
POLITECNICO DI MILANO
DEPARTMENT OF AEROSPACE SCIENCE AND TECHNOLOGY

DOCTORAL PROGRAMME IN AEROSPACE ENGINEERING

GUIDANCE AND NAVIGATION ALGORITHMS

FOR AUTONOMOUS MULTIROTOR UAVS

Doctoral Dissertation of:
Gabriele Roggi

Supervisor:
Prof. Marco Lovera
Tutor:
Prof. Michèle Lavagna
The Chair of the Doctoral Program:
Prof. Pierangelo Masarati

2022 – XXXV





Gabriele Roggi
Dipartimento di Scienze e Tecnologie Aerospaziali
Politecnico di Milano
Via Giuseppe La Masa, 34
20156 Milano, Italy
E-mail: gabriele.roggi@polimi.it

Copyright © 2022 by Gabriele Roggi. All rights reserved.





Abstract

The interest and the possible applications of Unmanned Aerial Vehicles
(UAVs) have been increasing quickly in the last few years. At the current
state, the vehicles can be either teleoperated on an actuator set-point or
waypoint level or execute a flight path planned on a ground control sta-
tion, constantly under direct line of sight with an operator. At the same
time, the platform relies on Global Navigation Satellite System (GNSS)
information for its navigation. The presented way of conducting opera-
tions displays some critical issues. First, in the case of teleoperation, the
stress level on the operator is quite high and this can potentially lead to
errors or damages to the platform. Communication constraints between
the operator and the UAV could further complicate things. Then, oper-
ations are limited by the availability of GNSS signal, thus excluding in-
door or other challenging environments. Consequently, in order to deploy
their full potential, these machines have to navigate autonomously with-
out any user intervention or the need for any external infrastructure. In
this framework, autonomous drones could take decisions without relying
on downlinked data in a time-efficient way and could execute high-level
commands and reach complex objectives without the need for a human
operator who translates the goals of the mission into position waypoints.

This thesis involves the development, simulation and experimental val-

I



idation of guidance and navigation algorithms for this kind of machine.
Concerning the great advancements of robotics in nearly every research
direction for fully autonomous UAVs, this thesis offers different software
and hardware solutions capable of large-scale indoor GNSS-denied navi-
gation and collision avoidance in cluttered environments. Extensive sim-
ulation and experimental testing, during both laboratory experiments and
autonomous drone competitions, are carried out.

Moreover, the dissertation tackles the problem of the systematic char-
acterization of vision systems. In this framework, the proposed approach
addresses some issues related to the integration of vision-based state esti-
mates into autonomous navigation systems.

Finally, the problem of guidance and navigation for performing au-
tonomous landing in different scenarios is addressed. In particular, the
proposed solutions tackle some of the problems of an autonomous emer-
gency landing in case of faults or malfunctions in an indoor environment
and Air-to-Air Automatic Landing, i.e., the landing of a small drone on
top of a larger one during flight.



Contents

Abstract I

List of Figures VII

List of Tables XIII

Introduction 1

1 Preliminaries 11
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Reference frames . . . . . . . . . . . . . . . . . . 12
1.1.2 Frame transformation . . . . . . . . . . . . . . . . 12

1.2 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 Exteroceptive sensors . . . . . . . . . . . . . . . . 18
1.2.2 SLAM . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.3 Visual odometry and visual SLAM . . . . . . . . . 25
1.2.4 Visual inertial odometry . . . . . . . . . . . . . . . 29
1.2.5 Maps . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.1 Search-based methods . . . . . . . . . . . . . . . . 35

III



1.3.2 Sampling-based methods . . . . . . . . . . . . . . 36
1.3.3 Path smoothing and trajectory generation . . . . . . 37
1.3.4 Reactive approaches . . . . . . . . . . . . . . . . . 37
1.3.5 Exploration . . . . . . . . . . . . . . . . . . . . . 38

1.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4.2 Cascaded controller . . . . . . . . . . . . . . . . . 42

2 Simulation and experimental environment 45
2.1 Simulation environment . . . . . . . . . . . . . . . . . . 46
2.2 Experimental environment . . . . . . . . . . . . . . . . . 47

2.2.1 FlyART . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.2 Leonardo Drone Contest arena . . . . . . . . . . . 49
2.2.3 Aerial vehicles . . . . . . . . . . . . . . . . . . . . 50

3 Visual odometry error modeling 61
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 Allan Variance . . . . . . . . . . . . . . . . . . . . 64
3.3.2 Kalman predictor . . . . . . . . . . . . . . . . . . 69

3.4 Proposed approach . . . . . . . . . . . . . . . . . . . . . 71
3.4.1 Statistical design of experiments . . . . . . . . . . 71
3.4.2 Allan variance for visual odometry . . . . . . . . . 72
3.4.3 Statistical analysis of results . . . . . . . . . . . . . 74

3.5 Experimental results . . . . . . . . . . . . . . . . . . . . 76
3.5.1 Factorial design for visual odometry analysis . . . . 76
3.5.2 Error models . . . . . . . . . . . . . . . . . . . . . 77
3.5.3 Kalman predictor . . . . . . . . . . . . . . . . . . 80
3.5.4 Analysis of Variance . . . . . . . . . . . . . . . . . 82

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . 89

4 Leonardo Drone Contest autonomous drone competitions 91
4.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2 First edition . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 Solution overview . . . . . . . . . . . . . . . . . . 95



4.2.2 Navigation . . . . . . . . . . . . . . . . . . . . . . 96
4.2.3 Guidance . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.4 Final considerations . . . . . . . . . . . . . . . . . 112

4.3 Second edition . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.1 Solution overview . . . . . . . . . . . . . . . . . . 115
4.3.2 Navigation . . . . . . . . . . . . . . . . . . . . . . 116
4.3.3 Decision-making . . . . . . . . . . . . . . . . . . . 118
4.3.4 Guidance . . . . . . . . . . . . . . . . . . . . . . . 124
4.3.5 Simulation results . . . . . . . . . . . . . . . . . . 129
4.3.6 Experimental results . . . . . . . . . . . . . . . . . 131
4.3.7 Final considerations . . . . . . . . . . . . . . . . . 136

4.4 Third edition . . . . . . . . . . . . . . . . . . . . . . . . 138
4.4.1 Solution overview . . . . . . . . . . . . . . . . . . 140
4.4.2 Navigation . . . . . . . . . . . . . . . . . . . . . . 141
4.4.3 Guidance . . . . . . . . . . . . . . . . . . . . . . . 146
4.4.4 Experimental results . . . . . . . . . . . . . . . . . 148
4.4.5 Final considerations . . . . . . . . . . . . . . . . . 151

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . 151

5 Autonomous landing 153
5.1 Autonomous emergency landing . . . . . . . . . . . . . . 153

5.1.1 Related work . . . . . . . . . . . . . . . . . . . . . 154
5.1.2 Safe Landing Area Determination . . . . . . . . . . 155
5.1.3 Path planning . . . . . . . . . . . . . . . . . . . . 156
5.1.4 Trajectory planning . . . . . . . . . . . . . . . . . 157
5.1.5 Simulation results . . . . . . . . . . . . . . . . . . 158
5.1.6 Final considerations . . . . . . . . . . . . . . . . . 162

5.2 Autonomous Air-to-Air Landing (AAAL) . . . . . . . . . 164
5.2.1 Related works . . . . . . . . . . . . . . . . . . . . 164
5.2.2 Autonomous landing strategy . . . . . . . . . . . . 166
5.2.3 Quasi time-optimal tracking . . . . . . . . . . . . . 168
5.2.4 Hybrid logic . . . . . . . . . . . . . . . . . . . . . 168
5.2.5 Vision-based target state estimation . . . . . . . . . 171
5.2.6 Simulation results . . . . . . . . . . . . . . . . . . 172
5.2.7 Preliminary test results . . . . . . . . . . . . . . . 174
5.2.8 Vision-based landing results . . . . . . . . . . . . . 177



5.2.9 Final considerations . . . . . . . . . . . . . . . . . 180
5.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . 181

Conclusions 183

Bibliography 185

A EKF2 221
A.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 223
A.2 Correction . . . . . . . . . . . . . . . . . . . . . . . . . . 224

A.2.1 Magnetometer . . . . . . . . . . . . . . . . . . . . 224
A.2.2 Optical flow . . . . . . . . . . . . . . . . . . . . . 225
A.2.3 Distance sensor . . . . . . . . . . . . . . . . . . . 225
A.2.4 Vision-based sensors velocity . . . . . . . . . . . . 226
A.2.5 Wind velocity . . . . . . . . . . . . . . . . . . . . 226

A.3 Output prediction . . . . . . . . . . . . . . . . . . . . . . 226

B Monocular camera model 229

C Stereo camera model 235

D Differential flatness proof 239



List of Figures

1.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . 13
1.2 SLAM problem representation . . . . . . . . . . . . . . . 20
1.3 Dynamic Bayes Network of the SLAM problem . . . . . . 24
1.4 Dynamic Bayes Network for filtering-based approaches in

vSLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5 Dynamic Bayes Network for keyframe-based approaches

in vSLAM . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6 Graphical representation of an Octree . . . . . . . . . . . 31
1.7 Block diagram of outer (position control) loop . . . . . . . 43
1.8 Block diagram of inner (attitude control) loop . . . . . . . 44
1.9 Mixer block diagram . . . . . . . . . . . . . . . . . . . . 44

2.1 Simulation environment for reproducing experimental con-
ditions of LDC . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Simulator schematic representation . . . . . . . . . . . . 48
2.3 FlyART experimental facility . . . . . . . . . . . . . . . . 48
2.4 Customized version of FlyART for reproducing experimen-

tal conditions of LDC . . . . . . . . . . . . . . . . . . . . 49
2.5 The Leonardo Drone Contest arena . . . . . . . . . . . . 50
2.6 Software architecture shared by all aerial platforms . . . . 51

VII



2.7 ROG-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.8 ZED stereo camera . . . . . . . . . . . . . . . . . . . . . 52
2.9 Terabee TeraRanger Tower EVO . . . . . . . . . . . . . . 53
2.10 ROG-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.11 Garmin Lidar-Lite v3 . . . . . . . . . . . . . . . . . . . . 55
2.12 ROG-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.13 NanoPi NEO Air . . . . . . . . . . . . . . . . . . . . . . 57
2.14 ANT-X . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.15 CARRIER-1 . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Position results of an experimental run . . . . . . . . . . . 78
3.2 Experimental and model ADEV . . . . . . . . . . . . . . 78
3.3 Experimental and model ADEV including rate ramp noise 80
3.4 Comparison between the models’ PSDs . . . . . . . . . . 81
3.5 Comparison between Kalman predictor output . . . . . . . 82
3.6 Error of Kalman predictor output . . . . . . . . . . . . . . 83
3.7 Main effects plot of RRW spectral density . . . . . . . . . 84
3.8 Interaction plot of RRW spectral density . . . . . . . . . . 85
3.9 Normal probability plot of the 2-way ANOVA’s residuals

for RRW . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.10 Main effects plot for the ARW spectral density . . . . . . 87

4.1 Rendering example of the competition field indicating po-
sitions and colors of poles . . . . . . . . . . . . . . . . . 94

4.2 System architecture for the exploration phase in LDC first
edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 System architecture for the landing phase in LDC first edition 97
4.4 Comparison among stereo visual odometry algorithms us-

ing ZED stereo camera . . . . . . . . . . . . . . . . . . . 98
4.5 Comparison of RTAB-Map and ORB-SLAM2 for Intel D435

depth camera . . . . . . . . . . . . . . . . . . . . . . . . 99
4.6 Color segmentation for colored poles’ detection and iden-

tification . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7 Error between heading angle ψ estimated by the VIO and

ground truth . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.8 EKF-SLAM simulation results . . . . . . . . . . . . . . . 105



4.9 TF tree for ROG-1 navigation . . . . . . . . . . . . . . . 108
4.10 ROS computation graph for ROG-1 navigation . . . . . . 109
4.11 Exploration trajectory and resulting Octomap during ex-

perimental activities in FlyART . . . . . . . . . . . . . . 109
4.12 Collision avoidance simulation using a version of VFH∗ . 111
4.13 Landing controller architecture in LDC first edition . . . . 112
4.14 Initial knowledge of the environment in LDC second edition 113
4.15 The ground robot and landing pad . . . . . . . . . . . . . 114
4.16 Navigation architecture in LDC second edition . . . . . . 119
4.17 Decision making architecture in LDC second edition . . . 120
4.18 Initial probability map . . . . . . . . . . . . . . . . . . . 121
4.19 Graphical representation of high oblique aerial field of view 123
4.20 Planning architecture in LDC second edition . . . . . . . 125
4.21 Comparison between odometry and localization (Up com-

ponent) in simulation . . . . . . . . . . . . . . . . . . . . 130
4.22 Set-point (Up component) sent to the controller. Compari-

son with odometry (VIO) and ground truth . . . . . . . . 130
4.23 Comparison between odometry and localization (East axis) 132
4.24 Comparison between odometry and localization (North axis) 132
4.25 Comparison between odometry and localization (Up com-

ponent) . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.26 Ground truth path and landings . . . . . . . . . . . . . . . 134
4.27 Comparison between odometry and localization during LDC

second competition (East axis) . . . . . . . . . . . . . . . 135
4.28 Comparison between odometry and localization during LDC

second competition (North axis) . . . . . . . . . . . . . . 135
4.29 Comparison between odometry and localization during LDC

second competition (Up axis) . . . . . . . . . . . . . . . . 136
4.30 Final point cloud obtained during LDC second competition

with traveled path during the landing phase . . . . . . . . 137
4.31 Initial knowledge of the environment in LDC third edition 139
4.32 Unknown obstacles present onto the field . . . . . . . . . 140
4.33 Navigation architecture in LDC third edition . . . . . . . 142
4.34 Comparison between measurement model and actual mea-

surements of the PX4FLOW optical flow sensor (x axis) . 143



4.35 Comparison between measurement model and actual mea-
surements of the PX4FLOW optical flow sensor (y axis) . 144

4.36 Comparison between measurement model and actual mea-
surements of the PMW3901 optical flow sensor (x axis) . 144

4.37 Comparison between measurement model and actual mea-
surements of the PMW3901 optical flow sensor (y axis) . . 145

4.38 2D map input of the AMCL particle filter . . . . . . . . . 146
4.39 Guidance architecture in LDC third edition . . . . . . . . 147
4.40 Output of algorithm for detecting landing squares . . . . . 148
4.41 Performance of bias compensated VO (Up component) . . 149
4.42 Comparison AMCL with VIO (East component) . . . . . 150
4.43 Comparison AMCL with VIO (North component) . . . . . 150

5.1 Randomly generated point cloud . . . . . . . . . . . . . . 158
5.2 Euclidean Distance Field and associated potential landing

areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.3 Potential landing sites . . . . . . . . . . . . . . . . . . . 159
5.4 Planned path for the example situation . . . . . . . . . . 160
5.5 Generated trajectory for the example situation . . . . . . 161
5.6 Generated path using A∗ . . . . . . . . . . . . . . . . . . 161
5.7 Generated path using safety-aware A∗ . . . . . . . . . . . 162
5.8 Emergency landing simulation results . . . . . . . . . . . 163
5.9 Emergency landing experimental results . . . . . . . . . 163
5.10 Hybrid Automaton for landing strategy. . . . . . . . . . . 170
5.11 3D position of follower and target during AAAL simula-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.12 Horizontal position of follower and target during AAAL

simulation . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.13 Vertical position of follower and target during AAAL sim-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.14 ANT-X and CARRIER-1 drones. . . . . . . . . . . . . . . 175
5.15 True and estimated velocity of the target . . . . . . . . . . 177
5.16 In-plane position of follower and target in AAAL experi-

ments on a circular trajectory. . . . . . . . . . . . . . . . 178
5.17 True and estimated in-plane relative position time history

in AAAL experiments on a circular trajectory . . . . . . . 179



5.18 True and estimated relative vertical position time history
in AAAL experiments on a circular trajectory . . . . . . . 180

5.19 True and estimated in-plane relative position time history
in AAAL experiments on a linear trajectory. . . . . . . . 181

A.1 EKF2 scheme . . . . . . . . . . . . . . . . . . . . . . . . 222

B.1 Pin-hole camera model . . . . . . . . . . . . . . . . . . . 230

C.1 Stereo camera standard model . . . . . . . . . . . . . . . 236
C.2 Uncertainty propagation in triangulation . . . . . . . . . . 238





List of Tables

2.1 ROG-1 characteristics . . . . . . . . . . . . . . . . . . . 51
2.2 ZED and ZED2i stereo camera characteristics . . . . . . . 53
2.3 OpenMV H7 plus camera characteristics . . . . . . . . . . 53
2.4 ROG-2 characteristics . . . . . . . . . . . . . . . . . . . 54
2.5 ROG-3 characteristics . . . . . . . . . . . . . . . . . . . 55
2.6 NanoPi NEO Air features . . . . . . . . . . . . . . . . . . 57
2.7 ANT-X characteristics . . . . . . . . . . . . . . . . . . . 57
2.8 CARRIER-1 characteristics . . . . . . . . . . . . . . . . 58

3.1 Description of the experimental runs . . . . . . . . . . . 79
3.2 2-way ANOVA on the RRW spectral density . . . . . . . 85
3.3 2-way ANOVA on the GM spectral density . . . . . . . . 87
3.4 2-way ANOVA on the GM spectral density . . . . . . . . 88

4.1 Mean absolute and relative error of analyzed stereo visual
odometry algorithms using ZED stereo camera . . . . . . 99

4.2 Mean absolute and relative error of analyzed stereo visual
odometry algorithms using Intel D435 depth camera . . . 100

4.3 Estimated and ground truth QR markers positions . . . . . 107
4.4 RMSE between AMCL and ground truth and EKF2 and

ground truth . . . . . . . . . . . . . . . . . . . . . . . . . 151

XIII



5.1 Mean and standard deviation of the error between the true
end the estimated position of the target. . . . . . . . . . . 176



Introduction

In recent years, there has been an increasing interest in Unmanned Aerial
Vehicles (UAVs) for both military and civil applications. Some exam-
ples regard their use in precision agriculture, photography, patrolling and
surveillance, search and rescue, entertainment, product delivery, aerial in-
spection, research and many others. Different classifications of UAVs ex-
ist. For instance, they can be classified based on the size, takeoff weight,
control configuration or operational purpose [1]. Depending on the spe-
cific application, requirements may vary and the appropriate configura-
tion may differ quite significantly. Note that when referring to UAVs or
drones, in this work, we will consider the category of multi-rotor Vertical
Take-Off and Landing (VTOL) vehicles of small/medium size provided
with a number of rotors greater than two, co-planar among them. The
motion of the system is controlled by adjusting the angular speed of each
propeller which, in turn, will generate thrust and torque. Another possible
classification regards the autonomy level of the platform [2].

In general terms, autonomy can be defined as the ability of a system
to achieve goals while operating independently of external control. This
implies the need for two basic requirements, i.e., self-directedness (to
achieve goals) and self-sufficiency (to operate independently). This rep-
resent a huge paradigm shift with respect to automation, in which the sys-

1



tem requires commands, e.g., a pre-planned set of instructions), to reach
goals.

Referring to drones, the National Institute of Standards and Technol-
ogy of United States [3] defined the levels of automation as follows:

• Remotely controlled: a human operator controls the UAV via only
direct observation (without sensors feedback).

• Teleoperated: a human operator, while receiving sensors feedback,
sends actuator control commands or intermediate goals to the UAV.

• Semi-autonomous: a human operator plans the mission and takes
key decisions. The UAV conducts autonomous operations in be-
tween these interactions with the operator.

• Fully autonomous: the UAV accomplishes its mission without hu-
man intervention and while adapting to operational and/or environ-
mental changes.

At the state-of-the-art, most of the civil applications belongs to the first
two levels.

As a practical example consider an UAV for search-and-rescue, disas-
ter response or surveillance missions. At the current state, the vehicles are
teleoperated on an actuator set-point or waypoint level, constantly under
direct line of sight with the operator and an average of three expert pro-
fessionals is required for each robot to control them [4]. Wireless connec-
tion for telemetry and Global Navigation Satellite System (GNSS) could
be hardly maintained, especially in challenging or indoor environments.
Since such systems exhibit very limited or no autonomy, the stress level
on the operator is very high, which limits the mission time drastically. Op-
erator errors could harm the robot or, even worse, cause further damage.
For these reasons, there is a large need for flying robots that can navigate
autonomously, without any user intervention, or execute high-level com-
mands like exploring and mapping a given area or finding a target, without
the need to assign cumbersome actuator set-points or position waypoints
[5].

The self-sufficiency of an autonomous system leads to technical dif-
ficulties for what concerns its navigation. Without the possibility of re-

2



lying on external navigation systems, i.e., GNSS, an autonomous vehicle
must estimate its ego-motion through the use of onboard sensors and com-
puting. While in the ground robotics domain, combining wheel odome-
try with sensors such as laser range-finders, sonars or cameras in proba-
bilistic Simultaneous Localization and Mapping (SLAM) framework has
been proven very successful, in aerospace applications limited sensing
payloads and computational power represent additional hurdles [6, 7, 8].
This weight limitation forces aerial vehicles to rely on lightweight laser
scanner, cameras and lower-quality Micro Electro-Mechanical Systems
(MEMS)-based Inertial Measurement Units (IMUs), all of which with
limited ranges, field-of-view and noisier compared to their ground equiv-
alents and, at the same time, the vehicle must run computationally inten-
sive 3D SLAM algorithms on small embedded computers. Contrarily to
ground vehicles, aerial vehicles are unable to directly measure odometry
since they have not physical contact with the environment. Robot motion
must be recovered using exteroceptive sensors, thus computing the vehi-
cle’s motion relative to reference points in the environment using sensors
like cameras, e.g., through techniques like Visual Odometry (VO) or Vi-
sual Inertial Odometry (VIO). The obtained odometry information is then
used for initializing the estimate of the vehicle’s motion between time
steps. Finally, consider that an UAV cannot simply stop when its state
estimates have large uncertainties, but the vehicle is likely to oscillate and
degrade its sensor measurement even further.

All these reasoning also lead to additional considerations regarding the
guidance of autonomous aerospace systems. Planning algorithms must
not only care about finding collision-free smooth paths toward a target,
but they must also consider the inherent uncertainty in the planning pro-
cess itself and potential intermediate paths needed for re-localization. The
exploration and mapping of an unknown environment can thus become
a very complex decision making problem, in which a trade-off between
exploration and localization of the agent must be found. Furthermore,
for the underlying 3D path planning task, difficulties arise in dynamic
environments, in which the potential motion of objects in the environ-
ment must be distinguished from the robot ego-motion. At the same time,
computationally efficient re-planning capabilities assume paramount im-

3



portance for facing both uncertainties in the state estimate and possible
moving objects.

State of the art

In the latest years, robotics advancements in nearly every research direc-
tion were integrated in fully autonomous UAVs capable of flying relying
only on onboard sensors and computing.

Initial works on state estimation for aerial robots with purely onboard
sensing were performed in [7] using both 2D laser range finders and stereo
camera configurations. Monocular cameras were instead employed in
[9, 10]. In [6], the authors used laser range finders for computing globally
consistent state estimates combining scan matching odometry computa-
tion with a SLAM algorithm. The authors also employed the map pro-
duced by the SLAM algorithm for autonomously planning a path for ex-
ploring the environment. Few years later, in [8], the authors added local-
ization, map optimization and obstacle avoidance to the framework. Both
scanning laser and monocular camera were instead employed in [11]. In
most of these papers, the environment was structured and a 2.5D approx-
imation was often employed. In addition to this, only part of the software
stacks was running onboard the drones.

In the following years, with the improvement of vision algorithms,
flight in unstructured 3D environments became possible [12, 13, 14] us-
ing only onboard computations. At the same time, works were carried
out for building accurate 3D maps and generating collision-free trajecto-
ries on them [15, 16]. Finally, in recent years, a significant amount of
research has been devoted to the development of platforms equipped with
all the relevant building blocks, i.e., state estimation, mapping, planning
and control. For instance, consider [17], in which the authors presented
the first UAV running vision based localization, mapping, and planning
without prior knowledge of the environment entirely onboard and in real-
time. In [18], the authors designed a full navigation stack which allowed
the drone to reach a goal location, while avoiding obstacles. The pro-
posed architecture has been also employed in [19] for large-scale flight.
In [20], the authors developed a vision-based autonomous UAV capable
of GNSS-denied navigation, contributing also to important advancements

4



for 3D global planning on real maps and local planning with re-planning
capabilities. In [21] an autonomous UAV is presented with focus on its
state estimation and control. In addition, the authors presented the high-
level tasks the drone had been able to accomplish.

Some other research groups focused on the agility of such autonomous
platforms. For instance, in [22] a full stack capable of short-scale au-
tonomous flight is presented. Similar platforms have been also discussed
in [23, 24]. Finally, an open source framework (both software and hard-
ware) for perception, planning and control of agile multicopters is avail-
able in [25]. This latter paper offers also a comparison among other ar-
chitectures like [24, 22].

At the same time, in the robotics community, there has been a signif-
icant growth in the number of challenge prizes and competitions. This
has been done with the aim of stimulating innovation to meet a defined
challenge and to provide solutions to problems that matter to roboticists
and society [26]. Robot competitions offer also a way to cope with the
inherent difficulties associated with robotics benchmarking [27]. Compe-
titions allow to test and compare methods in the controlled conditions of
the specific robotic challenge.

In particular, drone racing has seen autonomous systems catching up
fast with human performance. In this framework, while the first drone
racing competition has been organized during the IROS conference in
2016 [28], the most important event has been the 2019 Lockheed Martin
AlphaPilot challenge [29]. This challenge led to the first season of Arti-
ficial Intelligence Robotic Racing (AIRR), co-organized with the Drone
Racing League (DRL) for human pilots [30]. Other than drone racing, au-
tonomous UAVs have been object of competitions in several conferences,
e.g., IMAV (International Micro Air Vehicle) [31] and ICUAS (Interna-
tional Conference on Unmanned Aircraft Systems), and in the Mohamed
Bin Zayed International Robotic Challenge (MBZIRC) [32], DARPA Fast
Lightweight Autonomy Program (2015-2018) [33] and DARPA Subter-
ranean Challenge (2018-2021) [34].

5



Contributions

This work involves the development, simulation and experimental vali-
dation of guidance and navigation algorithms for autonomous multirotor
UAVs. The contributions of this thesis are threefold. First, different hard-
ware and software solutions for fully autonomous UAVs are proposed and
compared. In particular, large-scale indoor GNSS-denied navigation and
collision avoidance in cluttered environments is addressed. These plat-
forms have been tested in the framework of an autonomous drone com-
petition: the Leonardo Drone Contest (LDC). With respect to the relevant
literature, the proposed work contributes to show the feasibility of fully
autonomous navigation and planning architectures (similarly to [20]), but
with the addition of decision making and mission management layers for
the accomplishment of high-level tasks (like the ones presented in [21]).
The suggested software architectures have the advantage of being entirely
based on the open-source firmware PX4 [35]. At the same time, the hard-
ware architectures will be composed by commercial off-the-shelf compo-
nents. These latter two aspects make the platforms easily reproducible
for research purposes. Finally, each competition will also offer the op-
portunity for presenting educational contributions related to the technical
challenges faced.

Second, a systematic approach to the characterization of vision sys-
tems is proposed. In fact, despite the effort to improve the performance
of visual odometry systems, both in terms of computational speed and
accuracy, published work on this topic has paid little attention to the is-
sue of integrating visual odometry estimates into autonomous navigation
systems. As a matter of fact, the availability of a description of the noise
dynamics, which for other systems, such as Inertial Navigation System
(INS) and GNSS, are already well known, would be of great benefit in a
sensor-fusion-oriented framework.

Third and last contribution of this work regards the topic of autonomous
landing. This problem is tackled considering two use-cases: Air-to-Air
Automatic Landing (AAAL) and emergency landing for autonomous UAVs.
AAAL becomes fundamental in the context of the Air-to-Air Automatic
Refuelling (AAAR), where the mission endurance of smaller drones (fol-
lowers) is extended allowing them to take-off and land on top of larger and

6



heavier drones (carriers) during flight. In this thesis, a non-cooperative
approach for performing the task using vision for tracking and landing
on the target drone has been proposed. On the other hand, emergency
landing is invaluable for forced landings of autonomous systems in case
of faults or malfunctions. It can be also used for planned landings, e.g.,
saving energy during monitoring operations or for the delivery of goods
[36].

Structure

The thesis is organized as follows:

• Chapter 1 offers a review of background material on guidance, nav-
igation and control techniques for autonomous robots and, in partic-
ular, for UAVs. Since most of the topics examined come from varied
backgrounds, ranging from aerospace to robotics and from control
to computer science engineering, this Chapter serves also the pur-
pose to state some terminology and notation employed throughout
the work.

• Chapter 2 presents the simulation and experimental environments
used for tests and experiments. This Chapter describes also the
aerial platforms as well as the common software architecture they
are based on.

• Chapter 3 presents a methodological approach for the quantification
and modeling of visual odometry errors. The approach is then vali-
dated and, finally, a sensitivity analysis to changes in the operating
conditions is presented and discussed.

• Chapter 4 describes the LDC competitions. For each competition
the rules, objectives and proposed solutions are presented. The soft-
ware and hardware architectures are evaluated in both simulations
and experimental activities.

• Chapter 5 describes the approaches used for both AAAL and emer-
gency landing. Simulation and experimental campaigns have been
carried out for validating the proposed approaches.

7



Published works and M.Sc. theses

Part of the material presented in this dissertation has been published in
the following works.

Conference papers:

1. G. Roggi, M. Giurato, M. Lovera, A computer vision line-tracking
algorithm for UAV GNSS-aided guidance, XXV International Congress
of the Italian Association of Aeronautics and Astronautics, Rome,
Italy, 2019.

2. G. Roggi, S. Meraglia, M. Lovera. Leonardo Drone Contest 2021:
Politecnico di Milano team architecture, 2022 International Confer-
ence on Unmanned Aircraft Systems, Dubrovnik, Croatia, 2022;

Journal papers:

1. G. Roggi, A. Niccolai, F. Grimaccia, M. Lovera, A computer vision
line-tracking algorithm for automatic UAV photovoltaic plants mon-
itoring applications, Energies, 2020;

2. G. Roggi, G. Gozzini, D. Invernizzi, M.Lovera, Vision-based Air-to-
Air Autonomous Landing of UAVs, Transactions on Mechatronics,
2022 (submitted);

3. G. Roggi, S. Meraglia, M. Lovera, Leonardo Drone Contest au-
tonomous drone competition: overview, results, and lessons learned
from Politecnico di Milano team, Journal of Intelligent & Robotic
Systems, 2022 (submitted);

4. G. Roggi, M. Lovera, Visual odometry error modeling for multi-
copter UAVs (in preparation);

Moreover, the Author has been involved in a number of M.Sc. theses as
co-advisor:

1. N. Damino. Autonomous landing based on computer vision fidu-
ciary algorithms. Automation and Control Engineering, M.Sc., 2020;

8



2. D. Avila. A ROS implementation of a 6-DoF EKF for indoor drone
Visual SLAM. Computer Science and Engineering, M.Sc., 2020;

3. F. Chiarlo. A statistical analysis of position and attitude estimation
errors in visual odometry. Aeronautical Engineering, M.Sc., 2021;

4. G. Fontanarosa. UAV 3D guidance algorithms. Aeronautical Engi-
neering, M.Sc., 2021;

5. M. Padovani. A deep reinforcement learning-based algorithm for
exploration planning. Aeronautical Engineering, M.Sc., 2021;

6. P. Giannagostino. Model identification and statistical analysis in
visual odometry on an UAV. Aeronautical Engineering, M.Sc., 2022;

9





CHAPTER1
Preliminaries

In this Chapter, some preliminaries about guidance, navigation and con-
trol for UAVs are presented and discussed. For sake of clarity, the mean-
ing of these terms is the one employed in the aerospace sector, namely:

• Guidance refers to the computation of the desired path and trajectory
from the vehicle’s current pose (position and attitude) to the target
pose. It might also include the desired velocity, angular velocity and
accelerations for following the given trajectory.

• Navigation refers to the determination, at each time instant, of the
vehicle’s state, which might include the position, velocity, attitude
etc.

• Control refers to the computation of the forces and moments, and
the associated change in rotors’ angular speed, needed for executing
the guidance commands.

11



Chapter 1. Preliminaries

1.1 Notation

1.1.1 Reference frames

We indicate with I = (OI , {i1, i2, i3}) a generic inertial frame, where
OI is the origin of the frame, and i1, i2 and i3 are respectively the three
orthonormal vectors pointing East, North and Up. When needed, we fur-
ther distinguish the inertial frames into odom and map frame as in [37].
The map frame, indicated with M = (OM , {m1,m2,m3}), is an East-
North-Up (ENU) world-fixed frame which has its origin OM at some ar-
bitrarily chosen point in the world. At the same time, the odom frame
O = (OO, {o1, o2, o3}) is a world-fixed ENU frame which drifts over
time with respect toM. Its origin OO is positioned where the robot has
been initialized. The body reference frame B = (OB, {b1, b2, b3}) in-
stead is a right-handed frame attached to the body of the UAV and it is
centered in its Center of Mass (CoM). The first axis lies in the plane of
symmetry and it points forward, the second axis points to the left and the
third axis points up. The camera-fixed frame C = (OC , {c1, c2, c3}) is
the right-handed frame conventionally used in the pin-hole camera model
(see Appendix B). Finally, we define a target frame T = (OT , {t1, t2, t3}),
an ENU frame attached to a generic fiducial visual marker. The presented
reference frames are graphically represented in Figure 1.1.

1.1.2 Frame transformation

The pose of a frame I relative to a frame B can be specified by its posi-
tion and orientation TIB = (tIB,ΨIB), where tIB is the translation vector
indicating the position of the origin of B in frame I, and ΨIB is the ori-
entation of frame B with respect to frame I. For example, a point written
in the frame B, can be expressed in frame I by:

pI = R{ΨIB}pB + tIB (1.1)

whereas the opposite relation is:

pB = R{ΨIB}⊤(pI − tIB) (1.2)

12



1.1. Notation

Figure 1.1: Reference frames

In the rest of the work, whenever no sub-index is used, the point or vector
should be considered written in the global inertial frame. In the above
expressions, R{ΨIB} ∈ SO(3) is the rotation matrix associated to the
orientation ΨIB. Its expression depends on the particular attitude param-
eterization we are using.

Euler angles

An attitude representation can be obtained by using a set of three angles.
Consider the rotation matrix expressing the elementary rotation about one
of the coordinate axes as a function of a single angle. Then, a generic ro-
tation matrix can be obtained by composing a suitable sequence of three
elementary rotations while guaranteeing that two successive rotations are
not made about parallel axes. This implies that 12 distinct sets of an-
gles are allowed out of all 27 possible combinations; each set represents
a triplet of Euler angles [38]. In mobile robotics, usually the Z-Y-X se-
quence, also called Roll–Pitch– Yaw (R-P-Y) angles, is used. It includes
a rotation of an angle ϕ (roll) about the first axis, then of θ (pitch) about

13



Chapter 1. Preliminaries

the new second axis and of ψ (yaw) about the newer third axis. Three
elementary rotations in SO(3) are considered:

RZ (ψ) =

cos (ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1

 , (1.3)

RY (θ) =

 cos (θ) 0 sin (θ)
0 1 0

− sin (θ) 0 cos (θ)

 , (1.4)

RX (ϕ) =

1 0 0
0 cos (ϕ) − sin (ϕ)
0 sin (ϕ) cos (ϕ)

 . (1.5)

The matrix R is obtained by multiplying:

R{ϕ, θ, ψ} = RZ(ϕ)RY (θ)RX(ϕ) = (1.6)

=

cθcψ −cϕsψ + sϕsθcψ sϕsψ + cϕsθcψ
cθsψ cϕcψ + sϕsθsψ −sϕcψ + cϕsθsψ
−sθ sϕcθ cϕcθ

 . (1.7)

where s and c are abbreviations for sin and cos, respectively. The defined
ranges for the rotation angles are:

−π < ϕ ≤ π (1.8)
−π/2 ≤ θ ≤ π/2 (1.9)
−π < ψ ≤ π (1.10)

14



1.1. Notation

Consider then the following equations to extract the Euler angles from the
rotation matrix.

ϕ = arctan

(
r32
r33

)
, (1.11)

θ = arctan

(
− r31√

r232 + r233

)
, (1.12)

ψ = arctan

(
r21
r11

)
, (1.13)

where rij are the elements of the attitude matrix R placed at the i-th row
and j-th column.

Unit quaternion

Quaternions can be seen as extended complex numbers. While regular
complex numbers of unit length can encode rotations in the 2D plane,
”extended complex numbers” or quaternions of unit length can encode
rotations in 3D space [39]. Most commonly, the quaternion is thought as
composed of a scalar and a vector part:

Q = qw + qxi+ qyj + qzk (1.14)
= qw + qv, (1.15)

where qw is referred to as the real or scalar part and qv = qxi+qyj+qzk as
the imaginary or vector part. Anyway, we mostly represent a quaternion
Q as a 4-vector q. In this work, we will employ the so-called Hamiltonian
notation, which uses the scalar part as first component, namely:

qH
∆
=

[
qw
qv

]
=


qw
qx
qy
qz

 (1.16)

The rotation matrix associated with the quaternion q can be written as:

15



Chapter 1. Preliminaries

R{q} =

q2w + q2x − q2y − q2z 2(qxqy − qwqz) 2(qxqz + qwqy)
2(qxqy + qwqz) q2w − q2x + q2y − q2z 2(qyqz − qwqx)
2(qxqz − qwqy) 2(qyqz + qwqx) q2w − q2x − q2y + q2z


(1.17)

or in a more compact form:

R{q} = (q2w − q⊤v qv)I + 2qvq
⊤
v + 2qw[qv]×, (1.18)

where I is the identity matrix and [·]× is the skew operator that produces
the cross-product matrix:

[qv]×
∆
=

 0 −qz qy
qz 0 −qx
−qy qx 0

 (1.19)

For describing rotations using quaternions we employ a notation similar
to rotation matrices. Let qIB represent a rotation from frame B to frame
I analogous to xI = RIBxB. The equivalent operation is:

xI = qIB ⊗ xB ⊗ q∗IB, (1.20)

where the quaternion product, also called Hamiltonian product, can be
written as:

p⊗ q =
[

pwqw − p⊤v qv
pwqv + qwpv + pv × qv

]
, (1.21)

and the conjugate as:

q∗
∆
= qw − qv =

[
qw
−qv

]
. (1.22)

Finally, for what concerns the kinematic equation in quaternion form:

q̇ =
1

2
q ⊗

[
0
ω

]
, (1.23)

16



1.2. Navigation

The same expression can be found written also in this form:

q̇ =
1

2
Ω(ω)q, (1.24)

where Ω is equal to:

Ω(ω) =

[
0 −ω⊤

ω −[ω]×

]
(1.25)

It can be useful to write the equation (1.23) into discrete time for digital
implementations:

qk+1 = qk ⊗ q{ωk∆t}, (1.26)

where q{ωk∆t} is the quaternion associated to the rotation ωk∆t, and it
can be computed as an exponential of a pure quaternion v, i.e., a quater-
nion with zero scalar part:

ev = euθ = cosθ + usinθ, (1.27)

which is an extension of the Euler form for imaginary numbers. Applying
(1.27) to (1.26), 23 obtain:

q{ωk∆t} =
[

cos(||ωk||∆t/2)
ωk

||ωk||
sin(||ωk||∆t/2)

]
. (1.28)

1.2 Navigation

To date, most semi-autonomous or autonomous UAVs rely on the Global
Navigation Satellite System (GNSS) to navigate outdoors. However, GNSS
is not available indoors and it can be unreliable in urban settings. At the
same time, most of research on autonomous drones in indoor environ-
ments exploits external motion-capture systems, e.g., Vicon [40] or Opti-
track [41]. Despite being useful for research purposes [42, 43], e.g., for
evaluating control laws or state estimation systems, they are not appro-
priate for other applications. Thus, aerial vehicles need to recover infor-
mation about their motion through the use of exteroceptive sensors in the
framework of Simultaneous Localization and Mapping (SLAM).

17



Chapter 1. Preliminaries

In the following, we first introduce some of the most common exte-
roceptive sensors, then we provide some background on SLAM and its
main paradigms. Finally, we focus on visual odometry and visual SLAM,
with some last considerations about visual inertial odometry and map rep-
resentations.

1.2.1 Exteroceptive sensors

Among the exteroceptive sensors, laser range finders/scanners, RGB-D
and vision sensors have been extensively employed for solving the navi-
gation problem on UAVs [5].

Laser range finders/scanners

Laser range finders are used for computing the distance between the robot
and an object belonging to the environment. We distinguish between laser
range finders, i.e., sensor that can measure only one target at a time, with
laser scanners, i.e., sensors that can scan in all directions in the environ-
ment. Laser scanners can be further classified into 2D or 3D scanners,
depending on their capability of measuring distance of objects outside
their plane. Note that 3D laser scanners are also named LiDARs (light
detection and ranging).

In the latest year, on aerial vehicles, 2D scanners have been frequently
employed, being lighter and less power consuming compared to 3D laser
scanners. In [6] the authors employed a laser scanner and 2D SLAM
for autonomous navigation. Similar works were carried out in [7] and
[11]. Nowadays, the production of relatively cheap and light 3D scanners
(Velodyne [44], Ouster [45]) allows their use on UAVs. In [18] the authors
employed a 3D scanner for solving the SLAM problem, while preferring
cameras for odometry computation.

Compared to other exteroceptive sensors, laser range finders and laser
scanners have the advantage of providing useful information even in com-
pletely texture-less environments.

18



1.2. Navigation

RGB-D sensors

RGB-D sensors have been frequently used for UAVs. They share many
similarities with stereo cameras, being able to output features depth data.
However, they reconstruct depth by illuminating a scene with a structured-
light pattern. As a result, they have the advantage of estimating depth,
even in areas with poor visual textures, but with the drawback of being
range-limited by their projectors.

RGB-D sensors for state estimation and mapping with UAVs have
been used in [46] as well as in [47], where autonomous exploration and
mapping strategies are discussed.

Vision sensors

Vision sensors are lightweight, less power consuming and able to provide
additional information compared to laser range finders. However, cam-
eras result very sensitive to illumination changes and texture-less environ-
ments. In the literature, cameras have been employed in many different
ways for aiding the navigation of autonomous robots. The early works fo-
cused on the use of biologically inspired algorithms, such as optical flow,
allowing drones to perform very basic maneuvers, e.g., takeoff, landing
and reactive obstacle avoidance [48, 49, 50, 51, 52]. However, optical
flow can only measure the relative velocity of image features. As a result,
the position estimate of the UAV will drift greatly over time. The drift
can be limited using visual odometry or visual SLAM methods. These
methods were applied both using monocular cameras [14, 53, 54, 55] or
stereo cameras configurations [7, 13, 56].

1.2.2 SLAM

Autonomous robots can navigate in an unknown environment through
SLAM [57, 58], which is the process by which a mobile robot can build a
map of an environment and, at the same time, use this map to deduce its
location. In particular, both the trajectory of the platform and the location
of all landmarks are estimated online without the need for any a priori
knowledge of their location [57]. Due to the inherent noise in both sensor
measurements and robot motion, SLAM problem is usually described in

19



Chapter 1. Preliminaries

probabilistic form.
As in the problem formulation of [57, 59], consider a mobile robot

moving through an environment and taking measurements of a number of
unknown landmarks using some kind of sensor located on the robot, as
represented in Figure 1.2. We define:

Figure 1.2: SLAM problem representation (reworked from [57])

• x0:T = {x0, x1, x2, . . . , xT}: the set containing the history of robot
states from initial time to time T . The state vector at time instant k,
xk describes the pose (position and orientation) of the robot.

• z1:T = {z1, z2, z3, . . . , zT}: the set of all sensor measurements, taken
from the robot, of the location of the landmarks. When the measure-
ment is specified as zk,i, it represents the observation taken from the
vehicle of the location of the ith landmark at time k.

• u1:T = {u1, u2, u3, . . . , uT}: the set of all controls, e.g., motion com-
mands. The control at time k, uk, represents the control vector, ap-
plied at time k − 1 to drive the robot to a state xk.

• m = {m1,m2, . . . ,mn}: the set of all landmarks. mi is a vector
describing the location of the i-th landmark, whose true location,

20



1.2. Navigation

in the simplest formulation of the problem, is assumed to be time
invariant.

The quantities to estimate are: the map and the robot’s pose in the
environment. In probabilistic form, the problem can be formulated as the
one of finding, at each time k, the probability distribution:

p(xk,m|z1:k, u1:k, x0). (1.29)

This probability distribution describes the joint posterior density of the
landmark position and robot’s pose, at time k, given the recorded obser-
vations and control inputs up to and including time k together with the
initial state x0, which represent the initialization of the pose, used to fix
the reference frame.

This formulation is also known as Online SLAM problem. If we are
interested in the full robot’s state evolution, the problem to be solved is
the Full SLAM one, namely finding the probability distribution:

p(x0:T ,m|z1:T , u1:T ). (1.30)

Note that the Online SLAM means marginalizing out the previous poses:

p(xk,m|z1:k, u1:k) =
∫
x0

· · ·
∫
xk−1

p(x0:k,m|z1:k, u1:k)dxk−1 . . . dx0

(1.31)
Two families of algorithms exist to solve the SLAM problem:

1. Filtering-based SLAM or Bayesian SLAM: model the problem as an
online estimation where the state of the system consists in the cur-
rent robot position and the map. The estimate is augmented and re-
fined by incorporating the new measurements as they become avail-
able. Due to their incremental nature, they typically solve the Online
SLAM problem.

2. Keyframe-based SLAM or Graph-based SLAM: typically fall in the
category of smoothing approaches. They are used to estimate the
full trajectory of the robot from the full set of measurements. These

21



Chapter 1. Preliminaries

methods address the Full SLAM problem and they typically rely on
least square minimization techniques.

In practical terms, control inputs uk are usually replaced by odometry
measurements to initial estimate of the robot motion between time steps.
Odometry consists in computing the robot pose incrementally, compos-
ing transformations relating poses at discrete consecutive timestamps. In
ground vehicles, wheel-encoders are employed for this kind of task. How-
ever, in contrast with ground vehicles, air vehicles are unable to measure
odometry directly. It is true that, in principle, odometry could be ob-
tained by double-integrating accelerations, but lightweight Micro Electro-
Mechanical Systems (MEMS) Inertial Measurement Units (IMUs) are
subjected to time-varying biases that would result in very high drift rates.
As a consequence, exteroceptive sensors (presented in the previous Sec-
tion) should be also employed for odometry computation on aerial vehi-
cles [7, 5].

Filtering-based SLAM

In filtering-based SLAM, what we really want to achieve is a recursive
solution for the problem. Thus, we start with the estimate for the distri-
bution at time k − 1:

p(xk−1,m|z1:k−1, u1:k−1), (1.32)

we compute the joint posterior (using Bayes theorem) following a control
uk and an observation zk. In order to do this, we require a state transition
model and an observation model for describing the effects of the inputs
and observations respectively.

The observation model describes the probability of making an obser-
vation zk when the robot and landmarks locations are known:

p(zk|xk,m). (1.33)

At the same time, the state transition model, also called motion model, is
described by the probability distribution:

p(xk|xk−1, uk), (1.34)

22



1.2. Navigation

The SLAM algorithm can now be implemented in a standard two-step
recursive prediction-correction form. The time update and measurement
update laws are respectively provided in

p(xk,m|z1:k−1, u1:k, x0) =

∫
p(xk|xk−1, uk)

× p(xk−1,m|z1:k−1, u1:k−1, x0)dxk−1, (1.35)

and

p(xk,m|z1:k, u1:k, x0) =
p(zk|xk,m)p(xk,m|z1:k−1, u1:k, x0)

p(zk|z1:k−1, u1:k)
. (1.36)

At this point, the map-building and localization problems can be formu-
lated as a degenerate case of the SLAM problem. In the map-building
problem, we want to compute the probability distribution:

p(m|x0:k, z1:k, u1:k), (1.37)

assuming the robot’s pose known at all times, subject to the knowledge
of the initial state. The map m is, then, constructed fusing all the obser-
vations, obtained by the robot in different poses. On the other hand, the
localization problem can be formulated as the computation of the proba-
bility distribution:

p(xk|z1:k, u1:k,m), (1.38)

where the landmark locations are known and the aim is the one of com-
puting an estimate of the robot pose with respect to these landmarks.

To solve the SLAM problem, an appropriate representation for both
the motion and the observation model, should be found. These models
should be selected to allow a fast and accurate computation of the prior
and posterior distribution in (1.35) and (1.36). One common representa-
tion is represented by state-space models with additive Gaussian noise,
leading to the use of Extended Kalman Filter (EKF) to solve the SLAM
problem. Alternatively, the vehicle motion could be represented as a set
of samples of a more general non-Gaussian probability distribution, lead-
ing to the use of the so-called FastSLAM algorithm (Rao-Blackwellized
particle filter) [60, 61].

23



Chapter 1. Preliminaries

Graph-based SLAM

A convenient way to describe the full SLAM problem (1.30) is through
the so-called Dynamic Bayes networks (DBN) available in Figure 1.3.

Figure 1.3: Dynamic Bayes Network of the SLAM problem (reworked from [62])

A DBN is a graphical model used to represent a stochastic process
via a directed acyclic graph. Each node is a random variable and each
edge represents a conditional dependence between variables. The motion
model p(xk|xk−1, uk) is represented by the edges leading to xk, while
the measurement model p(zk|xk,m) is represented by the arrows enter-
ing in zk. Since DBN contains all the dependencies among variables (not
represented connection imply independence), the joint probability of tra-
jectory, map, controls and measurements can be written as the product of
all conditionals [63]:

p(x0:T ,m, u1:T , z1:T ) = p(x0)
∏
k

(xk|xk−1, uk)
∏
i

(zi|xki ,m) (1.39)

To obtain an optimal estimate for the set of unknowns given all available
measurements and controls, the problem is converted into an equivalent

24



1.2. Navigation

least squares formulation based on a maximum a posteriori (MAP) esti-
mate:

{x∗0:T ,m∗} = argmax
x0:T ,m

p(x0)
∏
k

(xk|xk−1, uk)
∏
i

(zi|xki ,m) (1.40)

Usually, non-linear models with additive Gaussian noise are used for both
measurement and motion models. The optimization problem is often
solved with nonlinear optimization methods, e.g., Gauss–Newton or Lev-
enberg–Marquardt algorithms.

Note that, especially in a graph-based SLAM formulation, the system
is usually thought as composed by two different components: the front
end and the back end. The front end abstracts sensor data into models
to be used for estimation, while the back end performs inference on the
abstracted data produced by the front end [64]. Consequently, while the
back end is, by definition, sensor agnostic, the front end is heavily de-
pendent on the employed sensor. Note that each of the aforementioned
exteroceptive sensors represent a potential candidate for the front end.

In particular, in graph-based SLAM [62]:

• The front end is represented by the construction of the graph from
measurements and odometry (graph construction).

• The back end is represented by the determination of the most likely
configuration of the poses given the edges of the graph (graph opti-
mization).

Note that keyframe-based approaches have recently become the de
facto standard formulation for the SLAM problem [64].

1.2.3 Visual odometry and visual SLAM

Regarding the odometry, when it is computed through the use of camera
is called Visual odometry (VO). More formally, VO is the process of es-
timating the egomotion of an agent by incrementally estimating its pose
through examination of the changes that the motion induces on the images
of a single or multiple cameras attached to it [65, 66].

The VO pipeline can be summarized in the following steps:

25



Chapter 1. Preliminaries

1. For every new image (or image pair in the case of a stereo camera),
the first step consist of detecting and extracting a set of salient fea-
tures, e.g., points, corners, lines.

2. The extracted 2D features are matched with those found in previous
frames. The 2D features that are the reprojection of the same 3D
feature in different images are called image correspondence.

3. The relative motion between the two different time instants is com-
puted. The camera pose is computed by the concatenation of the
retrieved transformation with the previous pose.

4. An iterative refinement, called windowed bundle adjustment, can be
applied over the last n frames to obtain a more accurate estimate of
the local trajectory.

If a stereo camera configuration, i.e., two rigidly attached cameras
having overlapping field of view, is used; the 3D reconstruction of the
observed image features will be available. On the other hand, by using a
single monocular camera, with associated benefits in terms of power and
payload weight requirements, the result will be known up to an unknown
scale (for mathematical details see Appendix B and Appendix C)

Beside the previously presented VO pipeline, which we can denomi-
nate feature-based, appearance-based methods and hybrid methods exist.
In appearance-based methods, also called direct methods [67], the struc-
ture and motion is directly estimated from intensity values in the image.
An example of hybrid method is available in [53].

As previously highlighted, the basic working mechanism of VO in-
volves the computation of the camera path incrementally, i.e., pose after
pose. The errors will thus accumulate over time leading to drift of the
estimated trajectory with respect to the real one. In this framework, the
refinement step, performed through reprojection error minimization, can
help in keeping drift as small as possible.

On the other hand, SLAM goal is to obtain a global and consistent
estimate of the robot path. A map of the environment (even if not needed
for other applications) is built with the aim of realizing if the robot returns
to an already visited area. This process is called loop closing. When a

26



1.2. Navigation

loop closure is detected, the drift in both the map and the camera can be
reduced.

It is also worth pointing out that the overall objective of the two meth-
ods is different: in VO, we only care about local consistency of the tra-
jectory and a local map (through windowed bundle adjustment) is used to
obtain a more accurate estimate of it, whereas SLAM is concerned about
global map consistency [65]. Note also that VO is often used as a building
block for a complete SLAM algorithm to recover the incremental motion
of the robot; however, to make a complete SLAM methods, we must also
add some loop closing detection and global optimization step to obtain a
metrically consistent map [65].

Going in details, in feature-based visual SLAM (vSLAM), in contrast
with visual odometry, the bundle adjustment would involve finding the
full maximum likelihood solution to the graph at each time step, and not
only relative to the last n poses. Considering the number of sparse fea-
tures available in each frame, the computational cost will explode quickly.
To address this issue, two ways of summarizing the information gained
over time have been formulated: filtering approach and keyframe-based
approach. These two approaches are similar to the one presented for what
concerns the general SLAM theory.

In the filtering approach (see Figure 1.4), the poses and measurements
are summarized by joint probability distribution in state-space. All the
poses other than the current one are marginalized out after every frame;
and features, which may be observed again in the feature, are retained.
The resulting graph will not grow arbitrarily with time, and will not grow
during movement in the same area, adding persistent features only when
new areas are explored. The downside is that the graph will become
fully inter-connected since the elimination of a past pose causes new links
among pairs of observed features to which it was joined [68].

In the keyframe-based approach (see Figure 1.5), the graph is solved
from scratch time after time, but it is sparsified by retaining only a subset
of past poses, i.e., some heuristically chosen keyframes. The other poses,
with all the measurements connected to them, are not marginalized out
as in the filter, but simply discarded and they will not contribute to the
estimate. The resulting graph will be larger compared to the one obtained

27



Chapter 1. Preliminaries

Figure 1.4: Dynamic Bayes Network for filtering-based approaches in vSLAM (re-
worked from [68])

using the filter-based approach, but the lack of marginalization will lead
to a sparsely interconnected graph [68].

As an example of representative filtering-based method we can re-
fer to MonoSLAM [69], a monocular camera vSLAM algorithm. In
MonoSLAM, camera motion and structure are estimated simultaneously
using an EKF. Its computational costs increases based on the size of the
environment: the size of the state vector becomes larger and larger while
increasing the number of feature points. On the other hand, belonging
to the family of keyframe-based SLAM, PTAM (Parallel Tracking and
Mapping) [70] is able to run in real time (at around 30Hz) by paralleliz-
ing the motion estimation and mapping tasks and by relying on efficient
keyframe-based bundle adjustment (BA) [68]. However, PTAM was de-
signed for augmented reality applications in small desktop scenes, and
multiple modifications (e.g., limiting the number of keyframes) were nec-
essary to allow operation in large-scale outdoor environments [55]. A
very popular keyframe-based technique, which achieved real-time SLAM
in large-scale environment using local BA, fully automated relocation and
loop closing, is ORB-SLAM [71]. Originally it was a monocular vSLAM,
but it has been extended to stereo and RGB-D vSLAM [72].

Among the leading direct-methods (for monocular cameras), we cite
LSD-SLAM [73], which is an extension of the semi-dense VO method

28



1.2. Navigation

Figure 1.5: Dynamic Bayes Network for keyframe-based approaches in vSLAM (re-
worked from [68])

described in [74]. In particular, LSD-SLAM has seen adding loop-closure
detection and pose-graph optimization with respect to the corresponding
VO algorithm.

1.2.4 Visual inertial odometry

VO has been often combined with IMU leading to the so-called Visual
Inertial Odometry (VIO). This fusion process has been extensively used
for monocular VO for absolute scale structure and motion estimation [55].

Two paradigms of VIO exist: loosely coupled and tightly coupled [75].
Conceptually, loosely coupled methods process visual and inertial mea-
surements separately by computing two independent motion estimates
that are fused to get the final output. By contrast, tightly coupled methods
compute the final output directly from the raw camera and IMU measure-
ments, e.g., the tracked 2D features, angular velocities, and linear acceler-
ations. Tightly coupled approaches result more accurate that the loosely
coupled ones for these two reasons [76]:

1. Using IMU integration to predict 2D feature locations in the next
frame facilitate feature tracking.

2. Loosely-coupled approaches do not consider visual and inertial cou-
pling, making them unable to correct drift in the vision-only estima-

29



Chapter 1. Preliminaries

tor.

1.2.5 Maps

The maps employed in SLAM (and produced by it) can be parameterized
mainly by [62]:

1. set of spatially located landmarks;

2. dense representations, e.g., occupancy grids, surface maps etc.;

3. raw sensor measurements.

The choice of the map parameterization depends on the sensor used, on
the characteristics of the environment and on the estimation algorithm em-
ployed. For example, landmark maps are preferred in environments with
easily identifiable features and when cameras are used. On the other hand,
dense representation are often used in combination with range sensors.

Dense representations are also preferred for being exploited by guid-
ance algorithms. In this framework, occupancy grids are commonly-used
for planning collision-free paths in 2D environments [77]. Extending
occupancy grids to 3D leads to huge memory requirements, especially
when large spaces are considered [78]. Nowadays, Octomap [79] is the
most-used map representation for online 3D map building and planning in
unstructured environments [80]. Octomap is an open-source framework
to generate volumetric 3D environment models using probabilistic occu-
pancy estimation, and based on octrees. An octree is a hierarchical data
structure for spatial subdivision in 3D. Each node in an octree represents
the space contained in a cubic volume, usually called a voxel. This volume
is recursively subdivided into eight sub-volumes until a given minimum
voxel size is reached. The minimum voxel size determines the resolution
of the octree. Since an octree is a hierarchical data structure, the tree can
be cut at any level to obtain a coarser subdivision if the inner nodes are
maintained accordingly. A graphical representation is shown in Figure
1.6.

In its most basic form, octrees can be used to model a Boolean prop-
erty. In the context of robotic mapping, this is usually the occupancy of
a volume. Using Boolean occupancy states or discrete labels allows for

30



1.2. Navigation

Figure 1.6: Graphical representation of an Octree

31



Chapter 1. Preliminaries

compact representations of the octree: if all children of a node have the
same state (occupied or free) they can be pruned. This leads to a substan-
tial reduction in the number of nodes that need to be maintained in the
tree. The flexible voxel size allows representing large areas in a fast and
memory efficient way. In robotic systems, one typically has to cope with
sensor noise and temporarily or permanently changing environments. In
such cases, a discrete occupancy label will not be sufficient. Instead, oc-
cupancy has to be determined according to a probabilistic model, meaning
that multiple observations of the scene are merged together to assign the
occupancy probability. This aspect results particularly important in the
case of noisy sensor data, such as stereo or RGB-D cameras. Octomaps
have been used for motion planning on many UAVs, e.g., [17, 81].

Other 3D environment models exist, e.g., point clouds, elevation maps
and multi-level surface maps. Point clouds can be composed by very
large amount of measurement points and are not memory efficient. Point
clouds represent only areas occupied by obstacle and do not provide any
means for fusing multiple measurements. Elevation maps consist of a
two-dimensional grid in which each cell stores the height of the territory
[82]. Whereas this approach leads to a substantial reduction of the mem-
ory requirements, it can be problematic when a UAV has to utilize these
maps for navigation and guidance. Finally, multi-level surface (MLS)
maps can be regarded as an extension to elevation maps. MLS maps rep-
resent 3D structure by a grid where each grid cell contains a list of surface
patches. In the simplest formulation, the patch is represented by the mean
and variance of the measured height at the position of the grid cell. Addi-
tionally, a depth value can be stored in the patch. This depth value reflects
the fact that a surface patch can be on top of a vertical object. In these
cases the depth is defined as the difference of the height of the surface
patch and the height of the lowest measurement belonging to the vertical
object [82]. Flat object will have depth equal to zero.

1.3 Guidance

Addressing the guidance for autonomous UAVs means solving the prob-
lem of trajectory planning of a differentially-constrained vehicle through

32



1.3. Guidance

an environment with obstacles. This vehicle motion planning problem
can be considered a special case of the general motion planning problem
[83, 84].

In order to give a general problem formulation, some definitions and
terminology must be introduced. The configuration of a robot/vehicle is
a vector of n coordinates:

q ∈ C ⊆ Rn, (1.41)

where C is the C-space. The C-space can be an arbitrary manifold. In
this case, we will focus on configurations expressed through a minimum
set of coordinates. The C-space can be regarded as the union:

C = Cfree ∪ Cobs, (1.42)

where Cfree is the set of configurations in which the robot is not in colli-
sion with an obstacle and vice-versa for Cobs.

The state of the robot is described by a vector x that can be x = q, if the
robot controls are the velocities, or the configurations and the velocities
(q, v) ∈ X , if the control inputs are accelerations or forces. The equations
of motion are:

ẋ = f(x, u), u ∈ U , (1.43)

which integral form can be written as:

x(T ) = x(0) +

∫ ⊤

0

f(x(t), u(t))dt. (1.44)

With these definitions, a fairly general statement of the motion planning
problem is the following:

Problem. Given an initial state x(0) = xstart and a desired final state
xgoal, find a time T and a set of controls u : [0, T ] → U such that the
motion satisfies x(T ) = xgoal and q(t) ∈ Cfree for all t ∈ [0, T ].

The problem is very difficult [85], especially as the number of degrees
of freedom increases. There does not exist an algorithm that provides an
exact analytic solution to such a problem. Indeed, even state-of-the-art

33



Chapter 1. Preliminaries

approximation algorithms operating on a three-dimensional subspace of
this problem space are difficult to compute in real time [86].

Many variations to the motion planning problem exist. First of all,
we should distinguish from computing a path, i.e., a curve traced by the
vehicle in the configuration space, and a trajectory, i.e., the state evo-
lution of the vehicle over time. The environment can be either static
(time-invariant motion planning problem) or dynamic (time-variant mo-
tion planning problem), meaning that the obstacles move over time. The
problem can be differentially-constrained (or kinodynamic constrained),
i.e., a problem in which the vehicle’s equation of motion acts as a con-
straint on the path. The opposite is true for differentially-unconstrained
problems. Other problem categorization can then arise from the vehicle
model employed.

A motion planning algorithm can have different properties. Planners
can be multiple query or simple query. A multiple query motion plan-
ner is one that invests time in developing a good representation of the
C-space in such a way that future motion planning problem in that space
can be solved quickly. If the environment changes frequently a single
query motion planner can be used to find quickly a solution. A planner is
considered to be complete if and only if it finds a path when one exists.
It is considered optimal when it returns the optimal path with respect to
some criterion 1. A weaker notion is resolution completeness/optimality,
in which the planner finds always a solution if it exists at the level of
discretization of the problem. At the same time, probabilistic complete-
ness/optimality means that the probability of finding a solution, if one
exists, goes to 100% as the time approaches infinity.

When considering UAVs, in the most general formulation, the configu-
ration vector is defined by three position and three orientation coordinates.
Its state can comprehend also velocities and angular velocities, for a total
of 12 variables. The differential constraints arise in the form of kine-
matic (nonholonomic constraints) and dynamics (involving second-order
or higher differential constraints). In many practical applications, a point
vehicle representation is employed. This assumption greatly simplifies
the problem, leading to a configuration space equal to the 3D Euclidean

1Note that any optimal planner is also complete.

34



1.3. Guidance

space. Then, in order to avoid collision, the obstacles are usually inflated
by the vehicle radius.

Many of the algorithms designed to solve the motion planning problem
for UAV rely on a decomposition approach, first solving a path planning
problem and, then, generating a trajectory that conforms to the path [86].
This latter step is often called smoothing. Other possible approaches are
respectively trajectory optimization methods and method based on motion
primitives [15].

Starting from analyzing the path planning problem, we can distinguish
between search-based and sampling-based methods.

1.3.1 Search-based methods

Even if the C-space of a robot is continuous, it is usually discretized.
Some free configurations are sampled from the free space and lines con-
necting configurations are drawn, in such a way that configurations can
reach each other by a straight-line path. The resulting graph is now our
discretized representation of the free space, where configurations are rep-
resented by nodes and paths between two configurations are represented
by edges.

A popular way to discretize the space is to create a grid. A C-space
grid is obtained dividing each of the n dimensions into k intervals, creat-
ing kn grid cells, with the graph node at the center of the cell. Each cell is
represented in the graph by a single node, representing the configuration
at the center of the cell.

To search the graph, several algorithms can be used. One of the most
popular is the A∗ search [87]. In addition to the graph, A∗ requires a func-
tion that computes an optimistic cost-to-go, namely a lower bound on the
actual cost to go from a start node to a goal node. The only requirements
are that this heuristic must be fast to evaluate and close to the actual cost-
to-go. In the case of violation of the latter requirement, A∗ may terminate
with a solution that is not optimal. The algorithm which preceded histori-
cally the A∗ is the Dijkstra’s algorithm [88], which doesn’t use a heuristic
to guide the search, resulting in a slower algorithm. Obviously, due to the
discretization, these path planners are not complete, but resolution com-
plete. A major drawback of this approach is that it is not practical for

35



Chapter 1. Preliminaries

high-dimensional spaces.
Many variants of search-based methods can be find in the literature. A

non exhaustive list comprehends Jump Point Search (JPS) [89], Weighted
A∗ [90], Anytime A∗ [91], Anytime Repairing A∗ (ARA∗) [92], D∗ [93],
and many others. On UAVs we can find A∗ implemented in the path
planning pipeline in [94, 95, 96, 97, 98] among others.

1.3.2 Sampling-based methods

Nowadays, sampling-based algorithms are very popular because of their
simplicity and their performance. Among them, Probabilistic Roadmaps
(PRMs) and Randomly Exploring Random Trees (RRTs) [99] are the
most employed families of approaches.

Probabilistic Roadmap (PRM)

When a graph satisfies certain topological properties [100], and it results
to be a roadmap, the property of completeness can be ensured. However,
a roadmap is very computationally expensive. A Probabilistic Roadmap is
a type of approximate roadmap, constructed from a set of configurations
randomly sampled from the C-space. As the number of samples tends to
infinity, the likelihood that the graph is a true roadmap goes to 100%. An
advantage of a PRM graph over a grid-based graph is that the structure
of the free C-space is generally captured by the PRM with many fewer
nodes than with a grid graph.

Also in RRT, the idea of connecting points sampled randomly from the
state space is exploited. However, RRT can be thought as a single-query
PRM. The incremental nature of RRT avoids the necessity to set the num-
ber of samples a priori, and returns a solution as soon as the set of paths
built by the algorithm is rich enough, enabling on-line implementations.

Even if both the algorithms are probabilistically complete, they are not
asymptotically optimal, hence they do not tend to the optimal solution as
the number of nodes goes to infinity. In [101], a modification of the basic
algorithms, i.e., RRT∗ and PRM∗ have been proposed in such a way to
achieve asymptotic optimality. For example, RRT∗, continually rewires
the search tree so that the solution tends to the optimal solution as the
number of nodes in the tree goes to infinity. In the UAV literature, we can

36



1.3. Guidance

find sampling-based methods in the planning pipeline in [102, 103, 104,
105] among others.

1.3.3 Path smoothing and trajectory generation

After having generated a path, most of the current state-of-the-art meth-
ods exploit the differential flatness of the quadrotors (see Section ??) for
generating a dynamically feasible smooth trajectory [106, 22, 107]. This
step is usually carried out by solving an optimization problem over a class
of trajectories like minimum snap [108, 104].

Other approaches, instead of using a geometric path as prior to create a
dynamic feasible trajectory, explore the space of trajectories using a set of
short-duration motion primitives generated by solving an optimal control
problem [16, 109]. The motion primitives compose a lattice discretization
in the state space, which can be explored using search-based algorithms
[110, 111] (see Section 1.3.1). Motion primitives are also used to generate
many trajectory candidates, which will be evaluated based on an objective
function [112, 113, 114].

However, the presented methods checks the obstacle constraints a pos-
teriori. This means that these methods are either limited to short trajec-
tories or they have to do a computationally extensive search to be able to
generate a trajectory around obstacles [98].

Other approaches include the obstacles directly while solving the non-
linear optimization problem derived from the motion planning problem.
An option consists in penalizing the distance to obstacles in the cost func-
tion [15, 115]. However, this leads to non-convex optimization problems
and requires computationally expensive distance field representations. In
other works, instead, the shape of obstacles is encoded in the constraints
using successive convexification [116, 117] or a convex decomposition of
the environment [118, 119, 120].

1.3.4 Reactive approaches

An additional category of methods for guidance of mobile robots is the
one of reactive approaches. These methods are part of the larger class
of local planners (also called collision avoidance planners). Indeed, local
planners can be either map-based algorithms (as the ones presented in

37



Chapter 1. Preliminaries

the previous Sections), which compute feasible and locally-optimal paths
through local maps built from sensor data or a priori known global maps
[115], or sensor-based reactive approaches.

Map-based methods are usually applied for known environments and
have limited ability to handle uncertainties. On the other hand, reactive
approaches [121] do not require any early information about the environ-
ment and plan directly in the current sensor data.

Among the classical reactive approaches employed in mobile robotics
we can mention: Dynamic Window Approach (DWA) [122], Vector Field
Histogram (VFH) [123], Bayesian approach [124], curvature-velocity method
[125] and potential field techniques [126].

On UAVs several works have been published in recent years. Many au-
thors have employed vision for reactive obstacle avoidance in the form of
optical flow [127, 128, 129, 130], images coming from monocular cam-
eras [131] or stereo cameras depth estimation [132]. Other articles focus
on the use of methods like artificial potential fields [94, 133], VFH [134]
and imitation learning approaches [135].

Frequently reactive approaches are used in a layered fashion with global
planners [94, 133]. In particular, the global planner is used to plan, at low
frequency, an optimal collision free path/trajectory in the known environ-
ment (up to that moment), while the low-latency high-frequency reactive
approach is used to avoid potential collision with unknown obstacles aris-
ing during the execution of the path/trajectory.

1.3.5 Exploration

The final category of guidance algorithms analyzed is the one related to
the exploration problem. In this framework, the goal is not only to plan
a collision free trajectory, but to maximize the amount of information
acquired about the environment.

This problem can come in many different versions [59]:

1. a robot may seek to acquire a map of a static environment. The ex-
ploration problem is the problem of planning paths such that, when
the robot has followed them, all the environment (or its unknown
space) becomes known.

38



1.3. Guidance

2. a robot might have the task to find a person in a known environment,
as part of the pursuit evasion problem.

3. a robot seeks to determine its own pose during localization. This
problem is commonly called active localization, and the goal is to
maximize the information about the robot’s own pose, e.g., when a
manipulator equipped with a sensor faces an unknown object.

In this work, we focus only on the first version of the problem and we
split it in two separate sub-problems:

1. Select the next pose to be reached by the robot.

2. Plan a trajectory from the actual pose to the selected pose.

For the first sub-problem mainly two approaches are available in the
literature, based either on a binary gain or an expected information gain.
When using a binary gain, the cells of the map which have been visited
are updated as ”explored”, while all the other cells are marked as ”un-
explored”. This gain is at the core of a popular exploration algorithm
called frontier-based exploration [136], which simply tries to move the
robot to the nearest accessible unvisited frontiers. On the other hand,
information-based exploration algorithms, i.e., methods based on a non-
binary expected information gain, evaluate different candidate positions
based on the achievable potential information gain. One popular strat-
egy, the GB-L strategy [137] evaluates a candidate observation position p
using the following function:

f(p) = A(p) · exp(−λ · L(p)), (1.45)

where A(p) is an estimate of the unexplored area visible from p, L(p) is
the length of the path connecting the current robot position and p, and λ
weights the new information obtainable from a position and the cost of
traveling to reach that position. A(p) can be computed as the difference
between the area of a circle with radius r centered in p and the area of
its intersection with the known segments composing the path from the
current position of the robot to p. Different potential information gains
have been proposed and evaluate in [138].

39



Chapter 1. Preliminaries

On UAVs examples of frontier-based exploration are available in [134,
47], while the most popular information-based exploration method is rep-
resented by the Receding Horizon ”Next-Best-View” Planner (RH-NBV)
[105]. Attempts to combine the two approaches have been made in the
literature. In particular, the authors of [139] proposed Autonomous Ex-
ploration Planning (AEP). They used RH-NBV as local exploration strat-
egy and a frontier exploration method as global one. Finally, the authors
of [140] proposed an online exploration algorithm inspired on RRT∗ and
on a new information gain and compared it against the RH-NBV planner
and AEP.

The second sub-problem, instead, has been faced in the literature with
the previously presented trajectory planning methods. The only difference
is related to the fact that the planner must be able to cope with unknown
environments. In the UAV literature, some authors uses optimistic plan-
ners, i.e., planners which consider unknown space as free [95, 141], while
others used an optimistic global planner in combination with a conserva-
tive local planner [15, 115].

1.4 Control

The control of conventional multirotors has been an extensively stud-
ied topic. Although inherently nonlinear and under-actuated, linear con-
trollers, like PID and LQ, have been very successful for multicopters
flight control [142]. To handle nonlinearity more efficiently, nonlinear
controllers have been proposed using feedback linearization [143], back-
stepping [144], geometric control [145, 146] and many others.

In recent years, two control frameworks have become particularly pop-
ular for tracking trajectories, even at very high speed: differential-flatness-
based control and nonlinear model predictive control.

Differential flatness is a system property that extends the notion of
controllability from linear systems to nonlinear dynamical systems [147].
Multirotors have been proved to be differentially flat systems, and this
property has been frequently used for generating dynamically feasible tra-
jectories (see Section 1.3.3). Differential flatness based control approach
have been originally proposed for UAVs in [148] and implemented as po-

40



1.4. Control

sition control of a real robot in [149]. In [23] differential-flatness-based
controllers have shown to be capable of tracking very aggressive trajecto-
ries.

Model predictive control (MPC) has been employed for tackling both
the trajectory generation problem (see Section 1.3.3) and the trajectory
tracking problem at the same time. This technique has been successively
applied to quadrotors in [150, 151]. Recently, nonlinear model predictive
controllers have been employed for agile trajectory tracking [152, 153].

The two classes of control methods have been compared in [154],
which showed also the importance of substituting the angular controller
from a PID to an incremental nonlinear dynamic inversion (INDI)-based
controller [155], a control framework already widely used, especially for
what concerns fault-tolerant control of multirotors [156, 157], for tackling
model uncertainties and external disturbances.

For a complete review of the multirotor control methods see [158,
147]. A review of MPC control applied to quadrotors is, instead, available
in [159].

For what concerns this work, we are going to present a basic math-
ematical model for a quadrotor and introduce the concept of differen-
tial flatness. Then, the quaternion-based cascaded P-PID controller, used
throughout this work, is presented. Its choice was motivated by the fact
that no stringent requirements on trajectory tracking performance was im-
posed.

1.4.1 Model

We consider the dynamical model of a rigid quadrotor, neglecting aero-
dynamic terms like drag and moments due to blade flapping. Both effects
have been presented in pioneering studies [160, 161, 162]. With these
assumptions, we can write the dynamics of the position r, velocity v, ori-
entation RIB, and body rates ωB = [ωx, ωy, ωz] as:

41



Chapter 1. Preliminaries

ṙ = v (1.46)
v̇ = −gi3 + cb3 (1.47)

ṘIB = RIB[ωB]× (1.48)

ω̇B = J−1(τ − ωB × JωB) (1.49)

where c is the mass-normalized collective thrust, J is the quadrotor’s in-
ertia matrix, g = 9.81m/s2 is the gravity acceleration and τ is the three
dimensional torque input. Given this model, we can show that the quadro-
tor is a differentially flat system, result that has been frequently used for
trajectory generation (see Section 1.3.3). In other words, it is possible to
prove that the state and the inputs of the system can be written as algebraic
functions of four selected outputs and a finite number of their derivatives.
In turn, the flat outputs are the three components of the UAV position
r = [rx, ry, rz] and its heading ψ. The proof can be found in [163], but
the authors include in the model formulation also rotor drag. The proof
for the simplified model employed in this work is available in [106], but
some errors in the derivation must be corrected following [163] itself (see
Appendix D).

1.4.2 Cascaded controller

The controller presented in this Section is the one employed in most au-
topilots for multirotor UAVs and, in particular, on the autopilot firmware
PX4 [35], used throughout this work.

Given the underactuated nature of conventional multirotors, position
tracking is obtained by changing the UAV attitude in order to tilt the re-
sultant of the thrust forces.

The controller architecture is composed by two loops: the position
loop is the outer one, while the attitude loop is the inner one. The propor-
tional part of the outer P-PID (see Figure 1.7) is fed with the difference
between the reference position r0 and the actual estimated one r̂ and its
output is the desired velocity in the inertial frame v0.

By computing the error on the velocities, the inertial force computed
by the position controller is given by:

42



1.4. Control

Figure 1.7: Block diagram of outer (position control) loop (reworked from [35])

F0 = PIv(KP,r(r0 − r̂)− v̂)−Dvv̂ +mgi3, (1.50)

where

PIv(·)
∆
= KP,v +KI,v

1

s
(1.51)

Dv(·)
∆
= KD,v

s

1 + s/Nd

(1.52)

are transfer function defining the proportional-integral and filtered deriva-
tive actions. KP,(·),KI,(·),KD,(·), are the proportional, integral and deriva-
tive gains, respectively, and ND is the first order filter constant for the
derivative action. Then, given the desired yaw angle ψ0, a geometric law
is used for finding the desired total thrust T and the orientation of the body
frame Ψ0 (D.1)-(D.9). The desired orientation Ψ0 is then parameterized
in terms of quaternions and together with the actual angular velocities
is used to feed the inner P-PID controller, whose output are the desired
moments.

The proportional part of the inner loop P-PID (see Figure 1.8) com-
putes the desired angular velocity ω0 through:

ω0 = KP,Ψsgn(qew)qev , (1.53)

where qew and qev are respectively the scalar and vector part of the quater-
nion error computed as:

qe = q̂∗ ⊗ q0, (1.54)

with q0 the desired quaternion obtained from the desired orientation Ψ0,

43



Chapter 1. Preliminaries

Figure 1.8: Block diagram of inner (attitude control) loop (reworked from [35])

Figure 1.9: Mixer block diagram

and with q the estimated quaternion, obtained from the estimated orienta-
tion Ψ̂.

The torques are then computed through:

τ = PIω(ω0 − ω̂)−Dωω̂ (1.55)

with similar definitions to the ones given in equations (1.51) and (1.52).
The input thrust to each motor are then computed from the desired torques
and thrust using a static map, called mixer matrix (see Figure 1.9), which
in turns depend on the geometric and propulsive properties of the UAV.

Finally, the rotor thrusts are delivered to the platform and the state,
estimated using sensor measurements through the EKF2 (see Appendix
A), are fed back to assure the tracking of the position reference.

44



CHAPTER2
Simulation and experimental environment

In this Chapter, the simulation environment, employed for testing the soft-
ware components developed throughout this work, is presented. Then, the
arenas, in which the experimental tests are carried out, are shown. The last
part of this Chapter is then dedicated to the presentation of all the aerial
platforms used for the experiments.

Note that, the simulation and the aerial platforms are very similar in
terms of software architecture. In particular, note that while the PX4 au-
topilot firmware is used for low-level control and state estimation, the
Robot Operating System (ROS) [164] has been employed as framework
for all the high-level software running on the UAV and for the simulations.

45



Chapter 2. Simulation and experimental environment

2.1 Simulation environment

Most of the algorithms developed in this thesis have been tested and val-
idate in simulations, before deploying them on the aerial vehicles. The
PX4 flight stack, besides working on dedicated boards, offers the possi-
bility of Software In The Loop (SITL) simulations on one or multiple PCs.
Among the available simulators, Gazebo has been selected. Gazebo [165]
is a ROS-integrated open source robotic simulation package. Among
the many advantages of this simulator, we can cite a robust physics en-
gine, high-quality graphics, open-source code and convenient customer
and graphical interfaces [166]. Gazebo has also been used for simulating
multicopters in various works, e.g., [167, 168]. One of the drawbacks
of Gazebo, in contrast with simulators with rendering engines built on
Unity [169], is that it is not photo-realistic. However, our simulations
have been specifically conceived for testing the interactions among dif-
ferent software components, e.g., the interaction between the flight stack
with custom developed ROS nodes, with no interest in evaluating the vi-
sion pipeline performance.

With the same goal in mind, the simulated drone, even if it does not re-
semble the real platforms in terms of inertia and aerodynamic properties,
is equipped with all the sensors that are available on the real experimen-
tal platform. In particular, monocular cameras, stereo cameras and range
finders plugins have been used. In the same way, the 3D Gazebo world
tries to reproduce the real experimental environment. For instance, two
Gazebo worlds, which try to emulate the LDC arena (see Section 2.2.2),
are shown in Figure 2.1.

A schematic representation of the working mechanism of the simula-
tion environment is shown in Figure 2.2. The PX4 SITL communicates
over UDP with external APIs (ROS in our case) via MAVLink protocol
(for details see [170]) as if a real drone was connected. Note that the
mavros [171] ROS driver for MAVLink communication is employed to
handle this kind of communication. The PX4 SITL to external API link
is mainly used for providing position and velocity set-points to the virtual
drone. At the same time, the PX4 SITL communicates via MAVLink also
with QGroundControl [172], a Ground Control Station (GCS) software.

46



2.2. Experimental environment

(a) LDC2020 (b) LDC2021

Figure 2.1: Simulation environment for reproducing experimental conditions of LDC

This allows to use QGroundControl for controlling the simulated drone,
to design and execute missions, change controller and estimator param-
eters, and to test the status of the simulated drone in real-time. Then, a
direct link is established between the PX4 SITL and the simulator itself.
This link is used to receive sensor data from the simulated world and to
send the computed actuator commands to it. Finally, there is also a com-
munication link between the Gazebo simulator and the ROS environment.
This communication link is used for sending images and point clouds, in
the form of ROS topics, from the simulated stereo and monocular cameras
to the navigation and guidance stack.

2.2 Experimental environment

2.2.1 FlyART

The Flying Arena for Rotorcraft Technologies (FlyART) of Politecnico di
Milano (shown in Figure 2.3) is a 12m×6m×4m indoor facility equipped
with an Optitrack [41] Motion Capture system (Mocap). The system is
composed by 12 infra-red cameras which detect markers, sensitive to the
infrared light, mounted on top of the UAVs. A dedicated ground control
computer, running Windows 10, is used for controlling the motion capture
system and providing the measured UAV poses over a Wi-fi connection.
This information could be either fused on the UAV estimator, replacing

47



Chapter 2. Simulation and experimental environment

Figure 2.2: Simulator schematic representation

de facto GPS measurements in the indoor environment of the laboratory,
or could be simply used as ground truth for accessing performance of
GPS-denied navigation.

Figure 2.3: FlyART experimental facility

A second ground control computer, running Ubuntu 18.04 operating
system and ROS Melodic, receives telemetry information from the drones
via Wi-fi. In some cases, it is also used for sending commands or tasks to
the aerial platforms.

48



2.2. Experimental environment

The FlyART has been opportunely customized depending on the con-
sidered experimental activity. Consider, for example, Figure 2.4, in which
some cardboard obstacles have been placed in the arena for accessing
planning and collision avoidance capabilities and mapping accuracy.

(a) FlyART for LDC2020 (b) FlyART for LDC2021

Figure 2.4: Customized version of FlyART for reproducing experimental conditions of
LDC

In addition to this, 4 to 5 visual markers (QR or ArUCo) have been
placed for experiments concerning localization and/or vision-based land-
ing.

2.2.2 Leonardo Drone Contest arena

The Leonardo Drone Contest competitions are held in an indoor arena.
The competition field, shown in Figure 2.5, tries to emulate an urban en-
vironment. Its dimensions are 20m×10m×3m. The boundaries of the
field are delimited by a net.

The obstacles placed in the arena consist of cardboard objects with
glued textures on them. The obstacles are, at most, three meters high with
passages of, at least, one meter among them. Note that no motion capture
system is available in the arena. Depending on the competition edition,
the arena sees the presence of different kinds of visual markers (QR or
ArUco), ground robots and a fixed surveillance camera (see Chapter 4).

49



Chapter 2. Simulation and experimental environment

Figure 2.5: The Leonardo Drone Contest arena (from [173])

2.2.3 Aerial vehicles

In the following, we show all the aerial platforms employed throughout
this work. All the vehicles share the same low-level software architecture,
depicted in Figure 2.6.

The software architecture shares many similarities with the simula-
tor, except that in this case the processes are executed on three different
boards. The ground control station is a laptop with the Ubuntu 18.04 dis-
tribution installed. It runs ROS Melodic and the GCS software QGround-
Control. The ground control station sends commands (in the form of tasks
or directly set-points) and receives high-level information from the aerial
platforms, which in turn are connected to the ROS network, over Wi-fi.

The aerial platforms are equipped with two processing boards, the
flight control unit and the companion computer. The former runs the low-
level control and state estimation laws, while the latter, equipped with
a Wi-fi module, is appointed to communicate with the ground control
station and to execute all the developed navigation and guidance algo-
rithms. The two boards communicate through MAVLink protocol using
mavros. In particular, the companion computer sends the position and/or
velocity set-points to the FCU and receives the estimated state and sen-
sor measurements. Finally, the FCU establish a direct connection with
QGroundControl, through which we can access the flight control related
parameters and receive telemetry data.

50



2.2. Experimental environment

Figure 2.6: Software architecture shared by all aerial platforms

ROG-1

ROG-1 (see Figure 2.7) is an octocopter with coaxial propellers. It was
specifically designed for the LDC first competition (see Section 4.2) and
developed in collaboration with the Politecnico di Milano spin-off com-
pany ANT-X [174]. Its main features are reported in Table 2.1.

Table 2.1: ROG-1 characteristics

Feature ROG-1
Take Off Weight (TOW) 3.75 kg
Size 500× 500× 300mm
Motors 8 x KDE2315XF-965
Propellers 8 x carbon-nylon two-bladed 9443
Battery 4S LiPo 16 000mAh (weight 1.35 kg)
Flight time (hovering) 17min

The drone is equipped with a Pixhawk 4 Flight Control Unit (FCU) and
an NVIDIA Jetson TX2 companion computer mounted on a Connect Tech
Orbitty Carrier board. The main navigation camera is represented by a

51



Chapter 2. Simulation and experimental environment

Figure 2.7: ROG-1

Stereolabs ZED stereo camera (see Figure 2.8). The stereo camera, whose
main features are reported in Table 2.2, is inclined slightly downward, i.e.,
15 degrees with respect to the horizontal plane.

Figure 2.8: ZED stereo camera (from [175])

Furthermore, the drone is equipped with a downward-looking monoc-
ular camera OpenMV H7 plus [176], which characteristics are shown in
Table 2.3.

Finally, a TeraRanger Tower Evo (see Figure 2.9) is mounted in the

52



2.2. Experimental environment

Table 2.2: ZED and ZED2i stereo camera characteristics

Feature ZED ZED2i
Weight 170 g 166 g
Size 175× 30× 33mm 175× 30× 43mm
FOV horizontal 90 deg 110 deg
FOV vertical 60 deg 70 deg
Power 5V/380mA 5V/380mA
Baseline 120mm 120mm

Table 2.3: OpenMV H7 plus camera characteristics

Feature OpenMV
Weight 17 g
Size 75× 36× 29mm
FOV horizontal 70.8 deg
FOV vertical 50.6 deg
Power 3.3V/240mA
Processor ARM® 32-bit Cortex®-M7 CPU

upper part of the UAV. The Tower is equipped with 8 TeraRanger Evo
60m range finders, oriented in different directions around the UAV, for
perceiving potential obstacles.

Figure 2.9: Terabee TeraRanger Tower EVO (from [177])

53



Chapter 2. Simulation and experimental environment

ROG-2

ROG-2 (see Figure 2.10) is a platform born as evolution of ROG-1. The
ROG-1 propulsion system has been upgraded, leading to higher endurance,
less noise and lower weight. ROG-2 main characteristics are summarized
in Table 2.4.

Figure 2.10: ROG-2

Table 2.4: ROG-2 characteristics

Feature ROG-2
Take Off Weight (TOW) 3.03 kg
Size 430× 300× 200mm
Motors 8 x T Motor F90 KV1300
Propellers 8 x polycarbonate two-bladed 7042
Battery 4S LiPo 16 000mAh (weight 1.35 kg)
Flight time (hovering) 20min

A minimum set of sensors are equipped for competing in the LDC2021
edition (see Section 4.3). In particular, ROG-1 and ROG-2 share the same
FCU and main navigation stereo camera. On the other hand, ROG-2 does

54



2.2. Experimental environment

not carry any range finder for collision avoidance, but a single laser range
finder, a Garmin Lidar-Lite v3 (see Figure 2.11), points downward and it
is used for altimeter purposes.

Figure 2.11: Garmin Lidar-Lite v3

An additional OpenMV H7 plus monocular camera is mounted point-
ing forward, inclined 15 degrees with respect to the vertical axis facing
toward the horizontal plane. The companion computer of ROG-1 has been
replaced with the Nvidia Jetson Xavier NX. This represents an upgrade
in terms of computational power and memory, while, at the same time, it
leads to a decrease in weight since no carrier board is needed.

ROG-3

ROG-3 (see Figure 2.12) is the last platform for testing autonomous guid-
ance and navigation algorithms, designed in the context of the third edi-
tion of LDC (see Section 4.4). It carries the same propulsion system of
ROG-2 and the same boards (FCU and companion). For completeness,
ROG-3 main characteristics are shown in Table 2.5.

Table 2.5: ROG-3 characteristics

Feature ROG-3
Take Off Weight (TOW) 3.16 kg
Size 430× 300× 200mm
Motors 8 x T Motor F90 KV1300
Propellers 8 x polycarbonate two-bladed 7042
Battery 4S LiPo 16 000mAh (weight 1.35 kg)
Flight time (hovering) 20min

55



Chapter 2. Simulation and experimental environment

Figure 2.12: ROG-3

Minor changes have been made to sensor suite compared to the pre-
vious version of the platform. In particular, the ZED stereo camera has
been replaced with the ZED2i. This stereo camera features are reported
and compared with the ones of ZED in Table 2.2. Thanks to its wider field
of view, the ZED2i is mounted with no inclination with respect to the
horizontal plane. Two monocular OpenMV cameras are still equipped,
even if in different locations. The same range finder is also used. One
last change regards the equipment of an additional small low-resolution
monocular camera for optical flow computation: the PMW3901 [178].

ANT-X

The small quadcopter, codename ANT-X, shown in Figure 2.14 has been
employed in experimental activities as follower drone (see Section 5.2).
It equips a Pixhwak Mini FCU and a small CPU, the NanoPi NEO Air
(see Figure 2.13), which features are reported in Table 2.6, as companion
computer.

The ANT-X main characteristics are summarized in Table 2.7.

56



2.2. Experimental environment

Figure 2.13: NanoPi NEO Air (from [179])

Table 2.6: NanoPi NEO Air features

Name CPU Quad-core Cortex-A7 1.2 GHz
RAM 512 MB
Wireless 2.4 GHz 802.11 b/g/n
Dimensions 40 x 40 mm
Weight 7.9 g
Power 5 V - 2 A

Table 2.7: ANT-X characteristics

Feature ANT-X
Take Off Weight (TOW) 0.3 kg
Size 200× 200× 40mm
Motors 4
Propellers 4 x three-bladed 3-inch
Battery 3S LiPo 950mAh (weight 1.1 kg)
Flight time (hovering) 6.5min

57



Chapter 2. Simulation and experimental environment

Figure 2.14: ANT-X

CARRIER-1

The octocopter, codename CARRIER-1, shown in Figure 2.15 has been
used in experimental activities as landing target (see Section 5.2). It has
a Pixhwak Mini FCU and the NanoPi NEO Air as companion computer.
The CARRIER-1 main features are summarized in Table 2.8.

Table 2.8: CARRIER-1 characteristics

Feature CARRIER-1
Take Off Weight (TOW) 2.57 kg
Size 580× 580× 140mm
Motors 8 x T-motor F40 PRO II 1600KV0
Propellers 8 x two-bladed 6535
Battery 6S LiPo 8000mAh (weight 1.1 kg)
Flight time (hovering) 16min

58



2.2. Experimental environment

Figure 2.15: CARRIER-1

59





CHAPTER3
Visual odometry error modeling

This Chapter aim is to define and validate a modeling approach for visual
odometry errors. We propose a time-domain-analysis technique, called
Allan Variance (AVAR), to model the types and magnitude of various
noise terms affecting the stereo VO position measurements. The AVAR
is a mathematical tool introduced by Allan in 1966 to study the error in
frequency of atomic clocks [180], and it is widely used for characteriz-
ing Inertial Measurement Units (IMU) [181]. Through suitable compu-
tations, a state-space representation of the errors, which can be used in
sensor-fusion framework, is obtained. The retrieved model is then em-
ployed for validation through a Kalman predictor. This analysis has been
conducted on an experimental dataset collected using a multicopter UAV
equipped with stereo vision. The runs of the experiment have been de-
signed following the Design of Experiments (DoE) technique [182]. In
this framework, we will also evaluate and discuss changes in the model

61



Chapter 3. Visual odometry error modeling

parameters due to environmental and flight conditions.

3.1 Motivation

Many studies have been conducted on visual odometry for aerial vehicles
navigation. Consider, for instance [7], which was one of the first papers
on stereo VO-based UAV navigation. In the same year, an application of
EKF-based vSLAM was proposed [183]. Successively, in [14, 55], the
authors employed a monocular camera and an IMU for state estimation
and point-to-point steering of an UAV in an outdoor, GPS-denied environ-
ment. These works have employed monocular vSLAM algorithms based
on PTAM. Similar works have been carried out also in [9, 10]. In the fol-
lowing years, many commercial products, e.g., the Intel Realsense D435
and Intel Realsense T265, made the deployment of VO/vSLAM on UAVs
easy and accessible.

However, despite the effort to improve the performance of visual odom-
etry systems, both in terms of computational speed and accuracy, pub-
lished work on this topic has paid little attention to the issue of integrat-
ing stereo visual odometry estimates into autonomous navigation systems.
As a matter of fact, the availability of a description of the noise dynam-
ics, which for other systems, such as Inertial Navigation System (INS)
and GNSS, are already well known, would be of great benefit in a sensor-
fusion-oriented framework.

Note that the characterization of vision systems led to additional dif-
ficulties with respect to inertial ones. In particular, while inertial sensors
measure directly the state of the robot (proprioceptive), stereo vision al-
lows to retrieve information about an agent’s movement by inspecting the
surrounding environment (exteroceptive). Thus, the environment and the
conditions in which the tests are executed play an important role in the
determination of the system’s performance.

In order to assess the performance of multiple algorithms or sensors,
visual odometry requires a framework for systematic and comparative
study. For this purpose, this Chapter aims at offering a methodological
approach for the quantification and modeling of visual odometry errors.

62



3.2. Related works

3.2 Related works

When considering the accuracy of stereo vision systems, we should con-
sider a number of factors [184], namely:

• Pixel quantization, dependent on intrinsic characteristics of the cam-
eras (focal length and resolution)

• Accuracy of the intrinsic cameras’ parameters determined during
calibration.

• Accuracy of the 2D segmentation process used to detect correspond-
ing objects in the left and right camera. This algorithm provides the
input for the triangulation process for disparity estimation (see also
Appendix C)

To these factors, the errors of the processes involved in the odometry
computation should be added. With particular reference to feature-based
methods, errors can arise in:

• The feature detection and matching process over consecutive frames.

• The optimization processes typical of the refinement stage, i.e., out-
liers rejection and possible motion and structure optimization (bun-
dle adjustment).

In the literature, some results regarding the above factors are available.
In [185] the authors evaluated the effect of pixel quantization. The inac-
curacies caused by the calibration procedure have been tackled in [186].
The two error sources are simultaneously studied in [187]. In [188] the
authors proposed a study on the uncertainty of stereo triangulation. In
particular, the errors are analyzed when varying the length of the baseline
and the extrinsic parameters uncertainty. In [189] the impact of errors
of the 2D segmentation algorithm used for calibration board detection is
analyzed. In [190] the depth resolution of a stereoscopic system is stud-
ied. The estimation of random and systematic errors at various depths is
carried out in [184].

Passing to visual odometry accuracy, in [191] the sensitivity to the
average distance of landmarks is investigated. In [192] the authors model

63



Chapter 3. Visual odometry error modeling

and analyze in statistical sense the long-range drift of stereo vision. In
[193] the bias of stereo visual odometry is investigated. In particular, a
bias correcting technique, even if not sufficiently fast for online use, has
been proposed. Finally, in [194] the authors investigated noise models
for different features detection and matching processes in stereo visual
odometry.

All of these results are useful to provide insights on the nature and
magnitude of errors in stereo pose reconstruction, however, they are very
difficult to be used in practice.

3.3 Background

This section is meant for providing some background on the classical
approach based on Allan Variance analysis and Kalman prediction em-
ployed in the modelling of IMU errors. This approach will then be gener-
alized to deal with visual odometry problems in Section 3.4.

3.3.1 Allan Variance

Consider a time series of n values yi, i = 1, 2, . . . , n, representing the
time history of the stochastic error of interest. This vector has to be split
into M clusters of consecutive points of equal length τ (τ < n/2), chosen
as an integer multiple of the sampling interval τ0, such that τ = mτ0.

For each cluster, computing the average over the points contained in
the cluster itself, leads to the definition of ȳi. The Allan Variance (AVAR)
is defined as the variance of a random variable ξ, equal to the difference
between the average of adjacent clusters:

ξi+1,i = ȳi+1 − ȳi, (3.1)

computed over all clusters of the same size that can be formed from the
data. The AVAR expression results into:

σ2(τ) =
1

2(n− 2m)

n−2m∑
i=1

[ȳi+1 − ȳi]2. (3.2)

64



3.3. Background

The AVAR has become a standard in IMU noise analysis [195] thanks to
its capability to provide an approximation of the dynamics of the noise in
terms both of Power Spectral Density (PSD) and, under some restrictions,
of state space representation. This noise characterization method is based
on the relation between the AVAR representation of a random process and
its PSD, denoted as S(f). These two quantities are linked by the integral
transformation

σ2(τ) = 4

∫ ∞

0

S(f)
sin4(πfτ)

(πfτ)2
df. (3.3)

This transformation has no inverse formula and, thus, the AVAR does not
determine a unique noise spectrum.

As a consequence, a series of fundamental noises, each one having
its own PSD and associated AVAR, must be chosen. The objective is to
graphically obtain an Allan Standard Deviation (ADEV), i.e., the square
root of the AVAR, which resembles, as close as possible, the one retrieved
from the data. It is worth mentioning that this graphical comparison is
carried out in a log-log plot with cluster time τ on the horizontal axis.

The PSD of each fundamental noise can be associated with the output
of a stochastic model, with frequency response function H(jω), driven
by white-noise. Exploiting the relation:

So(ω) = |H(jω)|2Si(ω), (3.4)

where So(ω) is the output PSD and Si(ω) the PSD of the white noise
driving function, it is possible to retrieve the spectral factorH(s). Finally,
if H(s) is a finite order polynomial function, a state space representation
can be computed.

Most noise processes of interest have a PSD described by the power
law S(f) = βf−α, where f is the frequency, α is the power law coeffi-
cient and β is a fixed value related to the noise coefficient. Despite being
available in the literature [181], [196] some relevant noise terms are here
introduced and discussed for completeness and consistency of notation.

65



Chapter 3. Visual odometry error modeling

White frequency noise

The white frequency noise is characterized by constant PSD QN = N2.
In the rate gyro analysis framework it often takes the name of Angular
Random Walk (ARW). For short, the same nomenclature will be main-
tained in this work. The corresponding ADEV is given by:

σ(τ) =
N√
τ
. (3.5)

The ADEV plot in log-log scale is a straight line with slope -1/2 and the
PSD coefficient N can be obtained by looking at the value for τ = 1.

The state representation of the ARW is a single white Gaussian noise
ωN forcing term in the output equation. Thus, it can be reduced to:

z(t) = zN(t) = ωN(t), (3.6)

where zN(t) is the contribution of the ARW to the total noise z(t).

Random walk frequency noise

The random frequency noise is defined by a power law PSD with α = 2,
namely:

SK(f) =
K2

(2πf)2
, (3.7)

whereK is the random-walk coefficient. This kind of noise is often called
Rate Random Walk (RRW) in rate gyros characterization and the same
name will be adopted also for this work. By substituting SK(f) into (3.2),
one obtains:

σ(τ) =
K√
3

√
τ . (3.8)

Therefore the log-log ADEV plot of a pure RRW is a straight line with
slope 1/2. The coefficient K can be read on the ADEV plot, even if other
noises are present, by first finding a range of values of τ over which the
plot resembles a straight line with slope 1/2, and then extrapolating such
line until it reaches τ = 3.

66



3.3. Background

Finally, being the spectral factor H(s) = 1/s, the state representation
of a pure RRW is:

żK(t) = ωK(t) (3.9)
z(t) = zK(t) (3.10)

where zK(t) is the contribution of the RRW to the total noise z(t) and
ωK(t) is a driving white Gaussian noise with PSD QK = K2.

Bias instability

The origin of this noise is the electronics or other components that are
susceptible to random flickering. The bias instability PSD is defined as
follows (from [196]):

SB(f) =

{
B2

2π
1
f

for f < f0

0 for f > f0
(3.11)

where B is the bias instability coefficient and f0 the cut-off frequency.
The ADEV results:

σ(τ) =
2B2

π
(3.12)

×
[
ln 2− sin3 x

2x2
(sinx+ 4x cosx) + Ci(2x)− Ci(4x)

]1/2
where x = πf0τ and Ci is the cosine-integral function:

Ci(x) = −
∫ +∞

x

cos t

t
dt. (3.13)

The log-log ADEV plot presents a straight line with slope +1 for τ < 1
f0

.
For τ > 1

f0
, the ADEV can be approximated as:

σ(τ) ≃ B

√
2 log 2

π
= 0.664B, (3.14)

67



Chapter 3. Visual odometry error modeling

which is a straight line with slope 0. The coefficient B can be estimated
by dividing the value of the ADEV in the zero-slope region by 0.664. In
IMU analysis, bias instability noise is used to represent the contribution
given by the part of the ADEV with slope 0. However, bias instability
comes with a downside: its PSD cannot be related directly to a rational
spectral factor since it is not an even function of f .

As can be seen, the PSD for bias instability does not admit a rational
spectral factor, which limits its applicability in a state estimation frame-
work. A valid approximation for bias instability can be represented by the
Gauss-Markov (GM) first order process, described in the following.

Gauss-Markov process

The Gauss-Markov process can be modelled as

żB(t) = −
1

TB
zB(t) + ωB(t) (3.15)

z(t) = zB(t), (3.16)

where zB(t) is the approximation of the bias instability noise, TB is the
correlation time and ωB(t) is a driving white Gaussian noise with PSD
QB. The spectral factor is

H(s) =
1

s+ 1/TB
, (3.17)

hence the PSD:

SB(f) =
QB

(1/TB)2 + (2πf)2
. (3.18)

Substituting the expression of the PSD into (3.2), we obtain:

σ(τ) = TB

[
QB

τ

(
1− TB

2τ

(
3− 4e

− τ
TB + e

− 2τ
TB

))]1/2
. (3.19)

The ADEV for a GM process can be split into three regions. The first
one, for τ << TB, can be approximated as σ(τ) =

√
QBτ/3, while the

68



3.3. Background

last one, for τ >> TB, can be approximated as σ(τ) = TB
√
QB/τ . A

key aspect is that this process has always an ADEV plot characterized
by two asymptotes with slope +1/2 and -1/2 respectively. In the middle
region, for τ ≃ 1.89TB, the ADEV equation is simplified to σ(τ ≃ TB) ≃
0.4365

√
QBTB.

The GM process is a very convenient model for two reasons. First, it
provides a rational model for bias instability (the flat portion). Second, as
its ADEV a parabola-like concave shape, it can be used to reconstruct the
ADEV of signals having regions characterized by a concave trend.

Drift Rate Ramp

The drift rate ramp and the flicker walk frequency modulated (FM) have
different nature but present the same PSD, and therefore the same ADEV.
The flicker walk FM, or flicker FM, is an ideal noise defined by its own
PSD, while the drift rate ramp is often the result of deterministic errors.
Here, to avoid confusion, the noise associated with this PSD will be called
just drift rate ramp, or rate ramp. It is described by the power law with
α = 3:

SR(f) =
R2

(2πf)3
. (3.20)

Being SR(f) an odd function of f , the rate ramp, as the bias instability, is
not related to any state space representation. The resulting ADEV is:

σ(τ) =
Rτ√
2
. (3.21)

Its ADEV plot is a straight line with slope +1, and the coefficient R can
be found by looking at the value of the ADEV for τ =

√
2.

3.3.2 Kalman predictor

In order to compare the performance of the error model with experimental
data, a one-step-ahead Kalman predictor is often employed. Consider the
following continuous-time state-space system:

69



Chapter 3. Visual odometry error modeling

ẋ = Ax+Bu+Gw (3.22)
y = Cx+Du+ V v (3.23)

with no deterministic input, i.e., u = 0 and stochastic process noise w
and measurement noise v. The processes w and v are independent. The
corresponding discrete-time model with sampling time Ts can be written
as:

xk+1 = Adxk + w̃k (3.24)
yk = Cdxk + ṽk (3.25)

where Cd = C, while the state matrix Ad is equal to:

Ad = eATs . (3.26)

w̃k ∼ N (0, Qd) is a white Gaussian random variable with covariance Qd,
and ṽk ∼ N (0, Rd) is a white Gaussian random variable with covariance
Rd.

Following [197], the discrete time process noise covariance matrix can
be computed as:

Qd =

∫ Ts

0

eA(Ts−s)GQG⊤eA
⊤(Ts−s)ds. (3.27)

Note that for small Ts we have Qd ≈ (GQG⊤)Ts. The discrete time
measurement noise covariance matrix Rd can be found from the PSD R
as:

Rd ≈
V RV ⊤

Ts
. (3.28)

After having computed the asymptotic covariance matrix of the estimate
P , solution of the discrete-time algebraic Riccati equation

AdPA
⊤
d +Qd − AdPC

⊤
d (CdPC

⊤
d +Rd)

−1CdPAd = 0, (3.29)

70



3.4. Proposed approach

the steady-state Kalman gain is computed as

K = AdPC
⊤
d (CdPC

⊤
d +Rd)

−1. (3.30)

Finally, the predicted state x̂ and output ŷ can be found through the fol-
lowing relations:

x̂k+1 = Adx̂k +K(yk − Cdx̂k) (3.31)
ŷk+1 = Cdx̂k+1. (3.32)

3.4 Proposed approach

In this Section, the approach proposed for visual odometry error analysis
is presented along with the designed experimental campaign.

3.4.1 Statistical design of experiments

Statistical design of experiment refers to the process of planning the ex-
periment so that appropriate data that can be analyzed by statistical meth-
ods will be collected, resulting in valid and objective conclusions [182].
There are two aspects to take into consideration in the experimental prob-
lem: the design of the experiment and the statistical analysis of its results.

First of all, in general, potential design factors must be identified and
separated from nuisance variables when planning the experiment. In the
former category we can insert the design factors, which are the variables
that were chosen to be studied in the experiment; the held-constant fac-
tors, which may have an effect but are not of interest, and the allowed-
to-vary-factors, i.e., the ones that either the experimenter cannot control
or something that can be balanced out by simply randomizing the experi-
mental runs.

Once having identified the factors, other fundamental aspects regard
the range over which they will be varied and the levels at which the ex-
perimental runs will be conducted.

If several factors are involved, the most efficient experiment is ob-
tained with a factorial design, i.e., an experimental design in which all
possible combinations of the levels of the factors are investigated.

71



Chapter 3. Visual odometry error modeling

Usually two levels are selected, leading to a 2k factorial design, where
k represents the number of factors. This is often a good choice since can
be easily extended to a 3k design if an indication about the curvature of
the process we are modeling is needed.

In factorial design, we are interested in main effects and interactions
between factors. The main effect of a factor can be defined as the change
in response caused by the change in the level of the factor. At the same
time, an interaction is found if the response between the levels of one
factor varies at all the levels of the other factors.

To conclude, compared to varying one factor at a time, the factorial
design results fundamental for capturing interactions (if they exist) and it
is more efficient in terms of number of experimental runs needed.

3.4.2 Allan variance for visual odometry

In order to model the experimental ADEV, two models have been consid-
ered and analyzed. The first is composed by GM, RRW and ARW, while
the second also comprehends the drift rate ramp term.

For what concerns the first case, the AVAR results equal to:

σ2(τ) =
N2

τ
+
K2

3
τ+ (3.33)

+
T 2
BQB

τ

(
1− TB

2τ

(
3− 4e

− τ
TB + e

− 2τ
TB

))
.

While usually the four coefficients TB, QB, N and K are determined by
graphically comparing the experimental ADEV with the obtained one, in
this case, for repeatability purposes, an optimization problem has been
set. First of all, we write equation (3.33) using the parameter vector Θ =
[θ1, θ2, θ3, θ4] = [N,K,QB, TB], whose components will be constrained
to be positive:

σ2(τ ; Θ) =
θ21
τ

+
θ22
3
τ+ (3.34)

+
θ24θ3
τ

(
1− θ4

2τ

(
3− 4e

− τ
θ4 + e

− 2τ
θ4

))
.

72



3.4. Proposed approach

For each cluster length τi for i = 1, . . . , L, we can use the experimental
value of the AVAR σ̄2(τi) for defining a cost function to be optimized,
namely:

J(Θ) =
L∑
i=1

(σ̄2(τi)− σ2(τi; Θ))2. (3.35)

However, the optimization process can be improved considering that the
confidence of the Allan Variance improves as the number of indepen-
dent clusters is increased. In particular, define δ the relative deviation of
σ̂(τ,M) from σ(τ):

δ =
σ̂(τ,M)− σ(τ)

σ(τ)
, (3.36)

where σ̂(τ,M) denotes the estimate of the ADEV obtained from M in-
dependent clusters, and σ(τ) is the true value of the ADEV. Note that the
following relations hold:

σ̂(τ,M) −−−−→
M→∞

σ(τ). (3.37)

Through some computations [198] the standard deviation, indicated as σ,
of the random variable δ can be obtained:

σ[δ] ∝M−1/2 = (n/m)−1/2. (3.38)

This quantity indicates the relative uncertainty of σ(τ) due to a finite num-
ber of measurements. Equation (3.38) shows that the estimation uncer-
tainty for the ADEV in the region of short cluster length τ is small and
increases proportional to

√
τ .

Thus, the standard deviation of the experimental ADEV can be written
as [181]:

σ[σ̄(τ)] = k

√
m

n
σ̄(τ), (3.39)

where k is an empirical constant. Approximating the variance of the ex-
perimental AVAR with [198]:

73



Chapter 3. Visual odometry error modeling

σ2[σ̄2(τ)] = (2σ[σ̄(τ)])2, (3.40)

and defining the weight wi:

wi =
1

σ2[σ̄2(τi)]
, (3.41)

the cost function could be defined as:

Jw(Θ) =
L∑
i=1

wi(σ̄
2(τi)− σ2(τi; Θ))2. (3.42)

Considering the model with the addition of rate ramp, a similar op-
timization problem has been set for finding the five parameters Θ =
[TB, QB, N,K,R]. However, since the PSD is an odd function of the
frequency f , its spectral factor would result in a non-integer order model.
Thus, a state space form will be not readily available.

3.4.3 Statistical analysis of results

The analysis of variance (ANOVA) [199] can be used to determine whether
and which main factors and interactions play a significant role in the per-
formance of the system.

Following the approach of [182], we consider the effects model for a
two factors design. Defining the observed response yijk when the first
factor is at the i-th level (i = 1, 2, . . . , a) and the second factor is at the
j-th level (j = 1, 2, . . . , b) for the k-th replicate (k = 1, 2, . . . , n), we can
write the following expression:

yijk = µ+ τi + βj + (τβ)ij + ϵijk, (3.43)

where µ is the overall mean effect, τi are the effects of the ith level of
the first factor, βj are the effects of the jth level of the second factor,
(τβ)ij represent the effects of the interaction between τi and βj and ϵijk is
a random error component. It is worth noting that factors and interactions
have been defined as deviations from the overall mean:

74



3.4. Proposed approach

a∑
i=1

τi =
b∑

j=1

βj =
a∑

i=1

(τβ)ij =
b∑

j=1

(τβ)ij = 0. (3.44)

In the ANOVA we are interested in testing the hypotheses regarding
main factors:

H0 : τ1 = τ2 = · · · = τa = 0

H1 : at least one τi ̸= 0

H0 : β1 = β2 = · · · = βb = 0

H1 : at least one βi ̸= 0

and interactions:

H0 : (τβ)ij = 0 for all i, j
H1 : at least one (τβ)ij ̸= 0

If all the null hypotheses H0 presented above are true, then all the esti-
mated mean squares should be equal to a value that we indicate as σ2. An
unbiased estimator of σ2 is represented by the mean square of the errors
ϵijk. As a result, for evaluating if data are supporting the null hypothesis
H0 we can inspect the ratio between the effect or interaction mean square
and the error mean square, denoted as F . If we obtain a large value, it
means that this effect of interaction cannot be neglected. At the same
time, we can look at the p-value, i.e., the probability of obtaining that
outcome if the null hypothesis was true. Thus, small p-values represent
strong evidence against the null hypothesis.

However, this analysis is valid if and only if the observations are ad-
equately described by the model reported in equation (3.43) and if the
errors are normally and independently distributed with zero mean and
constant but unknown variance σ2. These assumptions can be checked
looking at the normal probability plot of the residuals of the ANOVA,
which is a graphical technique in which data lie on a straight line if they
are approximately normally distributed.

75



Chapter 3. Visual odometry error modeling

3.5 Experimental results

In this Section, the models obtained from the Allan Variance analysis are
discussed and validated through the use of a Kalman predictor. Finally,
the results obtained through the ANOVA performed on the designed ex-
perimental campaign are reported.

3.5.1 Factorial design for visual odometry analysis

All experiments have been carried out in the FlyART using the ROG-1
aerial platform (see Chapter 2). The stereo camera frame rate for VO
computation has been set to 640x480 and the frame rate to 15 fps. The vi-
sual odometry algorithm employed is the one provided in the ZED SDK1.
For considerations about the choice of the software refer to Section 4.2.2.
During the flights, position and yaw measurements for drone state estima-
tion are provided by the Mocap, which is also used for collecting ground
truth data. Finally, note that the position set-points are sent over Wi-Fi
directly from a ground control station.

A factorial design has been carried out specifically for this analysis. It
is worth noting that a lot of potential design factors can lead to important
variations in the visual odometry performance and that can be interesting
to be investigated.

The camera pitch, being a factor difficult to be changed by the ex-
perimenter and not necessarily of interest, has been considered a held-
constant factor. Furthermore, an example of allowed-to-vary factor is the
external ambient light, which is a small percentage of the one inside the
laboratory, in turn controllable and that can be used as design factor.

In typical indoor operating modes, the factors that need to be consid-
ered are: shape of trajectory, flight altitude (which results in a change in
the distance of tracked features), lighting conditions, changes in drone’s
attitude between frames, and speed.

One caveat regards the choice of speed as design factor. Performing
the same trajectory at different speeds would result in time series of dif-
ferent lengths, leading to possible errors in the evaluation of the response

1https://www.stereolabs.com/developers/release/

76

https://www.stereolabs.com/developers/release/


3.5. Experimental results

variable. To face this issue, a closed trajectory can be selected and re-
peated multiple times when the speed is increased. As a consequence, the
two factors are not independent and only the speed has been considered
in the analysis.

In light of the aforementioned design factors, the experimental activity
for characterizing visual odometry will be formulated as a 24 full factorial
design.

The chosen trajectory is circular with 1 meter radius. The angular
speed will be either 0.2 rad/s or 0.6 rad/s. In this latter case, the tra-
jectory will be traveled three times. For what concerns the drone’s (or
camera) attitude in the global inertial frame, it will be either kept fixed
or varied in such a way that the first body axis is, at each instant in time,
oriented as the velocity vector. This latter will be named yaw following
mode in this work. The flight altitude will be either 1m or 2m. Finally,
the average light in the environment will be maintained around 100 lux
or 250 lux. In these conditions, the time series last about 32 s, which
represents a good tradeoff between the effort spent for performing the ex-
periment and the amount of information captured. It is worth noting that
longer experiments, which are carried out in the same operating condi-
tions, are used for validation.

The 16 flights with the corresponding conditions are reported in Table
3.1.

3.5.2 Error models

An example of visual odometry position estimate and corresponding ground
truth in the East-North-Up (ENU) frame, as well as the set-points pro-
vided to the drone, is shown in Figure 3.1, where the errors are already
clearly visible, despite the short duration of the experiment.

The experimental ADEV has been computed for the visual odometry
position error (obtained with respect to the Mocap measurements) in the
inertial ENU frame. Considering the model comprising GM, RRW and
ARW, the results are shown in Figure 3.2, which refers to the analysis of
data collected in run 2 (see Table 3.1).

It is worth noting that the fit between experimental and constructed
curves improves greatly by adding in the model formulation the rate ramp

77



Chapter 3. Visual odometry error modeling

0 5 10 15 20 25 30 35

-0.5

0

0.5

1

E
a
s
t 
[m

]

ZED Mocap Set-point

0 5 10 15 20 25 30 35
-1

0

1

N
o
rt

h
 [
m

]

0 5 10 15 20 25 30 35

Time [s]

1.8

1.9

2

U
p
 [
m

]

Figure 3.1: Position results of an experimental run (run 16)

10
-2

10
-1

10
0

10
1

10
2

10
-2

A
D

E
V

(x
)

Experimental ADEV

Model ADEV

10
-2

10
-1

10
0

10
1

10
2

10
-3

10
-2

10
-1

A
D

E
V

(y
)

10
-2

10
-1

10
0

10
1

10
2

10
-2

A
D

E
V

(z
)

Figure 3.2: Experimental and model ADEV for the three axis of the visual odometry
position error in the inertial frame (run 2)

78



3.5. Experimental results

Table 3.1: Description of the experimental runs

Run Altitude Speed
Yaw

Following Avg. Light

[m] [rad/s] [No/Yes] [lux]
1 1 0.2 N 100
2 2 0.2 N 100
3 1 0.6 N 100
4 2 0.6 N 100
5 1 0.2 Y 100
6 2 0.2 Y 100
7 1 0.6 Y 100
8 2 0.6 Y 100
9 1 0.2 N 250
10 2 0.2 N 250
11 1 0.6 N 250
12 2 0.6 N 250
13 1 0.2 Y 250
14 2 0.2 Y 250
15 1 0.6 Y 250
16 2 0.6 Y 250

noise. This updated version is shown in Figure 3.3.

However, as already mentioned in Section 3.4, this model cannot be
readily described by a state space representation. Note that methods to
construct (high-order) rational approximations exist in the literature, e.g.,
the Oustaloup approximation [200]. However, this would lead to an in-
crease in the number of states and, consequently, in the required real-time
computational load in a sensor-fusion framework. Additionally, in the
case of weakly observable states, the more complex model can be less
robust to unmodeled dynamics and nonlinearities.

For the model composed by ARW, RRW and GM, the state space form
can be obtained combining (3.15) and (3.9) for the state equation and
(3.6), (3.10), (3.16) for the output one:

79



Chapter 3. Visual odometry error modeling

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
0

A
D

E
V

(x
)

Experimental ADEV

Model ADEV

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
0

A
D

E
V

(y
)

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
0

A
D

E
V

(z
)

Figure 3.3: Experimental and model (considering also rate ramp noise) ADEV for the
three axis of the visual odometry position error in the inertial frame (run 2)

{
żB
żK

}
=

[
− 1

TB
0

0 0

]{
zB
zK

}
+

[
1 0
0 1

]{
ωB

ωK

}
(3.45)

z =
[
1 1

]{zB
zK

}
+ ωN (3.46)

The corresponding process noise PSD matrix Q is defined as:

Q =

[
QB 0
0 K2

]
, (3.47)

while the only term appearing in the measurement noise PSD matrix R
results to be the ARW PSD N2.

3.5.3 Kalman predictor

In order to assess the performance of the models, a validation experiment
has been executed in the same conditions of the 9th run of Table 3.1, but
performing 12 times the same trajectory, for a total duration of 380 s.

80



3.5. Experimental results

The simplified and high-fidelity models are retrieved from ADEV op-
timization (as in Figure 3.2 and 3.3) for the 9th run, and for brevity only
the x-axis error is considered. In order to validate the obtained models,
their PSD is compared with its estimate based on experimental data. The
PSD estimate is computed through the Welch method [201] using no av-
eraging to maintain a low bias. The comparison, represented in Figure
3.4, shows that the simpler model is able to reproduce the experimental
data quite well. Thus, it will be used for the following analysis.

Figure 3.4: Comparison between the models’ PSDs, obtained with and without the
inclusion of rate ramp noise from run 9, with the estimate of the PSD of experimental
data obtained from a validation run (only x-axis considered)

The model of the AVAR for the x-axis resulted in the following values
for the noise parameters:

K2 = 8.59e−5 m2/s

N2 = 4.26e−8 m2s

QB = 1.27e−6 m2/s

81



Chapter 3. Visual odometry error modeling

and the correlation time of TB = 25.06 s. After having discretized the ob-
tained state-space formulation for the simplified error model, a Kalman
predictor, as presented in Section 3.3.2, has been implemented. The com-
parison between the obtained predicted output and the experimental data
is shown in Figure 3.5. The difference between the two signals, as well
the 3σ bounds for the prediction are shown in Figure 3.6.

0 50 100 150 200 250 300 350

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

152.35 152.4 152.45

0.054

0.056

0.058

0.06

Figure 3.5: Comparison between Kalman predictor output, with noise parameters of
9th run’s model, and validation experimental data

The results show good generalization capabilities of the obtained model,
even using a longer validation experiment, which justifies the initial choice
of a dataset of shorter runs’ duration. The same procedure has been car-
ried out also for the North and Up axes and similar results (omitted for
brevity) were obtained.

3.5.4 Analysis of Variance

As already pointed out in Section 3.1, the characterization of vision sys-
tems is highly dependent on the environmental and flight conditions. In
order to assess the changes in the produced models, the optimization for

82



3.5. Experimental results

0 50 100 150 200 250 300 350

-0.015

-0.01

-0.005

0

0.005

0.01

150 152 154 156 158

-2

0

2

10
-4

Figure 3.6: Error of Kalman predictor output, with noise parameters of 9th run’s model,
with respect to validation experimental data and corresponding 3σ bounds

the ADEV coefficients has been run on the 16 experiments of the facto-
rial design presented in Table 3.1 and the computed spectral densities have
been used as response variable in an analysis of variance. In particular, in
order to obtain a single numerical value for the analysis, the three values
of the PSD of the considered noise (corresponding to the three axis of the
inertial reference system) are summed up and the square root is taken.

Let us first consider the main effects of the factors. The main effect of a
factor can be computed as the difference between the average response at
the low level and the one at the high level of the factor we are considering.

With particular reference to the RRW, the results are depicted in Figure
3.7.

It can be observed that the RRW greatly increases with the increase
in speed and altitude. At the same time, the GM slightly decreases with
the use of the yaw following mode, while it is basically constant with the
change in ambient light.

When it comes to interactions, their effect can be estimated looking

83



Chapter 3. Visual odometry error modeling

1 2

Altitude

0.02

0.025

0.03

0.035

0.04

0.045

0.05

M
e

a
n

0.2 0.6

Speed

0 1

Yaw Following

100 250

Light

Figure 3.7: Main effects plot of RRW spectral density

at if the effect of a factor depends on the level chosen for another one.
Interactions can be graphically interpreted from the plot in Figure 3.8.

Parallel lines in this plot mean that no interaction between the two
factors exists. In our case, yaw following seems to interact with lighting
conditions, speed and altitude, while speed and altitude look uncorrelated.
However, this interpretation is subjective and cannot be the sole technique
for the analysis of interactions. In order to reach an objective conclusion,
we consider the ANOVA for the model comprising of both main effects
and interactions (2-way), shown in Table 3.2.

Note that the main effects already highlighted, speed and altitude, have
very large F values and very small p-values. Among the interactions, as
already pointed out in the graphical analysis, yaw following seems to be
related to the other factors. It is worth noting that, looking at their p-
value, they seem less significant from the statistical point of view. In
order to check the validity of the model with main effects and interactions
consider Figure 3.9, in which the normal probability plot of the residuals
of the ANOVA is shown.

84



3.5. Experimental results

Figure 3.8: Interaction plot of RRW spectral density

Table 3.2: 2-way ANOVA on the RRW spectral density

Source
Sum of
Squares

Degrees of
Freedom

Mean
Square F P-Value

Altitude 0.00137 1 0.00137 65.46 0.0005
Speed 0.0037 1 0.0037 176.04 0
Yaw Following 0.00005 1 0.00005 2.3 0.1902
Light 0 1 0 0.01 0.9248
Altitude*Speed 0.00006 1 0.00006 2.73 0.1593
Altitude*Yaw Following 0.00035 1 0.00035 16.47 0.0097
Altitude*Light 0.00007 1 0.00007 3.24 0.1316
Speed*Yaw Following 0.00021 1 0.00021 10.15 0.0244
Speed*Light 0.00005 1 0.00005 2.34 0.1868
Yaw Following*Light 0.00021 1 0.00021 9.95 0.0253
Error 0.00011 5 0.00002
Total 0.00617 15

85



Chapter 3. Visual odometry error modeling

Figure 3.9: Normal probability plot of the 2-way ANOVA’s residuals for RRW

The residuals for all the experimental runs lie approximately on a
straight line, meaning that they are normally distributed and that the model
with main effects and interactions adequately describes the observations.

For what concerns the ARW, comparing the normal probability plot
of the residual of the two analysis of variance, i.e., 1-way and 2-way
ANOVA, the model which best approximates the linear behaviour results
to be the one with interactions. Its results are shown in Table 3.3.

The only non-negligible factor for the ARW spectral density seems
to be the altitude. In particular, considering the main effects plot (see
Figure 3.10), to an increase in altitude corresponds a decrease in the ARW
spectral density.

On the other hand, interactions are not statistically significant. Look-
ing instead to the spectral density of the GM, the conclusion are not so
clear. Also in this case, the model which best fits the data is the one with
interactions (2-way ANOVA). The results are shown in Table 3.4.

The F values are quite small with respect to the other noise sources,
thus no clear indication about main effects and interactions for the GM

86



3.5. Experimental results

Table 3.3: 2-way ANOVA on the GM spectral density

Source
Sum of
Squares

Degrees of
Freedom

Mean
Square F P-Value

Altitude 9.79·10−7 1 9.79·10−7 6.29 0.054
Speed 1.66·10−7 1 1.66·10−7 1.06 0.3494
Yaw Following 2.57·10−9 1 2.57·10−9 0.02 0.9027
Light 4.62·10−8 1 4.62·10−8 0.3 0.6095
Altitude*Speed 2.50·10−7 1 2.50·10−7 1.61 0.2607
Altitude*Yaw Following 2.28·10−8 1 2.28·10−8 0.15 0.7177
Altitude*Light 9.53·10−8 1 9.53·10−8 0.61 0.4694
Speed*Yaw Following 7.55·10−10 1 7.55·10−10 0 0.9472
Speed*Light 2.19·10−8 1 2.19·10−8 0.14 0.7229
Yaw Following*Light 3.44·10−7 1 3.44·10−7 2.21 0.1974
Error 7.79·10−7 5 1.56·10−7

Total 2.71·10−6 15

1 2

Altitude

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

M
e

a
n

10
-4

0.2 0.6

Speed

0 1

Yaw Following

100 250

Light

Figure 3.10: Main effects plot for the ARW spectral density

87



Chapter 3. Visual odometry error modeling

Table 3.4: 2-way ANOVA on the GM spectral density

Source
Sum of
Squares

Degrees of
Freedom

Mean
Square F P-Value

Altitude 2.56·10−6 1 2.56·10−6 0.11 0.7544
Speed 7.91·10−6 1 7.91·10−6 0.34 0.5867
Yaw Following 1.48·10−5 1 1.48·10−5 0.63 0.4633
Light 3.49·10−5 1 3.49·10−5 1.49 0.277
Altitude*Speed 1.83·10−5 1 1.83·10−5 0.78 0.4179
Altitude*Yaw Following 8.34·10−5 1 8.34·10−5 3.56 0.118
Altitude*Light 3.75·10−5 1 3.75·10−5 1.6 0.2618
Speed*Yaw Following 3.88·10−5 1 3.88·10−5 1.65 0.2548
Speed*Light 4.81·10−6 1 4.81·10−6 0.21 0.6696
Yaw Following*Light 4.18·10−5 1 4.18·10−5 1.78 0.2393
Error 0.00012 5 2.35·10−5

Total 0.0004 15

can be retrieved.

To summarize, the RRW, the noise term related to the drift, i.e., the
rate of increase in the bias of the visual odometry position measurement
with respect to the true position, resulted mostly dependent on the speed
and, to a lesser extent, on the altitude of the performed flight. In this
respect, the speed can act by placing additional burden on the feature de-
tection process and on the matching over consecutive frames, accelerating
the accumulation of errors. On the other hand, the altitude increases the
average distance between the tracked features and the camera, which in
turn increase the error in the triangulation process. The ARW, i.e., the
white noise directly affecting the measurements, seems decreasing with
the increase in altitude. However, the statistically significance of these
results are lower with respect to the ones belonging to the RRW analy-
sis. The GM spectral density, which represents the bias that varies with
time in a correlated fashion, is not clearly dependent with the considered
flight and environmental conditions. The same holds true also for the GM
correlation time.

88



3.6. Concluding remarks

3.6 Concluding remarks

The problem of characterizing and modeling the errors affecting stereo
odometry position measurements has been presented. The Allan Variance
has been employed as a tool for the determination of the noise terms af-
fecting the visual odometry measurements. These noise terms have been
used as driving inputs of a state space model having as states the odom-
etry errors. For models’ validation, a one-step-ahead Kalman predictor
has been implemented and applied on a validation dataset showing good
performance and, thus, good generalization capabilities of the proposed
approach. Furthermore, a four-factors factorial design has been used for
collecting and analyzing experimental data. The values of the models’
noise terms coefficients have been studied against changes in flight alti-
tude, speed, change in the drone’s attitude and lighting conditions. Re-
sults have showed that an increase in altitude and speed play a key role in
the increase in the noise term related to non time-correlated bias. In this
respect, ambient ambient light (in non extreme conditions) and changes
in attitude result of smaller importance.

89





CHAPTER4
Leonardo Drone Contest autonomous

drone competitions

In this Chapter, the solutions proposed for the Leonardo Drone Contest
(LDC) are presented. As already mentioned in the Introduction, the LDC
is an annual autonomous drone competition among Italian universities,
which has already seen the conclusion of its third edition. In this frame-
work, we are going to discuss the three autonomous guidance and naviga-
tion solutions presented in the three past competitions. In particular, for
each edition, the rules, objectives and overview of the proposed solutions
will be presented. Then, the guidance and navigation architecture will be
analyzed in detail along with the obtained simulation and experimental
results. Finally, comments and takeaways of the proposed solution will
be provided.

91



Chapter 4. Leonardo Drone Contest autonomous drone competitions

4.1 Related works

As already mentioned in the Introduction, several drone competitions
have been organized in the previous years. Their aim was very broad
ranging from drone racing 1 to the autonomous accomplishment of com-
plex tasks. In both the cases, in the literature, several papers have been
published to describe the software and hardware architectures employed
by the teams.

For what concern autonomous drone racing, the first competition was
held at the 2016 International Conference on Intelligent Robots and Sys-
tem (IROS). Since then, the event was proposed annually at each IROS
conference. In these competitions, there was no pre-defined platform to
be used, but it could be designed by the teams. One of the few require-
ments for the platform was to carry all sensing and computing onboard. A
collection of the hardware platform proposed in these competitions (from
2016 to 2019) is available in [202]. At the same time, in [28] the soft-
ware solutions employed by the teams in IROS 2016 and 2017 were an-
alyzed. Finally, in [203], the approach employed for winning the IROS
2018 drone race has been presented.

Inspired by this competition, other international competitions were
launched: the AlphaPilot organized by Lockheed Martin in collaboration
with the Drone Racing League, and the Game of Drones, organized by
Microsoft, Stanford University and the University of Zurich.

The AlphaPilot was held in 2019 and organized in two stages. In the
first phase, the teams had to complete a simulated race using the AirSim
simulator [204]. In the second phase, the selected teams were provided
with a standard vehicle on which they had to upload their software solu-
tion for competing in a real drone race. Some of the solutions proposed in
the Alphapilot have been published in research papers by different teams,
namely: MAVLab [205], UZH RPG [206], XQuad [207].

Game of drones was held as part of the conference on Neural Informa-
tion Processing Systems (NeurIPS) in 2019. Similar to the autonomous
drone racing at IROS and AlphaPilot competitions, the aim was to tra-
verse a race track in the shortest possible time. However, this competition

1With drone racing we identify all the competitions in which the drone should fly at high speed in unknown
or partially unknown environments and cross a number of gates in a predefined sequence.

92



4.1. Related works

was entirely run in the high-fidelity simulation environment AirSim [208].
Participants had the choice of three tiers: Planning only, Perception only,
or Full Autonomous Racing. The aim was to combine challenges from
adversarial planning and real-time perception and to encourage fusing
learning and model-based approaches [209]. Solutions for this compe-
tition have been object of different scientific publications [210, 211, 212].

Other than drone racing, autonomous UAVs have been object of com-
petitions in conferences such as IMAV (International Micro Air Vehicle)
[213] and ICUAS (International Conference on Unmanned Aircraft Sys-
tems) [214].

Beside conferences, some events were created on-purpose to push the
limits of the existing technology. The first competition was the Interna-
tional Aerial Robotics Competition (IARC) [215] of 1991. In this com-
petition, a small unmanned helicopter had the goal of moving a metallic
disc from one side of an arena to another in an autonomous way. Starting
from 2009, multicopters started to replace small helicopters in the IARC
competitions [216, 217, 218].

Another example is the Mohamed Bin Zayed International Robotic
Challenge (MBZIRC) [32]. Two editions were held in 2017 and 2020 re-
spectively, each of which composed by three different challenges, with an
upcoming competition that will occur in 2023. In the 2017 edition, Chal-
lenge 1 required a UAV to locate, track, and land on a moving vehicle;
Challenge 2 required a ground autonomous robot to locate and navigate
to a panel, and physically operate a valve stem on it with the appropri-
ate tool; Challenge 3, coined ”Treasure hunt”, required a team of UAVs
to cooperate to search, track, pick up, and drop a set of static and mov-
ing objects. Some teams published their solution for Challenge 1 and 3
[219, 220], while some others only regarding Challenge 3 [221]. In the
2020 edition, Challenge 1 required to pursue a target UAV to capture a
ball attached to it, while a second UAV should find and pop balloons scat-
tered throughout the arena; Challenge 2 required a larger UAV to pick,
transport and place bricks to build a wall; Challenge 3 required a UAV to
autonomously find fires and extinguish them with an onboard fire extin-
guisher. Solutions to the mentioned challenges can be found respectively
in [222, 223], [224] and [225].

93



Chapter 4. Leonardo Drone Contest autonomous drone competitions

4.2 First edition

The first edition of the Leonardo Drone Contest (LDC) took place in the
LDC arena (see Section 2.2.2) on 17-18 September 2020. In the arena,
the obstacles shape, their dimension and position were unknown to the
participants. On the other hand, six poles of different colors were placed
at known positions on the field as represented in Figure 4.1.

Figure 4.1: Rendering example of the competition field indicating positions and colors
of poles

The contest was composed of two phases, held respectively in the two
days of the competition. In the first phase, the drone had the aim of ex-
ploring autonomously the environment. At the same time, the drone task
was to localize 10 QR codes, serving also as landing pads for the second
phase. The landing pad was made of a 1m×1m blue square containing a
50 cm×50 cm QR marker (see Figure 2.4a). The QR markers contained a
unique alphanumeric string each.

Just before the start of the second day, the teams were given a list of
5 QR codes by the competition judges. This list indicated the ordered
sequence of pads to be reached by the drone and on which the drone
was meant to land. Hence, the teams had the opportunity of planning
an optimized path and upload it on the drone. The team performing the
largest number of consecutive valid landings would have been identified
as the winner. Note that a landing was considered valid if all the drone’s
contact points with the ground were inside the 1m×1m landing pad.

94



4.2. First edition

4.2.1 Solution overview

The ROG-1 (see Section 2.2.3) platform was specifically designed to take
part to this competition. For what concerns state estimation, stereo VO
was fused with Inertial Measurement Unit (IMU) data in a loosely coupled
fashion (see Section 1.2.4) for obtaining an estimate of the drone pose in
the odom frame O. Note that, while the visual odometry was computed
on the companion computer, the fusion process was carried out on the
FCU using the EKF2 (see Appendix A).

The open source RTAB-Map package [226] was employed for local-
ization in the map frame M, using as input the stereo camera images.
RTAB-Map stands for Real-Time Appearance-Based Mapping and it is a
RGB-D, Stereo and LiDAR graph-based SLAM approach, in which loop
closures are found using a bag-of-word approach (see [227] for more de-
tails). Note that the map produced by the RTAB-Map algorithm in the
first phase of the competition was saved in the form of an Octomap.

Two different planning algorithms were used depending on the con-
sidered phase of the competition. During the exploration phase, the RH-
NBV planner was employed. Starting from stereo camera images, the
aim of this algorithm was to produce a collision-free path from the cur-
rent pose to the viewpoint which maximized the acquired knowledge of
the environment (for details see Section 1.3.5). While the environment
was explored, the downward-looking monocular camera was used for de-
tecting the QR codes scattered around the field. At the same time, the
QR codes’ positions were computed and saved, given the best estimate of
the drone position in the map reference frame obtained from the SLAM
algorithm. The overall system architecture for this phase is depicted in
Figure 4.2.

In the second day, once the list of landing pads to be reached was
known, a path was planned using an offline A∗, which took as input the
retrieved Octomap. The path was then uploaded on the UAV. Onboard
the UAV an online local planner was running. Its aim was to avoid pos-
sible collisions, which could arise due to uncertainties in both the map
and the UAV state estimate. The local planner was an implementation of
Vector Field Histogram (VFH∗) [228], which utilized the range informa-
tion coming from the TeraRanger Tower EVO. Due to the planar nature

95



Chapter 4. Leonardo Drone Contest autonomous drone competitions

Figure 4.2: System architecture for the exploration phase in LDC first edition

of the sensor, a 2D implementation of the planner was used. The resulting
architecture for the landing phase is shown in Figure 4.3.

4.2.2 Navigation

First of all, multiple ROS-compatible implementations for computing vi-
sual odometry, given the stereo images coming from the ZED stereo cam-
era, have been analyzed and compared in experimental tests.

Visual odometry

The following methods have been considered:

• RTAB-Map, which was already presented for its visual SLAM im-
plementation. The package also provides a stereo visual odometry
pipeline (no loop closing enabled), which is the one we will consider
in this framework.

• ORB-SLAM2 [71] is a graph-based stereo SLAM already mentioned
in Section 1.2.3. The SLAM system is based on keyframes contain-

96



4.2. First edition

Figure 4.3: System architecture for the landing phase in LDC first edition

ing a set of features and the camera pose. A local and global bundle
adjustment are used to correct a recent set of keyframes and to opti-
mize the map and trajectory respectively.

• LibViso2 [229] is a feature-based VO library for monocular and
stereo cameras. Features are extracted by filtering the images with
a corner and blob mask and performing non-maximum and non-
minimum suppression on the filtered images.

• ZED-VO is the proprietary visual odometry software provided in the
ZED SDK [230].

A simple trajectory, at constant flight altitude and in good lighting con-
ditions, has been selected for this experiment and has been traveled by the
drone. On the recorded dataset, all presented algorithms have been exe-
cuted and compared. In particular, a comparison has been carried out con-
sidering the Euclidean norm of the difference between the visual odom-
etry estimate and the ground truth position as error metric. It is worth

97



Chapter 4. Leonardo Drone Contest autonomous drone competitions

noting that the image undistortion and stereo rectification have been per-
formed on the Jetson TX2 Graphics Processing Unit (GPU) by the ZED
SDK. The results are graphically shown in Figure 4.4.

0 20 40 60 80 100 120

Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

A
b
s
o
lu

te
 e

rr
o
r 

[m
]

0

0.5

1

1.5

2

2.5

3

3.5

4

R
e
la

ti
v
e
 e

rr
o
r 

[%
]

RTAB-Map

ZED-VO

ORB-SLAM2

LibViso2

Figure 4.4: Comparison among stereo visual odometry algorithms using ZED stereo
camera

The mean absolute and relative error (with respect to the traveled dis-
tance) are reported in Table 4.1.

All the algorithms show good results in the proposed experiment, with
the best performance obtained by the ZED-VO algorithm. Considering
the available hardware, i.e., with GPU acceleration, this algorithm out-
performs open-source algorithms with CPU implementations. Similar re-
sults, using ground vehicles, can be also found in [231]. An experimental
comparison of ROS implementations of VO algorithms can be also found
in [232], where different hardware (stereo, mono, RGB-D cameras) are
used. A comparison among monocular VO algorithms is instead shown

98



4.2. First edition

Table 4.1: Mean absolute and relative error of analyzed stereo visual odometry algo-
rithms using ZED stereo camera

Algorithm Mean error [m] Relative error [%]
RTAB-Map 0.122 0.416

ZED-VO 0.106 0.360
LibViso2 0.395 1.346

ORB-SLAM2 0.492 1.676

in [233]. For what concerns aerial vehicles, the performance of monocu-
lar VIO algorithms is analyzed and compared in [234, 76].

A similar experiment has been also carried out, but using the Intel
RealSense D435i camera [235]. This time, the RTAB-Map and ORB-
SLAM2 RGB-D SLAM versions have been used. The algorithms have
been run on an Intel I7 processor laptop. The same trajectory of the pre-
vious experiment has been traveled. The results are graphically shown in
Figure 4.5.

0 20 40 60 80 100 120

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

A
b

s
o

lu
te

 e
rr

o
r 

[m
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e

la
ti
v
e

 e
rr

o
r 

[%
]

RTAB-Map

ORB-SLAM2

Figure 4.5: Comparison of RTAB-Map and ORB-SLAM2 for Intel D435 depth camera

99



Chapter 4. Leonardo Drone Contest autonomous drone competitions

The mean absolute and relative error are reported in Table 4.2.

Table 4.2: Mean absolute and relative error of analyzed stereo visual odometry algo-
rithms using Intel D435 depth camera

Algorithm Mean error [m] Relative error [%]
RTAB-Map 0.401 1.404

ORB-SLAM2 0.177 0.6197

The obtained results with the Intel D435i camera are comparable with
the results obtained through the stereo implementations of both RTAB-
Map and ORB-SLAM2. However, the ZED stereo camera, with the avail-
able computing board, and its proprietary algorithm outperforms other
implementations. Thus, this configuration will be used for computing VO
for the remaining of this work. A drawback of the selected camera is that
it needs a powerful GPU for running its algorithm, while other commer-
cial solutions, e.g., Intel T265 [236], can perform the task without any
additional resource. Furthermore, the weight of the ZED stereo camera
is slightly higher, weighing 164 g against the 74 g of the Intel D435i. An
extensive comparison between the Intel RealSense and ZED for robotic
vision applications is available in [237].

EKF-SLAM

As already mentioned in the solution overview (see Section 4.2.1), the
position and yaw angle, output of the VO algorithm are fused in the EKF2
with IMU data. The EKF2 returns the estimates of position and attitude of
the UAV in the odom frame O, pOB = [px, py, pz]

⊤ and ROB respectively,
which will be used for feedback control.

For what concerns the localization in the map frame M, an alterna-
tive solution to the one presented in the solution overview, was designed
and tested in simulations. This solution involved the knowledge of the
position of the colored poles placed at the boundary of the competition
field (see Figure 4.1). This problem, i.e., the one of localizing a robot in a
field where known colored landmarks were placed, was already faced in
the Robocups. In this framework, many different localization approaches
could be found in the literature [238], [239].

100



4.2. First edition

We implemented an EKF-SLAM approach, which exploits a very sim-
ple kinematic model as motion model, and the colored poles and the QR
codes available on the field as visual landmarks (a similar work is avail-
able in [240]).

For what concerns the colored poles, they are detected and identified
through color segmentation on images captured by monocular cameras,
equipped specifically for this task. In the simulations, four cameras have
been placed on the drone, facing in each direction, i.e., with the axis c3
forming an angle of 0, 90, 180 and 270 degrees with respect to b1. Con-
sider Figure 4.6 for a simulation example. Then, the distance, elevation
and azimuth of the poles with respect to the robot frame are computed.
Note that the distance is retrieved from the monocular images knowing
the dimensions of the pole itself.

On the other hand, the QR markers are detected and localized using the
ROS ViSP visual servoing library [241]. The output of this algorithm is
the pose of the QR center in the downward-looking camera frame C and its
identifier. Note that, while the poles’ positions were known beforehand,
the QR markers’ positions were unknown and their localization was the
aim of the first phase of the competition.

The state of the EKF-SLAM is composed by the bias term bMO =
[bx, by, bz]

⊤ and the position of each QR marker in the map frame p̃Mi
=

[x̃i, ỹi, z̃i]
⊤ with i = 0, 1, . . . , 9. The bias term, represents the translation

term tMO, which appears in the frame transformation

pM = RMOpO + tMO, (4.1)

used for computing the position of a point in the map frame M, pM,
starting from the knowledge of the position of a point in the odom frame
O, pO. Thus, the bias term can be regarded as the drift accumulated by the
VIO during the flight. Assuming the evolution of this term as a random
walk process, the motion model can be written in discrete time state space
form as :

b̂MOk
= bMOk−1

+ wk−1, (4.2)

where wk ∼ N (0, Q) is a Gaussian random vector with covariance Q.
For what concerns the measurement model, when the jth pole is de-

tected and identified, its known position in the map reference frame p̄M,

101



Chapter 4. Leonardo Drone Contest autonomous drone competitions

Figure 4.6: Color segmentation for colored poles’ detection and identification

102



4.2. First edition

is transformed into the robot body frame, B, namely:

p̄Bj
= [x̄j, ȳj, z̄j]

⊤ = R⊤
MB(p̄Mj

− (bMO +RMOpOB)). (4.3)

= R⊤
OB(p̄Mj

− (bMO + pOB)), (4.4)

where we have omitted index k and where equation (4.4) is based on the
following assumption:

Assumption 1. We assume thatROB = RMB, which also lead toRMO =
I3, where with I3 we indicate the 3 × 3 identity matrix. In other words,
we are assuming that the attitude estimated by the VIO ROB shows a very
slow drift. The validity of this assumption has been confirmed during the
experimental campaign in the FlyART.

Consider, in fact, Figure 4.7, in which the difference between the head-
ing angle estimate produced by the VIO and the ground truth are shown.
Despite the length of the flight (about 10 minutes), the drift amounts to a
few degrees, confirming the mentioned assumption.

0 100 200 300 400 500 600 700

Time [s]

-4

-2

0

2

4

6

8

10

E
rr

o
r 

 [
d

e
g

]

Figure 4.7: Error between heading angle ψ estimated by the VIO and ground truth

This assumption is also the reason why the drone attitude RMB, or
equivalently RMO, has not been included in the filter state.

103



Chapter 4. Leonardo Drone Contest autonomous drone competitions

Then, the azimuth, elevation and distance of the jth colored pole can
be computed, respectively, as:

α = arctan

(
ȳj
x̄j

)
+ vα (4.5)

β = arctan

(
z̄j√
x̄2j + ȳ2j

)
+ vβ (4.6)

ρ =
√
x̄2j + ȳ2j + vρ. (4.7)

where vα, vβ and vρ are respectively zero mean Gaussian white noises
with variances rα, rβ and rρ. The measurement noise covariance is equal
to:

Rp =

rα 0 0
0 rβ 0
0 0 rρ

 . (4.8)

The three values are collected in a vector: yp = [α, β, ρ]⊤.
On the other hand, once the ith QR marker is detected by the downward-

looking camera, the following measurement model (omitting index k) is
applied:

yc = tCT = (4.9)

= RCB(R
⊤
MB(p̃Mi

− (bMO +RMOpOB))) + tCB + vc,

where vc is a zero mean Gaussian white noise with covariance Rc: vc ∼
N (0, Rc). This model represents simply two consecutive frame transfor-
mation (see equations (1.1) and (1.2)): from inertial map frame to body
frame and from body frame to camera frame. Using again Assumption 1,
equation (4.9) simplifies into:

yc = RCB(R
⊤
OB(p̃Mi

− (bMO + pOB))) + tCB + vc. (4.10)

104



4.2. First edition

All the terms, except the state, are now known: TOB = (pOB, ROB), i.e.,
the drone pose in the odom frame, is retrieved by the EKF2 and TCB =
(tCB, RCB) is the known and constant camera pose with respect to the
drone body frame. For initializing the landmarks, i.e., insert them in the
state vector, the inverse measurement model should be employed. It can
be obtained inverting equation (4.10):

p̃Mi
= ROBR

⊤
CB(zc − tCB) + (bMO + pOB). (4.11)

where zc is the position measurement output of the ViSP QR tracker, rep-
resenting the term tCT . The entire pseudo-code is shown in Algorithm
1.

The code has been validated in the simulation environment of Figure
2.1a. The resulting estimated position of the robot in the map frameM,
namely pMB = bMO + pOB is shown2 in Figure 4.8, while the estimate of
the position of the QR markers is reported in Table 4.3.

20 40 60 80 100 120 140 160 180 200

Time [s]

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

P
o

s
it
io

n
 [

m
]

E EKF-SLAM

N EKF-SLAM

U EKF-SLAM

E Groundtruth

N Groundtruth

U Groundtruth

Figure 4.8: EKF-SLAM simulation results

Even if the approach showed good performance in the simulation en-
vironment, the solution was not implemented on the platform due to the
following limitations. First, the solution would have required additional

2Assumption 1 has been exploited again

105



Chapter 4. Leonardo Drone Contest autonomous drone competitions

Algorithm 1 EKF-SLAM using poles and QR markers

procedure EKF-SLAM(p̄Mj , pOB, ROB, zpk
, zck )

G =

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0︸ ︷︷ ︸

3N


x̂k = xk−1

P̂k = FkPk−1F
⊤
k +G⊤QG

for observed landmark do
if landmark is the jth pole then

Extract bMO = xk(1 : 3)
Compute ypk

= hp(bMO, p̄Mj
, pOB, ROB) (see (4.4)-(4.7)).

Compute innovation δpk
= zpk

− ypk

Evaluate Jacobian Hpk
= Hpk

(bMO, p̄Mj
, pOB, ROB)

Sk = Hpk
P̂kH

⊤
pk

+Rp

Kk = P̂kH
⊤
pk
S−1
k

xk = x̂k +Kkδpk

Pk = (I −KkHpk
)P̂k

else if landmark is the ith QR marker then
if landmark ith has not been initialized then

Extract bMO = xk(1 : 3)
Compute p̃Mi

= h̃c(bMO, zc, pOB, ROB, tCB, RCB) (see (4.11))
Initialize state xk(4 + 3i : 6 + 3i) = p̃Mi

Evaluate Jacobian H̃ck = H̃ck(bMO, zc, pOB, ROB, tCB, RCB)

Initialize covariance Pk = H̃ck P̂kH̃
⊤
ck

+Rc

else
Extract bMO = xk(1 : 3)
Extract p̃Mi = xk(4 + 3i : 6 + 3i)
Compute yck = hc(bMO, p̃Mi , pOB, ROB, tCB, RCB) (see (4.10))
Compute innovation δck = zck − yck
Evaluate Jacobian Hck = Hck(bMO, p̃Mi

, pOB, ROB, tCB, RCB)

Sk = Hck P̂kH
⊤
ck

+Rc

Kk = P̂kH
⊤
ck
S−1
k

xk = x̂k +Kkδck
Pk = (I −KkHck)P̂k

end if
end if

end for
end procedure

106



4.2. First edition

Table 4.3: Estimated and ground truth QR markers positions

QR code id 4 QR code id 6 QR code id 7
x̂[m] -1.98 -5.92 -0.12

xGT [m] -2.00 -6.00 0.00
ŷ[m] -2.06 0.03 2.92

yGT [m] -2.00 0.00 3.00
ẑ[m] 0.08 -0.08 -0.05

zGT [m] 0.00 0.00 0.00

cameras to properly work. Possible occlusions due to the obstacles present
on the field limited greatly the amount of measurements obtained, lead-
ing to the need of increasing the available field of view. Processing more
camera images would have also implied a greater computation overhead
for the overall system. Furthermore, while the azimuth and elevation were
very accurate, distance estimates were not. This limited the accuracy of
the proposed solution. The robustness of the solution was also difficult to
assess, since it was not possible to test the system on the competition field
before the actual contest. A concern regarded possible changes in lighting
conditions, which could have led to issues in the color segmentation task.
Finally, adopting this strategy would have reduced the generality of the
solution and limited its deployment in other application domains.

Consequently, as already mentioned in the solution overview, the map-
ping and localization task was carried out by RTAB-Map. The resulting
TF tree for the ROG-1 platform is shown in Figure 4.9.

The graph containing the ROS topics involved in the navigation pro-
cedure is shown in Figure 4.10. Note how, on one side, the odometry
produced by the ZED stereo camera is remapped to the mavros node for
sending it to the Pixhawk 4 FCU, while the stereo camera images are
used for mapping and localization through RTAB-Map. At the same time,
the OpenMV monocular camera is used for detecting and identifying QR
markers. Without the use of the EKF-SLAM algorithm, the QR markers
are mapped simply by applying the inverse measurement model (4.11),
given the best estimate of the UAV pose in the map frame. Finally, the
TeraRanger Tower EVO sensor measurements are combined and they will
be published as a point cloud for collision avoidance, as we will see in the

107



Chapter 4. Leonardo Drone Contest autonomous drone competitions

Figure 4.9: TF tree for ROG-1 navigation (last connection associated to the TeraRanger
Tower EVO, to which the 8 laser scanner TFs are connected)

next Section.

4.2.3 Guidance

As mentioned in the overview, two different guidance strategies were em-
ployed depending on the phase of the competition. In the first phase, the
RH-NBV planner was employed. This algorithm produces a trajectory
for reaching the best waypoint from which exploring the environment.
The exploration is interrupted after a certain amount of time or when the
volume of the explored area exceeds a given threshold. The algorithm
shows good performance both in simulations and in the FlyART arena.
Referring to the experimental results consider Figure 4.11.

As shown in the Figure, even if the algorithm is able to complete the
exploration of all the volume of the arena while avoiding obstacles, the
output trajectory often makes the drone stay in the already explored area.
Indeed, the algorithm is strongly dependent on the λ parameter of equa-
tion (1.45). This explains also the recent developments highlighted in

108



4.2. First edition

Figure 4.10: ROS computation graph for ROG-1 navigation

Figure 4.11: Exploration trajectory and resulting Octomap during experimental activi-
ties in FlyART

109



Chapter 4. Leonardo Drone Contest autonomous drone competitions

Section 1.3.5. Note that similar results were obtained also in the LDC
competition arena.

The second phase started with the drone performing a path planned
using a 3D A∗ algorithm on the retrieved Octomap. The path goals were
a subset of the QR markers identified during the exploration phase. How-
ever, due to possible inaccuracies in the map and/or in the tracking of the
planned path, a local planner was designed to avoid potential obstacles.

The implemented algorithm is a version of VFH [123, 242, 228] (see
Section 1.3.4). Even if a 3D extension has been proposed in literature
[243], a 2D implementation is used in this work. This is due to the nature
of the sensor measurements we have available on the UAV. Indeed, it takes
as input the point cloud produced by the 8 range finders belonging to the
TeraRanger Tower EVO, which all belong to a plane. The range readings
are collected in histogram grid, i.e., a map grid of the environment. Each
cell of this Cartesian histogram is incremented for each range reading,
creating a probability distribution with a small computational overhead.

As the vehicle moves, only a portion of the histogram grid is consid-
ered. In particular, a window of fixed size, of which the robot occupies
the central position, is considered. This window is called active region
and the cells belonging to this area are called active cells.

The active region is then transformed into a one dimension polar his-
togram. Each sector of the polar histogram will contain a value that rep-
resents the polar obstacle density in the direction of that sector.

Based on the polar histogram values, each opening is considered in
the selection process and associated to a direction. For narrow openings
only the central direction is considered, while for large openings three
directions are considered: toward the left part of the opening, toward the
right part and in the central direction. To these directions, the current
and the previously selected direction are added with appropriate weights.
Finally, an optimization problem is solved for selecting the direction of
drive of the robot.

Once the direction has been selected, a position set-point at a given
distance from the robot, in that direction, is chosen. A look-ahead verifi-
cation has been also added as in VFH∗ [244]. A tree with a priori selected
depth is produced, where the leaves represent the future waypoints start-

110



4.2. First edition

ing from the actual robot position (root). However, differently from VFH∗

[228], which searches the tree using A∗, a simple Breadth-First Search
(BFS) is employed.

The performance of the algorithm is shown here with a very simple
simulation example. A trajectory has been planned for the UAV, passing
through an obstacle. The set-points computed by the local planner, and
belonging to a collision-free path, are shown in Figure 4.12.

Figure 4.12: Collision avoidance simulation using a version of VFH∗

Note that similar results have been obtained also in experimental ac-
tivities in the FlyART arena.

For what concerns the landing procedure, once the landing pad posi-
tion p̃Mi

has been reached, a visual feedback is employed. Refer to Figure
4.13 for the block diagram of the adopted landing procedure. The initial
position set-point p̃Mi

is modified with the output of a PI controller pcam.
This controller takes as input the error between the drone and the center
of the marker, ecam. This measurement is actually zc, obtained exploiting
the QR ViSP tracker, opportunely transformed in the UAV body frame.
Lastly, F (s), which represents the complementary sensitivity of the posi-
tion control loop, will drive the drone to the desired position. This control
law is applied first for aligning the drone at the QR marker, keeping its
flight altitude, and then a descent trajectory is commanded, while keeping
its position in the plane.

111



Chapter 4. Leonardo Drone Contest autonomous drone competitions

Figure 4.13: Landing controller architecture in LDC first edition

4.2.4 Final considerations

As far as the results of the competition were concerned, on the first day,
the UAV autonomously explored about 60% of the competition field, find-
ing 7 out of the 10 QR markers placed on the field. On the second day, 4
out of 5 valid landings were performed, of which 3 consecutive, leading
to the best result obtained and the win for our team. Despite the achieve-
ments, some problems were evident:

• The major problem was related to the altitude estimation. The visual
odometry showed a very strong drift and the SLAM algorithm was
not able to compensate for it, leading to considerable variations in
the altitude kept by the drone.

• While the local planner was successful for collision avoidance, it
showed some problems in cluttered environments. The local nature
of the algorithm made the vehicle, sometimes, unable to reach the
goal, starting to visit the same place over and over. In addition to
this, sub-optimal paths, in terms of distance traveled, were often se-
lected.

112



4.3. Second edition

4.3 Second edition

The second edition took place in Turin on 28-30 September 2021, in the
indoor LDC arena (see Section 2.2.2). The contest was composed of four
rounds over three days. In each round the drone had to autonomously take
off and explore the environment searching for a specific ground robot,
which in turn carried information about the task the drone had to perform.
It is worth pointing out that, this time, some initial knowledge of the field
was given to the teams in the form of a map, with associated East-North
reference frame, as shown in Figure 4.14.

Figure 4.14: Initial knowledge of the environment in LDC second edition

The heights of the obstacles in the map were also known. The num-
bered squares on the map represented the landing pads, which were 1m×1m
cyan squares each containing a 50 cm×50 cm ArUco marker (with corre-
sponding identifier).

Three ground robots (in the form of vacuum cleaners), each identified
by a unique 19 cm×19 cm ArUco marker (ranging from 21 to 26), were
moving randomly in unknown confined regions on the field. The informa-
tion provided by the robots were given in the form of a string of 10 digits
from 0 to 9. The i-th number indicated the reward associated with a valid
landing on the landing pad identified by ArUco number i. The ground

113



Chapter 4. Leonardo Drone Contest autonomous drone competitions

robot with the available information and an example of landing pad are
shown in Figure 4.15.

Figure 4.15: The ground robot and landing pad

Two ground robots, whose identification ArUco code numbers were
communicated to the team before starting the round, were collaborative
agents. The remaining one was the intruder that carried the exact rewards
associated to each landing. The drone exploration was assisted by a fixed
pan–tilt–zoom (PTZ) camera placed in correspondence of the cross icon
in Figure 4.14, which could be controlled by the teams. After having
found the intruder robot, the drone had to send a visible picture of the re-
wards to the team’s ground control station. This action had to be executed
within 30 minutes from the start of the round. At this point, the sequence
of landing spots to maximize the reward had to be selected. No strin-
gent requirements for the computation of the sequence were given by the
rules. The sequence could be either selected by the team based on their
judgment or could be computed through an optimization problem. After
having determined the sequence, the drone had to reach and land on top
of the pads in the selected order. The landing was considered valid if all

114



4.3. Second edition

the UAV contact points with the ground were inside the 1m×1m square.
The points corresponding to valid landings were summed up for obtain-
ing the round result. The team obtaining the highest amount of points in
the three (out of four) best rounds was proclaimed the winner. It is worth
pointing out that, in each round, the UAV takeoff position was represented
by a different landing pad, communicated to the teams before the start of
the run. The reward string and the ground robots’ region of motion varied
across rounds.

4.3.1 Solution overview

The ROG-2 (see Section 2.2.3) platform was employed in this competi-
tion. This time, the ground control station was not only used for receiving
and displaying telemetry information, but also used for the teleoperation
of the fixed PTZ camera and for sending the sequence of landing pads to
be visited by the drone.

For state estimation purposes, the same solution presented in the first
edition was adopted. However, in order to enhance the accuracy of the
altitude estimation, in this competition edition, a range finder was em-
ployed as an altimeter. A localization algorithm was custom developed
for computing an estimate of the drone position in the map frame M.
To reach this goal, the known positions of the ArUcos in the world map
(Figure 4.14) and the downward-looking monocular camera images were
exploited.

The map produced using the ZED point cloud, in the form of an Oc-
tomap, was employed for planning collision-free paths and trajectories to
be fed to the PX4 drone controller.

The planner module, running online and onboard the robot, was com-
posed by a Djikstra’s global planner and an A∗ local planner. The global
planner was meant for computing a list of intermediate waypoints for
reaching the goal using the a priori information on the environment. The
local planner, as opposed to the first competition, relied only on visual
information, without the need of additional range finders.

Note also that an additional forward-looking monocular camera was
equipped to search for ground robots. This camera utilized different im-
age resolutions compared to the stereo camera.

115



Chapter 4. Leonardo Drone Contest autonomous drone competitions

In this framework, a decision making algorithm was custom developed
for identifying waypoints to be reached in order to maximize the probabil-
ity of finding the ground robots. The algorithm had access to information
coming from both the monocular cameras available onboard and on the
fixed PTZ camera.

4.3.2 Navigation

For what concerns the localization, a Kalman Filter (KF), which fuses
information coming from drone’s odometry, monocular cameras images
and laser altimeter, has been implemented. The state of the filter is the
bias term x = bMO = [bx, by, bz]

⊤. As already in the EKF-SLAM of
Section 4.2, we have assumed the evolution of this bias term as a random
walk process, the motion model is thus:

ẋ = ḃMO = ηw, (4.12)

where ηw is a white Gaussian noise with Power Spectral Density (PSD)
Sw(ω) = W . We write equation (4.12) in discrete time state space form
as:

xk = Fxk−1 + wk−1, (4.13)

where F is equal to the identity matrix I and wk ∼ N (0, Q) is a Gaussian
random vector with covariance Q.

The images from the forward-looking and downward-looking cameras
are analyzed through the ArUco marker detector, which will be presented
in details in Section 5.2. Once a marker related to a landing pad is de-
tected, its position with respect to the camera, written in the camera frame
C, is computed in a way similar to equation (4.9), through (we omit index
k for brevity):

yc = tCT = RCB(R
⊤
OB(tMT − (bMO + pOB))) + tCB + vc. (4.14)

where vc is a zero mean Gaussian white noise with covariance Rc: vc ∼
N (0, Rc) and tMT represents the ArUco marker position in the map frame,
retrieved by the approximate world map (Figure 4.14). Note that for re-
trieving equation (4.14) we have made use of Assumption 1.

116



4.3. Second edition

In order to increase the altitude estimation accuracy, the laser altimeter
measurements are also used. The measurement model is:

yl = bz + pz + vl, (4.15)

where vl ∼ N (0, Rl) is a zero mean white Gaussian noise with covariance
Rl and pz is the third component of the vector pOB = [px, py, pz]

⊤. Again
the index k has been omitted. However, this model does not take into
account the presence of obstacles on the field. Indeed, when flying over
obstacles, the measured distance does not correspond to the UAV altitude.
To overcome this issue, a measurement outliers detector has been applied
to interrupt the fusion process whenever the drone flies over an obstacle.
Note that a similar approach has been also employed in the attempt of
reconstructing the scale of monocular vision using range finder informa-
tion in [73]. Our method was also used for rejecting possible outliers in
the ArUco relative pose estimates. In particular, this check is performed
through a χ2-test based on the Mahalanobis distance of the measurement
innovation [245].

Writing in state space form the measurement model obtained combin-
ing (4.14) and (4.15), we have:

yk = [yc, yl]
⊤
k = Cxk + vk, (4.16)

with vk = [vc, vl]
⊤
k . Furthermore, we group the measurement noise co-

variance matrices as:

R =

[
Rc 0
0 Rl

]
. (4.17)

Writing the filter in the usual prediction-correction form, the following

117



Chapter 4. Leonardo Drone Contest autonomous drone competitions

equations have been employed:

x̂−k = Fx̂+k−1 (4.18)

P−
k = FP+

k−1F
⊤ +Q (4.19)

zk = yk −Hkx̂
−
k (4.20)

Zk = HkP
−
k H

⊤
k +R (4.21)

Kk = P−
k H

⊤
k Z

−1
k (4.22)

x̂+k = x̂−k +Kkzk (4.23)
P+
k = (I −KkHk)P

−
k . (4.24)

where P− and P+ are the a priori and a posteriori state estimation error
covariance matrices respectively, and x̂− and x̂+ are the a priori and a
posteriori estimates of the state.

Inliers are validated by checking the Normalized Estimation Error Squared
(NEES) after the computation of zk, namely:

z⊤k Z
−1
k zk ≤ χ2

th, (4.25)

with χ2
th equal to the 0.95 probability quantile of the χ2 distribution. If

the measurement passes the test, we proceed by computing the Kalman
gain Kk and by updating the filter state and covariance, otherwise the
measurement is discarded.

Compared to the first edition architecture and TF tree (Figure 4.9),
the developed localization KF filter is the responsible for publishing the
transform between odom and map in place of RTAB-Map.

Finally, knowing the drone pose in the map frame given by the local-
ization and having the ZED point cloud, the mapping pipeline of RTAB-
Map is used for producing a 3D map in the form of an Octomap. The
overall navigation architecture is depicted in Figure 4.16.

4.3.3 Decision-making

The decision-making module is responsible for managing the high-level
objectives of the mission. This module outputs the desired goal waypoints
to be sent to the planning and control module. In particular, the waypoints
are computed through different approaches based on the output of a state

118



4.3. Second edition

Figure 4.16: Navigation architecture in LDC second edition

machine, which manages the different phases of the competition. The
workflow of the state machine and associated inputs are shown in Figure
4.17 and described in the following.

When the operator sends the starting signal, the decision-making mod-
ule provides a takeoff set-point.

After takeoff, the UAV is supposed to find the intruder robot. The
problem at hand, in general terms, can be formulated as the one of find-
ing an optimal patrolling strategy [246]. Despite the existence of solu-
tions to this problem in similar frameworks [247, 248], our problem can
be simplified considering the fact that the ground robots to be monitored
are constrained to move in relatively small areas. As a consequence, the
drone does not need to visit multiple times the same area for verifying
if an intruder has appeared. Thus, the problem can be treated as an art
gallery problem or coverage planning problem in a known environment
[249, 250] (see also Section 1.3.5). In this work, we propose a greedy
approach for steering the UAV towards the area of the field where the
probability of finding a ground robot is greater. In the state machine of
Figure 4.17 this procedure is called probabilistic exploration. At each it-

119



Chapter 4. Leonardo Drone Contest autonomous drone competitions

Figure 4.17: Decision making architecture in LDC second edition

eration, this algorithm outputs the (x, y) coordinates which maximize the
probability of finding the intruder robot (the z-coordinate of the gener-
ated waypoints will be equal to the drone flight altitude). The probability
values are stored in a grid map of 1m resolution. This probability map,
denoted as Pmap, is initialized considering the approximate world map of
Figure 4.14 and the following assumptions:

Assumption 2. 1) The ground robots will not be positioned on obstacles
or too close to them; 2) It will be more likely to find the ground robots in
large open spaces.

Thus, the initial probability values are computed based on the number
of free, i.e., with no obstacles, contiguous cells. A graphical representa-
tion of the initial map is shown in Figure 4.18.

During the environment exploration, the information coming from all
the available cameras, i.e., downward-looking and forward-looking cam-
eras available onboard and the fixed PTZ camera, are used for updating
the probability values. In particular, under certain conditions, the prob-
ability values of some cells are decreased to a user defined value. As

120



4.3. Second edition

Figure 4.18: Initial probability map

a consequence, the probability values of the other cells in the map will
increase to have an overall properly defined probability distribution.

Consider now the pseudo-code reported in Algorithm 2. The algorithm
takes as input the initial probability map Pmap.

At each iteration, the images coming from the cameras are processed
searching for ArUco markers corresponding to ground robots. If one of
these fiducial markers is found, the corresponding code arucoid and posi-
tion in the camera frame tCT are retrieved. If the arucoid is the intruder
one, i.e., not one of the two identification numbers communicated be-
fore the start of the round, the probability exploration algorithm outputs
the waypoint corresponding to the position occupied by the ground robot
in the map and terminates (the decision-making module will shift to the
tracking phase). In this regard, the Camera2Map function is employed for
finding the position of the ArUCo in the map frame, given its position in
the camera frame. This can be done by applying the inverse measurement
model of equation (4.14), namely:

tMT = (pOB + bMO) +ROBR
⊤
CB(tCT − tCB). (4.26)

On the other hand, if the arucoid corresponds to a collaborative ground
robot, the probability values of the area surrounding the robot are de-

121



Chapter 4. Leonardo Drone Contest autonomous drone competitions

Algorithm 2 Probabilistic exploration
Input Pmap

Output waypoint

1: while intruder is not found do
2: Process image and compute tCT and arucoid
3: if not arucoid then
4: Pmap = DiscountCameraFovs(Pmap)
5: wp = BestWaypoint(Pmap)
6: return wp
7: else
8: if arucoid is intruder then
9: tMT = Camera2Map(tCT )

10: wp = tMT
11: return wp
12: else
13: tMT = Camera2Map(tCT )
14: Pmap = DiscountArea(Pmap, tMT )
15: wp = BestWaypoint(Pmap)
16: return wp
17: end if
18: end if
19: end while

122



4.3. Second edition

creased (DiscountArea function). This update rule is based on the as-
sumption that the robots will not be close to each other.

After the map update, the BestWaypoint function retrieves the way-
point corresponding to the cell of maximum probability:

argmax
(i,j)

pmap(i, j). (4.27)

In the case of no ArUco markers identified in the images, the Discount-
CameraFovs function is employed. The discounted cells depend on the
camera which has produced the observation. For the downward-looking
camera, only the cell occupied by the drone at update time is discounted.
This rule has been implemented considering that the resolution of the
map is approximately equal to the area covered by the downward-looking
camera field of view with the drone flying at an altitude of about 1m.
For the forward and fixed PTZ camera, first, the direction of the camera
in the map frame is computed and approximated to the nearest 45 de-
gree angle. Then, in the computed direction, the cells on which a robot
could be correctly identified, if present, are discounted. These cells range
from a minimum value d−, determined by the field of view of the camera
and the orientation of the camera itself, and a maximum value d+, which
corresponds to the maximum distance at which an ArUco marker can be
detected (see Figure 4.19).

Figure 4.19: Graphical representation of high oblique aerial field of view

In particular, d− is computed as:

123



Chapter 4. Leonardo Drone Contest autonomous drone competitions

d− = (pz + bz)/ tan(θcam + fovv/2) (4.28)

where θcam and fovv are respectively the pitch angle with respect to the
horizontal plane and the vertical field of view of the considered camera.
On the other hand, d+ is determined experimentally.

Also in this case, the BestWaypoint function is called for computing
the output waypoint after the map update.

During the tracking state, the decision-making module keeps com-
puting the robot position in the map frame according to function Cam-
era2Map. This phase ends when:

1. the robot has been lost, i.e., it is outside the field of view of the
cameras. In this latter case, the tracking cannot continue since no
information about the position of the ground robot can be obtained.
Thus, the state machine will resort to the probabilistic exploration
phase in the neighbourhood of the current position of the drone.

2. the robot is in the field of view and a readable picture of the reward
string has been taken. In this case, the operator will decide the land-
ing sequence to follow in order to maximize the reward considering
the remaining endurance of the drone and the probability of success
of each landing (this could be also computed through an optimiza-
tion process on the drone available CPU). The output will be the
sequence of waypoints corresponding to the selected landing pads
as indicated in the initial approximate world map.

Finally, if the robot is in the field of view, but the reward string is not
readable, the state machine will remain in the tracking phase.

4.3.4 Guidance

The guidance module takes as inputs the waypoints p0MB generated by the
high-level decision making. An overview of the architecture is shown in
Figure 4.20.

In this module, a common cascaded approach composed by a global
planner and a local planner, is utilized. The global planner generates a
path from the current position of the drone to the given waypoint. To

124



4.3. Second edition

Figure 4.20: Planning architecture in LDC second edition

this aim, it exploits the knowledge of the approximate world map with a
coarse resolution (1m). The planner is a 2D implementation of Djikstra’s
shortest path algorithm. Successively, the generated path is pruned for
removing the collinear points. The remaining points are, one at a time,
used as goals into a local planner. The local planner, based on the A∗

algorithm, is responsible for computing a collision-free 3D path using the
Octomap produced by the navigation module. With respect to the plan-
ner used in the first competition, the A∗ algorithm showed a remarkable
improvement in the performance: the possibility of having access to a
global Octomap and of planning online allows the planner to quickly find
the shortest path, even in cluttered environments.

The planner pseudocode is presented in Algorithm 3. The A∗ algo-
rithm, using the ApplyAstar function, computes a path from the starting
point, i.e., the drone current position in the map reference frame (retrieved
through the GetDronePos function), to the next point of the global planner
path. The most recent obstacles configuration in the form of an Octomap,
retrieved through the GetObstacles function, is used by the planner. Note
that a 3D implementation of A∗ is employed. It expands, for each node,
the 26 contiguous cells in the 3D space. At each planner execution, the
path is checked against newly emergent obstacles. It is worth mentioning
that collision checking is conducted inflating the robot dimensions by a

125



Chapter 4. Leonardo Drone Contest autonomous drone competitions

safety radius (IsValid function). If the previously computed path is still
valid, it is further processed and sent to the drone controllers (as presented
in the following of this Section). Otherwise, a re-planning procedure is
started. In addition to this, if the goal is one of the invalid points, a new
target point, in the neighbourhood of the previous one, is selected (Pick-
RandTarget function). Finally, in the case of difficulties in computing an
admissible path, the algorithm tries to decrease the safety radius up to a
saturation level through the ShrinkRadius function.

Algorithm 3 Local planner
Input goal
Output path

1: while goal is not reached do
2: obst = GetObstacles()
3: if IsValid(pathprev , obst) then
4: path = pathprev
5: return path
6: else
7: if goal is in obst then
8: while goal is not in obst do
9: goal = PickRandTarget(goal)

10: end while
11: end if
12: start = GetDronePos()
13: path = ApplyAstar(goal, start, obst)
14: if not path then
15: ShrinkRadius()
16: continue
17: else
18: return path
19: end if
20: end if
21: pathprev = path
22: end while

The resulting path from the local planner should be, then, turned into
a smooth trajectory, ptOB(t), before sending it to the drone controller. In
particular, the starting and ending points of the local path are constrained

126



4.3. Second edition

to be both in hover, i.e., with zero velocity. Considering the drone as a
simple point-mass system, the time-optimal trajectory can be computed
in closed form, and its result is a bang-bang acceleration trajectory [84].
We additionally impose a constraint on the maximum velocity, resulting
in a trapezoidal velocity profile. Note that the dynamics of the system
is neglected since the system is limited in the attainable velocities and
acceleration by the perception pipeline constraints. However, for further
trajectory models please refer to [153].

Going in details, we have assumed that the various kinematic and dy-
namic constraints are reflected in the constraints on the maximum velocity
and accelerations of the curvilinear abscissa s(t). The constraints we refer
to are:

− ṡM ≤ ṡ(t) ≤ ṡM with ṡM > 0, (4.29)

and
− s̈−M ≤ s̈(t) ≤ s̈+M with s̈−M > 0 s̈+M > 0, (4.30)

The two values s̈−M and s̈+M , indicating respectively maximum acceleration
and maximum deceleration, can be different. For the considerations made
above, we have considered the following constraints:

s(t0) = s0

s(tf ) = sf

ṡ(t0) = ṡ(tf ) = 0

s̈(t−0 ) = s̈(t+f ) = 0

s̈(t+0 ) = s̈+M
s̈(t−f ) = s̈−M ,

and we have defined the three intervals:

I1 := {t : t0 ≤ t < t1} = [t0, t1)

I2 := {t : t1 ≤ t < t2} = [t1, t2)

I3 := {t : t2 ≤ t ≤ tf} = [t2, tf ].

127



Chapter 4. Leonardo Drone Contest autonomous drone competitions

Then, the acceleration results:

s̈(t) =


s̈+M t ∈ I1
0 t ∈ I2
−s̈−M t ∈ I3

, (4.31)

while for the velocity we have:

ṡ(t) =


s̈+M(t− t0) + ṡ0 t ∈ I1
ṡM t ∈ I2
ṡM − s̈−M(t− t2) t ∈ I3

, (4.32)

and, finally, for the position:

s(t) =


1
2
s̈+M(t− t0)2 + ṡ0(t− t0) + s0 t ∈ I1
ṡM(t− t1) + s1 t ∈ I2
−1

2
s̈−M(t− t2)2 + ṡM(t− t2) + s2 t ∈ I3

. (4.33)

Imposing the previously defined constraints with s0 = 0 (for simplicity),
we can find the time intervals:

t1 − t0 =
ṡM
s̈+M

, (4.34)

t2 − t1 =
sf
ṡM
− 1

2

(
ṡM
s̈+M

+
ṡM
s̈−M

)
, (4.35)

and
tf − t2 =

ṡM
s̈−M

. (4.36)

Having the evolution in time of the s(t), ṡ(t) and s̈(t), we only need to
write it in Cartesian coordinates.

It is worth noting that the generated trajectory is written in the map
frame, while the UAV state estimate is in the odom frame. Consequently,
the trajectory is transformed into the correct frame by exploiting the state
of the localization filter bMO.

128



4.3. Second edition

Note also that the yaw angle is commanded to have the first body axis,
at each instant in time, oriented as the velocity vector. This is done for
coping with the possibility of newly emergent obstacles during drone mo-
tion.

If during the execution of the trajectory the planner finds that the re-
lated path is no longer valid, the drone stops in its current position. Conse-
quently, a collision-free path is computed in the updated situation. Thus,
the controller will start tracking the newly produced trajectory.

Finally, the generated position set-points are sent to the UAV FCU (see
Sections 2.2.3 and 1.4). For the landing execution, a procedure similar to
the one of the first edition is employed. The only difference resides in the
fact that, this time, the tracking is also employed while descending.

4.3.5 Simulation results

In simulation, particular attention has been spent for dealing with aspects
related to the localization. In fact, due to the reduced dimensions of the
laboratory flight test area compared to the competition field, simulation is
the only way to test factors coming into play in the long-run. In addition
to this, we focus on the z-axis, which has been highlighted as one of the
most critical factors in the performance of the UAV in the first compe-
tition. Consider Figure 4.21, in which the results of the localization are
shown. The odometry has been deliberately simulated with high noise
values in order to test the localization robustness to drift. Nevertheless,
the localization is able to recover the ”true” altitude, even rejecting mea-
surements corresponding to the presence of obstacles under the drone.
Note that the sum of the bias bMO, state of the filter presented in Section
4.3.2, and the position estimated by the EKF2 pOB is represented as the
output of the localization process.

As already mentioned, the localization output is used for retrieving the
transformation between the map and odom reference frames. This infor-
mation is then used for transforming the set-points in the odom reference
frame. The result of this procedure is shown in Figure 4.22. The set-point
is clearly changing for compensating the drift of the altitude estimate.
The drone is, thus, able to keep the altitude constant, solving one of the
problems which arose in the first competition.

129



Chapter 4. Leonardo Drone Contest autonomous drone competitions

0 100 200 300 400 500 600

Time [s]

-1

0

1

2

3

4

5

U
p
 [
m

]

Explore Track Landing sequence

Lidar altimeter

Odometry

Localization

Ground truth

Reject lidar meas

Figure 4.21: Comparison between odometry and localization (Up component) in simu-
lation

0 100 200 300 400 500 600

Time [s]

-1

0

1

2

3

4

5

U
p
 [
m

]

Explore Track Landing sequence

Setpoint

Odometry

Ground truth

Figure 4.22: Set-point (Up component) sent to the controller. Comparison with odome-
try (VIO) and ground truth

130



4.3. Second edition

Note that a video of the simulation is available online3.

4.3.6 Experimental results

In this Section, the experimental results are shown and discussed. The
presented experiments have been conducted in both the FlyART and in
the LDC arena (see Sections 2.2.1 and 2.2.2 respectively) during the com-
petition.

FlyART experiment

The experiment can be split up in its main phases according to the decision-
making algorithm. After takeoff, the UAV conducted an exploration phase
of the laboratory environment, looking for the intruder robot. After hav-
ing found it with the forward-looking camera, the tracking phase begun.
The UAV was driven towards the robot and started taking pictures of it.
After that, the landing sequence was selected while the UAV held its po-
sition. Finally, the drone reached and landed on each of the selected pads
according to the given sequence. The video of the entire experiment is
available online4.

For what concerns the navigation performance, the East and North lo-
calization position components are shown in Figure 4.23 and Figure 4.24
respectively. In these plots, the localization is compared with the visual
odometry output, which is in turn affected by drift. In order to be in the
same reference of the localization position, the odometry curve has been
shifted by an offset, namely the drone initial position in the map frame,
which corresponds to the position of one of the ArUco landing pads avail-
able in the laboratory. At the same time, taking off from one of the ArUco
markers, the localization curve shows a sharp transient toward the value
of the ground truth.

For the Up direction, the altitude estimation results are plotted in Fig-
ure 4.25. The localization algorithm shows good performance, even if the
visual odometry already started a remarkable drift in the short time frame
of the experiment.

3Visit https://www.youtube.com/watch?v=N7o6_CEzCn4&t=33s
4Visit https://www.youtube.com/watch?v=lGsVxvEKR4A

131

https://www.youtube.com/watch?v=N7o6_CEzCn4&t=33s
https://www.youtube.com/watch?v=lGsVxvEKR4A


Chapter 4. Leonardo Drone Contest autonomous drone competitions

0 50 100 150 200 250 300 350 400

Time [s]

-4

-3

-2

-1

0

1

2

3

4

E
a
s
t 
[m

]

Explore Track Landing sequence

Localization

Odometry

Ground truth

Figure 4.23: Comparison between odometry and localization (East axis)

0 50 100 150 200 250 300 350 400

Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

N
o
rt

h
 [
m

]

Explore Track Landing sequence

Localization

Odometry

Ground truth

Figure 4.24: Comparison between odometry and localization (North axis)

132



4.3. Second edition

0 50 100 150 200 250 300 350 400

Time [s]

-0.5

0

0.5

1

1.5

2

2.5

3

U
p
 [
m

]

Explore Track Landing sequence

Lidar altimeter

Odometry

Localization

Ground truth

Reject lidar meas

Figure 4.25: Comparison between odometry and localization (Up component). Added
patches in which the range finder measurements are rejected

As far as the performance of the vision-based landing is concerned,
all the four landings can be considered valid according to the competition
rules. The ground truth path of the drone during the experiment with the
associated 4 landings are shown in Figure 4.26.

Competition experiment

This experiment corresponds to the last round of the LDC second edition.
The video of this round is available online5.

The localization results are shown for what concerns the East and
North position components respectively in Figure 4.27 and Figure 4.28.
Also in this case, the localization is compared with the visual odometry
output. The odometry curve has been shifted by the drone initial position
in the map frame corresponding to the ArUco marker 3 in Figure 4.14,
i.e., x =2.5m, y =−4.5m.

Furthermore, in the same plots, the drone position obtained from the
measurements coming from the forward and downward-looking monoc-
ular cameras are plotted and considered as the best approximation of the

5Visit https://www.youtube.com/watch?v=zfQVKgepwNE

133

https://www.youtube.com/watch?v=zfQVKgepwNE


Chapter 4. Leonardo Drone Contest autonomous drone competitions

Figure 4.26: Ground truth path and landings

ground truth. To do this, the the ArUco marker detection outputs are used
to retrieve the drone position in the map frame through the inverse mea-
surement model of equation 4.26.

Again note how, immediately after taking off from the starting pad, the
localization algorithm estimates the initial position correctly.

Passing to the navigation in the Up direction, the altitude estimation re-
sults are plotted in Figure 4.29. The visual odometry shows a remarkable
drift, which again justifies the additional use of the laser altimeter. On the
other hand, the localization algorithm shows good performance. In fact, it
has correctly rejected the laser measurements corresponding to obstacles
(as shown by the patches in the plot). In this plot, also the sequence of
the six executed landings can be appreciated. Note that the third and the
last one have been executed respectively on ArUco 7 and 10, which are
placed over obstacles of height 0.7m and 2m.

Similarly to the laboratory experiment, the mission has been managed
by the decision-making module. For the first 200 s the UAV has conducted
an exploration phase for finding the intruder robot. Having found it with
the forward-looking camera, the tracking phase begun at about 400 s. The
UAV is driven towards the robot and takes pictures of it. After that, we

134



4.3. Second edition

0 200 400 600 800 1000 1200

Time [s]

-10

-8

-6

-4

-2

0

2

4

6

8

10

E
a

s
t 

[m
]

Explore Track Landing sequence

Localization

Odometry

Meas camera down

Meas camera forw

Figure 4.27: Comparison between odometry and localization during LDC second com-
petition (East axis)

0 200 400 600 800 1000 1200

Time [s]

-6

-5

-4

-3

-2

-1

0

1

2

3

4

N
o
rt

h
 [
m

]

Explore Track Landing sequence

Localization

Odometry

Meas camera down

Meas camera forw

Figure 4.28: Comparison between odometry and localization during LDC second com-
petition (North axis)

135



Chapter 4. Leonardo Drone Contest autonomous drone competitions

0 200 400 600 800 1000 1200

Time [s]

-3

-2

-1

0

1

2

3

U
p
 [
m

]

Explore Track Landing sequence

Lidar altimeter

Odometry

Localization

Discarded lidar meas

Landings

Figure 4.29: Comparison between odometry and localization during LDC second com-
petition (Up axis). Added patches in which the range finder measurements are re-
jected.

can see the drone holding the position while the team was selecting the
landing sequence to be performed in the last phase. Finally, the drone
reached and landed on the selected pads in the given sequence.

The overall mission lasted 20 minutes and the drone travelled about
100m. In Figure 4.30 we can see the point cloud generated by the drone
during the mission and the localization position, which represents the
most reliable estimate of the UAV state we have.

4.3.7 Final considerations

For what concerns the competition results, the UAV autonomously com-
pleted three of the four rounds of the competition. Our team won the
contest scoring 5, 7 and 23 points respectively on the second, third and
fourth rounds. Note that the maximum achievable scoring results were
respectively 12, 19 and 31.

Despite the achievements some criticalities were still present. It is
worth noting that, during the competition, outside the field, spectators
could move around to see the experimental platforms during the task exe-

136



4.3. Second edition

Figure 4.30: Final point cloud obtained during LDC second competition with traveled
path during the landing phase

cution. This aspect had an impact on the accuracy of the visual odometry
employed for state estimation purposes. In addition to this, on one side of
the field, a uniform black texture-less wall was present, making one side
of the field very difficult to navigate into. So, compared to the laboratory
environment, the quality of the flight was greatly affected.

Furthermore, during the competition, some of the landings resulted
to be invalid6. This behaviour seems still related to the visual odometry
performance and was not so noteworthy in laboratory results (see Figure
4.26). The designed vision-based controller allows the drone to accu-
rately align with the underlying ArUCo marker, but, during the descent
phase, the controller seems unable to compensate for the drone motion
due to state estimation inaccuracies. The performance is even worsened
by the fact that the ArUCo marker pose estimate gets interrupted when
the marker leaves the camera field of view during drone descent.

During the solution development, many technical challenge have been
faced. For example, the choice of the range finder (utilized for altime-

6Note that large part of the unattained points in the various rounds were due to inaccurate landings

137



Chapter 4. Leonardo Drone Contest autonomous drone competitions

ter purposes) resulted crucial. On the competition floor, covered by a
carpet, many commercial solutions (Terabee TeraRanger 3m, VL53L1X)
showed some limitations: they were either unable to return a measure-
ment or very inaccurate, especially when increasing the flight altitude.
The selected Lidar-Lite v3, instead, has shown remarkable accuracy and
robustness to changes in flight conditions.

From the software point of view, the range finder altimeter measure-
ments rejection mechanism was a critical aspect in the design of the so-
lution. First, consider that the range finder measurements were not fused
directly in the EKF2 to avoid making fast upward/downward moves when
flying over a building. An intermediate layer was, thus, inserted to pro-
cess the measurements before fusing them with stereo camera and IMU
data. The idea was to design a state machine capable of estimating and
filtering out abrupt changes in the measured altitude. However, this re-
sulted in a strong sensitivity of this process to the rate and quality of the
measured altitude. To solve this problem, we started exploiting the al-
timeter measurement at the localization level, rejecting outliers, i.e., mea-
surements corresponding to the sensing of a building below the drone (as
presented in Section 4.3.2). The proposed procedure presents only a lim-
itation about the time spent while hovering over an obstacle. In fact, after
rejecting many range measurements, with consequent increase of the esti-
mation error covariance matrix components, a measurement could satisfy
the NEES check. If this latter condition is met, the estimated z-position
component would decrease and the drone altitude would increase accord-
ingly.

4.4 Third edition

The third edition took place in Turin on 6-7 October 2022, in the indoor
LDC arena (see Section 2.2.2). Also this time, some knowledge of the
environment was given to the teams. In particular, the 2D map of the field
(see Figure 4.31) and the height of the obstacles were known.

However, some additional obstacles were added in unknown positions.
They were 3m high poles of either 50× 50 cm or 30× 30 cm. A picture
of one of them is shown in Figure 4.32. Furthermore, in this competition,

138



4.4. Third edition

Figure 4.31: Initial knowledge of the environment in LDC third edition

only the landing pad identified by ArUco 1 (see Figure 4.15) was present
onto the field, and it represented the takeoff position for the drone.

Three rounds were faced over the two days of the competition. In each
round the drone had to autonomously take off and explore the environ-
ment searching for a ground robot, identified by the ArUco marker 21
(see Figure 4.15). Then, the drone had the aim of tracking the moving
ground robot for at least 10 seconds. In the case of accomplishment of
this task, the competition judges would give to the team the list of tasks
to be performed in order to acquire points for the final scoreboard7.

The tasks were of two types, i.e., landing and photos, and were ac-
companied by a letter and a number, e.g., A17. This latter represented
the position on the field (see Figure 4.31) where the task should be per-
formed. In the landing case, the drone had to land on the designated cell.
Note that the square was delimited by white tape (see Figure 4.32), but
without a unique identifier, as it was the case with the ArUco of the sec-
ond edition (see Section 4.3). The landing was considered valid if all the
UAV contact points with the ground were inside the 1m×1m square. In
the photos case, the code represented the cell in which to search for find-

7Differently from the second edition, in this competition no indications about the tasks to be performed
was reported on the ground robot.

139



Chapter 4. Leonardo Drone Contest autonomous drone competitions

Figure 4.32: Unknown obstacles present onto the field

ing a small ArUco marker (identifier 15). The marker was placed on the
side of a building in the proximity of the cell and a photo of it must be
taken, sent to the ground control station, and shown to the competition
judges.

Clearly, the accomplishment of each task conferred a given number
of points to the team. Moreover, the ability of mapping correctly the
unknown poles on the field provided some additional points.

Note that, also this year, the drone exploration was assisted by a fixed
pan–tilt–zoom (PTZ) camera placed in correspondence of the cross icon
in Figure 4.31, which could be controlled by the teams. It is worth point-
ing out that, in each round, the poles positions and tasks to be accom-
plished differed. The team obtaining the highest amount of points in the
three rounds was proclaimed the winner.

4.4.1 Solution overview

The ROG-3 (see Section 2.2.3) platform was employed in this edition
of the contest. As in the second competition, the ground control station
was employed for teleoperation of the fixed PTZ camera, for sending the
sequence of tasks to the drone and for receiving and displaying telemetry

140



4.4. Third edition

information. Furthermore, the ground control station was also used for
showing the video feed of the tracking phase and to display the pictures
taken by the drone’s cameras to the competition judges.

With respect to the second edition, the state estimation pipeline was
modified. The laser altimeter information were not anymore exploited at
the localization level, but they were pre-processed, along with VO posi-
tion estimates, before sending them to the EKF2 (see also Appendix A). In
addition to this, the additional optical flow available on the platform was
used for providing velocity measurements and improving the state estima-
tion performance. Moreover, the localization algorithm was augmented
for compensating the lack of most of the ArUCo visual markers that were
available on the field in the second edition. In particular, the proposed
localization algorithm employed both the information obtained from the
single ArUco available on the field and the Adaptive Monte Carlo Local-
ization (AMCL) [251, 252] algorithm, which compared the known map
of the field (see Figure 4.31) with the 2D projection of the 3D point cloud
produced by the stereo camera.

The mapping task relied upon the RTAB-Map algorithm, which took
as input directly the stereo camera information. Part of the produced map
was then used for planning collision-free paths. In particular, in this edi-
tion, a simplified version of A∗ was employed. Indeed, it took as input the
global map at relevant heights (the UAV flight altitude plus/minus the ver-
tical occupancy of the drone itself) and planned paths at the drone flight
altitude. This change led to a great reduction in the memory usage and
computational time.

Finally, trajectories were generated as in the second edition and fed to
the PX4 drone controller.

4.4.2 Navigation

The navigation architecture is summarized in Figure 4.33. As mentioned
in the overview, before remapping the visual odometry in the EKF2, a
KF is used for estimating the bias accumulated along the z-direction by
the visual odometry using laser altimeter measurements. Similarly to the
localization filter of the second edition of LDC, the motion and measure-
ment models of equations (4.12) and (4.15) have been employed. For

141



Chapter 4. Leonardo Drone Contest autonomous drone competitions

what concerns the rejection of outlier, e.g., in the case of the UAV flying
over an obstacle, the same approach of equation (4.25) is applied. This
helps avoiding possible jumps in the altitude estimate.

Figure 4.33: Navigation architecture in LDC third edition

Then, the bias compensated visual odometry is fused with IMU infor-
mation using the EKF2 for estimating the pose of the UAV in the odom
frame: TOB = (pOB, ROB).

Moreover, in this edition, optical flow measurements have been added
for improving the state estimation pipeline.

Optical flow

In this framework, two optical flow sensors have been tested and com-
pared before equipping them on the platform. Two flights have been
performed in the FlyART arena on the ROG-3 platform using both the
PX4FLOW [253] and the PMW3901. The measurements coming from
the two sensors have been compared with the measurement model em-
ployed in the EKF2 (see Appendix A). The distance, needed in the model
of equations (A.12) and (A.13), for both the experiments has been re-
trieved from the motion capture system. Note that no objects were placed

142



4.4. Third edition

on the floor, meaning that the flight altitude was equal to the distance
between drone and the features seen by the camera. The PX4FLOW and
PMW3901 results are shown, respectively, in Figures 4.34-?? and Figures
4.36-4.37.

0 10 20 30 40 50 60 70 80 90

Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

F
lo

w
 X

 [
1
/s

]

Model

Measurement

Figure 4.34: Comparison between measurement model and actual measurements of the
PX4FLOW optical flow sensor (x axis)

As can be seen from the results, even if both measurements are very
noisy, the PMW3901 optical flow outperforms the PX4FLOW one.

Localization

A localization algorithm has been designed for exploiting both the a pri-
ori knowledge on the environment and the presence of ArUco markers,
the pseudocode of which is shown in Algorithm 4. The idea for this hy-
brid localization algorithm has been taken from [254] and it shares many
similarities with the localization algorithm presented for the second edi-
tion. In particular, the filter estimates the same state, namely bMO, but
only focusing on the x − y plane. Then, the state evolves according to
the same motion model (4.12). Each time an ArUco of known position
is detected8, the measurement model of equation (4.14) is applied. Each

8Note that in the competition environment only ArUco 1 was available

143



Chapter 4. Leonardo Drone Contest autonomous drone competitions

0 10 20 30 40 50 60 70 80 90

Time [s]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

F
lo

w
 Y

 [
1

/s
]

Model

Measurement

Figure 4.35: Comparison between measurement model and actual measurements of the
PX4FLOW optical flow sensor (y axis)

0 10 20 30 40 50 60

Time [s]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

F
lo

w
 X

 [
1
/s

]

Model

Measurement

Figure 4.36: Comparison between measurement model and actual measurements of the
PMW3901 optical flow sensor (x axis)

144



4.4. Third edition

0 10 20 30 40 50 60

Time [s]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

F
lo

w
 Y

 [
1

/s
]

Model

Measurement

Figure 4.37: Comparison between measurement model and actual measurements of the
PMW3901 optical flow sensor (y axis)

time such kind of correction is performed, the AMCL particle filter is re-
set with the last estimated state. At the same time, whenever an AMCL
estimates is available, this is used as a measurement zamcl for the hybrid
localization filter. The outlier rejection scheme of equation (4.25) is used
for dealing with AMCL states with high estimated covariance (EKFor).

Algorithm 4 Hybrid Localization

x̂← xinit
while True do

if zaruco then
x̂← Correction EKF (zaruco)
xamcl ← x̂ ▷ Reinitialize AMCL filter

else if zamcl then
x̂← Correction EKFor(zamcl)

end if
end while

The AMCL particle filter uses as measurements an equivalent laser
scan produced by the projection of the 3D stereo camera point cloud onto
a plane. The 3D point cloud is opportunely filtered out from outliers

145



Chapter 4. Leonardo Drone Contest autonomous drone competitions

and only points in a range of heights are considered. This is done for
comparing the laser scan with the 2D map of Figure 4.38, in turn produced
starting from the map represented in Figure 4.31.

Figure 4.38: 2D map input of the AMCL particle filter

For what concerns the TF tree, as in the second edition architecture,
the hybrid localization is responsible for publishing the TF between odom
and map.

4.4.3 Guidance

The guidance architecture is shown in Figure 4.39. In this case, the de-
cision making architecture is simpler with respect to the previous version
one. Indeed, some pre-planned waypoints are selected, based on where
the ground robot could be placed (large areas without obstacles). At the
start of the mission, after takeoff, the UAV reaches these waypoints, in
a given order, until it finds the ground robot. Note that the entire right
part of the map (positive East axis according to Figure 4.31) is not ex-
plored since it is covered by the fixed PTZ camera. After having found
the ground robot, either by the drone or by the fixed camera, the UAV goal
is the one of reaching it. Then, once the ground robot has been reached,
the UAV tracks it for 10 seconds. For doing so, a similar approach of the
one employed in Section 5.2, is exploited. In the case the ground robot
is lost during tracking, two possible cases arises. If the ground robot has
been seen by one of the cameras, the UAV reaches that position and tracks

146



4.4. Third edition

it. Otherwise, the UAV recovers the pre-planned coverage path.

Figure 4.39: Guidance architecture in LDC third edition

Each of the obtained waypoints, except the tracking ones9, are submit-
ted to a 2D A∗ planner. The planner takes as input the Octomap produced
by RTAB-Map, but consider only obstacles placed at an height relevant
for the UAV current flight altitude. This procedure has been applied to
spare memory occupation and computational time. In addition to this, the
A∗ actually has been proposed in its Weighted variant. The cost function
is modified according to the following equation:

f = w1 · g + w2 · h = g + ϵh, (4.37)

where ϵ = w2/w1 is a tunable weight. This approach has been chosen to
expand less nodes and, thus, to speed up the planning process. Clearly,
by selecting w1 = 1 and w2 = 1, the method degenerates into the regular
A∗ case.

The vision-based landing architecture is similar to the one proposed in
Figure 4.13. However, no ArUco markers are available as reference for
the alignment before landing. Consequently, a custom computer vision

9No verification on the presence of obstacles is performed during tracking. This is done to achieve greater
tracking performance and it is possible since the ground robot to track is constrained in a large area without
obstacles.

147



Chapter 4. Leonardo Drone Contest autonomous drone competitions

algorithm has been designed for detecting the squares on the floor delim-
ited by the white tape (see for example Figure 4.40). Note that the square
must be entirely in the camera field of view and, if more multiple squares
are detected, the nearest one to the UAV current position is selected. Thus,
the error component ecam will be represented by the difference between
the center of the camera and the target center of the rectangle, but trans-
formed in the body frame B.

Figure 4.40: Output of algorithm for detecting landing squares. The red dot represents
the optical center of the camera, while the green dot is the center of the target square.

This information will be exploited only for alignment with the center
of the square. Then, the descent is executed providing the FCU with only
a velocity command.

4.4.4 Experimental results

Being the competition mostly similar to the second one, in this Section
we will focus only on the navigation performance. In particular, we first
consider the results obtained for what concerns the compensation of the
bias on the z-axis of the visual odometry, which is then fused in the EKF2.
Consider Figure 4.41, obtained during a complete flight on the LDC com-
petition field. The visual odometry displays a great drift over the flight.
At the same time, the altitude estimate of the EKF2 remains accurate
exploiting the laser altimeter measurements. Note also that the laser mea-
surements, corresponding to obstacles below the drone, are correctly re-

148



4.4. Third edition

jected, not causing a change in the drone flight altitude.

0 100 200 300 400 500 600 700 800 900 1000

Time [s]

-1

0

1

2

3

4

5

6

U
p

 [
m

]
EKF2

VO

Laser

Figure 4.41: Performance of bias compensated VO (Up component)

For what concerns the localization architecure, we consider the bene-
fits that can be produced by using the AMCL particle filter over a possi-
ble VIO-only solution. In order to not over complicate things, only the
AMCL output is shown, not considering its further integration in the lo-
calization pipeline, which leads to even greater benefits in terms of accu-
racy. Due to the lack of any motion capture system on the field, to be used
as ground truth, we rely upon retrieving the position of the UAV from the
known position of the ArUco markers combined with camera measure-
ments. Hence, we are able to retrieve an accurate indication of the po-
sition of the UAV in the map frameM every time an ArUCo marker is
detected by the downward and/or forward cameras. Consider now Figures
4.42 and 4.43, where the East and North components of the position are
shown respectively10. The map of Figure 4.38 has been used as input to
the AMCL algorithm.

It is clearly visible that, in correspondence of the availability of ArUco
markers, the AMCL improves over the EKF2 estimate. More formally,

10Note that these data have been obtained during another long flight in the LDC arena (different from the
one of Figure 4.41). Before this flight, some more ArUco markers were positioned on the field to have some
more ground truth points.

149



Chapter 4. Leonardo Drone Contest autonomous drone competitions

0 100 200 300 400 500 600 700

Time [s]

-10

-8

-6

-4

-2

0

2

4

6

8

10

E
a
s
t 
[m

]

EKF2

AMCL

GT ArUCo

+3

-3

Figure 4.42: Comparison AMCL with VIO (East component)

0 100 200 300 400 500 600 700

Time [s]

-6

-4

-2

0

2

4

6

N
o

rt
h

 [
m

]

EKF2

AMCL

GT ArUco

+3

-3

Figure 4.43: Comparison AMCL with VIO (North component)

150



4.5. Concluding remarks

we can compare the RMSE obtained between the AMCL and the ground
truth and the EKF2 and the ground truth (clearly only when an ArUco is
available). The results are summarized in Table 4.4.

Table 4.4: RMSE between AMCL and ground truth and EKF2 and ground truth

RMSE AMCL [m] EKF2 [m]
East 0.78 2.01

North 0.68 3.35
Combined EN 1.03 3.90

In view of the integration in the hybrid localization of Algorithm 4, we
can also note the 3σ bounds of the AMCL estimate, which will greatly
influence the acceptance or rejection of the measurement itself. At least
where we have indications about the ground truth position, we can see
that the covariance of the estimate has low values, making it suitable for
fusion in the hybrid localization filter.

4.4.5 Final considerations

In this third and last edition, the quality of flight resulted greatly improved
thanks to the integration of the optical flow and of the laser altimeter di-
rectly in the state estimation filter. The landing maneuver, performed
using velocity commands, resulted very accurate compared to the second
edition. Indeed, leaving the position control loop open makes the VIO
irrelevant for the maneuver and beneficial for its execution. Coming to
the competition results, the drone performed 11 (over a total of 15) valid
tasks (6 valid landings and 5 valid photos) over the three rounds, leading
to a win for our team. In addition to this, all the unknown poles were
correctly mapped.

4.5 Concluding remarks

In this Chapter, the solutions proposed in the three editions of the Leonardo
Drone Contest have been presented. First, the aim of the competitions,
their rules and objectives have been described. Successively, we pre-
sented an overview of the software and hardware architectures. Then, the

151



Chapter 4. Leonardo Drone Contest autonomous drone competitions

guidance and navigation modules were analyzed in detail, providing also
simulation and experimental results obtained both in the laboratory and
on the competition field. Finally, achievements and technical challenges
were discussed.

152



CHAPTER5
Autonomous landing

In this Chapter two different problems related to UAV autonomous land-
ing are tackled: autonomous emergency landing and Autonomous Air-to-
Air Landing (AAAL). In the following, the two problems are presented
and a short introduction about previous works is provided. Moreover,
guidance, navigation and control solutions for accomplishing the two
tasks are discussed.

5.1 Autonomous emergency landing

The capability of performing an autonomous landing in the case of faults
is an essential ability for an autonomous drone. In particular, the UAV
needs to identify, approach and land at a safe site without any intervention.
In this framework, we focus on a solution for the problem in an indoor and
GNSS-denied environment similar to the one of the LDC (see Chapter 4).

153



Chapter 5. Autonomous landing

Furthermore, we split the problem in two main sub-problems, i.e., landing
zone detection and path planning, and solve them separately.

5.1.1 Related work

In the literature, the landing zone detection problem is also called Safe
Landing Area Determination (SLAD). Even if research works can be clas-
sified based on the sensor employed [255], in this work we prefer to clas-
sify them based on the data structure from which information is retrieved.
Among them we can cite Digital Elevation Models (DEM) [256], Shut-
tle Radar Topography Mission Maps (SRTM) [257] or, more commonly,
point clouds and images.

For what concerns point clouds, usually some kind of grid or voxel
map is built starting from the 3D point cloud registration. The grid con-
tains statistical information such as mean, minimum and maximum height,
number of points. Then, some kind of plane fitting method is applied to
compute the slope and the roughness of the various areas in the attempt to
detect potential landing sites. Similar methods have been applied for full
scale helicopters [258, 259, 260] and for UAVs [261].

For images a variety of methods to find flat areas have been proposed.
Homography estimation for detecting features belonging to a plane have
been used in [262, 263]. At the same time, feature extraction methods,
e.g., edge and corners detectors have been applied in [264, 265, 266]. A
local contrast descriptor to assess roughness of the ground has been em-
ployed in [267]. In [36], the authors computed directly a vision-based ele-
vation map onboard using an efficient method. Stereo camera depth maps
are used for evaluating costmaps and detecting landing sites in [268]. In
[269] a visual multiple target tracking mechanism has been utilized to
help in the selection of a crash/landing site in populated areas. Finally, se-
mantic information extracted from monocular images has been employed
in a reinforcement landing framework in [270].

Turning to the problem of path planning in case of faults (in general
for path planning refer to Chapter 1), different approaches have been pro-
posed. For instance, in [271] the authors exploit an anytime RRT∗, with
checks on feasibility of the designed route, for gliding of a fixed-wing
aircraft with Loss of Thrust (LoT). For a similar problem an hybrid A∗

154



5.1. Autonomous emergency landing

search on an extended tangent graph is carried out in [272]. Landing run-
way selection and trajectory generation of an aircraft after complete LoT
is also tackled in [273]. A similar work, but for helicopter autoration af-
ter LoT, is carried out in [274]. They utilized a so called RRT∗ − AR
(Alternate Routes) for finding a new landing trajectory after the failure.

For what concerns multicopters, we can mention [275], in which the
authors utilized camera images for detecting potential landing spots. Then,
they compute and/or verify the landing trajectories using the method pre-
sented in [112].

5.1.2 Safe Landing Area Determination

The starting point for the implementation is the definition of what is con-
sidered a safe place to land. In many works, e.g., [267], a safe place is an
area which fulfills the following conditions:

1. The area is big enough for the UAV to land within.

2. The area is clear, i.e., free of either natural or artificial obstacles.

Note that additional constraints can be placed if a preference on landing
on ground or on rooftops (as in [276]) exists.

The proposed approach starts by transforming the input point cloud,
which can be either generated by a stereo camera (as presented in the
LDC competition; see Chapter 4) or by a laser scanner, into an elevation
grid map. Each element of the elevation map will contain the height h
of the highest obstacle which belong to that cell. Then, similarly to [36],
a cost matrix is computed to identify a local neighborhood of radius r
in which the surface is flat, which should be somewhat related with the
size of the UAV. The proposed cost matrix is represented by the standard
deviation:

σ(i, j) =
1

N − 1

∑
(u,v)∈R(i,j,r)

(h(u, v)− µ(i, j))2 (5.1)

where

155



Chapter 5. Autonomous landing

µ(i, j) =
1

N

∑
(u,v)∈R(i,j,r)

h(u, v) (5.2)

and R(i, j, r) is the set of cells around coordinate (i, j) that are located
within a radius r.

All the areas with values of σ over a threshold will be discarded, lead-
ing to a binary grid. We consider as potential safe landing areas the ones
which maximize the Euclidean Distance Transform (EDT) applied to the
mentioned binary grid. In other words, we will pick the cells which sat-
isfy the threshold on flatness, furthest from all cells that do not satisfy the
mentioned criterion. Note that we do not select only a single point which
maximizes the EDT, but the group of cells having the top percentile val-
ues. This is done considering that the safest areas are the ones with large
connected components satisfying the said criterion. Finally, in the con-
nected areas, the value with maximum EDT is selected.

Note that a value higher than the σ threshold is a priori assigned at the
boundaries of the point cloud. This is meant for constraining the selection
of the landing site to belong to the explored area.

5.1.3 Path planning

In case of emergency, e.g., in the case of LoT, the path planner should
not only plan a collision-free path, but a path as safe as possible, i.e., the
furthest from obstacles. In this view, a safety-aware A∗ [277] has been
implemented. Differently from its standard version, the path is optimized
for the risk associated with it, instead of its length.

Similarly to the formulation of [277], the function g represents the
integral of the risk between the initial state to the node we are expanding,
namely:

g(xn) =

∫ xn−1

xstart

rc(x)dx+

∫ xn

xn−1

rc(x)dx (5.3)

= g(xn−1) + c(xn−1, xn), (5.4)

156



5.1. Autonomous emergency landing

with

c(xn−1, xn) =
rc(xn−1) + rc(xn)

2
dist(xn−1, xn), (5.5)

where dist(xn−1, xn) is the Euclidean distance between two nodes. The
admissible heuristic is formulated as:

h(xn) =
rc(xn) + rc(xgoal)

2
distmin+ (5.6)

= +(dist(xn, xgoal)− distmin)rcmin
. (5.7)

where in our grid-based configuration distmin, i.e., the minimum distance
between two adjacent nodes, is equal to the adopted resolution. rcmin

is
instead the minimum value of the risk-cost function.

Differently from [277], we employed the inverse (since we are solving
a minimization problem) of the EDT, already computed for what concerns
the safe landing detection algorithm, as risk indicator rc.

In this case, similarly to the third edition of LDC, we implemented
weighted version for the safety-aware A∗. This also allows to generalize
the algorithm into an Anytime variant (see also Chapter 1), by oppor-
tunely scaling the heuristic weight for having a quick solution in case of
emergency, but being able to compute an optimal minimum risk solution
if possible.

In the proposed formulation, re-planning is performed if the difference
between the EDT of the cells belonging to the path increase over a certain
threshold during the execution of the path itself.

Finally, note that when multiple potential safe landing areas are found
by the SLAD algorithm, the one that will be used is selected either based
on the length of the path, if multiple paths can be computed in the avail-
able time, or based on the first valid solution found.

5.1.4 Trajectory planning

Starting from the available minimum risk path, a minimum snap trajec-
tory is generated following the approach of [108, 104]. Based on the
assumption of having an indication about the type of fault and its con-
sequences on the performance of the platform, the optimization process

157



Chapter 5. Autonomous landing

can be also stopped for having reached the maximum available thrust and
torques output of the UAV. This is easily implementable considering that
the quadrotor is a differentially flat system (see Appendix D) and, thus,
an algebraic relationship between the trajectory (flat output) and the gen-
eralized inputs (thrust and torques) exist.

5.1.5 Simulation results

To test the different steps of the proposed algorithm, some simulations
have been performed using Matlab. The simulated environments are of
the same size of the LDC arena, namely 20×10m, and they are generated
randomly. An example of the resulting point cloud, with additive noise,
is shown in Figure 5.1.

Figure 5.1: Randomly generated point cloud

According to the presented procedure, the EDT is applied to the binary
map of cells which satisfy the flatness criterion. Then, the cells with
the highest value of distance have been selected. The results of these
procedures are shown in Figure 5.2.

From the plot, it is clear that two large connected components are
present. Thus, we have found two potential landing sites, which are
shown in Figure 5.3.

158



5.1. Autonomous emergency landing

Figure 5.2: Euclidean Distance Field and associated potential landing areas

Figure 5.3: Potential landing sites

159



Chapter 5. Autonomous landing

Assuming a starting position (x = 7, y = 5), the safety-aware A∗

is applied to the two potential solutions. No solution exist for reaching
the first solution (x = 12, y = 8), while a safe solution is found for
the landing site (x = 2, y = 2). The resulting path and minimum-snap
trajectory are shown respectively in Figure 5.4 and Figure 5.5.

Figure 5.4: Planned path for the example situation

Consider also the difference between the conventional A∗ and the safety-
aware proposed version. The paths, planned by the two different ap-
proaches and with the same start and target nodes, are shown in Figures
5.6 and 5.7. We can clearly see how a longer path has been computed by
the safety-aware A∗ to stay away from the central obstacle.

To test the overall procedure, simulations have been also performed
on the Gazebo simulator (see Section 2.1). The obtained result is shown
in Figure 5.8. In the plot, we can see the point cloud accumulated until
the trigger of the fault. This latter is simply a user input and, in this case,
was triggered while the UAV was exploring the environment, traveling
toward positive East, in correspondence of the diamond marker. While
flying, the simulated UAV was continuously computing a possible landing
area based on the accumulated point cloud. In this particular case, the
point (x = −3.5, y = −0.9) was selected (blue dot). Then, the safety-

160



5.1. Autonomous emergency landing

Figure 5.5: Generated trajectory for the example situation

Figure 5.6: Generated path using A∗

161



Chapter 5. Autonomous landing

Figure 5.7: Generated path using safety-aware A∗

aware A∗ was applied for computing the path (red line) leading to the
safe landing area. Finally, a minimum snap trajectory (green line) was
calculated, starting from the retrieved path for reaching that area. Note
that, once the drone reaches the landing site, the landing maneuver is
actually commanded via a descending velocity set-point.

Experimental activities were carried out using the ROG-3 platform
(see Section 2.2.3). The point cloud was produced using the mapping
pipeline shown in Section 4.4. Also in this case, after a small exploration
phase, the emergency signal was sent to the platform, which computed a
safe path and trajectory from its current position to the pre-computed safe
landing area. The results are graphically shown in Figure 5.9 using the
same markers of the simulation plot.

5.1.6 Final considerations

In this Section, we discussed a possible solution for the problem of au-
tonomous emergency landing for multirotor UAVs in indoor environments.
The point cloud of the surrounding environment has been exploited for
generating an elevation map, which in turn is used for detecting potential
landing sites. The path from the current UAV position to the selected land-

162



5.1. Autonomous emergency landing

Figure 5.8: Emergency landing simulation results

Figure 5.9: Emergency landing experimental results

163



Chapter 5. Autonomous landing

ing area is computed using a safety-aware A∗. Then, a feasible trajectory
is computed considering the available control inputs. In the development
phase, simulation tests have been performed using Matlab on randomly
generated point clouds. In this framework, the selection of landing areas,
path planning and trajectory generation libraries were tested separately.
Finally, the overall solution has been implemented and validated both in
SITL simulations and in experiments on a real platform.

5.2 Autonomous Air-to-Air Landing (AAAL)

This Section explores the design of a procedure to enable AAAL, i.e., the
landing of a small (follower) over a larger UAV (target). This problem is
not only technologically complex but it is also risky and dangerous. In
the case of a multirotor, the wake of the propellers generates an unsteady
flow field around it, such that, when flying close, the two UAVs perturb
each other. In this work, the authors propose a vision-based approach
for tracking and landing on the target. To this aim, a Kalman Filter (KF)
is designed to estimate the target state using information coming from a
camera mounted on the follower drone. At the same time, a Quasi Time-
Optimal (QTO) control law and an hybrid logic (see also [278]) are used
to perform the landing. An experimental campaign has been carried out
to verify the proposed landing approach.

5.2.1 Related works

In the literature many examples of landing of VTOL UAVs on moving
platforms exist, especially onto ground vehicles. One of the first exam-
ples in shown in [279]. In this work, an autonomous landing has been
accomplished through, Image-Based Visual Servoing (IBVS), i.e., using
a controller acting directly in the image space. Position-Based Visual
Servoing (PBVS) has been instead employed with the same purpose in
[280]. However, visual servoing represents a valid option to some extent
because it requires the landing platform to be visible throughout the entire
duration of the task [281].

In order to deal with missing visual information, model-based ap-
proaches have been proposed to predict the motion of the landing target

164



5.2. Autonomous Air-to-Air Landing (AAAL)

[282, 283]. In this framework, we distinguish between cooperative and
non-cooperative approaches. To avoid any doubt related to the taxonomy,
we consider cooperative an approach which requires the knowledge of the
trajectory, state and/or measurements coming from the moving platform,
non-cooperative otherwise.

Among the non-cooperative approaches, the authors of [281], to deal
with missing visual detections, as well as, to estimate the full state of the
platform (namely the position and velocity and possibly the acceleration),
used an Extended Kalman Filter (EKF). Similar works have been carried
out in the MBZIRC 2017 for landing on a moving vehicle. In particu-
lar, the solution proposed by the University of Bonn [220] employed an
EKF for estimating the state of the ground vehicle, while the ETH Zurich
[219] implemented a particle filter, and the Czech Technical University in
Prague [284] used an Unscented Kalman Filter (UKF). In the mentioned
work, the predicted trajectory of the moving vehicle is then tracked using
Model Predictive Control (MPC) as outer loop. Note that in [281] only
VIO was employed for the aerial vehicle state estimation, while in the
works competiting in the MBZIRC, visual navigation was combined with
valid measurements of GPS/RTK positions.

On the other hand, in [285], a cooperative scenario is presented. A
multirotor UAV has the aim of landing on an high velocity ground ve-
hicle, on top of which a fiducial marker is placed. The position, veloc-
ity and acceleration of both the multirotor UAV and the ground vehicle
are jointly estimated fusing inertial measurements and GPS of both the
ground and the aerial vehicles, along with the marker pose measurements
reconstructed using a camera mounted on the drone. A similar problem
has been tackled by [286] and by [287]. However, only GPS position of
the ground vehicle is communicated to the UAV, in the case of missing
visual detection. While in [285] PID is employed for the landing phase,
in [286] MPC and INDI (see Section 1.4) flight control are combined.
Finally, in [287] a velocity controller is designed combining a control
barrier function (CBF) and a control Lyapunov function (CLF).

To the best of the author’s knowledge, the work presented in this Chap-
ter represents one of the few examples of a multirotor landing on a moving
flying platform. Exceptions regard [288] and [289], where a small UAV

165



Chapter 5. Autonomous landing

lands on a larger flying platform, although with this latter in near hover
condition.

Note that in previous works from our laboratory [290, 278], the air-to-
air landing problem was addressed in a cooperative scenario. A motion
capture system was used to determine the position and velocity of the
target drone and communicated to the follower one for performing the
landing. However, while in [290] the target was in hovering conditions,
in [278] the more challenging problem of a moving target was tackled.

5.2.2 Autonomous landing strategy

In the considered scenario, the follower has to perform the landing ma-
neuver autonomously in a non-cooperative way, i.e., using only the state
of the target, estimated as explained in Section 5.2.5, whose motion can-
not be controlled. The landing problem is formulated regardless of the
specific UAV actuation mechanism because it is assumed that there ex-
ist control laws for the control force and torque such that any bounded
velocity trajectory is asymptotically tracked, e.g., [291, 292]. In our ex-
periments to fit our design we use a customized version of the controller
presented in Section 1.4.2. From this consideration the kinematic model:

ẋf = u, (5.8)
is used for control design, where u ∈ R3 is a virtual input, corresponding
to the follower velocity in the inertial frame I and xf ∈ R3 is the position
of the center of mass of the follower with respect to the inertial frame.

The target UAV is considered as a flat moving surface, described by a
disk with center xt ∈ R3 and radius rt ∈ R>0. The motion of the target is
described by the following kinematic model:

ẋt = vt (5.9)

Ωt =
{
y ∈ R3 : e⊤3 (y − xt) = 0, ∥y − xt∥ ≤ rt

}
(5.10)

where vt ∈ R3 is velocity of the point xt, resolved in I. The above def-
inition implies the attitude of the target be constantly aligned with the
gravity direction, which is the most desirable condition to land. How-
ever, the landing strategy proposed in this work is robust to small attitude
motion of the target.

166



5.2. Autonomous Air-to-Air Landing (AAAL)

Before stating the autonomous landing problem addressed in this work,
we make the following assumptions.

Assumption 3. 1) Images coming from the camera mounted on the fol-
lower are assumed to provide information about the position of the visual
marker frame T attached to target in the camera frame C, resolved in C;
2) at the initial time, the follower is above the target and during all the
landing operations the visual marker is in the field of view of the camera
sensor; 3) the position of the follower xf and its attitude Rf are assumed
to be known at all times.

Based on the second bullet of Assumption 3, we are considering the
final phase of the landing, when the follower is sufficiently close to target.
The considered air-to-air landing problem can be formalized as follows.

Problem. Consider the UAV kinematic model in equation (5.8), under
Assumption 3, find a control law for u such that xf converges safely to a
point in the set Ωt defined in (5.10) in finite time.

The adverb ”safely” in the problem above encodes the requirement that
the follower has to land from above the target and in a sufficiently slow
manner, which allows minimizing perturbation effects between the two
drones.

The problem has been tackled, on one way, by estimating the state
of the target using a KF that combines the estimates of the state of the
follower, coming from the onboard state estimator, and the measurement
of the relative position of the target with respect to the follower, coming
from a dedicated vision-based algorithm. At the same time, we have de-
signed a control law for u, considering the UAV kinematic model in (5.8),
under assumption 3, such that xf converges safely, i.e., from above and in
a slow manner, in finite time to the flat surface of radius rt that represents
a safe position on the target.

In the next Sections we are going to present, first, our landing strat-
egy, which combines a quasi time-optimal control law for tracking and
a hybrid logic to perform the landing in a safe manner, and then the KF
employed for target state estimation.

167



Chapter 5. Autonomous landing

5.2.3 Quasi time-optimal tracking

Thanks to the assumption that the velocity of the follower is directly con-
trollable, to track a desired sufficiently smooth trajectory xd(t), we can
use input u in feedback strategy. We split the tracking error defined as
p := xf − xd, in a planar p⊥ := [p1, p2]

⊤ and a vertical p3 component.
Therefore, the error dynamics is ṗ = u− ẋd = u− vd, where vd := ẋd is
the desired velocity. The following control law is used

u⊥(p⊥, vd⊥) := −sat⊥vM (p⊥) + vd⊥ (5.11)

u3(p3, vd3) := −satvMvm (k3p3) + vd3 (5.12)

where satvMvm (p3) := min(max(p3,−vm), vM) is a scalar saturation func-
tion with saturation levels vm, vM ∈ R>0,

sat⊥vM (p⊥) := min

(
k⊥,

vM
∥p⊥∥

)
p⊥ (5.13)

and k⊥, k3 are scalar positive gains. The control law has been split in
a planar (5.11) and vertical (5.12) component for reasons related to the
hybrid logic.

The tracking properties of the proposed law are formalized by the fol-
lowing theorem, whose proof can be found in [278].

Theorem 1. Consider the system (5.8) controlled by (5.11)-(5.12). Given
any desired trajectory xd(t), vd(t) such that ẋd(t) = vd(t), for any posi-
tive k⊥, k3, vm and vM , the equilibrium point p = 0 is Globally Asymp-
totically Stable (GAS).

In parallel with the definition given in [293] for the double integrator
case, we refer to the control law (5.11)-(5.12) as quasi time-optimal.

5.2.4 Hybrid logic

In this Section the hybrid logic implemented to solve the landing problem
is presented. It is based on three operating modes:

• Synchronization (Mode 0) during which the follower is far from the
target and has to get close to a position at a certain height hs above
the target in a sufficiently fast way.

168



5.2. Autonomous Air-to-Air Landing (AAAL)

• Approach (Mode 1) during which the follower starts a sufficiently
slow and controlled descent towards the target.

• Land (Mode 2) when the follower has reached a sufficiently close
point above the target landing surface and the landing command is
activated.

The proposed strategy can be described as a hybrid automaton, modelled
using the framework of [294]. The different working modes are selected
through the logical state q ∈ Q := {0, 1, 2}. Then, the state p evolves
according to differential equations in the following domains defined for
each mode:

C0 :=

{
p ∈ R3 :

{
∥p⊥∥ ≥ rm if p3 ≥ ha
∥p⊥∥ ≥ rt if 0 ≤ p3 < ha

}
(5.14)

C1 :=
{
p ∈ R3 : ∥p⊥∥ ≤ rt, p3 ≥ ha

}
(5.15)

C2 :=
{
p ∈ R3 : ∥p⊥∥ ≤ rt p3 = 0

}
(5.16)

where ha ∈ R>0 defines the altitude at which the approach phase should
end while R>0 ∋ rm < rt is the radius at which the synchronization phase
should end. The choice rm < rt will guarantee that switches between
modes occur with hysteresis to avoid chattering phenomena.

We refer to [278] for the definition of the main elements of the hybrid
logic: the set of edges, that identifies possible transitions between modes,
the guard conditions that give for each edge the set to which the state has
to belong for transitions between the two modes of the edge, and the reset
map, which describes for each edge and state the jump of the state during
a transition between the two modes of the edge. In Figure 5.10 the hybrid
automaton is represented.

To solve the problem the following hybrid control laws are imple-
mented:

• During the synchronization mode (q = 0) the objective of the control
law

u =

[
−sat⊥vs(p⊥) + vt⊥

−satvsvs(k3(p3 − hs)) + vt3

]
(5.17)

169



Chapter 5. Autonomous landing

Figure 5.10: Hybrid Automaton for landing strategy.

is to track a point at a distance R>0 ∋ hs ≫ ha above the target
point xt, namely, xs := xt + [0, 0, hs]

⊤ which represents the safety
approaching point.

• During the approaching mode (q = 1) the objective of the control
law

u =

[
−sat⊥vs(p⊥) + vt⊥
−satvsva(k3p3) + vt3

]
(5.18)

is to track the target point xt, with approaching vertical speed bounded
by va.

• Finally during land mode (q = 2) after the follower is brought to
the target surface, in our experiment this corresponds to disarm, i.e.,
turn off the rotors so that it falls by gravity on the target, the follower
stays on the target surface due to friction and u = vt.

The main result, whose proof can be found in [278], is here summarised.

Theorem 2. Considering the closed-loop error dynamics obtained from
(5.8) with the hybrid control law presented, under the two assumptions,
for any choice hs > ha, and positive k⊥, k3, vs and va all the closed loop
solutions starting in the set Ω0 := {(q, p) ∈ Q× R3 : p3 ≥ 0} converge
to the set Ωℓ := {(q, p) ∈ Q× R3 : q = 2, ∥p⊥∥ ≤ rt, p3 = 0} in finite
time.

170



5.2. Autonomous Air-to-Air Landing (AAAL)

To reduce the landing time when the follower exits the landing domain
C1 the height hs is used as an additional state of the logic which is updated
by setting it equal to the relative vertical distance achieved just before
exiting the C1 domain.

5.2.5 Vision-based target state estimation

Vision is used to estimate the position and velocity of the moving plat-
form in an inertial frame. In order to simplify the detection task, an
ArUco marker has been attached to the target drone and employed as
visual marker (see Figure 2.15). It is worth pointing out that the approach
can be generalized to different tags and detection algorithms.

The ArUco marker detection is carried out on the images coming from
the camera equipped on the follower, exploiting the OpenCV library [295].
The marker detection process is comprised of two main steps:

1. Detection of marker candidates. In this step, the image is analyzed
to find square shapes, candidates to be markers. An adaptive thresh-
olding is applied for markers segmentation and, then, contours are
extracted from the thresholded image. Contours that do not approx-
imate to square shape are finally discarded.

2. Marker codification. In this step, marker bits are extracted from
each detected marker. For doing so, a perspective transformation
is first applied to obtain the marker in its canonical form. Then, the
Otsu thresholding [296] is applied to the canonical image to separate
white and black bits. Finally, the bits are analyzed to determine if
the marker belongs to the specified dictionary.

Then, once the marker has been detected and identified, if the camera
calibration parameters are known, the pose of the marker with respect
to the camera (or the pose of the camera) can be reconstructed solving
the Perspective-n-Point (PnP) problem. The resulting output is compliant
with Assumption 3.

The position xt and the velocity vt of the target in the inertial frame
are estimated through a discrete-time KF. Let the state vector be defined

171



Chapter 5. Autonomous landing

as x =
[
xt v⊤t

]
. A kinematic model is used for the target motion, corre-

sponding to the following discrete-time model:

xk = Fxk−1 + wk−1 (5.19)
yk = Hxk + vk (5.20)

with

F =

[
I3 I3∆t
03 I3

]
(5.21)

where ∆t is the sampling period of the filter. The process noise wk is
assumed to be a zero-mean Gaussian white noise with covariance matrix
Q. Similarly, the measurement noise vk is a Gaussian random vector with
zero mean and covariance R, uncorrelated with the process noise wk. It is
worth noting that this model can be easily substituted by a more detailed
one, if some more knowledge about the motion of the target is available.
The filter prediction step is written as in equations (4.18)-(4.19). The
correction phase is performed each time a measurement, i.e., the 3D po-
sition of the moving target, is provided by the ArUco detection and pose
reconstruction algorithms.

Similarly to the localization filter presented in Section 4.3.2, the mea-
surement model, linear in the state, at a certain instant k, can be written
as:

y = RCB(R
⊤
IB(xt − xf )) + tCB + v, (5.22)

where with frame B we consider the body frame of the follower. As can
be seen from equation (5.22), the position and attitude of the follower in
the inertial frame are needed. They are directly retrieved from the fol-
lower estimator (the EKF2 presented in Appendix A). The filter correc-
tion step can be written as in equations (4.20)-(4.24). Finally, inliers are
validated by checking the Normalized Estimation Error Squared (NEES)
as in equation (4.25).

5.2.6 Simulation results

The approach has been first validated in simulation, using the simulation
environment of Section 2.1. The only difference consists in the use of two
simulated UAVs, the follower equipped with a virtual downward looking

172



5.2. Autonomous Air-to-Air Landing (AAAL)

camera, and the target equipped with a flat surface on which an ArUco
marker is attached.

The vision-based target detection and automatic landing strategy are
implemented as ROS nodes and the follower desired velocity is commu-
nicated to the PX4 autopilot firmware. Note that the drones initial posi-
tions and the target trajectory are commanded using the Matlab ANT-X
[174] proprietary tool. A video of the simulation is available online1. A
simulation of AAAL is shown with the target moving along a circular tra-
jectory of radius R = 1m and angular frequency of ω = 0.2 rad/s. In
Figure 5.11 the 3D position trajectories of the two drones are shown to-
gether with the planned trajectory for the target. In the figure, circle, cross
and star markers are used to identify the switches of the logic variable q:
in correspondence of circle markers synchronization mode (q = 0) is ac-
tivated, in correspondence of cross markers the approach phase (q = 1)
begins, while star markers indicates when the disarm command is sent to
the follower (q = 2).

In Figure 5.12 and Figure 5.13 the true and estimated relative in-plane
and vertical distance are shown together with the evolution of the logic
variable.

Figure 5.11: 3D position of follower and target during AAAL simulation

1Visit https://www.youtube.com/watch?v=LsINkVjS6R0

173

https://www.youtube.com/watch?v=LsINkVjS6R0


Chapter 5. Autonomous landing

105 106 107 108 109 110 111 112 113
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

1

2

L
o

g
ic

 v
a

ri
a

b
le

 q
 [

-]

Figure 5.12: Horizontal position of follower and target during AAAL simulation

5.2.7 Preliminary test results

Flight tests are carried out inside the FlyART, using as aerial vehicles the
ANT-X and CARRIER-1 drones (see Section 2.2). An ArUco marker of
19 cm width has been attached to the target, while a small landing gear
has been built for the follower (Figure 5.14).

Before performing the vision-based landing, preliminary tests have
been conducted focusing on the quality of the vision-based target state
estimation when varying some camera parameters. In particular, with the
target still on the ground and the follower moving slowly above it2, we
have tried to quantify the mean µ and the standard deviation σ of the error
between the true and the estimated position of the target at different val-
ues of camera resolution (QQVGA, QVGA, VGA)3. The obtained results
are shown in Table 5.1. Given the trade-off between accuracy and CPU
load, the QVGA resolution has been chosen for all the subsequent tests.

Before conducting vision-based landing experiments, we have ana-
lyzed the performance of the tracking system when degrading operating
conditions, starting from the results obtained in [278], where the motion

2With the marker always in the camera field of view.
3Higher resolutions have not been considered because of the CPU load.

174



5.2. Autonomous Air-to-Air Landing (AAAL)

105 106 107 108 109 110 111 112
0

0.5

1

1.5

0

1

2

L
o

g
ic

 v
a

ri
a

b
le

 q
 [

-]

Figure 5.13: Vertical position of follower and target during AAAL simulation

Figure 5.14: ANT-X and CARRIER-1 drones.

175



Chapter 5. Autonomous landing

Table 5.1: Mean and standard deviation of the error between the true end the estimated
position of the target.

QQVGA QVGA VGA
Image rate [Hz] 50 30 15

ArUco pose rate [Hz] 6 4 4
µx [m] 0.071 0.042 0.053
σx [m] 0.035 0.042 0.039
µy [m] 0.043 0.014 0.019
σy [m] 0.039 0.035 0.042
µz [m] -0.042 0.045 0.097
σz [m] 0.041 0.077 0.063

CPU load 78% 85% 88%

capture system was employed for retrieving the target state. In particular,
the following measurements have been utilized, both in simulations and
experiments, for estimating the target state based on the proposed filter
(Section 5.2.5):

• Motion capture measurements at 50Hz (similarly to [278]);

• Motion capture measurements under-sampled at 4Hz (the rate at
which we get ArUco pose estimates according to Table 5.1);

• Motion capture measurements under-sampled at 4Hz with addition
of noise (using noise information from Table 5.1);

• Vision-based measurements.

To compare these cases we perform a test with the follower in syn-
chronization mode at altitude hf = 2.5m and estimating the target mov-
ing along a circular trajectory of radius R = 1m and angular frequency
ω = 0.2 rad/s at constant altitude ht = 1m. The estimation of the po-
sition in all the cases is comparable. The main difference resides in the
estimate of the velocity. In Figure 5.15 the estimates of the velocity of the
target obtained from the filter using the under-sampled and noisy Mo-Cap
measurements and the vision measurements are compared with the true
ones. With this test we demonstrate the equivalence between the estima-
tion obtained with the vision and the estimation obtained under-sampling

176



5.2. Autonomous Air-to-Air Landing (AAAL)

the Mo-Cap measurements at 4Hz and adding a noise with standard de-
viation of the order of magnitude of the ones reported in Table 5.1, i.e.,
σx = σy = 3.5× 10−2m and σz = 7× 10−2m.

Figure 5.15: True and estimated velocity of the target. The estimates are obtained
from the KF described in Section 5.2.5 using the under-sampled and noisy Mo-Cap
measurements and the vision measurements.

5.2.8 Vision-based landing results

The landing has been performed in two conditions: with the target mov-
ing along a circular trajectory of radius R = 1m and angular frequency
ω = 0.2 rad/s and with the target moving along a linear trajectory with
velocity vt = 0.4m/s.

In the case of circular trajectory the follower starts in [0, 0.75, 2.5]⊤m
while the circular trajectory is centered in [0, 0, 1]⊤m with respect to the
inertial frame with ENU convention of the flying arena. In Figure 5.16
the in-plane position trajectories of the two drones are shown together
with the target desired trajectory. The switches of the logic variable q are
represented as in the simulation results.

As can be observed, at the beginning the synchronization mode is ac-
tive and the follower tracks the target keeping the vertical distance con-

177



Chapter 5. Autonomous landing

Figure 5.16: In-plane position of follower and target in AAAL experiments on a circular
trajectory.

stant. When the in-plane error p⊥ is less then 0.0075 = rm < rt =
0.0125m, the logic variable switches to 1 and the follower starts the ap-
proach phase. Right after entering, the follower exits the C1 region be-
cause of the delay in the estimate of the velocity of the target and, there-
fore, the logic state is switched back to the synchronization mode again.
When the in-plane distance distance is again lower than rm, q jumps to
1. Finally it keeps in the C1 domain until the landing mode is activated
(q = 2). In Figure 5.17 and Figure 5.18 the true and estimated relative
in-plane and vertical distance are shown together with the evolution of the
logic variable. In particular, some considerations can be made:

• The relative distance obtained from vision measurements underes-
timates the true one. This could lead to dangerous situations, e.g.,
landing outside the target surface. For this reason we chose conser-
vative bounds rm and rt with respect to the ones in [278] considering
the values for the mean of the error reported in Table 5.1. In this way,
even if at the end of the approach phase the true in-plane relative dis-
tance is slightly outside the bound of the domain, the landing can be

178



5.2. Autonomous Air-to-Air Landing (AAAL)

considered safe.

• During the first approach, some spikes in the estimated in-plane rel-
ative distance could be seen. This was due to the loss of some pack-
ages of data in the telemetry.

• During the final part of the descent, at an height above the target,
which depends on the dimension of the marker and on the camera
FOV, the tag cannot be seen by the monocular camera. In our case
this happened at ∼ 40 cm, and from that moment until the disarm
command, the follower continues the descent and uses the position
estimated only with the prediction step of the KF. Note that, in the
literature, the problem of loss of visual information near the marker
during landing is solved either through range finders, e.g., [281, 284]
,or through multiscale visual fiducial markers on the landing pad
[285].

Figure 5.17: True and estimated in-plane relative position time history in AAAL exper-
iments on a circular trajectory

The proposed approach is limited by the delay of the estimated tar-
get velocity (Figure 5.15), which in turn is due to the fact that the model
used for the prediction step is kept as general as possible. As can be seen

179



Chapter 5. Autonomous landing

Figure 5.18: True and estimated relative vertical position time history in AAAL experi-
ments on a circular trajectory

in Figure 5.19, when a linear trajectory with velocity vt = 0.4m/s is
considered for the target, the results improve in terms of estimation per-
formance because of the matching between the real motion of the target
and the model used in the estimator. Note that similar results, in terms of
velocities achieved both in circular and in linear trajectories, have been
obtained in [280].

A video of the experiment is available online4.

5.2.9 Final considerations

In this Section, we tackled the problem of vision-based AAAL of UAVs.
A KF state estimation approach has been used for determining the posi-
tion and velocity of the target drone in a non-cooperative manner. The
availability of this information has been exploited for performing a safe
landing combining an hybrid logic with a QTO tracking controller. Pre-
liminary tests have shown how visual information degrade performance
of such designed filter compared to more accurate positioning systems.

4Visit https://www.youtube.com/shorts/g7ojYgm35M8

180

https://www.youtube.com/shorts/g7ojYgm35M8


5.3. Concluding remarks

Figure 5.19: True and estimated in-plane relative position time history in AAAL exper-
iments on a linear trajectory.

Finally, the proposed strategy has been validated through simulations and
an experimental campaign involving two multirotor UAVs.

5.3 Concluding remarks

In this Chapter, the guidance, navigation and control solutions proposed
for autonomous landing have been addressed concerning two different
use-cases: emergency landing and vision-based Autonomous Air-to-Air
landing. The software architectures for both the problems have been pre-
sented in detail. Finally, simulation and experimental results have been
showed.

181





Conclusions

This dissertation focuses on the development, simulation and experimen-
tal validation of guidance and navigation algorithms for autonomous mul-
tirotor UAVs. Three software and hardware architectures for autonomous
UAVs have been proposed in the framework of the Leonardo Drone Con-
test, an autonomous drone competition. The platforms have been exten-
sively tested on long duration autonomous flights in GNSS-denied indoor
environments. In particular, navigation in partially known environments,
planning, collision avoidance, interactions with ground robots and human
agents are some of the aspects tackled during the three competitions. Sim-
ulation and experimental results, obtained both in laboratory and on the
competition field, have been presented and discussed.

A second contribution of this work is related to the definition of a sys-
tematic approach to the characterization of visual systems. Visual odom-
etry performance, critical in the developed autonomous drones, have been
analyzed in a variety of operating conditions. In particular, the Allan Vari-
ance analysis technique has been used to model the errors affecting the
stereo VO position measurements. The models have been then validated
and compared when varying the flight conditions.

Finally, autonomous landing has been tackled in two use-cases. The
first is the vision-based Air-to-Air Landing, in which a small drone lands

183



Conclusions

on top of a larger drone during flight. A non-cooperative approach us-
ing vision for tracking has been proposed. The landing maneuver has
been validated in simulations and experiments without any assumption
on the motion of the target platform. The second use-case is related to
the autonomous emergency landing, a fundamental capability that an au-
tonomous system should possess. In particular, we have focused on a so-
lution for the problem in an indoor and GNSS-denied environment. The
UAV, first, identifies potential landing spots based on the map acquired
up to that moment and, then, plans a feasible plan and trajectory from the
current drone position to the selected landing area.

184



Bibliography

[1] M. Hassanalian and A. Abdelkefi, “Classifications, applications,
and design challenges of drones: A review,” Progress in Aerospace
Sciences, vol. 91, pp. 99–131, 2017.

[2] T. Elmokadem and A. V. Savkin, “Towards fully autonomous
UAVs: A survey,” Sensors, vol. 21, no. 18, p. 6223, 2021.

[3] H.-M. Huang, “Autonomy levels for unmanned systems (ALFUS)
framework volume I: Terminology version 2.0,” 2004-09-30 2004.

[4] R. R. Murphy, Disaster robotics. MIT press, 2014.

[5] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and
D. Scaramuzza, “Autonomous, vision-based flight and live dense
3D mapping with a quadrotor micro aerial vehicle,” Journal of
Field Robotics, vol. 33, no. 4, pp. 431–450, 2016.

[6] A. Bachrach, R. He, and N. Roy, “Autonomous flight in unknown
indoor environments,” International Journal of Micro Air Vehicles,
vol. 1, no. 4, pp. 217–228, 2009.

[7] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, “Stereo
vision and laser odometry for autonomous helicopters in GPS-

185



Bibliography

denied indoor environments,” Unmanned Systems Technology XI,
vol. 7332, p. 733219, 2009.

[8] S. Grzonka, G. Grisetti, and W. Burgard, “A fully autonomous in-
door quadrotor,” IEEE Transactions on Robotics, vol. 28, no. 1,
pp. 90–100, 2012.

[9] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision
based MAV navigation in unknown and unstructured environ-
ments,” 2010 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 21–28, 2010.

[10] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a
low-cost quadrocopter,” 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 2815–2821, 2012.

[11] S. Shen, N. Michael, and V. Kumar, “Autonomous indoor 3D ex-
ploration with a micro-aerial vehicle,” 2012 IEEE International
Conference on Robotics and Automation (ICRA), pp. 9–15, 2012.

[12] J. Engel, J. Sturm, and D. Cremers, “Scale-aware navigation of
a low-cost quadrocopter with a monocular camera,” Robotics and
Autonomous Systems, vol. 62, no. 11, pp. 1646–1656, 2014.

[13] K. Schmid, P. Lutz, T. Tomić, E. Mair, and H. Hirschmüller, “Au-
tonomous vision-based micro air vehicle for indoor and outdoor
navigation,” Journal of Field Robotics, vol. 31, no. 4, pp. 537–570,
2014.

[14] D. Scaramuzza, M. Achtelik, L. Doitsidis, F. Friedrich,
E. Kosmatopoulos, A. Martinelli, M. Achtelik, M. Chli,
S. Chatzichristofis, L. Kneip, et al., “Vision-controlled micro flying
robots: from system design to autonomous navigation and mapping
in GPS-denied environments,” IEEE Robotics & Automation Mag-
azine, vol. 21, no. 3, pp. 26–40, 2014.

[15] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and
E. Galceran, “Continuous-time trajectory optimization for online
UAV replanning,” 2016 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pp. 5332–5339, 2016.

186



Bibliography

[16] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and ef-
ficient quadrotor trajectory generation for fast autonomous flight,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–
3536, 2019.

[17] M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart, “Real-
time visual-inertial mapping, re-localization and planning onboard
MAVs in unknown environments,” 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1872–
1878, 2015.

[18] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Maki-
neni, K. Saulnier, K. Sun, A. Zhu, J. Delmerico, et al., “Fast, au-
tonomous flight in GPS-denied and cluttered environments,” Jour-
nal of Field Robotics, vol. 35, no. 1, pp. 101–120, 2018.

[19] X. Liu, G. V. Nardari, F. C. Ojeda, Y. Tao, A. Zhou, T. Donnelly,
C. Qu, S. W. Chen, R. A. F. Romero, C. J. Taylor, and V. Kumar,
“Large-scale autonomous flight with real-time semantic SLAM un-
der dense forest canopy,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 5512–5519, 2022.

[20] H. Oleynikova, C. Lanegger, Z. Taylor, M. Pantic, A. Millane,
R. Siegwart, and J. Nieto, “An open-source system for vision-based
micro-aerial vehicle mapping, planning, and flight in cluttered en-
vironments,” Journal of Field Robotics, vol. 37, no. 4, pp. 642–666,
2020.

[21] T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, and
M. Saska, “The MRS UAV system: Pushing the frontiers of re-
producible research, real-world deployment, and education with
autonomous unmanned aerial vehicles,” Journal of Intelligent &
Robotic Systems, vol. 102, no. 1, pp. 1–28, 2021.

[22] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation,
control, and planning for aggressive flight with a small quadrotor
with a single camera and IMU,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 404–411, 2016.

187



Bibliography

[23] E. Tal and S. Karaman, “Accurate tracking of aggressive quadro-
tor trajectories using incremental nonlinear dynamic inversion and
differential flatness,” IEEE Transactions on Control Systems Tech-
nology, vol. 29, no. 3, pp. 1203–1218, 2020.

[24] A. Antonini, W. Guerra, V. Murali, T. Sayre-McCord, and S. Kara-
man, “The blackbird UAV dataset,” The International Journal of
Robotics Research, vol. 39, no. 10-11, pp. 1346–1364, 2020.

[25] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauers-
feld, T. Laengle, G. Cioffi, Y. Song, A. Loquercio, et al., “Agili-
cious: Open-source and open-hardware agile quadrotor for vision-
based flight,” Science Robotics, 2022.

[26] J. Dias, K. Althoefer, and P. U. Lima, “Robot competitions: What
did we learn?,” IEEE Robotics & Automation Magazine, vol. 23,
no. 1, pp. 16–18, 2016.

[27] J. Stuckler, D. Holz, and S. Behnke, “RoboCup@Home: Demon-
strating everyday manipulation skills in RoboCup@Home,” IEEE
Robotics and Automation Magazine, vol. 19, no. 2, pp. 34–42,
2012.

[28] H. Moon, J. Martı́nez-Carranza, T. Cieslewski, M. Faessler,
D. Falanga, A. Simovic, D. Scaramuzza, S. Li, M. M. O. I. Ozo,
C. de Wagter, G. C. de Croon, S. Hwang, S. Jung, H. Shim, H. Kim,
M. Park, T.-C. Au, and S. J. Kim, “Challenges and implemented
technologies used in autonomous drone racing,” Intelligent Service
Robotics, vol. 12, pp. 137–148, 2019.

[29] “Alphapilot AI Drone Innovation Challenge.” https:
//www.lockheedmartin.com/en-us/news/events/
ai-innovation-challenge.html, Access date:
17/01/2022.

[30] C. De Wagter, F. Paredes-Vallés, N. Sheth, and G. de Croon,
“Learning fast in autonomous drone racing,” Nature Machine In-
telligence, vol. 3, no. 10, pp. 923–923, 2021.

188

https://www.lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html
https://www.lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html
https://www.lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html


Bibliography

[31] “International Micro Air Vehicles Conferences and Competitions.”
http://www.imavs.org/, Access date: 17/01/2022.

[32] “Mohamed Bin Zayed International Robotics Challenge
(MBZIRC).” https://www.mbzirc.com/, Access date:
17/01/2022.

[33] “DARPA Fast Lightweight Autonomy (FLA).” https://www.
darpa.mil/program/fast-lightweight-autonomy,
Access date: 17/01/2022.

[34] “DARPA Subterrean Challenge.” https://www.
subtchallenge.com/, Access date: 17/01/2022.

[35] “PX4 documentation.” https://docs.px4.io/v1.10/
en/, Access date: 06/05/2022.

[36] C. Forster, M. Faessler, F. Fontana, M. Werlberger, and D. Scara-
muzza, “Continuous on-board monocular-vision-based elevation
mapping applied to autonomous landing of micro aerial vehicles,”
2015 IEEE International Conference on Robotics and Automation
(ICRA), pp. 111–118, 2015.

[37] “ROS REP105.” https://www.ros.org/reps/
rep-0105.html, Access date: 14/09/2022.

[38] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics:
Modelling, Planning and Control. Springer Publishing Company,
Incorporated, 2010.

[39] J. Solà, “Quaternion kinematics for the error-state Kalman filter,”
CoRR, vol. abs/1711.02508, 2017.

[40] “Vicon - motion capture system.” https://www.vicon.
com/, Access date: 31/08/2022.

[41] “Optitrack - motion capture system.” https://optitrack.
com/, Access date: 31/08/2022.

189

http://www.imavs.org/
https://www.mbzirc.com/
https://www.darpa.mil/program/fast-lightweight-autonomy
https://www.darpa.mil/program/fast-lightweight-autonomy
https://www.subtchallenge.com/
https://www.subtchallenge.com/
https://docs.px4.io/v1.10/en/
https://docs.px4.io/v1.10/en/
https://www.ros.org/reps/rep-0105.html
https://www.ros.org/reps/rep-0105.html
https://www.vicon.com/
https://www.vicon.com/
https://optitrack.com/
https://optitrack.com/


Bibliography

[42] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig,
M. Sherback, and R. D’Andrea, “A platform for aerial robotics
research and demonstration: The flying machine arena,” Mecha-
tronics, vol. 24, no. 1, pp. 41–54, 2014.

[43] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP
multiple micro-UAV testbed,” IEEE Robotics & Automation Mag-
azine, vol. 17, no. 3, pp. 56–65, 2010.

[44] “Velodyne Lidar.” https://velodynelidar.com/, Access
date: 24/09/2022.

[45] “Ouster Lidar.” https://ouster.com/, Access date:
24/09/2022.

[46] A. Bachrach, S. Prentice, R. He, P. Henry, A. S. Huang, M. Krainin,
D. Maturana, D. Fox, and N. Roy, “Estimation, planning, and map-
ping for autonomous flight using an RGB-D camera in GPS-denied
environments,” The International Journal of Robotics Research,
vol. 31, no. 11, pp. 1320–1343, 2012.

[47] S. Shen, N. Michael, and V. Kumar, “Stochastic differential
equation-based exploration algorithm for autonomous indoor 3D
exploration with a micro-aerial vehicle,” The International Journal
of Robotics Research, vol. 31, no. 12, pp. 1431–1444, 2012.

[48] S. Hrabar, G. S. Sukhatme, P. Corke, K. Usher, and J. Roberts,
“Combined optic-flow and stereo-based navigation of urban
canyons for a UAV,” 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 3309–3316, 2005.

[49] F. Ruffier and N. Franceschini, “Visually guided micro-aerial ve-
hicle: automatic take off, terrain following, landing and wind re-
action,” 2004 IEEE International Conference on Robotics and Au-
tomation (ICRA), vol. 3, pp. 2339–2346, 2004.

[50] V. Lippiello, G. Loianno, and B. Siciliano, “MAV indoor naviga-
tion based on a closed-form solution for absolute scale velocity

190

https://velodynelidar.com/
https://ouster.com/


Bibliography

estimation using optical flow and inertial data,” 2011 IEEE Confer-
ence on Decision and Control (CDC) and European Control Con-
ference (ECC), pp. 3566–3571, 2011.

[51] S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart, “MAV nav-
igation through indoor corridors using optical flow,” 2010 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 3361–3368, 2010.

[52] J.-C. Zufferey and D. Floreano, “Fly-inspired visual steering of an
ultralight indoor aircraft,” IEEE Transactions on Robotics, vol. 22,
no. 1, pp. 137–146, 2006.

[53] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct
monocular visual odometry,” 2014 IEEE International Conference
on Robotics and Automation (ICRA), pp. 15–22, 2014.

[54] S. Weiss, D. Scaramuzza, and R. Siegwart, “Monocular-SLAM-
based navigation for autonomous micro helicopters in GPS-denied
environments,” Journal of Field Robotics, vol. 28, pp. 854–874, 11
2011.

[55] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip,
M. Chli, and R. Siegwart, “Monocular vision for long-term micro
aerial vehicle state estimation: A compendium,” Journal of Field
Robotics, vol. 30, no. 5, pp. 803–831, 2013.

[56] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Vision-based
state estimation and trajectory control towards high-speed flight
with a quadrotor,” Robotics: Science and Systems, vol. 1, p. 32,
2013.

[57] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and
mapping: part I,” IEEE Robotics & Automation Magazine, vol. 13,
no. 2, pp. 99–110, 2006.

[58] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and
mapping (SLAM): part II,” IEEE Robotics & Automation Maga-
zine, vol. 13, no. 3, pp. 108–117, 2006.

191



Bibliography

[59] S. Thrun, Probabilistic robotics. ACM New York, NY, USA, 2002.

[60] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “Fast-
SLAM: A factored solution to the simultaneous localization and
mapping problem,” AAAI/IAAI Conference on Artificial Intelli-
gence, vol. 593598, 2002.

[61] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “Fast-
SLAM 2.0: An improved particle filtering algorithm for simulta-
neous localization and mapping that provably converges,” Interna-
tional Joint Conference of Artificial Intelligence (IJCAI), vol. 3,
pp. 1151–1156, 2003.

[62] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based SLAM,” IEEE Intelligent Transportation Systems
Magazine, vol. 2, no. 4, pp. 31–43, 2010.

[63] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1365–1378, 2008.

[64] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza,
J. Neira, I. Reid, and J. J. Leonard, “Past, present, and future
of simultaneous localization and mapping: Toward the robust-
perception age,” IEEE Transactions on Robotics, vol. 32, no. 6,
pp. 1309–1332, 2016.

[65] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],”
IEEE Robotics & Automation Magazine, vol. 18, no. 4, pp. 80–92,
2011.

[66] F. Fraundorfer and D. Scaramuzza, “Visual odometry : Part
II: Matching, robustness, optimization, and applications,” IEEE
Robotics and Automation Magazine, vol. 19, no. 2, pp. 78–90,
2012.

[67] M. Irani and P. Anandan, “All about direct methods,” International
Workshop on Vision Algorithms, pp. 267–277, 1999.

192



Bibliography

[68] H. Strasdat, J. Montiel, and A. J. Davison, “Real-time monocu-
lar SLAM: Why filter?,” 2010 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2657–2664, 2010.

[69] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse,
“MonoSLAM: Real-time single camera SLAM,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 29, no. 6,
pp. 1052–1067, 2007.

[70] G. Klein and D. Murray, “Parallel tracking and mapping for small
AR workspaces,” 2007 IEEE and ACM International Symposium
on Mixed and Augmented Reality, pp. 1–10, 2007.

[71] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM:
a versatile and accurate monocular SLAM system,” IEEE Transac-
tions on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[72] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source
SLAM system for monocular, stereo, and RGB-D cameras,” IEEE
Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[73] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale
direct monocular SLAM,” European Conference on Computer Vi-
sion, pp. 834–849, 2014.

[74] J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odometry
for a monocular camera,” IEEE International Conference on Com-
puter Vision (ICCV), pp. 1449–1456, 2013.

[75] P. Corke, J. Lobo, and J. Dias, “An introduction to inertial and
visual sensing,” The International Journal of Robotics Research,
vol. 26, no. 6, pp. 519–535, 2007.

[76] D. Scaramuzza and Z. Zhang, “Visual-inertial odometry of aerial
robots,” CoRR, vol. abs/1906.03289, 2019.

[77] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[78] H. Moravec, “Robot spatial perception by stereoscopic vision and
3D evidence grids,” Perception, 1996.

193



Bibliography

[79] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “Octomap: An efficient probabilistic 3D mapping
framework based on octrees,” Autonomous robots, vol. 34, no. 3,
pp. 189–206, 2013.

[80] H. Oleynikova, A. Millane, Z. Taylor, E. Galceran, J. Nieto, and
R. Siegwart, “Signed distance fields: A natural representation
for both mapping and planning,” RSS 2016 workshop: geometry
and beyond-representations, physics, and scene understanding for
robotics, 2016.

[81] L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen, F. Fraun-
dorfer, and M. Pollefeys, “Autonomous visual mapping and ex-
ploration with a micro aerial vehicle,” Journal of Field Robotics,
vol. 31, no. 4, pp. 654–675, 2014.

[82] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps
for outdoor terrain mapping and loop closing,” 2006 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS),
pp. 2276–2282, 2006.

[83] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, and W. Bur-
gard, Principles of robot motion: theory, algorithms, and imple-
mentations. MIT press, 2005.

[84] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[85] J. H. Reif, “Complexity of the mover’s problem and generaliza-
tions,” 20th Annual Symposium on Foundations of Computer Sci-
ence (sfcs 1979), pp. 421–427, 1979.

[86] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous UAV guidance,”
Journal of Intelligent and Robotic Systems, vol. 57, no. 1, pp. 65–
100, 2010.

[87] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transac-

194



Bibliography

tions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–
107, 1968.

[88] E. W. Dijkstra et al., “A note on two problems in connexion with
graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[89] D. Harabor and A. Grastien, “Online graph pruning for pathfind-
ing on grid maps,” AAAI/IAAI Conference on Artificial Intelligence,
vol. 25, no. 1, pp. 1114–1119, 2011.

[90] I. Pohl, “Heuristic search viewed as path finding in a graph,” Arti-
ficial intelligence, vol. 1, no. 3-4, pp. 193–204, 1970.

[91] E. A. Hansen and R. Zhou, “Anytime heuristic search,” Journal of
Artificial Intelligence Research, vol. 28, pp. 267–297, 2007.

[92] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A*
with provable bounds on sub-optimality,” Advances in neural in-
formation processing systems, vol. 16, 2003.

[93] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” IEEE Transactions on Robotics, vol. 21, no. 3,
pp. 354–363, 2005.

[94] M. Nieuwenhuisen, D. Droeschel, M. Beul, and S. Behnke, “Obsta-
cle detection and navigation planning for autonomous micro aerial
vehicles,” 2014 International Conference on Unmanned Aircraft
Systems (ICUAS), pp. 1040–1047, 2014.

[95] J. Chen, T. Liu, and S. Shen, “Online generation of collision-
free trajectories for quadrotor flight in unknown cluttered environ-
ments,” 2016 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 1476–1483, 2016.

[96] S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed nav-
igation for quadrotors with limited onboard sensing,” 2016 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 1484–1491, 2016.

195



Bibliography

[97] L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys,
“Autonomous obstacle avoidance and maneuvering on a vision-
guided MAV using on-board processing,” 2011 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2472–2477,
2011.

[98] J. Tordesillas, B. T. Lopez, M. Everett, and J. P. How, “FASTER:
Fast and safe trajectory planner for navigation in unknown environ-
ments,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 922–
938, 2021.

[99] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The International Journal of Robotics Research, vol. 20,
no. 5, pp. 378–400, 2001.

[100] J.-C. Latombe, Robot motion planning, vol. 124. Springer Science
& Business Media, 2012.

[101] S. Karaman and E. Frazzoli, “Sampling-based algorithms for opti-
mal motion planning,” The International Journal of Robotics Re-
search, vol. 30, no. 7, pp. 846–894, 2011.

[102] H. Yu and R. Beard, “A vision-based collision avoidance technique
for micro air vehicles using local-level frame mapping and path
planning,” Autonomous Robots, vol. 34, no. 1, pp. 93–109, 2013.

[103] L. Matthies, R. Brockers, Y. Kuwata, and S. Weiss, “Stereo vision-
based obstacle avoidance for micro air vehicles using disparity
space,” 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 3242–3249, 2014.

[104] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory plan-
ning for aggressive quadrotor flight in dense indoor environments,”
Robotics Research, pp. 649–666, 2016.

[105] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding Horizon” Next-Best-View” planner for 3D exploration,”
2016 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1462–1468, 2016.

196



Bibliography

[106] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” 2011 IEEE International Conference
on Robotics and Automation (ICRA), pp. 2520–2525, 2011.

[107] M. J. Van Nieuwstadt and R. M. Murray, “Real-time trajectory gen-
eration for differentially flat systems,” International Journal of Ro-
bust and Nonlinear Control: IFAC-Affiliated Journal, vol. 8, no. 11,
pp. 995–1020, 1998.

[108] A. Bry, C. Richter, A. Bachrach, and N. Roy, “Aggressive flight of
fixed-wing and quadrotor aircraft in dense indoor environments,”
The International Journal of Robotics Research, vol. 34, no. 7,
pp. 969–1002, 2015.

[109] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based mo-
tion planning for aggressive flight in SE (3),” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 2439–2446, 2018.

[110] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based mo-
tion planning for quadrotors using linear quadratic minimum time
control,” 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2872–2879, 2017.

[111] B. MacAllister, J. Butzke, A. Kushleyev, H. Pandey, and
M. Likhachev, “Path planning for non-circular micro aerial vehi-
cles in constrained environments,” 2013 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 3933–3940, 2013.

[112] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally
efficient motion primitive for quadrocopter trajectory generation,”
IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310,
2015.

[113] M. Ryll, J. Ware, J. Carter, and N. Roy, “Efficient trajectory plan-
ning for high speed flight in unknown environments,” 2019 Inter-
national Conference on Robotics and Automation (ICRA), pp. 732–
738, 2019.

[114] P. Florence, J. Carter, and R. Tedrake, “Integrated perception and
control at high speed: Evaluating collision avoidance maneuvers

197



Bibliography

without maps,” Algorithmic Foundations of Robotics XII, pp. 304–
319, 2016.

[115] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, “Safe local ex-
ploration for replanning in cluttered unknown environments for mi-
croaerial vehicles,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 1474–1481, 2018.

[116] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow,
J. Pan, S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with
sequential convex optimization and convex collision checking,”
The International Journal of Robotics Research, vol. 33, no. 9,
pp. 1251–1270, 2014.

[117] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation
of collision-free trajectories for a quadrocopter fleet: A sequen-
tial convex programming approach,” 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1917–
1922, 2012.

[118] B. Landry, R. Deits, P. R. Florence, and R. Tedrake, “Aggres-
sive quadrotor flight through cluttered environments using mixed
integer programming,” 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1469–1475, 2016.

[119] R. Deits and R. Tedrake, “Efficient mixed-integer planning for
UAVs in cluttered environments,” 2015 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 42–49, 2015.

[120] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning dynamically feasible trajectories
for quadrotors using safe flight corridors in 3-D complex envi-
ronments,” IEEE Robotics and Automation Letters, vol. 2, no. 3,
pp. 1688–1695, 2017.

[121] C. Stachniss and W. Burgard, “An integrated approach to goal-
directed obstacle avoidance under dynamic constraints for dynamic
environments,” 2002 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), vol. 1, pp. 508–513, 2002.

198



Bibliography

[122] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” Robotics & Automation Magazine, IEEE,
vol. 4, pp. 23 – 33, 04 1997.

[123] J. Borenstein and Y. Koren, “The vector field histogram - fast obsta-
cle avoidance for mobile robots,” IEEE Transactions on Robotics
and Automation, vol. 7, pp. 278 – 288, 07 1991.

[124] H. Hu and M. Brady, “A bayesian approach to real-time obstacle
avoidance for a mobile robot,” Autonomous Robots, vol. 1, pp. 69–
92, 03 1994.

[125] R. Simmons, “The curvature-velocity method for local obstacle
avoidance,” 1996 IEEE International Conference on Robotics and
Automation (ICRA), vol. 4, pp. 3375–3382 vol.4, 1996.

[126] O. Khatib, “Real-time obstacle avoidance for manipulators and mo-
bile robots,” 1985 IEEE International Conference on Robotics and
Automation (ICRA), vol. 2, pp. 500–505, March 1985.

[127] A. Beyeler, J.-C. Zufferey, and D. Floreano, “Vision-based con-
trol of near-obstacle flight,” Autonomous Robots, vol. 27, no. 3,
pp. 201–219, 2009.

[128] S. Hrabar and G. Sukhatme, “Vision-based navigation through ur-
ban canyons,” Journal of Field Robotics, vol. 26, no. 5, pp. 431–
452, 2009.

[129] J. Conroy, G. Gremillion, B. Ranganathan, and J. S. Humbert, “Im-
plementation of wide-field integration of optic flow for autonomous
quadrotor navigation,” Autonomous Robots, vol. 27, no. 3, pp. 189–
198, 2009.

[130] A. M. Hyslop and J. S. Humbert, “Autonomous navigation in three-
dimensional urban environments using wide-field integration of op-
tic flow,” Journal of guidance, control, and dynamics, vol. 33, no. 1,
pp. 147–159, 2010.

[131] I. Lenz, M. Gemici, and A. Saxena, “Low-power parallel algo-
rithms for single image based obstacle avoidance in aerial robots,”

199



Bibliography

2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 772–779, 2012.

[132] H. Oleynikova, D. Honegger, and M. Pollefeys, “Reactive avoid-
ance using embedded stereo vision for MAV flight,” 2015 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 50–56, 2015.

[133] S. Scherer, S. Singh, L. Chamberlain, and M. Elgersma, “Flying
fast and low among obstacles: Methodology and experiments,” The
International Journal of Robotics Research, vol. 27, no. 5, pp. 549–
574, 2008.

[134] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tan-
skanen, and M. Pollefeys, “Vision-based autonomous mapping and
exploration using a quadrotor MAV,” 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4557–
4564, 2012.

[135] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, and M. Hebert, “Learning monocular reactive UAV
control in cluttered natural environments,” 2013 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 1765–
1772, 2013.

[136] B. Yamauchi, “A frontier-based approach for autonomous explo-
ration,” 1997 IEEE International Symposium on Computational In-
telligence in Robotics and Automation (CIRA), pp. 146–151, 1997.

[137] H. H. González-Banos and J.-C. Latombe, “Navigation strategies
for exploring indoor environments,” The International Journal of
Robotics Research, vol. 21, no. 10-11, pp. 829–848, 2002.

[138] F. Amigoni, “Experimental evaluation of some exploration strate-
gies for mobile robots,” 2008 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2818–2823, 2008.

[139] M. Selin, M. Tiger, D. Duberg, F. Heintz, and P. Jensfelt, “Ef-
ficient autonomous exploration planning of large-scale 3-D envi-

200



Bibliography

ronments,” IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp. 1699–1706, 2019.

[140] L. Schmid, M. Pantic, R. Khanna, L. Ott, R. Siegwart, and J. Nieto,
“An efficient sampling-based method for online informative path
planning in unknown environments,” IEEE Robotics and Automa-
tion Letters, vol. 5, no. 2, pp. 1500–1507, 2020.

[141] M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-
UAV motion replanning for exploring unknown environments,”
2013 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2452–2458, 2013.

[142] S. Bouabdallah, A. Noth, and R. Siegwart, “PID vs LQ con-
trol techniques applied to an indoor micro quadrotor,” 2004
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), vol. 3, pp. 2451–2456 vol.3, 2004.

[143] D. Lee, H. Jin Kim, and S. Sastry, “Feedback linearization vs. adap-
tive sliding mode control for a quadrotor helicopter,” International
Journal of Control, Automation and Systems, vol. 7, no. 3, pp. 419–
428, 2009.

[144] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode
techniques applied to an indoor micro quadrotor,” 2005 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 2247–2252, 2005.

[145] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking con-
trol of a quadrotor UAV on SE (3),” 2010 IEEE Conference on De-
cision and Control (CDC), pp. 5420–5425, 2010.

[146] D. Invernizzi and M. Lovera, “Trajectory tracking control of thrust-
vectoring UAVs,” Automatica, vol. 95, pp. 180–186, 2018.

[147] T. P. Nascimento and M. Saska, “Position and attitude control of
multi-rotor aerial vehicles: A survey,” Annual Reviews in Control,
vol. 48, pp. 129–146, 2019.

201



Bibliography

[148] J. Ferrin, R. Leishman, R. Beard, and T. McLain, “Differential flat-
ness based control of a rotorcraft for aggressive maneuvers,” 2011
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 2688–2693, 2011.

[149] K. Sreenath, N. Michael, and V. Kumar, “Trajectory genera-
tion and control of a quadrotor with a cable-suspended load - a
differentially-flat hybrid system,” 2013 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 4888–4895, 2013.

[150] M. Bangura and R. Mahony, “Real-time model predictive con-
trol for quadrotors,” IFAC Proceedings Volumes, vol. 47, no. 3,
pp. 11773–11780, 2014.

[151] M. Kamel, K. Alexis, M. Achtelik, and R. Siegwart, “Fast nonlin-
ear model predictive control for multicopter attitude tracking on
SO(3),” 2015 IEEE Conference on Control Applications (CCA),
pp. 1160–1166, 2015.

[152] D. Bicego, J. Mazzetto, R. Carli, M. Farina, and A. Franchi, “Non-
linear model predictive control with enhanced actuator model for
multi-rotor aerial vehicles with generic designs,” Journal of Intel-
ligent & Robotic Systems, vol. 100, no. 3, pp. 1213–1247, 2020.

[153] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning
for quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56,
p. eabh1221, 2021.

[154] S. Sun, G. Cioffi, C. De Visser, and D. Scaramuzza, “Autonomous
quadrotor flight despite rotor failure with onboard vision sensors:
Frames vs. events,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 580–587, 2021.

[155] E. J. Smeur, Q. Chu, and G. C. De Croon, “Adaptive incremental
nonlinear dynamic inversion for attitude control of micro air vehi-
cles,” Journal of Guidance, Control, and Dynamics, vol. 39, no. 3,
pp. 450–461, 2016.

202



Bibliography

[156] S. Sun, L. Sijbers, X. Wang, and C. de Visser, “High-speed flight
of quadrotor despite loss of single rotor,” IEEE Robotics and Au-
tomation Letters, vol. 3, no. 4, pp. 3201–3207, 2018.

[157] S. Sun, X. Wang, Q. Chu, and C. d. Visser, “Incremental nonlin-
ear fault-tolerant control of a quadrotor with complete loss of two
opposing rotors,” IEEE Transactions on Robotics, vol. 37, no. 1,
pp. 116–130, 2021.

[158] H. Lee and H. J. Kim, “Trajectory tracking control of multirotors
from modelling to experiments: A survey,” International Journal
of Control, Automation and Systems, vol. 15, no. 1, pp. 281–292,
2017.

[159] H. Nguyen, M. Kamel, K. Alexis, and R. Siegwart, “Model predic-
tive control for micro aerial vehicles: A survey,” 2021 European
Control Conference (ECC), pp. 1556–1563, 2021.

[160] G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, “Quadrotor
helicopter flight dynamics and control: Theory and experiment,”
AIAA Guidance, Navigation and Control Conference, p. 6461,
2007.

[161] P. Martin and E. Salaün, “The true role of accelerometer feed-
back in quadrotor control,” 2010 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1623–1629, 2010.

[162] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles:
Modeling, estimation, and control of quadrotor,” IEEE Robotics
and Automation Magazine, vol. 19, no. 3, pp. 20–32, 2012.

[163] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness
of quadrotor dynamics subject to rotor drag for accurate tracking
of high-speed trajectories,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 620–626, 2017.

[164] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “ROS: an open-source Robot Op-
erating System,” ICRA workshop on open source software, vol. 3,
no. 3.2, p. 5, 2009.

203



Bibliography

[165] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), vol. 3,
pp. 2149–2154, 2004.

[166] I. Afanasyev, A. Sagitov, and E. Magid, “ROS-based SLAM for
a Gazebo-simulated mobile robot in image-based 3D model of in-
door environment,” International Conference on Advanced Con-
cepts for Intelligent Vision Systems, pp. 273–283, 2015.

[167] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. v.
Stryk, “Comprehensive simulation of quadrotor UAVs using ROS
and Gazebo,” International conference on simulation, modeling,
and programming for autonomous robots, pp. 400–411, 2012.

[168] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—a mod-
ular Gazebo MAV simulator framework,” Robot Operating System
(ROS), pp. 595–625, 2016.

[169] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” Conference on Robot
Learning, 2020.

[170] “MAVLink.” https://mavlink.io/en/, Access date:
21/09/2022.

[171] “mavros.” http://wiki.ros.org/mavros, Access date:
21/09/2022.

[172] “QGroundControl.” http://qgroundcontrol.com/, Ac-
cess date: 21/09/2022.

[173] “Leonardo Drone Contest autonomous drone com-
petition.” https://www.leonardo.com/it/
innovation-technology/open-innovation/
drone-contest, Access date: 21/09/2022.

[174] ANT-X website. https://antx.it/, Access date:
28/06/2022.

204

https://mavlink.io/en/
http://wiki.ros.org/mavros
http://qgroundcontrol.com/
https://www.leonardo.com/it/innovation-technology/open-innovation/drone-contest
https://www.leonardo.com/it/innovation-technology/open-innovation/drone-contest
https://www.leonardo.com/it/innovation-technology/open-innovation/drone-contest
https://antx.it/


Bibliography

[175] “Stereolabs.” https://www.stereolabs.com/, Access
date: 16/10/2022.

[176] “OpenMV H7 Plus.” https://openmv.io/products/
openmv-cam-h7, Access date: 16/10/2022.

[177] “TeraRanger Tower EVO.” https://www.
terabee.com/shop/lidar-tof-range-finders/
teraranger-tower-evo/, Access date: 16/10/2022.

[178] “PMW3901.” https://docs.px4.io/main/en/
sensor/pmw3901.html, Access date: 16/10/2022.

[179] “NanoPi NEO Air.” http://wiki.friendlyarm.com/
wiki/index.php/NanoPi_NEO_Air. Accessed: 05-11-
2022.

[180] D. Allan, “Statistics of atomic frequency standards,” Proceedings
of the IEEE, vol. 54, no. 2, pp. 221–230, 1966.

[181] J. A. Farrell, F. O. Silva, F. Rahman, and J. Wendel, “IMU error
state modeling for state estimation and sensor calibration: A tuto-
rial,” Preprint of IEEE Control Systems Magazine, 2020.

[182] D. C. Montgomery, Design and analysis of experiments. John Wi-
ley & Sons, 2017.

[183] S. Ahrens, D. Levine, G. Andrews, and J. P. How, “Vision-based
guidance and control of a hovering vehicle in unknown, GPS-
denied environments,” 2009 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2643–2648, 2009.

[184] W. Sankowski, M. Włodarczyk, D. Kacperski, and K. Grabowski,
“Estimation of measurement uncertainty in stereo vision system,”
Image and Vision Computing, vol. 61, pp. 70–81, 2017.

[185] F. Fooladgar, S. Samavi, S. M. R. Soroushmehr, and S. Shirani,
“Geometrical analysis of localization error in stereo vision sys-
tems,” IEEE Sensors Journal, vol. 13, no. 11, pp. 4236–4246, 2013.

205

https://www.stereolabs.com/
https://openmv.io/products/openmv-cam-h7
https://openmv.io/products/openmv-cam-h7
https://www.terabee.com/shop/lidar-tof-range-finders/teraranger-tower-evo/
https://www.terabee.com/shop/lidar-tof-range-finders/teraranger-tower-evo/
https://www.terabee.com/shop/lidar-tof-range-finders/teraranger-tower-evo/
https://docs.px4.io/main/en/sensor/pmw3901.html
https://docs.px4.io/main/en/sensor/pmw3901.html
http://wiki.friendlyarm.com/wiki/index.php/NanoPi_NEO_Air
http://wiki.friendlyarm.com/wiki/index.php/NanoPi_NEO_Air


Bibliography

[186] Y. Xu, Y. Zhao, F. Wu, and K. Yang, “Error analysis of calibration
parameters estimation for binocular stereo vision system,” 2013
IEEE International Conference on Imaging Systems and Tech-
niques (IST), pp. 317–320, 2013.

[187] K. Schreve, “How accurate can a stereovision measurement
be?,” 15th International Workshop on Research and Education in
Mechatronics (REM), pp. 1–7, 2014.

[188] G. Di Leo, C. Liguori, and A. Paolillo, “Propagation of uncertainty
through stereo triangulation,” 2010 IEEE International Instrumen-
tation Measurement Technology Conference, pp. 12–17, 2010.

[189] G. Di Leo and A. Paolillo, “Uncertainty evaluation of camera
model parameters,” 2011 IEEE International Instrumentation and
Measurement Technology Conference, pp. 1–6, 2011.

[190] M. Kytö, M. Nuutinen, and P. Oittinen, “Method for measuring
stereo camera depth accuracy based on stereoscopic vision,” Three-
Dimensional Imaging, Interaction, and Measurement, vol. 7864,
pp. 168 – 176, 2011.

[191] S. Chiodini, M. Pertile, and S. Debei, “Visual odometry system
performance for different landmark average distances,” 2016 IEEE
Metrology for Aerospace (MetroAeroSpace), pp. 382–387, 2016.

[192] R. Jiang, R. Klette, and S. Wang, “Statistical modeling of long-
range drift in visual odometry,” Asian Conference on Computer Vi-
sion, pp. 214–224, 2010.

[193] S. Farboud-Sheshdeh, T. D. Barfoot, and R. H. Kwong, “Towards
estimating bias in stereo visual odometry,” 2014 Canadian Confer-
ence on Computer and Robot Vision, pp. 8–15, 2014.

[194] P. F. Alcantarilla and O. J. Woodford, “Noise models in feature-
based stereo visual odometry,” Computing Research Repository
(CoRR), vol. abs/1607.00273, 2016.

206



Bibliography

[195] IEEE, “IEEE standard specification format guide and test proce-
dure for single-axis interferometric fiber optic gyros,” IEEE Std
952-1997, pp. 1–84, 1998.

[196] N. El-Sheimy, H. Hou, and X. Niu, “Analysis and modeling of in-
ertial sensors using Allan variance,” Instrumentation and Measure-
ment, IEEE Transactions on, vol. 57, pp. 140 – 149, 2008.

[197] N. Kasdin, “Discrete simulation of colored noise and stochastic
processes and 1/f alpha power law noise generation,” Proceedings
of the IEEE, vol. 83, no. 5, pp. 802–827, 1995.

[198] P. Lesage and C. Audoin, “Characterization of frequency stabil-
ity: Uncertainty due to the finite number of measurements,” IEEE
Transactions on Instrumentation and Measurement, vol. 22, no. 2,
pp. 157–161, 1973.

[199] A. Gelman, “Analysis of variance—why it is more important than
ever,” The Annals of Statistics, vol. 33, no. 1, pp. 1–53, 2005.

[200] A. Oustaloup, F. Levron, B. Mathieu, and F. Nanot, “Frequency-
band complex noninteger differentiator: characterization and syn-
thesis,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 47, no. 1, pp. 25–39, 2000.

[201] P. Welch, “The use of fast Fourier transform for the estimation of
power spectra: a method based on time averaging over short, mod-
ified periodograms,” IEEE Transactions on Audio and Electroa-
coustics, vol. 15, no. 2, pp. 70–73, 1967.

[202] L. O. Rojas-Perez and J. Martı́nez-Carranza, “On-board processing
for autonomous drone racing: an overview,” Integration, vol. 80,
pp. 46–59, 2021.

[203] E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy,
V. Koltun, and D. Scaramuzza, “Beauty and the beast: Optimal
methods meet learning for drone racing,” 2019 International Con-
ference on Robotics and Automation (ICRA), pp. 690–696, 2019.

207



Bibliography

[204] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity
visual and physical simulation for autonomous vehicles,” Field and
Service Robotics, pp. 621–635, 2018.

[205] C. De Wagter, F. Paredes-Vallés, N. Sheth, and G. Croon, “The
sensing, state-estimation, and control behind the winning entry to
the 2019 artificial intelligence robotic racing competition,” Field
Robotics, vol. 2, pp. 1263–1290, 03 2022.

[206] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone
racing,” Autonomous Robots, pp. 1–14, 2021.

[207] A. Rezende, V. R. Miranda, P. A. Rezeck, H. Azpúrua, E. R. San-
tos, V. M. Gonçalves, D. G. Macharet, and G. M. Freitas, “An inte-
grated solution for an autonomous drone racing in indoor environ-
ments,” Intelligent Service Robotics, vol. 14, no. 5, pp. 641–661,
2021.

[208] R. Madaan, N. Gyde, S. Vemprala, M. Brown, K. Nagami, T. Taub-
ner, E. Cristofalo, D. Scaramuzza, M. Schwager, and A. Kapoor,
“Airsim drone racing lab,” NeurIPS 2019 Competition and Demon-
stration Track, pp. 177–191, 2020.

[209] H. J. Escalante and R. Hadsell, “NeurIPS 2019 competition and
demonstration track: revised selected papers,” NeurIPS 2019 Com-
petition and Demonstration Track, pp. 1–12, 2020.

[210] D. Kim, H. Ryu, J. Yonchorhor, and D. H. Shim, “A deep-learning-
aided automatic vision-based control approach for autonomous
drone racing in game of drones competition,” NeurIPS 2019 Com-
petition and Demonstration Track, pp. 37–46, 2020.

[211] F. Ölsner and S. Milz, “Catch me, if you can! a mediated per-
ception approach fully autonomous drone racing,” NeurIPS 2019
Competition and Demonstration Track, pp. 90–99, 2020.

[212] S. Shin, Y. Kang, and Y.-G. Kim, “Evolution algorithm and online
learning for racing drone,” NeurIPS 2019 Competition and Demon-
stration Track, pp. 100–109, 2020.

208



Bibliography

[213] C. Sampedro, H. Bavle, A. Rodrı́guez-Ramos, A. Carrio, R. A. S.
Fernández, J. L. Sanchez-Lopez, and P. Campoy, “A fully-
autonomous aerial robotic solution for the 2016 international mi-
cro air vehicle competition,” 2017 International Conference on Un-
manned Aircraft Systems (ICUAS), pp. 989–998, 2017.

[214] A. Farooq, A. Anastasiou, N. Souli, C. Laoudias, P. S. Kolios, and
T. Theocharides, “UAV autonomous indoor exploration and map-
ping for SAR missions: Reflections from the ICUAS 2022 compe-
tition,” 2022 19th International Conference on Ubiquitous Robots
(UR), pp. 621–626, 2022.

[215] “International Aerial Robotics Competition (IARC).”
http://www.aerialroboticscompetition.org/
pastmissions.php, Access date: 26/09/2022.

[216] D. Ellis, T. Brady, I. Olson, and Y. Li, “Autonomous quadrotor
for the 2012 international aerial robotics competition,” 2012 Third
Symposium on Indoor Flight Issues, International Aerial Robotics
Competition, 2012.

[217] J. L. Sanchez-Lopez, J. Pestana, J.-F. Collumeau, R. Suarez-
Fernandez, P. Campoy, and M. Molina, “A vision based aerial robot
solution for the mission 7 of the international aerial robotics com-
petition,” 2015 International Conference on Unmanned Aircraft
Systems (ICUAS), pp. 1391–1400, 2015.

[218] M. Deegan, A. Dziedzic, C. Jiang, R. Moon, D. Pisarski, and
R. Wunderly, “Autonomous quadrotors for the 2019 international
aerial robotics competition,” Proceedings of the International
Aerial Robotics Competition, pp. 1–11, 2019.

[219] R. Bähnemann, M. Pantic, M. Popović, D. Schindler, M. Tran-
zatto, M. Kamel, M. Grimm, J. Widauer, R. Siegwart, and J. Ni-
eto, “The ETH-MAV team in the MBZ international robotics chal-
lenge,” Journal of Field Robotics, vol. 36, no. 1, pp. 78–103, 2019.

[220] M. Beul, M. Nieuwenhuisen, J. Quenzel, R. A. Rosu, J. Horn,
D. Pavlichenko, S. Houben, and S. Behnke, “Team NimbRo at

209

http://www.aerialroboticscompetition.org/pastmissions.php
http://www.aerialroboticscompetition.org/pastmissions.php


Bibliography

MBZIRC 2017: Fast landing on a moving target and treasure hunt-
ing with a team of micro aerial vehicles,” Journal of Field Robotics,
vol. 36, no. 1, pp. 204–229, 2019.

[221] Á. R. Castaño, F. Real, P. Ramón-Soria, J. Capitán, V. Vega, B. C.
Arrue, A. Torres-González, and A. Ollero, “Al-Robotics team: A
cooperative multi-unmanned aerial vehicle approach for the Mo-
hamed Bin Zayed International Robotic Challenge,” Journal of
Field Robotics, vol. 36, no. 1, pp. 104–124, 2019.

[222] M. Vrba, Y. Stasinchuk, T. Báča, V. Spurnỳ, M. Petrlı́k, D. Heřt,
D. Žaitlı́k, and M. Saska, “Autonomous capture of agile flying ob-
jects using UAVs: The MBZIRC 2020 challenge,” Robotics and
Autonomous Systems, vol. 149, p. 103970, 2022.

[223] M. Beul, S. Bultmann, A. Rochow, R. A. Rosu, D. Schleich,
M. Splietker, and S. Behnke, “Visually guided balloon popping
with an autonomous MAV at MBZIRC 2020,” IEEE Interna-
tional Symposium on Safety, Security, and Rescue Robotics (SSRR),
pp. 34–41, 2020.

[224] C. Lenz, M. Schwarz, A. Rochow, J. Razlaw, A. S. Periyasamy,
M. Schreiber, and S. Behnke, “Autonomous wall building with a
UGV-UAV team at MBZIRC 2020,” IEEE International Sympo-
sium on Safety, Security, and Rescue Robotics (SSRR), pp. 189–
196, 2020.

[225] V. Walter, V. Spurný, M. Petrlı́k, T. Báča, D. Žaitlı́k, and M. Saska,
“Extinguishing of ground fires by fully autonomous UAVs mo-
tivated by the MBZIRC 2020 competition,” 2021 International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 787–793,
2021.

[226] M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar
and visual simultaneous localization and mapping library for large-
scale and long-term online operation,” Journal of Field Robotics,
vol. 36, no. 2, pp. 416–446, 2019.

210



Bibliography

[227] M. Labbé and F. Michaud, “Appearance-based loop closure detec-
tion for online large-scale and long-term operation,” IEEE Trans-
actions on Robotics, vol. 29, no. 3, pp. 734–745, 2013.

[228] I. Ulrich and J. Borenstein, “VFH*: Local obstacle avoidance with
look-ahead verification,” 2000 IEEE International Conference on
Robotics and Automation (ICRA), vol. 3, pp. 2505–2511, 2000.

[229] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3D recon-
struction in real-time,” IEEE Intelligent Vehicles Symposium (IV),
pp. 963–968, 2011.

[230] “Zed sdk.” https://www.stereolabs.com/
developers/release/, Access date: 24/09/2022.

[231] R. Giubilato, S. Chiodini, M. Pertile, and S. Debei, “An evalua-
tion of ROS-compatible stereo visual SLAM methods on a nVidia
Jetson TX2,” Measurement, 04 2019.

[232] I. Z. Ibragimov and I. M. Afanasyev, “Comparison of ROS-based
visual SLAM methods in homogeneous indoor environment,” 2017
14th Workshop on Positioning, Navigation and Communications
(WPNC), pp. 1–6, 2017.

[233] A. Quattrini Li, A. Coskun, S. M. Doherty, S. Ghasemlou, A. S.
Jagtap, M. Modasshir, S. Rahman, A. Singh, M. Xanthidis, J. M.
O’Kane, et al., “Experimental comparison of open source vision-
based state estimation algorithms,” International Symposium on
Experimental Robotics, pp. 775–786, 2016.

[234] J. Delmerico and D. Scaramuzza, “A benchmark comparison of
monocular visual-inertial odometry algorithms for flying robots,”
2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2502–2509, 2018.

[235] “Intel D435i.” https://www.intelrealsense.com/
depth-camera-d435i/, Access date: 14/09/2022.

[236] “Intel T265.” https://www.intelrealsense.com/
tracking-camera-t265/, Access date: 14/09/2022.

211

https://www.stereolabs.com/developers/release/
https://www.stereolabs.com/developers/release/
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/tracking-camera-t265/
https://www.intelrealsense.com/tracking-camera-t265/


Bibliography

[237] V. Tadic, A. Toth, Z. Vizvari, M. Klincsik, Z. Sari, P. Sarcevic,
J. Sarosi, and I. Biro, “Perspectives of realsense and zed depth sen-
sors for robotic vision applications,” Machines, vol. 10, no. 3, 2022.

[238] D. Stronger and P. Stone, “A comparison of two approaches for vi-
sion and self-localization on a mobile robot,” 2007 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 3915–
3920, 2007.

[239] W. Hong, C. Zhou, and Y. Tian, “Robust Monte Carlo Localization
for humanoid soccer robot,” 2009 IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics, pp. 934–939, 2009.

[240] A. Sousa, P. Costa, A. Moreira, and A. Carvalho, “Self localiza-
tion of an autonomous robot: using an EKF to merge odometry
and vision based landmarks,” 2005 IEEE Conference on Emerging
Technologies and Factory Automation, vol. 1, pp. 7 pp.–233, 2005.

[241] “ROS ViSP visual servoing library.” http://wiki.ros.org/
visp_auto_tracker, Access date: 14/09/2022.

[242] I. Ulrich and J. Borenstein, “VFH+: Reliable obstacle avoidance
for fast mobile robots,” 1998 IEEE International Conference on
Robotics and Automation (ICRA), vol. 2, pp. 1572–1577, 1998.

[243] S. Vanneste, B. Bellekens, and M. Weyn, “3DVFH+: Real-time
three-dimensional obstacle avoidance using an Octomap,” MORSE
2014 Model-Driven Robot Software Engineering, no. 1319, pp. 91–
102, 2014.

[244] A. Babinec, F. Duchoň, M. Dekan, Z. Mikulová, and L. Jurišica,
“Vector Field Histogram* with look-ahead tree extension depen-
dent on time variable environment,” Transactions of the Institute of
Measurement and Control, vol. 40, no. 4, pp. 1250–1264, 2018.

[245] A. Santamaria-Navarro, G. Loianno, J. Sola, V. Kumar, and
J. Andrade-Cetto, “Autonomous navigation of micro aerial vehicles
using high-rate and low-cost sensors,” Autonomous Robots, vol. 42,
no. 6, pp. 1263–1280, 2018.

212

http://wiki.ros.org/visp_auto_tracker
http://wiki.ros.org/visp_auto_tracker


Bibliography

[246] N. Basilico, “Recent trends in robotic patrolling,” Current Robotics
Reports, pp. 1–12, 2022.

[247] S. Hoshino, S. Ugajin, and T. Ishiwata, “Patrolling robot based
on bayesian learning for multiple intruders,” 2015 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS),
pp. 603–609, 2015.

[248] S. Hoshino, T. Ishiwata, and R. Ueda, “Optimal patrolling method-
ology of mobile robot for unknown visitors,” Advanced Robotics,
vol. 30, no. 16, pp. 1072–1085, 2016.

[249] H. González-Banos, “A randomized art-gallery algorithm for sen-
sor placement,” Proceedings of the seventeenth annual symposium
on Computational geometry, pp. 232–240, 2001.

[250] E. Semsch, M. Jakob, D. Pavlicek, and M. Pechoucek, “Au-
tonomous UAV surveillance in complex urban environments,”
IEEE/WIC/ACM International Joint Conference on Web Intelli-
gence and Intelligent Agent Technology, vol. 2, pp. 82–85, 2009.

[251] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo
localization: Efficient position estimation for mobile robots,”
AAAI/IAAI Conference on Artificial Intelligence, vol. 1999,
no. 343-349, pp. 2–2, 1999.

[252] D. Fox, “KLD-sampling: Adaptive particle filters,” Advances in
neural information processing systems, vol. 14, 2001.

[253] “PX4FLOW.” https://docs.px4.io/main/en/
sensor/px4flow.html, Access date: 16/10/2022.

[254] J. Borer and M. Pryor, “Continuous hybrid localization in environ-
ments with physical and temporal sensor occlusions,” 2021 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR), pp. 118–124, 2021.

[255] M. S. Alam and J. Oluoch, “A survey of safe landing zone detec-
tion techniques for autonomous unmanned aerial vehicles (UAVs),”
Expert Systems with Applications, vol. 179, p. 115091, 2021.

213

https://docs.px4.io/main/en/sensor/px4flow.html
https://docs.px4.io/main/en/sensor/px4flow.html


Bibliography

[256] M. Garg, A. Kumar, and P. Sujit, “Terrain-based landing site selec-
tion and path planning for fixed-wing UAVs,” 2015 International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 246–251,
2015.

[257] M. Aydin and E. Kugu, “Finding smoothness area on the topo-
graphic maps for the unmanned aerial vehicle’s landing site estima-
tion,” 2016 Sixth International Conference on Digital Information
and Communication Technology and its Applications (DICTAP),
pp. 183–186, 2016.

[258] S. Scherer, L. Chamberlain, and S. Singh, “Autonomous landing
at unprepared sites by a full-scale helicopter,” Robotics and Au-
tonomous Systems, vol. 60, no. 12, pp. 1545–1562, 2012.

[259] L. Chamberlain, S. Scherer, and S. Singh, “Self-aware helicopters:
Full-scale automated landing and obstacle avoidance in unmapped
environments,” 67th Annual Forum of the American Helicopter So-
ciety, Virginia Beach, VA, vol. 2, 2011.

[260] O. G. Lorenzo, J. Martı́nez, D. L. Vilariño, T. F. Pena, J. C.
Cabaleiro, and F. F. Rivera, “Landing sites detection using Li-
DAR data on manycore systems,” The Journal of Supercomputing,
vol. 73, no. 1, pp. 557–575, 2017.

[261] G. Loureiro, A. Dias, A. Martins, and J. Almeida, “Emergency
landing spot detection algorithm for unmanned aerial vehicles,” Re-
mote Sensing, vol. 13, no. 10, p. 1930, 2021.

[262] S. Bosch, S. Lacroix, and F. Caballero, “Autonomous detection
of safe landing areas for an UAV from monocular images,” 2006
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 5522–5527, 2006.

[263] R. Brockers, P. Bouffard, J. Ma, L. Matthies, and C. Tomlin, “Au-
tonomous landing and ingress of micro-air-vehicles in urban envi-
ronments based on monocular vision,” Micro-and Nanotechnology
Sensors, Systems, and Applications III, vol. 8031, p. 803111, 2011.

214



Bibliography

[264] L. Mejias and D. Fitzgerald, “A multi-layered approach for site
detection in uas emergency landing scenarios using geometry-
based image segmentation,” 2013 International Conference on Un-
manned Aircraft Systems (ICUAS), pp. 366–372, 2013.

[265] Y.-F. Shen, Z.-U. Rahman, D. Krusienski, and J. Li, “A vision-
based automatic safe landing-site detection system,” IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 49, no. 1,
pp. 294–311, 2013.

[266] T. Hinzmann, T. Stastny, C. Cadena, R. Siegwart, and I. Gilitschen-
ski, “Free lsd: Prior-free visual landing site detection for au-
tonomous planes,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 2545–2552, 2018.

[267] P. J. Garcia-Pardo, G. S. Sukhatme, and J. F. Montgomery, “To-
wards vision-based safe landing for an autonomous helicopter,”
Robotics and Autonomous Systems, vol. 38, no. 1, pp. 19–29, 2002.

[268] M. Mittal, R. Mohan, W. Burgard, and A. Valada, “Vision-based
autonomous UAV navigation and landing for urban search and res-
cue,” The International Symposium of Robotics Research, pp. 575–
592, 2019.

[269] P. C. Lusk, P. C. Glaab, L. J. Glaab, and R. W. Beard, “Safe2ditch:
Emergency landing for small unmanned aircraft systems,” Jour-
nal of Aerospace Information Systems, vol. 16, no. 8, pp. 327–339,
2019.

[270] L. Bartolomei, Y. Kompis, L. Pinto Teixeira, and M. Chli, “Au-
tonomous emergency landing for multicopters using deep rein-
forcement learning,” IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2022.

[271] P. Váňa, J. Sláma, J. Faigl, and P. Pačes, “Any-time trajectory plan-
ning for safe emergency landing,” 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 5691–
5696, 2018.

215



Bibliography

[272] N. F. Meuleau, C. J. Plaunt, D. E. Smith, and T. B. Smith, “An
emergency landing planner for damaged aircraft,” AAAI/IAAI Con-
ference on Artificial Intelligence, 2009.

[273] E. M. Atkins, I. A. Portillo, and M. J. Strube, “Emergency flight
planning applied to total loss of thrust,” Journal of Aircraft, vol. 43,
no. 4, pp. 1205–1216, 2006.

[274] S. Choudhury, S. Scherer, and S. Singh, “RRT*-AR: Sampling-
based alternate routes planning with applications to autonomous
emergency landing of a helicopter,” 2013 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 3947–3952, 2013.

[275] X. Wu and M. Mueller, “Towards a consequences-aware emer-
gency landing system for unmanned aerial systems,” 2018 In-
ternational Conference on Unmanned Aircraft Systems (ICUAS),
pp. 1025–1030, 2018.

[276] V. R. Desaraju, N. Michael, M. Humenberger, R. Brockers,
S. Weiss, J. Nash, and L. Matthies, “Vision-based landing site
evaluation and informed optimal trajectory generation toward au-
tonomous rooftop landing,” Autonomous Robots, vol. 39, no. 3,
pp. 445–463, 2015.

[277] S. Primatesta, G. Guglieri, and A. Rizzo, “A risk-aware path plan-
ning strategy for UAVs in urban environments,” Journal of Intelli-
gent & Robotic Systems, vol. 95, no. 2, pp. 629–643, 2019.

[278] G. Gozzini, D. Invernizzi, S. Panza, M. Giurato, and M. Lovera,
“Air-to-Air Automatic Landing of unmanned aerial vehicles: A
quasi time-optimal hybrid strategy,” IEEE Control Systems Letters,
vol. 4, no. 3, pp. 692–697, 2020.

[279] D. Lee, T. Ryan, and H. J. Kim, “Autonomous landing of a VTOL
UAV on a moving platform using image-based visual servoing,”
2012 IEEE International Conference on Robotics and Automation
(ICRA), pp. 971–976, 2012.

[280] J. Lin, Y. Wang, Z. Miao, H. Zhong, and R. Fierro, “Low-
complexity control for vision-based landing of quadrotor UAV on

216



Bibliography

unknown moving platform,” IEEE Transactions on Industrial In-
formatics, pp. 1–1, 2021.

[281] D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, and D. Scara-
muzza, “Vision-based autonomous quadrotor landing on a moving
platform,” 2017 IEEE International Symposium on Safety, Security
and Rescue Robotics (SSRR), pp. 200–207, 2017.

[282] P. Vlantis, P. Marantos, C. Bechlioulis, and K. Kyriakopoulos,
“Quadrotor landing on an inclined platform of a moving ground
vehicle,” 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 2202–2207, 2015.

[283] J. Kim, Y. Jung, D. Lee, and D. H. Shim, “Landing control on a
mobile platform for multi-copters using an omnidirectional image
sensor,” Journal of Intelligent & Robotic Systems, vol. 84, no. 1,
pp. 529–541, 2016.

[284] T. Báča, P. Štěpán, V. Spurný, D. Hert, R. Pěnička, M. Saska,
J. Thomas, G. Loianno, and V. Kumar, “Autonomous landing on a
moving vehicle with an unmanned aerial vehicle,” Journal of Field
Robotics, vol. 36, no. 5, pp. 874–891, 2019.

[285] A. Borowczyk, N. Tien, A. Nguyen, D. Nguyen, D. Saussie, and
J. Le Ny, “Autonomous landing of a multirotor micro air vehicle
on a high velocity ground vehicle,” IFAC Papers Online, vol. 50,
no. 1, pp. 10488–10494, 2017.

[286] K. Guo, P. Tang, H. Wang, D. Lin, and X. Cui, “Autonomous land-
ing of a quadrotor on a moving platform via model predictive con-
trol,” MDPI Aerospace, vol. 9, no. 1, 2022.

[287] G. Niu, Q. Yang, Y. Gao, and M.-O. Pun, “Vision-based au-
tonomous landing for unmanned aerial and ground vehicles coop-
erative systems,” IEEE Robotics and Automation Letters, vol. 7,
no. 3, pp. 6234–6241, 2021.

[288] N. J. Sanket, C. D. Singh, C. M. Parameshwara, C. Fermüller,
G. C. H. E. de Croon, and Y. Aloimonos, “EVPropNet: Detecting

217



Bibliography

drones by finding propellers for mid-air landing and following,”
2021 Robotics. Science and Systems (RSS), 2021.

[289] K. P. Jain and M. W. Mueller, “Flying batteries: In-flight battery
switching to increase multirotor flight time,” 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 3510–
3516, 2020.

[290] P. Giuri, A. Marini Cossetti, M. Giurato, D. Invernizzi, and
M. Lovera, “Air-to-air automatic landing for multirotor UAVs,”
2019 CEAS Conference on Guidance, Navigation and Control (Eu-
roGNC), 2019.

[291] M.-D. Hua, T. Hamel, P. Morin, and C. Samson, “Introduction to
feedback control of underactuated VTOL vehicles: A review of
basic control design ideas and principles,” IEEE Control Systems
Magazine, vol. 33, no. 1, pp. 61–75, 2013.

[292] D. Invernizzi, M. Lovera, and L. Zaccarian, “Dynamic attitude
planning for trajectory tracking in thrust-vectoring UAVs,” IEEE
Transactions on Automatic Control, vol. 65, no. 1, pp. 453–460,
2020.

[293] F. Forni, S. Galeani, and L. Zaccarian, “A family of global stabi-
lizers for quasi-optimal control of planar linear saturated systems,”
IEEE Transactions on Automatic Control, vol. 55, no. 5, pp. 1175–
1180, 2010.

[294] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid dynamical sys-
tems. Princeton University Press, 2012.

[295] “OpenCV.” http://https://opencv.org/, Access date:
14/09/2022.

[296] N. Otsu, “A threshold selection method from gray-level his-
tograms,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 9, no. 1, pp. 62–66, 1979.

218

http://https://opencv.org/


Bibliography

[297] “PX4 Github page.” https://github.com/PX4/
PX4-ECL/tree/master/EKF/documentation, Access
date: 06/05/2022.

[298] A. Khosravian, J. Trumpf, R. Mahony, and T. Hamel, “Recursive
attitude estimation in the presence of multi-rate and multi-delay
vector measurements,” 2015 American Control Conference (ACC),
pp. 3199–3205, 2015.

[299] J. Sola, “Course on SLAM,” Technical Report IRI-TR-16-04, Insti-
tut de Robòtica i Informàtica Industrial, 2017.

[300] E. Gagliardi, “Pose estimation of multi-stereo camera sensors with
non overlapping fields of view,” M.Sc. thesis, Politecnico di Mi-
lano, 2019.

[301] Z. Zhang, “A flexible new technique for camera calibration,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 11, pp. 1330–1334, 2000.

219

https://github.com/PX4/PX4-ECL/tree/master/EKF/documentation
https://github.com/PX4/PX4-ECL/tree/master/EKF/documentation




APPENDIXA
EKF2

In this Appendix, the Extended Kalman Filter (EKF) algorithm used by
PX4 [35] is presented. The filter is able to process a variety of sensor
measurements and output a state vector composed by the following 24
elements:

• Quaternion q defining the rotation from NED local reference to body
frame

• Velocity in NED v local reference frame (m/s)

• Position in NED p local reference frame (m)

• IMU delta angle bias ∆Φb in body frame (rad)

• IMU delta velocity bias ∆vb in body frame (m/s)

• Earth magnetic field m in NED (gauss)

221



Appendix A. EKF2

• Vehicle body frame magnetic field bias mb (gauss)

• Wind velocity in NE vw (m/s)

The overall architecture of the algorithm is presented in Figure A.1.

Figure A.1: EKF2 scheme (reworked from [297])

It consists of two separate parts: the actual EKF and an output predic-
tor. In turn, the output predictor is composed by an actual prediction step
and a corrector algorithm, which is actually an observer. This structure
has been inspired by the work of [298]. This paper proposed a cascade
combination of a predictor with an attitude observer (or filter), in which
the predictor compensated for the effects of delays, while the observer
processed the predicted outputs, estimating the actual attitude. In the
paper, it was also showed that the predictor could be coupled with any
asymptotically stable observer or filter. In particular, the EKF2 imple-
mentation employs a complementary filter.

As depicted in Figure A.1, the EKF takes a downsampled version of
the IMU and buffers it using a FIFO (first in-first out) buffer. The same is
done for all the other sensor data, i.e., magnetometer, barometer, optical

222



A.1. Prediction

flow and vision data. In order to allow for different time delay relative to
the IMU data, the EKF works in a delayed time horizon. The time horizon
delay and, consequently, the length of the buffers are determined by the
largest expected time delay of the sensors (tunable input parameters). The
EKF retrieves sensors data to be used at the correct time (time of arrival
of the measurements minus the corresponding expected time delay) and
fuse them to correct the predicted state and covariances.

A.1 Prediction

For what concerns the prediction step of the EKF, an Inertial Navigation
System (INS) prediction is used. First, the measured acceleration and
angular velocities are integrated numerically for obtaining what are called
in Figure A.1 ”delta angles” and ”delta velocities”.

∆vk =

∫ tk+1

tk

a(t)dt (A.1)

∆Φk =

∫ tk+1

tk

ω(t)dt. (A.2)

Then the IMU bias (part of the state) are removed, leading to a ”corrected
version” of these quantities.

∆vck = ∆vk −∆vbk (A.3)
∆Φck = ∆Φk −∆Φbk . (A.4)

After having updated ∆Φck by removing the Earth angular velocity, the
predicted quaternion is computed through:

qk+1 = qk ⊗ q{∆Φck}. (A.5)

The quaternion is then converted into the rotation matrix RIB. This latter
is employed for rotating the corrected velocity:

∆vI = RIB∆vck . (A.6)

223



Appendix A. EKF2

Then, the corrected velocity, written in the inertial frame I, is compen-
sated for the acceleration of gravity g:

∆vI = ∆vI − g∆t, (A.7)

where ∆t is the filter update time: ∆t = tk+1 − tk. Finally the velocity
and position predictions are computed as:

vk+1 = vk +∆vI (A.8)

pk+1 = pk +
vk + vk+1

2
∆t. (A.9)

A.2 Correction

Each sensor is fused using an appropriate measurement model. Note that
IMU data is not used as an observation in the filter.

For the GPS position and velocity, barometer and vision-based sensors
position the trivial observation model is used. Basically, in those cases, a
direct observation of the states is performed.

A.2.1 Magnetometer

The magnetometer is assumed to be aligned with the body frame. It ex-
periments a magnetic field vector which is written as the sum of a field,
expressed in the inertial frame and rotated through the appropriate trans-
formation, and the bias, directly written in the body frame.

Mm = R⊤
IBm+mb. (A.10)

The earth frame magnetic field declination is also used as an observation
(used to keep correct heading when operating without absolute position
or velocity measurements)

ψdecl = arctan

(
mE

mN

)
. (A.11)

224



A.2. Correction

A.2.2 Optical flow

Optical flow observation equation assumes a sensor aligned with the z-
body frame at a distance D from a stationary scene in the navigation
frame. For what concerns the signs of the flow, consider a Forward-Right-
Down reference frame associated with the flow sensor. For the flow in the
x direction:

• A sensor right-hand rotation about the x axis induces a positive flow.

• A sensor linear motion along the positive y axis induces a negative
flow.

For the flow in the y direction:

• A sensor right-hand rotation about the y axis induces a positive flow.

• A sensor linear motion along the positive x axis induces a positive
flow.

Thus, if we consider the x-axis of the sensor aligned with the x-axis of
the drone body frame b1, we get:

flowx = −
vby
D

(A.12)

flowy =
vbx
D
, (A.13)

with

vb = R⊤
IBv. (A.14)

A.2.3 Distance sensor

The distance sensor can be used in different modalities. If it is the primary
source of height estimation, the measurement model simply corresponds
to the observation of the state. If the range sensor is employed after hav-
ing lost another source of measurement, e.g., Global Positioning System
(GPS), an height sensor offset is computed in such a way that the current

225



Appendix A. EKF2

measurement matches the current height estimate. The height offset hoff
is then employed in the measurement model:

zrange = pz + hoff . (A.15)

For the documentation relative to the different available modes of range
finders see [35].

A.2.4 Vision-based sensors velocity

Visual odometry observation equation assumes measurement of velocity
states rotated into the body frame.

vb = R⊤
IBv. (A.16)

A.2.5 Wind velocity

The airspeed observation equation assumes a sensor that measures the
magnitude of velocity relative to the wind field:vrelNvrelE

vrelD

 =

vNvE
vD

−
vwN

vwE

0

 , (A.17)

and:

TAS =
√
v2relN + v2relE + v2relD . (A.18)

A.3 Output prediction

On the other hand, the output predictor takes as input the IMU measure-
ments at the current time (and at full rate) and applies an Inertial Navi-
gation System (INS) prediction similar to the one presented for the EKF.
The IMU biases to be used in the prediction model are taken directly from
the EKF. The only difference resides in the fact that a contribute ∆Φcorr,
output of the complementary filter, is summed to ∆Φc of equation (A.4),
namely:

226



A.3. Output prediction

∆Φc = ∆Φc +∆Φcorr. (A.19)

The states, output of the predictor, are then stored in a FIFO buffer. This is
done to allow to compute the differences between the EKF states and the
predicted ones at the delayed fusion time horizon. Clearly, the predictor
will retrieve the oldest predicted states belonging to the FIFO buffer for
performing this operation.

It is worth noting that the predicted state is also the one employed for
computing the feedback of the control laws. This is done for achieving
minimum latency between the IMU measurements and the computation
of the state (less than 100µs).

The differences obtained are then used for computing the corrections
∆pcorr, ∆vcorr and ∆Φcorr in the complementary filter. As already seen
for the attitude in equation (A.19), these corrections are then applied at
the current time horizon so that the predicted states track the EKF states at
the delayed fusion time horizon. For what concerns position and velocity
corrections, they are applied to all the elements of the FIFO buffer. This
is not done for the attitude states due to the quaternion operations that
would be needed and their associated computational costs.

In conclusion, the output predictor is used to propagate the states for-
ward, from the fusion time horizon to current time, using the buffered
IMU data. Doing so, the predictor filters out the sudden changes in the
states that occur when measurements are fused. Note that the time con-
stants of the complementary filter are set as inputs of the system.

227





APPENDIXB
Monocular camera model

A monocular camera is a projective sensor that associates points in the 3D
space with points on a 2D image plane. Each projected point (pixel) will
contain photometric information related to the photometric properties of
the external 3D point [299]. The behaviour of the monocular camera is
model by the so-called pinhole camera model. A pinhole camera (shown
in Figure B.1) consists of an optical center C, an optical axis and a plane,
called image plane. The image plane is perpendicular to the optical axis
and it is situated at a distance f from the optical center, called focal length.
The point where the optical axis intersects the image plane is called prin-
cipal point. Conventionally, the camera reference frame has its origin in
the optical center, with the c3-axis aligned with the optical axis.

Following the approach of [299], we now derive an algebraic repre-
sentation of the pinhole camera, as a mapping from a point in 3D space
πC = [xC, yC, zC]

⊤, called object point to a 2D point P = [X, Y ]⊤, be-

229



Appendix B. Monocular camera model

Figure B.1: Pin-hole camera model (reworked from [300])

230



longing to the image plane, called image point. This operation can be
done simply applying triangle similarities, i.e.,

X

f
=
xC
zC

(B.1)

Y

f
=
yC
zC
, (B.2)

leading to the expression:

P =

[
X
Y

]
=

[
xC
yC

]
f

zC
. (B.3)

This equation is usually written in homogeneous coordinates:XY
1

 = P̄ =

f 0 0
0 f 0
0 0 1

xCyC
zC

 = KfπC, (B.4)

where P̄ denotes the use of homogeneous coordinates. The next step
is to represent image point P in pixel instead of metric units, namely
P pix = [u, v]⊤. Suppose that the principal point, in pixels, is indicated as
P pix
0 = [u0, v0]

⊤ and that su and sv are the number of pixels per distance
unit in the horizontal and vertical direction, then the following relations
hold:

u = uo + suX (B.5)
v = v0 + svY, (B.6)

These relations can be also put in homogeneous coordinates as:uv
1

 = P̄ pix =

su 0 u0
0 sv v0
0 0 1

XY
1

 = KsP̄ . (B.7)

Concatenating the two results, we obtain:

P̄ pix = KsKfπC = KπC, (B.8)

231



Appendix B. Monocular camera model

where

K = KsKf =

fu 0 pu
0 fv pv
0 0 1

 , (B.9)

is called calibration matrix or intrinsic matrix, and its parameters are
called intrinsic parameters, because they only depends on the camera in-
ternal configuration. In the expression of the calibration matrix fu = fsu
and fv = fsv are interpreted as the focal length measured respectively in
terms of the horizontal and vertical pixels.

On the other hand, the extrinsic parameters are represented by the
camera pose TIC = (tIC, RIC). From their knowledge, the coordinates
of the object point in the inertial frame πI can be retrieved. Thus, the
complete pin-hole camera model result:

P̄ pix = KR⊤
IC(πI − tIC). (B.10)

Finally, we retrieve the Cartesian coordinates of the projected pixels from
its homogeneous coordinates as:

P pix =

[
u
v

]
=

[
P̄ pix
1 /P̄ pix

3

P̄ pix
2 /P̄ pix

3

]
, (B.11)

where the sub-index i indicates the i-th component of the considered vec-
tor. Equation (B.11) can be unpacked into the single components as:

u =
fu
zC
xC + u0 (B.12)

v =
fv
zC
yC + v0. (B.13)

Note that a monocular camera is not able to measure the distance to the
perceived objects zC . This leads to the impossibility of inverting equations
(B.11). In other words, given an image point, we are not able to recover
the object point that generated it. However, we can find the locus of object
points projecting to the pixel of interest, as a semi-infinite straight line
parameterized by the unmeasured distance r:

232



πI = tIC + rRICvC, (B.14)

where

vC = K−1P̄ pix/||K−1P̄ pix||. (B.15)

The pinhole model can be thought as a linear approximation of real
cameras. Indeed, imperfections in lens manufacturing cause the presence
of nonlinear effects in the mapping from object points to image points,
called distortion. The most common kinds of distortion effect are radial
and tangential.

Before describing and applying the distortion models, we represent
points in normalized image coordinates, namely we define x′C and y′C as:

x′C =
xC
zC

=
u− u0
fu

(B.16)

y′C =
yC
zC

=
v − v0
fv

. (B.17)

Radial distortion is mainly due to flawed radial lens curvature, and causes
a radial displacement of points with respect to the principal point. The
distorted points coordinates x′′ and y′′ are:

x′′ = x′(1 + k1r
2 + k2r

4 + k3r
6) (B.18)

y′′ = y′(1 + k1r
2 + k2r

4 + k3r
6), (B.19)

where and r = x′
2
+ y′

2 is the squared distance from the principal point.
The values k1, k2, and k3 are called radial distortion parameters.

Tangential distortion depends instead on errors in lens placement. In
particular, it arises when the lens is not parallel to the image plane. The
mathematical model is represented by the following equations:

x′′ = x′ + (2p1x
′y′ + p2(r

2 + 2x′
2

)) (B.20)

y′′ = y′ + (p1(r
2 + 2y′

2

) + 2p2x
′y′), (B.21)

233



Appendix B. Monocular camera model

where p1 and p2 are the tangential distortion parameters. The two models
are usually combined together in a single expression:

x′′ = x′(1 + k1r
2 + k2r

4 + k3r
6) + (2p1x

′y′ + p2(r
2 + 2x′

2

)) (B.22)

y′′ = y′(1 + k1r
2 + k2r

4 + k3r
6) + (p1(r

2 + 2y′
2

) + 2p2x
′y′). (B.23)

Finally, the distorted point coordinates are retrieved as:

ud =
fu
x

′′
+ u0 (B.24)

vd =
fv
y

′′
+ v0. (B.25)

If all the distortion parameters D = [k1, k2, p1, p2, k3] are known, the im-
age deformation can be corrected by computing for each pixel its ideal
position on the image plane. This software correction is called undistor-
tion, and it makes possible to apply the pinhole model to real cameras
with negligible error. Distortion parameters can be considered intrinsic
because they describe the internal configuration of the camera. Intrinsic
parameters can be found through the process called camera calibration
[301].

234



APPENDIXC
Stereo camera model

We consider a stereo camera as two rigidly attached cameras whose field
of views have some overlapping region. This setup allows the evaluation
of depths by exploting a second viewpoint, in a procedure called triangu-
lation. In the simplest formulation (standard model), the two cameras are
modeled as two identical pin-hole cameras with parallel optical axes and
co-planar image planes [299] (see Figure C.1).

Conventionally, the two optical centers CL and CR are aligned along
the local c1 axes, which are also made co-linear. Furthermore, the local
axes {c1, c2, c3} of the left pin-hole camera are used as local axes of the
stereo camera. The two optical centers are found at a distance b, called
stereo baseline. The plane joining them with the object point πC is called
epipolar plane, which in turn intersects the image planes on two co-linear
straight lines, called epipolar lines.

Again, following the formulation of [299], we derive the stereo cam-

235



Appendix C. Stereo camera model

Figure C.1: Stereo camera standard model (reworked from [300])

era model starting from the left and right cameras’ pinhole models (see
Appendix B). Given the object point πC in the stereo local coordinates,
the image pixels in the left (subscript L) and right (subscript R) images
are obtained respectively as:uLvL

1

 = P̄ pix
L = K

xCyC
zC

 , (C.1)

and uRvR
1

 = P̄ pix
R = K

xC − byC
zC

 . (C.2)

While the vertical pixel coordinates in the standard model coincide:

vL = vR, (C.3)

the horizontal measurements allow us to observe the depth zC through the
following relation:

236



uL − uR =
fu
zC

(xC − (xC − b)) =
fu
zC
b. (C.4)

The stereo observation model is then obtained considering u = uL, v =
vL and the disparity d = uL − uR:

s =

uv
d

 =

u0 + fuxC/zC
v0 + fvyC/zC

fub/zC

 . (C.5)

In the case of disparities d > 0, the model can be inverted to obtain the
object point from stereo measurements s:

πC =

xCyC
zC

 = fu
b

d

(u− u0)/fu(v − v0)/fv
1

 , (C.6)

which, knowing the pose of the camera, can be expressed in the inertial
frame as:

πI = tIC + fu
b

d
RIC

(u− u0)/fu(v − v0)/fv
1

 , (C.7)

Note that the degenerate case with d → 0 corresponds to points that are
very far away, in which case the two images coincide, leading the stereo
camera to behave like a unique monocular camera. This happens when
the baseline is too small compared to the distance to observe [299].

The only remaining aspect is related to problem of finding the image
pixels in the L and R images that corresponds to the same object point.
This problem is also known as stereo correspondence. Referring to Fig-
ure C.1, the point, associated to the pixel uL, lies somewhere on the line
defined by CL and uL. This line belongs to the epipolar plane and thus it
projects on the epipolar line. As a consequence, the correspondent pixel
uR must be found along the epipolar line of theR image. As already men-
tioned, in the standard model of the stereo camera, the L and R epipolar
lines coincide and, thus, the pixel uR is defined in the right image by the
ordinate of equation (C.3).

237



Appendix C. Stereo camera model

Now it is interesting to inspect what is the effect of noise on the per-
ceptions of PL and PR. Suppose to have radial uncertainty over the image
points. The back-projection of the uncertainty circle around a point cre-
ates a cone, with vertex in the camera center and the circle as directrix.
The uncertainty of the reconstructed point lies in the intersection of the
two back-projection cones [300]. Note also, that in operating conditions
the point to camera distance is much greater than the baseline. Conse-
quently, the depth estimation uncertainty is greater with respect to the
other two coordinates. The uncertainty will also increase as the point
depth increases. The phenomenon is graphically represented in Figure
C.2.

Figure C.2: Uncertainty propagation in triangulation (reworked from [300])

238



APPENDIXD
Differential flatness proof

Consider the quadrotor model of equations (1.46)-(1.49).
In the following, we will show that the state [r, v, RIB, ωB] and the

inputs [c, τ ] can be written as algebraic functions of four selected out-
puts, which in turn are the three components of the UAV position r =
[rx, ry, rz] and its heading ψ, and a finite number of their derivatives.

First of all, the position, velocity and acceleration of the center of mass
are simply r, ṙ and r̈, respectively. To see that RIB is a function of the
flat outputs and their derivatives consider equation (1.47). We have:

b3 =
t

||t||
, (D.1)

where
t =

[
r̈x, r̈y, r̈z + g

]⊤
, (D.2)

defining the z axis of the quadrotor body frame. Given the yaw angle, we

239



Appendix D. Differential flatness proof

can write the unit vectors of an intermediate reference frameH:

h1 = [cosψ, sinψ, 0]⊤ (D.3)

h2 = [− sinψ, cosψ, 0]⊤ (D.4)

h3 = [0, 0, 1]⊤, (D.5)

which form the rotation matrix:

RIH =
[
h1 h2 h3

]
. (D.6)

Provided that h1 × b3 ̸= 0, we can retrieve b1 and b2 as:

b2 =
b3 × h1
||b3 × h1||

(D.7)

b1 = b2 × b3. (D.8)

With these expressions, we can uniquely determine:

RIB =
[
b1 b2 b3

]
. (D.9)

In order to show that the body rates ωB are functions of the flat outputs
and their derivatives, we take the derivative of (1.47):

ȧ = ċb3 + cḃ3, (D.10)

where a is the acceleration: r̈ = a. Its derivative ȧ is also called jerk.
Making explicit the reference frames in which the unit vectors are written,
and considering that we are taking the derivative of a vector represented
in world coordinates b3 = bI3 , we get:

ḃ3 = ḃI3 =
d

dt
(RIBb

B
3 ), (D.11)

= ṘIBb
B
3 (D.12)

= RIB[ωB]×b
B
3 ., (D.13)

where we have substituted the expression for the attitude kinematics (1.48).
Putting together the expressions (D.10) and (D.13), we get:

240



ȧ = ċb3 + cRIB[ωB]×b
B
3 . (D.14)

Left multiply the previous expression by b⊤1 :

b⊤1 ȧ = b⊤1 ċb3 + cb⊤1 RIB[ωB]×b
B
3 . (D.15)

and considering the expression of the rotation matrix (D.9) and the rela-
tions among unit vectors: b⊤1 b1 = 1, b⊤1 b2 = 0, b⊤1 b3 = 0; we get:

b⊤1 ȧ = c
[
1 0 0

]
[ωB]×

00
1

 , (D.16)

which leads to:
b⊤1 ȧ = cωy. (D.17)

Similarly, we left multiply (1.47) by b⊤2 and through similar computations,
we get:

b⊤2 ȧ = −cωx. (D.18)

Finally, we should get a relation for retrieving ωz. Considering equation
(1.48) and left multiplying it by b⊤2 , we get:

b⊤2 ṘIB = b⊤2 RIB[ωB]×. (D.19)

For what concerns the right-hand term, we get:

b⊤2 RIB[ωB]× =
[
ωz 0 −ωx

]
, (D.20)

Instead, we can compare the left-hand term with the derivative of b1,
which can be computed similarly to (D.13) as:

ḃ1 = RIB[ωB]×b
B
1 . (D.21)

Thus right multiplying (D.19) by bB1 , we obtain:

b⊤2 RIB[ωB]×b
B
1 =

[
ωz 0 −ωx

]
bB1 , (D.22)

and using (D.21), it simplifies into

241



Appendix D. Differential flatness proof

b⊤2 ḃ1 = ωz. (D.23)

Similarly to (D.7), we can compute b1 as:

b1 =
h2 × b3
||h2 × b3||

, (D.24)

and calling b̂1 = h2 × b3, this relation becomes:

b1 =
b̂1

||b̂1||
. (D.25)

Taking its derivative as the one of a unit vector:

ḃ1 =
˙̂
b1

||b̂1||
− b̂1

b̂⊤1
˙̂
b1

||b̂1||3
(D.26)

Since b1 and b̂1 are both perpendicular to b2, we can write (D.23) as:

ωz = b⊤2

˙̂
b1

||b̂1||
. (D.27)

We now compute the derivative ˙̂
b1:

˙̂
b1 = ḣ2 × b3 + h2 × ḃ3. (D.28)

The two needed derivatives ḣ2 and ḃ3 are computed as:

ḃ3 = RIB[ωB]×b
B
3 = RIB

 ωy

−ωx

0

 = ωyb1 − ωxb2, (D.29)

where we have carried out the computations of equation (D.13), and:

ḣ2 = RIH[ωH]×h
H
2 =

[
h1 h2 h3

]
ψ̇

00
1

×
01
0

 = −ψ̇h1. (D.30)

242



Grouping the results together:

˙̂
b1 = −ψ̇h1 × b3 + ωyh2 × b1 − ωxh2 × b2, (D.31)

and combining it with (D.27):

ωz = b⊤2
1

||b̂1||
(−ψ̇h1 × b3 + ωyh2 × b1 − ωxh2 × b2) (D.32)

=
1

||b̂1||
(ψ̇h⊤1 (b2 × b3)− ωyh

⊤
2 (b2 × b1) + ωxh

⊤
2 (b2 × b2)) (D.33)

=
1

||b̂1||
(ψ̇h⊤1 b1 + ωyh

⊤
2 b3), (D.34)

we have the ωz relationship we were looking for. Note that in the previous
expression the vector triple product of three arbitrary vectors a, b, and c,
has been employed.

a⊤(b× c) = −b⊤(a× c). (D.35)

Clearly, we need to show that also the input c, which appears in the equa-
tions for body rates (D.17)-(D.18), can be written as an algebraic rela-
tionship of the flat outputs and their derivatives. This proof is trivial since
the net thrust is simply c = ||t||. Turning to the three-dimensional torque
input τ , we notice that we need to show that also the angular acceleration
can be written as functions of flat outputs and derivatives. We proceed by
taking the derivative of (1.49):

ä = c̈b3 + ċḃ3 + ċRIB[ω]×b
B
3 + cṘIB[ω]×b

B
3 + cRIB

˙[ω]×b
B
3 (D.36)

= c̈b3 + 2ċRIB[ω]×b
B
3 + cRIB[ω]

2
×b

B
3 + cRIB

˙[ω]×b
B
3 (D.37)

where we have used the expression for ḃ3 (D.13). Note also that the sec-
ond derivative of the acceleration ä is called snap.

With procedure similar to the one used for the angular rates, we left-
multiply the expression by b⊤1 and with similar arguments we obtain:

243



Appendix D. Differential flatness proof

b⊤1 ä = 2ωy ċ+ ωxωzc+ ω̇yc. (D.38)

On the other hand, if we left multiply by b⊤2 we get:

b⊤2 ä = −2ωxċ+ ωyωzc− ω̇xc. (D.39)

For retrieving the last equation (the one for ω̇z), we compute the derivative
of the following equation:

ωz||b̂1|| = (ψ̇h⊤1 b1 + ωyh
⊤
2 b3), (D.40)

and, by substituting the expression for (D.31), we obtain:

− ω̇yh
⊤
2 b3 − ωyḣ

⊤
2 b3 − ωyh

⊤
2 ḃ3 + ω̇z||h2 × b3||+ ωz

d

dt
(||b̂1||) =

= ψ̈h⊤1 b1 + ψ̇ḣ⊤1 b1 + ψ̇h⊤1 ḃ1, (D.41)

We now need to derive the expressions for the terms appearing in it. Using
equation (D.30), we obtain:

− ωyḣ
⊤
2 b3 = ωyψ̇h

⊤
1 b3, (D.42)

The second term, using expression (D.13), is equal to:

− ωyh
⊤
2 ḃ3 = −ω2

yh
⊤
2 b1 + ωxωyh

⊤
2 b2, (D.43)

which, considering that h⊤2 b1 = 0, simplifies into:

− ωyh
⊤
2 ḃ3 = ωxωyh

⊤
2 b2. (D.44)

For the third term, we start by exploiting the expression for the derivative
of a vector:

d

dt
(||b̂1||) =

b̂⊤1
˙̂
b1

||b̂1||
. (D.45)

Now, we can simplify the term using expressions (D.31) and (D.25).

244



ωz
b̂⊤1

˙̂
b1

||b̂1||
= ωzb

⊤
1
˙̂
b1 = ωzb

⊤
1 (−ψ̇h1×b3+ωyh2×b1−ωxh2×b2). (D.46)

Using the property (D.35), we find:

ωzb
⊤
1 (−ψ̇h1 × b3 + ωyh2 × b1 − ωxh2 × b2) = ωz(−ψ̇h⊤1 b2 + ωxh

⊤
2 b3).

(D.47)
For the fourth term, in a way similar to (D.30), we get ḣ1 as:

ḣ1 = RIH[ωH]×h
H
2 =

[
h1 h2 h3

]
ψ̇

00
1

×
10
0

 = ψ̇h2. (D.48)

and, finally, we can carry on the computations of the relation (D.21):

ḃ1 = RIB

 0
ωz

−ωy

 = ωzb2 − ωyb3. (D.49)

Putting together (D.41) with (D.42), (D.44), (D.47), (D.48) and (D.49),
we get the final constraint for finding the angular accelerations:

− ω̇yh
⊤
2 b3 + ω̇z||h2 × b3|| = ψ̈h⊤1 b1 − ωyψ̇h

⊤
1 b3 − ωxωyh

⊤
2 b2+

+ ωzψ̇h
⊤
1 b2 − ωxωzh

⊤
2 b3 + ψ̇2h⊤2 b1 + ωzψ̇h

⊤
1 b2 − ωyψ̇h

⊤
1 b3, (D.50)

which in turn, considering that h⊤2 b1 = 0, and regrouping the terms, leads
to:

− ω̇yh
⊤
2 b3 + ω̇z||h2 × b3|| = ψ̈h⊤1 b1 − 2ωyψ̇h

⊤
1 b3+

− ωxωyh
⊤
2 b2 + 2ωzψ̇h

⊤
1 b2 − ωxωzh

⊤
2 b3, (D.51)

Since the term ċ appears in the other two equations for finding angular
accelerations (D.38)-(D.39), we have to show that it can be written as a

245



Appendix D. Differential flatness proof

function of the flat outputs and derivatives. This can be done by projecting
equation (D.10) on b3:

b⊤3 ȧ = ċb⊤3 b3 + cb⊤3 RIB[ωB]×b
B
3 (D.52)

which simplifies into:

ċ = b⊤3 ȧ. (D.53)

Once the angular accelerations are known, the torques input τ can be
found from equation (1.49).

246


	Abstract
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Notation
	Reference frames
	Frame transformation

	Navigation
	Exteroceptive sensors
	SLAM
	Visual odometry and visual SLAM
	Visual inertial odometry
	Maps

	Guidance
	Search-based methods
	Sampling-based methods
	Path smoothing and trajectory generation
	Reactive approaches
	Exploration

	Control
	Model
	Cascaded controller


	Simulation and experimental environment
	Simulation environment
	Experimental environment
	FlyART
	Leonardo Drone Contest arena
	Aerial vehicles


	Visual odometry error modeling
	Motivation
	Related works
	Background
	Allan Variance
	Kalman predictor

	Proposed approach
	Statistical design of experiments
	Allan variance for visual odometry
	Statistical analysis of results

	Experimental results
	Factorial design for visual odometry analysis
	Error models
	Kalman predictor
	Analysis of Variance

	Concluding remarks

	Leonardo Drone Contest autonomous drone competitions
	Related works
	First edition
	Solution overview
	Navigation
	Guidance
	Final considerations

	Second edition
	Solution overview
	Navigation
	Decision-making
	Guidance
	Simulation results
	Experimental results
	Final considerations

	Third edition
	Solution overview
	Navigation
	Guidance
	Experimental results
	Final considerations

	Concluding remarks

	Autonomous landing
	Autonomous emergency landing
	Related work
	Safe Landing Area Determination
	Path planning
	Trajectory planning
	Simulation results
	Final considerations

	Autonomous Air-to-Air Landing (AAAL)
	Related works
	Autonomous landing strategy
	Quasi time-optimal tracking
	Hybrid logic
	Vision-based target state estimation
	Simulation results
	Preliminary test results
	Vision-based landing results
	Final considerations

	Concluding remarks

	Conclusions
	Bibliography
	EKF2
	Prediction
	Correction
	Magnetometer
	Optical flow
	Distance sensor
	Vision-based sensors velocity
	Wind velocity

	Output prediction

	Monocular camera model
	Stereo camera model
	Differential flatness proof

