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Abstract

Recommender systems are tools aimed at recommending items to the users
of a platform, trying to predict their preferences. The popularity of this
tools has been increasing with the continuous growth of the Web, and they
have been extensively implemented on platforms that sell contents to their
users, such as Netflix or Amazon.

In order to make recommendations, a recommender system relies on two
main types of information, content and collaborative. The first refers to
the features characterizing the items on the platform, such as the actors
and the release year of a movie, or the author and the genre of a book.
Collaborative information, instead, consists of the past interactions between
users and items and it is known in the recommender systems literature that
methods based on this type of information generally perform better than
content-based ones.

However, it is not always possible to rely on collaborative information, for
example when a new item is added to the platform. This situation is called
cold-start scenario and in such cases only content-based and collaborative
with side information methods are effective, since content information is
available, as opposed to collaborative one.

Different techniques have been proposed to cope with the cold-start prob-
lem by optimizing content-based approaches. For example, feature weighting
techniques, that weight item features based on various criteria. In particu-
lar, recent machine learning approaches have obtained promising results by
estimating weights on the base of collaborative information.

Further developing this concept, in this thesis we propose a new feature
selection model able to embed collaborative information into a content-based
model. In particular, in order to efficiently tackle the given problem, we
apply quantum annealing, one of the current paradigms of quantum com-
puting. Quantum annealing has been acquiring great industrial interest in
recent years due to its ability of efficiently solving practical NP-hard opti-
mization problems.
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Sommario

I sistemi di raccomandazione sono degli strumenti utilizzati per raccoman-
dare degli oggetti agli utenti di una piattaforma, cercando di predire le loro
preferenze. La popolarità di questi strumenti è aumentata costantemente
con la crescita del Web, ed essi sono stati integrati sempre più in piattaforme
che vendono contenuti ai loro utenti, come Netflix o Amazon.

Per proporre raccomandazioni, questi strumenti si affidano a due prin-
cipali tipi di informazione, quella contenutistica e quella collaborativa. La
prima si riferisce a quelle caratteristiche che rappresentano gli oggetti di una
piattaforma, come gli attori e l’anno di uscita di un film, o l’autore e il genere
di un libro. L’informazione collaborativa, invece, consiste nelle interazioni
passate tra utenti e oggetti ed è noto, nella letteratura dei sistemi di rac-
comandazione, che i metodi basati su questi tipo di informazione ottengano
risultati generalmente migliori di quelli basati sui contenuti.

Tuttavia, non è sempre possibile fare affidamento sull’informazione col-
laborativa, per esempio quando un nuovo oggetto viene aggiunto alla piat-
taforma. Questa situazione è chiamata scenario cold-start e, in questi casi,
solo i metodi basati sul contenuto e quelli collaborativi con informazione
laterale sono efficaci, considerato che l’informazione contenutistica è l’unica
disponibile.

Diverse tecniche sono state proposte per trattare il problema cold-start
ottimizzando gli approcci basati sul contenuto. Per esempio, esistono tec-
niche che ponderano le caratteristiche degli oggetti secondo vari criteri.
In particolare, recenti approcci basati sul machine learning hanno otte-
nuto risultati promettenti, stimando i pesi delle caratteristiche sulla base
dell’informazione collaborativa.

Sviluppando ulteriormente questo concetto, in questa tesi proponiamo
un nuovo metodo di selezione delle caratteristiche in grado di incorporare
l’informazione collaborativa in un modello contenutistico. Nello specifico,
per affrontare efficientemente il problema ottenuto, utilizziamo il quantum
annealing, uno degli attuali paradigmi di quantum computing. Il quantum
annealing ha acquisito sempre più interesse industriale negli ultimi anni,
grazie alla sua capacità di risolvere efficientemente problemi pratici di otti-
mizzazione classificati come NP-difficili.
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Chapter 1

Introduction

Recommender systems are tools used to recommend items to users on a
platform. With the continuous growth of the Web, they became more and
more relevant for platforms that sell products or contents to their customers,
such as Amazon or Netflix. Indeed, recommender systems are able to recom-
mend to the users some contents that they may not have bought or watched
without any suggestion. In order to make recommendations, recommender
systems try to predict the user preferences relying mainly on two different
types of information, content and collaborative.

Content information consists of all the characteristics that an item has,
also called features. For example, a movie has its actors, a release date or
a production company, while a book has an author, a publisher and so on.
Features can be editorial, listed and verified by an official source, or user
created, such as tags. Content information is exploited by content-based
filtering methods, which tend to recommend to the users the most similar
items, in terms of features, to the ones they interacted with. Thus, if a user
already watched Iron Man and Iron Man 2, a content-based recommender
system would probably recommend them movies such as Iron Man 3 or
The Avengers. However, this could often result in poor recommendations,
for example if a user that recently bought a new smartphone would be
recommended another one just because they have similar features.

Collaborative information, instead, consists of the past users interactions
with the items on the platform. These interactions can be explicit, which
means that the user rated the item on a certain scale, or implicit, which
means that the user either had any interaction with the item or none at all.
Recommender systems exploiting this kind of information are called collab-
orative filtering methods. They try to predict the user preferences based
on the past interactions of all the users with all the items on the platform.
Collaborative filtering methods usually make better recommendations than
content-based ones. Recalling the same example as before, a user that al-
ready watch a movie like Iron Man could now be recommended different
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movies, in terms of features, that other users that watched Iron Man liked.
However, it is not always possible to make use of collaborative informa-

tion. For example, when a new item is added to the platform, no user has
ever interacted with it, thus making it impossible to recommend the item
with collaborative filtering methods. This is called cold-start scenario and
the newly added items are called cold items. The only way to tackle this
recommendation problem is by making use of content information, for ex-
ample using a content-based filtering technique, or a collaborative filtering
method with side information, which enriches the collaborative model with
content information.

It should be noted that pure content information is often not enough
to cope with the cold-start problem. As we already stated, content-based
methods are in general outperformed by collaborative ones. Therefore, many
solutions have been proposed in recommender systems literature to improve
content-based models. One of them is feature weighting, which aims at giv-
ing different weights to the various item features, attempting to describe
a real user’s interest in the available features. Different feature weighting
techniques have been adopted in recommender systems, for example tech-
niques derived from the information retrieval field, such as TF-IDF. Some
methods proposed in recent years have obtained promising results by em-
bedding collaborative information into a content-based models via machine
learning techniques.

Further developing this concept, we propose a new feature selection
method aimed at selecting the item features that best incorporate collabora-
tive information, in order to improve a content-based model. We called this
method Collaborative-driven Quantum Feature Selection, where the term
quantum in the name comes from the way we solve the selection problem.
We model the feature selection procedure as a quadratic unconstrained bi-
nary optimization problem. In order to efficiently tackle this problem, we
make use of quantum annealing, one of the current paradigms of quantum
computing.

Quantum annealing is a technique used to search for solutions of NP-hard
optimization problems. Thanks to the continuous research and development
of physical quantum annealers, devices that implement this technique mak-
ing use of actual quantum mechanics phenomena, quantum annealing has
increasingly gained great industrial interest.

In this thesis we present some fundamentals of recommender systems
and quantum annealing, on top of which we consequently build the math-
ematical model of our technique. Then, we report the detailed results of
our experiments, discussing how collaborative and content information in-
fluences the quantum feature selection, and how the latter is effective in
improving a content-based model in a cold-start scenario.
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Chapter 2

State of the art

Recommender Systems are a particular kind of information filtering systems
used to predict how much a user would like an item. This topic gained in-
creasing importance with the continuous development of the Web, especially
as a medium for business, e-commerce and media consumption [2].

In this chapter, we are going to see how recommender systems are struc-
tured, what are some of the models used to make recommendations and how
they work. Then, we are going to discuss the so-called cold-start problem
and some feature weighting techniques. At the end of the chapter, a descrip-
tion of quantum annealing will be proposed, explaining, in particular, which
kind of problems it can solve.

2.1 Recommender Systems Structure

Depending on the type of problem that it has to solve, a recommender
system can have different structures and use different models. However,
the objective is always the same: recommend items to users, users to items
or even users to other users (for example in a social network). In this
work, we will only consider the first case and, through this chapter, we will
see different scenarios and models used to predict the preferences of users
towards items.

The data we are going to deal with are the users’ interactions with items
and the items (or users) characteristics, also called features. Usually, this
information are collected in convenient data structures used to build the
models:

• URM: the User Rating Matrix is the matrix that contains interactions
of each user with the items on the platform. These interactions can
be of two types. Implicit interactions represent the fact that users
interacted with items in any particular way, for example watching
a movie or buying some product. This information is translated as
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boolean values (0 or 1) in the URM. Explicit interactions are, instead,
real values, often given by the users themselves to the items, such as
ratings. If we call U the set of all users and I the set of all items, the
URM, which we will call, from now on, R, is a |U | × |I| matrix. In
particular, we will use the notation Rui to represent the interaction
between user u and item i, which is the value at row u and column i
of R.

• ICM: the Item Content Matrix is the matrix that contains informa-
tion about items’ features. The features of an item can be very het-
erogeneous, for example, to describe a movie we could have actors,
production year, concepts extracted from the plot and so on. Thus,
the representation that is used in the ICM is a binary one: 1 if an
item has some feature and 0 otherwise. Calling F the set of all the
item features, the ICM is a |I| × |F | boolean matrix. Similarly to the
URM, we will use the notation ICMif to refer to the value at row i
and column f of the ICM, which tells if item i has feature f .

• UCM: analogously to the ICM, the User Content Matrix is the matrix
that contains information about users’ features. If we call G the set
of all the user features, the UCM is a |U | × |G| boolean matrix. We
use the notation UCMug to indicate the value in row u and column g,
which tells if user u has feature g.

In general, in order to make recommendations, we can use different
sources of information. For example, let’s consider a multimedia platform
like Netflix. After watching a TV series, a user could receive recommenda-
tions based on what other users saw after that same series. This kind of
information is used by collaborative filtering methods. Otherwise, the user
could also be suggested to watch new TV series that have common charac-
teristics with the one that they have just finished, such as the same actors or
the same genre. This information is used in content-based filtering models.
Collaborative filtering and content-based filtering are two of the most used
categories of recommender systems.

2.2 Collaborative Filtering

Collaborative filtering methods exploit the assumption that observed ratings
(the ones belonging to matrix R) are often highly correlated across users and
items [2]. For example, let’s consider two users that rated the movies they
watched very similarly. When we want to recommend a new movie to one of
them, we could rely on the ratings given by the other one, since their tastes
are probably very similar as well.

As it is said in [52], “collaborative filtering is considered to be the most
popular and widely implemented technique in RS”.
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There are different approaches to collaborative filtering. Here, three cat-
egories used throughout this work are presented: neighborhood-based, matrix
factorization and graph-based.

2.2.1 Neighborhood-based

Neighborhood-based methods are relatively simple to implement and ex-
plain, since they predict the missing ratings from the given ratings on the
basis of the neighborhoods of users or items. The missing ratings can be
directly computed in-memory from the stored ratings or from a previously
created model. Depending on the neighborhood we are using, we are dealing
with user-based or item-based methods.

User-based

When making a recommendation to some user, the missing ratings are de-
termined with respect to the ratings given by the users that are more similar
to the target user. This can be done by weighting the ratings given by each
user v with the similarity between them and the target user u. Thus, the
rating R̂ui, given by user u to item i, can be estimated as:

R̂ui =

∑
v∈U Rvi · simU (u, v)∑
v∈U |simU (u, v)|

where simU (u, v) is a similarity function defined between two users, which
quantifies how much the ratings they gave are similar.

Item-based

Instead, item-based methods estimate the missing ratings of a user by con-
sidering the ratings they gave to the most similar items to the ones they
interacted with. These methods compute the predicted rating given by user
u to item i as a sum of the interactions between user u and each item j,
weighted by the similarity of each item j to the target item i:

R̂ui =

∑
j∈I Ruj · simI(i, j)∑
j∈I |simI(i, j)|

where simI(i, j) is a similarity function defined between two items, which
quantifies how much the ratings they obtained are similar.

Model-based Neighborhood Methods

The model-based variant of these methods requires the computation of a
model called similarity matrix and denoted by S. Since in this work we
only deal with the item-based variant, we can consider S as an |I| × |I|
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matrix. Every element Sij of this matrix is the similarity between item i
and item j, computed by the function simI(i, j). The user rating matrix
can then be estimated from the similarity matrix as:

R̂ = R · S

While this approach is straightforward, many variants have been pro-
posed in the literature. In particular, when computing the similarity matrix,
some hyperparameters can be adjusted in order to obtain different recom-
mendations. Hyperparameters are those kind of parameters that a system
needs to build the model. In the case of neighborhood methods, they are
the following ones:

• Neighborhood size: determines how many neighbors are considered for
prediction. For each column i of S, only the k most similar items to
item i are kept, while the similarity values of the rest are set to 0.
From now on, this parameter will be called top-k.

• Similarity measure: determines the measure to use when computing
the similarity between two items i and j with the function simI(i, j).
Many similarity measures have been proposed in the literature, such as
Cosine [55], Jaccard [51], Asymmetric Cosine [3], Dice-Sørensen [19]
and Tversky [61] similarities. In particular, in this work we extensively
use cosine similarity, which is computed as

simI(i, j) = cos(~i,~j) =
~i ·~j

||~i||2 · ||~j||2
(2.1)

and reduces to Jaccard similarity when the item vectors are boolean.

• Shrinkage: a shrink term is introduced into the similarity function in
order to lower the similarity of items that have only few interactions
[6]. Cosine similarity with shrinkage can be computed as:

simI(i, j) =
~i ·~j

||~i||2 · ||~j||2 + c

where c is the shrink term.

• Feature weighting : feature weighting can be used to weight ratings
as proposed in [63]. Possible weighting techniques are TF-IDF and
BM25.

• Normalization: this parameter determines if the similarity should be
normalized or not. For example, Cosine similarity in equation (2.1)
presents normalization at the denominator, while it would reduce to a
dot product without normalization.

The best values for these hyperparameters can be learned through optimiza-
tion procedures.
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2.2.2 Matrix Factorization

Matrix factorization (MF) is a family of latent factor models widely used in
recommender systems. Latent factor models aim to describe given informa-
tion in a different dimension space than the original one. In particular, they
achieve this by using dimensionality reduction techniques.

Thus, the key concept is to decompose the interactions matrix R in more
matrices with lower dimensionality, introducing the latent factors. We can
factorize R in two matrices U and V which correspond respectively to the
projection of users and items into the latent factors space:

R = U · V T

where U is a |U | × |L| matrix, while V is a |I| × |L| matrix, with L being
the set of latent factors of the factorization.

Since we are interested in estimating the missing ratings, in practice we
search for an approximated factorization:

R̃ = U · V T

This way, it is possible to predict the rating a user u would give to an item
i as the element at row u and column i of matrix R̃:

R̃ui = Uu · V T
i

Various factorization methods have been proposed through the litera-
ture, such as SVD (Singular Value Decomposition) [37], AsymmetricSVD
[36] or iALS (implicit Alternating Least Squares) [30]. The one we are going
to present and use in our work is the most basic, yet effective, implementa-
tion of an SVD technique, called PureSVD.

PureSVD

SVD is a well-established matrix factorization technique, which can be used
to factorize the URM. The factorization of a generic matrix M of size m×n
with SVD is the following:

M = U · Σ · V T

where U is a m×m orthonormal matrix, which means that UTU = I, V is a
n×n orthonormal matrix, and Σ is a m×n diagonal matrix containing the
min(m,n) singular values of M . A non-negative real number σ is a singular
value for M if and only if there exist two vectors, ~u of length m and ~v of
lenght n such that:

M~v = σ~u

MT~u = σ~v
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It is always possible to build the decomposition in such a way that the singu-
lar values in Σ are in a descending order, which gives a unique decomposition
of M . Moreover, the number r ≤ min(m,n) of non-null singular values of
M corresponds to the rank of M .

The problem with conventional SVD is that it is undefined when knowl-
edge about the matrix is incomplete, which is the case with missing ratings
in recommender systems. Thus, different solutions were proposed to apply it
to this field, such as imputation of missing ratings [56] or exclusive modeling
of the observed ratings [36], using regularization to avoid overfitting.

PureSVD, instead, aims to factorize the URM by considering all the
missing values as zeros, without any imputation or regularization [13]. After
choosing the number of latent factors (|L|) as a parameter of the method,
the user rating matrix R is then estimated by the following factorization:

R̂ = U · Σ · V T

where U is a |U | × |L| orthonormal matrix, V is a |I| × |L| orthonormal
matrix, and Σ is a |L| × |L| diagonal matrix containing the first |L| singular
values, sorted in a descending order.

Let’s now define the matrix P = U ·Σ. Since V is an orthonormal matrix,
we can rewrite P as:

P = U · Σ · V TV

= R · V

This means that the missing ratings can now be estimated as:

R̂ = U · Σ · V T

= P · V T

= R · V · V T

Since V is a |I| × |L| matrix, V · V T is a |I| × |I| matrix. Thus, V · V T can
be seen as an item-item similarity matrix S and the user rating matrix can
be estimated as:

R̂ = R · S

Similarly to neighborhood-based methods, seen in Section 2.2.1, we can
add a top-k parameter in this method too, in order to keep, for each item,
only the similarities of the k most similar items deriving from V · V T .

2.2.3 Graph-Based

In graph-based methods, data is represented as a bipartite graph, whose
nodes are users and items and whose edges encode interactions between users
and items [52]. Edges can be weighted and the graph can be undirected, if
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Figure 2.1: Adjacency matrix built from the URM.

going from a user to an item is no different than vice versa, or directed, with
two different edges for the two directions, if they need different weights.

Before presenting graph-based recommendation algorithms, let’s intro-
duce the mathematical concepts used by them. The first is the adjacency
matrix A, which is a matricial representation of the graph. Each node of the
graph, being it a user or an item, has both a corresponding row and column
in the matrix. So, the element at row i and column j in the matrix is:

Aij =

{
1 if exists an edge from i to j

0 otherwise

If the graph is undirected, the adjacency matrix would be symmetric,
otherwise we cannot make this assumption. Moreover, if the edges of the
graph have some weights, we need to include this information into A, by
simply replacing the boolean values with the corresponding weights wij :

A′ij =

{
wij if exists an edge from i to j

0 otherwise

Since the graph is built from the interactions, we can conveniently build
a symmetric adjacency matrix directly from the URM and its transposed
(see Figure 2.1). Each non-zero value of the URM is indeed the value of the
weight between a user node and an item node.

Then, let’s introduce the concept of random walk, which is the basis of
the graph-based algorithms we are going to present. A random walk on a
graph can be seen as a Markov chain, starting from a node and randomly
moving to one of its neighbors at each time step [49]. A Markov chain is a
stochastic process satisfying the Markov property, which tells that an action
on a particular time step only depends on the current state, rather than
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on previous actions and states. A Markov chain is characterized by the so-
called transition matrix, a square matrix of non-negative values representing
the probability of reaching each node from every other node. The transition
matrix P can be obtained by normalizing, row by row, the adjacency matrix
A′:

Pij =
A′ij∑
k∈V A

′
ik

where V is the set of all nodes and i, j ∈ V .

P3
α

P 3
α is an algorithm based on the transition matrix P [12]. The idea is that the

score of the recommendation of an item to a user is given by the probability
of reaching the node corresponding to the item from the user node.

The model used by the algorithm is literally described by its name. First
of all, we know that elevating the matrix P to a positive integer n we obtain a
matrix Pn whose values are the probabilities of reaching the node referenced
by the column, starting from the node referenced by the row, after n random
walk steps. Since the objective is to recommend an item to a user and the
graph is bipartite, n should be an odd number, so that Pn represents the
probability of reaching an item node from a user node. In particular, the
chosen n for this is algorithm is 3, since it has been shown that it outperforms
other values [12], thus giving P 3. Moreover, to improve the original model
performances, a real valued parameter α has been introduced. Pα is thus
derived from the transition matrix P by elevating each positive element to
the power of α:

Pα ij =

(
A′ij∑
k∈V A

′
ik

)α
The optimal value of the parameter α can be determined from a parame-

ter optimization phase. Moreover, similarly to neighborhood-based methods
(Section 2.2.1), we can add a top-k parameter in order to keep, for each item,
only the similarities of the k most similar items deriving from P 3

α. So, the
complete model is computed by elevating the Pα matrix to the power of
3, obtaining the P 3

α matrix, consequently used to make recommendations.
Each recommendation of item i to user u has a score p3ui corresponding to
the element at row u and column i of matrix P 3

α:

P 3
α ui =

∑
j∈V

∑
v∈V

Pα uj · Pα jv · Pα vi

RP3
β

RP 3
β is an extension of the standard P 3

α algorithm proposed to solve the bias

that P 3
α has towards popular items [49]. In order to cope with this problem,
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a re-ranking procedure based on item popularity is introduced. The RP 3
β

score is obtained by re-weighting the original score p3ui given by P 3
α for user

u and item i:

p̃3ui =
p3ui

dβi

where dβi is the number of incoming edges into the node corresponding to
item i in the graph, also called indegree, elevated to the parameter of the
model, β. This parameter is a positive real number used to regulate the
influence of the indegrees in the re-ranking: higher values correspond to a
higher popularity penalty. The value of β can be determined through an
optimization phase. Moreover, it has to be noted that, if we put β = 0, the
results of RP 3

β would coincide with the ones of P 3, since d0i = 1.
Also in this method it is possible to add a top-k parameter in order to

keep, for each item, only the similarities of the k most similar items deriving
from the model.

2.3 Content-based Filtering

Content-based recommender systems try to recommend items similar to the
ones the target user has liked in the past [39]. Content-based filtering lever-
ages a different type of information with respect to collaborative filtering.
As the name says, these methods rely on contents to make predictions. In
particular, when making recommendations for a target user u, they only
need the interactions of the target users and the information about the item
descriptions. They ignore other user interactions, not making use of collab-
orative information.

For example, if we consider a movie recommendation system, a user that
watched movies like Iron Man or Captain America would very likely be sug-
gested to watch The Avengers, since they share common actors, production
members and the same genre. Instead, with a collaborative approach, the
system could have also estimated high affinity with other popular movies
like Star Wars or Avatar.

Since content-based methods rely only on item features, the first thing to
do when building a content-based recommender system is to extract discrim-
inative features from the data. Given that most of the content information is
contained in describing texts, a common approach to the feature extraction
problem consists in extracting representative keywords from the textual de-
scriptions. Adopting a binary representation and combining these keywords
with editorial features, such as actors, directors and so on, the result is the
previously described data structure, the item content matrix.

The recommendation for a target user u is then computed on the basis
of their previous ratings and on the neighborhoods of the rated items. In
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particular, the neighbors are defined by the similarities between items com-
puted using item features. This is a substantial difference from collaborative
filtering, where we use previous interactions between users and items.

Thus, the rating R̂ui that user u would give to item i can be estimated
as:

R̂ui =

∑
j∈I Ruj · sim(i, j)∑
j∈I |sim(i, j)|

Of course, since this is a neighborhood-based method, all the parameters
presented in Section 2.2.1 for collaborative filtering are used with content-
based filtering as well.

2.4 The Cold-Start Problem

Collaborative filtering allows to achieve good results, in general. However,
there are some cases in which collaborative information is not available,
thus making collaborative filtering ineffective. Let’s consider, for example,
a movie platform such as Netflix. When a new movie or TV series is re-
leased, there is no collaborative information available for that item, since
no one has ever interacted with it. Thus, a collaborative method would
never recommend this new item to any user, since there is no information to
base the recommendation on. This is called the cold-start problem. When
appearing for the first time in the system, an item has no interactions and
it is referred to as a cold item.

Various methods have been proposed in the literature to cope with this
problem. One of them consists in exclusively using content-based filter-
ing in order to recommend all items, since content information is avail-
able, instead. However, usually content-based methods are substantially
outperformed when collaborative information is available. This is due to
the available item features, which could be too few, noisy or in general they
could not really represent what the user perceives when interacting with the
items. Hence, content-based methods are usually of a lower quality than
collaborative ones, requiring a lot of feature engineering to improve their
performance.

Another common method is collaborative filtering with side information.
This kind of method adds non-collaborative information into collaborative
filtering techniques, in order to cope with the lack of collaborative infor-
mation. This can be done, for example, by concatenating the columns of
the ICM, containing content information about the items, to the rows of
the URM and then applying a classical collaborative filtering algorithm, as
done in [16]. A more elaborated technique, using machine learning, is SSLIM
(Sparse Linear Methods with Side information [45]). It is based on SLIM
(Sparse Linear Methods [44]), which is a collaborative filtering method that
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estimates the missing ratings in R̂ as a product between the rating matrix
R and an |I| × |I| matrix of aggregation coefficients, S (not to be confused
with the similarity matrix). This matrix is learnt by minimizing the regular-
ized objective function of the error between R and RS, where diag(S) = 0.
SSLIM focuses on incorporating side information (i.e., item features) within
SLIM in different ways, as described in [45]. For example, by learning an
aggregation matrix S that simultaneously approximates both the rating ma-
trix and the side information matrix, or by learning two different aggregation
matrices, one for the ratings and one for side information, while minimizing
their distance.

However, while these solutions try to add content information to col-
laborative techniques, in this work we focus on the opposite. Indeed, one
more solution to the cold-start problem is the optimization of content-based
methods by exploiting collaborative information. In particular, one common
way to achieve this result is by using feature weighting.

2.5 Feature Weighting

In content-based filtering, the relevant information used to make recommen-
dations is given by item features. In basic neighborhood-based methods, ev-
ery feature is given the same weight when computing the similarity between
two items. However, it is safe to assume that, when deciding, for example,
what movies to watch next, a user would give different importance to differ-
ent features. Genre could be a lot more discriminative than the executive
producer or the costume designer. Moreover, if the user is a fan of a certain
actor, they would probably give more credit to the feature corresponding to
that actor.

So we can say that a user’s judgement is based on a linear combination
of the similarities between individual attributes of the items. This translates
into the following formulation of the similarity between two items, i and j:

sim(i, j) = w · f(i, j) =
∑
c∈F

wc · fc(i, j)

where w is the vector of feature weights and f(i, j) is the vector of simi-
larities between individual features of i and j. Vector w is unknown and
feature weighting techniques aim to predict the best weights to improve the
recommendation quality.

It should be noted that feature weighting is a generalization of feature
selection, where, instead of selecting features, the algorithm weights them
by some continuous value. An example of feature selection applied to recom-
mender systems can be found in the preprocessing of the CiteULike dataset
in [62], where TF-IDF (see Section 2.5.1) is used to weight the features and
then select a certain number of the highest scoring ones. So, in general,
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analogously to feature selection [27], we can distinguish feature weighting
methods in three categories:

• Filtering methods usually rely on methods derived from information
retrieval, weighting features depending on some index computed from
the data. Thus, they can always be applied with no particular assump-
tions. Examples of filtering methods are TF-IDF [40, 32] and BM25
[54].

• Embedding methods learn feature weights as a part of the model train-
ing phase. In particular, in the recommender systems field, examples
of embedding methods are UFSM [20] and FBSM [58], which learn the
item similarity in functions of the features directly from the interac-
tions. They work with the assumption that the interactions data have
a good quality. However, these methods strongly couple the interac-
tions and the weighted features.

• Wrapper methods learn feature weights in two phases, by exploiting
an already available model that has been previously trained. Exam-
ples of wrapper methods for recommender systems are CFW [15] and
CFeCBF [17], that learn the weights from a previously built collabo-
rative similarity matrix, HP3 [7], that learns from graph models, and
other methods such as the one described in [10], using XGBoost [11] in
order to weight (and then select) features. As opposed to embedding
methods, they work on the assumption that the model they learn from
has a good quality.

We will now present some specific techniques, a couple of which rely on
machine learning.

2.5.1 TF-IDF

TF-IDF is a filtering method derived from information retrieval and text
mining. It stands for Term Frequency-Inverse Document Frequency and
aims to weight words depending on how much they are frequent but also
relevant in documents. In recommender systems we can apply it by consid-
ering features in items as words in documents, with the document collection
represented by the ICM.

The resulting weights consist of two terms multiplied by each other.
TF-IDF for a feature f in an item i can be computed as:

TF − IDFfi = TFfi · IDFf
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TF

Term Frequency assumes that a word is more important the more it appears
in a document. This assumption was made by Hans Peter Luhn [40] when
proposing the first form of term weighting.

Similarly, in recommender systems, if we consider features as words and
items as documents, we can say that a feature importance depends on its
value (if it has one) with respect to the values of other features of the same
item. In this case, since the ICM contains boolean values, TF for a feature
f of an item i can be computed as:

TFfi =
ICMif∑
c∈F ICMic

where ICMif is the element at row i and column j of the ICM, which has
value 1 if item i has feature f and 0 otherwise.

IDF

TF, however, may give too much importance to common words. For exam-
ple, the term “the” in English is so common that TF would tend to em-
phasize documents that use it more frequently, ignoring other less-common
words that are in general more meaningful in distinguishing relevant and
non-relevant documents and terms.

Thus, another factor is incorporated that diminishes the weight of terms
that appear frequently in the document set (common words) while increas-
ing the weight of terms that rarely occur. Inverse Document Frequency
(IDF) was proposed by Karen Spärck Jones [32] as a statistical interpreta-
tion of term-specificity, quantified as an inverse function of the number of
documents in which the term occurs.

The analogy can be extended to item features in recommender system,
where the IDF for a feature f can be computed as:

IDFf = log
N∑

i∈I ICMif

where N is the total number of features in the ICM, computed as:

N =
∑

i∈I,f∈F
ICMif

2.5.2 CFW

Collaborative boosted Feature Weighting (CFW) is a machine learning wrap-
per approach to feature weighting [15]. It consists in embedding collabora-
tive information into a content-based model. By weighting item features, it
aims to better represent feature importance from the user’s point of view. In
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general, this method assumes that the collaborative filtering model achieves
a much higher recommendation quality than the content-based one and is
better able to capture the user’s perspective [17].

The content-based similarity between two items i and j is computed as
a weighted product between their feature vectors fi and fj :

sim(i, j) = fTi Wfj (2.2)

Here, W is the feature weights matrix, of size |F | × |F |. Its diagonal
elements represent the importance of each individual feature, while the off-
diagonal elements determine the correlation among different features. Thus,
in order to reduce the number of parameters, W can be represented as the
summation of two components:

W = D + V TV (2.3)

where D is an |F | × |F | diagonal matrix containing the individual feature
weights and V TV is a low-rank approximation of the off-diagonal values,
with V being an l × |F | matrix and l the number of latent factors.

Calling SW the similarity matrix derived from the weighted features,
CFW uses Stochastic Gradient Descent (SGD) to search for the best pa-
rameters in order to optimize the following objective function:

argmin
D,V

∥∥SCF − SW∥∥2
F

+ λ ‖D‖2F + γ ‖V ‖2F

where SCF is any item-item collaborative similarity, λ and γ are the regu-
larization coefficients and || · ||2F is the Frobenius norm.

A similar approach has been proposed in the literature with the name
Collaborative-Filtering enriched Content-Based Filtering (CFeCBF) [17]. This
approach derives from the fact that CFW with the V component is outper-
formed by CFW with only the D component [15]. Indeed, the main difference
from CFW is that the weighting matrix is a diagonal matrix D, with no cor-
relation between different features. The similarity of two items i and j is
thus computed as:

sim(i, j) =
fTi Dfj

||fi||2F ||fj ||2F
also adding normalization. Moreover, the optimization problem to solve, in
order to obtain the weighting matrix, becomes the following:

argmin
D

∥∥SCF − SD∥∥2
F

+ λ ‖D‖2F + γ ‖D‖

Thus, the CFW and CFeCBF procedures consist of two steps. First,
find the optimal parameters for the collaborative algorithm, and second,
learn the optimal feature weights that better approximate the item-item
collaborative similarity obtained before. The weighting model can either
use the different feature correlations (and hence latent factors, CFW D+V)
or use only the individual feature weights (CFW with only D, CFeCBF).
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2.5.3 FBSM

Factorized Bilinear Similarity Model is a machine learning embedding method
for feature weighting. Proposed in [58] as an improvement of User-specific
Feature-based Similarity Models (UFSM) [20], it aims to discover correla-
tions among item features.

The FBSM model and the CFW model share the same similarity func-
tion, computed as in equation (2.2), and the same weighting matrix ex-
pressed as in equation (2.3). The main difference is in the learning proce-
dure. Indeed, FBSM makes use of SGD with Bayesian Personalized Ranking
loss in order to learn the weights directly from the user-item interactions,
instead of learning from a previously computed model.

However, interactions have less support than a similarity model, since
the latter is an aggregation of multiple interactions data. A similarity model
also reduces noise by removing similarities with low support, according to
parameters such as top-k or shrink, shown in Section 2.2.1. Moreover, FBSM
is an embedding method, so it learns feature weights along with the recom-
mendation model itself. This largely increases the training phase complexity
and strongly couples features and interactions, making the model more sus-
ceptible to noise. Due to these drawbacks and the experiments presented
in [15], which show that CFW outperforms FBSM in a similar scenario to
ours, FBSM is not used in our work.

2.6 Evaluation

Recommender systems can mainly be evaluated in three different ways, of-
fline, with user studies and online [57]. Offline evaluation is performed
on existing data sets by modeling the user behavior on partitions of this
data and evaluating some performance measures such as prediction accu-
racy. User studies are extensive simulations of an online platform in which a
small set of users is asked to perform some tasks on the system and then an-
swer to questions or give feedback on the proposed recommendations. Online
evaluation can be conducted through experiments on an already deployed
system, for example using A/B testing.

In this work we only use offline evaluation. In particular, we focus on a
top-n recommendation task, which consists in recommending an ordered list
of n items to each user. Therefore we evaluate how much the recommended
items are good for the target user, in the sense that the user would interact
with the items. We evaluate the correctness of each recommendation, the
order quality of the entire list and other useful metrics not related with
recommendation accuracy. Here are presented the main metrics we use
while evaluating our model.
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Recommended Not recommended

Interacted True Positive (TP) False Negative (FN)

Not interacted False Positive (FP) True Negative (TN)

Table 2.1: Confusion matrix for recommendations.

2.6.1 Classification Accuracy Metrics

Classification accuracy metrics measure the frequency with which a recom-
mender system makes correct recommendations to the users [29].

For example, let’s say a user on a movie platform liked the movies Iron
Man, Captain America and The Avengers, but did not have any interaction
with the movie Thor. When evaluating a model, data is partitioned in order
to train the model on some data and evaluate it on an unseen part of the
data. In our case, let’s say that Iron Man and Captain America are included
in the training data, while The Avengers and Thor are included in the data
used for evaluation. If the model we are evaluating recommends both The
Avengers and Thor to the target user, we can say that The Avengers is
a correct recommendation, since the user actually interacted with it, while
Thor is an incorrect one, since the user did not interacted with it and we
cannot assume anything about an unknown value.

Thus, we can define the confusion matrix, shown in Table 2.1, which
tells how many correct and incorrect recommendation a system makes. In
particular, in the confusion matrix are represented the following terms:

• True Positive (TP): items, relevant to the user, that the system cor-
rectly recommended.

• False Positive (FP): non-relevant items that the system incorrectly
recommended to the target user.

• True Negative (TN): irrelevant items that the system did not recom-
mend.

• False Negative (FN): item, relevant to the user, that the system did
not recommended, making a mistake.

Both classification accuracy metrics we are going to present, precision and
recall, make use of these terms.

Precision

Precision measures how many items the recommender system correctly rec-
ommend with respect to all the recommendations. Referring to the confusion
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matrix at Table 2.1, precision for each user u can be computed as:

Precision =
#TP

#TP + #FP

where #TP and #FP respectively indicate the number of true positive and
false positive items for the target user.

In particular, in recommender system, the Precision@k metric is used,
which represents the precision on a cut-off list of k recommended items,
which are usually the k items with the highest recommendation score for
the system. It is computed as [31]:

Precision@k =
#TPk
k

where #TPk is the number of correctly recommended items among the k
items in the recommendation.

Recall

Recall measures how many actually positive items (the ones the target user
interacted with) are recommended by the system with respect to all the pos-
itive items. Again, referring to Table 2.1, recall for user u can be computed
as:

Recall =
#TP

#TP + #FN

where #FN is the number of false negative items for the target user.
In recommender system, the metric of interest is the Recall@k, which

represents the recall on a cut-off list of k recommended items, instead of the
entire item set. It is computed as [31]:

Recall@k =
#TPk

Number of relevant items

2.6.2 Ranking Metrics

As already stated before, we are dealing with a top-n recommendation task.
This means that we would like not only to have correct recommendations
in the resulting list, but also for this list to be ordered according to the
target user’s taste, possibly having more likely correct recommendations at
the beginning of the list.

Ranking measures are useful precisely in this scenario. They evaluate
how good a recommendation with k items is with respect to how well it is
ordered for the target user’s taste. In particular, we are going to present
metrics that weight the evaluation of each item of the recommendation by
their position in the list.
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Mean Average Precision

Mean Average Precision (MAP), computed for a recommendation list of k
items (MAP@k), is the mean of the Average Precision computed for that
recommendation (AP@k) [41]. Average precision for a user u is the average
of the Precision@k computed for every slice of the recommendation list of
size from 1 to k:

APu@k =

∑k
i=1 Precision@i ·Rel(u, i)

Number of relevant items

where Rel(u, i) is 1 if item i at rank k is relevant for the target user u, 0
otherwise. From this, MAP@k can be computed as:

MAP@k =

∑
u∈U APu@k

|U |

Normalized Discounted Cumulative Gain

Normalized Discounted Cumulative Gain (NDCG) is particularly useful when
evaluating models for platforms where the users may be presented with long
recommendation lists. The reason is that NDCG has a slow decay of posi-
tional discount, more precisely logarithmic [2].

Let’s define first the Discounted Cumulative Gain (DCG) for a user on
a recommendation list of k items [2]:

DCG@k =
1

|U |
∑
u∈U

k∑
i=1

2relui − 1

log2(i+ 1)

where relui is the relevance of item i for the target user, which may be the
interaction between user u and item i in the evaluation partition of the data
set. Now, let’s define the Ideal DCG (IDCG), which is the DCG of the best
possible ordering of the recommendation the user could receive:

IDCG =
1

|U |
∑
u∈U

nur∑
i=1

2relui − 1

log2(i+ 1)

where nur is the number of relevant items for the target user u.
Then, the NDCG@k can be computed as the normalization of the DCG@k

with respect to the IDCG:

NDCG@k =
DCG@k

IDCG

29



2.6.3 Beyond Accuracy Metrics

Good recommendation accuracy does not completely define how much a
recommender system can satisfy the users. For example, a system could
reach high accuracy by recommending items that are easy to predict, such
as popular items, a task that even a popularity metric could do [29].

Therefore, other metrics that go beyond accuracy are needed to under-
stand if a recommender system is able to make useful recommendations with
a good quality [22]. In particular, the presented metrics focus on two aspects,
coverage and diversity of the recommendations.

Coverage is a measure of the domain of items over which the system
can make a recommendation [29]. A larger coverage means that the recom-
mender system is able to recommend more of the available items.

Diversity measures, in general, how much is the variety of items that a
system is able to recommend. Having diversity in a recommender system
is useful because presenting different choices can often increase the chance
that the user would be interested by one of them [2]. Indeed, if the target
user dislikes a recommendation from a list of similar items, it is likely that
they would dislike all of them. Thus, in some sense, diversity may be seen
as the opposite of similarity [57].

Let’s now present the specific metrics used in our work.

Item Coverage

There are mainly two possible coverage metrics. Prediction coverage mea-
sures the percentage of items for which the system is able to make a recom-
mendation. This highly depends on the chosen technique and on its input
[22]. Catalog coverage, instead, measures the percentage of available items
that the system actually recommends to the users [22].

In our work we only consider catalog coverage and we will refer to it as
item coverage (IC). Item coverage can be computed as the fraction of items
that are recommended to at least one user [2]:

IC =
| ∪Uu r̂u|
|I|

where r̂u is the recommendation list computed by the system for user u.

Gini Diversity

Gini Diversity (GD) is a diversity metric inspired by the Gini coefficient
and computed as [1]:

GD = 2

|I|∑
i=1

[(
|I|+ 1− i
|I|+ 1

)
×
(
rec(i)

total

)]
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where, given a list of the number of times each item is recommended, sorted
in ascending order, rec(i) is the i-th element of this list and total is the
total number of top-N recommendations made across all users (i.e., total =
N × |U |). Gini diversity is always in the range [0, 1], however, the scale
is reversed with respect to the Gini coefficient [1], so that smaller values
represent lower diversity, while larger values represent higher diversity.

Mean Inter-List Diversity

Mean Inter-List Diversity (MIL) is a diversity metric measuring the unique-
ness of different users’ recommendation lists [64]. The original name given to
this metric was personalization, but we believe that it does not characterize
the metric well, since the highest MIL values come from non-personalized
random recommenders.

Given two users u and v the diversity between their recommendation
lists of k items can be computed as:

huv(k) = 1− quv(k)

k

where quv(k) is the number of common items in the first k places of both
lists. Therefore, huv(k) = 0 means that the two users have the same items
in their top-k lists, while huv(k) = 1 indicates two completely different lists.
From this, mean inter-list diversity can be computed by averaging huv(k)
over all pairs of users:

MILk =

∑
u,v∈U,u6=v huv(k)

|U | × |U | − |U |

2.7 Hyperparameter Tuning

Hyperparameter tuning is a procedure that searches for the hyperparameters
giving the best performing model with respect to some chosen evaluation on
unseen data. There can be different ways to search for the best hyperparam-
eters. One option is to perform a grid search, by subsequently evaluating all
the combinations of hyperparameters in certain ranges. However, because of
the often large number of hyperparameters in a method and because of their
wide ranges, grid search is almost never feasible for such a task. Another
solution can thus be random search, which randomly sets hyperparameter
values in the given ranges. Despite its efficiency and the fact that it often
outperforms grid search, there are other methods that have been proven to
work well in recommender systems. For example, the one we use in our work,
Bayesian optimization, has been successfully employed in the literature [17]
and in various RecSys challenges [4, 14].

Bayesian optimization probabilistic model that aims to optimize an un-
known objective function from which we can obtain data points. In our
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case, the function we want to optimize is the accuracy of the recommender
system for which we are performing hyperparameter tuning. Starting from a
prior distribution, at each iteration the prior is updated with data resulting
from the unknown function, forming a posterior distribution. The posterior
is then used to construct an acquisition function, used to determine the next
evaluation point, which is the next set of hyperparameters. This procedure
is repeated a certain number of time and it is initialized by randomly se-
lecting the first hyperparameter sets instead of relying on the acquisition
function. Different probabilistic models can be used, in our work we use a
Gaussian process.

2.8 Quadratic Unconstrained Binary Optimization

In this section, we are going to present the fundamentals of the mathematic
model on which our work is built on. In particular, we start by presenting
the Quadratic Unconstrained Binary Optimization problem, which is at the
core of our model. Then, we explore some classical algorithms used to solve
it.

2.8.1 QUBO Problems

Quadratic Unconstrained Binary Optimization (QUBO) is a class of NP-
hard problems that has been gaining recognition to embrace a remarkable
range of applications in combinatorial optimization [35]. For example, the
use of this model for representing and solving optimization problems on
graphs, resource allocation problems, set partitioning problems, assignment
problems and many others has been reported in the literature [35].

The QUBO model is defined as:

min y = xTQx

where x is a vector of n binary decision variables and Q is a square n × n
matrix of constants.

While the diagonal elements of Q are the coefficients of the linear terms
of the objective function, the off-diagonal elements are the coefficients of the
quadratic part, consisting of multiplicative terms between different variables.
To better understand this, let’s unroll the matrix notation into a scalar one:

y =
n∑
i=0

n∑
j=0

xixjQij (2.4)

So, when j = i we obtain the linear term x2iQii, while when j 6= i we get
the quadratic term xixjQij . Now, since the variables are binary, we can
represent the linear terms as xiQii, without elevating at the power of 2.
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Typically, the Q matrix is symmetric or in upper triangular form. If
it is not, we can always convert Q into one of these forms without loss of
generality:

• symmetric:

q′ij =
qij + qji

2
∀i,j i 6= j

• upper triangular:

q′ij = qij + qji ∀i,j j > i

q′ij = 0 ∀i,j j < i

To sum up, the QUBO model is a formulation of a quadratic optimiza-
tion problem with binary variables and no constraint. Here we present a
numerical example of a generic QUBO problem, showing the starting objec-
tive function and the Q matrix in the upper triangular form:

y = 3x1 − 4x2 + 7x3 + 2x1x2 + 5x1x3 − 6x2x3

x =

x1x2
x3

 Q =

3 2 5
0 −4 −6
0 0 7


Many optimization problems can naturally be formulated as instances of

the QUBO model. Moreover, since QUBO problems are NP-hard [48], we
know, from computational theory, that every NP problem can be reduced in
polynomial time to the QUBO formulation. As explained by Glover in [26],
in order to reformulate a constrained optimization problem into the QUBO
format, the constraints are converted into penalties embedded into the ob-
jective function. For example, let’s take a quadratic programming problem,
which is an optimization problem with a quadratic objective function and
linear constraints [46]. In particular, consider a general binary quadratic
optimization problem of the form:

min y = xTCx

s.t. Ax = b

x binary

These constrained quadratic optimization models are converted into equiva-
lent unconstrained QUBO models by converting the constraint Ax = b into
a penalty added to the objective function [26]:

y = xTCx+ p(Ax− b)T (Ax− b)
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where p is a positive scalar that weights the penalty. Doing the math we
obtain:

y = xTCx+ p(xTATAx− 2bTAx+ bT b)

Considering that −2bTA is a linear constraint of binary variables, we can
add it directly to the diagonal of the matrix resulting from ATA, thus refor-
mulating p(xTATAx−2bTAx) as xTDx. Moreover, we can define a constant
c = pbT b, thus obtaining the following formula:

y = xTCx+ xTDx+ c

= xTQx+ c

where the matrix Q results from the sum of C and D. Dropping the ad-
ditive constant c, since it does not impact the optimization, we obtain the
unconstrained version of the starting constrained problem, which exactly
correspond to a QUBO model:

min y = xTQx

x binary

When a problem is expressed as a QUBO model, any algorithm capable
of solving a QUBO model can be used to solve the given problem. It is
remarkable how, in many cases, the solution of a problem obtained from
its QUBO formulation with a generic QUBO solution method can rival the
solution obtained from a method specialized to exploit the problem domain
[35].

2.8.2 Solving QUBO Problems with Classical Algorithms

While a few special cases of QUBO are polynomially solvable [5, 47], QUBO
is in general an NP-hard problem [48]. This means that, except for small
problems, heristics are required to produce good solutions in a reasonable
amount of time [35]. Therefore, while exact solution methods exist, we are
not going to focus on them, since they are feasible only for problems with a
small number of variables.

Here we present some heuristics, used to solve optimization problems,
that fit particularly well for solving QUBO models.

Tabu Search

Tabu search is a metaheuristic algorithm proposed by Glover in 1986 [23]
and later formalized in [24, 25]. It employs local search to iteratively explore
the neighborhood of each potential solution, searching for an improved solu-
tion. However, local search methods often become stuck in local minima or
plateaus. In order to avoid this problem, tabu search also accepts worsen-
ing moves, when improving ones are not available. In addition, it prohibits
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(from this the name “tabu”) moving to solutions previously visited in the
last n iterations, where n is a parameter of the algorithm. This adjustment
is useful in order to avoid cycling through already visited solutions.

Simulated Annealing

Simulated Annealing (SA) is another metaheuristic algorithm for approxi-
mating the global optimum of a given function, often used when the search
space is discrete. A first version of the technique was proposed by Pincus in
1970 [50] and later refined by Kirkpatrick et al. [34], who gave it the name
we use today, inspired by the analogy with annealing in metallurgy. Both
Pincus and Kirkpatrick based their work on the Metropolis algorithm [43].

Simulated Annealing is similar to tabu search, in the sense that also SA
explores the search space with local search methods and accepts worsening
moves. However, the way in which SA takes a step in the search space is
very different.

First of all, let’s define s as the current state of the system, characterized
by an assignment of values for the variables x of the optimization problem
we are solving. Then, let’s define the energy function E(·), which computes
the energy of the input state by evaluating the objective function in the
corresponding assignment of x. The probability of moving from state s, with
energy e = E(s), to a neighbor candidate state s′, with energy e′ = E(s′),
can be computed as:

P (e, e′, T )

where P is a function of both the energies of the current and candidate states
and of a time-varying parameter T , called temperature. The temperature
initially starts as a positive value and decreases at each step following some
annealing schedule, stopping at T = 0.

Moreover, P is defined in such a way that it corresponds to a positive
value even if e′ is larger than e (worse solution). In this case, P tends to zero
when T tends to zero. Indeed, the more the temperature decreases, the less
the algorithm is inclined towards exploring worse solutions, increasing the
exploitation of local better solutions. When T = 0, the algorithm behaves
as a greedy search, moving only to improving solutions.

Simulated Quantum Annealing

Simulated Quantum Annealing (SQA) is the classical implementation of
quantum annealing. We will refer to it as SQA in order to not confuse
it with the physical realization of quantum annealing, that we are going to
discuss in Section 2.9.2. Simulated quantum annealing was proposed in the
current form by Kadowaki and Nishimori in 1998, as a modification of sim-
ulated annealing [33]. In particular, instead of using thermal fluctuations
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to move between states, they introduced quantum fluctuations, or quantum
tunneling, that cause transitions between states.

We are not going to dive into details of this metaheuristic, since quan-
tum annealing is presented in Section 2.9.2, and SQA is just a classical ver-
sion of quantum annealing simulated with quantum Monte Carlo or other
stochastic techniques. However, we can say that the advantage brought by
quantum annealing (and thus SQA), is that quantum tunneling is able to
move candidate solutions out of shallow local minima with less difficulty
than simulated annealing. Indeed, the results in [33] showed that SQA per-
formed better than SA. Instead, the main difference between SQA and a
physical quantum annealer is that, in the former, quantum tunneling has to
be classically simulated, while in the latter it is a phenomenon that naturally
occurs because of the quantum behaviors characterizing the device.

2.9 Quantum Computing

Quantum computing is the use of quantum mechanics phenomena in a com-
putational model. The idea of quantum computing caught on with Richard
Feynman in 1982 [21], when he observed that certain quantum mechanical
effects could not be simulated efficiently on classical computers. This ob-
servation led to the speculation that this problem would have been solved
by building a computing device capable of harnessing quantum mechanical
effects [53]. The idea of quantum computation gained particular traction
when, in 1994, Peter Shor proposed a quantum algorithm able to factorize
integers in polynomial time [59, 60]. If this was not enough to increase the
interest in the quantum computing field, Lov Grover proposed, two years
later, a quantum algorithm used to search for an element in an unordered
list, obtaining a polynomial speedup over classical computing. Since those
years, quantum computing has been a particularly active area, with many
studies and technologies developed in the field [28].

Here we explain some fundamental concepts, before presenting specific
quantum computing models. Such as classical computing relies on bits,
quantum computing relies on the analogous quantum bits, or qubits. As
their classical counterparts, qubits can be in states 0 and 1, but they have
more properties than classical bits. Indeed, qubits are quantum objects
capable of exploiting quantum mechanics behaviors such as superposition
and entanglement.

Superposition is the physical property of a qubit of being in both states,
0 and 1, at the same time. Thus, a qubit in superposition cannot be rep-
resented as a classical state. Only when a qubit undergoes measurement
it loses its superposition and its state collapses to 0 or 1 with a certain
probability, depending on its superposition state.

Entanglement, instead, is a phenomenon observed between two or more
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different qubits. When two qubits are entangled, their states cannot be de-
scribed singularly, but they only make sense if observed together. Indeed,
the two qubits are bound in such a way that measuring one of them would
make the other one collapse into a classical state as well. This is a phe-
nomenon that has no correspondence in classical computing and can only
be simulated with an exponential overhead, since it is necessary to take into
account the distribution of all the possible states. Moreover, it is key to
some interesting applications, such as quantum teleportation.

There are different models of quantum computing. The two models
we are going to present are gate-based quantum computing and quantum
annealing, also called adiabatic quantum computing. We are going to focus
more on quantum annealing, since it is the approach used in our work.

2.9.1 Gate-Based Quantum Computing

Gate-based quantum computing is a quantum computing model presenting
some analogies with classical computing. In this model, quantum gates are
applied to qubits in order to transform their states. They are applied in an
imperative way, similarly to instructions in a classical computer. However,
because of quantum physics restrictions, all quantum state trasformations,
thus quantum gates, have to be reversible [53]. At the end of a quantum
computation, qubits are measured, in order to obtain the results of the
computation.

In this model, qubits are represented as vectors in a Hilbert space, which
is a generalization of the Euclidean space in any finite or infinite number of
dimensions. In particular, qubits having a state 0 and 1 can be mathemati-
cally represented respectively as:

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
using the Dirac notation. However, qubits can also be in a superposition,
which means that they are both in state 0 and 1 and is mathematically
expressed as:

|φ〉 = α |0〉+ β |1〉

= α

(
1
0

)
+ β

(
0
1

)
=

(
α
β

)
where α and β are, in general, two complex numbers such that ||α||2+||β||2 =
1. Their norms, ||α||2 and ||β||2, can be seen as the probabilities of the qubit
|φ〉 to collapse to state |0〉 or |1〉, respectively.

As stated before, quantum gates are applied to qubits to transform them
and make computations. The different gates can be mathematically repre-
sented by matrices. For example, the identity and bit flip (or negation)
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|0〉 X |1〉

Figure 2.2: Quantum circuit of a basic bit flip (negation) operation on a
qubit starting in state |0〉

operators can be expressed respectively as:

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
They can be applied both to a |0〉 or |1〉 qubit or to a qubit in a superposition,
as shown here for the bit flip operator:

X |0〉 =

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1〉

X |φ〉 =

(
0 1
1 0

)(
α
β

)
=

(
β
α

)
= |¬φ〉

A graphical representation of a quantum gate applied to a qubit can
be seen in Figure 2.2. What is represented there is a quantum circuit, a
sequence of quantum gates applied to one or more qubits. The one presented
in Figure 2.2 is fairly simple, but quantum circuits can be built with a
sequence of operations on different qubits, analogously to instructions in a
classical computer.

There exist different quantum gates, also working on more than one
qubit. However, since gate-based quantum computing is not the focus of
our work, we are going to present only two more of them.

The Hadamard gate, H, is a quantum gate that transforms a qubit in a
state, |0〉 or |1〉, into a qubit in a perfectly balanced superposition, having
the same probability of collapsing to 0 or 1. It can be mathematically
represented by the following matrix:

H =
1√
2

(
1 1
1 −1

)
When applied to a |0〉 and |1〉 qubits we obtain respectively

(
1√
2
, 1√

2

)
and(

1√
2
,− 1√

2

)
, which obey to ||α||2 + ||β||2 = 1. In particular, we can see

that ||α||2 = ||β||2 = 1
2 , which means that these qubits have the exact same

probability of collapsing to 0 or 1. The negative number at the bottom
right corner of the H matrix is necessary to make the operation reversible.

Indeed, if a qubit coming from a Hadamard gate has value
(

1√
2
,− 1√

2

)
, we

know for sure that it was in state |1〉 before applying the gate.
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|0〉 |0〉

|1〉 |1〉

|1〉 |1〉

|1〉 |0〉

Figure 2.3: Quantum circuit showing how the CNOT gate works, applied to
|01〉 and |11〉

|φa〉 H

|φb〉

Figure 2.4: Quantum circuit representing the entanglement between two
different qubits, using the Hadamard gate and the CNOT gate.

Another fairly important quantum gate is the Controlled-NOT gate, or
CNOT. The CNOT is a gate applied to two qubits, instead of one. Its effect
is that of flipping the least significant qubit only if the most significant qubit,
called the control qubit, is |1〉. Explaining the mathematical formulation of
the CNOT gate is out of our scope. However, two quantum circuits showing
the CNOT applied to two different couples of qubits are shown in Figure
2.3.

The Hadamard and the CNOT gates are also extremely important be-
cause they can be used to achieve quantum entanglement between two dif-
ferent qubits. Again, the explanation for this phenomenon is out of our
scope, but the circuit used to entagle two qubits is shown in Figure 2.4.

2.9.2 Quantum Annealing

Quantum annealing, or adiabatic quantum computing, is another quantum
computing paradigm. Instead of using gates in order to transform qubits, it
exploits the natural tendency of every physical system to evolve to its min-
imum energy state. Thus, quantum annealing is used to search for optimal
or good solutions to NP-hard optimization problems.

To better understand how quantum annealing can achieve this, let’s start
by defining the underlying model of the physical system we are going to
consider. In a physical realization of a superconducting quantum annealer,
qubits are quantum objects that define the physical system on which the
quantum annealing procedure is going to run. As already stated before,
qubits can be in a superposition of the 0 and 1 states. However, at the end of
the annealing process they all collapse to a classical state. What determines
how the qubits’ states evolve and collapse is the way they are influenced and
correlated each other with the biases and the coupling strengths applied to
them.

A bias is a magnetic field applied to a qubit in order to tilt its proba-
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bility of ending up in state 0 or 1. This way, instead of having the same
probability of collapsing to 0 or 1, the qubit collapses to the lower energy
state determined by the applied bias.

A coupler, instead, is a physical device that can make two qubits tend
to the same or the opposite states. The coupling strength determines how
much two coupled qubits are correlated. Coupling relies on the quantum
phenomenon of entanglement. When two qubits are entangled, they can be
thought as a single entity with four different states, instead of two. The
energies of these states are determined by the biases applied to the two
qubits and by their coupling strength.

This observation can be extended to an entire network of superconduct-
ing qubits. Indeed, the energy landscape of such a system is determined by
the biases and coupling strengths of all the qubits. Moreover, the energy
of a particular state of the system is defined by its Hamiltonian. A Hamil-
tionian is a mathematical description of a physical system in terms of its
energies1. In particular, the Hamiltionian for a physical quantum annealer
is the following:

H = −A(s)

2

(∑
i

σ̂(i)x

)
︸ ︷︷ ︸
Initial Hamiltonian

+
B(s)

2

∑
i

hiσ̂
(i)
z +

∑
i>j

Jij σ̂
(i)
z σ̂(j)z


︸ ︷︷ ︸

Final Hamiltonian

(2.5)

where σ̂
(i)
x,z are Pauli matrices operating on qubit qi, hi are qubit biases and

Jij are the coupling strengths between qubits qi and qj . The Hamiltonian
changes during the annealing process depending on some annealing schedule,
controlled by the parameters A(s) and B(s)2. In particular, the annealing
schedule starts at time t = 0 with the anneal fraction s = 0 and A(0) >>
B(0) and goes up to time tf , when it stops at s = 1 and A(1) << B(1).
Thus, it controls how much the two terms of the Hamiltonian influence the
annealing procedure.

The first term of equation (2.5) is called inital or tunneling Hamiltonian.
Its lowest-energy state is the one where all qubits are in a superposition state.
During annealing, the second term, called final or problem Hamiltonian is
introduced. Its lowest-energy state is determined by the biases and the
coupling strengths, which are set by the user. At the end of the quantum
annealing process, when all the qubits are in a classical state, only the
problem Hamiltonian describes the energy of the system. This means that,
if we are able to map an optimization problem as the final Hamiltonian, the
annealing would result in a solution to the optimization problem.

It should be noted that the problem Hamiltion is expressed as an Ising
model3. In this model, variables si are spin up and spin down, correspond-

1https://docs.dwavesys.com/docs/latest/c gs 2.html
2https://docs.dwavesys.com/docs/latest/c qpu 0.html
3https://docs.dwavesys.com/docs/latest/c gs 3.html

40



ing to states +1 and -1. The objective function of the Ising model is the
following:

Eising(s) =

N∑
i=1

hisi +

N∑
i=1

N∑
j=i+1

Jijsisj

where N is the number of variables si, hi corresponds to the qubits’ biases
and Jij to the coupling strengths. This equation is used to describe the
Hamiltonian of the final classical state resulting from the annealing.

Therefore, mapping an optimization problem as an Ising model would
enable us to search for solutions of that problem, as stated before. In partic-
ular, the conversion between an Ising model and a QUBO model, presented
in Section 2.8.1, is straightforward. Indeed, the discrete variables s of an
Ising model are related to the discrete variables q of a QUBO model as:

s = 2q − 1

Moreover, the biases h can be directly mapped into the diagonal of the Q
matrix, while the coupling strengths in J can be reported as the off-diagonal
elements of Q. Thus, since the QUBO formulation is equivalent to the Ising
model, it can be used to describe the problem Hamiltonian. Then, quantum
annealing can be used to search for the minimum energy of this Hamiltonian,
which corresponds to the solution of the given problem expressed as a QUBO
model.

The main advantage of quantum annealing over simulated annealing is
that the former can rely on quantum tunneling. Quantum tunneling is a
phenomenon that allows quantum annealing to penetrate high barriers in
the energy landscape, without any increase in energy, differently from SA,
which has to climb over these barriers to escape local minima [18]. Moreover,
a physical realization of a quantum annealer guarantees that the involved
quantum phenomena happen naturally because of quantum mechanics, with-
out the need of simulating them, like in simulated quantum annealing. Find-
ing a good solution to a QUBO problem is a matter of microseconds for
quantum annealing, thanks to the expressed quantum phenomena.

The Annealer we used: D-Wave 2000Q

D-Wave Systems is a canadian company that has been studying and building
quantum annealers for years. The annealer we use in our work is the last one
available for cloud access, the D-Wave 2000Q. This quantum annealer has
2048 qubits, laid out on a Quantum Processing Unit (QPU) with a Chimera
topology, shown in Figure 2.5.

The Chimera graph is composed of a 16 × 16 lattice of Chimera unit
cells, which are bipartite graphs of 8 qubits Figure 2.6. Each qubit is also
connected by couplers with qubits on the same row or column of other unit
cells. This creates a sparse topology of connected qubits, which means that
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Figure 2.5: Chimera graph showing the arrangement of the qubits in D-Wave
2000Q.

to represent a single logical qubit we may need more than one physical qubit,
depending on how many connections the logical qubit has. Thus, in order
to map the graph given by the QUBO model, where nodes are the problem
variables and edges represent the coupling strengths, to the Chimera graph
of the QPU, a procedure called minor embedding is needed. Although minor
embedding is a NP-hard problem itself, there exist heuristics able to achieve
good results with fair computational complexity [9]. We should point out
that the maximum number of nodes, in a fully connected graph, that are
embeddable on the QPU is 65.

Therefore, the complete workflow when solving a problem with quantum
annealing on a D-Wave QPU is the following [42]:

1. represent the given problem in a QUBO or Ising formulation;

42



0

1

2

3

4

5

6

7

(a) Chimera unit cell in column (bipar-
tite) form.
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(b) Chimera unit cell in cross form.

Figure 2.6: Chimera unit cell in its two common renderings, with numbers
representing qubits in the cell.

2. if the problem comprises too many variables, decompose it in order to
solve each piece of the problem separately;

3. minor-embed the input problem into the QPU graph through a minor
embedding heuristic;

4. query the QPU with the minor-embedded problem, which means to
physically set biases and coupling strengths on the device and run the
quantum annealing procedure;

5. retrieve the post-processed results.

The QPU is accessible and can be queried through D-Wave’s cloud service,
Leap4.

Is D-Wave’s QPU really quantum?

Many studies have been conducted and published in the literature about
D-Wave’s QPUs. In particular, a recurring question about this quantum
annealer is if it really leverages quantum phenomena. This question has
been solved by Boixo et al. [8] and by Lanting et al. [38] in 2014. The first
paper shows how the behavior of D-Wave’s physical quantum annealing
is consistent with the expected one, in the form of SQA, confirming that
D-Wave’s QPU is indeed an actual implementation of quantum annealing.
Moreover, the second paper presents experimental evidences for the presence
of quantum entanglement in D-Wave’s QPU.

An additional question regards the computational advantage given by
D-Wave’s quantum annealing devices over classical computing. In [18],
Denchev et al. studied the computational performance of one of D-Wave’s

4https://cloud.dwavesys.com/leap/
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QPUs against classical methods, such as simulated annealing or simulated
quantum annealing. The results show that, in certain settings, although
there is no exponential speed-up, the QPU achieves a speed-up around 108.

Hybrid Quantum-Classical Systems

As already stated before, D-Wave’s quantum annealer has a limit on the
number of logical qubits embeddable into the QPU. This means that it
could be difficult to solve large problems with many variables on the QPU
alone. Therefore, hybrid quantum-classical approaches can be adopted. By
intelligently decomposing the problem, state-of-the-art classical methods are
used to solve large problems, allocating to the QPU parts of the problem
that best fit quantum annealing. An implementation of this approach is
offered by D-Wave’s cloud service, Leap, to solve problems of up to 10000
variables.
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Chapter 3

Model

The purpose of this work is to find a feasible application of quantum an-
nealing to the field of recommenter systems.

As explained in Section 2.9.2, quantum annealing is able to find good
solutions for NP-hard binary optimization problems [8] in a very low amount
of time. Given the usage of binary variables, quantum annealing seemed to
naturally fit into a feature selection approach. As described in Section 2.5,
feature selection is a specialization of feature weighting. For this reason,
also feature selection can be used to cope with the cold-start problem, by
embedding collaborative information into a content-based model. In this
case, instead of weighting the item features with continuous values, they are
weighted with binary values {0, 1}, hence being kept or discarded.

The domain knowledge of a collaborative filtering model drives the se-
lection of the item features used to build a new content-based model. For
this reason, the proposed method is called Collaborative-driven Quantum
Feature Selection (CQFS).

Therefore, the first section of this chapter explains how the feature se-
lection model, making use of both collaborative and content information,
can be formulated as a QUBO model, in order to be solved with quantum
annealing. Then, we present the entire algorithm pipeline that makes use of
the selection given by CQFS to create a content-based method capable of
better dealing with the cold-start problem.

3.1 Defining the Optimization Problem

The focus of this work is on using quantum annealing to select the best
features in order to improve content-based recommendations when dealing
with the cold-start problem. This means that, as explained in Section 2.9.2,
we need to formulate a binary optimization problem as a QUBO model
that, when solved, gives a selection of the item features that best represent
collaborative information. Here are presented the key components of the
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optimization problem at the core of CQFS.

3.1.1 Variables

Let’s start defining the required optimization problem by its variables. Since
they should be binary variables and we are dealing with a feature selection
problem, the variables represent the selection of each item feature. There-
fore, we have |F | variables xf ∈ {0, 1}, where F is the set of item features.
When xf = 1, variable f is selected, while xf = 0 means that f is not
considered in the model. From now on, we will refer to the vector of binary
variables as x.

3.1.2 Collaborative and Content Information

When dealing with the cold-start problem, one possible approach is to embed
collaborative information into a content-based model, in such a way that
the latter behaves more similarly to a collaborative filtering model. In other
feature weighting techniques, such as CFW (Section 2.5.2), this effect is
obtained by learning the weights that let the content-based model better
approximate the collaborative filtering one.

However, while CFW makes use of SGD in order to directly learn the
collaborative similarity structure, CQFS is solved through a quadratic opti-
mization problem. Because of this, we need to define an objective function
and some constraints. Since the formulation required by quantum annealing
is the one of a QUBO model, the latter cannot be hard constraints, but they
have to be represented as penalties into the objective function. But what
kind of objective function can be used to represent the need of incorporating
collaborative information into a content-based model?

The key to the answer stands in the comparison between the collabora-
tive filtering and the content-based models. What we want to achieve is to
make content information tend to the collaborative one, excluding informa-
tion which comes exclusively from the content-based model, while including
the information expressed by both models. Driving the selection with this
criteria, the result could be a content-based model that better represents
the information it has in common with the collaborative filtering one.

What is called information here can be translated in practice as the
similarity model. Indeed, by comparing the similarity matrix SCF , resulting
from a collaborative filtering method, and the similarity matrix SCBF , from
a content-based one, both of size |I| × |I|, we can point out the following
scenarios:

1. The similarity between two items i and j is present both in SCF and
in SCBF . This means that the relation between these two items is
expressed both by collaborative and content information and we do
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SCFij SCBFij How should the model behave?

1. > 0 > 0 Relation between i and j expressed by both CF and CBF model.
Encourage this similarity.

2. = 0 = 0 Relation absent in both models. No need to take any action.

3. = 0 > 0 CBF is expressing a relation not present in CF. Penalize the pres-
ence of this similarity in the CBF model.

4. > 0 = 0 CBF does not have a similarity expressed by the CF model. Noth-
ing can be done, since there is no data to work on.

Table 3.1: Summary of all the possible scenarios for the similarity between
two items i and j in a collaborative and a content-based model.

not need to embed any new information, just confirm what is already
in the model.

2. The similarity between two items i and j is absent both from SCF and
from SCBF . Again, this means that both models are expressing the
same kind of information. However, differently from the previous case,
no action should be taken by the model, also because zero similarity
means no common features to work on with feature selection.

3. The similarity between two items i and j is present only in SCBF

and not in SCF . In this case, the content-based model is expressing
something which is not expressed by the collaborative one. Since we
want the content-based model to behave more like the collaborative
one, we aim to avoid the presence of this similarity.

4. The similarity between two items i and j is present only in SCF and not
in SCBF . In this case nothing can be done, through feature selection,
in order to embed this information into the content-based model, since
the items generating this collaborative similarity do not have common
features.

From these observations we can say that the objective function we need
is a function that is minimized when the selected item features generate a
SCBF that has the largest possible number of similarities in common with
the chosen SCF and the least possible number of similarities absent from
SCF . All the possible conditions are summarized in Table 3.1.

3.1.3 Objective Function

The proposed approach directly compares two similarity matrices, whose
rows and columns represent items. However, our model should select fea-
tures. To better understand the transition from items to features, let’s
analyze first an objective function built to select items instead of features.
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SCFij SCBFij Q′ij

1. > 0 > 0 < 0

2. = 0 = 0 0

3. = 0 > 0 > 0

4. > 0 = 0 0

Table 3.2: Value of the coefficient Q′ij for each possible condition on the
collaborative and content-based similarities described in Table 3.1.

Let’s call z the vector of binary variables zi representing the selection of
each item i. Formulated as a QUBO model, the optimization problem is the
following:

min y′ = zTQ′z

z binary

where Q′ is the matrix containing the coefficients of the objective function
that we want to build. Following the approach summarized in Table 3.1,
the optimization procedure should avoid selecting two items that generate
a similarity only in the content-based model. Instead, items that generate
similarities present both in the collaborative and in the content-based model
should be selected together. In order to have this kind of selection, the
coefficient Q′ij associated with the quadratic term zizj , or with the linear
term zi if j = i, should be:

• positive if the similarity Sij between item i and j is present only in
SCBF ;

• negative if Sij is present both in SCF and in SCBF ;

• zero otherwise.

Referring to the same notation of Table 3.1, the values that Q′ij should take,
depending on the similarities of the collaborative and the content-based
model, are reported in Table 3.2.

In this way, similarities appearing only in the content-based model are
penalized, in the sense that, if the items that generate these similarities are
selected, the objective function increases. Instead, similarities in common
between the two models are encouraged since, when the items that generate
them are selected, the objective function decreases.

In order to build the matrix Q′, we treat positive and negative coefficients
separately. In particular, we call K the |I| × |I| matrix containing the
negative coefficients, associated with similarities we want to keep; we call
E the |I| × |I| matrix containing the positive coefficients, associated with
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the similarities we would like to eliminate from the model. All the nonzero
values of matrix K have value −1, while all the nonzero values of matrix E
have value 1. Then, we call Item Penalization Matrix (IPM) the matrix
Q′, since it consists of the penalization coefficients given to the variables zi
corresponding to items. The IPM can thus be computed as a weighted sum
of the two component matrices:

IPM = αK + βE (3.1)

where α and β are the weighting parameters controlling how much the neg-
ative and positive components should influence the selection.

To sum up, the IPM is the Q matrix of a QUBO model (Section 2.8.1)
whose solution corresponds to items that should make the content-based
similarity matrix better approximate the collaborative filtering one. Now
we need to translate this problem to a feature selection problem. In order
to do this, we have to define the following optimization problem:

min y = xTQx

x binary

where x is the vector of binary variables xf corresponding to the item fea-
tures of set F and Q is the |F | × |F | penalization matrix we need to build.

The similarity between two items, in a content-based model, derives
from the features of the two items. In order to preserve or remove this
similarity, we should respectively encourage or discourage the selection of
the two items’ features. In particular, we can apply a similar criteria to the
one previously seen for item selection. First of all, let’s consider two features
f and g, the corresponding variables of the optimization problem, xf and
xg, and the coefficient that binds them in the objective function, Qfg. Since
there could be more than two items having features f and g, let’s refer to
each possible couple of those items as i and j. From this, we can say that
each couple of similarities (SCFij , SCBFij ) verifying conditions 1 or 3 of Table
3.1 should contribute to coefficient Qfg, respectively with a negative and a
positive value, as shown in Table 3.2. In particular, we already presented
the contribution of each couple of items i and j as the IPM in equation
(3.1). Therefore, Qfg can be computed as:

Qfg =
∑
i∈I

∑
j∈I

ICMif · ICMjg · IPMij

=
∑
i∈I

ICMif

∑
j∈I

IPMij · ICMjg

It is straightforward the translation of the last equation into a matrix
notation, referring to Q as the Feature Penalization Matrix (FPM):

FPM = ICMT · IPM · ICM
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The FPM is an |F | × |F | matrix that represents the objective function
needed for our feature selection model. It is the Q matrix of a QUBO
model whose solution should select features in such a way that the resulting
content-based model better approximates the collaborative filtering one.

Combinations of k variables

One way to exploit the flexibility of the QUBO model is by introducing soft
constraints as penalties in its objective function. In particular, an additional
step in our model provides that only a certain percentage of variables are
selected. Thus, the solution should consist of only a certain number of k
variables in x having value 1. This can be done by imposing that the model
is minimized for each of the k-combinations of its variables. The penalty
added to the objective function in order to obtain this result is the following:

s

 |F |∑
f=1

xf − k

2

where s is a parameter called strength, controlling the magnitude of the
penalty. For example, in a problem having 3 variables, if k = 2 and s = 1,
having all the 3 variables equal to 1 would result in an objective function
equal to 1:

1[(1 + 1 + 1)− 2]2 = 1

Instead, if in the same scenario we have s = 3, the objective function would
equal 3:

3[(1 + 1 + 1)− 2]2 = 3

penalizing more a wrong solution.
Therefore, the resulting optimization problem for CQFS is:

min y = xTFPMx+ s

 |F |∑
f=1

xf − k

2

x binary

considering both the FPM and the k-combinations constraint.

3.2 Algorithm Pipeline

Now that we presented the underlying model of our quantum feature selec-
tion method, we are going to describe the complete workflow of our experi-
ments. We start from data splitting and preprocessing and then we explain
the three phases in which the building of the final recommendation model
is divided.
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Figure 3.1: Testing cold item split, where A contains the warm items while
C contains the cold items.

3.2.1 Data Splitting

When evaluating recommender systems, we need to split the ratings data,
the URM, in order to obtain a training and a testing set. The former is
used to train the system, while the latter contains the interactions that the
system should try to predict. Here we present the splits we are going to need.
First, a testing set on which evaluation metrics for the final recommender
system are computed. The, we present the two different validation splits
used to optimize the recommendation models. At last, we describe how and
why we need to preprocess the ICM during the training phase.

Testing Set

First of all, let’s focus on the testing set. We are dealing with the cold-
start problem which, as explained in Section 2.4, arises when we have to
recommend new items that have no user-item interactions on the platform.
Therefore, the testing set to be used in this scenario is a set consisting of all
the interactions of a certain number of chosen items.

Thus, we need to perform a cold item split [17], which consists in itera-
tively selecting items from the URM, until the cumulative number of these
items’ interactions surpasses a certain percentage of the initial interactions.
All the interactions of the selected items are moved to the testing set, while
they are set to zero in the training set. In this way, the selected items be-
come cold items for the training set. As already stated in Section 2.4, cold
items are items that do not have any user interaction. We will refer to the
remaining training data as warm items, instead. A graphical representation
of the testing cold item split is shown in Figure 3.1, where A is the warm
items set and C is the testing set.

So, we are recreating a cold-start scenario in the training set. Indeed, the
task of our model is to recommend these cold items to the users, based only
on the user-item interactions of the training set and on the item features
of the ICM. It should be noted that the testing set should not be accessed

51



through any phase of the experiment apart from the evaluation of the final
model. This guarantees that no component of CQFS has ever seen the
testing data, item features included.

Validation Sets

Now that we defined the testing set, containing all the interactions of the
cold items, let’s focus on the remaining training set. As later explained in
Section 3.2.2, we need to optimize different recommender models, with the
procedure described in Section 2.7. The optimization consists in choosing
the hyperparameters of the models that give the best performance.

However, how can we evaluate the performance of each hyperparameter
set using only the training data, with no access to the testing set? The
key is to split again the warm items data into two sets, a training set and
a validation set. When trying different hyperparameters, the training set
is used to train the recommender system, while the validation set is used
to evaluate the model on some metrics. The hyperparameters giving the
best performance on the validation set are used to build a new model, using
the entirety of the warm items, since at deployment we should use all the
available data.

In general, depending on the model we are going to optimize, we need
different kinds of splits. Indeed, when optimizing the collaborative model
needed by CQFS, we use a random holdout split, which randomly selects
a certain percentage of all the interactions. This way, we can build and
optimize the collaborative model on a training and a validation sets having
no cold items.

Instead, we want the final content-based method to be evaluated in a
cold-start scenario. This means that also the optimization itself should be
done under the same conditions. Therefore, we perform another cold item
split, obtaining a validation set that contains all the interactions of a certain
percentage of items. This way we can select the hyperparameters that should
make the model perform best in a cold-start scenario.

To sum up, in our experiments we have two different validation splits,
corresponding to two different training sets, both extracted from the warm
items. The first one is a random holdout used to optimize the collaborative
filtering model in the first phase of the experiment (see Figure 3.2). The
second one is instead a cold item split used to optimize the final content-
based model produced after the feature selection phase (see Figure 3.3).

Item Features in the Different Phases

After describing how the URM should be split during the experiments, let’s
shift to the features data, the ICM. Differently from collaborative informa-
tion, in a cold-start scenario features are available for the cold items. Indeed,
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Figure 3.2: URM split, A and Bh contains the warm items, with Bh deriving
from a random holdout split, while C contains the cold items.
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Figure 3.3: URM split, A and Bc contains the warm items, with Bc deriving
from a cold item split, while C contains the cold items.

when adding a new item to a platform, we do not have any user interaction,
but we already have the features that characterize that item. For example,
a new movie on Netflix already has all the information about the cast, the
genre, and so on, even if it does not have any user interaction. Therefore,
the entire ICM is used to build the final content-based model, including
features of the cold items.

However, during the optimization of this final model and previously,
when building the content-based similarity before the feature selection phase,
we should not use the entire ICM. The reason is that we do not have the
new items on the platform yet, so we do not have access to their feature
data. Hence, in the ICM used in these two phases we set to zero the feature
information of the cold items. This guarantees that the testing data never
appears during training phases, but only on the last evaluation of the final
model.

3.2.2 Building the CQFS Recommendation System

The next and last step is to build a recommendation system that exploits
the feature selection method described in Section 3.1. In particular, the
recommendation pipeline consists of three main components:
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1. Collaborative and content-based models: the first elements needed are
the collaborative filtering and content-based similarity matrices from
which CQFS computes the FPM , as described in Section 3.1. Since
CQFS is a wrapper method, the collaborative model should be trained
and optimized (see Section 2.7 for hyperparameter tuning) on the
warm items beforehand, in order to work with an already well per-
forming model. Instead, the content-based model can be derived from
a simple dot product, since we only need to know if a similarity be-
tween two items is present or not, thus not requiring heuristics or
optimizations. Also, in this case we only want warm items, so the
ICM without the cold items’ interactions is used.

2. Quantum Feature Selection: then, once we have both the collaborative
and content-based models, we can build the quadratic optimization
problem. This problem, formulated as a QUBO, can be solved with
quantum annealing or hybrid techniques, giving a selection of features
that should improve the content-based model by better approximating
the collaborative filtering one. Moreover, a constraint can be intro-
duced, directly into the objective function, in order for the solution to
have k selected features, as explained in Section 3.1.3. Before sending
the problem to the appropriate solver, the FPM is normalized.

3. Final content-based model : after the feature selection phase, we use its
result to select which features to keep and to remove from the ICM.
This time, we start from the initial ICM, the one containing all the
items, even the cold ones. We use this ICM because in a cold-start
scenario we have access to the cold items’ features, although we do not
have any interactions for them. Indeed, the URM used to build this
model contains only the warm items. With the new ICM resulting from
the selection, we build a content-based recommender system which,
after being optimized (Section 2.7) using the cold item split validation
set (Section 3.2.1), can be used to cope with the cold-start problem.
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Chapter 4

Experiments and Results

In this chapter we are going to present in details the experiments that were
carried out and their results. In particular, we start by describing the base-
line algorithms, which are later compared with our solution, and the collab-
orative filtering methods used to train CQFS. We give some context on how
we chose the data sets to evaluate our work on. Then, for each data set we
present the corresponding experiments as follows:

1. we describe the data set itself and its composition, along with some
numbers about ratings and features, showing the splits that were made,
according to Section 3.2.1;

2. we present the results of quantum feature selection, comparing selec-
tions made with different CQFS parameters;

3. we show the results of the final content-based model, after feature
selection, and we compare them with the baselines.

4.1 Baseline Algorithms

We propose three baseline algorithms to test against our model in the cold-
start scenario recreated following the splits in Section 3.2.1:

• Content-based filtering (CBF): a pure content-based filtering approach
is used to have a standard baseline. It consists of an optimized content-
based model built from the item features, as explained in Section 2.3.
The chosen method is item-based k-nearest neighbors and its parame-
ters, with their respective search ranges used in hyperparameter tun-
ing are presented in Table 4.1. This is the simplest possible way to
cope with the cold-start problem, by relying only on the neighbor-
hood model given by the unweighted item features. We will refer to
this method as ItemKNN CBF ;
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• TF-IDF: features are selected according to their TF-IDF weights, in
a similar manner to [62]. Features are first weighted by their TF-
IDF scores and then a certain percentage (we experimented with 40,
60, 80 and 95%) of the highest weighted features are selected. Only
the values corresponding to the selected features are used to build the
baseline content-based model. Thus, we apply an ItemKNN CBF after
TF-IDF, which will be reffered to as TF-IDF CBF or simply, if there
is no ambiguity, TF-IDF. The hyperparameter tuning ranges are the
same as the previous model, shown in Table 4.1.

• CFeCBF: feature weights are learnt through machine learning from
a previously built collaborative model, as explained in Section 2.5.2.
The baseline content-based model is then computed from the weighted
item features with an ItemKNN CBF. Although this is not a feature
selection method, we decided to include it among our baselines be-
cause of its successful application on cold-start scenarios. We could
have selected features with the highest weights, as with TF-IDF, but
we think that this might have denatured the model since it learns and
optimizes the weights as a whole, differently from TF-IDF, which com-
putes an index. Hyperparameters for this algorithm are divided into
model parameters and learning parameters. The former are the ones
used for the content-based model, while the latter are the ones used
for the SGD learning procedure with early stopping, such as epochs,
learning rate, regularization coefficients and so on. Exclusive param-
eters to this algorithm are the D matrix initialization, which can be
composed of 1s, or can be randomly initialized, and if D should con-
tain only positive values (if it is true, negative values are clamped to
0). Hyperparameter ranges for the optimization of this model are pre-
sented in Table 4.2. We will refer to this method as CFeCBF with an
appended letter, depending on the collaborative model from which it
learns (K for ItemKNN CF, P for PureSVD and R for RP3

β).

4.2 Collaborative Filering Models

To train CQFS we chose three different collaborative filtering algorithms
having a similarity model:

• item-based k-nearest neighbors collaborative filtering (Section 2.2.1),
whose optimization is done through hyperparameter tuning with the
ranges shown in Table 4.3; we will refer to this method as ItemKNN
CF ;

• PureSVD (Section 2.2.2), whose hyperparameters and respective ranges
are presented in Table 4.4; it should be noted that, since we need a
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Hyperparameter Range or Values Distribution

top-K 5 - 1000 uniform
shrink 0 - 1000 uniform
similarity cosine categorical
normalize true/false categorical
feature weighting none/TF-IDF/BM25 categorical

Table 4.1: Hyperparameter tuning ranges for ItemKNN CBF.

Hyperparameter Range or Values Distribution

top-K 300 uniform
shrink 0 uniform
similarity cosine categorical
normalize true boolean

learning rate 10−5 - 10−2 log-uniform
SGD mode Adam categorical
L1 regularization 103 - 10−2 log-uniform
L2 regularization 103 - 10−1 log-uniform
epochs 300 uniform
use dropout true categorical
dropout 30% - 80% uniform
D initialization ones/random categorical
positive only D true/false categorical
add zeros quota 0.5 - 1.0 uniform

Table 4.2: Hyperparameter tuning ranges for CFeCBF.

similarity matrix to work with, we use the variant of PureSVD that
computes it from the items’ latent factors;

• RP3
β (Section 2.2.3), whose hyperparameters and respective ranges are

presented in Table 4.5;

The best hyperparameters for each collaborative filtering method are found
using a random holdout validation split as described in Section 3.2.1. Then,
the collaborative filtering models used by CQFS are built with these hyper-
parameters on the entirety of the warm items.

When referring to CQFS in result tables we will indicate the collaborative
model from which it learns with an appended letter (K for ItemKNN CF, P
for PureSVD and R for RP3

β).

4.3 Data Sets

The method evaluation consists in an offline evaluation, described in Section
2.6, that requires the use of an existing data set. Since the proposed method
is a feature selection technique, we require data sets presenting feature data
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Hyperparameter Range or Values Distribution

top-K 5 - 1000 uniform
shrink 0 - 1000 uniform
similarity cosine categorical
normalize true/false categorical
feature weighting none/TF-IDF/BM25 categorical

Table 4.3: Hyperparameter tuning ranges for ItemKNN CF.

Hyperparameter Range or Values Distribution

number of factors 1 - 350 uniform
top-K 5 - 1000 uniform

Table 4.4: Hyperparameter tuning ranges for PureSVD.

for the items. Moreover, because of the physical limits imposed by the quan-
tum annealer and by the hybrid quantum-classical system (Section 2.9.2), we
need data sets with no more than a certain number of features that could be
selected. For these reasons, after some initial evaluations and preprocessing,
The Movies Dataset and Xing Challenge 2017 have been chosen.

4.4 The Movies Dataset

The Movies Dataset is a data set publicly available on Kaggle1. It consists
of data coming from TMDB2, integrated into the data of the Full MovieLens
Dataset by GroupLens3. It contains ratings and various metadata of movies
released up to July 2017. It is based on MovieLens20M, which contains
only genres and publication years as item features, enriched with many
more metadata coming from the TMDB Open API, such as crew and cast
members, plot keywords, release dates, production companies and so on.
This is a good addition in our scenario, dealing with the cold-start problem,

1https://www.kaggle.com/rounakbanik/the-movies-dataset
2https://www.themoviedb.org/
3https://grouplens.org/

Hyperparameter Range or Values Distribution

top-K 5 - 1000 uniform
α 0 - 2 uniform
β 0 - 2 uniform
normalize true/false categorical

Table 4.5: Hyperparameter tuning ranges for RP3
β.
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Rating Interactions

0.5 403156
1.0 841687
1.5 402829
2.0 1759928
2.5 1252990
3.0 5250081
3.5 3109644
4.0 6985966
4.5 2164214
5.0 3802586

Total 25973081

Table 4.6: Number of user-item interactions for each explicit rating in The
Movies Dataset.

with respect to MovieLens. Indeed, not only do we have a lot more content
information to work with, but metadata collected from TMDB are editorial
features. This kind of features is much more reliable than user-assigned tags,
which could be very sparse and noisy. Moreover, in a cold-start scenario user
tags would not be available on new items, while editorial features, being a
description of the movies’ characteristics, would be known in advance and
available for building a model.

The Movies Dataset has a URM with around 26 million ratings from
270882 users for 44711 items. The ratings are explicit, in a range between 0.5
and 5 with a step of 0.5, distributed as shown in Table 4.6 and in Figure 4.1.
Instead, in Table 4.7 there is the distribution of the interactions with respect
to the items. As we can see, half of the items have less than 10 interactions,
with only around a quarter of them having at least 5 interactions. However,
no preprocessing procedure is applied to the URM.

The ICM is a boolean matrix indicating if an item has a certain feature.
There are around 1.5 million values in the ICM, containing 368953 features
for the 44711 items. Features are extracted from the data set’s metadata by
parsing and vectorizing the information. Examples of present features are
genre, year, production company and country, original language and so on.
From the crew data, the extracted features are represented by the names
of the cast and crew members. The distribution of all these features is
presented in Table 4.8, where we can see how more than half of the features
belong to only one item. The noise introduced by these features can be
removed by filtering out all the features with less than a certain number of
interactions. Indeed, before using feature data in our model, features are
preprocessed by removing all the ones that belong to less than 5 items.

However, we are not going to treat all the features at the same time
in our model. Indeed, we are going to make a distinction between credit
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Figure 4.1: Ratings count of The Movies Dataset.

N
Items with

N interactions
Items with at least

N interactions

1 7567 44711
5 1665 26933
10 665 21108
15 399 18404
20 248 16678
25 202 15493
30 143 14631
35 113 13971
40 106 13416
45 76 12887
50 92 12455

Table 4.7: Number of items that have N or more interactions in The Movies
Dataset.
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N
Features belonging

to N items
Features belonging
to at least N items

1 222702 367123
5 10177 48613
10 2485 19231
15 1010 10275
20 520 6234
25 337 4162
30 183 2862
35 137 2057
40 87 1553
45 64 1199
50 32 937

Table 4.8: Distribution of all the item features in The Movies Dataset.

features, such as cast and crew members, and metadata features, such as
genre, year and so on. We ran different experiments for the two types of
features, both using a hybrid quantum-classical approach to solve the CQFS
optimization problem, because of the high number of features used. Here
we present a brief description of the two resulting data sets and the results
obtained from them.

4.4.1 The Movies Dataset - Credits

First, let’s analyze the features related to the movies’ credits. In particular,
as stated before, the extracted data regards crew and cast members of the
movies. Each entry corresponds to one person having a particular role in
the making of the movie. Some of the most relevant jobs are reported in
Table 4.9, along with the number of features appearing with those jobs in
the original data, the occurrences of these features in the credits ICM and
the percentage of movies with at least a feature with that job.

Features in the credits ICM are represented by names, indicating if the
corresponding person has been involved in the production of the movie.
There are 960614 values in the credits ICM, with 44711 item and 343018
features. As we can see in Table 4.9, the majority of these features corre-
spond to actors (202748), which cover more than a half of the nonzero values
of the credits ICM. However, directors represent another popular job cate-
gory, covering almost every movie in the data set with at least one feature
corresponding to a director.

After applying the filter that removes features belonging to less than 5
items, the features distribution greatly changes, as shown in Table 4.10. All
the categories are largely impacted in terms of number of features, which
is around 1

10 of the original. However, occurrences and the percentage of
movies with at least one feature from those jobs are not influenced in the
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Job Features Occurrences Percentage

Director 19740 48999 0.9896
Actor 202748 562053 0.9557
Producer 20017 43507 0.4885
Writer 19794 30398 0.4554
Editor 8047 23770 0.4379
Director of Photography 5684 20640 0.4244
Screenplay 12817 25143 0.3491
Original Music Composer 5081 15773 0.3107
Costume Design 4014 11010 0.2230
Production Design 4134 10524 0.2204

Table 4.9: Jobs appearing in more than 20% of the movies in the credits
ICM, ordered by percentage of movies in which they appear.

Job Features Occurrences Percentage

Actor 25159 308725 0.8695
Director 2293 23163 0.4927
Director of Photography 1068 13668 0.2934
Editor 1264 13621 0.2707
Producer 1820 17621 0.2653
Original Music Composer 646 9480 0.2005
Casting 570 9615 0.1461
Screenplay 1058 8409 0.1451
Costume Design 513 5859 0.1257
Production Design 569 5181 0.1136

Table 4.10: Jobs appearing in more than 10% of the movies in the credits
ICM after filtering, ordered by percentage of movies in which they appear.

same way. Indeed, they set to around 1
2 of the original values, apart from

the percentage of movies containing actors, which is only 10% less, because
of the very high number of features representing actors.

Given this filtering results, we had to choose what features to use in
our experiment, since the limit on the number of variables for the hybrid
quantum-classical solver is set to 10000 (see Section 2.9.2). Actors are rep-
resented by a number of features too large for this limit, that would have
required a more aggressive filtering to be lowered enough. Thus, we chose
to use the directors features. Indeed, while the filtering process greatly re-
duces the number of features from this category, the occurrences are only
halved and around half of the movies have at least one director. Moreover,
a number of features not too close to the limit of variables has been use-
ful to analyze the performance of the hybrid approach on a medium-sized
problem. Thus, the ICM is built from the director features only, with 23163
boolean values indicating which of the 2293 features belong to which items.
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Set Interactions Covered users Covered items

Training 18180781 269473 35289
Validation 2594836 263644 22390
Testing 5195793 254039 8593

(a) Random holdout split.

Set Interactions Covered users Covered items

Training 18125425 268485 31354
Validation 2649073 233737 4764
Testing 5195201 253625 8593

(b) Cold item split.

Table 4.11: Interactions per split of The Movies Dataset.

Data Splitting

As described in Section 3.2.1, before training any model we need to split
the data. First, we perform a cold item split in order to obtain a testing set
containing around 20% of the interactions. Then, depending on the model
we need to optimize, we use two different kinds of split, a random holdout
or a cold item split, to obtain the appropriate validation and training sets,
with respectively around 10% and 70% of the total number of interactions.
In Table 4.11 we report some data about the obtained sets, with the ones
resulting from random holdout in Table 4.11a and the ones from cold item
split in Table 4.11b.

As we can see, the testing sets for both types of split contain the same
number of items. However, they have a different number of interactions.
This is due to the fact that we do not allow cold users (the ones without any
interaction) in the training set, thus we remove them also from validation
and testing set. This can happen when all the interactions of a user are
moved to the validation and testing sets. In our case, this difference does
not create any problem, since the random holdout split is used only to
optimize the collaborative filtering models. The number of users that have
at least one interaction in each of the three sets is reported in the covered
users column of the tables.

It should be noted that the numbers of covered items between the three
sets of the cold item split (Table 4.11b) sum up to the total number of items,
44711, as expected from this kind of split.

Collaborative Filtering Models

The collaborative filtering models chosen for this set of experiments on di-
rector credits data are ItemKNN CF, PureSVD and RP3

β. The best hyper-
parameters found by the hyperparameter tuning procedure (Section 2.7) are
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Model Hyperparameter Value

ItemKNN CBF

top-K 10
shrink 19
similarity cosine
normalize true
feature weighting none

Table 4.12: Best hyperparameters found for an ItemKNN CBF model built
with director credits and optimized on the validation random holdout split.

Model PREC REC NDCG MAP IC GD MIL

ItemKNN CBF 0.0145 0.0152 0.0139 0.0084 0.2503 0.0312 0.9765

ItemKNN CF 0.1298 0.1931 0.1719 0.1373 0.1641 0.0115 0.9605
PureSVD 0.1333 0.1981 0.1839 0.1438 0.0214 0.0030 0.9074
RP3

β 0.1381 0.2022 0.1783 0.1468 0.2165 0.0117 0.9605

Table 4.13: Comparison between the quality of an ItemKNN CBF built with
director credits against the chosen collaborative methods on the random
holdout validation split.

presented in Table 4.14. Instead, a comparison between these methods and
an ItemKNN CBF (best hyperparameters shown in Table 4.12) built with
the director credits ICM, and optimized on the random holdout validation
set, is presented in Table 4.13. The metrics are evaluated on the validation
set of the warm items random holdout split (see Section 3.2.1 and Figure
3.2), used to optimize the methods.

This is done to understand how much the collaborative methods are
good with respect to the content-based one. As we can see, the collaborative
methods greatly outperform the content-based algorithm. This means that
we can safely rely on collaborative information to improve the accuracy of
a content-based model through wrapped methods, such as CQFS.

Baseline Models

As stated before, the chosen baseline algorithms are a standard ItemKNN
CBF built from the directors ICM with all the 2293 features, an ItemKNN
CBF built after selecting the highest weighted features by TF-IDF, with
different selection percentages (40, 60, 80 and 95%), and a CFeCBF, which
learns weights for all the features from the three optimized collaborative
models. The best hyperparameters found for these models are reported in
Table 4.15, Table 4.16 and Table 4.17. On the base of previous results in
the literature [15, 17], we set default values for some parameters of CFeCBF
methods (the ones having a fixed value in Table 4.2), thus we report only
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Model Hyperparameter Value

ItemKNN CF

top-K 31
shrink 752
similarity cosine
normalize true
feature weighting none

PureSVD
number of factors 31
top-K 1000

RP3
β

top-K 69
α 0.0
β 0.5583
normalize true

Table 4.14: Best hyperparameters found for the collaborative filtering algo-
rithms applied on The Movies Dataset.

Model Hyperparameter Value

ItemKNN CBF

top-K 6
shrink 31
similarity cosine
normalize false
feature weighting TF-IDF

Table 4.15: Best hyperparameters found for the ItemKNN CBF baseline of
director credits experiments.

the non-fixed parameters.

Quantum Feature Selection

Once the collaborative filtering models are optimized, we can use them in
the CQFS model to learn which features to select. As explained in Section
3.1.3, the similarity matrices built by the collaborative models are compared
to the similarity matrix built by the dot product ICM ·ICMT . In this case,
director features are highly sparse, which results in a similarity matrix hav-
ing a very low number of nonzero values and density, reported in Table 4.18.
Here are also reported the same properties about the similarities derived
from the collaborative methods, in order to make a quick comparison. In
particular, we show what percentage of the content similarity is covered by
the collaborative similarity. As we can see, only around 10% of the content
similarities are present in the different collaborative models, meaning that
we should expect around 90% of the content similarities to be penalized with
a positive value in the CQFS model.

Now, let’s analyze the quantum feature selection itself. We carried out
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Model Hyperparameter Value

TF-IDF CBF 40%

top-K 18
shrink 995
similarity cosine
normalize true
feature weighting none

TF-IDF CBF 60%

top-K 26
shrink 7
similarity cosine
normalize false
feature weighting TF-IDF

TF-IDF CBF 80%

top-K 6
shrink 25
similarity cosine
normalize true
feature weighting none

TF-IDF CBF 95%

top-K 8
shrink 994
similarity cosine
normalize true
feature weighting TF-IDF

Table 4.16: Best hyperparameters found for the TF-IDF CBF baselines of
director credits experiments.
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Model Hyperparameter Value

CFeCBF K

learning rate 7.59 × 10−3

L1 regularization 1.13 × 10−3

L2 regularization 1.35 × 10−3

epochs 15
dropout 75.97%
D initialization ones
positive only D true
add zeros quota 6.95 × 10−1

CFeCBF P

learning rate 1.02 × 10−3

L1 regularization 1 × 10−2

L2 regularization 1 × 10−1

epochs 20
dropout 80%
D initialization random
positive only D true
add zeros quota 1.0

CFeCBF R

learning rate 9.32 × 10−4

L1 regularization 6.70 × 10−3

L2 regularization 9.73 × 10−2

epochs 45
dropout 39.29%
D initialization random
positive only D false
add zeros quota 5.10 × 10−1

Table 4.17: Best hyperparameters found for the CFeCBF baselines of direc-
tor credits experiments.

Model S nonzero values S density Covered CBF %

CBF dot product 198512 9.93 × 10−5 -

ItemKNN CF 1117286 5.59 × 10−4 9.76%
PureSVD 36129000 1.81 × 10−2 13.13%
RP3

β 1445598 7.23 × 10−4 9.40%

Table 4.18: Data about content and collaborative similarities for director
credits of The Movies Dataset.
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Parameter Values

α 1
β 1, 10−1, 10−2, 10−3

p 40%, 60%, 80%, 95%
s 1, 10−1, 10−2, 10−3

Table 4.19: Tested parameters for the initial experiment on director credits
of The Movies Dataset.

initial experiments with different values for CQFS parameters, reported in
Table 4.19. In particular, we always set the coefficient of the negative com-
ponents of the FPM , α, to 1. Instead, we tried different values for the
coefficient of the positive components of the FPM , β, in order to under-
stand how the similarities to discard, which are many more in number, could
have influenced the selection. Moreover, we made use of the k-combinations
penalty in the objective function in order to select a certain percentage p of
all the features (40, 60, 80 and 95%). The penalty is weighted by a strength
parameter, s, for which we tried different values. These experiments were
done only with ItemKNN CF, in order to have an initial set of results to
understand how the parameters influenced our model.

In Figure 4.2 we can see how precise the procedure was in selecting the
requested number of features. In this case, every combination of parameters
β and s gave around the desired number of selected features, for each selec-
tion percentage p, as we can see from the annotations on the figures, which
indicate the ratio of the number of actually selected features on the desired
number. Since the number of actually selected features is really close to the
one we desired, we can carry out our experiments on this data set with the
default parameters, α = 1, β = 1, s = 1.

In Table 4.20 we show some statistics about the coefficients in the FPM ,
before applying the k-combinations constraint, for the default parameters of
CQFS. In particular we make a distinction between coefficients of the linear
terms of the objective function (the ones on the diagonal, see Section 2.8.1)
and coefficients of the quadratic terms of the objective function. As we
can see, the majority of both linear and quadratic coefficients are positive.
This is consistent with what we expected from the previously highlighted
percentages of similarities to exclude in Table 4.18, since positive values are
assigned to features that generate those similarities. Moreover, β = 1 means
that the positive terms E of equation (3.1), used to build the FPM , have
the same weight of the negative terms K of the same equation.
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Figure 4.2: Ratios of the number of actually selected features on the desired
number, for various parameters of CQFS applied to director credits of The
Movies Dataset.

CF Model Coefficients % negative % positive Min Max Mean

ItemKNN CF
Linear 3.27% 95.68% -86 2222 70.07
Quadratic 2.80% 97.20% -21 218 9.39

PureSVD
Linear 5.36% 93.15% -410 2082 64.45
Quadratic 6.82% 93.18% -74 585 8.18

RP3
β

Linear 2.53% 96.47% -182 2178 70.71
Quadratic 0.84% 99.16% -20 218 9.58

Table 4.20: Statistics about values in linear and quadratic coefficients of the
FPM , for each collaborative method, in the director credits experiments.
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Model PREC REC NDCG MAP IC GD MIL

Baselines

ItemKNN CBF 0.0606 0.0307 0.0328 0.0318 0.3619 0.0377 0.9312
TF-IDF 60% 0.0716 0.0410 0.0447 0.0376 0.3084 0.0404 0.9440
CFeCBF K 0.0547 0.0344 0.0323 0.0231 0.2173 0.0226 0.9043
CFeCBF P 0.0501 0.0338 0.0301 0.0202 0.0839 0.0149 0.8875
CFeCBF R 0.0540 0.0359 0.0349 0.0244 0.2352 0.0291 0.9386

CQFS

CQFS K 60% 0.0582 0.0284 0.0338 0.0283 0.1963 0.0206 0.9028
CQFS P 60% 0.0724 0.0373 0.0424 0.0355 0.1905 0.0270 0.9355
CQFS R 60% 0.0606 0.0290 0.0355 0.0309 0.1967 0.0211 0.9076
CQFS K 80% 0.0729 0.0363 0.0412 0.0364 0.2645 0.0300 0.9313
CQFS P 80% 0.0726 0.0392 0.0409 0.0351 0.2595 0.0339 0.9438
CQFS R 80% 0.0739 0.0363 0.0414 0.0375 0.2629 0.0292 0.9292

Table 4.21: Evaluation metrics computed on The Movies Dataset testing set
for baseline algorithms and CQFS using director credits features.

Final Content-based Model

After selecting features with CQFS, we set to 0 the values of the non-selected
features in the ICM. Then, for each different selection, we built the final
content-based model as an ItemKNN CBF and we optimized it with hy-
perparameter tuning on the ranges in Table 4.1. We decided to not report
hyperparameters for the final content-based methods, because of the overall
high number of models built (one for each combination of CQFS parame-
ters). This is valid for other sets of experiments as well.

Let’s recall from Section 3.2.1 that the ICM used for optimization did
not contain any data about cold items, while the one used for testing eval-
uation did. The results of the testing evaluation on a cutoff at 10 of the
recommendations are reported in Table 4.21, along with the results of the
baselines on the same testing set. We do not report the results for each se-
lection percentages for TF-IDF and CQFS. Instead, we report only the best
ones in terms of precision and, in the case of CQFS, also the 60% selection in
order to compare it directly with TF-IDF and with CQFS at 80%. Accuracy
metrics of CQFS which surpass the baselines are reported in bold, in order
to highlight them. Instead, if a baseline outperformed every other method
in a certain accuracy metric, only its corresponding value is highlighted.

As we can see, the only model comparable with CQFS is TF-IDF, which
is able to select less features and obtain better recall, NDCG and MAP val-
ues, while CQFS achieves better precision results, in general. An interesting
result is given by CQFS with PureSVD when selecting 60% of the features.
Indeed, with the same percentage of features, while sacrificing on item cov-
erage, it is able to achieve better precision than TF-IDF with a comparable
NDCG, even higher than other CQFS parameters. Moreover, CQFS with
PureSVD at 60% outperforms CQFS with both ItemKNN CF and RP3

β at
60%, in every accuracy metric.

A more detailed comparison between CQFS and TF-IDF is shown in
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Figure 4.3: Plots comparing four metrics (precision, NDCG, item coverage
and Gini diversity) on different experiments made on director credits of
The Movies Dataset with CQFS and TF-IDF, for the four tested selection
percentages. ItemKNN CBF baseline is shown for reference.
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Figure 4.3. Here, the results on four metrics are plotted against the tested
selection percentages. Despite giving good results at 60%, TF-IDF seems
to not be as consistent as CQFS at higher percentages. The only exception
is CQFS with PureSVD, which has a very different behavior than the other
two models, giving the best results with 60 and 80% of the features, while
going event below the ItemKNN CBF baseline with 95%.

However, the fact that TF-IDF CBF is able to achieve such accuracy us-
ing only 60% of the features, confirmed as well by CQFS PureSVD, means
that many of the director features could be noisy or not representing the ac-
tual interests of the users. This is confirmed by the accuracy of the CFeCBF
weighting algorithm which, even making use of all the features, is not able
to outperform any other method.

With respect to item coverage and diversity of the recommendations, we
can denote how ItemKNN CBF and TF-IDF CBF both have higher scores
than almost all the other methods. One of the reasons is that the number
of features used to build ItemKNN CBF are more than the ones used for
the other methods, thus the model presents many similarities which are not
expressed by the others and that generate recommendations of more items.
Indeed, this is confirmed by the coverage and diversity of the methods that
used 95% of the features, which have higher scores than with fewer selected
features. Moreover, the lower scores achieved by CQFS and CFeCBF meth-
ods, which both learn from a collaborative model, are explained by the bias
that collaborative filtering methods have towards popular items. This bias
tends to reduce the diversity of recommended items, which is reflected in
CFeCBF and in the CQFS models with fewer features (40, 60 and 80%).

4.4.2 The Movies Dataset - Metadata

The other set of item features from The Movies Dataset, not extracted from
credits data, are the metadata. Among them, some interesting features found
are 20 genres, 23692 unique production companies, 133 spoken languages
and 161 production countries.

All the metadata features total to a number of 25935, a lot less than
the credits, but the ICM has 488690 nonzero values, which makes the meta-
data ICM more populated than the credits ICM. Indeed, when filtering the
features in order to remove the ones belonging to less than 5 items, the
number of features remaining is almost the same in every relevant category,
as shown in Table 4.22. The only categories showing a large cut are pro-
duction company, which may be due to the less successful companies or the
ones established only for a few movies, and movie collection, since collections
with less than 5 movies are discarded. Feature categories not reported in
the table are categories containing only one feature, indicating for example
if the movie has already been released.

The total number of features remaining is 3058 and the total number
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Before filtering After filtering

Category Features Occurrences Features Occurrences

Genre 20 89821 20 89821

Original Language 89 44697 57 44645

Production Company 23692 69782 2493 39922

Production Country 161 48698 105 48572

Release Date 135 44626 126 44613

Spoken Language 133 52588 88 52493

Movie Collection 1695 4433 160 1191

Table 4.22: Number of features and ICM occurrences per metadata category
before and after filtering the metadata features to remove the ones belonging
to less than 5 items.

of occurrences in the filtered ICM amounts to 455300. Thus, given that
the number of features after filtering is way below the limit imposed by the
hybrid quantum-classical approach (Section 2.9.2), we decided to make our
experiments on the filtered metadata ICM.

Data Splitting

The training, validation and testing sets used for experiments with metadata
features are the same used for experiments with director credits features.
Again, for the validation set we used the random holdout split (Table 4.11a)
to optimize the collaborative model, and the cold item split (Table 4.11b)
to optimize the final content-based model.

Collaborative Filtering Models

Differently from the credit features experiments, here we decided to select
PureSVD as the only collaborative model used by CQFS. This choice was
made in order to limit the computational costs of the experiments and the
costs of the quantum-classical solver. Therefore, we chose PureSVD because
of the interesting results shown in previous experiments and because of its
lower computational requirements.

The best hyperparameters for this model are the same as with credits
experiments, since user interaction data and split sets do not change be-
tween the two sets of experiments. Thus, they are reported in Table 4.14.
Instead, a comparison between PureSVD and an ItemKNN CBF (best hy-
perparameters in Table 4.23) built with the metadata ICM is presented in
Table 4.24. As with director credits experiments, the metrics are evaluated
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Model Hyperparameter Value

ItemKNN CBF

top-K 6
shrink 989
similarity cosine
normalize true
feature weighting BM25

Table 4.23: Best hyperparameters found for an ItemKNN CBF model built
with metadata features and optimized on the validation random holdout
split.

Model PREC REC NDCG MAP IC GD MIL

ItemKNN CBF 0.0305 0.0367 0.0383 0.0253 0.3603 0.0308 0.9643

PureSVD 0.1333 0.1981 0.1839 0.1438 0.0214 0.0030 0.9074

Table 4.24: Comparison between the quality of an ItemKNN CBF built with
metadata features against the chosen collaborative method on the random
holdout validation split.

on the validation set of the warm items random holdout split (see Section
3.2.1 and Figure 3.2), used to optimize the methods.

From this comparison we can observe how, also in this case, the col-
laborative method is able to outperform the accuracy of the content-based
algorithm. This suggests that embedding collaborative information into the
content-based model, we should be able to improve its accuracy.

Baseline Models

As baseline models we have a standard ItemKNN CBF built from the meta-
data ICM with all the 3058 features, an ItemKNN CBF model built after
selecting the highest weighted features by TF-IDF, with different selection
percentages (40, 60, 80 and 95%), and a CFeCBF learning from the opti-
mized PureSVD collaborative model. The best hyperparameters found for
these models are reported in Table 4.25, Table 4.26 and Table 4.27. Also in
this case, only the non-fixed hyperparameters of CFeCBF are reported.

Quantum Feature Selection

After optimizing the PureSVD collaborative model, we used it to select
features through CQFS. If we compare data about the similarity model
obtained with PureSVD and the content similarity model obtained with the
dot product of the metadata ICM with itself, we find a very different scenario
than with director credits features.
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Model Hyperparameter Value

ItemKNN CBF

top-K 989
shrink 2
similarity cosine
normalize false
feature weighting TF-IDF

Table 4.25: Best hyperparameters found for the ItemKNN CBF baseline of
metadata features experiments.

Model Hyperparameter Value

TF-IDF CBF 40%

top-K 989
shrink 728
similarity cosine
normalize false
feature weighting TF-IDF

TF-IDF CBF 60%

top-K 1000
shrink 1000
similarity cosine
normalize false
feature weighting TF-IDF

TF-IDF CBF 80%

top-K 999
shrink 486
similarity cosine
normalize false
feature weighting TF-IDF

TF-IDF CBF 95%

top-K 993
shrink 17
similarity cosine
normalize false
feature weighting TF-IDF

Table 4.26: Best hyperparameters found for the TF-IDF CBF baselines of
metadata features experiments.

Model Hyperparameter Value

CFeCBF P

learning rate 7.25 × 10−4

L1 regularization 1.62 × 10−3

L2 regularization 5.06 × 10−3

epochs 25
dropout 79.91%
D initialization random
positive only D true
add zeros quota 5.53 × 10−1

Table 4.27: Best hyperparameters found for the CFeCBF baseline of meta-
data features experiments.
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Model S nonzero values S density Covered CBF %

CBF dot product 1304257094 6.52 × 10−1 -

PureSVD 36129000 1.81 × 10−2 2.77%

Table 4.28: Data about content and collaborative similarities for metadata
features of The Movies Dataset.

Parameter Values

α 1
β 1, 10−1, 10−2, 10−3, 10−4

p 40%, 60%, 80%, 95%
s 1, 10−1, 10−2, 10−3, 10−4

Table 4.29: Tested parameters for the experiments on metadata features of
The Movies Dataset.

Indeed, as shown in Table 4.28, the number of similarities in the content
model are now two order of magnitude more than the number of similari-
ties in PureSVD. Moreover, the collaborative similarities cover only a small
fraction of the content ones, while the content model contains 99.95% of the
collaborative similarities. This means that the CQFS model should penalize
with positive values almost all the similarities present in the content model,
since they are absent from the collaborative one.

Because of this imbalance, we tested CQFS with the different parameters
reported in Table 4.29. The results of the selection with these parameters
are shown in Figure 4.4, in the form of heat maps of the ratios between the
actual number of the selected features and the desired number. These results
confirm the expected behavior, showing how, with standard parameters,
CQFS is not able to make a precise selection.

Some statistics about the values in the FPM , before applying the k-
combinations constraint, are reported in Table 4.30, for each tested value of
parameter β. As we can see, when β = 1 almost every value of the FPM
is positive, which was expected, because of the high imbalance between
similarities to discard and similarities to maintain. Although similar per-
centages of negative and positive values also characterize the director credits
experiments, it is not the same for the actual values. Indeed, here we have
maximum values of many more orders of magnitude. This contributes to
unbalance the FPM , leading to the selection of only around 10% of the
desired features when β = 1 and s = 1. Instead, decreasing β we obtain
the opposite effect, as seen in the FPM with β = 1× 10−4, where we have
negative numbers with very high absolute values, as opposed to positive
numbers with low values.
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Figure 4.4: Ratios of the number of actually selected features on the desired
number, for various parameters of CQFS applied to metadata features of
The Movies Dataset.
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β Coefficients % negative % positive

1
Linear 6.64 91.79
Quadratic 0.76 99.24

1 × 10−1 Linear 38.49 61.41
Quadratic 21.20 78.80

1 × 10−2 Linear 57.42 42.48
Quadratic 46.31 53.69

1 × 10−3 Linear 58.99 40.91
Quadratic 49.66 50.34

1 × 10−4 Linear 59.16 40.75
Quadratic 49.99 50.01

(a) Percentages of negative and positive values in the FPM .

β Coefficients Min Max Mean

1
Linear -918 1232949796 1827092.09
Quadratic -13015 1230629157 12905.58

1 × 10−1 Linear -16330.00 90784127.09 126252.23
Quadratic -595767.60 90613262.49 851.95

1 × 10−2 Linear -23432471.19 23807.87 -43714.23
Quadratic -23994607.62 633749.32 -350.72

1 × 10−3 Linear -34854124.93 823.00 -60747.95
Quadratic -34865488.91 30110.62 -470.48

1 × 10−4 Linear -35996305.70 2.33 -62436.55
Quadratic -35996331.80 510.11 -483.10

(b) Minimum, maximum and mean of the values in the FPM .

Table 4.30: Statistics about values in linear and quadratic coefficients of the
FPM , for each collaborative method, in the metadata features experiments.
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Because of this imbalance, we decided to use higher s values, in order
to obtain selections with the correct number of selected features. Thus, we
used the feature selections given by CQFS with s = 102 and s = 103; we ex-
cluded 104 because increasing the strength of the k-combinations constraint
means that the solver could be more inclined to select the correct number
of variables rather than optimizing our main problem. As values of β we
decided to test 1, 1× 10−1, 1× 10−2 and 1× 10−3, although the best accu-
racy was obtained with β = 1× 10−2 and β = 1× 10−3. Thus, we are going
to focus more in details on these two values.

To better understand how CQFS selects the features, we show in fig-
ure Figure 4.5 how many features for each category it selects with selection
percentage 40% and different values of β and s. The bar plots represent
the percentage of features in the various categories that have been selected,
annotated with the absolute number of features selected from each category.
As we can see, all the genres are selected with every combination of param-
eters and the percentages for each category are generally consistent with
different values for β and s. However, it should be noted that when s = 102

CQFS selects many more features (around 1800) than the desired number
(1223), as opposed to s = 103 (around 1300). For this reason, from now on
we will report results from experiments with the k-combinations strength
parameter s set to 103.

For the sake of completeness, in Figure 4.6 we show the percentage of
features from each category selected by CQFS with the remaining selection
percentages (60, 80 and 95%) with s = 103 and variable β. Here we can see
how the percentages of features selected from each category are consistent
when varying the selection percentage of CQFS.

Final Content-based Model

After selecting feature with CQFS, we set to 0 the values of the non-selected
features in the ICM. Then, for each combination of parameters (percentage
selection and β, since s = 103), we built the final content-based model as an
ItemKNN CBF optimized with hyperparameter tuning on the ranges shown
in Table 4.1. The results of the testing evaluation on a cutoff at 10 of the
recommendations are reported in Table 4.31, along with the results of the
baselines on the same testing set.

As with the director credits experiments, we only report the most inter-
esting results between the collected ones. In particular, we chose the best
performing selection percentage overall. We can see how CQFS outperforms
all the baselines in every accuracy metric, even though by a small amount.
However, what is really interesting about these results is the fact that CQFS
accuracy scores are very close with the ItemKNN CBF baseline ones, even
though CQFS uses only 40% of the features. This means that more than
half of the metadata features are not meaningful when making content-based
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(a) β = 1× 10−2, s = 102 (b) β = 1× 10−2, s = 103

(c) β = 1× 10−3, s = 102 (d) β = 1× 10−3, s = 103

Figure 4.5: Bar plots showing the percentage of features selected for each
category with CQFS at 40% with different β and s values.

Model PREC REC NDCG MAP IC GD MIL

Baselines
ItemKNN CBF 0.1057 0.0698 0.0669 0.0660 0.6746 0.0830 0.9510
TF-IDF 95% 0.1053 0.0694 0.0664 0.0656 0.6724 0.0556 0.9507
CFeCBF P 0.0670 0.0438 0.0411 0.0364 0.3048 0.0238 0.8502

CQFS P
40%

β = 1× 10−2 0.1058 0.0701 0.0672 0.0663 0.6461 0.0538 0.9502
β = 1× 10−3 0.1056 0.0702 0.0671 0.0662 0.6473 0.0538 0.9502

Table 4.31: Evaluation metrics computed on The Movies Dataset testing set
for baseline algorithms and CQFS using metadata features.
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(a) p = 60%, β = 1× 10−2 (b) p = 60%, β = 1× 10−3

(c) p = 80%, β = 1× 10−2 (d) p = 80%, β = 1× 10−3

(e) p = 95%, β = 1× 10−2 (f) p = 95%, β = 1× 10−3

Figure 4.6: Bar plots showing the percentage of features selected for each
category with CQFS at 60, 80 and 95% with different β and s = 103.
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Figure 4.7: Plots comparing four metrics (precision, NDCG, item coverage
and Gini diversity) on different experiments made on metadata features of
The Movies Dataset with CQFS and TF-IDF, for the four tested selection
percentages. ItemKNN CBF baseline is shown for reference.

recommendations. This is confirmed as well by the item coverage of CQFS,
which is close to the one obtained by ItemKNN CBF, that instead uses all
the features.

It should be noted, again, that these results were obtained by setting the
strength parameter to 103 and testing two different values of β, 1× 10−2 and
1× 10−3. However, if we analyze Figure 4.7, we can see how higher values
of β (1 and 1× 10−1) result in lower accuracy, not even comparable with the
baselines. This is probably due to the imbalance towards positive values of
the FPM shown in Table 4.30 for these two values of β. In particular, almost
every selection, using these parameter values, discards every genre feature,
suggesting how much genres are relevant when making recommendations
with The Movies Dataset.
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Interaction Meaning

0 Xing showed the item to the user.
1 The user clicked on the item.
2 The user bookmarked the item on Xing.
3 The user clicked a button to reply to or apply for the job posting.
4 The user eliminated the job posting from the suggestions.
5 The company showed interest into the user.

Table 4.32: Meaning of the interactions found in the original Xing data set.

4.4.3 Xing Challenge 2017

Xing Challenge 2017 is the data set used in the 2017 ACM RecSys Chal-
lenge4. Xing is a business social network, and this data set is a sample of
Xing’s data set. This means that it is not complete and it is artificially
enriched with noise in order to anonymize data.

The data set contains the interactions between users of the platform and
items, which represent job postings from companies. The interactions go
from 0 to 5, with each value representing a different kind of interaction,
as described in Table 4.32. In our experiments we do not use interactions
with value 4 and 5, that are set to 0 in our URM, while we make use
of interactions with value 0, 1, 2 and 3. Moreover, since these values do
not represent explicit ratings, we set all the nonzero values to 1. The URM
contains 4972869 interactions between 688645 users and 1306054 items. The
distribution of the interactions with respect to the items is shown in Table
4.33. Because of the high number of items, many of which do not even
have interactions, we preprocess the URM, in order to extract the 5-cores,
which are all the users and items that have at least 5 interactions. Thus, we
obtain a URM with 3357049 interactions (1.6 million less than the original
one) between 190373 user and 88984 items.

The data set also contains features of the job postings. Example of these
features are the industry and the discipline for the job posting, the required
career level and the type of emplyment. The ICM of Xing Challenge 2017
is a boolean matrix containing around 32 million values between 1.3 million
items and 107870 features. However, when applying the preprocessing to
the URM, we need to keep only the items remained in the URM. Thus, the
values in the ICM reduce to 2.7 million, between 88984 items and 43456
features. In Table 4.34 we show the number of features and corresponding
occurrences in the ICM for the main categories of features in Xing Challenge
2017. Every feature category has at least one value for each item in the ICM.

Because of the low number of features belonging to most of the categories,
we decided to solve CQFS for this data set with the quantum-only approach,
directly using the QPU. This means that we had to work with a number

4http://www.recsyschallenge.com/2017/
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Before filtering After filtering

N
Items with

N interactions
Items with at least

N interactions
Items with

N interactions
Items with at least

N interactions

1 205243 508608 0 88984
5 22683 125048 16707 88984
10 5937 56963 4375 38927
15 2772 35152 2026 22923
20 1414 24449 1082 15336
25 927 18455 615 11150
30 645 14481 393 8518
35 463 11667 293 6772
40 333 9668 178 5546
45 250 8172 154 4688
50 182 7001 130 4018

Table 4.33: Number of items that have N or more interactions in Xing
Challenge 2017, before and after preprocessing the URM.

Before filtering After filtering

Category Features Occurrences Features Occurrences

Title Concept 11330 4018547 6019 298707
Industry 23 1306054 23 88984
Discipline 23 1306054 22 88984
Career Level 7 1306054 6 88984
Employment Type 5 1306054 5 88984
Is Paid 2 1306054 2 88984
Country 4 1306054 4 88984
Region 17 1306054 17 88984
Tags 96459 19172589 37358 1766133

Table 4.34: Number of features and ICM occurrences per feature category
before and after preprocessing of Xing Challenge 2017.
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of features complying with the limit imposed by the QPU. Therefore, we
decided to use the following categories:

• industry: 23 features;

• discipline: 22 features;

• country: 4 features, consisting in Germany, Austria, Switzerland and
a feature for all the other countries;

• region: 17 features, consisting in 16 regions of Germany and 1 feature
indicating non-specified regions.

Since the total number of features from these categories is 66, while the limit
of variables that can be embedded on the QPU is 65, we decided to drop 1
feature, the region representing non-specified regions. We chose this feature
because it only indicates that the job posting is not for Germany, which
can be inferred already from the country feature. Hence, this region feature
is of limit usefulness, since it is not possible to use it as an indication of
proximity. The resulting ICM has 346315 values between 88984 items and
65 features.

Data Splitting

As described in Section 3.2.1, we need to split the data set in order to
properly train and evaluate our models. Analogously to the experiments
with The Movies Dataset, we first perform a cold item split to obtain a
testing set containing around 20% of all the interactions. Then, we perform
two different types of split to obtain two different couples of validation and
training sets. A random holdout split is needed to optimize the collaborative
model, while another cold item split is needed to optimize the final model.
The corresponding validation and training sets contain respectively around
10% and 70% of all the interactions. In Table 4.35 we report some data about
the sets obtained from the two different splits. The observations made on
the splits of The Movies Dataset are valid in this case as well.

Collaborative Filtering Models

Although we trained three collaborative filtering models (ItemKNN CF,
PureSVD and RP3

β) on Xing Challenge 2017, we decided, as for the exper-
iments on metadata of The Movies Dataset, to use only one of them for
CQFS. In particular, in this case we chose the ItemKNN CF model, which
gave, on Xing Challenge 2017, better results than PureSVD and comparable
with RP3

β. The best hyperparameters found for this model during optimiza-
tion are reported in Table 4.36. A comparison between this optimized model
and an ItemKNN CBF model optimized on the random holdout validation
split (best hyperparameters in Table 4.36) is shown in Table 4.37.
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Set Interactions Covered users Covered items

Training 2331120 190271 69586
Validation 354330 190043 52138
Testing 671050 170448 19395

(a) Random holdout split.

Set Interactions Covered users Covered items

Training 2349927 190271 59891
Validation 335523 141185 9698
Testing 671050 170448 19395

(b) Cold item split.

Table 4.35: Interactions per split of Xing Challenge 2017.

Model Hyperparameter Value

ItemKNN CF

top-K 1000
shrink 1000
similarity cosine
normalize true
feature weighting TF-IDF

ItemKNN CBF

top-K 153
shrink 763
similarity cosine
normalize true
feature weighting BM25

Table 4.36: Best hyperparameters found for the ItemKNN CF model used
for CQFS and for an ItemKNN CBF model optimized on the random holdout
validation split in order to be compared with the collaborative method.

Model PREC REC NDCG MAP IC GD MIL

ItemKNN CBF 0.0029 0.0167 0.0089 0.0053 0.7662 0.2401 0.9944

ItemKNN CF 0.1148 0.4894 0.4089 0.3661 0.7303 0.1393 0.9899

Table 4.37: Comparison between the quality of an ItemKNN CBF built
with the chosen 65 features against the chosen collaborative method on the
random holdout validation split.
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Model Hyperparameter Value

ItemKNN CBF

top-K 460
shrink 998
similarity cosine
normalize false
feature weighting none

Table 4.38: Best hyperparameters found for the ItemKNN CBF baseline of
Xing Challenge 2017 experiments.

Again, we can see how the collaborative filtering method outperforms the
accuracy of the content-based one. This means that we should be able to
improve the accuracy of the content-based model by embedding collaborative
information into it.

Baseline Models

As baseline models we used a standard ItemKNN CBF built from the ICM
with all the 65 features, an ItemKNN CBF model built after selecting the
highest weighted features by TF-IDF, with different selection percentages
(40, 60, 80 and 95%), and a CFeCBF learning from the optimized ItemKNN
CF model. The best hyperparameters found for these models are reported
respectively in Table 4.38, Table 4.39 and Table 4.40. Again, we report only
the non-fixed hyperparameters of CFeCBF.

Quantum Feature Selection

After optimizing the ItemKNN CF model, we used it to select features with
CQFS. As opposed to The Movies Dataset experiments, in this case we
directly used the QPU to search for a solution of the CQFS optimization
problem. Therefore, we had to run a minor embedding procedure for each
experiment, in order to map the variables of the CQFS optimization problem
(the features) to the Chimera graph of the QPU. The result of the minor
embedding of one of our experiments on Xing Challenge 2017 (p = 40%,
β = 1, s = 1) is shown in Figure 4.8. The physical qubits used to repre-
sent variables of the problem and their couplers are drawn in blue onto the
underlying Chimera graph of the QPU, drawn in grey. One of the problem
variables is highlighted in red, to show how one logical variable has to be
represented by more than one physical qubits, because of the sparsity of the
graph. As we can see, in the bottom left corner, some qubits are missing
with respect to Figure 2.5, which instead shows the complete structure of a
Chimera graph. This is due to the fact that not all the qubits and couplers
are always available for computation5.

5https://docs.dwavesys.com/docs/latest/c qpu 0.html#dwave-short-qpu-architecture
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Model Hyperparameter Value

TF-IDF CBF 40%

top-K 439
shrink 383
similarity cosine
normalize false
feature weighting none

TF-IDF CBF 60%

top-K 557
shrink 0
similarity cosine
normalize false
feature weighting none

TF-IDF CBF 80%

top-K 325
shrink 399
similarity cosine
normalize false
feature weighting none

TF-IDF CBF 95%

top-K 489
shrink 977
similarity cosine
normalize false
feature weighting none

Table 4.39: Best hyperparameters found for the TF-IDF CBF baselines of
Xing Challenge 2017 experiments.

Model Hyperparameter Value

CFeCBF P

learning rate 1.93 × 10−4

L1 regularization 1 × 10−3

L2 regularization 1 × 10−1

epochs 35
dropout 30%
D initialization random
positive only D true
add zeros quota 5 × 10−1

Table 4.40: Best hyperparameters found for the CFeCBF baseline of Xing
Challenge 2017 experiments.
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Figure 4.8: Resulting minor embedding of one of the Xing Challenge 2017
experiments into the Chimera graph.

89



Model S nonzero values S density Covered CBF %

CBF dot product 4237352674 5.35 × 10−1 -

ItemKNN CF 14508391 1.83 × 10−3 0.33%

Table 4.41: Data about content and collaborative similarities for features of
Xing Challenge 2017.

Parameter Values

α 1
β 1, 10−1, 10−2, 10−3, 10−4

p 40%, 60%, 80%, 95%
s 1, 10−1, 10−2, 10−3, 10−4

Table 4.42: Tested parameters for the experiments on features of Xing Chal-
lenge 2017.

In Table 4.41 we can see a comparison between the collaborative simi-
larity and the content similarity built with a dot product of the ICM with
itself. Similarly to the experiments with metadata features of The Movies
Dataset, the content model constains almost all the collaborative similar-
ities (95.64%), which represent only a small fraction of the content model
(0.33%). Again, the CQFS model should penalize with positive values al-
most all the content similarities, since they are absent from the collaborative
model.

Because of the analogy with the experiments on metadata features of
The Movies Dataset, we decided to carry out the quantum feature selection
experiments with the same parameters of CQFS, shown in Table 4.42. After
building the FPM for each experiment, we ran the quantum annealing
procedure on the QPU with the default annealing schedule of 20µs. We
requested 1000 solutions from the QPU for each optimization problem, for
a total of 20ms per problem. The results of the selection with the chosen
parameters are reported in Figure 4.9, as heat maps of the ratios between the
number of actually selected features and the desired number. Although the
scenario is similar to the one of metadata features of The Movies Dataset, the
results of the selection show a different behavior. Indeed, while increasing
β helps selecting a number of features closer to the desired one, increasing
s does not have any effect. In general, there is less consistency in selections
with different parameters, with respect to what we expected from previous
experiments.

To better understand why the selection gave these results, we report in
Table 4.43 some statistics about the FPM of the problem, before applying
the k-combinations constraint, for different values of β. We can see how
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Figure 4.9: Ratios of the number of actually selected features on the de-
sired number, for various parameters of CQFS applied to features of Xing
Challenge 2017.
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β Coefficients % negative % positive

1
Linear 0.00 100.00
Quadratic 0.00 100.00

1 × 10−1 Linear 6.15 93.85
Quadratic 0.00 100.00

1 × 10−2 Linear 73.85 26.15
Quadratic 2.52 97.48

1 × 10−3 Linear 100.00 0.00
Quadratic 96.13 3.87

1 × 10−4 Linear 100.00 0.00
Quadratic 100.00 0.00

(a) Percentages of negative and positive values in the FPM .

β Coefficients Min Max Mean

1
Linear 1946 4052351488 85418720.00
Quadratic 1742 1156289408 14469818.00

1 × 10−1 Linear -6465.60 393784384 8164415.00
Quadratic 161.60 112619688 1406726.25

1 × 10−2 Linear -421328.38 27689854 435510.94
Quadratic -34086.14 8183357.50 100272.65

1 × 10−3 Linear -8906682 -59.99 -337190.91
Quadratic -2284606.75 9380.88 -30365.82

1 × 10−4 Linear -12569218 -61.80 -414508.34
Quadratic -3328999.25 -2.98 -43429.25

(b) Minimum, maximum and mean of the values in the FPM .

Table 4.43: Statistics about values in linear and quadratic coefficients of the
FPM , for each collaborative method, in Xing Challenge 2017 experiments.

coefficients in the FPM are greatly unbalanced towards positive values for
higher β values. Indeed, when β = 1, all the FPM coefficients are pos-
itive, which would lead the QPU to not select any variable, without the
k-combinations constraint. Even when β is low enough to obtain some neg-
ative quadratic coefficients, the imbalance grows in the opposite direction,
with almost 3

4 of the linear coefficients being negative. At β = 1× 10−4 we
have the complete opposite of β = 1, with every coefficient in the FPM
being negative. Thus, we could associate the poor selection results with
the difficulty of the problem, given by the higher imbalance of the objective
function with respect to the previous experiments.
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Model PREC REC NDCG MAP IC GD MIL

Baselines
ItemKNN CBF 0.0166 0.0611 0.0442 0.0272 0.9996 0.3986 0.9823
TF-IDF 95% 0.0160 0.0564 0.0379 0.0212 0.9996 0.3955 0.9813
CFeCBF K 0.0108 0.0357 0.0225 0.0123 0.9892 0.3263 0.9795

CQFS K
40%

β = 1× 10−3

s = 1
0.0157 0.0483 0.0346 0.0181 0.9959 0.3900 0.9821

CQFS K
95%

β = 1× 10−3

s = 103
0.0154 0.0507 0.0295 0.0139 0.9999 0.3900 0.9805

Table 4.44: Evaluation metrics computed on Xing Challenge 2017 testing
set for baseline algorithms and CQFS.

Final Content-based Model

Even though almost no selection returned the desired number of features,
we decided to carry out the experiments building the final content-based
model with the selection given by CQFS with paramters β = 1× 10−3 and
with two different strengths, s = 1 and s = 1e3. We chose these parameters
because they seemed to achieve overall higher selection precision than the
others, although the number of selected features is nearly the same for each
selection percentage (around 50).

After setting to 0 the ICM values of the non-selected features, we built
the final ItemKNN CBF model and optimized it with hyperparameter tun-
ing on the ranges in Table 4.1. We report in Table 4.44 the results of the
evaluation on a cutoff at 10 of the recommendations, along with the baseline
results. The reported results are the best ones in terms of precision. Al-
though the two CQFS evaluations are annotated with 40% and 95%, which
are the selection percentages used in the two models, the corresponding
content-based recommenders are built using respectively 50 and 56 features.

As we can see, no model is able to outperform the ItemKNN CBF base-
line in accuracy metrics. The reason could be the already low number of
features used for these experiments, with every item having exactly one
feature from each of the four categories (industry, discipline, country and
region). Thus, it seems that selecting only a subset of features, in this case,
is not enough to improve the accuracy of the content-based model.

In Figure 4.10, we show the comparison of the CQFS and TF-IDF CBF
models over four metrics, for the different selection percentages. The CQFS
methods have parameter β = 1× 10−3 and the two different strengths we
chose. It should be noted how the increase of accuracy metrics of TF-
IDF CBF is monotonic, with respect to the increasing percentages. This
suggests that the lower accuracy of the CQFS methods against the ItemKNN
CBF using all the features is not due to the embedding of collaborative
information, but to the selection itself, reducing the number of features, as
discussed before. Another interesting aspect is the high item coverage and
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Figure 4.10: Plots comparing four metrics (precision, NDCG, item coverage
and Gini diversity) on different experiments made on features of Xing Chal-
lenge 2017 with CQFS and TF-IDF, for the four tested selection percentages.
ItemKNN CBF baseline is shown for reference.

diversity, which seem to be due to the particular subset of data we are using,
since they are expressed by almost every model.

4.5 A Note on Computational Time Complexity

One of the main advantages of CQFS over other methods used to embed
collaborative information into a content-based model, such as CFeCBF, is
the required computational time to execute. Indeed, the solution of the op-
timization problem with a quantum annealer or a hybrid quantum-classical
approach has a lower time complexity then machine learning methods.

In particular, the QPU has a constant complexity for each problem,
which means that it has an overall linear complexity O(n), function of the
number of times n we ask the QPU to search for a solution of the given
problem, and not of the number of variables. Instead, the hybrid algorithm
imposes a time limit on the search procedure. This time limit is generally
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set to a linear function of the number of variables, but it can be set by the
user as well.

For this reason, the biggest computational time of CQFS is required for
building the FPM , a procedure whose most complex operation is a matrix
multiplication, which has in general a polynomial complexity function of the
dimensions of the involved matrices.
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Chapter 5

Conclusions

In this thesis we proposed a new feature selection method for recommender
systems, aimed at embedding collaborative information into a content-based
model. We developed this method, Collaborative-driven Quantum Feature
Selection, in order to improve recommendation results in a cold-start sce-
nario, where pure collaborative methods are not effective. We compared our
model with other techniques in three different sets of experiments, derived
from two data sets, The Movies Dataset and Xing Challenge 2017. In par-
ticular, two sets of experiments were made on The Movies Dataset, using
two different types of item features, movie credits and metadata.

Quantum feature selection was carried out with a hybrid quantum-
classical approach for experiments on The Movies Dataset, and with a pure
quantum annealing solution for experiments on Xing Challenge 2017. Both
sets required some preprocessing in order to cope with the limits imposed
by the current quantum technology.

We observed how feature selection with the hybrid approach gave con-
sistent results with what we expected, while the pure quantum technique
had some difficulties in correctly selecting the desired number of features
on Xing Challenge 2017. We associated these difficulties with the very high
imbalance between collaborative and content information.

With respect to the final content-based models built after feature selec-
tion, we obtained interesting results in terms of accuracy metrics. In experi-
ments over credit features of The Movies Dataset, we obtained an improved
precision using only 80%, or even 60%, of the given features. Moreover,
we observed how the results from selection can change when using different
collaborative filtering methods to build the CQFS optimization problem.
In experiments over metadata features of The Movies Dataset, we obtained
comparable results with the proposed baselines, even though CQFS needed
only 40% of the features to be competitive. At last, in experiments over
Xing Challenge 2017, we observed how selecting features did not improve
accuracy over the baselines. Analyzing the behavior of the tested methods,
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we supposed that it was due to the already low number of used features, a
number needed to be able to embed the corresponding optimization problem
into the quantum processing unit performing quantum annealing.

In general, we obtained promising results, considering that physical
quantum annealing is a relatively new technology. One of the most inter-
esting aspects of this solution is the low computational complexity needed
to solve the NP-hard optimization problem associated with CQFS. How-
ever, we observed how the hybrid quantum-classical approach is currently
more viable in our scenario, because of its less strict limits on the number
of problem variables. Therefore, future works include, first of all, improve-
ments on the CQFS model, aimed at tackling problems that arose during
the experiments, such as the high imbalance between collaborative and con-
tent information. Additionally, further development of quantum annealing
technology could open up new possibilities for experiments carried out ex-
clusively with pure quantum techniques. Indeed, a new quantum processing
unit is close to be released later this year, offering more qubits and a denser
coupling graph, extending the limits of the current generation we used in
our work.
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