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Abstract: In many industrial processes the intrinsic complexity has increased over
years and, in parallel, the necessity to monitor the processes, in order to detect
anomalous patterns has become more and more essential. For this reason, profile
monitoring, a recent field of research in Statistical Process Control, is attracting the
interest of many researchers. In this work, our aim is to propose an additional tool,
a novel conformal based p-value function, that integrates the traditional approach
used in profile monitoring. Our methodology, based on Conformal prediction and
Copula estimation, is able to recognize not only if an anomaly is present, but also
which part of the domain is responsible for that strange behaviour. To check the
goodness of our method, we go through applications to literature datasets and
simulations study. A real case study, namely the analysis on Vertical Density
Profiles (VDP), is presented in order to illustrate the potential of our procedure in
real applications.

Key-words: Profile monitoring, Functional data, Conformal prediction, Copulae, P-value function

1. Introduction

The continuous evolution of technology in the industrial field provides the possibility to collect an increasing
amount of information about a process of interest, giving the opportunity to study it in a deeper and more
precise way. The high level of complexity, characterizing the majority of the industrial operations, leads to
organize all the gathered information in dataset with a huge number of columns; it’s the case of functional
dataset, where each row corresponds to a function that takes values on a specific interval, for more details we
refer to Ramsay, Silverman (2005) and/or Horvath, Kokoszka (2012). This allows us to use various tools in the
framework of functional analysis to develop a new method for anomaly detection.
The main purpose of our research is to identify strange, unexpected behaviour in the resulting product of an
industrial process of interest and, consequently, to asses its overall strength. In the literature, this type of
analysis is called profile monitoring and it is divided in 2 parts: during the first one (usually named phase I, or
design phase) a set of in-control profiles is used to build a control chart with related threshold, while phase II
is aimed at monitoring new profiles by comparing them with the previously obtained control chart.
In this paper we propose a new method for profile monitoring based on conformal prediction. Given a starting
functional dataset, which can be seen as the set of in-control profiles, we associate to every new profile a specific
function, the so-called p-value function, that assumes values between zero and one. The interpretation of the
value of this function in a specific point of the domain is the following: a high value, close to one, indicates
the presence of a standard behaviour while a low value, near zero, highlights an unusual pattern and allows us

1



to label that point as an anomaly. This new p-value function is built starting from the conformal prediction
bands proposed in Diquigiovanni, Fontana and Vantini (2021). We are aware that a similar method already
exits in the literature. While the statistical interpretation is the same of our p-value function, the way in which
it is constructed is completely different: for a specific point of the domain, its corresponding value is computed
focusing only on the values of the in-control functions on that point. Instead, in our proposal, the value in a
specific point is influenced by what is happening in the rest of the domain, thanks to the use of the conformal
prediction bands. We see our new solution as a first extension, over the domain, of the benchmark case which
we refer to as the not adjusted case.
After having tested the p-value function on some of the famous dataset available in the literature, by comparing
it with the not adjusted case, a weak aspect of this procedure comes out. Indeed, the p-value function is helpful
in detecting anomalous behavior related to the values of a specific function, but it is useless if the strange
pattern occurs with an higher order of derivative. A clever way to solve this problem is to consider not only the
functions alone, but also the functions’ derivatives. Inspired by the work of Messoudi, Destercke and Rousseau
(2021), we adopt the copula approach to ensure a specific joint coverage, given the marginal coverage used to
build the conformal regions respectively for the functions and their derivatives. This is the second extension,
done at the codomain level, that is going to be discuss in our studies.
The final p-value function, including both the first and the second extensions, is applied, first of all, to the
datasets of the literature and, successively, to a real case study, the Vertical density profile (VDP). A generic
VDP profile measures the density over the vertical axes of a given particleboard. As a consequence, since there’s
a strict relation between the mechanical properties of the particleboard and the VDP curve, it is a common
practice to detect possible failures of the final product by analyzing the behaviour of the corresponding VDP
profile.
In detail the paper is structured as follows. Section 2 presents the methodology of the p-value function, focusing
on the first extension. In Section 3, we compare the performance of our method with respect to the not-adjusted
method, using famous datasets of the literature on Functional Data Analysis (e.g. Ramsay and Silverman, 2005)
and a simulation study. Section 4 introduces the methodology behind the second extensions, while in Section 5
we show the importance of taking into consideration higher order derivatives, following the copula adjustment,
by applying the procedure to the well-known datasets from the literature and by presenting a second simulation
study. Section 6 discusses the real case study of VDP, while section 7 concludes the paper.

2. Methodology

A fundamental part of every industrial process is the one focused to control its quality and to find out strange
patterns as soon as they arise. The methodology proposed belongs to the well known field of profile monitoring
and presents a new way of checking the behaviour of a given industrial operation with respect to an in-control
sample. Our method is based on Conformal prediction, that is a non parametric approach aimed at building
prediction sets, under the weak assumption of exchangeable data. During recent years, many authors (L´opez-
Pintado and Romo 2009, Lei et al. 2015) have stated out that in the functional framework, the one of our
analysis, the prediction set should be a particular one, namely the prediction band. Formally, a band is defined
as

{y ∈ Y(T ) : y(t) ∈ Bn(t), ∀t ∈ T } (1)

where Bn(t) ⊂ R is an interval for each t ∈ T . In the framework of Conformal prediction (Vovk et al. 2005),
following the notation of Diquigiovanni, Fontana and Vantini (2021), we consider an initial dataset made of n
i.i.d random functions Y1, . . . , Yn ∼ P and an independent function Yn+1 ∼ P and we build a prediction band
Cn,1−α := Cn,1−α(Y1, . . . , Yn) for Yn+1. The constructed prediction band is a set such that

P(Yn+1 ∈ Cn,1−α) ≥ 1− α (2)

for any significance level α ∈ (0, 1). In the rest of the paper we will use the term coverage to indicate P(Yn+1 ∈
Cn,1−α) and, by using the Conformal approach, we are guaranteed to build prediction band Cn,1−α with an
associated coverage greater or equal to 1 − α, for any α ∈ (0, 1). Precisely, we will consider the Semi-Off-Line
Inductive Conformal framework, well known as Split Conformal, that is more efficient from a computational point
of view than the Transductive Conformal method, also called Full Conformal (firstly proposed in Papadopoulos
et al. 2002).
Let us explain how the prediction band Cn,1−α is obtained under the Split Conformal framework, following
the work of Diquigiovanni, Fontana and Vantini (2021). An initial dataset made of n functions y1, . . . , yn is
randomly split in 2 parts: the training set {yh : h ∈ I1} and the calibration set {yh : h ∈ I2}, where I1 and I2
are two set of indexes obtained by the random split of {1, . . . , n}. Let us define |I1| = m and |I2| = l, of course
m + l = n. Now we define the nonconformity measure as a measurable function A({yh : h ∈ I1}, y) taking
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values in R, whose quantify how different y ∈ Y(T ) is from the training set and the nonconformity scores as
Rj := A({yh : h ∈ I1}, yj) for j ∈ I2. We are left with the decision of which measurable function we should
use as nonconformity measure to continue our studies. Coherently, we follow what Diquigiovanni, Fontana and
Vantini propose in their paper and we set:

A({yh : h ∈ I1}, y) = sup
t∈T

∣∣∣∣y(t)− gI1
(t)

sI1
(t)

∣∣∣∣ (3)

where gI1
(t) : T → R is a point predictor summarizing the information of the training set {yh : h ∈ I1}, in

particular it is the sample functional mean. sI1
(t) : T → R>0, based on the training set {yh : h ∈ I1}, is

the so called modulation function, that forces the prediction bands to adapt their width according to the local
variability of the training functions. Consequently, the nonconformtity scores of the calibration set are the
following:

Rs
J := sup

t∈T

∣∣∣∣yj(t)− gI1(t)

sI1
(t)

∣∣∣∣ (4)

with j ∈ I2.Therefore, the prediction band, obtained by applying the Split conformal algorithm with the
previous mentioned choice of nonconformity measure, is:

Cs
n,1−α := {y ∈ Y(T ) : y(t) ∈ [gI1(t)− kssI1(t); gI1(t) + kssI1(t)]} (5)

where ks is the [(l + 1)(1 − α)]thsmallest value in the set of the nonconformity scores of the calibration set,
i.e. {Rs

h : h ∈ I2}. For the rest of our discussion let us set Cs
n,1−α = Cn,1−α because we will keep fixed the

modulation function sI1
and equal to the sample functional standard deviation of the training set {yh : h ∈ I1}.

Now that we have explained how to build the Conformal prediction band for a specific value of α ∈ (0, 1), let’s
proceed with the cornerstone of our research: the p-value function. Given a dataset D, made of n functions
y1, . . . , yn defined on T → R, and a completely new function yn+1 : T → R, our objective is to compute
p : T → [0, 1], the p-value function of the function yn+1 with respect to the dataset D. This p-value function
is a new way to quantify how unusual is the function yn+1 compared to y1, . . . , yn. In particular, for a specific
point of the domain t ∈ T , a high value, close to one, of p(t) means that in that point the function yn+1 behaves
like the other functions in D. On the other hand, if p(t) is close to zero then the function yn+1 will be labeled
as anomalous in t. The p-value function may play a crucial role in the framework of profile monitoring, since
it tells not only if a given function is an anomaly, but also which parts of the function’s domain are responsible
of such unexpected behaviour and how much that parts are strange, on a scale between [0,1].
After having introduced the p-value function, we can explain how it is actually derived from the previous
mentioned conformal regions. We recall that we are considering a functional dataset D and a function yn+1 for
which we want to compute the p-value function p. The idea at the base is quite simple: given a specific value
of α ∈ [0, 1], let us construct the associated conformal prediction band Cn,1−α from the dataset D and compare
it with the function yn+1. Whether we find some points over the domain, such that yn+1 intersects the upper
or the lower bound of Cn,1−α, then we will assign to those points a p-value of α. Of course we must repeat that
procedure ∀α ∈ [0, 1]. Formally, we define the entire method as follows:

∀t ∈ T p(t) = min
α∈[0,1]

α s.t.

(u1−α − yn+1)
+(t) = 0 ∨ (yn+1 − l1−α)

+(t) = 0 (6)

where u1−α and l1−α are respectively the upper and the lower bound of the conformal region Cn,1−α.
It is appropriate to remark that our proposal is not a completely new one. Indeed a similar technique is already
present in the literature. We hereafter refer to the literature benchmark as not adjusted p-value function. For
a given point t ∈ T , the corresponding value of the not adjusted p-value function, pnot adjusted(t), is obtained
by taking into consideration yn+1(t) and the values that the other functions, y1, . . . , yn, assume in t. In other
words, pnot adjusted(t) indicates how strange is the function yn+1 from the others only focusing on what is
happening in t, it does not care about the global behaviour over the domain, an aspect, on the contrary, that
is very important in our version of the p-value function. For this reason, from now on, we will refer to our
proposal with the name adjusted p-value function, highlighting the fact that an "adjustment" at a global level
is always present, and to the literature’s variant with the name not adjusted p-value function, putting evidence
on the fact that the domain adjustment, induced by Conformal prediction, is not consider.
Concerning the not adjusted p-value function, its formal definition is the following:

∀t ∈ T pnot adjusted(t) = min
α∈[0,1]

α s.t.

(u1−α − yn+1)
+(t) = 0 ∨ (yn+1 − l1−α)

+(t) = 0 (7)
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with u1−α and l1−α that are, respectively, the upper and the lower bound of the not adjusted region for a given
α ∈ [0, 1]. It is worth underlining that these upper/lower bound are computed point after point by taking into
consideration only the local trend.

3. Application and simulation study

3.1. Application to literature datasets

The next step of our analysis is to make a comparison between the two version of the p-value function. In order
to show the improvements, that characterize our proposal with respect to the literature’s one, we are going
to apply both methods to some famous functional datasets, namely the Berkeley Growth Study data and the
CanadianWeather data. Fig. 1 shows a plot of theese two data, giving an idea of the type of functions we are
going to use for our aim.

(a) (b)

Figure 1: An overview of the data used to compare the p-value function adjusted with respect to the
p-value function point_wise: Berkeley Growth Study data (a) and CanadianWeather data (b)

The first one we deal with is the Berkeley Growth Study data, taken from the R library fda; it contains the
heights of 39 boys and 54 girls and the corresponding ages, included in a range from 1 to 18 years, at which
the 31 measurements were collected. Fig.2 shows the results obtained considering the function relative to the
boy05, i.e. the fifth curve of the boys dataset. For visual reasons, we decide to display in one plot the boy05’s
function over the conformal regions and in another one the relative p-value function, for both the adjusted
and not adjusted cases. The chosen function assumes quite low values in the central part of the domain, as a
consequence the two p-value functions have lower values in that part. In general, it is clear that the adjusted
p-value function takes higher values compared to the not adjusted one. The reason is that the not adjusted
regions tend to be narrower with respect to the adjusted ones.
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(a) boy05’s function over the adjusted
conformal regions

(b) boy05’s function over the not ad-
justed conformal regions

(c) p-value function adjusted (d) p-value function not adjusted

Figure 2: Berkeley Growth Study data, we consider the function of the boy05, that is plotted over the
conformal regions in the two plot at the top (panel a,b).The two corresponding p-value functions are
shown in the plots at the bottom: adjusted case(c), not adjusted case (d)

Another dataset used to test the differences between the 2 versions is the CanadianWeather dataset, part of
the library fda; it contains the daily measurements of temperature and precipitation at 35 different locations
in Canada, averaged in the years between 1960 and 1994.For the sake of simplicity, we will consider only the
data about temperature. Accordingly, our dataset is made of 35 functions that assume 365 temperature values
each, one for every day in a year. Looking at the Fig.3, we notice that, in both cases, the function intersects
the outer regions, characterized by the hot colors, at the extremes of the domain. As a consequence, these part
are associated to small values of the two p-value functions. On the other hand, we observe a peak in the central
part of the two p-value functions, higher in the adjusted case, meaning that in this part the function encounter
the inner regions, highlighted by cold colors. As before, we register that the adjusted p-value function takes
higher values, globally, than the not adjusted one. In addition, we want to remark that the not adjusted version,
since it considers only the point-wise evaluation of the function and not its behaviour over the entire domain,
is more sensible to small local deviations, that not necessarily correspond to abnormal patterns, with respect
to the adjusted p-value function.
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(a) Inuvik’s function over the adjusted
conformal regions

(b) Inuvik’s function over the not ad-
justed conformal regions

(c) p-value function adjusted (d) p-value function not adjusted

Figure 3: CanadianWeather dataset, we consider the function related to Inuvik (northwest of Canada),
that is plotted over the conformal regions in the two plot at the top (panel a,b).The two corresponding
p-value functions are shown in the plots at the bottom: adjusted case (c), not adjusted case (d)

Lastly, we present here a peculiar case of anomaly. It is build from the Berkeley Growth Study data, considering
only the functions related to the boys. What makes this case so particular is the fact that we are considering
an anomalous function, that we get by adding noise, over the entire domain, to the boy04’s function. By doing
this, we are interested in studying how the two versions of the p-value functions react to an unusual pattern.
Fig. 4 shows that in the adjusted case the black function always stays in the cold colored regions, implying high
values of the related p-value functions, which goes under the value of 0.8 just for a total of three times. Passing
to the not adjusted case, one can easily observe that the regions are, as usual, narrower and more irregular.
Consequently, the anomaly touches the outer regions very often and this is the reason why the not adjusted
p-value function goes repeatedly from high to low values and vice versa. Between the two p-value functions, we
prefer the adjusted one because, by taking high values overall, it puts evidence on the fact that the function,
even though anomalous, conforms to the others, under the aspect of the assumed values. Nevertheless, we can
not be completely satisfied by the adjusted p-value function. Indeed, its values, being always very high, do not
detect the presence of an anomalous profile. For this reason, we propose a further extension to this methodology,
in order to solve issues of this kind.
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(a) anomalous function over the adjusted
conformal regions

(b) anomalous function over the not ad-
justed conformal regions

(c) p-value function adjusted (d) p-value function not adjusted

Figure 4: Berkeley Growth Study data, but only the boys functions. We build an anomaly by adding
noise to the boy04 function. This anomaly is plotted over the conformal regions in the two plot at
the top (panel a,b).The two corresponding p-value functions are shown in the plots at the bottom:
adjusted case (c), not adjusted case (d)

3.2. Simulation study

The comparison between the two versions of the p-value function goes on with a simulation study, which
is focused in analyzing the validity of the two methods. In particular, we expect that the adjusted p-value
function will ensure the typical coverage of a conformal prediction method: for a fixed value of coverage 1− α,
the percentage of adjusted p-value function with all values grater or equal to α must be near to 1 − α; those
adjusted p-value function corresponds to the functions that are always inside the 1 − α conformal prediction
region that, from the theory, are known to be (1 − α)%. On the other hand, since the conformal prediction
adjustment is missing, there are no guarantees to reach a right coverage by the not adjusted p-value function.
In the first place, we consider the case of sinusoidal functions with amplitude and phase variation. More precisely,
we build a fixed dimension test set, made of 200 functions. For each of them, we compute the corresponding
p-value function with respect to a training set, the set used to compute the prediction bands, with an increasing
dimension. The aim is to show the differences between the adjusted and not adjusted case, in term of validity,
when the dimension of the calibration set gets bigger. After having obtained all the p-value functions of the test
set, we perform the following evaluation: for a given value of coverage 1− α, (consider for example 1− α = 0.8
), we calculate the number of p-value functions in the test set with all the values greater or equal to 0.2; we
expect this number to be nearer to the 80% of the test set dimension as the calibration set increases. Obviously,
we take into consideration different values of 1−α in the interval [0,1]. For what concerns the training and the
test set, the sinusoidal functions are generated by the same model:

ym(t) = Am sin(t+ ϕm) + ϵm(t), m = 1, . . . ,M, t ∈ [0, 2π] (8)

where Am ∼ U(0, 100) and ϕm ∼ U(−1, 1) are, respectively, the random amplitude and the random phase
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terms; ϵm(t) ∼ N (0, 0.2) is the noise term. M is fixed and equal to 200 for the test set, while it increases on
a logarithmic scale, i.e. M = 4, 8, 16, 32, 64, 128, in the case of the training set. In order to obtain significant
estimates, we repeat the procedure B = 100 times for each training set and we take the mean over the resulting
values. The results are shown in fig.5 where for each value of M we have a separated plot. Concerning the
adjusted case, it is clear that the estimates become more and more accurate as M gets bigger, the expected
behaviour is reached at M = 32. On the other side, the coverage is underestimate in a bad way and the
increasing of the dimension does not help to reach acceptable values. Indeed, the green triangles lies far below
the red line, which represent the target, also for the highest values of M, indicating that the coverage, in the
not adjusted case, doesn’t get better when more functions are available. Additionally, for the lowest value of
M, let’s say M = 4, 8, 16, it is easy to see that the blue circles are positioned at the reachable levels of the
corresponding M, i.e. { 1

l+1 ,
2

l+1 , . . . , 1} with l = M
2 and this is coherent with the fact that our method is based

on conformal prediction bands.

(a) (b) (c) (d)

(e) (f)

Figure 5: Simulation study considering amplitude and phase variation, the test is fixed at 200 functions,
while the dimension of the calibration set increases on the logarithm scale: M = 4, 8, 16, 32, 64, 128 .
Each figure represent the behaviour of the two versions of the p-value function for a specific value of
M, following the scale above. In particular, the blue circles refer to the adjusted case, while the green
triangles indicate the estimate in the not adjusted version.

A second simulation case is presented, this time taking into consideration splines, that are piecewise polynomials
continuous at interior nodes. For our purpose, we set four nodes at 0.2, 0.4, 0.6, 0.8 in the interval [0, 1]. The
degree is equal to 3, which give us cubic splines, and the coefficients that multiply each basis are sampled
from a uniform distribution with varying range. By using this trick, we manage to generate functions with
different variability over the domain. The computed quantities are the same as the previous case, the general
specifications doesn’t change too. Obviously, the difference is in the model we used to generate the functions:

ys(t) =

k∑
j=1

csjPj(t), s = 1, . . . , S, t ∈ [0, 1] (9)

where k = 8 is the number of basis considered, which is related to the previous mentioned choices of knots and
degree. csj ∼ U(0, bj) is the coefficient associated to the jth basis. Let’s underline that the second extreme of the
above uniform distribution is different for every basis, in this way we modify the variability over the domain.
Pj(t) is the jth basis evaluated in t. S will be equal to 200 for the test set, while it will increase on a logarithm
scale in the case of the training set. Both the two p-value function versions have the general behaviour observed
in the previous simulation study. Indeed, the fig. 6 shows that the coverage of the adjusted case gets better
as S increases, reaching the expected level when just 32 functions are considered in the training set. On the
contrary, the not adjusted case does not improve when S gets bigger, its estimate remain far below from the
desirable target for every S. The reachable level, for low values of S, are highlighted also in this simulation study
by the blue circles, that represent the estimates of the adjusted case.
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(a) (b) (c) (d)

(e) (f)

Figure 6: Simulation study considering splines with four nodes at 0.2, 0.4, 0.6, 0.8 in the interval
[0,1] and degree equal to 3. Each generated function is the linear combination of the spline basis,
with coefficients sampled from a uniform distribution with different range for every basis. The test
set is fixed at 200 functions, while the dimension of the training set increases on the logarithm scale:
S = 4, 8, 16, 32, 64, 128. Each figure represent the behaviour of the two versions of the p-value function
for a specific value of S. In particular, the blue circles refer to the adjusted case, while the green
triangles indicate the estimate in the not adjusted version.

4. Methodology, second part

Up to now, we can infer that our version of the p-value function is better in detecting strange pattern than the
one already available in the literature, that is influenced in a too strong way from what is happening point-
wise. Nevertheless, we showed, at the end of Section 3.1, that the adjusted p-value function has an important
limit: it doesn’t recognize a function as anomalous if the unusual behaviour is at higher order of derivatives.
Going back to Figure 4a, one can see how strange the considered function is: it goes rapidly up and down
while the other functions have a monotonically increasing trend. Although, the corresponding p-value function,
Figure 4c, has high values all over the domain, not putting evidence on the fact that we are in presence of an
anomaly. It is clear that something is missing, for this reason we propose a further extension to our method, at
a codomain level. In particular, we decided to compute the p-value function also for higher order of derivatives,
in this way we are able to spot unexpected trend at the 1st order, such as the one presented in the previous
discussion, or greater. By extending the codomain of our method, we need to adjust the p-value function a
second time, to take into consideration the fact that we are building multivariate conformal prediction bands
with a specific global coverage 1− αg. Let D be a multivariate functional dataset composed by n multivariate
random functions Y1, . . . ,Yn. For each i = 1, . . . , n, Yi = (Y 0

i , Y
1
i , . . . , Y

m
i ) where the first, the second and

the m+1-th component are, respectively, the random function (derivate of order 0), its first derivative and its
derivative of order m. Let us indicate with Yn+1 = (Y 0

n+1, Y
1
n+1, . . . , Y

m
n+1) a new independent observation; the

multivariate conformal prediction region Cn,1−αg
is such that:

P(Yn+1 ∈ Cn,1−αg ) ≥ 1− αg i.e.

P(Y 0
n+1 ∈ Cn,1−α0

, Y 1
n+1 ∈ Cn,1−α1

, . . . , Y m
n+1 ∈ Cn,1−αm

) ≥ 1− αg (10)

where Cn,1−α0
is the univariate conformal prediction region for the functions, built using Y 0

1 , . . . , Y
0
n ; Cn,1−α1

is the univariate conformal prediction region associated to the first derivatives Y 1
1 , . . . , Y

1
n and Cn,1−αm

is the
univariate conformal prediction region related to the derivative of order m: Y m

1 , . . . , Y m
n

Thus, the problem is now to find the marginal values α0, α1, . . . , αm that ensure a joint coverage of 1− αg. A
solution is available thank to the well know theory of copulae (e.g. Sempi and Durante, Principles of Copula
Theory, 2021), a mathematical tool used to model the dependence between multi-variate random variables,
that we are going to introduce briefly. Let’s consider (Q0, . . . , Qm), an m+1-dimensional random vector with
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joint cumulative distribution function F = FQ : Rm + 1 → [0, 1]. Accordingly, for each Qj , j = 0, . . . ,m the
associated marginal distribution is Fj = Fj(q

j) = P(Qj ≤ qj). A copula is a function C that is able to model
the dependence structure between the Qj , regardless of the specific marginal distribution of each variable, that
are assumed to be standard uniforms U j , j = 0, . . . ,m. For this reason, we can think to an m+1-dimensional
copula as a c.d.f C : [0, 1]m + 1 → [0, 1] with standard uniforms marginals. A copula C is characterized by the
following properties:

1. C(u0, . . . , uj−1, 0, uj+1, . . . , um) = 0
2. C(1, . . . , 1, u, 1, . . . , 1) = u
3. C is m-non-decreasing, i.e.

∫
B
dC(u) ≥ 0 ∀B =

∏m
j=0[aj , bj ] ⊆ [0, 1]m + 1

It is important to say that, using a suitable copula, is possible to produce a multivariate distribution function
from a set of univariate marginals distributions. This is stated in the Sklar’s theorem as following:
Theorem 4.1 (Sklar’s theorem). For any m+1-dimensional cumulative distribution function (c.d.f.) F with
marginal distributions F0, . . . , Fm there exist a copula C : [0, 1]m + 1 → [0, 1] such that:

F (q) = F (q0, . . . , qm) = C(F0(q
0), . . . , Fm(qm)) q ∈ Rm + 1 (11)

If Fj is continuous for all j ∈ {0, . . . ,m} then C is unique.

By denoting with [Fj ]
−1 the inverse of Fj we get

C(u) = C(u0, . . . , um) = F ([F0]
−1(u0), . . . , [Fm]−1(um)) (12)

At this point the previous problem, of finding the individual level α0, α1, αm so that a global coverage of 1−αg

is guaranteed, can be tackled. Applying the Sklar’s theorem to (10), we get this important relation:

C(1− α0, 1− α1, . . . , 1− αm) = 1− αg (13)

Clearly, if we knew the copula C, then we could find out which are the marginal values α0, α1, . . . , αm that
provide a joint coverage of 1−αg. Unfortunately, such copula C is unknown so we have to estimate it. Following
the work of Messoudi, Destercke and Rousseau (2021), we estimate the desired copula from the matrix of the
non conformity scores generated from the calibration set, using the Split conformal method presented in section
2. Calling Rj

i the non conformity scores associated to the ith function in the calibration set, whose dimension
will be indicated with l, taken at the jth order of derivative, the matrix has the following form:

R =

R
0
1 R1

1 . . . Rm
1

...
...

...
R0

l R1
l . . . Rm

l

 (14)

Without any prior knowledge about the distribution of the data, we prefer to adopt non-parametric approaches
to estimate the copula. In particular, we are referring to the empirical and kernel copula.
Let us now give a brief overview about these two estimation methods. The empirical copula is a way of
estimating the marginals directly from the observations; it is a step-wise function with the height of the jumps
that is inversely proportional to the sample size. Formally, it is defined as follows:

ĈE(u
0, . . . , um) =

1

l

l∑
i=1

1ui≤u =
1

l

l∑
i=1

m∏
j=0

1uj
i≤uj (15)

where uj
i = F̂j(R

j
i ), F̂j is the empirical cumulative distribution, i.e F̂j(r) =

1
l

∑l
i=1 1Rj

i≤r, j = 0, . . . ,m and 1A
is the indicator function of event A.
On the other side, the kernel copula can be seen as a smoothed version of ĈE , with the particular choice of the
Gaussian kernel density as smoothing term. It is defined as follows:

ĈK(u0, . . . , um) =
1

l

l∑
i=1

m∏
j=0

1

hj
Φ

(
vj −Rj

i

hj

)
(16)

where vj =
[
F̂ s
j

]−1

(uj) and F̂ s
j (r) =

1
lhj

∑l
i=1 Φ

(
r−Rj

i

hj

)
, j = 0, . . . ,m is a smoothed version of the empirical

cumulative distribution, called kernel density estimate (KDE). Φ is the cumulative distribution function of the
standard normal, while hj :=

√
[H]jj , where H is known in the literature as bandwith matrix. In particular,

H is computed using the Silverman’s rule of thumb.
After having introduced these two copula estimation methods, let us now present three well known copulae,
that we will use to better understand the behaviour of our estimates:
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• the product (or independence) copula, which model independence: Π(u0 . . . , um) =
∏m

j=0 u
j ;

• The Fréchet-Höffding upper bound copula, which model positive dependence:
M(u0, . . . , um) = min0≤j≤m{uj};

• The Fréchet-Höffding lower bound copula, which model negative dependence:
W (u0, . . . , um) = max

{∑m
j=0 u

j −m+ 1, 0
}

.
Back to the main focus of this part of the study, the problem is finding the joint coverage 1 − αg when the
marginal levels are α0, α1, . . . , αm. Without loss of generality, we put every marginal level α0, α1, . . . , αm equal
to the value of αt, meaning that the conformal prediction bands will have the same coverage 1 − αt for every
order of derivative. By using the empirical and/or the kernel copula, starting from the matrix of the non
conformity scores (14), we manage to map every marginal coverage 1 − αt into its corresponding joint value,
i.e 1 − αg. The result of this procedure is shown in Fig. 7, where the Berkeley Study Growth data and the
Canadian weather data are used to compute the copula estimation. We set m equal to 1, meaning that only the
first order of derivative is considered, in addition to the functions themselves. The empirical and kernel copulae
are compared not only with each other, but also with the product, upper and lower bound copula. This is
the simplest way to check the presence of independence, positive or negative dependence in our estimates. For
what concerns the Berkeley Study Growth data, first row of Fig. 7, we can see that the empirical and kernel
estimates are similar to each other. Furthermore, they are very close to the independence copula, the blue line,
indicating that there is no dependence between the "strangeness" of a function and the "strangeness" of its
first derivative, i.e. if a function is unusual with respect to the others, it doesn’t imply that its first derivative
will be unusual w.r.t the other derivatives too. In the second row the results about the Canadian weather are
displayed. The lack of observation, in this case only 16 NCS are available, entails that the empirical copula is
not a reliable estimator. Additionally, for the high values of marginal coverage, the empirical copula exceed the
red line, which represent the upper bound copula, leading us to prefer the kernel copula.
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(a) (b)

(c) (d)

Figure 7: Empirical and kernel copula estimates using functions and their first derivatives taken from
Berkeley Study Growth data (first row) and Canadian weather (second row). The Empirical copula,
panel (a),(c), and the kernel copula, panel (b),(d), are represented by the black line, while the red,blue
and green lines are, respectively, the positive dependence, independence and negative dependence
copula.

To conclude this section, let us define in a formal way our final output: given a new observation Yn+1, its
p-value function with respect to a multivariate functional dataset Y1 . . .Yn is defined as follows:

∀t ∈ T , ∀j = 0, . . . ,m, pj(t) = min
α∈Ag

α s.t.

(uj
1−α − Y j

n+1)
+(t) = 0 ∨ (Y j

n+1 − lj1−α)
+(t) = 0 (17)

where Ag is the set with all the corrected values of α, obtained by mapping every αt in [0,1] into its corresponding
joint value. uj

1−α and lj1−α are, respectively, the upper and the lower bound of the conformal region with coverage
1− α associated to the jth order of derivative. pj(t) ∈ [0, 1] is the value in t of the jth order p-value function.

5. Applications and simulation study, second part

5.1. Applications to literature datasets

The ultimate version of the p-value function is now tested, with respect to our first proposal, on some of the
literature datasets already seen in Section 3.1. To avoid any confusion, we will call it copula adj p-value function.
It is a simple way to underline the presence of a codomain adjustment, induced by the copula theory, in addition
to the domain adjustment, obtained by the conformal prediction bands, that is always considered. On the other
hand, the version presented in Section 2 will be named not copula adj p-value function, putting evidence on the
fact that the codomain adjustment is missing, in this case only the domain adjustment is applied. For the sake
of simplicity, we consider the case of m = 1. As a consequence, a generic bivariate function Yj is such that

12



Yj = (Y 0
j , Y

1
j ) where Y 0

j and Y 1
j are, respectively, the function and its first derivative. The first example is built

from the Berkeley Study Growth data, using the empirical as copula estimation method, a choice justified due
to the high dimension of the data available. The first derivatives are computed manually, using the incremental
ratio formula. The output is shown in Fig. 8. We are considering a function that lies in the outer regions for
the most of the domain, accordingly, the corresponding p-value function assumes very low values, in both the
copula adj and no copula cases. On the other hand, the first derivatives always stays in the cold colored regions,
except in the central part. This behaviour is underlined by its p-value function that, in both the two versions,
is close to one for the entire domain, with the exception of the middle segment, where it decrease rapidly. In
general, it is easy to observe that in the copula adjusted version the p-value function has slightly higher values,
with respect to the no copula one, but this is an expected property. Indeed, the joint coverage levels, obtained
by using the empirical copula, are smaller than the marginal coverage ones; as a consequence, the values of the
copula adjusted version are greater, since they are computed on the base of bigger values of α.

(a) boy02 function over
the no copula adj conf. re-
gions

(b) boy02 function over
the copula adj conf. re-
gions

(c) boy02 first derivative
over the no copula adj
conf. regions

(d) boy02 first derivative
over the copula adj conf.
regions

(e) p-value function no
copula adj, function

(f) p-value function cop-
ula adj, function

(g) p-value function no
copula adj, first derivative

(h) p-value function cop-
ula adj, first derivative

Figure 8: Berkeley Growth Study data, we consider the function of the boy02 and its corresponding
first derivative. Specifically, the function is plotted over the conformal regions in the no copula case
(a) and copula adj case (b). the corresponding p-value functions are shown in (e, f). The same scheme
is followed to present the result of the first derivative in panels (c, d, g, h)

A second example is presented, it refers to the temperature measurements, taken from the Canadian whether
dataset. Differently from the previous case, the first derivatives are now computed after having applied a
smoothing (Fourier basis) to the original functions. Furthermore, despite of the low number of observation, we
decide to opt for the empirical as copula estimation method, for the purpose of underlining the adjustment,
that is more evident with respect to the kernel technique. The results are shown in Fig. 9. The function under
analysis is the same that we have discussed in Section 3.1, the only difference is the presence of the smoothing.
Both the two versions of the p-value function have high values in the middle and low values at the extremes of
the domain, a trend that is confirmed by the fact that the function crosses the outer regions at the beginning
and at the end, while it touches inner (cold colored) regions in the center part. Let’s focus now abut the first
derivative: it goes thorough both the outer and inner regions repeatedly along the domain; accordingly, its
p-value function has the characteristic of fluctuating between zero and one continuously. We put evidence on
the fact that, also in this example, the copula adjusted p-value function has higher values than the no copula
case.
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(a) Inuvik function over
the no copula adj conf. re-
gions

(b) Inuvik function over
the copula adj conf. re-
gions

(c) Inuvik first derivative
over the no copula adj
conf. regions

(d) Inuvik first derivative
over the copula adj conf.
regions

(e) p-value function no
copula adj, function

(f) p-value function cop-
ula adj, function

(g) p-value function no
copula adj, first derivative

(h) p-value function cop-
ula adj, first derivative

Figure 9: Canadian weather data - temperatures, we consider the function related to the location of
Inuvik and its corresponding first derivative. Specifically, the function is plotted over the conformal
regions in the no copula case (a) and copula adj case (b). the corresponding p-value functions are
shown in (e, f). The same scheme is followed to present the result of the first derivative in panels (c,
d, g, h)

The last function we present is an anomalous one, built from the Berkeley Study Growth data. Specifically, we
add noise, distributed as a Gaussian random variable with µ = 0 and σ = 3, to the central part of the girl05’s
function. The aim is to find out if the p-value function is able to detect this particular pattern, focusing on
both function and first derivative aspects. Following the first example of the section, in which we used the
same data, we are going to employ the empirical copula in order to find the joint coverage levels. By looking at
Fig. 10, we can see that the anomalous function always lies in the cold colored region. Accordingly, its p-value
function is close to one in both the copula adjusted and no copula cases. Therefore, the presence of a strange
pattern, inducted by the noise, is not recorded if we limit to consider only the function. On the other side,
the first derivative’s p-value function, in both cases, oscillates between high and low values in its central part,
indicating that something unusual it’s happening. The plot of the first derivative over the conformal regions,
panel c and d of Fig.10, shows a completely different trend, with respect to the other functions, confirming
what the p-value function points out. As for the previous cases, also here the p-value function takes higher
values when the copula adjustment is considered. This last example justifies, in our opinion, the importance of
computing the p-value function also for higher order of derivatives. Sometimes, an anomalous behaviour is not
detected by looking only at the function. However, the p-value function at an higher order of derivative, first
derivative in our example, can easily underline the existence of an unusual pattern, which is entirely missed at
a function level.
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(a) Anomaly’s function
over the no copula adj
conf. regions

(b) Anomaly’s function
over the copula adj conf.
regions

(c) Anomaly’s first deriva-
tive over the no copula adj
conf. regions

(d) Anomaly’s first
derivative over the copula
adj conf. regions

(e) p-value function no
copula adj, function

(f) p-value function cop-
ula adj, function

(g) p-value function no
copula adj, first derivative

(h) p-value function cop-
ula adj, first derivative

Figure 10: Berkeley Study Data, The anomaly is built by appling noise to the central part of the
girl05’s function. Specifically, the function is plotted over the conformal regions in the no copula case
(a) and copula adj case (b). the corresponding p-value functions are shown in (e, f). The same scheme
is followed to present the result of the first derivative in panels (c, d, g, h)

5.2. Simulation study

The characteristics of the copula adjusted p-value function are investigated with the help of a simulation study.
The general settings are the same of the simulation study presented in Section 3.2, the important difference is
that now we are comparing the validity of the copula adjusted version with respect to the not copula adjusted
one. As in the previous section, we will set m = 1, limiting our analysis up to the first order of derivative.
Consequently, we will compute the empirical coverage in three distinct cases: firstly, we will focus only on
the functions, computing the probability of a function to be inside a certain region of level 1 − α, i.e. the
functions marginal coverage. In the second place, we will do the same considerations but referring just to the
first derivatives, obtaining the first derivatives marginal coverage. Lastly, we will calculate the probability that
both the function and its first derivative are always inside a specific conformal prediction band, i.e. the joint
coverage. Obviously, all these estimates are done using the p-value function copula adjusted and not copula
adjusted of the functions and first derivatives.
The two simulated scenarios are the same we have used in Section 3.2: amplitude and phase variation applied
to sinusoidal functions and splines with different variability over the domain. In each scenario, we test the
validity induced by the p-value functions of 200 bivariate functions that composed our test set. The training
set, instead, is characterized by an increasing dimension on the following logarithm scale: 4,8,16,32,64,128. In
order to have reliable estimates, the measurements are repeated for a total of B = 100 times for each training
set’s dimension and the mean over all the estimates is taken.
Let’s now focus the attention on the first scenario, where we consider sinusoidal function with amplitude and
phase variation. The chosen model to generate the functions, for both test and training set, is the same we
have used in Section 3.2, in particular, we are referring to equation (8). The first derivatives are computed
accordingly by the incremental ratio formula. The resulting output of marginal and joint coverage are shown in
Fig. 11 and Fig. 12; the difference between these two figures lies in the copula estimation: in the first one we
use the empirical copula, while in the second case the result is carried out by the kernel copula. The aim is to
understand if the way in which the copula is obtained influence strongly the validity results. The main difference
between the empirical and the kernel method can be found in the first columns of the two above mentioned
figures; indeed, when N is equal to 4,8,16 the black squares, that indicate the behaviour in the copula adjusted
case, does not lie near the first reachable coverage level in the empirical case, while they are always there if
we look at the kernel copula plots. The reason is that the empirical copula generates rough estimates when a
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small collection of observations is available and, consequently, it happens that the first coverage level is skipped.
Generally, we notice that the kernel coverage levels are smaller than the empirical ones. For what concerns the
marginal and joint coverage, we do not observe a big difference; the cause lies in the fact that there is a strict
relation in the behaviour between the function and the first derivatives, i.e if a function is strange with respect
to the others, its first derivative will be strange too, compared to the rest of the first derivatives. To conclude,
we would like to point out that the expected behaviour is observed, since the joint coverage empirical estimates
lies in proximity of the theoretical ones, indicated by the red dotted line.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 11: Simulation study considering amplitude and phase variation, the test is fixed at M=200
functions, while the dimension of the calibration set increases on the logarithm scale: 4,8,16,32,64,128.
The corresponding first derivatives are computed by the incremental ratio formula and the empirical
copula estimation method is used. The general layout can be understood easily by referring to a matrix:
the first row shows the marginal coverage of the functions, the second row the marginal coverage of the
first derivatives, while the the third one present the joint coverage. In each column we have the output
for a specific and fixed value on the logarithm scale. In every subfigures, the black squares refer to the
copula adjusted case, while the blue circles indicate the estimate in the not copula adjusted version.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 12: Simulation study considering amplitude and phase variation, the test is fixed at M=200
functions, while the dimension of the calibration set increases on the logarithm scale: N =
4, 8, 16, 32, 64, 128. The corresponding first derivatives are computed by the incremental ratio for-
mula and the kernel copula estimation method is used. The general layout can be understood easily
by referring to a matrix: the first row shows the marginal coverage of the functions, the second row the
marginal coverage of the first derivatives, while the the third one present the joint coverage. In each
column we have the output for a specific and fixed value on the logarithm scale. In every subfigures,
the black squares refer to the copula adjusted case, while the blue circles indicate the estimate in the
not copula adjusted version.

The second and last simulation scenario regard splines over the interval [0,1] with four internal knots at
0.2,0.4,0.6,0.8. The variability over the domain is changed by sampling the coefficients, that are going to
multiply the spline basis, from a uniform distribution with varying range, as we did in the first part of the
paper (Section 3.2). The functions are obtained by the model in equation (9), while the first derivatives are
computed by the linear combination between the same coefficients used for the functions and the first derivative
of the splines basis. As before, we display the final estimates of marginal/joint coverage in two separated figures,
namely Fig. 13 and Fig. 14, to put evidence on the differences that could come out if different copula estimators
are used, in our case empirical vs kernel copula. Overall, one can notice that the empirical copula adjustment
leads to greater estimates, represented by the black squares, with respect to the kernel copula scenario. Con-
cerning the empirical copula plot, as for the previous simulation case, the small value of N, displayed in the
first three columns of the figures, are characterized by the absence of the black squares near the first level of
coverage. this particular trend can be connected to the copula estimator itself, which is not reliable if few non
conformity scores are used. The marginal coverage, of both functions and first derivatives, follows the expected
target, i.e the red dotted line, as the number of observation in the training set increases, whether in the copula
adjusted or in the no copula adjusted case. On the other hand, an unusual behaviour comes out from the joint
coverage, displayed in the last row of Fig 13 and 14. Indeed, for high values of N, the empirical coverage goes
below the bisector. This is a predictable pattern when the copula adjustment is missing (blue circles) while it
is difficult to explain when the copula adjustment is considered (black square). As a matter of fact, the main
reason for which we applied the copula correction is to reach the theoretical joint coverage. We will reserve
the right to better understand what is happening in this case, in order to find the problem, which with high
probability is at coding level.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 13: Simulation study considering splines over the interval [0,1] with four internal knots at
0.2,0.4,0.6,0.8. The different variability over the domain is obtained by sampling the coefficients of
the linear combination from a uniform distribution with varying range. The test is fixed at M=200
functions, while the dimension of the calibration set increases on the logarithm scale: 4,8,16,32,64,128.
The empirical copula estimation method is used. The general layout can be understood easily by
referring to a matrix: the first row shows the marginal coverage of the functions, the second row the
marginal coverage of the first derivatives, while the the third one present the joint coverage. In each
column we have the output for a specific and fixed value on the logarithm scale. In every subfigures,
the black squares refer to the copula adjusted case, while the blue circles indicate the estimate in the
not copula adjusted version.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 14: Simulation study considering splines over the interval [0,1] with four internal knots at
0.2,0.4,0.6,0.8. The different variability over the domain is obtained by sampling the coefficients of
the linear combination from a uniform distribution with varying range. The test is fixed at M=200
functions, while the dimension of the calibration set increases on the logarithm scale: 4,8,16,32,64,128.
The kernel copula estimation method is used. The general layout can be understood easily by referring
to a matrix: the first row shows the marginal coverage of the functions, the second row the marginal
coverage of the first derivatives, while the the third one present the joint coverage. In each column we
have the output for a specific and fixed value on the logarithm scale. In every subfigures, the black
squares refer to the copula adjusted case, while the blue circles indicate the estimate in the not copula
adjusted version.

6. Real case study

In this section the result of our methodology, i.e. the copula adjusted p-value function, is applied to a real case
study: the Vertical Density Profile (VDP), that has been treated by many authors over the years(Colosimo,
Meneses and Semeraro 2013, Walker and Wright 2002). VDPs play a fundamental role in measuring the quality
of particleboards, widely used in housing and furniture, that are build through a complex manufacturing process.
Fortunately, there’s a strict relation between process condition and the VDP curve, in particular, the mechanical
characteristic of the final product are affected by VDP curve’s changes. As a consequence, possible failure of
the final product can be easily detect by spotting anomalous behaviour in the VDP curve and that’s the reason
why VDP profile monitoring is so important.
The profile monitoring traditional approaches are divided in two parts, namely phase I and phase II. In the
first one, also called design phase, a set of in-control profiles is used to build a control chart that, in the second
(monitoring) phase, is adopted to detect any kind of change of new profiles with respect to the in-control
set. Our proposed methodology, based on conformal prediction bands and copula estimation, goes under this
framework perfectly. Indeed, With the help of our copula adjusted p-value function, it is possible to recognize
strange pattern in a new profile, and in its higher derivatives, with respect to a in-control set in a fast and easy
way.
For what concerns the dataset we are going to deal with, it is composed of N = 263 functions, the VDP profiles.
Each profile measures the density (kg/m3) over the vertical axes of a given particleboards, considering a grid
of p = 189 equally spaced locations, each measurement is 0.09mm apart. In line with the rest of the paper,
we investigate the behaviour up to the first order of derivative. Concerning the copula adjustment, we limit
to use the empirical copula estimator, that is thought to produce reliable values because of the huge number
of observations in the VDP data. Fig. 15 shows the data we are going to deal with and the empirical copula
estimate in two separated panels. In particular, by looking at the empirical copula, one can notice that the
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black line lies in the middle, between the positive dependence, red line, and the independence, blue line.

(a) (b)

Figure 15: An overview of VDP data (a) and the plot of the empirical copula estimate compared with
the three copula that model independence, positive/negative dependence (b)

Of course, a smoothing is applied to the functions in order to have noise free first derivatives. In the following,
we will discuss two different cases: a in-control profile, for which we expect to observe an high valued p-value
function copula adj, and a profile out of control, characterized, hopefully, by a low valued p-value function.
The result of the in-control profile are shown in the Fig. 16. Both the two copula adjusted p-value functions
are extremely close to one all over the domain, indicating that the profile considered doesn’t have anomalous
pattern at any derivative order. Similarly, by looking at the profile itself, one can observe that it is always inside
the inner cold colored region, confirming that both the function and the first derivative are behaving regularly.
On the other hand, we refer to Fig. 17 for the discussion about the out-of control profile. The unusual pattern
is obtained by manually modifying the amplitude of the VDP254 profile, i.e. the 254-th profile of the dataset,
in the central part of the domain. Particularly, nearby the point of abscissa equal to 5, we force the profile
to grow until a maximum and, then, to decrease until a minimum, as shown in panel (a). The profile’s copula
adjusted p-value function is close to the highest value, except for 2 points in the middle region, in which it goes
below the 0.2; these points are the previous mentioned maximum and minimum, where the function crosses
the outer regions. Concerning the first derivative, we can see that the copula adjusted p-value function report
that something unexpected is happening exactly in the central part; indeed, it decrease badly at three distinct
points, that are, accordingly, the points in which the profile’s first derivative goes thorough the hot colored
regions. Putting together all the considerations, we can understand that in the middle part of the domain not
only we have two anomalous values of the profile, but also an anomalous trend, in term of increasing/decreasing,
is present, as the first derivative’s p-value function suggests.
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(a) (b)

(c) (d)

Figure 16: VDP dataset, in particular the function considered is an in-control one, the VDP53 profile.
In the first row the function and its first derivative are plotted over the copula adjusted conformal
prediction bands, respectively in panel (a) and (b). The second row displays the 2 p-value function
copula adj, for the function, (c), and for its first derivative, (d).
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(a) (b)

(c) (d)

Figure 17: VDP dataset, the function considered is an out of control one, obtained manually by
modifying the amplitude of the VDP254 in the central part of the domain. In the first row the function
and its first derivative are plotted over the copula adjusted conformal prediction bands, respectively
in panel (a) and (b). The second row displays the 2 p-value function copula adj, for the function, (c),
and for its first derivative, (d).

7. Conclusion

Our proposed methodology is thought to be an additional tool that can integrate the traditional approach in
the field of profile monitoring. Indeed, by scanning the various conformal prediction band, the p-value function
can recognize if unexpected values are present in new functions (unexpected with respect to the values taken by
the functions in a reference dataset). However, if an anomaly occurs at higher order of derivative, for example in
the way the function increase/decrease, it could be missed, as in the case of a slightly noisy function, a weakness
that is widely analyzed in Fig. 4. For this reason, the p-value function is extended to include higher order of
derivatives. Consequently, an adjustment is needed to ensure joint coverage and our intuition is using the copula
theory to reach our goal. Since in general no prior information about the data is available, we adopt two non
parametric methods, the empirical and kernel copula, in order to estimate the copula and, successively, to obtain
the desired correction of the coverage levels. Both the two methodology steps are supported by a simulation
study and an application to well-known literature dataset. In the first part of the paper, the attention is focused
on the differences between the adjusted p-value function and the version already available in the literature, i.e
the not adjusted p-value function. Section 3 underlines the advantages of our proposed methodology in terms
of legibility and validity. In the second part, after having explained why a codomain adjustment is needed,
we go into the pro and cons of considering a copula adjustment or not. The results, presented in Section 5,
demonstrate that the copula adjusted p-value function takes higher values and, in general, guarantees bigger
estimates of the joint/marginal coverage levels. Nevertheless, the splines simulation study in Figures 13 and 14
shows the existence of a problematic underestimation of the joint coverage, also in the copula adjusted version.
We will reserve the right to investigate deeply this problem and, hopefully, we will manage to present a corrected
version that will reach the theoretical coverage.
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All considered, Our proposed methodology can be an additional and useful tool in the field of profile monitoring,
and more in general, could find application in every situation in which the detection of anomalous pattern is
required.
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Abstract in lingua italiana

In molti processi industriali la complessità è aumentata nel corso degli anni e, parallelamente, la necessità di
monitorare i processi, al fine di trovare comportamenti anomali, è diventata sempre più essenziale. Per questo
motivo, il monitoraggio dei profili, un recente campo di ricerca nel controllo dei processi statistici, sta attirando
l’interesse di molti ricercatori. Con questa tesi, il nostro obiettivo è proporre uno strumento aggiuntivo, la
cosiddetta p-value function, che andrà ad integrare l’approccio tradizionale utilizzato nel monitoraggio dei
profili. In particolare, la nostra metodologia, basata sulla Conformal prediction e sulla teoria delle copule, è in
grado di riconoscere non solo se è presente un’anomalia, ma anche quale parte del dominio è responsabile di
quel particolare comportamento. Per verificare I punti di forza e/o debolezza del nostro metodo, la discussione
è accompagnata da applicazioni a dataset presenti in letteratura e da uno studio su dati simulati. Un caso reale,
vale a dire i Profili di Densità Verticale (VDP), è presentato per illustrare il potenziale della nostra procedura
in applicazioni reali.

Parole chiave: monitoraggio di profili, dati funzionali, conformal prediction, copulae, funzione p-value.
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