︷︷ ︸

Viscous diffusion

+
∂

∂Y
2
〈
v′′∗δw′′δw̃

〉︸ ︷︷ ︸
Turbulent transport

=

−2

〈
δw′′δv′′

(
∂δw̃

∂y

)∗〉
− 2

〈
δw′′v′′∗δ

(
∂w̃

∂y

)〉
︸ ︷︷ ︸

PC
33

−2
(
ε̃+w̃w̃ + ε̃w̃w̃

)︸ ︷︷ ︸
D̃33

(2.19)

2.2 Simulation data

The analysis carried out by the present work stems from the post-processing
of two Direct Numerical Simulation (DNS) of a fully-developed turbulent
channel flow performed for the controlled and uncontrolled cases. The two
databases have been produced under the CPI condition (Hasegawa et al.,
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2014), i.e. fixing the value of Reπ = Uπh/ν (where Uπ is the flow rate per
unit width achieved by a given pumping power in the laminar regime and h
is the channel semi-height) to enforce the controlled and uncotrolled flows to
have the same power input.

The DNS code written in CPL programming language by Luchini &
Quadrio (2006) exploits the v − η formulation of the Navier Stokes equa-
tions proposed by Kim et al. (1987). A Fourier discretization is adopted
in the homogeneous directions, and fourth-order compact explicit finite-
differences schemes are used for the wall-normal derivatives. Temporal in-
tegration is partially implicit, with a third-order Runge–Kutta scheme for
the explicit convective part and a second-order Crank–Nicolson scheme for
the viscous terms treated implicitly. The size of the computational domain
is (Lx, Ly, Lz) = (4πh, 2h, 2πh) in the streamwise, wall-normal and spanwise
direction. The number of Fourier modes is Nx = 256 in the streamwise direc-
tion and Nz = 256 in the spanwise direction (they are increased by a factor of
3/2 to remove the aliasing error). In the wall-normal direction a hyperbolic
tangent distribution for the Ny = 256 points is used to obtain a more refined
grid near the wall. For the controlled case the spanwise oscillation of the
wall is enforced by imposing the wall boundary condition for the spanwise
component of the velocity as:

w(t) = Asin

(
2π

T
t

)
(2.20)

where A and T are the prescribed amplitude and period of the sinusoidal
oscillation. The control parameters are selected to make the oscillating work
to work close to its optimum in CPI sense, corresponding to T = 20.39
and A = 0.1375, or T+ = 110 and A+ = 4.77 in actual viscous units; here
and throughout the whole paper the superscript + indicates quantities non-
dimensionalised by the kinematic viscosity ν and the friction velocity uτ of
the drag-reduced flow, i.e. actual viscous units.

The value of the Reynolds number is kept constant to the value of Reπ =
6500. For the reference case it corresponds to a friction Reynolds number of
Reτ = uτh/ν = 200, where uτ =

√
τw/ρ is the friction velocity expressed in

terms of the average wall shear stress τw and the density ρ, and to a bulk
Reynolds number of Reb = Ubh/ν = 3176. For the controlled case, instead,
this corresponds to a friction Reynolds number of Reτ = 187 and to a bulk
Reynolds number of Reb = 3267. Further details of the two simulations are
reported in table 2.1.
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Reπ Reτ Reb T+act T+nom A+act A+nom

ref 6500 200 3176 - - - -
ow 6500 187 3267 110 125.5 4.77 4.47

Table 2.1: Simulation parameters of the unactuated (ref) and actuated (ow)
case. act: actual viscous units; nom: nominal viscous units.

The reference simulation has been advanced for a time interval of 4000h/Uπ
after that the statistical equilibrium has been reached, saving 200 uncorre-
lated velocity fields. In the controlled case, the simulation has been advanced
in time for ∼ 610h/Uπ after reaching the statistical equilibrium. In this time
interval 240 velocity fields has been saved, so that 30 entire periods of wall
oscillations has been performed, each of them divided in 8 phases equally
spaced.

For the computation of the AGKE terms, a code in CPL language has
been developed. The code is based on the code for the GKE terms described
in Gatti et al. (2019) and it has been specialised for the case under study.
The velocity and pressure fields are decomposed in their mean, periodic and
purely fluctuating contributions. Then, in order to reduce the computational
effort, each term of equations 2.9, 2.10, 2.11, 2.12, 2.13 and 2.14 is split in
multiple but simpler correlations and computed in Fourier domain by means
of Parseval theorem for the two homogeneous directions. In order to further
reduce the computational cost, AGKE terms which only involve coherent
velocity and pressure (i.e. all terms of the budget of 〈δũiδũj〉 but fluxes and
PC
ij ) are computed only once per phase and averaged over the total number

of phases. Some terms also need the computation of derivatives: those in the
two homogeneous directions are performed in Fourier space, whereas those
in wall-normal direction are computed by means of a finite-difference scheme
with a five-points computational stencil. The outputs of the code are〈δũiδũj〉
and

〈
δu′′i δu

′′
j

〉
, the flux vectors φ̃ij , φij , ψ̃ij and ψij and every term involved

in ξ̃ij and ξij. For further details see appendix B.
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Chapter 3

Results

The following considers a comparison between a natural channel flow and
a channel flow subjected to a harmonic spanwise oscillation, in terms of
structure functions of the coherent and fluctuating velocities and the terms
involved in their budgets in the compound space of scales and positions.
The analysis is mainly restricted to the subspace rx = 0. This choice is
motivated by the prevalent streamwise alignment of the turbulent vortical
structures of the channel flow. Such structures typically induce the largest
negative correlation of velocity components for rx = 0. As a consequence,
the maximum of each component of

〈
δu′′i δu

′′
j

〉
+ and ξ+

ij occur at rx ≈ 0.
An exception is made by the coherent production term: within a period of
oscillation, it assumes the largest value when the structures are more inclined
in the (rx, rz)-plane, making its statistics relevant also at rx 6= 0.

3.1 Diagonal components

3.1.1 Structure functions

In a channel flow, the position in the (rz, ry, Y )-space of the maxima of the
diagonal components of

〈
δu′′i δu

′′
j

〉
+, hereinafter referred to with the subscript

m, is consistent with the characteristic scales and wall-normal distance of
the structures populating the near-wall region. Table 3.1 summarises the
maximum values of the diagonal components of

〈
δu′′i δu

′′
j

〉
+ and their position

in the (r+
z , r

+
y , Y

+)-space for the uncontrolled and controlled flows. The same
information are depicted in figure 3.1. In the uncontrolled flow, 〈δu′′δu′′〉+
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peaks at Y + = 14 and r+
y = 0, indicating the presence of alternating regions

of low and high streamwise velocity separated by r+
z = 59, consistent with a

couple of low- and high-speed streaks. The maximum of 〈δv′′δv′′〉+, instead,
occurs at Y + = 52, r+

z = 59 and r+
y = 0, whereas the maximum of〈δw′′δw′′〉+

at Y + = 43, r+
y = 42 and r+

z = 0. They are the statistical trace of the quasi-
streamwise vortices, inducing large negative correlated regions of wall-normal
velocity at r+

z 6= 0 and of spanwise velocity at r+
y 6= 0. The larger order of

magnitude of 〈δuδu〉 compared to 〈δvδv〉 and 〈δwδw〉 clearly highlights the
strong anisotropy of the flow and indicates that the turbulent kinetic energy
is mainly contained in the streaks (Jiménez, 2013).

When the control is applied 〈δu′′δu′′〉+m , 〈δv′′δv′′〉+m and 〈δw′′δw′′〉+m de-
crease, indicating a weakening of the near-wall structures. We note that the
drop in the structure function of streamwise fluctuation (−12%) is larger
than the one of wall-normal (−7%) and spanwise (−0.3%) fluctuations. This
indicates that the control leads to a slightly decrease of the flow anisotropy,
consistently with the results of Touber & Leschziner (2012). The smaller drop
of 〈δw′′δw′′〉+m is explained by the additional source of 〈δw′′δw′′〉 that arises
in the controlled case owing to the interaction of the turbulent fluctuations
with the Stokes layer ; this is investigated in detail in section § 3.1.4.

The different shift of the maxima of the three normal components of〈
δu′′i δu

′′
j

〉
+ reveals the control affects differently the dynamics of the three

normal stresses. The wall-normal distance of 〈δu′′δu′′〉+m shifts outwards from
Y + = 14 to 17, in agreement with the thickening of the viscous sublayer,
firstly reported by Di Cicca et al. (2002). This does not hold true for
〈δv′′δv′′〉+ and 〈δw′′δw′′〉+ which maxima occur at the same wall-distance
for both the controlled and uncontrolled cases. This suggests that the thick-
ening of the viscous sublayer mainly affects the streaks as they are placed at
lower Y .

In terms of scales, we note that in the controlled case both 〈δv′′δv′′〉m and
〈δw′′δw′′〉m shift towards lower rz and ry respectively; the former moves from
r+
z = 59 to r+

z = 55, while the latter from r+
y = 42 to r+

y = 39. On the other
hand, when the control is applied 〈δu′′δu′′〉m moves towards larger spanwise
separation, from r+

z = 59 to r+
z = 61. Overall, this indicates that in the

controlled flow the low- and high- velocity streaks are moved apart from the
wall motion and that the cross section of the quasi-streamwise vortices in the
(y, z)-plane slightly decreases.
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Figure 3.1: Second-order structure functions of the fluctuating velocity of
the uncontrolled flow in the (r+

z , r
+
y , Y

+)-space. a: 〈δu′′δu′′〉+, b: 〈δv′′δv′′〉+,
c: 〈δw′′δw′′〉+, d : 〈−δu′′δv′′〉+. White ×: maximum value in the uncontrolled
flow; black ×: maximum value in the controlled flow.
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〈δuiδuj〉+m ξ+
ij,m P+

ij,m

Value Position Value Position Value Position

i=j=1
ref 17.15 (59,0,14) 0.74 (39,0,12) 1.24 (43,0,12)
ow 15.06 (61,0,17) 0.58 (37,0,14) 1.18 (37,0,13)

i=j=2
ref 1.76 (59,0,53) 0.037 (0,27,36) - -
ow 1.64 (55,0,53) 0.039 (0,23,32) - -

i=j=3
ref 2.84 (0,42,43) 0.053 (43,0,9) - -
ow 2.83 (0,39,43) 0.069 (40,0,12) 0.019 (11,0,31)

|Π+
ij|m |D+

ij |m
Value Position Value Position

i=j=1
ref 0.14 (24,0,24) 0.55 (-,-,0)
ow 0.17 (46,0,20) 0.47 (-,-,8.8)

i=j=2
ref 0.068 (0,25,35) 0.034 (-,-,32)
ow 0.072 (0,22,33) 0.037 (-,-,31)

i=j=3
ref 0.12 (46,0,12) 0.17 (-,-,0)
ow 0.15 (43,0,14) 0.17 (-,-,0)

Table 3.1: Maximum values for the diagonal terms of 〈δuiδuj〉+, its source
ξ+
ij , production PM+

ij for i=j=1 and PC+
ij for i=j=3, absolute pressure strain

|Π+
ij| and dissipation |D+

ij | in the (r+
z , r

+
y , Y

+)-space.
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3.1.2 Production, redistribution and dissipation

Table 3.1 summarises the intensity and the position of the diagonal compo-
nents of ξ+

ij,m and the terms they involve.
We start considering the source term for〈δu′′δu′′〉. In the uncontrolled flow

two well-separated regions of ξ11 > 0 can be detected at ry ≈ 0 (Gatti et al.,
2020). The first occurs in the buffer layer with ξ+

11,m placed at (r+
z , Y

+) =
(39, 12) and it is linked to the near-wall cycle (Gatti et al., 2020); see figure
3.2a. A second tiny region of positive ξ11 is detected in the overlap layer,
at Y + ≈ r+

z ≈ 95. This is the statistical trace of the so-called outer cycle
(Cossu & Hwang, 2017), as observed in Gatti et al. (2020). These regions
perfectly agree with the two areas of positive source of scale energy (half the
trace of

〈
δu′′i δu

′′
j

〉
) reported by Cimarelli et al. (2013, 2016) and called driving

scale range (DSR) and outer driving scale range (ODSR), respectively. In
the controlled case, however, the control affects ξ11 in a way that these two
regions of positive ξ11 are not more separated, but a region of slightly positive
ξ11 arises connecting them; see figure 3.2b. This indicates that, at least at
this low Reynolds number, the wall motion connects the near-wall and outer
cycles. However, Cimarelli et al. (2013) found the separation between DSR
and ODSR to be Re-dependent with the value of the source in this region
becoming more negative as Re increases. Therefore, this effect seems to
depend on the low Reynolds number considered in the present work. Further
investigations are required to assess whether this effect is robust to a change
of the control strategy and an increase of the Reynolds number.

To better elucidate the effect of the control on ξ11, it is worth investigating
separately its effect on the production (PM

11 ) and pressure strain (Π11) terms,
shown in figures 3.2c-d. When the control is active the maximum of the
streamwise production decreases by 5% and it moves at larger wall distance
(from Y + = 12 to 13). P+

11 depends on two terms, namely 〈−δu′′δv′′〉+ and
dU/dy (see equation 2.14). The former shows that its local positive maximum
in the (r+

z , Y
+)-plane increases by 14% (see table 3.2) and moves from Y + =

13 to 18, proving an outward shift of the near-wall cycle; the latter moves
its profile upwards due to the thickening of the viscous sublayer. For this
reasons, albeit its maximum intensity is reduced, P+

11 increases for Y + > 15
in the whole range of r+

z . Conversely, the negative maximum of the pressure
strain becomes more negative and shifts closer to the wall (from Y + ≈ 24 to
20). To complete the picture, ε+11,m decreases by 12.4% and moves away from
the wall, up to Y + = 8.8. The relative shift among P+

11,m, Π+
11,m and ε+11,m
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leads to the decrease of ξ11.m by 21% and explains the arise of the positive
ξ11 connecting the near- and outer-cycle.

The source terms of 〈δv′′δv′′〉+ and 〈δw′′δw′′〉+ are much less affected by
the oscillation of the wall than the one of 〈δu′′δu′′〉+. However, the budget
of 〈δw′′δw′′〉+ features an additional term when the control is applied. It is
the coherent production, arising from the interaction of 〈δw′′δw′′〉+ with the
dynamics of the Stokes layer (see § 3.1.4). The small changes in the intensity
and positions of ξ+

22,m, ξ+
33,m and the terms they involve are summarised in

table 3.1.

3.1.3 Redistribution via pressure strain term

The pressure strain term denotes the redistribution of energy among the di-
agonal components of

〈
δu′′i δu

′′
j

〉
+ via velocity-pressure interaction. Π+

11 is neg-
ative in almost the whole space of scales and wall-normal distance, meaning
that the interaction between the pressure and the turbulent field redistributes
energy from the streamwise to the spanwise and the wall-normal fluctuations.
Due to the incompressibily constraint, Π+

33/Π
+
11 + Π+

22/Π
+
11 = −1, hence en-

ergy redistribution is isotropic when Π+
33/Π

+
11 = Π+

22/Π
+
11 = −0.5. The thick

line of figure 3.3 represents Π+
33/Π

+
11 = −0.5 and it distinguishes between

the preferential redistribution towards 〈δv′′δv′′〉+ at small scales and towards
〈δw′′δw′′〉+ at large scales (Gatti et al., 2020).

This property still holds when the control is applied, as can be evinced
comparing the two panels of figure 3.3. However, the region of preferential
redistribution towards 〈δw′′δw′′〉+ slighly increases, meaning that the control
redistributes energy to the spanwise fluctuations for a greater range of sep-
arations compared to the natural flow. The largest increase of Π+

33/Π
+
11 is

visible in the r+
y = 0 plane along a line described by Y + ≈ r+

z for Y + < 100.
As reported in table 3.1, Π+

11,m becomes more negative, increasing its in-
tensity by 23%. As a consequence, more energy is transferred towards both
〈δv′′δv′′〉+ and〈δw′′δw′′〉+, such that both Π+

22,m and Π+
33,m increase compared

to reference case. However, the former increases by 6%, the latter by 25%,
suggesting that the wall motion enhances the transfer of energy at larger
scales, namely from 〈δu′′δu′′〉 towards 〈δw′′δw′′〉 rather then towards 〈δv′′δv′′〉.
This result agrees with the idea that the tilting of the near-wall structures,
here enhanced by the wall motion, is the main driver of the transport of
energy between streamwise and spanwise fluctuations via pressure-velocity
interaction, as stated by Jeong et al. (1997).
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Figure 3.2: Contour plot of the budget terms for 〈δu′′δu′′〉+ in (r+
z , Y

+)-
plane.a-b: filled contour of ξ+

11 (-0.6:0.2:0.2,0.1,0:0.2:0.6) of (a) uncontrolled
and (b) controlled flow, with zero line indicated by a white dashed line.
c-d : filled contour of P+

11 (0:0.2:1.2), contour lines of Π+
11 (-0.125,-0.115,0),

× : P+
11,m, ∗ : Π+

11,m, ◦ : ξ+
11,m of (c) uncontrolled and (d) controlled flow.
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Figure 3.3: Π+
33/Π

+
11. Contour lines (0,-0.4,-0.5,-0.6) with -0.5 line indicated

by thick line in (a) uncontrolled and (b) controlled case

The larger increase of Π+
33,m compared to Π+

11,m is consistent with the
decrease of the anisotropy in the controlled flow, as reported by Touber &
Leschziner (2012).

3.1.4 Coherent and stochastic fluctuations interaction
via coherent production term

The decomposion of the AGKE in their coherent and fluctuating contri-
butions reveals the interaction between the dynamics of the Stokes layer,
imposed by the wall motion and the turbulent fluctuations. The coherent
production PC

ij of equations 2.13 and 2.14 is the term of the AGKE which
account for this cross-talk. In case of the spanwise wall motion, the term
of the coherent production is present only in the budgets for 〈δw̃δw̃〉 and
〈δw′′δw′′〉 so that the Stokes layer transfers its energy to the stochastic tur-
bulent fluctuations directly interacting with the spanwise fluctuations only.
This interaction occurs at precise wall distances and scales: its statistical
trace in the complete four-dimensional space identifies the three character-
istic scales of this process. Two well-defined peaks of PC+

33 are detected at
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Figure 3.4: Coherent production peaks in (a) (r+
x , Y

+)-plane, (b) (r+
z , Y

+)-
plane, (c) (r+

y , Y
+)-plane

ry = 0 and either rx 6= 0 nor rz 6= 0. The global maximum occurs at
(r+
x , r

+
y , r

+
z , Y

+) = (73.5, 0, 0, 10.8) (figure 3.4a), whereas a second peak at
(0, 0, 30.6, 11) (figure 3.4b). It is worth highlighting that the wall distance of
these peaks is about where the low- and high- speed streaks of the wall-cycle
are, meaning that this produciton process is the result of the interaction of
such structures with the Stokes layer.

Since this analysis is performed at ry = 0, the second term of PC
33 in

equation 2.17 vanishes. Thus, in the ry = 0 space the coherent production
reduces to:

PC
33 = −2

〈
δv′′δw′′

(
dw̃

dy

)〉
. (3.1)

The structures of the near wall-cycle, normally almost aligned to the di-
rection of the mean flow, tend to re-orientate in the (x, z)-plane along the
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direction of the new shear vector [dU/dy, dw̃/dy], when a harmonic span-
wise velocity w̃ is applied to the wall. dw̃/dy changes continually during
a period of oscillation, forcing the structures to re-orientate accordingly. If
the wall oscillates at a frequency close to the optimum value for drag re-
duction, the structures do not have sufficient time to realign properly with
the strain vector before it changes direction, and they show no well-defined
behaviour. However, when the structures are more tilted, the spanwise shear
changes relatively slowly in time, allowing the structures to become more
vigorous and well-established. This condition is known as lingering (Touber
& Leschziner, 2012) and it occurs at those phases for which dw̃/dy is at its
maximum intensity, either positive or negative, at y+ ≈ 10, corresponding
to the typical wall-distace of the near-wall structure. Yakeno et al. (2014)
provides a mathematical relation, which links the tilting angle to the ratio
between the streamwise and the spanwise shear at y+ = 15. Depending on
the sign of dw̃/dy at this wall-distance two different scenarios are possible.

First, we consider the phase corresponding to the largest positive tilting
angle and a negative maximum of dw̃/dy < 0. In the leftmost panel of figure
3.5b, the projection of a positive rotating quasi-streamwise vortex (QSV) on
the (x, y)-plane is considered. At its left side relative high-speed spanwise
flow (w′′ > 0) is advected upwards (v′′ > 0) by its rotational motion. On the
contrary, at its right side, relative low-speed spanwise flow (w′′ < 0) is swept
towards the wall (v′′ < 0). Recalling that the structure function

〈
δu′′i δu

′′
j

〉
can be interpreted as the difference between the covariance

〈
u′′i u

′′
j

〉
and the

cross-correlation function Rij(r) (Gatti et al., 2020), the separation in the
streamwise direction rx, at which the anti-correlation is maximum, leads to
highest value of δv′′δw′′ at that phase.

δv′′δw′′ = v′′w′′︸ ︷︷ ︸
>0

−R23(rx)︸ ︷︷ ︸
<0

−R32(rx)︸ ︷︷ ︸
<0

, (3.2)

Thus, the statistical trace of the contribution of the coherent production
at this phase is positive and, at the separation rx = δx, it has the maximum
possible value.

PC
33,θm>0 = −2 δv′′δw′′︸ ︷︷ ︸

>0

(
dw̃

dy

)
︸ ︷︷ ︸

<0

> 0. (3.3)
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Figure 3.5: (a): Sketch of a SP tilted of an angle θ in the (x, z)-plane. (b):
QSV at the phase when θ reaches its maximum positive value. Left: cross-
section AB —projection in (x, y)-plane. Right: cross-section CD —projection
in (z, y)-plane. (c): QSV at the phase when θ reaches its maximum negative
value. Left: cross-section AB —projection in (x, y)-plane. Right: cross-
section CD —projection in (z, y)-plane
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The same line of reasoning is applied to the projection of a QSV on
the (y, z)-plane (rightmost panel of figure 3.5b). The spanwise separation
rz = δz, at which the anti-correlation functions R23(rz) and R32(rz) peak,
leads to the highest intensity of δv′′δw′′. Again, the contribution of the
coherent production at this phase and this separation has positive sign and,
under this conditions, it reaches its maximum value.

Conversely, at the phase at which the QSV reaches its maximum negative
tilting, the value of the correspondent spanwise shear at y+ ≈ 10 has its
positive peak. Looking at the projection of the QSV in the (x, y)-plane
(leftmost panel of figure 3.5c), on the right side of the structure, relative
low-speed spanwise flow (w′′ < 0) is carried upwards (v′′ > 0), whereas at
its left side, relative high-speed spanwise flow (w′′ > 0) is dragged towards
the wall (v′′ < 0). When the cross-correlation between wall-normal and
spanwise fluctuations at the two sides of the vortical structure is maximum,
the structure function δv′′δw′′ has a peak.

δv′′δw′′ = v′′w′′︸ ︷︷ ︸
<0

−R23(rx)︸ ︷︷ ︸
>0

−R32(rx)︸ ︷︷ ︸
>0

, (3.4)

so that the coherent production has a positive peak as well:

PC
33,θm<0 = −2 δv′′δw′′︸ ︷︷ ︸

<0

(
dw̃

dy

)
︸ ︷︷ ︸

>0

> 0. (3.5)

As seen before, with the same line of reasoning, a spanwise characteristic
length rz = δz can be found (rightmost panel of figure 3.5c).

Therefore, the coherent production term assumes large positive values
when the structures are tilted the most in the (x, z)-plane either by a positive
or negative angle. In this condition, the energy injected in the flow by the
actuation is transferred from the coherent to the random fluctuations at
precise scales and wall distance. Overall, this leads to a positive contribution
of the coherent production to the budget of 〈δw′′δw′′〉and to the definition of
two characteristic scales (at rx 6= 0 and rz 6= 0) of this process.

Although the whole discussion has been based on the interplay between
the coherent motion and a positive rotating QSV (SP), the same exact argu-
ment applies to a negative rotating QSV (SN), assuring coherent production
to always assume positive value when the structures are inclined the most.
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A third less intense peak of the coherent production term is detected at
(r+
x , r

+
y , r

+
z , Y

+
c ) = (0, 11, 0, 8.8) (figure 3.4c). This peak occurring at ry 6= 0

does not allow the expression of PC
33 to reduce to the one of equation 3.1.

Therefore, this local maximum can not be explained using the same reasoning
used above and it needs to be further investigated to understand its physical
meaning.

3.1.5 Fluxes

The flux vector [φy, φz, ψ] describes how
〈
δu′′i δu

′′
j

〉
is transported among scales

and along the wall-normal direction and it is visualised via its field lines. Both
in the uncontrolled and controlled cases field lines of 〈δu′′δu′′〉+ start in the
buffer layer at ry = 0, close to the locus of the maximum value of the source
term. In the first part of their path, the field lines lay on a plane described
by Y + = r+

y /2+K+
11 — hereafter referred to as streamwise attached plane —

transferring 〈δu′′δu′′〉+ towards larger spanwise and wall-normal separations
and away from the wall. Finally, they divert either towards the attached
plane (Y + = r+

y /2) or towards small separations, where they are dissipated.
The wall motion affects the path of these field lines shifting the streamwise
attached plane towards a larger wall-normal distance. The characteristic
constantK+

11 changes from the value of∼ 13 to the value of∼ 17 (figure 3.6a).
Conversely, there is no evidence of such shift in the field lines of〈δv′′δv′′〉+;

in the first part of their path, they follow a line described by Y + = r+
y /2+40

in both uncontrolled and controlled case.
Lastly, field lines of 〈δw′′δw′′〉+ originate at ry ≈ 0 and they align along

a line described by Y +
c = r+

y /2 + K+
33. Interestingly, in contrast to the

streamwise fluxes, the spanwise attached plane shifts sligthly closer to the
wall: K+

33 decreases from 14.5 to 13.5 (figure 3.6b).
The upward shift of the flux of the streamwise stresses agrees with the

thickening of the viscous sublayer, already highlighted by the change in the
wall-normal position of 〈δu′′δu′′〉+m. The smaller modification affecting the
fluxes of the other two normal stresses supports the idea that the thickening
of the viscous sublayer mainly affects the streaks.
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Figure 3.6: Field lines of the vector of fluxes of (a) 〈δu′′δu′′〉+ and (b)
〈δw′′δw′′〉+. White line describes a field line of uncontrolled case, black line
of controlled case. Colour plot describes the source term ξ+ of (a) 〈δu′′δu′′〉
and (b) 〈δw′′δw′′〉.

3.2 Off-diagonal component

3.2.1 Structure function

Among off-diagonal terms, the only one associated with a non-zero compo-
nent of the Reynolds stress tensor is 〈−δu′′δv′′〉 . Unlike diagonal terms, it
can not be associated with the energy content of certain scales at a certain
distance from the wall, since it is not defined in sign. The behaviour of
〈−δuδv〉 is considered as a proxy of the turbulent structures inducing a cor-
relation between streamwise and vertical fluctuations. Table 3.2 summarises
the changes of 〈−δu′′δv′′〉+m between uncontrolled and controlled flow and fig-
ure 3.1 depicts them. 〈−δu′′δv′′〉+m occurs at r+

y = 0. When the spanwise
forcing is applied, it decreases by 6.9% and it shifts farther from the wall
(from Y + ≈ 30 to 34) with a negligible change in the spanwise separation.
Similarly to the streamwise structure function, the shift in the vertical di-
rection (by ∼ 4 viscous units) is a trace of the thickening of the viscous
sublayer.
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3.2.2 Production, redistribution and dissipation

Both in uncontrolled and controlled cases the production and pressure strain
terms are the main contributors to the source term. Indeed, the viscous
dissipation D12 is negligible compared to P12 and Π12 (Gatti et al., 2020).
Table 3.2 summarises the maximum values of ξ+

12 and the terms it involves,
together with their positions.

Both positive and negative maxima of ξ+
12 occur at ry = 0. The former

peak occurs at smaller spanwise separation in the buffer layer (Y + = 13),
whereas the latter at larger spanwise separation at the wall. A second large
region of negative ξ+

12 occurs at rz ≈ 0, as depicted in figure 3.7a-b. When
the control is applied, this peak becomes more negative and it shifts from
the plane Y + = r+

y /2 + K+ described by K+ = 7 to the plane described
by K+ = 8.8. This result is again compatible with the thickening of the
viscous sublayer and the consequent upward shift of the near-wall cycle. At
ry = 0, the oscillation of the wall enhances the dependence of ξ+

12 on the
spanwise separation. Indeed, both maxima of ξ+

12 > 0 and ξ+
12 < 0 increase

their intensities, creating two well-defined regions of opposite sign. This
behaviour can be explained by the relative shift between peaks of production
and pressure strain terms.

The negative maximum of the pressure strain term increases its value
(+39%) and shift towards the wall (from Y + = 16.5 to 14), whereas the
maximum production also increases (+21%) but shifts slightly farther from
the wall (from Y + = 13 to 13.3). They both shift towards smaller spanwise
separation: the former from r+

z = 65 to r+
z = 55, the latter from r+

z = 36
to r+

z = 31 (figure 3.7e-f ). The combination of these changes leads to an
increase of both the positive (+14%) and negative (+7%) peaks of the source
term (figure 3.7c-d).

A last interesting difference between the uncontrolled and controlled case
is the creation of a thin region of net production in the viscous sublayer
(figure 3.7d). It extends down to the wall for r+

z ∈ (0, 37), whereas for larger
r+
z it is separated from the wall by a sink region. The rise of this area of
ξ12 > 0 is associated with the pressure strain term. In the uncontrolled case,
Π+

12 is negative in the whole plane but a small region at Y + ≈ 5 and r+
z < 10

(see figure 3.7e). When the spanwise forcing is active, this positive region
shifts closer to the wall and at larger spanwise separation (see figure 3.7f ).
Its maximum increases by an order of magnitude, leading to the creation of
this strip of net production.
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Figure 3.7: a-b: Source of 〈−δu′′δv′′〉 in (a) uncontrolled and (b) controlled
flow in the (r+

z , r
+
y , Y

+)-space. c-f: contour plot of the budget terms of
〈−δu′′δv′′〉 in (r+

z , Y
+
c )-plane; filled contour of ξ+

12 (-0.1:0.02:0.12), with zero
line indicated by a white dashed line in uncontrolled (c) and controlled
(d) flow; filled contour of P+

11 (0:0.04:0.24), contour lines of Π+
11,m (-0.175,-

0.155,0), × : P+
12,m, ∗ : Π+

12,m, ◦ : ξ+
12,m of uncontrolled (e) and controlled (f)

flow.
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〈−δuδv〉+m ξ+
12,max ξ+

12,min

Value Position Value Position Value Position
ref 2.06 (52,0,30) 0.089 (20,0,13) -0.092 (202,0,0)
ow 1.92 (52,0,34) 0.102 (21,0,18) -0.099 (55,0,11)

P+
ij,m |Π+

ij|m
Value Position Value Position

ref 0.20 (36,0,18) 0.18 (65,0,16)
ow 0.24 (31,0,18) 0.25 (55,0,14)

Table 3.2: Maximum values of 〈−δu′′δv′′〉+, its positive ξ+
12,max and negative

ξ+
12,min source terms, production P+

12, absolute pressure strain |Π+
12| in the

(r+
z , r

+
y , Y

+)-space.
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Chapter 4

Conclusions

The present work studies a channel flow controlled by spanwise wall-oscillation
with a focus on the interaction between the coherent motion imposed by
the control, i.e. the Stokes layer and the near-wall cycle. The aim is to
contribute to the understanding of the fundamental mechanism responsi-
ble for the reduction of the friction drag resulting from the wall motion.
Two Direct Numerical Simulations for the controlled and uncontrolled flows
have been performed and compared to highlight the changes the turbulent
field undergoes when subjected to a spanwise forcing. The amplitude and
period of the oscillation have been chosen close to the optimum value to
achieve the maximum net saving. The analysis has been carried out us-
ing the Anisotropic Generalised Kolmogorov Equations (AGKE), the budget
equation for the second-order structure function tensor 〈δuiδuj〉 (Gatti et al.,
2020). The AGKE describe the production, transport, redistribution and
dissipation processes of each component of the Reynolds stress tensor, con-
sidering together the space of scales and the physical space. In the present
work, the AGKE have been written for the first time for the triple decompo-
sition of the velocity into the mean, coherent and stochastic contributions;
they perfectly fit with our aim of highlighting the interaction between the
coherent motions imposed by the spanwise forcing and the turbulent field.

The three diagonal components〈δu′′δu′′〉,〈δv′′δv′′〉and〈δw′′δw′′〉are weaken
when the control is applied, consistently with a slight decrease of the tur-
bulent intensity. However, the spanwise wall-oscillation affects the diagonal
components differently, leading to a decrease in the flow anisotropy. Indeed,
the decrease of the intensity of 〈δu′′δu′′〉 is larger compared to the decrease of
the cross-stream components. This indicates that the streaks of streamwise
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velocity are affected by the Stokes layer more than the quasi-streamwise vor-
tices. This observation is further confirmed by the shift faced by the maxima
of the three diagonal components and by their fluxes. Indeed, the maximum
of〈δu′′δu′′〉and its fluxes — that indicate the main transport processes — are
shifted towards larger wall distances of about 3 wall units in the controlled
case, indicating that the thickening of the viscous sublayer affects the posi-
tion of the streaks. On the contrary, the positions of the largest values of
〈δv′′δv′′〉, 〈δw′′δw′′〉 and of their fluxes are almost unaffected by the control,
indicating that the thickening of the viscous sublayer does not affect the av-
erage wall distance at which the QSV are placed. The decrease of the flow
anisotropy is partially explained by the changes of the pressure strain in the
controlled case. When the control is applied, the negative peak of Π11 at the
scales and position typical of the near-wall cycle increases, indicating that the
redistribution of 〈δu′′δu′′〉 towards the cross-stream components is enhanced.
Consistently, this is accompanied by a tiny increase of the positive peak of
Π22 and by a larger increase of Π33. Therefore, the picture is that when the
control is active, the interaction of the Stokes layer with the near-wall cycle
enhances the redistribution via pressure strain of 〈δu′′δu′′〉 towards the cross-
stream components, with 〈δw′′δw′′〉 being the main receiver. This explains
the decrease of the flow anisotropy shown by the intensity of

〈
δu′′i δu

′′
j

〉
.

The spanwise wall motion also slightly affects the typical scales of the
near-wall cycle. In the controlled case the peak of 〈δu′′δu′′〉moves towards
larger spanwise separations of about 3 wall units, while those of 〈δv′′δv′′〉and
〈δw′′δw′′〉 towards lower rz. This is consistent with the picture of low- and
high- velocity streaks moving apart when the control is applied and of a slight
decrease of the average cross-section of the quasi-streamwise vortices in the
(y, z)-plane.

In writing the AGKE for the triple decomposition, a new production term,
namely PC arises in the budget equation for 〈δw′′δw′′〉 that highlights the
cross-talk between the coherent motion of the Stokes layer and the stochas-
tic turbulent fluctuations. This term describes at which scales and position
the spanwise energy is transferred from the Stokes layer to the stochastic
turbulent field and vice-versa due to the interaction of the quasi-streamwise
vortices with the spanwise velocity shear. PC is found to be positive at all
scales and positions, indicating that on average, the Stokes layer acts like
a donor and the spanwise fluctuating field like a receiver. Three localised
peaks of PC have been detected to highlight the scales at which such energy
exchange occurs. The harmonic wall oscillation enforced by the control im-
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poses a spanwise velocity shear, which forces the quasi-streamwise vortices
to continually re-orientate in wall-parallel planes. When the QSV are tilted
the most in the (x, z)-plane, the energy injected in the flow by the actua-
tion is transferred from the coherent to the random fluctuations, leading to
large values of the coherent production at two well-defined scales and wall
distances at alternatively rx 6= 0 and rz 6= 0. However, further investigation
is needed to assess the dependence of such a process on the different phases
of the wall-oscillation. Indeed, although on average PC is a positive source of
the fluctuating field and a sink for the Stokes layer, the opposite may occur
during the phases of the oscillation.

Further investigation can also be performed to assess the dependence
of the processes studied in the present work upon the amplitude and the
period of the oscillation of the spanwise forcing. On one hand, the increased
amplitude of the oscillation allows to enhance the variations between the
uncontrolled and the controlled case in terms of intensity, scales and positions
and to increase the drag-reduction rate; on the other hand, moving away
from the near-optimum oscillation period reduces the drag-reduction margin
but allows to enhance the effect of the direct interaction between coherent
motion and stochastic fluctuations via coherent production term. A further
extension of the present work is to exploit the AGKE written for the triple
decomposition also to study the case of a turbulent channel controlled via
travelling waves (Quadrio et al., 2009) to describe the interaction between
the generalised Stokes layer (Quadrio & Ricco, 2011) and the turbulent field.
This may further elucidate the differences in the mechanism leading to drag
reduction in the two cases.

Finally, it is worth stressing that the AGKE written for the triple decom-
position have great potential in general. Indeed, they perfectly fit for more
complex problems where both inhomogeneity and anisotropy are important,
such as flows presenting a coherent motion superimposed of the turbulent
fluctuations. An example is the turbulent flow past bluff bodies that fea-
tures the coexistence of large-scale motions typical of the Kàrmàn vortices
and small-scale motions typical of the turbulent fluctuations.
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Appendix A

Budget equations for
〈
δuiδuj

〉
and

〈
δũiδũj

〉
In this appendix coherent and fluctuating anisotropic generalised Kolmogorov
equations are derived from Navier-Stokes equations for an indefinite plane
channel flow. For this purpose it is considered a Cartesian coordinate system
in which x and z denote the homogeneous streamwise and spanwise direc-
tions respectively, whereas y is the wall-normal direction. Index notation is
used throughout this section.
Using a triple decomposition the velocity vector v can be decomposed in
the mean velocity U , the coherent/periodic part of the flow ũ and the ran-
dom/cahotic part of the flow u:

v = U + ũ+ u. (A.1)

We define u′ as the sum of ũ and u, i.e. the fluctuating field with respect to
the mean flow:

u′ = ũ+ u. (A.2)

In the following 〈·〉denotes averaging in time and in homogeneous directions
if present, whereas · phase averaging. One may observe that for the second
order structure function:〈

δu′iδu
′
j

〉
=〈δũiδũj〉+〈δuiδuj〉 (A.3)

as a result the AGKE for
〈
δu′jδu

′
j

〉
comes from the sum of the AGKE for

〈δũiδũj〉 and for 〈δuiδuj〉.
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A.1 Budget equation for Ui, ũi and u′i
We start from the Navier–Stokes equations, i.e.

∂vi
∂t

+ vj
∂vi
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2vi
∂xj∂xj

. (A.4)

We introduce the triple decomposition for vi and obtain:

∂ũi
∂t

+
∂ui
∂t

+(Uj + ũj + uj)
∂

∂xj
(Ui + ũi + ui) = −1

ρ

∂

∂xi
(P + p̃+ p)+ν

∂2

∂xj∂xj
(Ui + ũi + ui)

(A.5)
which can be written as

∂ũi
∂t

+
∂ui
∂t

+ Uj
∂Ui
∂xj

+ Uj
∂ũi
∂xj

+ Uj
∂ui
∂xj

+ ũj
∂Ui
∂xj

+ ũj
∂ũi
∂xj

+ ũj
∂ui
∂xj

+

uj
∂Ui
∂xj

+ uj
∂ũi
∂xj

+ uj
∂ui
∂xj

= −1

ρ

∂P

∂xi
− 1

ρ

∂p̃

∂xi
− 1

ρ

∂p

∂xi
+ ν

∂2Ui
∂xj∂xj

+ ν
∂2ũi
∂xj∂xj

+ ν
∂2ui
∂xj∂xj

(A.6)
Now we use the 〈·〉 operator and we get the budget equation for Ui, i.e.

Uj
∂Ui
∂xj

+

〈
ũj
∂ũi
∂xj

〉
+

〈
uj
∂ui
∂xj

〉
= −1

ρ

∂P

∂xi
+ ν

∂2Ui
∂xj∂xj

(A.7)

If, instead, we use the phase-average operator ·, we get:

∂ũi
∂t

+Uj
∂Ui
∂xj

+ũj
∂Ui
∂xj

+Uj
∂ũi
∂xj

+ũi
∂ũi
∂xj

+uj
∂ui
∂xj

= −1

ρ

∂P

∂xi
−1

ρ

∂p̃

xi
+ν

∂2Ui
∂xj∂xj

+ν
∂2ũi
∂xj∂xj

(A.8)
which can be written differently using the budget equation for Ui, i.e.:

∂ũi
∂t

+ũj
∂Ui
∂xj

+Uj
∂ũi
∂xj

+ũj
∂ũi
∂xj

+uj
∂ui
∂xj
−
〈
ũj
∂ũi
∂xj

〉
−
〈
uj
∂ui
∂xj

〉
= −1

ρ

p̃

∂xi
+ν

∂2ũi
∂xj∂xj
(A.9)

which turns to be the budget equation for ũi, i.e.

∂ũi
∂t

+Uj
∂ũi
∂xj

+ũj
∂Ui
∂xj

+
∂

∂xj
(ũiũj −〈ũiũj〉)+

∂

∂xj
(uiuj −〈uiuj〉) = −1

ρ

∂p̃

∂xi
+ν

∂2ũi
∂xj∂xj

(A.10)
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The budget equation for ui, instead, is obtained subtracting from equation
A.6 the budget equations for Ui (equation A.7) and ũi (equation A.10), i.e.:

∂ui
∂t

+Uj
∂ui
∂xj

+ũj
∂ui
∂xj

+uj
∂Ui
∂xj

+uj
∂ũi
∂xj

+
∂

∂xj
(uiuj − uiuj) = −1

ρ

∂p

∂xi
+ν

∂2ui
∂xj∂xj
(A.11)

A.2 AGKE for 〈δũiδũj〉
First we write the budget equation for ũi in x and x+ = x + r and we
subtract the first to the second one:

∆

(
∂ũi
∂t

)
+ ∆

(
Uj
∂ũi
∂xj

)
+ ∆

(
ũj
∂Ui
∂xj

)
+

∆

(
∂

∂xj
(ũiũj −〈ũiũj〉)

)
+ ∆

(
∂

∂xj
(uiuj −〈uiuj〉)

)
=

−∆

(
1

ρ

∂p̃

∂xi

)
+ ∆

(
ν
∂2ũi
∂xj∂xj

)
.

(A.12)

by recalling that the two reference systems are independent one may write
for example:

∆

(
Uj
∂ũi
∂xj

)
= U+

j

∂δũi
∂x+

j

+ Uj
∂δũi
∂xj

; (A.13)

using the same line of reasoning for all the other terms one obtains

∂δũi
∂t

+ U+
j

∂δũi
∂x+

j

+ Uj
∂δũi
∂xj

+

+ũ+
j

∂δUi
∂x+

j

+ ũj
∂δUi
∂xj

+ ũ+
j

∂δũi
∂x+

j

+ ũj
∂δũi
∂xj
−〈

ũ+
j

∂δũi
∂x+

j

〉
−
〈
ũj
∂δũi
∂xj

〉
+ u+

j

∂δui
∂x+

j

+ uj
∂δui
∂xj
−〈

u+
j

∂δui
∂x+

j

〉
−
〈
uj
∂δui
∂xj

〉
= −1

ρ

∂δp̃

∂x+
i

− 1

ρ

∂δp̃

∂xi
+

ν

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δũi.

(A.14)
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Then one may write for example

ũ+
j

∂δũi
∂x+

j

= δũj
∂δũi
∂x+

j

+ ũj
∂δũi
∂x+

j

(A.15)

and using this expression for all the terms we obtain the budget equation for
δũi:

∂δũi
∂t

+ δUj
∂δũi
∂x+

j

+ Uj

(
∂

∂x+
j

+
∂

∂xj

)
δũi+

δũj
∂δUi
∂x+

j

+ ũj

(
∂

∂x+
j

+
∂

∂xj

)
δUi+

δũj
∂δũi
∂x+

j

+ ũj

(
∂

∂x+
j

+
∂

∂xj

)
δũi−〈

δũj
∂δũi
∂x+

j

〉
−
〈
ũj

(
∂

∂x+
j

+
∂

∂xj

)
δũi

〉
+

δuj
∂δui
∂x+

j

+ uj

(
∂

∂x+
j

+
∂

∂xj

)
δui =

−1

ρ

∂δp̃

∂x+
i

− 1

ρ

∂δp̃

∂xi
+ ν

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δũi.

(A.16)
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Then we multiply this equation for δũk and we obtain:

δũk
∂δũi
∂t

+ δũkδUj
∂δũi
∂x+

j

+ δũkUj

(
∂

∂x+
j

+
∂

∂xj

)
δũi+

δũkδũj
∂δUi
∂x+

j

+ δũkũj

(
∂

∂x+
j

+
∂

∂xj

)
δUi+

δũkδũj
∂δũi
∂x+

j

+ δũkũj

(
∂

∂x+
j

+
∂

∂xj

)
δũi−

δũk

〈
δũj

∂δũi
∂x+

j

〉
− δũk

〈
ũj

(
∂

∂x+
j

+
∂

∂xj

)
δũi

〉
+

δũkδuj
∂δui
∂x+

j

+ δũkuj

(
∂

∂x+
j

+
∂

∂xj

)
δui =

−δũk
1

ρ

(
∂

∂x+
i

+
∂

∂xi

)
δp̃+ νδũk

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δũi.

(A.17)
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Then we write the same equation inverting the i index and the k index and
we sum them together.

∂

∂t
δũiδũk + δũkδUj

∂δũi
∂x+

j

+ δũiδUj
∂δũk
∂x+

j

+

δũkUj

(
∂

∂x+
j

+
∂

∂xj

)
δũi + δũiUj

(
∂

∂x+
j

+
∂

∂xj

)
δũk+

δũkδũj
∂δUi
∂x+

j

+ δũiδũj
∂δUk
∂x+

j

+

δũkũj

(
∂

∂x+
j

+
∂

∂xj

)
δUi + δũiũj

(
∂

∂x+
j

+
∂

∂xj

)
δUk+

δũkδũj
∂δũi
∂x+

j

+ δũiδũj
∂δũk
∂x+

j

+

δũkũj

(
∂

∂x+
j

+
∂

∂xj

)
δũi + δũiũj

(
∂

∂x+
j

+
∂

∂xj

)
δũk−

δũk

〈
δũj

∂δũi
∂x+

j

〉
− δũi

〈
δũj

∂δũk
∂x+

j

〉
−

δũk

〈
ũj

(
∂

∂x+
j

+
∂

∂xj

)
δũi

〉
− δũi

〈
ũj

(
∂

∂x+
j

+
∂

∂xj

)
δũk

〉
+

δũkδuj
∂δui
∂x+

j

+ δũiδuj
∂δuk
∂x+

j

+

δũkuj

(
∂

∂x+
j

+
∂

∂xj

)
δui + δũiuj

(
∂

∂x+
j

+
∂

∂xj

)
δuk =

−δũk
1

ρ

(
∂

∂x+
i

+
∂

∂xi

)
δp̃− δũi

1

ρ

(
∂

∂x+
k

+
∂

∂xk

)
δp̃+

νδũk

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δũi + νδũi

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δũk.

(A.18)
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At this point we use the phase-average operator · and then the time-average
operator 〈·〉 and we obtain:

∂

∂x+
j

〈δUjδũiδũk〉+
(

∂

∂x+
j

+
∂

∂xj

)
〈Ujδũiũk〉+

〈δũkδũj〉
∂δUi
∂x+

j

+〈δũiδũj〉
∂δUk
∂x+

j

+

〈δũkũj〉
(

∂

∂x+
j

+
∂

∂xj

)
δUi +〈δũiũj〉

(
∂

∂x+
j

+
∂

∂xj

)
δUk+

∂

∂x+
j

〈δũjδũiδũk〉+
(

∂

∂x+
j

+
∂

∂xj

)
〈ũjδũiδũk〉+〈

δũk
∂

∂x+
j

δuiδuj

〉
+

〈
δũi

∂

∂x+
j

δukδuj

〉
+〈

δũkuj

(
∂

∂x+
j

+
∂

∂xj

)
δui

〉
+

〈
δũiuj

(
∂

∂x+
j

+
∂

∂xj

)
δuk

〉
=

−
〈
δũk

1

ρ

(
∂

∂x+
i

+
∂

∂xi

)
δp̃

〉
−
〈
δũi

1

ρ

(
∂

∂x+
k

+
∂

∂xk

)
δp̃

〉
+

ν

〈
δũk

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δũi

〉
+

ν

〈
δũi

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δũk

〉
.

(A.19)

We now introduce the new independent variables X and r such that

Xi =
xi + x+

i

2
ri = x+

i − xi.

As a result the xi- and x+
i -derivatives are related to the Xi- and ri-derivatives

by:

∂

∂xi
=

1

2

∂

∂Xi

− ∂

∂ri
;

∂

∂x+
i

=
1

2

∂

∂Xi

+
∂

∂ri
;

∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj
=

1

2

∂2

∂Xj∂Xj

+2
∂2

∂rj∂rj
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As a result the previous equation becomes:(
1

2

∂

∂Xj

+
∂

∂rj

)
〈δUjδũiδũk〉+

∂

∂Xj

〈Ujδũiδũk〉+

〈δũkδũj〉
(

1

2

∂

∂Xj

+
∂

∂rj

)
δUi +〈δũiδũj〉

(
1

2

∂

∂Xj

+
∂

∂rj

)
δUk+

〈δũkũj〉
∂

∂Xj

δUi +〈δũiũj〉
∂

∂Xj

δUk+(
1

2

∂

∂Xj

+
∂

∂rj

)
〈δũjδũiδũk〉+

∂

∂Xj

〈ũjδũiδũk〉+〈
δũk

(
1

2

∂

∂Xj

+
∂

∂rj

)
δuiδuj

〉
+

〈
δũi

(
1

2

∂

∂Xj

+
∂

∂rj

)
δukδuj

〉
+〈

δũkuj
∂

∂Xj

δui

〉
+

〈
δũiuj

∂

∂Xj

δuk

〉
=

−
〈
δũk

1

ρ

(
∂

∂Xi

)
δp̃

〉
−
〈
δũi

1

ρ

(
∂

∂Xk

)
δp̃

〉
+

ν

〈
δũk

(
1

2

∂2

∂Xj∂Xj

+ 2
∂2

∂rj∂rj

)
δũi

〉
+

ν

〈
δũi

(
1

2

∂2

∂Xj∂Xj

+ 2
∂2

∂rj∂rj

)
δũk

〉
.

(A.20)

We may observe that〈
δũk

(
1

2

∂

∂Xj

+
∂

∂rj

)
δuiδuj

〉
+

〈
δũkuj

∂

∂Xj

δui

〉
=〈

δũk

(
1

2

∂

∂Xj

+
∂

∂rj

)
δuiδuj

〉
+

〈
δũk

∂

∂Xj

ujδui

〉
=〈

δũk
∂

∂rj
δuiδuj

〉
+

〈
δũk

∂

∂Xj

1

2

(
uj + u+

j

)
δui

〉
=

∂

∂rj

〈
δuiδujδũk

〉
−
〈
δuiδuj

∂δũk
∂rj

〉
+

∂

∂Xj

〈
u∗jδuiδũk

〉
−
〈
u∗jδui

∂

∂Xj

δũk

〉
(A.21)
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The viscous term can be written in an easier form:〈
νδũk

(
1

2

∂2

∂Xj∂Xj

+ 2
∂2

∂rj∂rj

)
δũi

〉
+

〈
νδũi

(
1

2

∂2

∂Xj∂Xj

+ 2
∂2

∂rj∂rj

)
δũk

〉
=

ν

2

∂2

∂Xj∂Xj

〈δũiδũk〉+ 2ν
∂2

∂rj∂rj
〈δũiδũk〉− ν

〈
∂δũi
∂Xj

∂δũk
∂Xj

〉
− 4ν

〈
∂δũi
∂rj

∂δũk
∂rj

〉
=

ν

2

∂2

∂Xj∂Xj

〈δũiδũk〉+ 2ν
∂2

∂rj∂rj
〈δũiδũk〉− 2

(
ε̃+ik + ε̃ik

)
(A.22)

where ε̃ik is the pseudo-dissipation tensor of the coherent part of the velocity,
defined as:

ε̃ik = ν

〈
∂ũi
∂xj

∂ũk
∂xj

〉
(A.23)

Morover we can write:

〈δũkδũj〉
∂δUi
∂rj

=〈δũkδũj〉
(
∂Ui
∂xj

)∗
(A.24)

where the (·)∗ operator denotes the average of a given quantity among x and
x∗. In the same way:〈

δũkũ
∗
j

〉 ∂

∂Xj

δUi =
〈
δũkũ

∗
j

〉
δ

(
∂Ui
∂xj

)
(A.25)

as a result we obtain the budget equation for 〈δũiδũk〉:
∂

∂rj
〈δUjδũiδũk〉+

∂

∂Xj

〈
U∗j δũiδũk

〉
+

∂

∂rj
〈δũjδũiδũk〉+

∂

∂Xj

〈
ũ∗jδũiδũk

〉
+

∂

∂rj

〈
δujδuiδũk

〉
+

∂

∂Xj

〈
u∗jδuiδũk

〉
+

∂

∂rj

〈
δujδukδũi

〉
+

∂

∂Xj

〈
u∗jδukδũi

〉
−

2ν
∂2

∂rj∂rj
〈δũiδũk〉−

ν

2

∂

∂Xj

(
∂

∂Xj

〈δũiδũk〉
)

+
∂

∂Xi

1

ρ
〈δp̃δũk〉+

∂

∂Xk

1

ρ
〈δp̃δũi〉=

−〈δũkδũj〉
(
∂Ui
∂xj

)∗
−〈δũiδũj〉

(
∂Uk
∂xj

)∗
−
〈
δũkũ

∗
j

〉
δ

(
∂Ui
∂xj

)
−
〈
δũiũ

∗
j

〉
δ

(
∂Uk
∂xj

)
+〈

δuiδuj
∂δũk
∂rj

〉
+

〈
δuiu∗j

∂δũk
∂Xj

〉
+

〈
δukδuj

∂δũi
∂rj

〉
+

〈
δuku∗j

∂δũi
∂Xj

〉
+

1

ρ

〈
δp̃
∂δũk
∂Xi

〉
+

1

ρ

〈
δp̃
∂δũi
∂Xk

〉
− 4ε̃ik

(A.26)

51



By exploiting the property of the avarage operator 〈uiujũk〉 =
〈
uiujũk

〉
=

〈uiujũk〉, the budget equation for 〈δũiδũk〉may be written in an easier form:

∂

∂rj
〈δUjδũiδũk〉+

∂

∂Xj

〈
U∗j δũiδũk

〉
+

∂

∂rj
〈δũjδũiδũk〉+

∂

∂Xj

〈
ũ∗jδũiδũk

〉
+

∂

∂rj
〈δujδuiδũk〉+

∂

∂Xj

〈
u∗jδuiδũk

〉
+

∂

∂rj
〈δujδukδũi〉+

∂

∂Xj

〈
u∗jδukδũi

〉
−

2ν
∂2

∂rj∂rj
〈δũiδũk〉−

ν

2

∂

∂Xj

(
∂

∂Xj

〈δũiδũk〉
)

+
∂

∂Xi

1

ρ
〈δp̃δũk〉+

∂

∂Xk

1

ρ
〈δp̃δũi〉=

−〈δũkδũj〉
(
∂Ui
∂xj

)∗
−〈δũiδũj〉

(
∂Uk
∂xj

)∗
−
〈
δũkũ

∗
j

〉
δ

(
∂Ui
∂xj

)
−
〈
δũiũ

∗
j

〉
δ

(
∂Uk
∂xj

)
+〈

δuiδuj
∂δũk
∂rj

〉
+

〈
δuiu

∗
j

∂δũk
∂Xj

〉
+

〈
δukδuj

∂δũi
∂rj

〉
+

〈
δuku

∗
j

∂δũi
∂Xj

〉
+

1

ρ

〈
δp̃
∂δũk
∂Xi

〉
+

1

ρ

〈
δp̃
∂δũi
∂Xk

〉
− 4ε̃ik

(A.27)

A.2.1 Compact expression

The AGKE for 〈δũiδũj〉 can be compactly written as:

∂φ̃ij,k
∂rk

+
∂ψ̃ij,k
∂Xk

= P̃M
ij − PC

ij + Π̃ij + D̃ij (A.28)

where φ̃ij,k denotes the fluxes in the space of scales r:

φ̃ij,k = 〈δUkδũiδũj〉︸ ︷︷ ︸
Mean Transport

+ 〈δũkδũiδũj〉︸ ︷︷ ︸
Coherent Transport

+
〈
δukδuiδũj

〉︸ ︷︷ ︸
Turbulent transport

+
〈
δukδujδũi

〉︸ ︷︷ ︸
Turbulent transport

−2ν
∂〈δũiδũj〉
∂rk︸ ︷︷ ︸

Viscous transport

k = 1, 2, 3
(A.29)
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ψ̃ij,k denotes the fluxes in the physical space X:

ψ̃ij,k = 〈U∗k δũiδũj〉︸ ︷︷ ︸
Mean Transport

+ 〈ũ∗kδũiδũj〉︸ ︷︷ ︸
Coherent transport

+
〈
u∗kδuiδũj

〉︸ ︷︷ ︸
Turbulent transport

+
〈
u∗kδujδũi

〉︸ ︷︷ ︸
Turbulent transport

+
1

ρ
〈δp̃δũi〉δkj︸ ︷︷ ︸

Pressure transport

+
1

ρ
〈δp̃δũj〉δki︸ ︷︷ ︸

Pressure transport

−ν
2

∂〈δũiδũj〉
∂Xk︸ ︷︷ ︸

Viscous transport

k = 1, 2, 3

(A.30)
P̃M
ij denotes the transfer of the Reynolds stresses between the coherent and

the mean field:

P̃ij
M

= −〈δũjδũk〉
(
∂Ui
∂xk

)∗
−〈δũiδũk〉

(
∂Uj
∂xk

)∗
−〈δũjũ∗k〉δ

(
∂Ui
∂xk

)
−〈δũiũ∗k〉δ

(
∂Uj
∂xk

) (A.31)

P c
ij indicates the transfer of the Reynolds stresses between the coherent and

fluctuating field:

PC
ij = −

〈
δuiδuk

∂δũj
∂rk

〉
−
〈
δujδuk

∂δũi
∂rk

〉
−
〈
δuiu∗k

∂δũj
∂Xk

〉
−
〈
δuju∗k

∂δũi
∂Xk

〉
(A.32)

Π̃ij denotes the pressure strain term:

Π̃ij =
1

ρ

〈
δp̃
∂δũi
∂Xj

〉
+

1

ρ

〈
δp̃
∂δũj
∂Xi

〉
(A.33)

and D̃ij denotes the dissipation term:

D̃ij = −4ε̃ij = −4ν

〈
∂ũi
∂xk

∂ũj
∂xk

〉
(A.34)
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A.3 AGKE for 〈δuiδuj〉
We write the budget equation for ui in x and x+ = x + r and we subtract
the first to the second one:

∆

(
∂ui
∂t

)
+ ∆

(
Uj
∂ui
∂xj

)
+ ∆

(
ũj
∂ui
∂xj

)
+

∆

(
uj
∂Ui
∂xj

)
+ ∆

(
uj
∂ũi
∂xj

)
+ ∆

(
∂

∂xj
(uiuj − uiuj)

)
=

−∆

(
1

ρ

∂p

∂xi

)
+ ∆

(
ν
∂2ui
∂x2

j

) (A.35)

Recalling again that the frameworks x and x+ are independent we can write:

∆

(
Uj
∂ui
∂xj

)
= U+

j

∂δui
∂x+

j

+ Uj
∂δui
∂xj

(A.36)

and following the same line of reasoning for all the terms we obtain the
equation for δui, i.e:

∂

∂t
δui + U+

j

∂δui
∂x+

j

+ Uj
∂δui
∂xj

+ ũ+
j

∂δui
∂x+

j

+ ũj
∂δui
∂xj

+

u+
j

∂δUi
∂x+

j

+ uj
∂δUi
∂xj

+ u+
j

∂δũi
∂x+

j

+ uj
∂δũi
∂xj

+

u+
j

∂δui
∂x+

j

+ uj
∂δui
∂xj

− u+
j

∂δui
∂x+

j

− uj
∂δui
∂xj

=

−1

ρ

∂δp

∂x+
i

− 1

ρ

∂δp

∂xi
+ ν

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δui.

(A.37)

Then we write for example

u+
j

∂δUi
∂x+

j

= δuj
∂δUi
∂x+

j

+ uj
∂δUi
∂x+

j

(A.38)
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and the budget equation for δui can be written as

∂δui
∂t

+ δUj
∂δui
∂x+

j

+ Uj
∂δui
∂x+

j

+ Uj
∂δui
∂xj

+

δũj
∂δui
∂x+

j

+ ũj
∂δui
∂x+

j

+ ũj
∂δui
∂xj

+ δuj
∂δUi
∂x+

j

+ uj
∂δUi
∂x+

j

+ uj
∂δUi
∂xj

+

δuj
∂δũi
∂x+

j

+ uj
∂δũi
∂x+

j

+ uj
∂δũi
∂xj

+ δuj
∂δui
∂x+

j

+ uj
∂δui
∂x+

j

+ uj
∂δui
∂xj
−

δuj
∂δui
∂x+

j

− uj
(

∂

∂x+
j

+
∂

∂xj

)
δui =

−1

ρ

∂δp

∂x+
i

− 1

ρ

∂δp

∂xi
+ ν

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δui.

(A.39)

We then compact the equation and multiply for δuk:

δuk
∂δui
∂t

+ δukδUj
∂δui
∂x+

j

+ δukUj

(
∂

∂x+
j

+
∂

∂xj

)
δui+

δukδũj
∂δui
∂x+

j

+ δukũj

(
∂

∂x+
j

+
∂

∂xj

)
δui+

δukδuj
∂δUi
∂x+

j

+ δukuj

(
∂

∂x+
j

+
∂

∂xj

)
δUi+

δukδuj
∂δũi
∂x+

j

+ δukuj

(
∂

∂x+
j

+
∂

∂xj

)
δũi+

δukδuj
∂δui
∂x+

j

+ δukuj

(
∂

∂x+
j

+
∂

∂xj

)
δui−

δukδuj
∂δui
∂x+

j

− δukuj
(

∂

∂x+
j

+
∂

∂xj

)
δui =

−δuk
1

ρ

∂δp

∂x+
i

− δuk
1

ρ

∂δp

∂xi
+ νδuk

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δui.

(A.40)

Then we sum the same equation but inverting the i-index with the k-index.
Using the incompressibility constraint and the independence of the x and x+
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references we can write:

∂

∂t
δuiδuk +

∂

∂x+
j

(δUjδuiδuk) +

(
∂

∂x+
j

+
∂

∂xj

)
(Ujδuiδuk) +

δukδũj
∂δui
∂x+

j

+ δuiδũj
∂δuk
∂x+

j

+

δukũj

(
∂

∂x+
j

+
∂

∂xj

)
δui + δuiũj

(
∂

∂x+
j

+
∂

∂xj

)
δuk+

δukδuj
∂δUi
∂x+

j

+ δuiδuj
∂δUk
∂x+

j

+

δukuj

(
∂

∂x+
j

+
∂

∂xj

)
δUi + δuiuj

(
∂

∂x+
j

+
∂

∂xj

)
δUk+

δukδuj
∂δũi
∂x+

j

+ δuiδuj
∂δũk
∂x+

j

+ δukuj

(
∂

∂x+
j

+
∂

∂xj

)
δũi + δuiuj

(
∂

∂x+
j

+
∂

∂xj

)
δũk+

∂

∂x+
j

δujδuiδuk +

(
∂

∂x+
j

+
∂

∂xj

)
ujδuiδuk−

δuk
∂

∂x+
j

δuiδuj − δui
∂

∂x+
j

δujδuk−

δuk

(
∂

∂x+
j

+
∂

∂xj

)
δuiδuj − δui

(
∂

∂x+
j

+
∂

∂xj

)
δukδuj =

−δuk
1

ρ

(
∂

∂x+
i

+
∂

∂xi

)
δp− δui

1

ρ

(
∂

∂x+
k

+
∂

∂xk

)
δp+

νδuk

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δui + νδui

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δuk

(A.41)
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At this point we use the phase-average operator · and the the time-average
operator 〈·〉 and we obtain:

∂

∂x+
j

〈δUjδuiδuk〉+
(

∂

∂x+
j

+
∂

∂xj

)
〈Ujδuiδuk〉+

〈δukδuj〉
∂δUi
∂x+

j

+〈δuiδuj〉
∂δUk
∂x+

j

+

〈δukuj〉
(

∂

∂x+
j

+
∂

∂xj

)
δUi +〈δuiuj〉

(
∂

∂x+
j

+
∂

∂xj

)
δUk+

∂

∂x+
j

〈δukδũjδui〉+
(

∂

∂x+
j

+
∂

∂xj

)
〈δukũjδui〉+〈

δukδuj
∂δũi
∂x+

j

〉
+

〈
δuiδuj

∂δũk
∂x+

j

〉
+〈

δukuj

(
∂

∂x+
j

+
∂

∂xj

)
δũi

〉
+

〈
δuiuj

(
∂

∂x+
j

+
∂

∂xj

)
δũk

〉
+

∂

∂xj+
〈δujδuiδuk〉+

(
∂

∂x+
j

+
∂

∂xj

)
〈ujδuiδuj〉=

−1

ρ

(
∂

∂x+
i

+
∂

∂xi

)
〈δpδuk〉−

1

ρ

(
∂

∂x+
k

+
∂

∂xk

)
〈δpδui〉+〈

1

ρ
δp

(
∂

∂x+
i

+
∂

∂xi

)
δuk

〉
+

〈
1

ρ
δp

(
∂

∂x+
k

+
∂

∂xk

)
δui

〉
+

ν

〈
δuk

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δui

〉
+ ν

〈
δui

(
∂2

∂x+
j ∂x

+
j

+
∂2

∂xj∂xj

)
δuk

〉
.

(A.42)
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We introduce again X and r and we obtain

∂

∂rj
〈δUjδuiδuk〉+

∂

∂Xj

〈
U∗j δuiδuk

〉
+

〈δukδuj〉
∂δUi
∂rj

+〈δuiδuj〉
∂δUk
∂rj

+
〈
δuku

∗
j

〉∂δUi
∂Xj

+
〈
δuiu

∗
j

〉∂δUk
∂Xj

+〈
δukδuj

∂δũi
∂rj

〉
+

〈
δuku∗j

∂δũi
∂Xj

〉
+

〈
δuiδuj

∂δũk
∂rj

〉
+

〈
δuku∗j

∂δũk
∂Xj

〉
+

∂

∂rj
〈δujδuiδuk〉+

∂

∂Xj

〈
u∗jδuiδuk

〉
+

∂

∂rj
〈δũjδuiδuk〉+

∂

∂Xj

〈
ũ∗jδuiδuk

〉
+

∂

∂Xi

1

ρ
〈δpδuk〉+

∂

∂Xk

1

ρ
〈δpδui〉=〈

1

ρ
δp
∂δuk
∂Xi

〉
+

〈
1

ρ
δp
∂δui
∂Xk

〉
+

ν

2

∂2

∂X2
j

〈δuiδuk〉+ 2ν
∂2

∂r2
j

〈δuiδuk〉− 2
(
ε+ik + εik

)
(A.43)

where

εik = ν

〈
∂ui
∂xj

∂uk
∂xj

〉
(A.44)

we can write

〈δukδuj〉
∂δUi
∂rj

=〈δukδuj〉
(
∂Ui
∂xj

)∗
(A.45)

and 〈
δuku

∗
j

〉∂δUi
∂Xj

=
〈
δuku

∗
j

〉
δ

(
∂Ui
∂xj

)
(A.46)
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and we finally obtain the budget equation for 〈δuiδuk〉:

∂

∂rj
〈δUjδuiδuk〉+

∂

∂Xj

〈
U∗j δuiδuk

〉
+

∂

∂rj
〈δujδuiδuk〉+

∂

∂Xj

〈
u∗jδuiδuk

〉
+

∂

∂rj

(
−2ν

∂

∂rj
〈δuiδuk〉

)
+

∂

∂Xj

(
−ν

2

∂

∂Xj

〈δuiδuk〉
)

+

∂

∂rj

〈
δũjδuiδuk

〉
+

∂

∂Xj

〈
ũ∗jδuiδuk

〉
+

∂

∂Xi

1

ρ
〈δpδuk〉+

∂

∂Xk

1

ρ
〈δpδui〉=

−〈δukδuj〉
(
∂Ui
∂xj

)∗
−〈δuiδuj〉

(
∂Uk
∂Xj

)∗
−

〈
δuku

∗
j

〉
δ

(
∂Ui
∂xj

)
−
〈
δuiu

∗
j

〉
δ

(
∂Uk
∂xj

)
−〈

δukδuj

(
∂ũi
∂xj

)∗〉
−
〈
δuiδuj

(
∂ũk
∂xj

)∗〉
−〈

δuku∗jδ

(
∂ũi
∂xj

)〉
−
〈
δuiu∗jδ

(
∂ũk
∂xj

)〉
+〈

1

ρ
δp
∂δuk
∂Xi

〉
+

〈
1

ρ
δp
∂δui
∂Xk

〉
− 4ε∗ik

(A.47)
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By exploiting the property of the avarage operator 〈uiujũk〉 =
〈
uiujũk

〉
=

〈uiujũk〉, the budget equation for 〈δuiδuk〉may be written in a easier form:

∂

∂rj
〈δUjδuiδuk〉+

∂

∂Xj

〈
U∗j δuiδuk

〉
+

∂

∂rj
〈δujδuiδuk〉+

∂

∂Xj

〈
u∗jδuiδuk

〉
+

∂

∂rj

(
−2ν

∂

∂rj
〈δuiδuk〉

)
+

∂

∂Xj

(
−ν

2

∂

∂Xj

〈δuiδuk〉
)

+

∂

∂rj
〈δũjδuiδuk〉+

∂

∂Xj

〈
ũ∗jδuiδuk

〉
+

∂

∂Xi

1

ρ
〈δpδuk〉+

∂

∂Xk

1

ρ
〈δpδui〉=

−〈δukδuj〉
(
∂Ui
∂xj

)∗
−〈δuiδuj〉

(
∂Uk
∂Xj

)∗
−

〈
δuku

∗
j

〉
δ

(
∂Ui
∂xj

)
−
〈
δuiu

∗
j

〉
δ

(
∂Uk
∂xj

)
−〈

δukδuj

(
∂ũi
∂xj

)∗〉
−
〈
δuiδuj

(
∂ũk
∂xj

)∗〉
−〈

δuku
∗
jδ

(
∂ũi
∂xj

)〉
−
〈
δuiu

∗
jδ

(
∂ũk
∂xj

)〉
+〈

1

ρ
δp
∂δuk
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(A.48)

A.3.1 Compact expression

Again the AGKE for 〈δuiδuj〉 can be compactly written as

∂φij,k
∂rk

+
∂ψij,k
∂Xk

= PM
ij + PC

ij + Πij +Dij (A.49)

where φij,k denotes the flux of 〈δuiδuj〉 in the space of scales r:

φij,k = 〈δUkδuiδuj〉︸ ︷︷ ︸
Mean transport

+ 〈δukδuiδuj〉︸ ︷︷ ︸
Turbulent transport

+
〈
δũkδuiδuj

〉︸ ︷︷ ︸
Coherent transport

−2ν
∂〈δuiδuj〉
∂rk︸ ︷︷ ︸

Viscous transport

k = 1, 2, 3
(A.50)

60



ψij,k denotes the flux of 〈δuiδuj〉 in the physical space X:

ψij,k = 〈U∗k δuiδuj〉︸ ︷︷ ︸
Mean transport

+ 〈u∗kδuiδuj〉︸ ︷︷ ︸
Turbulent transport

+
〈
ũ∗kδuiδuj

〉︸ ︷︷ ︸
Coherent transport

−ν
2

∂〈δuiδuj〉
∂Xk︸ ︷︷ ︸

Viscous transport

+
1

ρ
〈δpδui〉δkj︸ ︷︷ ︸

Pressure transport

+
1

ρ
〈δpδuj〉δki︸ ︷︷ ︸

Pressure transport

k = 1, 2, 3
(A.51)

PM
ij denotes the transfer of the Reynolds stresses from the mean flow to the

fluctuating field

PM
ij = −〈δujδuk〉

(
∂Ui
∂xk

)∗
−〈δuiδuk〉

(
∂Uj
∂xk

)∗
−〈δuju∗k〉δ

(
∂Ui
∂xk

)
−〈δuiu∗k〉δ

(
∂Uj
∂xk

) (A.52)

PC
ij , as said before, is the transfer of the Reynolds stresses between the fluc-

tuating field and the coherent field:

PC
ij = −

〈
δuiδuk

∂δũj
∂rk

〉
−
〈
δujδuk

∂δũi
∂rk

〉
−
〈
δuiu∗k

∂δũj
∂Xk

〉
−
〈
δuju∗k

∂δũi
∂Xk

〉
(A.53)

Πij is the pressure strain term

Πij =
1

ρ

〈
δp
∂δui
∂Xj

〉
+

1

ρ

〈
δp
∂δuj
∂Xi

〉
(A.54)

and Dij the dissipation term:

Dij = −4εij = −4ν

〈
∂ui
∂xk

∂uj
∂xk

〉
(A.55)
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Appendix B

Numerical method

B.1 Solver description

In the present work, a solver for the computation of the AGKE terms written
in CPL language has been developed. The code is based on Gatti et al.
(2019) and it has been specialised for the case under study. The novelty of
the present code is the computation of the AGKE terms of both the second-
order structure functions 〈δuiδuj〉and 〈δũiδũj〉where the velocity component
vi has been decomposed in the mean velocity Ui, the periodic part of the flow
ũi and the chaotic part of the flow ui:

vi = Ui + ũi + ui. (B.1)

It finds application in those problems where the flow exhibits a well-defined
non-stochastic (e.g. periodic) flow feature and thus velocity and pressure
can be decomposed as shown above. Here it is applied to the case of span-
wise oscillating walls but it can be easily used for different periodic flows
(e.g. streamwise travelling waves) with minimal changes. The main char-
acteristics of the present code, which allows it to be highly computationally
efficient are now briefly summarised. AGKE terms are split in multiple but
simpler correlations and, exploiting the geometric features of the indefinite
plane channel flow, computed in Fourier domain by means of Parseval the-
orem for the two homogenous directions. Furthermore, in order to easily
take advantage of their symmetries, AGKE terms are not computeted in the
(rx, rz, ry, Yc) four-dimensional domain, but in the analogous (rx, rz, Y1, Y2)
domain where Y1 = Yc − ry/2 and Y2 = Yc + ry/2. The structure of the
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code is composed of three main steps, here briefly described and illustrated
in the flowchart of figure B.1. First of all, mean and periodic velocity
and pressure, as well as velocity gradients, are computed, together with in-
stantaneous and coherent pseudo-dissipation. These quantities are computed
outside the main code and they feed it as inputs. The main solver consists
of four nested loops. First, a loop on phases and a loop on periods are per-
formed in order to scan the velocity and pressure fields and to assign them
to the phase they belong. Here Step 1 takes place and fluctuating veloc-
ity and pressure are computed subtracting to the whole quantities, mean
and periodic ones, previously computed. Step 2 represents the core of the
algorithm where most of AGKE terms are actually computed. It is made
by two main nested loops. At the outer level, the code loops on Y1 while
at the inner level on Y2, where Y1 and Y2 represent the distance from the
wall in the above-mentioned four-dimensional space. For each Y1, the AGKE
terms are computed for Y2 ranging from Y1 to 2h − Y1, where h represents
the mid-channel height. Since all the AGKE terms are either symmetric or
anti-symmetric with respect to an inversion of the wall-normal axis, one half
of the channel is used to increase the size of the statistical sample. Hence,
Y1 scans through half the grid points in the wall-normal direction (as shown
in Figure B.2, i.e. loops from y−1 to yny/2. For each (Y1, Y2) also the terms
from the pair (2h−Y1, 2h−Y2) are computed to contribute to the statistics,
with the sign of each term properly set according to the relevant symmetry.
Here, Y1 and Y2 represent the wall-normal position where AGKE terms are
actually evaluated whereas y1 and y2 the position where they are actually
used, with y1 ranging from −1 to ny + 1, i.e. from the lower to the upper
wall. Strategies used in order to take advantage of the existing symmetries
are described below. Inside the four nested loops of Step 2 the AGKE terms
are computed. First, in-plane Fourier convolution terms at y1 are computed
in physical space. Then, in the inner loop, in-plane Fourier convolutions at y2

are evaluated in physical space; finally the required cross-plane correlations,
for example 〈uv〉(rx, rz; yi1 , yi2) are computed in Fourier space. Lastly, each
AGKE terms, rewritten in terms of the sum of two or three-point correlations
is assembled. When the last temporal snapshot is reached, the actual time
average of each term is obtained by dividing for the total number of samples.
In order to further reduce the computational effort, terms which only involve
coherent velocity and pressure (i.e. all terms of 〈δũiδũj〉 equation but fluxes
and PC

ij ) are computed only once per phase and averaged over the total num-
ber of phases. Outside the loops, Step 3 is the last part of the algorithm
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phase = nphmin

ũ = ũnphmin
, p̃ = p̃nphmin

period = npmin

y1 = −1

Y1 =

{
y1 if y1 < ny/2

ny − y1 if y1 > ny/2

In-plane Fourier convolution at y1

Y2 = Y1

y2 =

{
Y2 if y1 < ny/2

ny − Y2 if y1 > ny/2

In-plane Fourier convolution at y2

Cross-plane physical cross-correlations at (y1, y2)

Build terms of coherent AGKEC
and fluctuating AGKEF which:

• don’t need derivatives
• involve fluctuating quantities

period = npmax

Build ˜AGKEC : terms of
coherent AGKEC which:
• don’t need derivatives
• involve coherent quanti-

ties only

Y2 = ny − Y1

phase = nphmax
AND

period = npmax
AND

y1 = ny/2

Average:
• AGKEC and AGKEF

over nphtot
· nptot

• ˜AGKEC over nphtot

y1 = ny + 1

period = npmax

phase = nphmax

Compute derivatives in wall-normal direction

Compute derivatives in homogeneous directions

Build terms

Y2 = Y2 + 1

y1 = y1 + 1

period = period + 1

phase = phase + 1

yes

no

no

yes

yes

no

no

yes

no
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no
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Figure B.1: Flow chart of the code implemented to compute the terms of
the evolution equations of the second-order structure functions of the generic
component of the Reynolds stresses tensor.

y

i = 0 y = 0

i = −1

i = 1

i = ny/2 y = h

i = ny y = 2h

i = ny + 1

Figure B.2: Sketch of the grid points in the wall-normal direction: the indices
i = 0 and i = ny identify the grid points at the two walls, y = 0 and y = 2h.
The grid possesses two ghost nodes for i = −1 and i = ny+1.

and it concerns derivatives. Those in the two homogeneous directions are
performed in Fourier space; those in wall-normal direction are computed by
means of a finite-difference scheme with a five-points computational stencil.
Symmetries are invoked also within this step when values to fill the stencil
are needed in correspondence of non-available wall-normal positions (y1, y2).

The validation of the code has been performed by checking that the sum
of the coherent and fluctuating AGKE is equal to the total AGKE, and the
statistical convergence is verified by ensuring that the residuals of equations
2.8 and 2.7 are negligible compared to the values of the production, pressure
strain and dissipation terms (see appendix C).

B.2 Symmetries

As already stated, in order to reduce the computational cost and the amount
of memory required by the code, all available symmetries are exploited, with
respect to an inversion of both the wall-normal direction y and separation
vector r. AGKE terms are not directly computed by looping on Y1 and Y2,
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x (z)
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Y1
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−ry

x (z)
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Y1

Y2

−rx (−rz)

ry

Figure B.3: Graphical representation of the symmetries used to recover the
AGKE terms in the planes of the four-dimensional domain (rx, rz, Y1, Y 2)
with Y1 < h and Y2 > 2h− Y1. The dashed line denotes the centerline of the
channel, i.e. Yi = h. From the left panel to the central one it has been used
the inversion of y, whereas from the central one to the right one the inversion
of r.

and thus symmetry exploitation is needed, when Y2 < Y1, Y2 > 2h− Y1 , or
Y1 > h.

• Y2 < Y1 and Y1 < h
In this case the exploitation of the symmetry is performed by an in-
version of the separation vector r, i.e. going from (rx, rz, Y1, Y2) to
(−rx,−rz, Y2, Y1) domain, as shown in the two rightmost panels of fig-
ure B.3. The sign of each specific AGKE term has to be determined
according to its symmetric or anti-symmetric behaviour with respect
to an inversion of r (a complete list is available in Gatti et al. (2020)).

• Y2 > 2h− Y1 and Y1 < h
In this case, two consecutive inversions are needed. First an inversion
of y is performed, as shown in the two leftmost panels of figure B.3,
going from (rx, rz, Y1, Y2) to (rx, rz, 2h − Y1, 2h − Y2). Here not every
AGKE term can be computed yet and a further symmetry exploita-
tion is needed. This intermediate point falls under the case considered
above, thus an inversion of the separation vector is applied. Again the
sign of each specific term has to be determined taking into account
both the performed steps.
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Appendix C

Residuals

In this appendix, the residuals of the budget equations for 〈δuδu〉, 〈δvδv〉,
〈δwδw〉 and 〈−δuδv〉 in the controlled case are shown in the r+

x = 6 and
r+
y = 0 plane. The value of the residuals of equation 2.8 are compared to the

maxima of the source (ξ+), mean production (PM+), coherent production
(PC+), pressure strain (P+

strain) and dissipation (D+) in order to ensure the
statistical convergence of the data used to perform the analysis.

C.1 〈δuδu〉
ξ+
max = 0.53, ξ+

min = −0.43, PM+ = 1.1, P+
strain = −0.15, D+ = −0.49.
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r+z

Y +
c

−1

−0.5

0

·10−3

Figure C.1: Residual of the budget equation for 〈δuδu〉 in the plane r+
x = 6

and r+
y = 0.
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C.2 〈δvδv〉
ξ+
max = 0.026, ξ+

min = −0.060, P+
strain,max = 0.063, P+

strain,min = −0.055,
D+ = −0.037.
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Figure C.2: Residual of the budget equation for 〈δvδv〉 in the plane r+
x = 6

and r+
y = 0.

C.3 〈δwδw〉
ξ+
max = 0.042, ξ+

min = −0.17, PC+ = 0.016, P+
strain = −0.13, D+ = −0.17.
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Figure C.3: Residual of the budget equation for 〈δwδw〉 in the plane r+
x = 6

and r+
y = 0.
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C.4 〈−δuδv〉

ξ+
max = 0.071, ξ+

min = −0.10, PM+ = 0.22, P+
strain = −0.24, D+ = −0.019.
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Figure C.4: Residual of the budget equation for 〈−δuδv〉 in the plane r+
x = 6

and r+
y = 0.
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Appendix D

Single point statistics

In this appendix, the behaviour of 〈uu〉, 〈vv〉, 〈ww〉, 〈−uv〉 and 〈w̃w̃〉 and the
terms involved in their budgets are plotted as a function of y+ in the case of
a channel flow under an harmonic oscillation walls control.
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〈uu〉
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〈w̃w̃〉

Figure D.1: Plot of 〈uu〉, 〈vv〉, 〈ww〉, 〈−uv〉 and 〈w̃w̃〉 as a function of y+

70



D.1 〈uu〉
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Figure D.2: Budget for 〈uu〉 as a function of y+
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Figure D.3: Budget for 〈vv〉 as a function of y+
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Figure D.4: Budget for 〈ww〉 as a function of y+
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Figure D.5: Budget for 〈−uv〉 as a function of y+
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Figure D.6: Budget for 〈w̃w̃〉 as a function of y+
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