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Abstract 

 

Technological progress has led in the last decade to the development of increasingly 

intelligent and autonomous artificial intelligence systems, but at the same time also 

complex and difficult to understand. In some areas, the opacity of these systems calls 

into question their application, despite the results provided by these technologies are 

undoubtedly useful: this reluctance is particularly high in the medical sector, in which 

stringent requirements limit the use of AI technologies both from the ethical and legal 

point of view and from the application one. 

This thesis aims to present one of the possible solutions to the problem of opacity of 

AI technologies, called Explainable Artificial Intelligence. These tools aim to be an 

evolution of the classic AI techniques but increasing their level of transparency: in 

doing so these instruments become more comprehensible, so more controllable, 

correctable, and reliable. Following this path, you can implement these technologies 

even in the most reluctant sectors, such as the medical, because their work is more 

understandable to both developers, and end users. 

This review allows to say that, despite the development of Explainable Artificial 

Intelligence is still in an early stage, the potential is very high: the benefits that can 

be derived from the explanations and justifications of the work done by automated 

systems allow to enrich the knowledge that one has both on the development of these 

tools, and on the areas in which they are applied. There are of course problems and 

limitations, but with a joint effort of developers, industry experts and end-users, you 

can bypass these problems and increase the integration of AI in areas still reluctant. 
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Abstract 

 

Il progresso tecnologico ha portato nell'ultimo decennio allo sviluppo di sistemi di 

intelligenza artificiale sempre più intelligenti e autonomi, ma allo stesso tempo anche 

complessi e di difficile comprensione. In alcune aree, l'opacità di questi sistemi mette 

in discussione la loro applicazione, nonostante i risultati forniti da queste tecnologie 

siano indubbiamente utili: questa avversione è particolarmente elevata nel settore 

medico, in cui requisiti rigorosi limitano l'uso delle tecnologie dell'AI sia dal punto 

di vista etico e giuridico, che da quello applicativo. 

Questa tesi mira a presentare una delle possibili soluzioni al problema dell'opacità 

delle tecnologie AI, chiamata Intelligenza Artificiale Spiegabile. Questi strumenti 

mirano ad essere un'evoluzione delle classiche tecniche di AI ma aumentandone il 

livello di trasparenza: così facendo questi strumenti diventano più comprensibili, 

quindi più controllabili, correggibili e affidabili. Seguendo questo percorso, è 

possibile implementare queste tecnologie anche nei settori più riluttanti, come quello 

medico, perché il loro lavoro è più comprensibile sia per gli sviluppatori, sia per gli 

utenti finali. 

Questo lavoro permette di dire che, nonostante lo sviluppo dell’Intelligenza 

Artificiale Spiegabile sia ancora in una fase iniziale, il suo potenziale è molto alto: i 

benefici che possono derivare dalle spiegazioni e giustificazioni del lavoro svolto dai 

sistemi automatizzati permettono di arricchire le conoscenze che si hanno sia sullo 

sviluppo di questi strumenti, sia sulle aree in cui vengono applicati. Naturalmente ci 

sono problemi e limitazioni, ma con uno sforzo congiunto di sviluppatori, esperti del 

settore e utenti finali, è possibile aggirare questi problemi e aumentare l'integrazione 

di AI in aree ancora restie. 
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Sommario 

 

Introduzione 

 

Nella cultura popolare, il termine "intelligenza artificiale" è di solito usato in 

riferimento ad una tecnologia futuristica, lontana dal mondo in cui viviamo, come 

una strana entità superiore proveniente da un film di fantascienza. Al contrario, 

nell'ultimo decennio diversi tipi di AI sono utilizzati nei settori industriali e di ricerca, 

ma anche nella nostra vita quotidiana: auto a guida autonoma, assistenti domestici 

per gestire elettrodomestici, assistenti negli smartphone, e così via. 

La diffusione di questi strumenti è così elevata che anche le istituzioni hanno iniziato 

a regolamentare l'uso di questi sistemi. La Commissione Europea, ad esempio, negli 

ultimi anni ha lanciato una massiccia campagna per regolamentare l'uso di sistemi 

automatizzati, soprattutto dal punto di vista del rispetto della privacy e dell'etica 

umana nell'uso di questi strumenti: documenti come il "Regolamento Generale sulla 

Protezione dei Dati" o " Ethics guidelines for trustworthy AI" devono essere viste in 

questa luce. 

In medicina e nei sistemi sanitari, l'AI è utilizzata per assistere gli esperti nel prendere 

decisioni o gestire queste istituzioni: algoritmi di deep learning sono utilizzati per 

analizzare le immagini mediche e assistere i medici nella diagnosi, modelli di 

machine learning per aiutare l’amministrazione a capire come è possibile ottimizzare 

i costi e migliorare le strutture e i servizi forniti dal sistema sanitario. Le potenziali 

applicazioni dei sistemi automatizzati nell'ambiente medico, possono portare ad un 

rinnovamento del settore, in particolare aumentando la velocità dell'analisi dei dati e 

l'assistenza ai processi decisionali, mantenendo un alto livello di accuratezza. 

Tuttavia, l'enorme potenziale dell'IA è anche accompagnato da diverse 

problematiche, in particolare per quanto riguarda la trasparenza di questi strumenti 

nel loro lavoro: infatti, come vedremo più avanti, la maggior parte di queste 

tecnologie operano in un modo non del tutto comprensibile, sia perché le aziende 

tendono a mantenere segrete le loro invenzioni, sia perché il design di queste 

tecnologie ha ancora dei lati oscuri. Questi problemi sono particolarmente limitanti 
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nei settori in cui la trasparenza del proprio lavoro è fondamentale: questa categoria 

comprende il principale settore di interesse di questo lavoro, quello medico. Nei 

sistemi sanitari, infatti, la diffusione delle tecnologie automatizzate deve 

necessariamente scontrarsi con ostacoli legali, perché tutto ciò che riguarda il settore 

medico deve rispettare regole severe, con l'obiettivo di aumentare al massimo la 

sicurezza di qualsiasi strumentazione. 

 

Obiettivi 

Lo scopo di questa tesi è proprio quello di analizzare una delle possibili tecniche il 

cui obiettivo è quello di appianare i limiti offerti dall'attuale stato dell'arte dell'AI, 

vale a dire l'AI spiegabile (Explainable AI, XAI), e mostrare come questa tecnologia 

può essere sfruttata nel settore medico, che forse più di ogni altro ha bisogno di uno 

strumento come questo. Le pagine seguenti offriranno un percorso introduttivo a 

questa evoluzione tecnologica: una presentazione iniziale e generale delle principali 

tecniche dell'IA classica, che si basano principalmente su due approcci, il Machine 

Learning e il Deep Learning. A questo capitolo segue la presentazione della versione 

spiegabile delle AI: come è possibile implementare le spiegazioni, quali di queste 

devono essere scelte da uno sviluppatore a seconda del suo campo di applicazione, 

qual è lo stato attuale dell'arte delle XAI. Infine, parleremo di come le XAI sono 

implementate nel sistema sanitario, con alcuni esempi pratici di opere che sfruttano 

questa tecnologia: saranno mostrate quattro diverse opere, in cui l'AI spiegabile viene 

sfruttata in campo medico, con applicazioni anche molto attuali come quelle sul 

Covid-19 o sugli anticorpi monoclonali, con questi ultimi che hanno ricevuto una 

grande spinta proprio dallo stato pandemico attualmente presente. 

 

Conclusioni 

Le XAI offrono sicuramente una validissima alternativa alle classiche tecniche di 

intelligenza artificiale, in particolare in quegli ambiti come quello medico nel quale 

i requisiti chiesti alle strumentazioni sono estremamente esigenti. La possibilità di 

ottenere spiegazioni e giustificazione delle scelte fatte dai sistemi automatizzati 
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permette di aumentare la comprensibilità di questi strumenti, e allo stesso tempo 

migliorare la confidenza con cui il personale medico li utilizza, offre la possibilità di 

aumentare il bagaglio culturale sia dal punto di vista dello sviluppo delle AI, che dal 

punto di vista della conoscenza generale del fenomeno sotto analisi. Queste 

possibilità sono accompagnate da alcune problematiche, e sarà compito della 

comunità scientifica fare uno sforzo comune per migliorare questa tecnologia che si 

presenta come uno dei principali candidati a dare il giusto trampolino di lancio alla 

definita diffusione delle tecniche AI anche in quei settori più restii ad accettarle. A 

questo sforzo si dovrà accompagnare anche una maggiore elasticità da parte del 

settore medico, in particolare aggiornando il personale già al lavoro e progettando un 

percorso educativa delle future generazioni che integri maggiormente queste 

tecnologie, per poi poterle maneggiare al meglio nella pratica quotidiana. 
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1. Introduction 
 

In popular culture, the term “artificial intelligence” is usually used referring to 

futuristic technology, far away from the world where we live, like a strange superior 

entity from a sci-fi film. Conversely, in the last decade different types of AI are used 

in industrial and research sectors, but also in our daily life: self-driving cars, smart 

devices to manage home appliances, assistants in smartphones, and so on. 

The dissemination of these tools is so high that the institutions have also begun to 

regulate the use of these systems. The European Commission, for example, has in 

recent years launched a massive campaign to regulate the use of automated systems, 

especially from the point of view of respect for privacy and human ethics in the use 

of these tools: documents such as the “General Data Protection Regulation” or the  

“Ethics guidelines for trustworthy AI” [1] must be seen in this light. 

A daily life example of this kind of technology is the home assistant that can be find 

in our houses: this AI system can control smart devices inside our houses like 

televisions and speakers, but also lighting systems or hobs. The level of smartness is 

so high, that interaction between tenants and device, allows the latter to learn the 

habits of inhabitants, and regulate for example a thermostat in complete autonomy 

without people’s control. 

In the last decades, also governments are starting to apply AI in their work of 

managing cities or countries: face recognition made by neural networks (from now 

on NN) for security, machine learning applied in traffic control or in jurisprudence 

to help judges to give a right sentence. 

In medicine and healthcare, AI are used to assist experts in take decisions or run a 

healthcare system: deep learning algorithms are used to analyse medical images to 

assist doctors in diagnosis, while machine learning methods to help the management 

to understand how is possible to optimize costs and improve the structures and 

services provided by the healthcare system. The potential applications of automated 

systems in the medical environment, can lead to a renewal of the sector, in particular 
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by increasing the speed of data analysis and assistance to decision-making processes, 

maintaining a high level of accuracy. 

However, the enormous potential of AI is also accompanied by several issues, 

particularly in the area of the transparency of these instruments in their work: in fact, 

as we shall see below, most of these technologies operate in a way that is not entirely 

understandable, both because companies tend to keep their inventions secret, and 

because the design of these technologies still has dark sides. These problems are 

particularly limiting in areas where the transparency of one’s own work is 

fundamental: this category includes the main area of interest of this work, the medical 

one. In health systems, in fact, the dissemination of automated technologies must 

necessarily face legal obstacles, because everything relating to the medical sector 

must comply with strict rules, with the aim of increasing the safety of any 

instrumentation to the maximum possible. 

The aim of this thesis is precisely to analyse one of the possible techniques whose 

objective is to smooth the limitations offered by the current state of the art of AI, 

namely the Explainable AI (XAI), and show how this technology can be exploited in 

the medical sector, which perhaps more than any other needs a tool like this. The 

following pages will offer an introductory path to this technological evolution: an 

initial and general presentation of the main techniques of the classic AI, which are 

mainly based on two approaches: the Machine Learning and the Deep Learning 

method. To this chapter follows the presentation of the XAI version: how it is 

possible to implement explanations, which of these explanations must be chosen by 

a developer depending on his application field, which is the actual state of the art of 

XAI. Finally, we will discuss how the XAI are implemented in the healthcare system, 

with some practical examples of works that exploit this technology: four different 

works will be shown, in which the explainable AI are exploited in the medical field.  
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2. Artificial Intelligence 

 

During the last decades, due to the constant increase of interest around the artificial 

intelligence, companies and manufacturers started to indicate in the name or in the 

description of their product the term AI, just to increase their attractiveness: this 

phenomenon is called AI washing, the idea of adding the label of AI to all and every 

software platform [2]. 

In reality, it is really complicated to give a unique definition of Artificial Intelligence, 

due to the huge number of algorithms, structures, and ways to develop one. Salehi 

and Burgueño [3] say that AI “refers to a machine’s ability to mimic the cognitive 

functions of humans to perform tasks in a smart manner.” In general, the goal of AI 

is to creates machines that can solve problems with the accuracy and speed of 

computers, but in a way of “thinking”, so with an intelligence, that is proper of human 

beings. 

A more technical definition of AI is given by Haenlein and Kaplan [4], who describe 

an AI as “a system’s ability to interpret external data correctly, to learn from such 

data, and to use those learnings to achieve specific goals and tasks through flexible 

adaptation”. This description uses some truly significant words: 

- An AI is a system, so the integration of different entities. These entities 

can be hardware resources, software, or a combination of both, and forms 

an architecture. 

- This system must achieve a specific goal and tasks, so the different parts 

of this structure collaborate to reach a define target. 

- To do this, the AI needs the ability to interpret external data, so it can 

analyse information from the world and exploit them to achieve the task. 

- An AI uses the information to learn, so it can modify its structure and 

update itself using a flexible adaptation, always to achieve the goal. 

So, unifying the two descriptions, an AI can be described as a complex system in 

which, starting from a learning process of information, it develops the ability to 

interpret this data and exploit them to achieve a specific task in a way similar to what 

a human being would do. 
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Always [4], identify three main AI methods that are most diffused in the last decade: 

Machine Learning (ML), Pattern Recognition (PR) and Deep Learning (DL). 

While ML and DL are usually accepted as AI paradigms, for PR it is not uncommon 

to find some authors that give different definitions of PR: Pavlidis [5] says that 

“problems of pattern recognition were generally lumped under the term Artificial 

Intelligence, although a more appropriate name might be Machine Intelligence”. 

With the term Machine Intelligence, it is meant when “machines are programmed 

with some (but not all) aspects of human intelligence, including learning, problem 

solving and prioritization. With these (limited) abilities, a machine can tackle a 

complex set of problems” [6]. So, it is not a stand-alone method, but rather one of 

the many problems that AI can solve. 

Another definition of PR is given by Chao [7], which says “Pattern recognition is a 

process that taking in raw data and making an action based on the category of the 

pattern”, calling pattern a “entity vaguely defined, that could be given a name”. So, 

again PR it is not an algorithm, but a process that can be done in different ways, also 

by exploiting ML and DL. 

For these reasons, in this chapter will be presented the ML and DL, as the most 

diffused paradigm of AI, trying to understand which are the differences between 

these two approaches, and their potential and limitations. 

 

2.1 Machine Learning 
 

The improvement of technology and the advent of internet has profoundly changed 

the way each person relates to the world: faster communications between people, 

easier access to information and the spread of sensitive data in social media or public 

services. In the last 20 years the production of data has raised at an incredible speed, 

and its collection led to the storage of a quantity of information never reached before. 

Just as an example, the European Commission in [8] says that “The volume of data 

produced in the world is growing rapidly, from 33 zettabytes in 2018 to an expected 
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175 zettabytes1 in 2025”. It is an incredible amount of data, if compared to the storage 

capacity available just 20 years ago, represented by the floppy disk (2-4 MB) or a 

CD (600-700 MB): just to make it clearer, to collect one zettabyte we would need 

around 1018 CDs. 

All this available data gave the necessary thrust to the development of architectures 

to collect all these information and to the creation of algorithms able to analyse this 

huge amount of information: Machine Learning was born for this purpose. 

Indeed, ML is a branch of AI that tries to develop systems analyse a huge amount of 

data and manipulate them to extract some characteristic features or to group 

population of data into homogeneous clusters. Nowadays, ML is widespread and 

implemented in almost every field of technology, research, economy, and supply 

chains. 

 

 

Figure 1: AI hierarchy  

 

Cristoph Molnar [9] summarizes ML as a “set of methods that computers use to make 

and improve predictions or behaviours based on data”, while in [3] is said that “ML 

refers to the capability of computers to learn without being explicitly programmed”. 

Indeed, ML systems are based on their learning capability, exploiting different 

mathematical models that rule how to process the data: the only “programming” of 

 
1 1 zettabyte is equal to 1021 bytes, so about 1012 gigabytes. 
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the system are the rules of the mathematical model, then the algorithm can learn 

which is the correlation between input and output in complete autonomy, so it is like 

the system is generating the program itself. From that point, it can continuously 

update itself, in a constant attempt to improve its work. 

The word data has already been used a lot. Data is the basis from which all ML 

methods begin, and are summarised into databases, so collections of information 

usually correlated with the phenomenon under analysis. In ML, databases are in 

organized in the form of tables, and in order to correctly train an algorithm, it is 

better to have databases that are collections of information about the specific object 

of interest, or more generally of what we want to analyse.  

In the case, for example, of medical statistics, we might be interested in which are 

the correlations between tumours and different aspects of human life: we would need 

a database that contains information on daily life of patient with tumours or not, like 

if they smoke or not, which is their diet, if they do sports or not. 

Looking at the structure of Table 1, it is composed by three fundamental entities. On 

top of each column there is the feature or attribute, so a specific characteristic of 

the object of interest, for example if a patient is a smoker or how many hours of 

physical activity he/she practices daily. At the beginning of each row, there is the 

record, so the element of the table that contains the values associated to the feature, 

for example that particular patient called “Mario Rossi”; values could be numerical 

(numbers), categorical (words like the days in a week or gender, yes/no and so on) 

and in a table you may find only one type of value or a combination of both. 

 

 Age Smoker Familiarity Daily Sport Hrs 

Mario Rossi 58 Yes Yes 1 

Anna Bianchi 49 No No 3 

Piero Verdi 73 No Yes 1.5 

Table 1: example of table for ML 
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So, if we would translate in phrases the first record of the table, we would say: “Mario 

Rossi is 58 years old, he is a smoker, he is a patient with familiarity, and he practises 

1 hour of sport daily. 

Companies invest a lot of effort and money to create these collections of data, using 

surveys, exploiting cookies online or just creating specific study-cases on the topic 

of interest. The reason is that data and ML (but more generally AI) allow to create 

models of almost every aspect of a phenomenon: so, more information about 

something is available, more accurate will be the analyses we do. 

All these analyses start with the learning process, the most powerful ability of AI 

systems. Algorithms exploit databases as the “literature” that they “read” to learn 

something. There are different types of ML techniques, that differ for the goal they 

want to reach, the way to achieve the task and so on, but they can be at first divided 

in two main categories: the supervised machine learning and the unsupervised 

machine learning. 

To understand the difference between these two major categories, it is necessary to 

take a step back. In Table 1 it had been shown an example of table, in which we had 

different features: we said that the attributes are particular aspects of the 

phenomenon under analysis, and one of these can be extracted and used as a target 

for the investigation. Using the same example of before, if we are studying the 

incidence rate of tumour in a population, we can consider a feature “tumour” 

significant for the study, because it gives a sort of “final result” to all the other 

features of the records: “the patient has a tumour, because of these features have 

these values…”, or “𝑥 % of smoker has a tumor”. 

The presence or not of the target separates the learning process in supervised and 

unsupervised. In the first group are included the classification and regression 

models, while to the second belong the analysis with purpose to identify 

regularities, similarities, and differences in the data [10], like clustering or 

anomaly detection. 
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Figure 2: structure of Supervised and Unsupervised Learning. 

 

As shown in Figure 2, the two learning procedures reach different tasks, and in a 

different way: the Supervised Learning (from now on SL) exploits Data with Labels 

(the label is the target attribute) as input, uses the targets to understand if he learnt a 

good model or not through an error parameter, and finally provides a mapping as 

output. Conversely, the Unsupervised Learning (UL from now on) uses Data without 

Labels, learns the model without an error parameter, and produces some Classes 

output. 

In the next pages will be presented the two the methods, giving an example of a 

specific mathematical framework for both the approaches. 

 

2.1.1 Supervised Learning 

 

Under the term Supervised Learning, are grouped all the models that exploit the 

presence of the target attribute in their learning procedure. The goal is “learning a 

mapping between a set of input variables X and an output variable Y and applying 

this mapping to predict the outputs for unseen data” [11].  
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The input variables are the records from the database, accompanied with the values 

and the attributes: the table must also contain the output, which is the class label or 

target. For instance, an extension of Table 1, could be the addition of another attribute 

called “Tumour” as target of the analysis, which means “that the patient has cancer”. 

As shown in Table 2, the target could be numerical or categorical: the first one 

category leads to a regression problem, the latter into a classification one. In any 

case, the categorical values must be converted into numbers like 0/1 or an ordered 

sequence of numbers. For instance, the target YES/NO in the table must be converted 

in numbers, for instance 0 equal NO and 1 equal YES. 

 

 Age Smoker Familiarity 
Daily Sport 

Hrs 
Tumour 

Mario 

Rossi 
58 Yes Yes 1 Yes 

Anna 

Bianchi 
49 No No 3 Yes 

Piero Verdi 73 No Yes 1.5 No 

 

Table 2: example of a table for Supervised Learning 

 

The databases usually contains a huge amount of records, and it is split into two 

pieces, called training set and test set, usually with the first larger than the second: 

the first one will be the very “literature” used to train the algorithm in the training 

phase, while the second will be the dataset used to understand if the learning process 

is gone well or not in the test phase. 

Then the last thing to decide before really starting learning, is choosing the 

mathematical framework that must be followed to generate the model. Usually, these 

approaches work through iterative optimization of an objective function, so they 

need several repetitions before reaching an acceptable result. 

The learning process aim is to create a model that maps the different records of the 

training set in input into an output (the target) as a function of the values of attributes. 
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In other words, the training phase generate a function that assigns to a record in a 

dataset one of the possible target values, as a function of its attribute’s values: this 

behaviour is called prediction, so the ability of an algorithm to assign to an 

unlabelled record a target value. 

After the training phase, the next one is the test phase: now the model is fed with the 

records of the test set, so a table with the same structure of the training one (same 

attributes) but robbed of the target values. Now the model must predict the target of 

the new records by itself: if the accuracy of the process satisfies the expectations, the 

model can be then implemented in the future; conversely it must be done again the 

training phase. For accuracy, is intended the percentage of records from the test set 

that are being correctly predicted. 

A huge number of approaches are available in the SL problems: linear regression, 

decision trees, support vector machines are just examples of algorithms. There are 

not best approaches, because there are not fixed parameters that work always well. 

For these reasons, usually more than one method is used, so it is possible to choose 

the approach that gave the best result on the dataset used. 

A question that could be ask at this point would be: what is an acceptable accuracy? 

The answer is not straightforward: indeed, there is not a magic value that decrees if 

an algorithm is working well or not but depend on trade-off between discrimination 

and generalization: the first refers to the ability of the system to recognise which are 

the most significant attributes that generate the target, while the latter is the 

prediction accuracy using the same attributes. 

Since in the learning process a specific database is used, if the accuracy is too high, 

we are not teaching “how to predict the target of a record in the situation we are 

studying”, but the system is learning perfectly the patterns and the correlations that 

are hidden inside “the specific database we are using in training”. In other words, the 

system did not understand which attributes are significant for the phenomenon under 

analysis, but those to perfectly replicate the training set used. So, while the accuracy 

of the learning process becomes higher, in the test phase it will decrease a lot. The 

trade-off is to accept a reasonable number of errors, that let the machine being less 

accurate in the training phase (so loosing discrimination ability), but more precise in 
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the prediction of new records, because it is more freely to exploit all the attributes 

that it considers important. 

 

Example: Support Vector Machine 

 

As example of Supervised Learning the Support Vector Machine (SVM) model will 

be briefly introduced. This model can be used for both regression and classification 

with the relative adjustment, and it is one of the most robust method [12] available. 

Two sets of points are called linearly separable if there exists a hyperplane that 

separate them in the space of dimension ℝ𝓃 [10]; in a bidimensional case (target has 

2 states) the hyperplanes reduce to lines as shown in Figure 3: an infinite number of 

line exists, but only the one equally distant from the nearest points of the two dataset, 

so the one with the most generalization ability, will be chosen as the separating line. 

 

 

Figure 3: example of the starting point of a SVM learning methods 

 

The nearest points of the two datasets are considered and an infinite number of lines 

passes through each one of these points: the system will choose the two parallel ones 

that creates the maximum margin of separation between the two points, and they are 
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called canonical supporting hyperplanes. Then from all the possible hyperplane, the 

algorithm chooses the one parallel to the canonical ones, that minimize the distance 

between itself and the two canonical margins: the only possible solution is the line 

that separate the margin exactly at the middle, so the distances between the 

separating hyperplane and the two nearest points (called support vectors) are the 

same. 

 

 

Figure 4: example of separating hyperplane in the SVM process 

 

The hyperplane of separation, like the one in Figure 4 will be used, after the training 

phase, as a decision function for the prediction process. The example presented is of 

course an ideal one: the points are linearly separable, so a straight line is sufficient 

to separate the two sets, but the SVM also includes the possibility to apply nonlinear 

functions, as shown in Figure 5. 
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Figure 5: examples of nonlinear separation in SVM 

 

2.1.2 Unsupervised Learning 
 

Under the UL methods, are grouped all those algorithms that does not require 

labelled data in the learning process, but they analyse the information given to them 

in order to capture patterns or probability density hidden in the datasets by 

themselves [13]. The main applications are clustering and anomaly detection: the 

first has the aim to create different clusters (groups) in which records are in some 

sense similar to each other, respect to the ones in the other groups; in the latter the 

system try to identify the rare event or record in the dataset, so that has totally 

different characteristics than the other records. 

The UL is used for different purpose and finds application in the most disparate field 

like psychology, physiology, image recognition and so on. Clustering is able to 

identify some homogeneous groups inside a population, and for instance is highly 

used in marketing applications to understand the different behaviours of people, 

depending on their nationality, age, salary and so on. But also, into clinical trials, to 

create population of patients, for instance, with the same response to a medical 

situation, such as the administration of a new drug. Anomaly detection is applied 

particularly in bank frauds or algorithms that ensure security of websites and e-

commerce sites, due to his ability to discover strange behaviours of sellers or buyers. 
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Clustering and Anomaly Detection exploits similar techniques to reach their goal, as 

both try to separate groups of records from each other or one record from all others: 

for this reason, in the next pages, only clustering will be further discussed. 

As indicated in [10], clustering methods must fulfil some general requirements like: 

- Flexibility: some clustering methods can be applied only on numerical 

records to exploit Euclidean metrics, but a flexible approach to use also 

categorical values are required. 

- Robustness: the algorithm must be stable, so the cluster assigned to a 

record must not change, with respect to small changes in its attribute’s 

values. This ensure that the method is not affected by noise in the data. 

Another sign of robustness is the stability with respect to the variation in 

the presentation order of the same records to the system. 

- Efficiency: usually datasets have huge dimensions, so the system must be 

able to achieve the goal in a reasonable computing time. This, of course, 

decrease the robustness and the accuracy of the method, so it is necessary 

to find a trade-off between all these characteristics. 

Different approaches are available and in the next pages an example of one of these 

algorithms will be presented: the K-means algorithm. 

 

Example: K-means algorithm 

 

The algorithm works trying to group the records as function of their distance from 

some points chosen as centroids of each cluster. So, the system receives in input a 

dataset 𝐷, the number of clusters 𝐾 to be generated and the definition of a distance 

function 𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑘), for example the Euclidean distance: 

 

𝑓𝑜𝑟 𝑡𝑤𝑜 𝑝𝑜𝑖𝑛𝑡 𝑃 = (𝑝1, 𝑝2) 𝑎𝑛𝑑 𝑄 = (𝑞1, 𝑞2) 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑖𝑠𝑡(𝑝, 𝑞)

=  √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 
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Before starting, during the initialization phase, a 𝐾 number of records are chosen 

randomly from the dataset as the centroids of clusters. In the first iteration, the 

algorithm calculates the distance between all the centroids and each record, and each 

one is assigned to the group that has the most similar centroid, which means the 

nearest one. 

After all the records are assigned, there are two possible scenarios: the last iteration 

did not change the groups, so all the records are assigned to the nearest centroid, and 

the algorithm stops. Conversely, the new centroid is computed as the mean value of 

all the records that belong to the cluster, and then it is recalculates the new 

assignments in a further iteration. 

An example is given graphically in Figure 6, with the clusters identified by blue and 

red colours and the centroids as starburst. 

 

 

Figure 6: example of application of the K-means algorithm 

 

Starting from top left, the centroids does not separate properly the records, as some 

points are closer to the red than the blue one: the algorithm calculates the new 

centroids as the mean of the values and computes the new clusters. Then a second 

iteration is necessary to reach the perfect separation and the final result is given in 

the bottom right. 
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In this paragraph the concept of ML was introduce and analyse to understand which 

are the main approaches, and which are the different possible application of this kind 

of AI. 

In conclusion, the ML has great potential, and is already now spread in a lot of 

automatic systems and products. But in the recent decade, the rapid technological 

development seems to have left this approach behind. Indeed, a couple of problems 

slowly started to arise. 

The ML algorithms work well when data is structured into tables, with well-defined 

attributes and values, while fail when data is in form of images, videos, or sounds. 

Depending on the phenomenon under analysis, it is not straightforward to build a 

table with the parameters that could be significant: for instance, in the situation of 

face recognition, it is really hard to build a structure in which the attributes are 

“nose”, “eyes” or “mouth”, and then assigning values that have meanings. So, the 

first problem is that if I want to exploit different kind of data, I should not use ML. 

Another difficulty when using this method rises from the necessity of a constant 

intervention of humans. When introducing ML, we said that “ML refers to the 

capability of computers to learn without being explicitly programmed”: as we said 

in the previous pages, the algorithms do not need to be “programmed” in the 

traditional way, but it still requires that the programmer decide the model to use in 

the learning process. Sometimes different frameworks require a specific structure of 

the dataset so there must be someone who manipulates the information, so it is like 

he is writing the code to rule the system behaviour. This is not a real problem, but it 

is possible to discuss the fact that the ML analysis is highly affected from how 

humans approach the world. So, the second problem is: is there a system that can 

independently learn from the data, with less human intervention as possible? 

The solution to overcome these problems is offered by the Deep Learning approach. 

In the next paragraph it will be presented and compared to the ML method, trying to 

understand which are the improvement that this technology brought and why you 

should prefer the DL approach. 
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2.2 Deep Learning 
 

The Deep Learning approach can be considered as a subset of the ML, as it also 

learns from data and extrapolate some characteristics hidden in the dataset. However, 

the term deep refers to the ability of these systems, to analyse and understand the 

data in a way similar to how the human brain works: deeper means “a multi-level 

learning” [14], so the ability to see something not only as a stand-alone thing, but 

understanding the different facets that composed what we are focused on. 

For instance, if someone tells us to think of an apple, in our mind does not exist a 

unique image for that fruit. We can imagine an infinite number of apples, because 

we learnt that an apple has different shapes, different colours, different dimensions. 

Our brain, if asked to generate the image of an apple, activate a process of going from 

a bottom layer to a top one, with an increase of generality going from the first to the 

last step: the bottom layer may contains the basic information like contours and 

dimensions in 2D, then in the upper layer it may generate the tridimensionality, and 

then another level could be the colour, and finally the last one in which it adds the 

last details. 

So, the main difference between ML and DL is that the latter has the powerful ability 

to treat the information of the learning process to generate as output an abstract 

concept, not a specific one. In the ML approach, the final output was a sort of unique 

information, that can assign a defined label (classification) or creates specific 

populations (clustering) based on data it processed. In DL, the output can be an 

abstract concept of something, so it learns from the data which are the characteristics 

of an apple, and not the ones of that apples described in the dataset. 

The other side of the same coin is that to reach this level of knowledge, the DL 

approach needs more information than the ML, and of course the computational time 

is longer. The biggest problem, that initially undermined the development of DL 

systems, is the great power required for hardware resources: indeed, the first DL 

projects date back to the 40s and 50s, but they found a complete development and 

spread of applications just in the last decade. In fact, only the advent of GPUs in the 

2010s, that significantly improve their computational power, make it possible to train 

the DL systems efficiently [15]. 



 

18 
 

In the previous paragraph, the main limitations of ML were listed. One of these was 

that these kinds of algorithms can treat mainly information structured in tables: DL 

methods can overcome this, as they are able to exploit not only structured data like 

tables, but also raw data without manipulation like images, videos, and audios. This 

ability has made the DL approach one of the most powerful tools developed in the 

last decades. For instance, if we want to train a DL method to recognise an apple, we 

can use a database filled of thousands of images of apples: how to build such a system 

will be later explained, but for now is sufficient to say that the learning process in 

DL is influenced only from the structure of the system, and no human intervention is 

needed in the learning process. 

Indeed, the possibility to feed a DL algorithm with information coming directly from 

the world, overcome the necessity of human intervention in manipulating the 

datasets. So, there is no need for a programmer to extrapolate features from dataset 

in order to be usable by the machine, but just to collect as much information as 

possible. 

So, the main differences between the ML and DL approaches are the structure of the 

systems, the lower need for human intervention in the DL and the larger data that the 

latter requires [16]. 

The advent of DL brought with it an era of innovations, in which AI has settled in 

the most varied fields of application, leading to the development of technologies that 

had remained only theoretical for several years, like self-driving cars, face 

recognition and elaboration of human language.  

The main DL structure is the Artificial Neural Network (ANN), which are computing 

systems inspired by the biological neural networks that constitute animal brains [17]. 

In the next pages this structure will be described, followed by the different topologies 

required depending on the application, and a couple of examples of their utilization. 

 

2.2.1 From Artificial Neuron to Artificial Neural Network 
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The ANN seems to be an invention of the 2000s, but the reality is that the 

development of this kind of systems begins in the ‘40s. McColluch and Pitts in 1943, 

laid the theoretical foundation for what Frank Rosenblatt would create in 1950s: the 

ancestor of the actual DL systems, the Perceptron. This machine was built for image 

recognition, and contains photocells as receivers, connected to multiple neurons 

which classify the inputs created by the photocells [18]. From that starting point 

began the development of ANNs that, after 70 years, will evolve into deep learning. 

An ANN tries to mimic the structure of the brain, whose cells are called neurons, the 

smallest working units of the brain. These units are grouped into networks called 

neural circuits, so a population of neurons interconnected through synapses that 

carry out a specific function when activated [19]. The structure of the neuron is 

shown in Figure 7: the input signals coming from other neurons are caught by the 

dendrites, that route these signals to the cell body called soma. Here the information 

is elaborated and can activate or not the neuron response; if the elaboration process 

activates the cell, an output signal called action potential is generated and sent 

through the axon until it arrives to the terminal regions of the latter. Now the signal 

can reach another neuron through a chemical or electrical phenomenon, depending 

on whether the distance between the two adjacent cells is large (chemical synapse) 

or small (electrical synapse). 

 

 

Figure 7: example of a human neuron 
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The artificial neuron is a mathematical model that mimic the biological neuron: it 

receives one or more inputs, processes these inputs as an integration of them 

through some weights and finally activates itself if this integration overcome a 

threshold. The output of each neuron is called state of the neuron and depends on 

an activation function that determine the value of the output. 

The artificial neuron replicates this behaviour as illustrated in Figure 8, where a neuron 

(depicted as the circle in the centre) receives the weighted inputs like in the dendrites, 

integrates these signals like what happens in the soma and, if the sum overcome the 

threshold (called bias in the figure), it becomes active, and the output is governed by 

the activation function, namely the elaboration process that happens in the biological 

cell. 

 

 

Figure 8: example of neuron principle 

 

Both in the biological and artificial case, the inputs of a neuron are the output signals 

coming from other cells: in nature the different neurons are connected through 

synapses, and each one of these is characterized by a strength, therefore a minor or 

greater influence on the cell to which it is connected. In the artificial representation, 

each input is characterized by its strength, which is depicted as a weight that can 

excite (positive value), inhibit (negative one) or even be ineffective (weight equals 

zero) to the artificial neuron. As the neuron sum up the inputs (just as example, we 

now consider only positive inputs), a positive weight increases the sum, while a 

negative one decreases the integration. Sometimes neurons can also have self-
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connections, so the output of a cell becomes an input for itself: in this case, when the 

neuron is activated, it is able to excites or inhibits itself depending on the positive or 

negative value of the weight of the self-connection.  

The process that generates the output from the inputs starts with the weighted sum. 

Exploiting the structure of Figure 8, let us call 𝑃 the sum of the inputs 𝑥𝑗 weighted by 

𝑤𝑗. So, the inputs are summed up into the value 𝑃 in the soma (the circle in the middle 

of Figure 8), then this value becomes the input of the activation function 𝑓, after the 

subtraction of the threshold 𝑇 (bias in Figure 8), and generates the output 𝑦: 

𝑃 =  ∑ 𝑥𝑗𝑤𝑗

𝑛

1

      𝑡ℎ𝑒𝑛      𝑦 = 𝑓(𝑃 − 𝑇) 

The activation function characterizes the behaviour of the neuron, that can 

completely changes depending on the function chosen. There are multiple activation 

functions available: in case of binary output (0/1 or -1/1), the Heaviside and signum 

functions are usually used; while extending the output to any real value, linear and 

non-linear functions can be chosen, like the logsig or the tanh function. 

 

 

Figure 9: examples of activation functions 
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In Figure 9 it can be noticed that the Heaviside and Sign functions can assume only 

two values, so they can be used only in binary problems (actually 𝑠𝑖𝑔𝑛(𝑧) = −1 if 

𝑧 = 0). The others can be applied if the output can assume real values: the main 

difference is that in the Linear function the output can assume all real values, while 

in the Logistic sigmoid (logsig) and Hyperbolic tangent (tanh) the output is bounded 

between 0 and +1, and -1 and +1 respectively. 

Now is it possible to understand the meaning of the threshold: in our neuron, in order 

to generate an action potential (so the generation of an output in response to a 

stimulus), the input stimulus must exceed a certain voltage potential, under which 

the cell does not provide any response. The same happens in the artificial neuron: in 

the situation of a binary output, for instance 0 and +1, it is possible to associate the 0 

value to an “idle state” and the 1 to an “active state”; if the artificial neuron’s 

threshold is, for instance, 1, the inputs of the artificial neuron must overcome this 

value to generate a response. Indeed, if the inputs sum is less or equal to the threshold, 

the neuron does not provide any response, as in the biological one if the electrical 

stimulus does not overcome the bias value; when the sum exceeds the threshold, the 

neuron generates a positive output (so an excitatory one) similar to the action 

potential. 

The artificial neuron model can be used, for instance, in taking a decision as output, 

getting as inputs different circumstances that can affect the final decision. For 

instance, I cannot decide “if I want to go for a walk to the beach or not”: we can 

assign the -1 value to the decision “I do not want to go” and the value +1 to “I want 

to go”. The inputs are the situation that influence the decision, and to each one is 

possible to assign a positive value if it supports the “to go” choice or a negative value 

at contrary: an input can be for example “if the weather is good or not” with a positive 

value (+1) for good meteorological conditions and a negative (-1) for the contrary. 

Then we must assign a weight to all the inputs based on how decisive that aspect is 

on the final decision, for instance in a range from 0 to 1. 

 

Aspect Weight Answer 

Is the weather good? 1 YES = +1 
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NO = -1 

Am I tired? 0.5 
NO = +1 

YES = -1 

Do I prefer to play 

football? 
0.2 

NO = +1 

YES = -1 

 

Table 3: example of which could be the determining aspects that affect the final decision 

 

In Table 3 are summarized some possible inputs that can determine the final decision, 

while in Figure 10 it is depicted the structure of the neuron that can decide to go for a 

walk or not. The three inputs can assume the values -1 or 1, while in circles are shown 

the weight values and in the top the threshold value (in this case it is 0.5). For 

instance, let us assume that today the weather is good, and I do not prefer to play 

football, but I am a little bit tired: so, following the values in Table 3, the first and 

third input is +1, while the second is -1. The activation function is the Signum one, 

so the output can be -1 if the input is less or equal 0, +1 if the input is higher. 

 

 

Figure 10: structure of an artificial neuron that can decide to go for a walk or not 

 

The process starts with the weighted sum, so: 
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𝑃 = ∑ 𝑥𝑗𝑤𝑗

3

1

= (+1 ∙ 1) + (−1 ∙ 0.5) + (+1 ∙ 0.2) = 0.7 

Then the activation function is applied, taking as input the sum 𝑃 to which the 

threshold is subtracted: 

𝑦 = 𝑠𝑖𝑔𝑛(𝑃 − 𝑇) = 𝑠𝑖𝑔𝑛(0.7 − 0.5) = 𝑠𝑖𝑔𝑛(0.2) = +1 

So, the neuron decides that I have to go for a walk, but for example if the threshold 

was higher, for instance 1, the model would give a different result: the activation 

function would take as input a value of −0.3, giving a negative result. 

Now that the description of the single neuron is clear, it is possible to shift the 

attention to the structure that underlies the deep learning approach, the Artificial 

Neural Network. 

Imagine you want to apply the previous model to something closer to a technical 

application, for instance a neuron able to replicate the behaviour of a Boolean port, 

like the AND port. This port takes two inputs, whose values can be 1 or 0, and gives 

an output equal to 1 only if both the inputs are 1. In Figure 11 is depicted the 

input/output relationship of an AND port, and the output position inside a space built 

on the two inputs values. 

 

 

Figure 11: I/O relationship of an AND port and visualization of the output in the inputs space. 
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So, our neuron must be able to separate the (1,1) point from the other three points: 

this can be done assigning the same weight equal to 1 to the inputs, a threshold value 

equal to 1.5, and exploiting the signum activation function, as shown in Figure 12. 

 

 

Figure 12: structure of an artificial neuron as an AND port 

 

With this configuration the neuron can solve the problem, separating the points in 

the correct way: 

𝑓𝑜𝑟 𝑥1 = 0 𝑎𝑛𝑑 𝑥2 = 0      ;       𝑦 = 𝑠𝑖𝑔𝑛(0 ∙ 1 + 0 ∙ 1 − 1.5) = 𝑠𝑖𝑔𝑛(−1.5) = −1 

𝑓𝑜𝑟 𝑥1 = 1 𝑎𝑛𝑑 𝑥2 = 0      ;       𝑦 = 𝑠𝑖𝑔𝑛(1 ∙ 1 + 0 ∙ 1 − 1.5) = 𝑠𝑖𝑔𝑛(−0.5) = −1 

𝑓𝑜𝑟 𝑥1 = 0 𝑎𝑛𝑑 𝑥2 = 1      ;       𝑦 = 𝑠𝑖𝑔𝑛(0 ∙ 1 + 1 ∙ 1 − 1.5) = 𝑠𝑖𝑔𝑛(−0.5) = −1 

𝑓𝑜𝑟 𝑥1 = 1 𝑎𝑛𝑑 𝑥2 = 1      ;       𝑦 = 𝑠𝑖𝑔𝑛(1 ∙ 1 + 1 ∙ 1 − 1.5) = 𝑠𝑖𝑔𝑛(+0.5) = +1 

What the neuron is doing, is creating a separation line between the points, generating 

two hyperplanes that contain points of only one value. This result is depicted in Figure 

13. 
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Figure 13: separation line between points 

 

The same process can be done also to mimic the behaviour of other Boolean ports, 

but not all of them: for instance, it is not possible to replicate the XOR (Exclusive 

OR) port: this Boolean operator, takes 𝑁 inputs and gives a TRUE (1) output only if 

the number of TRUE inputs is odd. For example, with two inputs the XOR port gives 

an output equal to 1 when the two inputs are different from each other. 

 

 

Figure 14: I/O relationship of an AND port and visualization of the output in the inputs space 

 

From Figure 14, it is possible to understand that a single separation line is not sufficient 

to separate the points. This also means that a single neuron is not enough, and we 

need to add other ones in order to complete the task. 
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Indeed, as it can be seen from Figure 15, the XOR port can be seen as the joint between 

the OR port and the negation of the AND of the two inputs [20], in a process that 

requires three steps: firstly the two inputs enters in two neuron that perform the AND 

and OR task; then the outputs of these neurons become the inputs of two new 

neurons, one perform the negation of the AND, while the other is just an identity 

neuron, that let the input signal pass unaffected. Finally, the last neuron performs an 

AND operation, taking as inputs the outputs of the previous neurons. 

 

 

Figure 15: topology of the network that perform the XOR operation 

 

An artificial neural network has just been created, and the process that produce the 

output 𝑦 from the inputs is presenting exploiting two examples, one that takes as 

input the couple (1,0), and the other the couple (1,1). In the example, the weights will 

be considered all equal to 1, this is the reason of their absence in the picture. The 

AND operator is represented by the product symbol, the OR operator is depicted as 

the sum and the NOT with the bar above the number (   ̅ ): 

 

𝑓𝑜𝑟 𝑥1, 𝑥2 = (1,0) 
𝑢1 = 1 ∗ 0 = 0 ;  𝑣1 = 𝑢1̅̅ ̅ = 1 ; 

𝑦 =  𝑣1 ∗ 𝑣2 = 1 ∗ 1 = 1 
𝑢2 = 1 + 0 = 1; 𝑣2 = 𝑢2 = 1 ; 

   

𝑓𝑜𝑟 𝑥1, 𝑥2 = (1,1) 
𝑢1 = 1 ∗ 1 = 1 ;  𝑣1 = 𝑢1̅̅ ̅ = 0 ; 

𝑦 =  𝑣1 ∗ 𝑣2 = 1 ∗ 0 = 0 
𝑢2 = 1 + 1 = 1; 𝑣2 = 𝑢2 = 1 ; 
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The structure in Figure 15 is just an example of how a network can be built, but it 

shows one of the main characteristics of the artificial neural networks: the structure 

is composed by different layers. The one that receives the inputs is called input 

layer, while the one that produce the output is the output layer; between these two, 

there can be zero or multiple layers called hidden layers (in the example above, there 

is one hidden layer). 

Between two layers, different patterns of connection can be present [17]: the neurons 

can be fully connected, if in one layer all the neurons are connected to the ones in 

the next layer; or they can be pooling, so a group of neurons in a layer are connected 

to only one in the next layer.  

Finally, another characterization of an ANN is given by the direction of propagation 

of the signals: if they proceed only from the input to the output through the different 

layer, it is a feedforward neural network (FFNN); while if there are some 

connections between a layer and the same or the previous one, the network becomes 

a recurrent one. 

ANN can have several layers of different numbers of neurons, and they are called 

deep neural network, like the one shown in Figure 16: it is a feedforward network, as 

the signals can only proceed in one direction, and fully connected, as all the neurons 

of a layer are connected to the ones in the next layer. At the beginning of this chapter 

it was said that the term deep refers to a “multi-level learning”, and this is represented 

by the different layers in the network depicted: still retaining a general view of the 

problem which will be addressed in more detail later, each layer of the network is 

able to extract parameters of the data in a more abstract way as the signals proceed 

from one layer to the next one. 

Using the example given before of “thinking of an apple”, the network works 

understanding which are the features of an apple from the simplest ones in the first 

layer, like the contours, and then proceeding in the next layer where the dimensions 

are learnt, and then moving to colours and so on. 
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Figure 16: example of a deep neural network 

 

Due to their huge learning potential, ANN find a lot of different application: from 

simple tasks like the Boolean reproduction seen before or the approximation of 

functions, to really difficult problems, like the image recognition, the language 

interpretation and other complicated task. The strength of the ANN approach is given 

by the learning procedure, that indeed is called Deep. 

In the DL approach, the mathematical model is the artificial neuron and the ANN. In 

this paradigm, learning means to specialize the network to a specific task [20]: given 

the topology of the network (so its structure), the ability to realize a task is given by 

a specific combination of the weights and threshold, and to define them it is necessary 

to train the network. 

In a way similar to the ML approach, there are different way to train an ANN, for 

instance the Supervised Learning is available also for these algorithms: as shown in 

the 2.1 Machine Learning chapter, this approach consists in feeding the 

algorithm (the network in DL) with some example inputs of which we already know 

the output, through a mathematical model the system learns which are the 

correlations between the output and the inputs, and finally the algorithm is tested 

with other known records. 
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But the DL and the ML approaches are different due to the mathematical frameworks 

on which they are based: in ML the output was given by an optimization process of 

an objective function that ruled the behaviour of the system, and the analysis of the 

records allowed the regulation of the function parameters in order to obtain a good 

accuracy in the prediction. These parameters can be directly corrected through the 

optimization process because the function maps directly the output with respect of 

the input, so the entire training set used to feed the learning process. 

In ANNs, the structure of the networks makes the definition of the parameters 

(weights and threshold) not easy to implement; in particular, as the number of layer 

increases, it becomes difficult to correlate the output error with the different neurons 

that belong to deep hidden layer. In the following pages, the training technique for 

ANNs will be described, as a fundamental knowledge to understand the deep learning 

approach. 

 

2.2.2 Training an ANN 

 

To comprehend the training process of a network, it is essential to first understand 

what the learning process of a single neuron is: the perceptron learning rule is used 

to train a single neuron. It starts from a vector of weights 𝑤𝑠𝑡𝑎𝑟𝑡 arbitrary defined 

and, through an iterative procedure which exploits the difference between the target 

output and network one, it arrives at a solution 𝑤∗. 

Let us consider a neuron that take 𝑀 input and 𝑁 output, with a signum activation 

function, so the output can be only {−1; +1}. In order to define and correct also the 

threshold as one of the parameters of the system, it will be considered from now on 

as an added weight 𝑆 of a virtual input always equal to −1. The training set is 

composed of 𝑅 examples, of which are known the desired target. The perceptron rule 

is the following: 

𝑤(𝑘+1) = 𝑤(𝑘) + ∆𝑤(𝑘)    𝑤𝑖𝑡ℎ    ∆𝑤(𝑘) = 𝜂(𝑡(𝑘) − 𝑢(𝑘))𝑥(𝑘) 

Where 𝑘 is the actual record passing through the neuron; 𝑡(𝑘) is the target of the 

actual record, 𝑢(𝑘) is the actual output of the neuron and they can be {−1 , +1}. 
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𝑥(𝑘) = [𝑥1, 𝑥2, … , 𝑥𝑛](𝑘) is the input vector and 𝑤(𝑘) = [𝑤1, 𝑤2, … , 𝑤𝑛, 𝑆](𝑘) the 

weight vector. 𝜂 is a parameter called learning rate, positive and less than 1, that 

define the influence of each correction on the parameters of the network. 

The meaning of the rule is easier to understand, if you consider what the neuron is 

actually doing: as shown in the example of the Boolean operator at page 24, the 

neuron tries to implement a separation line that generate two hyperplanes, each one 

containing only records belonging to one target class. Considering that this 

separation line is generated through the weights vector, the perceptron rule, at each 

iteration, reorients this vector toward itself if the error signal is +1 or opposite to 

itself if the error signal is −1, while it does not provide a correction if the error is 

equal to 0 [20]. 

𝐼𝑓 𝑒 = +1    𝑡ℎ𝑒𝑛    𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 + 𝑥(𝑘) 

𝐼𝑓 𝑒 = −1    𝑡ℎ𝑒𝑛    𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝑥(𝑘) 

𝐼𝑓 𝑒 =     0   𝑡ℎ𝑒𝑛    𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 

So, it can be said that each pattern contributes to a direct correction of the weights, 

but only if there is a misclassification (so an error), otherwise nothing will be done. 

This learning approach suffers from the typical problems of these kind of algorithms: 

one is the existence of the solution and the other one is the convergence of the 

algorithm to the desired solution, if this exists. In this case, with a single neuron, the 

solution exists only if the training set is linearly separable. This is a very strict 

constraint, as in practice, it is hard to fine such a dataset, so it is necessary to extend 

the learning process to neuron that exploit continuous activation functions, and then 

increase the number of layers in the ANN. 

So, let now consider the same neuron as before, with 𝑀 input and 𝑁 output, a training 

set if 𝑅 records, but with a sigmoid activation function; the overall error signal can 

be computed as the sum of the error signals for each pattern 𝑘 of the dataset, with the 

latter calculated as the squared value of the difference between the desired target and 

the actual output of the network: 

𝐸(𝑘) = ∑ 𝐸(𝑘)

𝑅

𝑘=1

= ∑  

𝑅

𝑘=1

∑
1

2
(𝑡𝑖

(𝑘)
− 𝑢𝑖

(𝑘)
)2

𝑁

𝑖=1
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It can be expected that the correction of the weights vector ∆𝑤𝑖𝑗 is a function of this 

error, so that ∆𝑤𝑖𝑗 = 𝑓(𝐸). In particular, the delta rule assumes the correction ∆𝑤𝑖𝑗 

must be negative if 𝐸 increases with the increase of 𝑤𝑖𝑗, while it must be positive if 

𝐸 increases with the decrease of 𝑤𝑖𝑗. 

To reach this behaviour, the gradient descending method is used: it is an iterative 

optimization that tries to reach a local minimum of a function, taking steps in one 

direction or the other one, depending on the negative of the gradient calculated on 

the actual point. So, it computes the gradient of the cost function 𝐸 with respect to 

the weights value, and change each weight in the negative (opposite) direction to the 

gradient: 

𝑤𝑛𝑒𝑤 =  𝑤𝑜𝑙𝑑 + ∆𝑤      𝑎𝑛𝑑      ∆𝑤 = 𝜂 (−
𝜕𝐸

𝜕𝑤
 ) 

So, the updating rule of the weight for a neuron 𝑖 with an input 𝑗, given the 𝑘 record 

of the dataset, becomes: 

(∆𝑤𝑖𝑗)(𝑘) =  𝜂(𝑡𝑖
(𝑘)

− 𝑢𝑖
(𝑘)

)𝑓′(𝑃𝑖
(𝑘)

)𝑥𝑗
(𝑘)

 

Where 𝑓′(𝑃𝑖
(𝑘)

) is the derivative of the activation function of neuron 𝑖, in 

corrispondence of the summation 𝑃 at record 𝐾. 

So, the algorithm work to reach the convergence to a solution, until a stopping rule 

terminates the procedure: this rule can be the maximum number of iterations, an error 

threshold below which the result is considered acceptable, a gradient to small or 

combination of them. 

But even the Delta rule has some limitations: the computation of the derivative 

implies constraints in the choice of the activation function, that must be 

differentiable. Another problem is the choice of the initial points of the gradient 

descending, which suffers from local minima issues. The most important limitation 

is that the delta rule cannot be applied to networks that present hidden layer: this 

because there are not target for the output of the neuron belonging to these layers, so 

there is no correction available. 
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The solution of this problem is offered by the back propagation algorithm, which 

is a generalization of the delta rule: this approach is again an iterative process, that 

tries to back propagate the error signal from the output back to the hidden layer in a 

sort of “reverse direction of the signals”. The process is divided into two steps, one 

that follows the classic direction and permits to calculate the output from the actual 

input, and the second that back propagates the computed error through the hidden 

layers of the network. 

To describe the algorithm, the example in [20] is follow: it considers a multi-layer 

Perceptron with 4 inputs, one hidden layer of three neurons and an output layer 

composed by two neurons, as depicted in Figure 17. 

 

 

Figure 17: example of perceptron with a hidden layer 

 

Being in a supervised learning approach, it is possible to compute the correction ∆𝑤𝑖𝑗 

using the delta rule, exploiting the target value and the output of the system; the same 

could be done for the output of the hidden layer, but no targets are available for these 

neurons. The backpropagation algorithm overcome this limitation: 

∆𝑤𝑖𝑗 =  𝜂 ∑  (𝑡𝑖
(𝑘)

− 𝑢𝑖
(𝑘)

)𝑓′(𝑃𝑖
(𝑘)

)𝑦𝑗
(𝑘)

𝑅

𝑘=1
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∆𝑐𝑗𝑟 =  𝜂 ∑  (𝑦̅𝑗
(𝑘)

− 𝑦𝑗
(𝑘)

)𝑓′(𝑃𝑗
(𝑘)

)𝑥𝑟
(𝑘)

𝑅

𝑘=1

 

Where the first equation is the classic delta rule applied on the output, as if the hidden 

layer were the input layer, while the second one is the delta rule applied to the output 

of the hidden layer in respect to the input from the input layer. 

Considering a single pattern in the training set, and according to the gradient descent 

principle, the gradient of the error 𝐸 with respect to the weight of the hidden layer 

𝑐𝑗𝑟 is computed as: 

∆𝑐𝑗𝑟 = 𝑓 (
𝜕𝐸

𝜕𝑐𝑗𝑟
) 

By chaining the differential with the factor 𝜕𝑃𝑗
𝐻 namely the differential of the action 

potential of the hidden neuron j (H superscript stands for “hidden”), and then chain 

to the factor 𝜕𝑦𝑗 (output of the hidden neuron j) it can be expressed as: 

𝜕𝐸

𝜕𝑐𝑗𝑟
=

𝜕𝐸

𝜕𝑃𝑗
𝐻  

𝜕𝑃𝑗
𝐻

𝜕𝑐𝑗𝑟
=  

𝜕𝐸

𝜕𝑦𝑗
 

𝜕𝑦𝑗

𝜕𝑃𝑗
𝐻  

𝜕𝑃𝑗
𝐻

𝜕𝑐𝑗𝑟
 

The term 
𝜕𝐸

𝜕𝑦𝑗
 can be chained to 𝜕𝑃𝑖

𝑂 which represent the differential of the action 

potential of the neuron 𝑖 in the output layer. However, chaining 𝜕𝑃𝑖
𝑂 makes 𝜕𝑐𝑗𝑟 

dependent on 𝑖 which is undue. This is solved by letting 𝑖 varying over all the 𝑁 

neurons (𝑁 = 2 in this specific case) in the output layer so that: 

𝜕𝐸

𝜕𝑦𝑗
 

𝜕𝑦𝑗

𝜕𝑃𝑗
𝐻  

𝜕𝑃𝑗
𝐻

𝜕𝑐𝑗𝑟
=  ∑ (

𝜕𝐸

𝜕𝑃𝑖
𝑂  

𝜕𝑃𝑖
𝑂

𝜕𝑦𝑗
)

𝜕𝑦𝑗

𝜕𝑃𝑗
𝐻  

𝜕𝑃𝑗
𝐻

𝜕𝑐𝑗𝑟

𝑁

𝑖=1

 

And considering that 𝑦𝑗 is an input to neuron 𝑖 in the output layer, it is possible to 

chain 𝜕𝑢𝑖 (differential of the output signal of the neuron 𝑖 in the output layer), 

obtaining: 

∑ (
𝜕𝐸

𝜕𝑢𝑖
 
𝜕𝑢𝑖

𝜕𝑃𝑖
𝑂  

𝜕𝑃𝑖
𝑂

𝜕𝑦𝑗
)

𝜕𝑦𝑗

𝜕𝑃𝑗
𝐻  

𝜕𝑃𝑗
𝐻

𝜕𝑐𝑗𝑟

𝑁

𝑖=1

 

Which can be simplified in: 
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∑( (𝑡𝑖 − 𝑢𝑖) 𝑓′(𝑃𝑖
𝑂)𝑤𝑖𝑗) 

𝜕𝑦𝑗

𝜕𝑃𝑗
𝐻  

𝜕𝑃𝑗
𝐻

𝜕𝑐𝑗𝑟

𝑁

𝑖=1

 =  ∑( (𝑡𝑖 − 𝑢𝑖) 𝑓′(𝑃𝑖
𝑂)𝑤𝑖𝑗) 

𝑁

𝑖=1

𝑓′(𝑃𝑗
𝐻)𝑥𝑟  

Finally, the training performed for all 𝑅 patterns, leads to define the increment ∆𝑐𝑗𝑟 

as: 

∆𝑐𝑗𝑟 =  𝜂 ∑  (𝑦̅𝑗
(𝑘)

− 𝑦𝑗
(𝑘)

)𝑓′(𝑃𝑗
(𝑘)

)𝑥𝑟
(𝑘)

𝑅

𝑘=1

=  𝜂 ∑  ( ∑( (𝑡𝑖 − 𝑢𝑖) 𝑓′(𝑃𝑖
𝑂)𝑤𝑖𝑗) 

𝑁

𝑖=1

𝑓′(𝑃𝑗
𝐻)𝑥𝑟 )

𝑅

𝑘=1

 

It is possible to define the process for any number of hidden layers. Let us define a 

perceptron with 𝐿 hidden layers, each one composed by 𝑀𝑙 neurons, and an output 

layer with 𝑁 neurons. 𝑤𝑖𝑗
(𝑙)

 is the generic weight of 𝑖 neuron in layer 𝑙 with respect to 

the neuron 𝑗 in the layer 𝑙 − 1. So ∆𝑤𝑖𝑗
(𝑙)

 is: 

∆𝑤𝑖𝑗
(𝑙)

=  𝜂 ∑ 𝛿𝑖

(𝑙),(𝑘)
𝑒𝑗

(𝑙−1),(𝑘)

𝑅

𝑘=1

 

Where 𝑒𝑗

(𝑙−1),(𝑘)
 is the output signal of the 𝑗 neuron of the (𝑙 − 1) layer in 

correspondence of the 𝑘 pattern of the training set with: 

𝛿𝑖
(𝑙),(𝑘)

= (𝑡𝑖
(𝑘)

− 𝑢𝑖
(𝑘)

)𝑓′(𝑃𝑖
(𝑘)

)    𝑖𝑓    𝑙 = 𝐿 

𝛿𝑖

(𝑙),(𝑘)
=  𝑓′(𝑃𝑖

(𝑘)
) ∑ (𝛿𝑟

(𝑙+1),(𝑘)
𝑤𝑟𝑖

(𝑙+1)
)    𝑖𝑓    𝑙 < 𝐿

𝑀𝑙+1

𝑟=1

 

𝑀𝑙+1 is the number of neurons in the (𝑙 + 1) layer. The overall procedure for a single 

iteration step can be then synthesized as follows: 

1. Start from 𝑙 = 𝐿, so the output layer, and compute 𝛿𝑖
(𝑙),(𝑘)

 for each neuron 𝑖 

2. Move to 𝑙 = 𝐿 − 1 and compute 𝛿𝑖
(𝐿−1),(𝑘)

 in function of 𝛿𝑖
(𝑙),(𝑘)

 

3. Continue to compute 𝛿𝑖
(𝑙),(𝑘)

 until 𝑙 = 2 

4. Update all the weights ∆𝑤𝑖𝑗
(𝑙)

=  𝜂 ∑ 𝛿𝑖

(𝑙),(𝑘)
𝑒𝑗

(𝑙−1),(𝑘)𝑅
𝑘=1  
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Finally, a method to train a multilayer network in a supervised learning paradigm is 

obtained. 

The supervised learning method just proposed is a good way to train an ANN to 

perform tasks that are similar to the ones presented in the 2.1 Machine 

Learning chapter, like classifying patterns, map variables into homogeneous 

groups or approximate functions. So, it would not be wrong to say that the ANN 

could be considered another technique available to carry out such tasks, making 

almost excessive the attention given so far to the description of this learning 

approach. In addition, following the learning rules given for ANN, someone could 

argue that the same problems of ML could arise again: indeed, also in the supervised 

training of an ANN, the choice of the training set has a strong influence on the final 

result of the learning procedure, so the human intervention is fundamental to reach 

good performances and complicated tasks, like image recognition, are still not 

manageable. 

The same consideration can also be made in case you move into the unsupervised 

learning field: this approach is available also in the ANN, but the process leading to 

the construction of a network capable of solving the typical unsupervised problems 

(clustering, anomaly detection, and so on) is longer and more complicated than the 

supervised one. For instance, determining the number of neurons in the hidden layer 

is an extremely significant issue in unsupervised neural network design, and selection 

of hidden neurons randomly may cause the problem of either Under fitting or 

Overfitting in a network [21]. For this reason, only the supervised learning approach 

was presented. 

As we said earlier, the ability of an ANN to specialize in a specific task is defined by 

the combination of weights and threshold, but also by the structure of the network 

itself: indeed, specific topologies offer some different solution to overcome the 

problems indicated before, so depending on the task required, it may be better to 

apply a specific architecture than another. A huge number of structures exists, so it 

is impossible to describe the development of each architecture, and the description 

of every single method is outside of the scope of this thesis. The most diffused 

architectures of such ANNs are the convolutional and the autoencoder neural 

networks: they both are feedforward networks aiming at learning a compressed, 
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distributed representation (encoding) of an input dataset (usually an image but in 

principle can be applied to any generic input pattern) [20]. 

In the following, the convolutional networks will be described in detail, as example 

of an ANN widely used in different field. This structure finds a lot of applications, 

due to its ability to analyse images and extract from them information in a fully 

automatic way: also, in medical application the Convolutional Neural Network (CNN 

from now on) are used in all those medical branches which exploit imaging 

techniques. 

 

2.2.3 The convolutional neural network 

 

When the ANNs was firstly described in the earlier pages, it was said that this 

technique aims to reproduce the human behaviour. The vision system in our brain 

works in a complex way, in which different parts of its structure work in series to 

understand the image arriving from the retina of our eyes. From the primary visual 

cortex V1, up to the entire series of virtual cortices from V2 to V5, each part 

implements a more complex image processing [20]. 

Indeed, from the image captured by our eyes, the brain carries out a series of 

compressions that have the purpose of extrapolating from the image the fundamental 

characteristics that allow to identify the objects present in the scene, the distance 

between the objects and the body, the background and so on. So, the analysis goal is 

to pass from the “specific object in the scene”, for instance “the red, small apple on 

the desk”, to “a more abstract concept” collected in our memory because the brain 

had already faced that thing, for instance “an apple”. 

The CNN is an ANN topology that tries to mimic the brain structure, and its way to 

process the image. This neural network is basically composed by three types of 

layers: a convolutional layer followed by a pooling layer, and finally a feed 

forward fully connected one [22]. The first one is responsible to the extraction of 

the main features of the input images and learns the characteristics of the presented 

scene; the latter is a classical classification network that is able to define which things 

are present in the input image, exploiting the features offered by the previous stage. 
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The convolutional stage follows the connectivity pattern of neurons in our brain, and 

in particular of the visual cortex: individual neurons respond to stimuli only in a 

restricted region of the visual field, known as receptive field. These fields slightly 

overlap, to cover the entire visual area, but sharing a little bit of each one to increase 

the accuracy of the analysis [23]. Starting from this structure, the CNN basic ideas 

are local receptive fields, shared weights, and pooling: the first two are exactly the 

ideas exposed earlier, so the receptive fields and their overlapping, while the pooling 

is a process of compression of the image, done to reduce the computational power 

required by the brain, but also by our artificial systems. 

 

 

Figure 18: example of CNN 

  

The behaviour of the example CNN in Figure 18 can be divided in four parts: 

1. The input layer, as in the common ANN, collect the image pixels, that are the 

input values of the CNN. 

2. The convolutional layer will determine the output of the neurons belonging to the 

different local receptive fields, through the product between the weights and the 

region connected to their input. The Rectified Linear Unit (ReLu) is a stage in 

which an activation function tries to force the output of the layer to be positive, 

with the aim of normalizing the values of the convolutional layer output. 

3. The pooling layer will then perform a downsampling of the convolutional layer, 

to reduce the dimensionality and lower the computation required. 

4. The fully connected network at the end performs the usual tasks of an ANN. 



 

39 
 

So, the process made by a CNN starts with the convolutional layer, characterized by 

the use of the local receptive fields. This is a set of connections that share the same 

weights and thresholds and are replicated on the entire visual field forming a feature 

map. Each local receptive field is computed by a neuron, and each one take as input 

a specific number of inputs from the precious layer, like depicted in Figure 19. 

 

 

Figure 19: example of a feature map 

 

In other words, a feature map is composed by a set of neurons, in which each unit 

analyses a specific part of the image, through the application of a filter called kernel. 

Each neuron computes a new pixel, function of the previous ones, and the collection 

of all the outputs generate the feature map. The process to obtain this map is the 

convolution of the input image with a linear filter, the summation of a bias (the 

threshold, considered as a virtual input of weight equal to −1) and finally applying 

the activation function. 

𝑢𝑗,𝑘
(𝑖)

= tanh (𝑏(𝑖) + ∑ ∑ 𝑤𝑙,𝑚
(𝑖)

𝑎𝑗+𝑙,𝑘+𝑚

𝑓𝑦

𝑚=1

𝑓𝑥

𝑙=1

) 

Where 𝑓𝑥 and 𝑓𝑦 are the dimensions of the kernel, so the dimensions of the pixel 

matrix analysed by the filter, 𝑢𝑗,𝑘
(𝑖)

 the value of the feature map at layer 𝑖 and in 

position 𝑗, 𝑘, 𝑏 is the threshold, 𝑤 is the matrix of the weights that performs the 

filtering, 𝑎 the value of the pixels of the local receptive field. 



 

40 
 

So, the kernel is moving over the image and the scalar product between its value and 

the pixels one is computed, then the bias is summed up, and the new pixel value is 

calculated through the activation function. If, for instance, a 5x5 pixel image passes 

through a convolutional layer with local receptive fields of dimensions 3x3, the first 

neuron would provide: 

  

𝑢1,1
(𝑖)

= tanh (𝑏(𝑖) + ∑ ∑ 𝑤𝑙,𝑚
(𝑖)

𝑎1+𝑙,1+𝑚

3

𝑚=1

3

𝑙=1

) 

For a total of 3 × 3 + 1 = 10 weights to compute for each neuron (nine weights and 

one threshold). 

 

 

Figure 20: example of a kernel moving on an image 
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As depicted in Figure 20, assuming that the kernel moves from left to right and from 

up to bottom, one pixel at a time, it would be necessary to take three steps to reach 

the upper right edge, then again three steps to reach the bottom right corner, for a 

total of 3 × 3 = 9 receptive fields, so nine neurons for the layer. The number of 

parameters to compute at the end of just one layer, and for a small image like the one 

in the example, is 10 × 9 = 90 parameters to define. As image resolutions are 

usually higher than this one and as multiple layers are usually applied in CNN, it can 

be already noticed why the computational power required for this kind of application 

is so huge. 

An example of the result of this process is shown in Figure 21, where different feature 

maps are presented, following the downsampling process: indeed, it is possible to 

notice that the dimension of the pixels increase in the process, so the details on which 

the feature map is focused on become more and more discernible. In the upper 

sequence the contours of the hair are highlighted, while in the bottom one the eyes 

of the woman are enhanced. 

 

 

Figure 21: example of different feature maps 

 

After this process the dimension of the image is reduced, as the feature maps generate 

one pixel each step, so we move from a 5x5 image, to a 3x3 one, that enhanced one 
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specific feature of the image: the feature map can highlight the contours of the main 

object in the image field, or maybe some details in the scene. 

The next passage is the ReLu, which is necessary in order to obtain from the 

convolutional layer only positive values: indeed, the activation function inside each 

neuron can generate also negative values, for instance it was previously used the 

𝑡𝑎𝑛ℎ activation function that generates value in the range [−1; +1]. The rectified 

linear unit is a function defined as: 

𝑓(𝑥) = {
𝑥      𝑓𝑜𝑟 𝑥 ≥ 0
0      𝑓𝑜𝑟 𝑥 < 0

 

 

Figure 22: example of ReLu function 

 

After this process, all the output values of the ReLu layer, which will become inputs 

for the next layer, will be all positive. 

Finally, the last process is the pooling, so the reduction of dimensionality in order to 

lighten the computational load, but also to introduce a translation invariance to small 

shift and distortion [24], so the feature extracted are not dependent on their exact 

position and are less sensitive to noise. It is a non-linear downsampling and there are 

not learnable parameter or process, as all the pooling characteristics are fixed. The 

pooling techniques are similar to the convolutional layer process, so a kernel of 

dimension 𝑀 × 𝑀 flows on the matrix and for each step it reduces the number of 

pixels to just one, and how the kernel select the output values depends on which 

pooling method is chosen. There are two types of this technique, called max pooling 

and global average pooling: in the first one, shown in Figure 23, the kernel output is 

the highest value inside its field of view, while in the latter is an extreme 
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downsampling, in which a feature map is downsampled into a 1x1 array by simply 

taking the average of all elements in each feature maps. This is usually applied only 

once before the fully connected layers, to reduce the number of parameters to be 

learnt and to enable the CNN to accept inputs of variable size [24]. 

 

 

Figure 23: example of application of max pooling 

 

As shown in Figure 18, several layers are present in a CNN, each one made by the 

combination of convolutional layer, ReLu and pooling. The basic idea is to chain 

different blocks with a decreasing number of units, up to a final stage of feature 

classification, which usually is a fully connected feed forward network able to assign 

classes depending on the set of features provided by the convolutional stage. 

The reduction of the number of units, proceeding through the hidden layers, aims to 

increase the generality of the features extracted by the different layers: the first 

neurons in the network analyse small details, like contours and eyes like in Figure 21, 

and progressively the following layers try to merge these small characteristics, trying 

to compose larger and larger structures. These are then exploited to recognize the 

different object present in the image, and finally exploit them to identify the subjects 

of interest in the image field. 
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Figure 24: example of what the deeper layers of a CNN learn 

 

In Figure 24 are shown the different structures learnt by a CNN in the deeper layers, 

which learnt to recognize some dogs or also the wheels of a car, and it can use all 

these knowledges for different purpose: indeed, the final result of the CNN depends 

on the final network in series to the CNN. For instance, the features extracted from 

the network can be exploited to classify some images, or to generate new ones mixing 

the features learnt in the training, or also to separate a set of images depending on 

some important features, always discovered by the system independently. 

 

2.3 AI in medicine and healthcare 
 

Artificial intelligence in now exploited in almost every area in the world, of course 

also including medicine and healthcare: assistance to physicians in diagnosis and 

treatments application, analysis of public health systems or the study of data in 

clinical trials. 

The approach used in medicine is based on the knowledge and experience of 

clinicians, which generate usually qualitative assessments: these evaluations suffer 
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from problems related to the human sphere such as fatigue, misunderstanding of links 

between symptoms or the inability to notice very small details. In contrast to such 

qualitative reasoning, AI excels at recognizing complex patterns in imaging data and 

can provide a quantitative assessment in an automated fashion [25]. 

In particular, AI are really helpful in those field in which is required to interpret large 

amounts of data, and from them extract high level correlations difficult to understand 

by a human. For instance, to assist the physicians in the decision process that lead to 

diagnosis or treatment plans: usually is necessary to face these problems in a multi-

parametric approach, in which different kind of exams are done, and the information 

extracted are combined to obtain a single result. Exams can be imaging technique, 

chemical analysis or notes taken by an expert from a qualitative point of view, and 

an extreme workload pours on the shoulder of doctors which must take the final 

decision. AI can be really useful in this application, exploiting the speed with which 

these machines are able to extract the most significant information from a massive 

dataset, or even the ability to analyse biomedical images and report the presence of 

anomalies, and so on. 

Using ML or DL approaches can improve the general level of the clinical practise, 

making it more efficient, personalized, and more convenient. Indeed, it is now 

possible to produce biomedical instrumentation able to monitor the single patient in 

a more customizable way than in the past, and so the amount of information available 

for each patient is grown. People is beginning to demand faster and personalized care 

[26] [27], due to their perception of a higher technological level, that creates the idea 

of a totally automated process that work without a doctor. This is not true, but it 

necessary to help physicians to follow the patients request in faster diagnosis and 

solution, without any loss in efficiency and accuracy. 

In cardiology, the ML technique is used massively to discover relationships between 

the independent variables (the information on the patient) and the dependent one 

(presence of a pathology) [28]. Supervised learning methods are used for different 

purpose: for instance, in [29] Halim et al. try to predict myocardial infraction or 

deaths, exploiting the combination of medical variable and proteomic measurements 

in a regression algorithm. Another example is the work made by Cui et al. [30] in 
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which they evaluate the diagnostic utility plasma biomarkers for in-stent restenosis 

(ISR), using a Support Vector Machine algorithm that reach an accuracy of 90%. 

The DL approach, on the other hand, is widely used in the field of Image-based 

diagnosis, due to the efficiency of these algorithm in the analysis of images: 

radiology, ophthalmology or dermatology are just examples of the medical branches 

that exploits imaging techniques. 

In radiology, usually diagnoses are made after acquiring different types of images, 

like radiography, MRI, PET, and so on, and the radiologists use these images for 

screening and making diagnoses or tracking the patient respond to a treatment [31]. 

In this area, the image analysis ability of deep neural network can be used to assist 

clinicians in their job: for instance, the first FDA approval for a machine that exploits 

deep neural network [32] was the Arterys [33], a system for diagnosing 

cardiovascular diseases which uses cardiac MRI images analysed by a deep NN 

trained with thousands of cases, and it continues to improve itself each time it is used. 

Dermatologists can use AI in the skin melanoma diagnosis: in the classical approach, 

a rule of thumb is usually used, and it is called ABCDE, with each letter representing 

one criterion that influence the result: these criterions, with the exception of the E 

one, can be implemented extracted from a single image of the lesion under analysis, 

but in the last years different automated system were developed, like the Esteva et 

al. [34] one, which use a CNN trained with more than 100 thousands images, and 

achieved the same accuracy level of a test dermatologists group. 

Other applications of AI in medicine are available, but the presentation of all these 

methods is out of the scope of this thesis. The above pages are indicative of the level 

of diffusion of AI within the medical sector, but despite the results that are obtained 

are substantial, there are some problems which limit the use of these technologies: 

some of these problems are of general term, such as privacy related to the data 

collected, while others are specific to the medical application, such as legal 

responsibility in case an automated system fails in diagnosis. 

Another important problem is the way these AI methods work most of them can be 

represented as black boxes, so machines that take inputs and generate outputs, 

without showing the process that led to the result. While in some application this 
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could not be a problem, in the medical area there are requirements which cannot be 

ignored: indeed, the information exploited in medical applications is sensitive data, 

which contains very personal patient information. From a legal point of view, not 

only is it necessary to know the way in which these techniques manipulate data, but 

it becomes even more important to know whether these retain sensitive information 

in some way. 

It is also important, from a practical point of view, that the patient is aware of what 

examinations he makes, what result can be expected and that, in general, the patient 

is confident of the treatment that the doctor builds on the information available to 

him. 

All these problems will be more studied in the next chapter, in which will be 

presented the solution that is currently spreading as state of the art in the field of 

artificial intelligence, when the requirements shown above are mandatory, like for 

example in medical applications. The solution is called Explainable Artificial 

Intelligence (XAI), that try to solve the problem of interpret how the artificial 

intelligence internally works and the output it generates. 
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3. Explainable Artificial Intelligence 
 

The concept of Artificial Intelligence, as already said in this thesis, has the aim of 

create a model of our intelligence, trying to replicate its behaviour. One of the most 

powerful aspect of human thinking is the ability to learn from experience, 

exploiting the daily life situations in a constant attempt at improvement. Another 

fundamental ability is the possibility of people to explain what they decide to do: in 

a world governed by causality, justifying one’s own actions is one of the basic 

concepts of interpersonal relations. In fact, each of us has completely different 

behavioural patterns from the others, so it is often necessary to point out the 

motivations that have pushed us in one direction, to allow others to understand the 

reason of our choices. While the learning concept, as it had been showed, is already 

a standard in AI, the explainability or interpretability of the methods is still a 

difficult result to reach. 

However, Artificial intelligence, as said in the previous chapter, is rapidly spreading 

around the world, finding applications in almost every field possible, like home 

assistant, self-driving car, healthcare. The attention of this thesis will from now focus 

on this last category: in medicine, artificial intelligence helped to upgrade the so 

called medical technology, so a “range of tools that can enable health professionals 

to provide patients and society with a better quality of life by performing early 

diagnosis, reducing complications, optimizing treatment and/or providing less 

invasive options, and reducing the length of hospitalization” [35]. AI moved the 

fundamentals of the medical technology from the classical instruments like 

prosthesis, stents and so on, to a more “mobile” era, helped by the diffusion of mobile 

and wearable devices, internet connectivity and smartphones, that augmented the 

capability of implementation of artificial intelligence applications in a more easy and 

reliable way. 

This automation process is still in its infancy, as the real applications of artificial 

intelligence in the routine clinical life are not so many, and typically their tasks are 

to assist human physician in making diagnosis or planning treatments, or in the 

wearable applications where devices are able to collect some health information 

through sensors and provide visualization of data and suggest “healthier” lifestyle. 
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Always in the above pages, it was said that in particular field like the medicine one, 

the application of AI technologies requires particular attention, due to the delicate 

aspect that these tools need to fight: accuracy in their predictions to avoid 

misclassifications of dangerous situations for patients (tumour, lesions or pathologies 

in general), clear and unique results given in each situation and so on. 

Expanding our point of view, we will consider both the already applied algorithms 

and the ones under research. These technologies still struggle to establish themselves 

as standards in clinical practice, as they present several problems that restrict the 

application of these tools in an easy and safe way: an accuracy that in many areas is 

not yet able to exceed that of an experienced doctor, legal uncertainties in the event 

of adverse events, a lack of confidence on the part of staff who must necessarily 

update their knowledge to cope with a completely new category of tools.  

However, the main problem is to be found in a poor ability of the developers of these 

systems to consciously handle all aspects of these automated technologies. In fact, as 

things actually stand, it is possible to find a correlation between the ability of the AI 

technology to perform complicated and delicate tasks and their complexity: an 

example of this characteristic is given by the usual behaviour of an artificial neural 

network, that becomes able to improve its data imaging capabilities as it increases its 

hidden levels and neurons. This fact was confirmed by the discovery of the double 

descent phenomenon, in which the accuracy of an algorithm of machine learning (but 

even more for deep learning) follows a sort of typical behaviour: as the number of 

parameters of the model, or the number of epochs in the learning procedure or the 

dimension of the dataset is growing, the accuracy firstly increases, then it decreases 

and finally starts again to augment. 

This phenomenon was discovered in the last decades, since the machines calculation 

speed was not high enough to get the second increasing climb within a reasonable 

time, so the algorithms typically were stopped at the first sign of inaccuracy. As the 

computational power increased, speeding up the calculation, machines became able 

to compute models with a higher number of parameter or epochs in a faster way, 

allowing to overcome the decreasing zone and showing the second accuracy gain. 

Indeed, almost every method has an initial increase of the accuracy, then it gets worse 
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and after a threshold it tart to increase again as the model fits the data in a better way. 

This phenomenon is depicted in Figure 25. 

 

 

Figure 25: double descent phenomenon 

 

The green curve is the representation of the theoretical framework of the classical 

statistics, which states that increasing the number of parameters the model become 

continuously worse, while the yellow one is the expected behaviour of a modern ML 

model, that increase its accuracy augmenting the number of parameters as the 

algorithms starts to overfit on the training data. In the practical world, as the amount 

of data in not infinite, and the computational time requires a finished number of 

parameters, the ML algorithms need to be stopped at a certain point depending on 

the complexity of the system. 

So, following this phenomenon, someone could say that if we want to solve 

complicated problems, algorithms must be complicated too: as this approach has 

been followed in the last decade, the most of the working AI algorithms are under 

the denomination of black boxes. This name comes from the impossibility to 

understand completely the way in which the AI method is working internally: a high 

number of parameters, a complicated system topology, and more in general “the way 

in which the program processes the data to produce the outputs” it is not fully 

explainable, also by the experts that made the algorithm itself. 
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The “black box problem” is the most difficult issue to solve, as this was taken into 

account in the recent years, given the current spread of AI in every aspect of our 

lives. In fact, as our lives are surrounded by increasingly intrusive AI technologies, 

it is necessary that these are comprehensible at least from the point of view of how 

they work. In particular, this need becomes mandatory in those contexts in which the 

choices made by machines influence situations potentially dangerous to people. In 

the medical context for example, it is unthinkable that algorithms which assist 

doctors in diagnosis work in a more or less opaque way. 

This issue became so important that in 2018 the European Commission, for instance, 

introduced the General Data Protection Regulation (GDPR2), establishing that 

companies placing artificial intelligence instruments on the European market must 

be able to explain the choices made by these instruments. 

Words like explanation, interpretability or explainability became in the recent years 

a trend, when talking about artificial intelligence. Documents like the GDPR, 

highlighted the need to retract the way we interface with the AI technologies with 

which we live: in fact, in contexts in which automated activities have a weight on 

decisive choices on people’s lives, like in the medicine field, you need to know how 

these machines calculate their results. For these reasons the actual trend, when 

dealing with AI technologies applied in delicate and dangerous field, is to put the 

attention on the interpretability/explainability of these methods, passing from the 

simple Artificial Intelligence to Explainable Artificial Intelligence (XAI). 

The Defense Advanced Research Projects Agency (DARPA3: a research agency of 

the United States Department of Defense) says [36] that the Explainable AI (XAI) 

program aims to create a suite of machine learning techniques that: 

• Produce more explainable models, while maintaining a high level of learning 

performance (prediction accuracy). 

• Enable human users to understand, appropriately trust, and effectively 

manage the emerging generation of artificially intelligent partners. 

 
2 Document in italian available at https://eur-lex.europa.eu/legal-
content/IT/TXT/HTML/?uri=CELEX:32016R0679 
3 https://it.wikipedia.org/wiki/Defense_Advanced_Research_Projects_Agency 
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This kind of artificial intelligence has the aim to create algorithms whose results are 

more understandable to humans [37]. there are several techniques that systems can 

use to explain their results: some explanations can be in the form of natural human 

language, then sentences logically linked to each other; or in visual form as diagrams 

or heat maps, that seek to give a direct view of the characteristics that are weighing 

most on the results provided by the system. A comparison between a normal AI and 

the XAI potential results is depicted in Figure 26. 

 

 

Figure 26: comparison between AI and XAI 

 

The different explanations must also consider the target of the explanation. 

Understanding a concept is not an objective process: on the contrary, the way in 

which each person understands something is extremely subjective, and depends on 

their own culture, experience, and character. Moreover, within the same context, 

explanations of the same concept may be necessary, but referring to recipients all 

different from each other. Let’s say the case of an automated system that wants to 

assist the doctor in deciding a pharmacological treatment on a patient, and you want 

to use an XAI that gives explanations to both the doctor and his patient: it is obvious 

that the explanations must have two different complexities, because the patient does 

not have the cultural background of the doctor; they must give different information, 

because the patient may be interested in more certain information that instead the 

doctor ignores and so on. So, the definitions of interpretability and explainability are, 

thus, domain dependent and may not be defined independently from a domain [38]. 
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In literature usually interpretability and explainability are used as synonymous, while 

some authors like [39] make a separation between the two terms: in this thesis will 

be followed the first approach. 

In the recent years the spreading of AI systems in decision-making processes raised 

the attention on this kind of technology, as illustrated in Figure 27: in this image is 

shown the Google Trend®4 search analysis of the keywords “Explainable Artificial 

Intelligence” in the last 5 years; each point represents the weekly rate of research for 

this word, and it is possible to see that is constantly growing. The explainability of a 

system is fundamental because it allows to explore the mechanism that the different 

algorithms exploit to generate their decisions. 

 

 

Figure 27: google trend for "explainable artificial intelligence" of the last 5 years 

 

In this way, experts can identify errors more easily and accurately, both in case a bug 

prevents the machine from working, and in the case where a wrong configuration 

leads to misclassifications. But the knowledge generated by an XAI also allows to 

make the algorithm more reliable to the end user, who understands better what the 

algorithm suggests to him, which is fundamental in some fields, particularly in 

medicine: a high level of confidence between doctor and patient is essential in the 

process of diagnosis and treatment of a disease, as the patient is determined to follow 

what the expert suggests to him to do; likewise, in the eyes of the patient, a medical 

assistance technology will be more reliable if it can explain how it made its decisions, 

 
4 https://trends.google.it/trends/?geo=IT 
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because it will not be only the output generated by a cold blood machine, but this 

result is followed by some explanations of how it decides. 

In the next pages, we will try to understand which are the consequences of passing 

to this kind of technology, if there are issues and finally how these technologies are 

applied in the context of this thesis, namely the medical one. 

 

3.1 Why use an XAI 
 

The motivations that push for the use of an XAI compared to a classic AI are many 

and arise from several issues related to the use of these automated technologies: 

privacy problems due to the unknown way in which algorithms collect our personal 

data; or problems for insurance or legal liability issues of any adverse events related 

to the choice of machines, or even establish insurance policies related to the use of 

artificial intelligence tools. In general, it can be said that the use of XAI is essential 

in all those applications in which the end user needs to fully understand the results 

obtained by AI, so that they can be managed optimally. 

Four main objectives are identified by [40] for an XAI: trustworthy, confidence, 

transparency and informativeness. 

 

 

Figure 28: main objectives for an XAI 
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The concept of transparency is justified by the attempt of the XAI to make black box 

models less opaque, in the sense of making more accessible the mechanisms that 

exploits the algorithm to generate the outputs. Informativeness can be considered a 

direct consequence of the less opaque algorithm: models can be more consciously 

analysed, corrected, improved. 

Trust is based on the fact that in our lives we tend to rely on things we know how to 

explain how they work, so is the XAI. 

The confidence arises from the combination of the previous objectives: if we are in 

a context we know, we are led to feel more confident about ourselves. In the same 

way, the use of a technology we can trust, of which we know the characteristics, and 

which has few dark sides, allows us to be more confident in its use. 

In [37] a more technical analysis is done, but again at least four reasons are found to 

justify the use of the XAI instead of classic AI: justify, control, improve, discovery. 

 

 

Figure 29: reasons to use an XAI 

 

1. Justify 

In our lives, justifying our actions allows us to relate to other individuals, trying to 

understand the reasons that lead one person to make a decision with respect to 

another. It is not a matter of understanding the whole decision-making process, but 

simply which were the basic conditions that led to make a certain choice, even more 

if these alternatives influence particular aspects of the lives of the people around us. 
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For these reasons, it is no longer acceptable that automated systems involved in 

decision-making processes related to sensitive issues, such as the diagnosis of a 

disease, are completely black boxes. it is necessary that AIs are able to tell which 

were the main conditions that led to generate a certain output: In this way also the 

confidence that develops around a given result can be evaluated on the basis of the 

motivations that have led to it. 

For instance, imagine the situation where a mobile device must report the presence 

of a dangerous situation. The reliability of this result is certainly greater if the device 

accompanies its decision with indications on the reasons that led to this decision, 

compared to a situation in which the system simply generates the alarm 

2. Control 

Knowing which are the motivations behind a choice is essential also in the evaluation 

of that decision: if we explain our actions before we take them, it is easier for us and 

others to give an opinion on what we are about to do. This allows us to have more 

control over our actions and those of others, allowing us to prevent any mistakes or 

encourage correct attitudes 

The same requirement must be asked to AI technologies involved into decision 

making processes: knowing how these machines did their choice allows us to detect 

and correct any errors, which in practical application could bring extremely 

dangerous conditions.  

Let’s get into a medical context. An automated system, composed by a complicated 

convolutional neural network, is being planned to diagnose an oncological pathology 

through the analysis of tomographic images: the system starts to work effectively in 

the training dataset, but in the test phase accuracy precipitates in an unacceptable 

manner. If the system is a simple AI, it becomes extremely complicated to understand 

how the system makes its decisions, and consequently correcting the algorithm 

becomes an unsustainable job. On the contrary, if the system is an XAI, we have the 

possibility to understand which are the causes of errors through the analysis of the 

reasons behind the choices made by the system. 

3. Improve 
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With the same premises as the control problem, the explanations provided by an XAI 

allow to analyse the motivations behind his choices with the aim of improving his 

organization in a more intelligent and efficient way: for example, you can understand 

that certain features have a decisive impact on the final decision, so you can think of 

lightening the system by ignoring the already ignored basic features, or combine 

basic features into a more generalized one by reducing the number of model 

parameters and so on. 

4. Discover 

In the Artificial Intelligence chapter, it has been said that ML models are not really 

programmed, but they are allowed to learn as independently as possible. For this 

reason, it is not said that the knowledge generated by these systems faithfully follows 

our way of interpreting reality. This situation can be extremely favourable in the 

context of an XAI that explains how it has reached its level of knowledge, which 

may perhaps allow us humans to discover things that we had not previously noticed. 

For example, we place ourselves in the situation of a clinical study that tries to 

correlate the clinical history of a patient with the possibility of being affected by a 

particular pathology: once the system has reached a high accuracy, it is possible to 

study the motivations behind its output, and maybe discover a link between a 

particular personal characteristic (whether physiological, pathological or lifestyle) 

and pathology. This situation is possible only if using an XAI, that explain how it 

reached its results. 

 

The four reasons given above may be misleading: in fact, one might be led to think 

that it is always advisable to use an XAI, as they add to the already high capacities 

of AI the possibility of obtaining justifications and thus having the tools to further 

improve their abilities. This conviction, however, immediately clashes with an 

inconvenience that appears in the practical world. 

Indeed, the main problem of XAI systems is that they present a sort of trade-off 

between accuracy and interpretability, that must be considered. There is not a 

theoretical formulation that states that this trade-off exists, but the actual state of the 
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art in many domains indicates that in the practical world, this trade off exists and 

must be taken into account. 

In the previous chapter it was said that the ability of an AI algorithm to perform 

complicated tasks, is somehow proportional to its complexity, so for very hard 

problems are required very complicated algorithms. If the aim of XAI is to give an 

explanation of how these methods are working, it is obvious that it is impossible to 

have an intricate algorithm and a sufficient interpretation of its work at the same 

time: imaging an artificial neural network, for example a CNN for computer vision, 

in which the complexity in terms of its topology is necessary to reach a better data 

analysis and feature extrapolation, so it is very difficult to explain how each hidden 

layer is doing in the normal working; to gain more interpretability we should reduce 

the number of layers, or the number of neuron of each level, so maybe we could 

better understand the network job, but effectively losing accuracy, as the structure of 

the CNN influence a lot the algorithm performances. 

For this reason, the XAI is not a fundamental tool, which must be always 

implemented, but it is more a strategic resource to be used in all those contexts in 

which it is necessary to understand in depth the tools that are being used. Its 

application depends mainly on how opaque the system is, how dependent the context 

is on the automated system, but above all on how the results influence very delicate 

decisions and how dangerous a possible error is. It is obvious that if a market study 

is being carried out on consumer tastes, there is no point in spending time and money 

on an explainable AI; In the same way, however, its use becomes essential when an 

automated system has to make decisions to support a doctor on the life expectancy 

of a patient for whom it is necessary to decide whether to carry out a delicate 

operation or not. 

Now that the reasons why it would be useful to use XAI have been indicated, we can 

analyse the techniques currently used to implement these systems, in particular by 

referring to the way in which the explanations of the results can be generated. 

 

3.2 How to implement explainability 
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The variety of algorithms available within the ML is enormous, therefore also the 

ways in which you can express the explanations of a model are also numerous. Even 

in everyday life, we’re used to adapt the way we explain things to the contexts that 

we’re faced with, so based on the people we interface with, the context we’re in, and 

so on. 

Following the current literature and the state of the art it is possible to classify the 

different methods to generate explanations according to three principles [37]: 

1. The complexity of interpretability 

2. The scoop of interpretability 

3. Specificity on a particular model 

These criteria are purely theoretical and try to give some order to a literature in 

continuous updating, with very high rhythms, which often make the understanding 

of methods chaotic and little intuitive, leading to not knowing well which method is 

best to choose for your application. 

 

3.2.1 Explainability depending on complexity 

 

The first way to distinguish the different methods is to group the algorithms 

according to the complexity of the model to be explained: as has already been said 

above, XAI fight a constant battle between the ability to be accurate AI and the ability 

to be interpretable. 

Therefore, the most direct and simple option is to generate an algorithm intrinsically 

interpretable, so a model as simple as possible that can be directly interpretable but 

paying for this feature with a lowering of the overall accuracy. An example of this 

approach is analysed well in [41], where the concept of Self-explaining AI is 

proposed, as an AI model that provides two outputs, namely the prediction and 

explanation. In [42] are indicated two types of this interpretability, called pure 

transparent and hybrid: the first sub-approach we must use models that considered 

transparent intrinsically, like the work [43]; in hybrid family there is a combination 

of a transparent and black box models, trying to find a trade-off between 
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interpretability and performances in prediction, like in [44] in which some parts of a 

transparent model were substituted by small black box algorithms to boost the 

general accuracy. 

The second option available is the so called post-hoc explanation: in this approach it 

is firstly generated a black-box model which is accurate, robust, and of course very 

complicated, then a set of different techniques are applied on the outputs of this AI, 

in order to give explanation to these results. It is like we are creating a second model, 

built on understanding how the first black-box algorithm produced the outcomes, in 

a reverse process in which we go from the outputs to the inputs, trying to understand 

which pathway was followed to generate the outputs. 

Inside this category the explanation can be done in Natural Language, like the work 

done in [45], visualization of the model like in [46] and explanations by example like 

in [47].  

The choice between the two approaches depends on how complicated the starting 

algorithm is: if a low number of parameters are used it is possible to apply the first 

method, but if the complexity increase it is better to use the post-hoc interpretability. 

 

3.2.2 Explainability depending on scoop 

 

When analysing automated systems such as those under observation, there are two 

points of view from which we can analyse their interpretability: the first is that of the 

general understanding of the functioning of the system, that is to understand the 

mechanisms internal to the model, that is the path that is followed in order to go from 

the inputs to each single output available; the second instead is that one to analyse 

every single output coming from the system to understand how this particular one 

was generated. 

So, it is possible to distinguish two subgroups that follows these two approaches: the 

global interpretability and the local interpretability. 

The first one refers to those models that try to make explainable all the logic behind 

their decision processes: however, these systems present problems, as they tend to 
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be strongly linked to their scope, becoming less general and therefore explainable 

only for their specific application. Moreover, we must always take into account the 

trade-off between accuracy and interpretability, so this type of models is really 

reliable only for a few internal parameters. 

More promising is the group of methods belonging to the local interpretability group, 

in which we try to find explanations to the single output of the system, rather than 

the general logic of the model. Typically, the features that are highlighted are those 

that have contributed most to the definition of the specific output. This approach is 

very similar to our cognitive process, in which we tend to prefer the understanding 

of separate compartments and then tie them to form a general knowledge, rather than 

directly learning the whole process in a single solution. 

Examples of this kind of approach are the local interpretability techniques used in 

the image classification task, in which the details extracted from the image and 

determinant for generating the output are shown through saliency maps, sensitivity 

maps or the pixel attribution maps, like the ones depicted in Figure 30. 

 

 

Figure 30: saliency maps in CNN image analysis 
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An interesting alternative is the possibility of mixing the positive characteristics of 

the two groups, to form one with common characteristics, but it is still under research. 

 

3.2.3 Explainability depending on model dependency 

 

In this last category, models are divided in model-specific or agnostic: indeed, to the 

first group belong all those models applicable only to a single type of ML algorithm, 

while in the second group those valid for any kind of algorithm. 

 The model-specific interpretability methods are strongly linked to the type of 

algorithm for which they were created. They have a robust correlation between result 

and explanation, so they are not very generalizable. 

The agnostic ones are not tied to a particular type of ML, so they are highly 

generalizable and separate the prediction process to the explanation. To this kind of 

approach belong usually post-hoc methods, they could be local or general 

interpretable, and usually are used to explain ANNs. Being this category very 

general, the way these methods are implemented could be similar to the other ones 

presented before. There are four techniques available: visualization, knowledge 

extraction, influence methods and example-based explanations. 

1. Visualization 

This method tries to illustrate the representation made by the algorithms, usually 

applied to deep neural networks in the supervised learning approach for images. 

There are different kind of techniques available, like the surrogate models that are 

interpretable model applied to black-boxes one and trained on the predictions of the 

latter one to understand the results; the partial dependence plot tries to graphically 

show the correlations between one or more inputs variables and the outcomes of a 

black-box algorithm. 

2. Knowledge extraction 

This technique is mainly applied for ANNs and tries to extract some patterns and 

information during the training phase of a neural network: usually in this phase the 

ANNs learn several representations of the input data, so the idea is to extract these 
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patterns while they are learnt and present them to the end user. The available 

techniques are the rule extraction, that works in the training phase creating a sort of 

approximation of the input/output relation that the network generate, at the level of 

the individual unit, making the learning process more transparent; the other technique 

is the model distillation which make a compression of the model generated by the 

ANN in order to make it more interpretable reducing the number of parameters. 

3. Influence methods 

This approach tries to estimate the weight of a feature on the final result, changing 

the value of one of these features and computing how much the outcome changes in 

response to this variation. This kind of models are always visualizable. 

The techniques are sensitivity analysis the measures how much the outputs are 

influenced by weights and inputs, varying their values, so working at the unit level; 

layer-wise relevance propagation backpropagate the output into the network 

computing how much the network maintain its parameter unchanged; finally feature 

importance calculate the variation of the final prediction error in response of 

parameters variation. 

4. Example-based explanations 

These methods work extracting particular examples from the model to explain the 

behaviour of the ML model. They are similar to agnostic models but differs from 

these ones because they do not modify features or model. The techniques available 

in this approach are the prototypes and criticism, that overgeneralize the model 

extrapolating groups of similar instances called prototypes, that are well represented 

by the model, and at the same time extract also a group of instances badly 

represented, called criticism in order to do not overestimate the explanations given; 

the other one is the counterfactuals explanations which interestingly turn the point 

of view of all the techniques seen before: instead of explaining how the model 

generate the outputs, it studies which is the minimum condition that would lead to an 

output variation, so it focus on a single prediction against a group of different ones, 

like the work in [48]. 

At the end of this path, we can draw some conclusions: first we can say that the ways 

in which we can implement explainability are numerous and very varied. We have 
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seen three main methods to identify the different models, thus being able to adapt the 

choices on the particular situation in front of us. It must be said also that the 

challenges to improve the explainability of AI is still long and winding, and in 

practice it has to clash with several issues: first of all, the usual trade-off between 

interpretation and accuracy, which severely limits research in this area, as the 

tendency is to prefer methods that work well although not quite understandable. 

another big problem is related to the profit that individual private companies have in 

the field of AI: algorithms created by private individuals are obviously monetized, 

so companies have no profit in making their models more transparent, because they 

would lose the uniqueness of their ideas. Moreover, the price of a program is 

obviously linked to its ability to perform a certain task as accurately as possible: this 

means that to make their model more interpretable, they should pay this with a loss 

in efficiency, which would obviously affect the price of the final product. 

However, in the next chapter we will talk about the diffusion of the XAI in the field 

of interest of this work, so the medical one. Several algorithms are under research, 

and some are already implemented in some clinical areas, as the diffusion of AI still 

continuous. 
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4. XAI in medicine 
 

Medicine is one of those fields that need special requirements, even for issues that 

may seem irrelevant if taken in the normal everyday life. The fragility of people 

entering medical processes, the protection of personnel who face dangerous 

situations for themselves and for patients, the structures that possess different degrees 

of danger according to the departments, with machinery that can also be very risky: 

everything that revolves around the health department requires stringent 

requirements to ensure reliability to the whole system. 

An example of how stringent medical regulations are, is the definition of a medical 

device which is given in the European Directive 93/42/CEE which states that a 

medical device is “any instrument, apparatus, implant, substance or other product, 

used alone or in combination, including computer software used for proper operation 

and intended by the manufacturer for human use for: diagnosis, prevention, control, 

treatment or alleviation of a disease;…” [49]. The directive also defines software as 

medical devices, so that AI technologies also fall under this name, and must follow 

the same laws as these devices. 

In addition to the purely developmental aspects, in medicine ethical and legal aspects 

are also fundamental, which seek to protect both the personnel who must use these 

devices, and the patients who are treated: strict laws and directives regulate any 

activity within the health care system, which protect people who are involved in it 

from different points of view such as the danger of environments and equipment, 

respect for the privacy of patients, the ethical nature of the decisions taken for 

surgical operations, diagnostic techniques and visits in general. 

For all these reasons, the use of technologies that are not fully capable of being 

understood, and in a sense controlled, collides with the rigidity of all the regulations 

that are present in the medical sector. Think, for example, of the long and tortuous 

process necessary for the approval of a therapeutic plan or a medicinal product: years 

of studies to fully understand what the effects on people may be, to establish the real 

effectiveness of the product and so on. All these considerations have led the scientific 

world to promote research and development of AI technologies that are more 
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comprehensible and their applications in the healthcare system is becoming 

increasingly in demand. In fact, the level of knowledge offered by the XAI, allows 

to improve both the quality standards of the medical sector, as the staff is more aware 

of the equipment that uses, and at the same time the patient can better understand the 

results of his visits. 

Another reason for the use of these technologies arises from the quality of data that 

we have available to train automated algorithms: only in recent decades the collection 

of information has evolved into a fully digital, while in previous years all the material 

was collected in paper documents. This obviously requires an immense amount of 

work from the developers who have to convert this documentation into a digital 

format, but even more problems arise from the quality of this information: in fact, 

the data currently available are strongly characterized by the presence of biases due 

to the behaviour of society in the past, which tended to exclude from social practices 

minorities, different ethnic groups and so on. 

Being the information of the databases coming also from a past epoch, these are 

influenced by the presence of abundant data on a determined part of the population, 

typically of white ethnicity, while for all the other ethnicities the data are insufficient: 

if, for instance, an AI system is trained using a database that contain information 

from the USA government collected before the civil rights movement, “an algorithm 

‘learns’ to prioritise patients, and it predicts to have better outcomes for a particular 

disease. This turns out to have a discriminatory effect on people within the Black and 

minority ethnic communities” [50].  Algorithms trained on such biased datasets could 

make considerably poorer predictions for, for example, younger black women [51]. 

If XAI became a routine in medical processes, these types of errors could be found 

and corrected, as the explanations provided by the system could direct developers to 

modify the training datasets improving not only the overall accuracy, but above all 

the ability to expand this accuracy to a larger pool of people.  

Given all these critical aspects, there are several works in the literature that seek to 

implement XAI in medicine. 

According to [52], the main clinical field that is in need for these technologies is the 

Clinical Decision Support Systems (CDSSs), so “systems support medical 
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practitioners in their clinic decision-making and in the absence of explainability may 

lead to issues of under or overreliance”. Always [52] identifies two main strands that 

exploit this technology: Image-based CDSSs and Linguistic Reasoners and 

Ontology-based CDSSs. The first deals mainly with algorithms for image analysis, 

with explanations provided in the form of user interfaces or emphasizing the most 

important portions of the original images; the other group focuses on more tabular 

and written information, by extracting the key concepts that led to the results. 

The design of a CDSS system, must follow the indications of physicians, as they are 

the final users of these technologies. In the literature [53] [54], you can find studies 

in which you ask doctors who are used to use these tools to define what are, according 

to their experience, the basic characteristics that automated systems should have. 

One of these attributes is the generation of explanations that show which is the 

correlations between the different features, and how they’re chained to produce the 

final decision: in this way the doctor not only compares the decision made by the 

automated system with his but can also compare the path made by the machine with 

what led him to his decision. This could be helpful not only in the single decision, 

but also for the experience of the doctor that can understand a different way to make 

a diagnosis. 

Another characteristic is that physicians tend to be more confident with systems that 

justify their decision, even if they are less accurate than those that do not give 

explanations. It is obvious that a minimum accuracy threshold is necessary, to have 

a reliable machine, but for small changes in the efficiency of the systems, physicians 

prefer an explainable system in respect to a non-explainable one. The reason is that 

the machine is not giving a diagnosis, but it is assisting the doctor in the decision-

making process, it is as if the automated system tries to promote or refute the decision 

that the doctor has already made through his experience: therefore, a physician tends 

to rely more on a result to which justifications follow, than on a simple final answer 

with no explanation behind it. So, the expert uses this machine in a more confident 

way, because even if the algorithm generates a not really reliable result, the physician 

can in any case analyse the reason behind this outcome and exploits this information 

to strengthen his decisions. 
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4.1 XAI application 
 

In the following pages, some examples of XAI studies in medicine will be presented. 

As will be shown later, these technologies are also used in the most recent works: in 

particular two of the studies that will be presented, are focused on covid 19 and 

monoclonal antibodies, topics that in these moments are research trends. 

 

4.1.1 COVID-19 

 

The Covid-19 pandemic has radically changed the life of mankind, which has had to 

adapt to a situation not seen on earth since the spread of Spanish flu in 1918. Despite 

the current high level of technology, the virus has brought most countries to their 

knees, affecting in particular the economy and the health system: the latter in 

particular has found itself having to accommodate a very high number of patients, 

particularly in the first phase of the pandemic, both in its low-risk sections and in 

those of intensive care. 

The physiological response of governments was that of restrictions and lockdowns: 

in the early period of spread, the lack of testing did not allow a screening of the 

population able to cope with the contagiousness of the virus, Therefore the only 

solution was to limit to the maximum the contacts between people, seen also the great 

presence of people asymptomatic, that did not give signs of contagion. 

In this dramatic scenario, the search for alternative methods to quickly and efficiently 

diagnose the pathology was immediately activated, in order to find out in advance 

asymptomatic patients, or treat appropriately persons who were at an early and 

controllable stage of the disease before their condition worsened. Being a disease 

that primarily affects the respiratory tract, it was noted that radiological techniques, 

such as radiography or computed tomography, could be exploited as diagnostic 

imaging of Covid: in particular, classical radiography offers an almost immediate 

solution, with a relatively low cost and that under certain conditions can give an 

initial indication of the situation of patients. 
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In this branch of medicine, automated systems for image analysis can be efficiently 

integrated: there are already several studies on the subject and some models of 

artificial intelligence are already exploited abundantly. A particularly interesting 

study is that presented by Tsiknakis et al. [55]: these propose an algorithm for the 

analysis of chest X-rays that exploits a neural network architecture, focusing also on 

the interpretation of the system through the generation of heat maps on the images 

used as input. 

The AI allows in fact to speed up the diagnosis of the infection from Covid and it 

can be thought to integrate this technology in the clinical practice, being able to 

replace the classic tampons in the situations of deficiency of the latter, or when a 

more immediate intervention is required, and therefore an early diagnosis. In 

addition, the high capacity of the neural network to extract even small details from 

the images, allows to detect initials and small signs of an early stage of the disease. 

If we add to all this the efforts made by the authors to make this system as explainable 

as possible, we are faced with a solution that certainly deserves the attention of the 

experts. 

The work aims to recognize the presence of a SARS-Cov-2 infection by chest X-

rays, which therefore include the lungs: the pathology in fact tends to create dark 

zones on these organs that in physiological situations should be clear to x-rays. The 

authors not only want to have results of the type “Covid vs healthy”, but also to 

distinguish the pathological cases between them: in fact, the possible outcomes can 

reach up to 4 different cases, that is “healthy” or “pneumonia due to covid” or “of 

bacterial” or “viral origin”. 

The database used to train the system is composed by the union of existing datasets, 

from which 572 samples of posteroanterior view have been extracted, anonymized, 

and randomly mixed. These datasets [56] [57] [58] [59] include radiographic or 

tomographic images of healthy patients or patients suffering from pathologies 

indicated as possible results of analysis. 

The number of samples contrasts with the information that has been provided so far 

in this thesis: in fact, about six hundred samples in input are a very small number, 

compared to the tens of thousands normally required by a system such as neural 

networks to be trained optimally. The reason that allows this small number of 
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samples is given by how the system is designed: in fact, the authors apply the so-

called "transfer learning", so the generation of a complex and robust system trained 

on a huge general database, and then refine the algorithm capabilities with a second 

training phase, in which specific datasets are used for the desired application. In the 

literature it has already been shown that this technique succeeds within this work. 

The architecture of the system reflects this strategy, as the algorithm is divided into 

two parts. The first is a convolutional neural network that is stripped of the final 

classification network, trained with a dataset of about 14 million images divided into 

different classes. The second is a classic neural network classifier consisting of a 

final level of 2 neurons (binary classification), 3 (ternary classification) or 4 

(quaternary classification) and trained with the dataset of healthy and pathological 

patients. The results obtained are evaluated through a set of parameters: accuracy 

(ACC), sensitivity (SEN), precision (PRE), and area under the curve (AUC) for 

binary classification, to which are added the “AUC against all” or “against one” for 

multiclass classification. The results are extremely satisfactory, especially for the 

binary classification of “healthy vs covid” patients, reaching an accuracy of around 

100%, and, in general, values that balance or exceed the current state of the art in all 

observation parameters. The results of the ternary classification (healthy vs COVID 

vs bacteria pneumonia) are less satisfactory because they do not reach the values of 

other works. Finally, for the quaternary one (healthy vs COVID vs bacteria 

pneumonia vs virus pneumonia) there are no reference parameters in literature, but 

in general it can be said that, although with a slightly lower accuracy than the others 

(76±8%), the values of SEN, PRE, and so on are satisfactory although a bit unstable 

(93±9 for SEN, 91.8±7.6 for PRE, and so on) 

To make the algorithm explainable was implemented a model of interpretability 

called GradCAM [60]: this algorithm is able to follow the gradient variations 

between the first layer, the input one, and the final classification one. We then analyse 

the variations of the gradient of the score assigned to a particular class. Analysing 

this gradient, the system is able to generate a heat map of pixels that have contributed 

in priority to the generation of the specific output, then the class assigned to the 

image. Heatmaps are not related to the outcome of the classification, but only to the 

pathway followed by the CNN: for this reason, it is necessary to be careful not to 

interpret this information incorrectly, as the heat map is not indicating which of the 
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possible results is the correct one, but only where the network has identified the most 

important features to get to the result, whatever it is. For these reasons, it is possible 

to define this kind of interpretability as a local type, being each heat maps the 

description of a single analysis. 

 

 

Figure 31: example of heat map 

 

In Figure 31 is shown one example of one input image and the heat map generated by 

the system: the image refers to a binary classification problem, was taken by a patient 

positive to Covid and the model correctly identified its condition. The heat map 

shows what parts of the radiography the algorithm considers important, but nothing 

can be said on the result just looking at it. 

In order to increase the reliability of the explanations generated by the system, 

specialized radiologists were questioned: they were asked to give an assessment to 

heat maps, to understand whether what the system considers important is really 

useful in order to correctly diagnose the condition of the patient under examination, 

so the lungs. They are asked to evaluate each hemithorax (about half image) with a 

score from 0 to 4, following these indications, taken directly from the paper: 

0. The attention map is mostly homogeneous across the entire image 

1. The attention map is focusing on totally irrelevant areas outside the lung 

2. The attention map is focusing on the lung areas but also on other extrapulmonary 

structures 

3. The attention map is focusing mostly on the lung areas 

4. The attention map is focusing exclusively on the lung areas 
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The concentration of the network in areas outside the lungs (the organs attacked by 

the disease) is considered by the authors as a sign of lack of robustness and confusion. 

It is for this reason that radiologists have been interviewed: if the system is able to 

generate explanations on how it arrived at the result, an expert eye is able to judge 

this work, making it possible to understand where the system is wrong, so that we 

can then work on improving the algorithm. Indeed, one of the reasons identified for 

the misclassifications in ternary and quaternary problems is the need of larger dataset 

to train the classification net. 

 

 

Figure 32: example of low and high level of explanations 

 

An example of how the results and the heat maps are uncorrelated is given by Figure 

31 and Figure 32: both the patients were positive to COVID, and both were classified 

into the correct category, the first in a binary problem, the second into a ternary one. 

but, while the first image was ranked by experts with a score of 3 for both hemithorax, 

the second took a score of 0 for the left lung (to the right in the image, as mirrored) 

and a 4 for the right lung (then to the left). This result is a demonstration of how the 

process leading to the generation of heat maps is completely unrelated to that of 

classification. 
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Figure 33: false negative patients 

 

For instance, in Figure 33 the situation of a false negative patient in a ternary problem 

is shown, so the system classified the image as pneumonia while the correct result 

should have been Covid. Despite the misclassification, the experts gave a score of 3 

and 4 respectively for the left and right lungs. This result is interesting, as it shows 

that, despite the classification errors, the system is extracting the fundamental 

characteristics from the lungs, even though the presence of a large number of details 

presents around the organs of interest. In this way it is possible to say that the problem 

is in the classification network, that is not trained optimally even if the previous part 

of the model is looking to the correct details. 

This study certainly needs time to fully understand the mechanisms that can be 

improved to increase the efficiency of this model, especially regarding ternary and 

quaternary classification problems. At the same time, however, the results of the 

binary problem allow to apply this type of system also to other pathological cases, in 

particular thanks to its interpretability, which allows to understand how the network 

behaves in the particular application case, so the physicians can evaluate if the result 

of the automated system is valid or not. 

 

4.1.2 Monoclonal antibodies 

 

Monoclonal antibodies are proteins created in the laboratory that can replicate the 

behaviour of our immune system, in particular antibodies [61]. The first to be 

approved for clinical use by the Food and Drugs Administration (FDA) in the United 

States was an antibody able to avoid rejection of a transplanted organ in case the 
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latter was resistant to corticosteroids [62]. The particular feature of this technique is 

the possibility of selectively developing antibodies that can focus on a specific target 

of the antigen to be addressed, producing on a large scale different monoclonal 

antibodies for each of the possible immune response mechanisms. 

There are currently hundreds of studies that seek to improve existing therapies, or try 

to apply this technology in new areas, particularly in the treatment of immunological 

or oncological diseases. Even during the current COVID pandemic, the use of 

monoclonal antibodies was proposed, and in August also the AIFA (Agenzia Italiana 

del Farcmaco) approved the use of this therapy [63] in several practical cases. 

The process leading to the generation of an artificial protein, including monoclonal 

antibodies, is very complicated: the necessary resources are enormous, in terms of 

time, investment, articulated techniques and the need for special equipment. In 

particular, this technology usually starts with a huge population of potential proteins, 

which are gradually discarded if not working: the variables that can influence the 

efficiency of these products are many. For this reason, in recent years, research is 

focusing on trying to implement AI algorithms, to accelerate these inherently long 

processes. 

In this context fits a very interesting work that has as authors Gentiluomo et al. [64]: 

they try to implement an explainable ANN to predict biophysical properties of 

therapeutic monoclonal antibodies, like melting temperature, aggregation onset 

temperature or interaction parameter, as a function of pH and salt concentration from 

the amino acid composition. The explainability of the systema comes from the 

number of input features, kept voluntarily low, and from the application of a model 

called “knowledge transfer”, whose aim is to understand how the ANN obtained its 

outcomes. 

Their work starts from the desire to make more efficient and rapid the selection 

process of those monoclonal antibodies that can truly be studied for a future practical 

application. Imagine, for example, that usually the process of developing a protein 

drug starts with a population of candidates equal to a few thousand, and then get from 

these only 8% of drugs that will get a license. Under this condition, their idea is to 

apply an ANN model to extract the correlation of some important chemical and 

physical parameter of proteins, like the melting temperature, from the amino acid 
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composition of the antibodies, but as a function of basic characteristics like the pH 

and the ionic strength: the collection and the interactions of these characteristics, 

even if not effectively correlated to the stability of the products, can be useful to 

eliminate or validate a candidate of the study, knowing some basics rules from 

chemistry. 

The primary goal of the authors was to have a network able to generate the desired 

outputs while maintaining a high level of explainability, in the sense of being able to 

understand how the network produced its results. For this reason, the choice of inputs 

has been limited to the composition of proteins in terms of amino acids, which allows 

to keep the model simple but at the same time accurate, even if the addition of further 

information could increase the modelling of reality. In addition to this, a second 

approach called "knowledge transfer" has also been used to understand the decision-

making process of the algorithm. 

The dataset is composed by 144 records (24 conditions per protein) for each 

parameter to be studied. The network consists in a feed-forward back-propagation 

network with one hidden layer of 5 neurons, therefore a relatively simple structure, 

compared for example to the topology presented for the application on radiographic 

images illustrated before. 

The explainability of the system is obtained through the knowledge transfer, that is 

the creation of a second simpler algorithm, that allows to approximate the main ANN, 

and is resumed in Figure 34. The method begins with a study phase of the main 

algorithm after the training phase: it was noticed that none of the weights of the 

hidden level was zero, so all the nodes contribute to the result, but only 5% of the 

final values were at least twice as large as the average of the entire population. From 

this 5%, input parameters that have activation function coefficients at least double 

the mean of all values are extracted. 
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Figure 34: knowledge transfer process 

 

Now that some parameters are available, a method called Response Surface 

Methodology (RMS), a statistic algorithm which explores the relationships between 

several explanatory variables and one or more response variables [65], is applied on 

the linear least squared regression of these extracted parameters. Finally, after 

reducing the model to terms statistically relevant, a curved response was obtained.  

 

 

Figure 35: scheme of the interpretability approach 
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A scheme of this approach is given in Figure 35: in the image you can see that the 

predictive and explanatory process are not completely disjointed: in fact, building 

the explainability starting from the results, the explanations offered by the linear 

model are real justifications of the outputs. This differs from the previously proposed 

algorithm for COVID, in which interpretation and results were completely separate. 

The main feature of this way to explain the network behaviour, in addition to the 

intrinsic simplicity of the model, is that it is possible to access the hidden layer of the 

ANN and to understand how the output and the input are related, allowing to easy 

retrain the algorithm and evaluate the explanation. On the other hand, this approach 

makes the explanation heavily linked with the training set, loosing generalization. 

From a practical point of view, the authors have been able to understand how the 

network estimates the parameters of interest once an acceptable accuracy value has 

been reached. For example, in the case of melting temperature, the main 

characteristic influencing the values is pH, saline concentration and the number of 

certain particular residues, including cysteine, which stabilizes the protein structure 

and consequently will influence the stability of monoclonal antibodies. 

Correlations such as these have been extracted from all parameters of labour interest. 

In this way it is possible to have a general perception of the model, increasing the 

confidence of using the model that is no longer a black box. So, the strength of this 

application, is that the algorithm is able not only to produce numerical predictions of 

parameters, but also to but also to detect the interactions between the different 

characteristics of these compounds, increasing general knowledge about the 

phenomenon and improving reliability and confidence of the model. 

 

4.1.3 Hearth failure 

  

In emergency situations with patients with acute shortness of breath, one of the 

indicators of the occurrence of heart failure is the presence in high quantities of B-

type natriuretic peptide (BNP). If the patient has normal values of this peptide, the 

presence of heart problems can be ruled out, while high values of this substance, in 

the presence of other determinants, may lead to diagnose a heart failure in time to 
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treat the disease. The main limitation of this technique is that the laboratory test of 

this compound is not often offered by all hospitals and readings of the test are not 

immediate. 

Another method of diagnosing heart failure is that of chest radiography. We then 

look for a series of anatomical modifications visible with this imaging technique: 

examples are the pleural effusion, so the accumulation of fluid inside the pleura, 

cardiomegaly, so the enlargement of the cardiac silhouette, or Kerley B lines, 

horizontal lines in the periphery of the lower posterior lung fields, and others [66]. 

The main issue of this technique is the difficulty of reading this type of radiographs, 

not simple even for experienced radiologists: in this case the quality and timeliness 

of diagnosis is highly dependent on the degree of experience of the expert. 

Seah et al. [67] propose a Generative Adversarial Network (GAN) based approach 

and the use of autoencoders to classify chest radiographs in search of the main signs 

of heart failure. In addition to the classification, the system also provides 

explanations in the form of images: the algorithm generates from the initial image a 

new X-ray, which represents how it should have been the original image to belong 

to the other available category. For example, if the input is classified as "healthy", 

the system justifies its solution by generating a new image in which it adds to the 

initial one the signs that are typically associated with the "pathological" label. 

The GAN is a kind of ANN in which two different nets are trained in a competitive 

way, as in a one vs one game. The two opponents are two networks defined 

"generator" and "discriminator": the first aims to learn how to generate new data, 

learning the structure from a training dataset, while the second aims to be able to 

discriminate which data comes from the dataset and which were generated by the 

other network. 
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Figure 36: example of GAN 

 

The autoencoders are a type of ANN used in unsupervised learning, whose aim is to 

learn a representation (encoding) of a dataset. This structure is composed by two 

parts, called encoder and decoder: the first maps the input into the “code”, so the 

mapping of the most important features of the dataset into a lower dimensionality 

set, while the decoder validates the mapping procedure trying to reconstruct the data 

from the code and comparing this information with the original set. 

 

 

Figure 37: example of an autoencoder network 

 

The authors, starting from the basic ideas of the two algorithms indicated, propose 

an explanatory model called generative visual rationales (GVRs), which explain 

individual predictions, starting from a GAN approach. 
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The process is composed by three steps: first they build a GAN in which they train a 

generator through an unlabelled dataset, then they exploit this generator as the 

decoder of an autoencoder network, and finally they create a supervised model on 

the encoded representation of a small, labelled dataset. The explanation process is 

built implementing an optimization problem that aims to change the predicted class 

of the input, but at the same time penalizing the differences between the new image 

and the original one. This process generates images similar to the original ones, but 

to which are removed or added the details necessary to be classified in the category 

opposite to the one assigned to them. 

The databased used for the training of the GAN is composed by around 90 thousand 

chest radiographies; then they train the autoencoder to perfectly reproduce the dataset 

images using, for each patient in the database, 15 images as training set and 1 for 

validation test. Finally, a regressor was trained using a labelled database of around 

seven thousand chest radiographies paired with a BNP blood test value, which we 

said was linked to heart failure. 

This process allows to generate an image identical to the original, but with the details 

that would have led to a different classification: overlapping or subtracting the 

images you can get the GVR explanation for each image. To demonstrate the 

behaviour of the system, it was applied to a set of imaged not seen in the training 

phase. The model achieved an area under the curve (AUC) of 0.837 using a linear 

regressor. 
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Figure 38: example of GVR 

 

In Figure 38 is shown an example of the GVR on a chest radiography of a patient with 

heart failure: upper left is shown the original X-ray of the patient, while on the right 

the one generated by the system without any sign of heart failure. At the bottom left 

we have the original image again, to compare it with the right one in which are 

indicated the areas that the algorithm observes to classify the image. To achieve this 

result the algorithm reconstruct the image of the pathological patient but removing 

the signs of heart failure like the pleural expansion on the right lung and the increase 

in heart volume on the left lung. Then the model subtracts the non-pathological image 

from the original one generating a heat map, in which positive values are displayed 

as purple and negative as orange, which is superimposed to the input image 

demonstrating the GVR for its prediction. 

In this work is shown that autoencoders can be exploit in this medical field, and in 

particular that they can be used to produce not only an acceptably accurate prediction, 

but also to generate explanations of their decision through the GVR model. Of 

course, some limitations are present: the authors indicate that there is not a rigorous 

definition of what interpretability is, and they proposed that one metrics could be 

how much explanation would need a second model to reach the same accuracy by 

learning from this interpretation; in this way would be possible to train different 

algorithms with smaller database, transferring the already known information 
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extracted by the first model. Finally, a technical problem is that the networks of this 

work struggle to produce images bigger than 128 by 128 pixels, which is not a perfect 

resolution to extract small details from images. 

 

4.1.4 Breast cancer diagnosis 

 

Cancer is currently the disease that causes the most deaths in the world: in 2020 

alone, there were about 19 million diagnoses and 10 million deaths. According to the 

Global Cancer Statistics 2020 [68], one in five people will develop a cancer in their 

lifetime. If we focus on women, breast cancer is the most common invasive cancer 

in women and the second leading cause of cancer death in women. 

For these reasons in the last years the number of screening processes increased a lot, 

in particular in developed country, exploiting the speed and ease of implementation 

of radiological techniques such as mammography. However, the analysis of these 

images requires a meticulous effort on the part of experts, in search of spots or 

nodules, which must take a long time in the observation of X-rays. Moreover, the 

ability to diagnose depends on the quality of the images, the visual skills of the 

operator and his experience. 

In this context, the use of automated techniques for image analysis can be easily 

inserted, which allow to speed up this process and to assist doctors in their diagnosis 

work. There are already several studies that are applied, but they usually come in the 

form of black-box models, which as widely said are not viewed favourably by the 

medical environment, as they lack transparency. 

Interesting is the work done by Brito-Sarracino et al. [69]: Their aim is to create an 

automated system of ML that allows to obtain an accurate diagnosis of breast cancer, 

maintaining a high level of explainability, not only with regard to the classification 

phase, but also throughout the phase of feature selection. In fact, not only do they use 

an interpretable approach to discriminate against the presence or not of a tumour 

within an X-ray image, but with a visualization process they allow to have a high 

degree of interpretability also in the selection of the main characteristics of 
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discrimination. The paper concentrates its attention on the discrimination between 

benign (B) and malignant (M) breast cancers. 

They utilize a dataset obtained by the University of Wisconsin Hospitals [70], which 

consists of 569 observations and 31 variables, including the target variable, 

diagnosis, and excluding the ID number. The entire set of features are calculated 

based on 10 principal features, that mainly describe the tumoral cell nuclei. The 

dataset is then split into a training set (80% of records) and test set (20%). 

The feature selection phase is done exploiting two different techniques, called 

visualization techniques and Recursive Feature Elimination (RFE) wrapper. The 

first one selects the top scoring attributes, while the second approach takes as input 

not only the features, but also a feature relevance estimator model, a set of labelled 

examples and the number of features to be selected: from these inputs it iteratively 

discards one feature at time, choosing the one that reach the worst results from the 

estimator model. In this phase the authors implement explanation of their results 

through two explanatory models, called Linear Projections (LP) and Radviz (RV). 

These approaches of data visualization are very useful, in particular because they 

allow to increase the level of knowledge of the correlations between input and output, 

and allow to perceive in a more direct way which are the classes in which the records 

are separated 

 

 

Figure 39: example of LP feature visualization 
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The LP method is a sort of representation of the distribution of records within an axis 

diagram, in which each of them represents one of the main features, like the one in 

Figure 39. In this figure the three axes represent the worst mean distance of point from 

the centre of the image, the mean concavity and concavity standard error. The colour 

of records represents their class, in red the benign class, in blue the malignant one.  

It is possible also to increase the number of the axes. 

 

 

Figure 40: example of Radviz visualization 

 

The second approach is the Radviz one: in this method the features are arranged on 

a circumference, while the points are arranged in the inner circle. The dependence 

on a certain variable is represented by the tendency of the points to approach the part 

of circumference on which lies the particular feature. The radius of the circle is 

unitary, so the points are in a position proportional to the real attribute values that 

span in a range between 0 and 1. Also in this case the number of variables can 

increase. 

Finally, the classification model chosen was the Classification and Regression Trees 

(CART), supported by a technique called Grid Search [71], able to extract the most 

important hyper-parameters. The CART was used in different ways: one does not 

use feature selection or visualization (baseline), three select 3 features using LP(3), 
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RV(3) and RFE(3), another three select 5 features through LP(5), RV(5), RFE(5) and 

finally one uses cross validation for independently choose the number of features to 

be extracted through RFE(CV). Results are shown in Figure 41. 

 

 

Figure 41: results of the classifiers 

 

It must be notice that, even if the CART used as baseline is the worst one in terms of 

results, it is the most interpretable one, as its structure, depicted in is simpler than all 

the other ones. 

 

 

Figure 42: baseline CART structure 
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The Wilcoxon test was used to determine whether there were statistical differences 

between using the CART with RFE or with visualization techniques, using a p-value 

< 0.5 as the separation threshold. The results obtained shows that there is no 

difference between the two approaches: this is an important outcome, as it is possible 

to apply visualization techniques without losing accuracy, allowing to understand the 

reasons that lead the system to discern between different classes, bringing to light 

correlations that are not easy to find through human analysis or black-box models. 

Indeed, even if other approaches can reach better accuracy values, like for instance 

ANNs, their opacity make really difficult to understand which are the important 

parameters that drive their decisions. 

 

4.2 Limitations and challenges 
 

So far, XAI has been discussed from a purely practical point of view, presenting the 

state of the art of this technology and in particular its application within a particular 

sector, the medical one. At present, this branch of research is still at a very early 

stage: there are many problems that need to be addressed, but at the same time the 

potential of this approach is very high. 

Within this chapter we have tried to present as much as possible the improvements 

offered by explainable technology, compared to the state of the art of classic AI. This, 

however, could be misleading, as you might be led to think that the XAI are an 

evolution of ML techniques, which solve some limitations of these algorithms 

without any kind of problem. In practice, there are major problems that need to be 

tackled, even more on the assumption that this sector is at an early stage of full 

development. In response to these strong limitations, however, several potential 

replies to these limitations are already under research, which could allow an even 

greater diffusion of these powerful tools, capable of leading to technological 

evolution and greater digitalisation of different sectors. 

However, if we want to deal with the limitations and possible future improvements 

for XAI, it is necessary to consider that this method is strongly influenced by the 

application environment in which you work: as we have already said, each sector has 
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a greater or lesser need of the explainability of these systems, and this depends on 

the degree of responsibility that weighs on the actions of these machines. 

The evolutionary process of XAI systems is characterized by the close relationship 

between limitations and potential, as they are the first to give strength to the 

development of the latter. It becomes therefore complicated to analyse in a 

completely independent way which are the problems and which the directions of 

future development, because it is natural to face the two issues in parallel. 

One of the main drawbacks derives mainly from the lack of formalism that 

characterizes the literature on this subject. In fact, being a relatively young field of 

research, the authors tend to behave as single entities that work by watertight 

compartments, that is moving within their comfort zones, trying to maximize their 

results in the absolute sense, without comparing it to other similar works.  

This phenomenon is due to the fact that there are no formal concepts for the different 

characteristics of these systems: for example, a formal concept of explainability is 

not available, whose description remains anchored to the extreme variability with 

which the problem can be addressed, also from the human point of view. In fact, if 

you wanted to give a unique definition of what is explainability in daily life, the 

possible answers would probably all be different, because of the infinite nuances that 

can assume: explain something to someone remains an extremely personal action, 

influenced by the social context in which you find yourself, by the interlocutor with 

whom you approach, by the level of finesse required to the explanation to be 

provided.  

Precisely these differences are also the cause of another important limitation, which 

is that of how to evaluate the interpretability. Not existing a formal definition, it is 

not possible to develop univocal metrics that allow to define how much a system is 

interpretable. When it comes to AI in decision-making, we can navigate through the 

multiple units of measurement available to define the quality of an algorithm: 

accuracy in results, sensitivity to a particular aspect of the analysis, or mathematical 

concepts such the area under the curve. The same cannot be said for the concept of 

explainability, for which there is no metric that allows comparisons between XAI 

systems, even if they face the problem with similar, if not equal, approaches.  
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In this situation of uncertainty, it is physiological that the different authors try to give 

an evaluation to their work with various approaches to the problem: in [72] are 

mainly identified three types of approaches for evaluation of methods, namely 

application-grounded, human-grounded and functionally-grounded. In the first case, 

the measure of the interpretability must be done at the level of the practical 

application of the AI system, entrusting the evaluation to an expert in the field, then 

the end user of the algorithm. The human-grounded approach, on the other hand, 

aims to measure the explainability of a system through the eye of people who are not 

experts in the sector, so we try to make more general judgments on the quality of the 

explanations provided, rather than study how well they are suited to understanding 

the specific field of application. The last method does not involve humans but tries 

to compare and regularize the different methods after the results have already been 

validated. 

In a context such as the medical one, in which the delicacy of the applications reaches 

extremes difficult to compare with other sectors, the need to compare the different 

methods becomes fundamental. In any health care system, no aspect is left to chance, 

and even issues of minimal relevance, are constantly kept under control, in order to 

make any environment safe for the staff and the patient and to offer the highest 

possible efficiency, which is reflected in the quality and speed of diagnosis and 

accuracy of treatments. In this meticulous process of control, automated systems of 

medical assistance, in particular those of decision-making, which are medical devices 

to all intents and purposes, cannot be exempted, as previously indicated. 

For these reasons, it is necessary in the short term to formalize all aspects that revolve 

around the XAI sector: in doing so it will be possible to define the evaluation fees of 

these instruments, allowing comparisons to be made, to judge the different models 

proposed, and more generally to regulate in a univocal way the different 

particularities of this technology. 

Another very important problem that afflicts the XAI is the reproducibility of their 

behaviour: as we have seen also in the examples proposed in the previous paragraph, 

the generation of these systems is strongly linked to the specific application in which 

an algorithm is inserted. The explanations that are generated in a post-hoc way, are 

usually deeply dependent on the main system, which is conceived and trained on the 
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basis of particular sets of information and with a specific final objective: in this 

contest it becomes extremely complicated to create explanatory models completely 

adaptable to algorithms other than native ones, as the transparent XAI models try to 

do. The level of generalisation is therefore not high, and this leads to problems not 

only at a practical level, but above all at the level of the economic resources and time 

needed to differentiate different models that can be explained to all possible 

applications. 

Finally, we cannot exclude the fact that the XAIs, like any other instrument, are 

subject to economic factors deriving from private companies that develop these types 

of systems. It is obvious that companies dealing with software development or 

creating biomedical devices work to generate a profit, whether this is put in the first 

or second place with respect to the goal of global technological development: This 

creates a series of doubts that fit into wider contexts of legal, ethical, and economic 

issues. 

From a legal point of view, it is not yet clear how the advent of automated 

technologies can be regulated: being technologies currently used mainly in decision-

making assistance, and not in generate automated choices, it is possible to correct 

any errors, or in any case be excluded by the operator who has to make a diagnosis. 

This could change, in the event that these tools enter into clinical practice to make 

independent choices, as there would be a need for a very strict regulation, which 

imposes legal and ethical responsibilities in their use, especially in those situations 

where people’s lives are based on the results of such algorithms. 

Even more delicate in the case of XAI is the economic aspect, because private 

companies could not appreciate the spread of these technologies: the profit of these 

companies is linked to the quality of the systems introduced on the market, which 

therefore tend to shape reality as reliably and efficiently as possible. Typically, as 

has been said above, the best systems are the most complicated, which at the same 

time are the most opaque: making these algorithms more transparent would force 

companies to a choice in the context of trade-off between the accuracy of the systems 

and their interpretability. The possible way could be to make algorithms less complex 

gaining in explainability but paying for this choice with a less accurate analysis of 

the data. Otherwise, it is possible to maintain a high level of complexity but 
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increasing efforts to make the model more transparent: the latter choice is the most 

complicated for a company, which obviously has a gain from the originality of its 

algorithms, especially in those cases where there are patents that protect its 

uniqueness. 

In the coming years, the scientific community will necessarily have to make choices, 

and make decisions about all these problems illustrated so far, which are just the tip 

of the iceberg of a more articulated system. Surely it will be necessary to integrate in 

the development of these systems different disciplines, both technical (computer 

science, engineering) but also more "human" (psychology, pedagogy). This 

integration is fundamental in the development of a formal theory, which would allow 

us to take a common direction in the technological evolution of these instruments. In 

addition, it will be necessary to involve in a massive way the experts in the sector, 

the specialized technicians, and more generally all end-users who will then have to 

evaluate, buy, and use the equipment in development. 

In addition, there is the need to develop more specific legislation as soon as possible, 

without creating ambiguities or doubts about the development or use of these 

instruments: European directives such as the GDPR must only be the beginning of a 

phase of becoming aware of what direction the world is taking, which in the future 

will be increasingly pervaded and influenced by the technological advancement of 

automated systems. Laws, directives, insurance policies, everything that currently 

exists for issues such as work, economics, medicine, justice, must also be transported 

in the field of artificial intelligence, which is no more a “futuristic thing”, but it is an 

actual and huge development sector. 
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5. Conclusions 
 

The path addressed in this work tells us that although the AI sector is already at a 

very high level, the potential improvements are still a lot: in this evolutionary process 

the XAI are an excellent candidate, in particular for those sectors that have very 

stringent requirements and require a high degree of controllability of instruments. In 

these areas it is essential to have an alternative to black-box models, which allow to 

increase the level of transparency without losing the accuracy in data analysis that 

characterizes automated technologies. 

As we have seen, the possibility of obtaining from AI systems explanations and 

justifications of their choices allows to increase the qualitative level not only of the 

instrument itself, but also of the entire decision-making system in general: in fact, 

using the XAI allows to improve the controllability of the instrument, to raise the 

level of confidence of the system in its field of application, to discover new 

knowledge understood as deeper correlations between different aspects of the 

phenomenon under analysis or new ways of exploiting the technology under 

consideration. Obviously, as this technology is in its infancy, a collective and 

common effort of the scientific community is still needed in order to improve a tool 

that is intended to revolutionize the use of automated systems, expanding the fields 

of application even to those most reluctant to accept them in common practice. 

Major efforts should be made to involve industry experts as much as possible, as the 

XAI are perhaps one of the tools most in need of the opinions and views of end-users: 

this is because, as has been widely discussed above, the explanations that the system 

must be able to provide must be suitable for the precise recipient, thus having to adapt 

to the multitude of possible final interlocutors. Another objective should be the 

common and unambiguous definition of the requirements and metrics useful in the 

development of these technologies, which would make it possible to achieve an even 

better level of development. 

However, we must also say a few words about the way in which the world looks at 

these instruments. The rate at which the world is currently evolving has never been 

so high: technological development over the past 50 years has progressed at a very 
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high rate, leading on the one hand to a general improvement in living and working 

conditions, But on the other hand it has generated a certain degree of mistrust towards 

an increasingly intrusive technology: it is necessary to place in this perspective the 

fear by some people of being "replaced" by machines. In the medical field in 

particular, it is necessary to work in the short term to the training of personnel who 

are able to manage and use in the best way all these automated tools, the purpose of 

which is not to replace, but to assist people in their work. 

Reluctance is mainly a symptom of the inability of a generation of professionals to 

accept the instruments that are developed in recent years, considering them unable to 

balance the human skills of patient care. On the one hand, it cannot be denied that 

experience and intuition are fundamental characteristics in the medical field that 

machines cannot achieve: in fact, it is not uncommon for people’s lives to be saved 

by the intuition of the doctor, despite all the data available did not support the expert’s 

decision. These situations are not achievable by an automated system, which will 

seek the solution only and exclusively within its representation of reality. But it is 

precisely for this reason that professionals should consider these tools, because they 

can assist them in their decisions, allowing them to confirm their decisions, question 

them and maybe improve their level of confidence at work. 

This improvement, however, requires a compromise: if it is true that the staff must 

be more flexible, it is necessary that even the developers of automated systems make 

an effort to make their technologies more suitable for the industry. Under this 

hypothesis the use of XAI can certainly speed up this process, allowing to find a 

middle way between the one required by the machine (accuracy, transparency and 

speed) and the one required by experts (updating, elasticity, renewal). 

The study presented by this thesis shows how the current possibilities already allow 

a small first step forward, and that systems that can be implemented even now in 

practice are available. It is now up to the scientific community to pursue this project, 

with a view to a general improvement of the world, which will necessarily be 

increasingly invaded by AI technologies, but this process must be followed with 

conscience and criteria, in a constant balance between safety, control, accuracy and 

speed. Only in this way will we be able to derive all the possible benefits from the 
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technology (which are huge and numerous), avoiding that these tools are used in an 

reckless way. 
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