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Abstract: In this thesis, the problem of cavitation reduction is addressed through
shape optimization using the adjoint method. The target is to design an optimized
hydrofoil that minimizes the possibility of having cavitation effects under specific
flow conditions. Indeed, cavitation is an undesirable phenomenon that occurs when
the local pressure on a hydrodynamic surface drops below the vapor pressure of
water, generating vapor bubbles that can cause structural damage and reduce
aerodynamic efficiency. The SU2 finite volume solver is adopted to simulate the
flow around the hydrofoil and compute the cavitation phenomenon. The discrete
adjoint method is applied to compute the objective gradient with respect to the
design variables, guiding the optimization towards the most suitable shape for
cavitation reduction. The sensitivity verification was performed on a 2D profile.
The cavitation optimization was carried out on a real 3D hydrofoil of the PoliMi
Sailing Team moth.
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1. Introduction

Sailboat foils are an innovative technology that is revolutionizing the sailing world. Foils are hydrodynamic
appendages that are mounted under the boat’s hull and allow it to be lifted out of the water, reducing friction
and increasing speed. Sailboat foils represent a real quantum leap in sailing and are set to change the way we
think about this sport and about recreational sailing. Since the hull is lifted out of the water, the submerged
surface in the water, i.e. that of the foils, is much smaller. Wave resistance in the flight phase no longer exists,
so the shape of the submerged appendages becomes more important (from the original concept [26], to the new
contribution [42],[45]). These aerodynamic lifting surfaces are highly sensitive to geometric modifications and
even slight changes in the shape can have a significant influence on the final design’s performance.
In the context of designing foils for sailboats, the phenomenon of cavitation that can occur on the surface of
the appendages, due to high sailing speeds, must be taken into account. Cavitation is a physical phenomenon
that occurs when the pressure of a fluid reaches or drops below its vapor pressure, leading to the formation
of vapor bubbles within the fluid. Avoiding cavitation is crucial, since it will have a detrimental effect on the
hydrodynamic performance of the foil. Such physical phenomenon is present in many engineering systems, such
as pumps, marine propellers, hydroelectric turbines and pipelines, and can cause structural damage and efficiency
losses (e.g. [14] and [10]). In recent decades, cavitation research has been the subject of increasing scientific
and technological interest due to its implications in many industrial applications. Indeed, understanding the
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dynamics of cavitation bubbles and their interactions with surrounding fluids is essential for improving the
energy efficiency of systems and preventing damage to structures.
Cavitation is indeed an important concern for the hydrofoil performance, such as [37], but its numerical predic-
tion remains a difficult problem, [22], [9], [12], [2]. These difficulties explain the reason why cavitation aspects
are usually not considered in hydrofoil shape optimization, unless when the objective is precisely to delay the
cavitation, such as in [46]. The goal of this thesis is not to simulate the cavitation phenomenon, but rather to
search for an optimized shape to prevent its occurrence. Usually, optimization to avoid cavitation is performed
using the inverse design method. This method works by prescribing the desired pressure distribution, based on
which the profile deformation is obtained. The disadvantage of this method is that it is not trivial to determine
the pressure distribution to impose, especially in the three-dimensional case. Instead, in this thesis, the use
of adjoint shape optimization is proposed to obtain a profile where the potential cavitation area is minimized.
The advantage of adjoint shape optimization is that there is no need to know the pressure distribution before-
hand. Usually, optimization to avoid cavitation is performed using the inverse design method. This method
works by prescribing the desired pressure distribution, based on which the profile deformation is obtained. The
disadvantage of this method is that it is not trivial to determine the pressure distribution to impose, especially
in the three-dimensional case [28]. Instead, in this thesis, the use of adjoint shape optimization is proposed to
obtain a profile where the potential cavitation area is minimized. The advantage of adjoint shape optimization
is that there is no need to know the pressure distribution beforehand. The research project aims to optimize
the profile shape of both a 2D and a 3D foil, with the objective of minimizing cavitation. To accomplish this,
in this thesis we worked inside the optimization chain implemented in the open source finite volume solver SU2,
Stanford University Unstructured software [30]. In particular, to investigate this issue, a new objective function
has been coded to estimate an area of possible cavitation.
This research contributes to the existing body of knowledge in hydrofoil design, exploiting a high fidelity
optimization method [5] and provide novel insights into the potential of adjoint methods in tackling cavitation-
related challenges.
In general, the Automatic Shape Optimization (ASO) has been proved to be a powerful tool able to improve
the aerodynamic performance in aeronautical world; it is not been highly investigated in nautical research ([15]
and [19]). It is precisely within this context that this research work aims to demonstrate the feasibility of the
ASO method in the nautical field. Concerning the aerospace world a large number of scientific papers highlights
the sharp and increasing interest of the CFD community and the aerospace industry. In fact, a recent review
of the state of the art regarding shape optimization [40] identifies a total of 304 remarkable papers. In the
last forty years, researchers have addressed their efforts towards making shape optimization reliable and robust,
although many improvements are possible and necessary, especially concerning multi-disciplinary design and
multi-objective optimization. In simpler terms, optimization refers to finding the best possible configuration.
In the case of gradient-based ASO, the shape that is obtained may not be the absolute best but it is definitely
better than the original one. The starting point, the type and number of constraints, and the size of the design
space all have a significant impact on the final outcome, as proved in [8].
The optimization process involves multiple interconnected steps, which can be quite complex due to the involve-
ment of various tools, sub-problems, and mathematical aspects that are often still an active field of research. In
a study by Shahpar from Rolls Royce [38], seven different modules were identified and described, each with its
own clear inputs, processes, and outputs. These seven modules are referred to as the "optimization seven pillars"
and include geometry parametrization, mesh generation and deformation, flow solver, optimization algorithms,
postprocessing, workflow management, and IT issues. Since these modules are interconnected and affect each
other, a consistent and unified strategy is required for the optimization process to be successful. Developers must
have a comprehensive understanding of the context, including both mathematical and programming challenges.
In the early 1980s, the community working on Computational Fluid Dynamics (CFD) began to enhance their
software by adding the capability to perform sensitivity analysis. This involves calculating the first derivatives of
an aerodynamic property that depends on both the geometry and flow, with respect to certain design variables.
These DVs are parameters that control functions that describe the body’s surface. Initially, Finite Differences
was the most straightforward method used to calculate the gradients of interest. This method was introduced
by Reneaux and Thibert [33] and did not require modifications to the solver itself, but the computational cost
increased with the number of design parameters. A more advanced method, the complex step FD, was proposed
by Lyness and Morelli [24], which partially addressed some of the issues associated with Finite Differences.
However, the turning point for shape optimization in aerodynamics was the application of optimal control
theory to incompressible flow equations, which was introduced by Pironneau [32]. The continuous adjoint
method for aerodynamics, which is a shape optimization method, became feasible and attractive only after the
famous article by Jameson in 1988 [16]. For the first time, it became possible to calculate the objective sensitivity
with respect to design variables, and the cost of this computation scaled with the number of objective functions.
The applications progressed from 2D airfoils to 3D wings, and finally to the optimization of entire aircraft.
The continuous adjoint approach theory is a natural extension of the linear algebraic duality theory to partial
differential equations (PDEs). In this approach, a duality variables vector, called adjoint variables, is added to
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the variables space containing the flow state. This requires a deep manipulation of the flow equations and the
boundary conditions, and only at the end are the equations discretized to perform the numerical solution. The
mathematical complexity of the adjoint and of its corresponding boundary conditions was partially overcome by
Shubin and Frank [39], who created a discrete version of Jameson’s adjoint method called the "implicit gradient
approach", which was later renamed the "discrete adjoint method". In this approach, the control theory is
directly applied to the set of discrete flow equations.
Within the context of discrete adjoint, an extension to cavitation has been performed in this work. SU2 is an
aerodynamic solver that does not have the capability to simulate the water-air interface. Indeed, SU2 does not
have any multiflow interface capturing algorithm, the most common method that could be implemented is the
Volume of Fluid (VOF) method ([31]), which is usually exploited for nautical researches. Despite this, SU2
is chosen because it has the discrete adjoint implemented in combination with automatic differentiation which
makes easy to code a new objective function and obtain the relative sensitivity. Although it does not have
cavitation models, it is possible to calculate the area where cavitation could occur. The objective of this work
is precisely to reduce this area maintaining the hydrodynamic performance.
This thesis provides a comprehensive presentation of the optimization chain, the SU2 software, sensitivity
computation, and the implementation of the cavitation coefficient (Sec. 2.3). The validity of the simulations
and of the newly implemented code is demonstrated through a dedicated chapter (Sec. 3) focusing on flow
validation and sensitivity verification. Subsequently, the results of both 2D and 3D cases are presented (Sec. 4).
In the 2D investigation, the optimization was performed on a NACA0015 airfoil, while for the 3D optimization,
the primary foil of the Moth, designed and manufactured by the PoliMi Sailing Team, was considered.

Figure 1: PoliMi Sailing Team prototype

2. Methodology

In this work, the discrete adjoint formulation is implemented using automatic differentiation (AD) to simplify
the process. AD was developed based on the understanding that any simulation code, no matter how complex,
can be broken down into a series of basic operations with well-known differentiation rules. By applying the
chain rule iteratively within the computer program, it becomes possible to compute both the simulation output
and its derivative with respect to specific design variables simultaneously.
The Stanford University Unstructured software (SU2) is a tool for solving partial differential equations, multi-
physics analysis, and pde-constrained optimization problems on structured and unstructured grids. The software
includes a RANS iterative solver for simulating compressible, turbulent flows commonly found in problems in
aerospace engineering. A number of convective fluxes discretization schemes have been implemented, such as
the Jameson-Schimdt-Turkel (JST) scheme [44] and the upwind Roe scheme [34]. The turbulence can be either
modeled by the Spalart-Allmaras(S-A) model [41] or the Menter Shear Stress Transport (SST) Model [25].
The discretization of Navier-Stokes equations is performed using the Finite-volume method on a vertex-based
median-dual grid, with several numerical schemes to solve the convective fluxes implemented. The software
can also be used for multi-physics problems, including fluid-structure interaction problems and acoustics, as
well as for automatic shape optimization. The surface sensitivity is computed using the discrete adjoint and
projected into the design space, with the body described using the Free Form Deformation (FFD) method [36].
The mesh around the body is updated, and the optimization algorithm used is gradient-based. One notable
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advantage of AD, thanks to its construction, is that it avoids introducing truncation errors typically associated
with traditional finite difference methods. In other words, the derivatives calculated using AD are accurate up
to the precision of the machine, without any loss of accuracy.

2.1. Optimization chain

In general, an optimization problem can be mathematically expressed as the minimization of an objective
function J(.), typically representing an aerodynamic coefficient. The optimization problem can be formulated
as follows:

min
α

J(U(α), X(α)) (1)

subject to R(U(α), X(α)) = 0 (2)
(3)

where U is the state variable. The surface of an object and the flow volume are discretized using a grid
called X(α), which is obtained by applying the Xvol(Xsurf (α)) transformation. Both, U and X, are functions
dependent on the design variables α.
Note that R(U) might not only include the flow residual but also residuals of other coupled models. Conse-
quently, U might also consist of the variables of these additional equations, for example, in the case of the
RANS equations plus a turbulence model, we have:

U :=

(
Uf

Ut

)
, R(U) = R(Uf , Ut) (4)

The Reynolds-Averaged Navier-Stokes (RANS) equations and turbulence models are discretized in SU2 using the
Finite-Volume method. This discretization is carried out on a vertex-based median-dual grid. By employing
the implicit Euler discretization method, we naturally arrive at a damped Newton method for solving the
equation R(U) = 0. Consequently, if convergence is achieved, the resulting solution U∗ is solely dependent on
the residual R(U). This implies that the residual can be a reasonable approximation of the Jacobian matrix
∂R
∂U . The detailed steps of this proof are presented in [3]. This can be illustrated by transforming the solution
process of the coupled equations R(U) = 0 into a fixed point equation, allowing the computation of feasible flow
and turbulent solutions through iterations:

Un+1 = Un − P−1(Un)R(Un) =: G(Un) (5)

It is natural to assume that G is stationary only at feasible points, i.e.

R(U∗) = 0 ⇐⇒ U∗ = G(U∗) (6)

The explicit construction of the Jacobian matrix ∂R
∂U , however, is generally a formidable task. To circumvent

this problem, a method for solving the adjoint system was proposed by Korivi et al. [18], which resembles
the iterative flow solver and permits the use of the same approximative Jacobian. In this work, the approach
proposed by [18] is adopted and combined with the efficient evaluation of the occurring gradients using AD
techniques.
Since the computational mesh is subject to change, all functions are now considered to additionally depend on X.
To formally handle the surface and mesh deformation, it is added as a constraint to the original optimization
problem by using the equation M(α) = X. A similar approach for dealing with the mesh sensitivities was
originally proposed by Nielsen and Park. However, in the present case, no assumptions are made about the
structure of M , except that it is differentiable. Then the optimization problem finally takes the form:

min
α

J(U(α), X(α)) (7)

subject to G(U(α), X(α)) = 0 (8)
X(α) = M(α) . (9)

We can define the Lagrangian associated to this problem as

L(α,U,X, Ū , X̄) = J(U,X) + [G(U,X)− U ]T Ū + [M(α)−X]T X̄

= N(U, Ū ,X)− UT Ū + [M(α)−X]T X̄

(10)

(11)
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where N is the shifted Lagrangian:

N(U, Ū ,X) := J(U,X) +GT (U,X)Ū (12)

If L is differentiated with respect to α using the chain rule, we can choose the adjoint variables X̄ and Ū in
such a way, that the terms ∂U

∂α and ∂X
∂α can be eliminated. This leads to the following equation for Ū and X̄:

Ū =
∂

∂U
N(U, Ū ,X) =

∂

∂U
JT (U,X) +

∂

∂U
GT (U,X)Ū (13)

X̄ =
∂

∂X
N(U, Ū ,X) =

∂

∂X
JT (U,X) +

∂

∂X
GT (U,X)Ū (14)

Finally, the derivative of the Lagrangian, that is, the total derivative of J , reduces to

dLT

dα
=

dJT

dα
=

d

dα
MT (α)X̄ (15)

Equation 13 is a fixed-point equation in Ū and can be solved in the style of the flow solver using the iteration

Ūn+1 =
∂

∂U
N(U∗, Ūn, X) (16)

once we have found a numerical solution U = U∗ of equation 5. Since G is a contractive function if the flow
solver has reached a certain level of convergence (i.e. ||∂G∂U || < 1 in some suitable matrix norm), also ∂N

∂U will be
contractive since ∥∥∥∥ ∂

∂Ū

[
∂N

∂U

]T∥∥∥∥ =

∥∥∥∥[∂G∂U
]T∥∥∥∥ =

∥∥∥∥∂G∂U
∥∥∥∥ < 1 (17)

Thus, it directly inherits the convergence properties of the flow solver. Up to now the derivation of the discrete
adjoint solver was rather abstract as we did not specify yet how to compute the necessary gradients. But
as shown in [4] it turns out that the sensitivity equation 14 and equation 16 can easily be evaluated using
Algorithmic Differentiation applied to the underlying routines in the program that compute G.
From this assumption derives the practical necessity to obtain a very small final residual during the iterative
solution of the flow equations. It is also possible to perform optimization with multiple objective functions,
combining them and assigning specific weights determined by the user. In the case of a wing or airfoil, for
example, the goal is to simultaneously minimize drag and reduce the moment around a particular axis. Aero-
constraints can also be imposed, such as maintaining lift or pitch moment within a certain range. However, the
computational cost and time required for sensitivity computation increase linearly. Geometrical constraints, on
the contrary, can be introduced without significantly affecting the CPU time, such as specifying a maximum
airfoil thickness or ensuring the wing volume does not decrease.
In the case of SU2, the Sequential Least Squares Programming (SLSQP) [17] algorithm drives the optimization
process, terminating when the Karush-Kuhn-Tucker (KKT) [21] conditions are satisfied or the maximum number
of design loops is reached. The SLSQP treats the computational fluid dynamics solver as a black-box, having
no knowledge of the physics involved. It requires inputs such as the value of the objective function J , the design
variables αt, and the sensitivity dJ

dα , and provides an output of a new point in the design space, represented by
a new vector of design variables αt+1, which is expected to yield an improved value of J . Figure 2 illustrates
the process within a single design loop, with each component corresponding to a specific mathematical method
chosen for its properties. Together, they determine the overall behavior of the optimization chain.
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Figure 2: Optimization chain

The entire ASO framework presented in this study is implemented in the open-source multiphysics solver SU2,
where the discrete adjoint code was developed by Albring, Saugeman, and Gauge [3]. The choice of SU2 is
motivated in Sec.2.2. The software structure combines automatic differentiation (AD) and discrete adjoint,
which is conceptually straightforward but more complex from a coding perspective. Once the objective function
J is computed, solving the relevant Reynolds-averaged Navier-Stokes (RANS) equations and obtaining surface
sensitivity are accomplished using the adjoint theory.
To explore the entire design space, the software must have the capability to deform the body and update the
mesh. The proposed ASO approach is CAD-free, meaning the loss of the defining functions of the continuous
body, and working directly with the discrete counterpart, which is the grid. To enable body deformation, the
wall boundaries need to be mathematically described. The relationship between the object’s surface and the
design variables is established through a shape parametrization method. In this study, for the 2D case, the
free-form deformation method is employed. FFD directly parameterizes the locations of the nodes, eliminating
the need for a geometric abstraction of the shape, although it is suitable for handling only small to medium
changes in geometry. The basic idea is to enclose the body and mesh within a flexible plastic box, and when
the box is deformed, the surface grid is consistently shifted. Mathematically, FFD involves a mapping from R3

to R3 using a tensor product Bernstein polynomial. First, a local coordinate system is set inside the delimited
volume, any grid point X inside the control box has coordinates (s, t, u), also called lattice coordinates:

X = X0 + sS + tT + uU (18)

The box is divided into sub-control volumes with dimensions l×m× k. These volumes have vertex coordinates
(i, j, k) with respect to a global reference system, represented by the matrix Pi,j,k. Some or all of these points
can be used as design variables in the optimization process. The desired displacement Pi,j,k is obtained using
the discrete adjoint method and then projected onto the design space. The movement of each point in local
coordinates is calculated as follows:

x(s, t, u) + ∆x(s, t, u) =

l∑
i=1

m∑
j=1

n∑
k=1

[Bi−1
l−1 (s) ·B

j−1
m−1(t) ·B

k−1
n−1(u)] ∗ [Pi,j,k +∆Pi,j,k] (19)

where the Bernstein polynomial of degree l-1, also called the blending function here chosen for the clarity of the
discussion, is determined as follows:

Bi−1
l−1 (s) =

(l − 1)!

(i− 1)!(l − 1)!
si−1(1− s)l−i (20)

In this work, SU2 does not utilize B-Spline with local support, although it is available. Instead, Bezier’s curves
with global support are used. The optimization problem involves the positions of the vertices of the sub-control
volumes as design variables.
The adjoint computation incorporates a routine to update the fluid grid, which directly affects the sensitivity
field. The ability to deform the mesh using mesh deformation techniques allows for handling arbitrary geometry
and applying significant displacements to the nodes. This capability greatly impacts the exploration of the
design space. It is crucial to maintain the quality of the output grid to prevent the divergence of subsequent
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RANS simulations. Additionally, the computational cost, particularly the physical memory consumption during
this step, is not negligible.
Strategies for deforming the fluid mesh conforming to the deformation of solid body can be divided into two
basic classes: physical analogy or interpolation. The most significant techniques under these two classes are
reviewed in [27]. The physical analogy approach describes the fluid mesh deformation according to a physical
process that can be modeled using numerical methods. In the interpolation based approaches, an interpolation
function is used to transfer prescribed boundary point displacements to the fluid mesh. Alternative ways to
approach this category of techniques rely on the concepts of spring analogy or the solutions of partial differential
equations. However, one major disadvantage of these physical analogy methods is their reliance on large systems
of equations, which significantly increases computational costs. Additionally, these methods necessitate grid
connectivity information, leading to greater storage requirements and challenges in parallelization efforts. The
spring analogy introduced by Batina [7] and linear elastic equations (ELA) first presented by Baker and Cavallo
[6] belong to this category.
The implementation of this method aims to prevent nodes from crossing over element faces during the deforma-
tion process. While this approach enhances robustness, it becomes computationally impractical and is unable
to handle large displacements. In this case, the grid is treated as an elastic continuum, and a built-in mecha-
nism ensures that negative volume generation is avoided. We can refer to this technique as a Finite Element
Method (FEM) model, where the goal is to calculate node displacements by considering the mesh elements as
homogeneous and isotropic materials. The constitutive law for this approach can be expressed as:

ϵij = Dijksσks (21)

Since the elasticity equations contain material properties, the modulus of elasticity (E) and Poisson’s ratio ( ν
), these properties are related to the mesh characteristics. In this work, the "inverse volume" standard approach
is utilized to determine the Young modulus. In this approach, a fixed value is assigned to the Poisson’s ratio
ν, while the Young modulus E is dependent on the cell. Specifically, E is calculated as the reciprocal of the
element volume Vi, expressed as E = 1

Vi
.

The radial basis function (RBF) interpolation method is a promising technique for interpolation. RBFs have
gained recognition as a reliable method for interpolating scattered data. Additionally, RBFs can serve as
interpolation functions to transfer known displacements from the structural mesh boundaries to the fluid mesh.
This approach yields high-quality meshes while preserving reasonable orthogonality near deforming boundaries.
Some advantages of RBF interpolation include: obviating the need for mesh connectivity information, working
with a linear system of equations, and the size of the linear system being proportional to the number of boundary
nodes rather than all fluid nodes. More detailed and in-depth information on the subject can be found in [1].

2.2. Sensitivity Computation

Automatic Differentiation, also referred to as Algorithmic Differentiation, is a valuable tool utilized in SU2 to
automatically derive the adjoint equation from the original code. There are two approaches for implementing
AD: source code transformation and operator overloading.
In source code transformation, the code is modified by introducing additional statements that calculate the
tangent of the original code. This approach is the most efficient but requires significant software modifications.
Since SU2 is written in C++, an object-oriented language, the implementation of AD heavily relies on Operator
Overloading, which is the only viable option. Although it is easier to implement and extend, this method
consumes more virtual memory.
The main concept is to overload every arithmetic operator and function, so that when they are called in the
code, both the original operation and the computation of the tangent are simultaneously performed and stored.
One advantage of AD is its ability to avoid truncation errors and produce derivatives with an approximation as
small as the epsilon machine.
While AD shares similarities with symbolic differentiation, it applies the chain rule to perform calculations,
which means it does not generate the full precise expression of the derivative. AD is often introduced based
on the idea that complex mathematical code can be viewed as a series of basic functions with at most two
independent variables. However, this approach can be inefficient in practice as it requires storing every single
operation. A more effective approach is to employ AD at the statement-level, where the information that needs
to be stored is independent of the number of operations involved internally.
In a generic function f , where f : Rn → Rm, it can be represented as a sequence of l statements, φi : R

ni → R.
Each statement represents a local evaluation that can be arbitrarily complex. The table shown in Tab. 3.1
demonstrates how a complex expression is interpreted by the code and broken down into simple arithmetic
operations. Here, f takes n inputs (x) and generates m outputs (y). Furthermore, the relation between
intermediate variables vi and vj is utilized, where the former depends directly on the latter, as represented by
ui := (vj)j<i for j belonging to the set of indices i.
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vi = xi i = 1...n

vi+n = φi(ui) i = 1...l

yi = vn+l−i+1 i = 1...m

Table 1: Code Interpretation of a generic function

A more advanced representation of the function f can be expressed as follows:

f(x) = Qm · Φl · Φl−1 · . . . · Φ2 · Φ1 · PT
n (x) (22)

Here, the function Φi : V → V , where V := Rn → Rl, sets vi+n to φ(vj)j<i, while leaving the other vj
unchanged. The final matrix Q extracts the last m elements from a vector of (n+ l) components.

2.2.1 Forward Mode

By employing the chain rule, it becomes possible to enhance each statement with its corresponding derivative,
thereby enabling forward automatic differentiation (AD). The term "forward" originates from the fact that the
values vi are carried forward alongside their derivatives v̇i.

vi−n = xi i = 1...n

v̇i−n = ẋi i = 1...n

vi = φi(vj)j<i i = 1...l

v̇i =
∑

j<i
∂φi(ui)
∂v̇j

i = 1...l

yi = vl−1 i = m− 1...0

ẏi = v̇l−1 i = m− 1...0

Table 2: Evaluation procedure using forward AD

The chain rule represents the key distinction from symbolic differentiation, wherein ∂φi(ui)
∂vj

would be replaced
by an algebraic expression. Combining these expressions would lead to a derivative expression of increasing
complexity. Conversely, in forward AD, the memory usage and runtime are predetermined, although some error
may be introduced due to floating point value roundoff. It should be noted that with the forward approach, an
input variable is chosen, and the first-order derivative of the intermediate steps required to reach the output is
computed with respect to that input.

2.2.2 Reverse Mode

Reverse mode is particularly useful for problems where a small number of objective functions or a single objective
function depend on a large set of variables. A prime example is the Discrete Adjoint method, where we require
the sensitivity of J (objective function) with respect to a lengthy vector, α. Unlike the forward mode, reverse
mode focuses on a single output and calculates the first-order derivative with respect to both intermediate and
input variables in a single unified process.
Reverse automatic differentiation (AD), implemented using expression templates, is approximately 2.7-4 times
slower than a direct simulation, which puts it on par with hand-written Jacobians in terms of performance.
However, it should be noted that reverse AD requires a significant amount of physical memory. Techniques
such as local preaccumulation and the use of checkpoints can help mitigate the memory consumption. Initially,
for each variable vi in the equation, we introduce a new variable v̄i =

∂y
∂vi

, which is referred to as the "adjoint
variable." Additionally, for the selected output, an extra variable ȳ = 1 is introduced. The goal now is to
differentiate Equation 22 using the chain rule:

y = QmAlAl−1 . . . A2A1P
T
n ẋ where Ai = ∇Φi (23)

which is the tangent relation rewritten as an evaluation procedure. The Jacobian of the function can be
immediately retrieved:
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df(x)

dx
= QmAlAl−1 . . . A2A1P

T
n (24)

By transposing the product we obtain the adjoint relation:

x̄ = PnA
T
1 A

T
2 . . . AT

l−1A
T
l Q

T
mȳ =

(
df

dx

)T

ȳ (25)

and the identity:

ȳẏ = x̄ẋ. (26)

Upon closer examination of the intermediate matrix multiplication in Equation 25, it becomes apparent that the
adjoint relation can be expressed as an evaluation process. This involves computing all matrix-vector products
for i = l, l − 1, . . . , 1, thereby traversing the sequence of elementary functions in reverse order, as presented in
Table 2. Since the intermediate values vi are required, they must be computed beforehand. Additionally, the
sequence of the concatenation has to be registered, then it is inverted in the return sweep in order to have the
tangent values. The reverse sweep is shown in Table 3.

vl−i = ym−i i = 1...m− 1

v̄j = v̄j + v̄i
∂φi(ui)j<i

∂vj
i = l...1

x̄i = v̄l−n i = n...1

Table 3: Code Interpretation of a generic function

2.2.3 Expression Template

Implementing reverse mode automatic differentiation using expression templates can greatly enhance its at-
tractiveness and computational efficiency. This technique, employed in C++, significantly reduces the virtual
memory requirements. Expression templates were initially introduced to expedite the evaluation of mathemat-
ical expressions based on operations or arrays. They are now incorporated into various C++ matrix libraries,
such as Adept and CoDiPack. The key idea is to modify each operator so that it does not return a value
directly; instead, it generates a new object that describes the type of operation to be executed and records the
expected input type. This object is known as an "Expression," and all variable types, arithmetic operators,
and functions are derived from a common base class. This coding concept relies on static polymorphism, where
an object of one type is concealed by another, with the compiler only becoming aware of this during runtime.
By avoiding the use of virtual functions, which would significantly slow down the program, the performance is
greatly improved.

2.3. Cavitation Objective Function

Cavitation is the physical phenomenon according to which the pressure of water decreases until it equals or
exceeds the vapor pressure, computed under given conditions of pressure and temperature. Cavitation leads to
the formation of air bubbles on the surface of the profile, which strongly impacts the aerodynamic performance
of the profile. They can also affect the properties of the material from which the surface is made. The work
reported in this thesis is the implementation of a part of SU2 code that checks for cavitation on a profile and
optimizes the shape of the profile with the goal of nullifying this damaging phenomenon. The implemented code
works by calculating for each grid element the difference between pressure and vapor pressure, in dimensionless
terms. In case the following inequality occurs:

−Cp − σ > 0 (27)

the code computes the cavitation coefficient:

CoeffCav =

∑n
i=1 Ai| − Cpi − σ|

Aref
(28)

where σ is the cavitation number in the simulating condition, Cpi is the pressure value in the i-th element, Ai is
the area of the i-th element, Aref is the reference area chosen to dimensionalize. Then the cavitation coefficient
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is given by the summation of the product of the pressure difference by the area of the element, for each element
in which cavitation occurs (i.e., the inequality given above is true). This is made dimensionless by dividing by
a reference area chosen by the user and given in the configuration file. In the case of 2D analysis, the quantity
used for adimensionalization is not an area, but rather a length. It is also possible to derive the total cavitation
area by summing the areas of the elements in which the phenomenon is evidenced:

ACav =

n∑
i=1

Ai (29)

The cavitation number, σ, is defined by the user within the configuration file. When a simulation is launched,
the code is able to print the cavitation coefficient values in the history file. In the case of shape optimization,
the cavitation coefficient itself can be defined as an objective function. Infact it is possible to choose as objective
function either the cavitation coefficient either the cavitation area, to be reduced.
The cavitation number is obtained by the following formula:

σ =
Pref − Pvap
1
2ρref · v2ref

(30)

substituting the values of the quantities characteristic of the case being studied. In the equation above, Pref

represents the reference pressure at which the simulation is conducted, ρref denotes the reference density, and
vref corresponds to the reference velocity. The values employed for these quantities in the simulations of this
project are listed in the 2D results section (4.1).
The cavitation number provides a measure of the relative difference between the local pressure and the vapor
pressure of the fluid. When the cavitation number is close to or exceeds unity (σ ≥ 1), cavitation is likely
to occur. Conversely, when the cavitation number is significantly below unity (σ ≪ 1), cavitation effects are
minimal.
The typical values of the cavitation number for profiles can vary depending on the specific application and
operating conditions. In general, for hydrofoils, propellers, and other underwater profiles, typical cavitation
numbers range from 0.2 to 2.0. These profiles experience varying degrees of cavitation depending on factors
such as the flow velocity, pressure distribution, and geometry.
For aircraft wings, which operate in air rather than water, the cavitation numbers are typically much lower.
The cavitation number for airfoils can be in the range of 10−4 to 10−2 or even lower. This is due to the higher
vapor pressure of air compared to water, making cavitation effects less prevalent in aerodynamic applications.

3. Validation and verification

In this study, a flow solution validation process for two-dimensional simulations has been conducted using
the NACA 0015 airfoil profile. The selection of this particular profile was motivated by the opportunity to
compare the results with those presented in [29]. The article provides both experimental and computational
data, allowing for a comprehensive evaluation.
On the symmetrical NACA 0015 profile, the angle of attack of 8 degrees has been investigated. Upon analysis,
it can be observed that the error at an 8 degree angle of attack was relatively small (Fig. 3) and therefore,
it was decided to continue the simulations and optimizations at this angle. The boundary conditions used for
the simulations align with those specified in the reference table provided in the results section (Tab. 5). In
fact, the graph shows that the three lines, which indicate the variation of the pressure coefficient on the NACA
0015 airfoil, are almost coincident. The three lines directly compare the data obtained in the paper [29], the
experimental data, and the results obtained in this study. By adhering to these established boundary conditions,
consistency and comparability with the referenced article were ensured.
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Figure 3: AoA 8

For the direct simulations aimed at code validation, the incompressible RANS solver was employed. The one-
equation model of Spalart-Allmaras [41] was adopted to simulate the viscous nature of water. Several numerical
methods, including JST and FDS, were initially tested, but eventually, the choice converged on the JST method
for all simulations. This selection was based on its superior performance and suitability for our purposes. Several
different 2nd and 4th order artificial dissipation coefficients have been tested. In the end, the choice came down
to the respective values of 0.5 and 0.02.
To simplify the simulation setup, an O-grid shape was chosen for conducting the simulations around the NACA
0015 airfoil. Pointwise ®(http://www.pointwise.com/) software was used to build the mesh. The cells close
to the airfoil are structured rectangles, the total height of this region has to contain the entire boundary layer.
Meanwhile, the rest of the grid is unstructured. The farfield outline was divided by 190 points, with a ray
extending up to 30 chords. The boundary layer region was discretized using the T-Rex mode available in
Pointwise. The selection of the first height cell aimed to achieve a y+ value of approximately 1; the boundary
conditions used for computing the Reynolds number are detailed in section 4. To ensure a y+ value close to
unity, the height of the first cell, ∆s, of the structured grid starting from the foil contour was calculated. ∆s
should be equal to 3× 10−6m.
The mesh independence analysis focused specifically on the nearfield region surrounding the airfoil. Several
refinements were explored by adjusting the number of points along the airfoil profile, the growth rate of the
mesh, and the first cell height. A summary of the investigated cases is provided in the table below.

N Nprofile growth rate f.c.height

20395 100 1.25 1.5 ·∆s

32785 200 1.2 ∆s

39223 200 1.15 0.5 ·∆s

45759 250 1.15 0.5 ·∆s

52239 300 1.15 0.5 ·∆s

Table 4: NACA 0015 mesh indipendence

Convergence of the solutions was assessed by considering the lift coefficient(Cl). Figure 4 presents the relation-
ship between Cl and the number of grid points. The graph clearly indicates a significant reduction in error
when the number of points exceeds or equals 3.9 × 104. Therefore, it was possible to use the first grid among
those with the same Cl, which corresponds to 39223 elements.
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Figure 4: Grid convergence

The research focuses on finding the optimal shape using gradient-based algorithms. To achieve this, it is
necessary to determine the sensitivity of the objective function with respect to the design variables. Generally,
the objective function J can be comprised of nf individual functions denoted as Jk, each of which must be defined
and differentiated with respect to the design parameters. The relationship between the objective functions, and
the mesh can be clarified by the following expression:

Jk(α) = Jk(U(α), X(α)) for k ∈ {1, . . . , nf} (31)

Initially, the objective was to calculate the partial derivatives ∂Jk(α)
∂αi

, which would involve nf × nα derivatives.
However, more recent codes calculate the total derivative dJk

dX for k ∈ {1...nf}. These codes incorporate both the
direct influence of node positions and the indirect influence caused by changes in the flow field to achieve steady-
state convergence. The Finite Difference method is a straightforward and traditional approach for obtaining the
gradient of the objective function. This method does not require any modifications to the solver. To calculate
the object function gradient, the discrete flow solution needs to be computed for the given foil described by
the design variables α, as well as for perturbed values (α + δα) and (α − δα). Typically, a second-order finite
difference scheme is employed.
If the geometry of the body is defined using an FFD box, as in this work, a perturbation in the direction m of
a quantity δα is represented by shifting a designated vertex, which serves as a design variable. This leads to
two mesh deformations, X(α + δαm) and X(α − δαm), that need to be performed, and two flow solutions are
computed on the morphed grids, satisfying the following conditions:

R(U(α− δα), X(α− δα)) = 0 R(U(α+ δα), X(α+ δα)) = 0 (32)

However, this method becomes impractical when dealing with a large number of design variables because
computing the matrix dJα

dα incurs a cost equivalent to 2 × nα times the cost of a single flow solution. The
verification of the adjoint solver is performed by comparing the obtained gradients with a second-order centered
finite difference method:

f ′(x) =
f(x+ h)− f(x− h)

2h
(33)

where h represents the step size. One critical aspect to consider is how to determine the appropriate step size.
The choice of step size significantly impacts the accuracy of the computed gradient. If the step size is too small,
rounding errors become significant. Conversely, if it is too large, the truncation of higher-order terms in the
Taylor expansion is no longer valid.
In the current study the verification is carried out considering the NACA 0015. The surface is parameterized
using a two-dimensional FFD box, with 14 design variables. The box containing the profile and the DVs are
riported in Figure 5, where it is also shown the direction of the possible displacements. The shape can be
modified changing the thickness and camber of the airfoil. Before reaching this size of the box, other dimensions
were tested, starting from larger sizes and gradually reducing the box, so that the edges were much closer to the
profile. A reasonable value for the step size for finite differences was found to be 10−5. Very good agreement is
found between the sensitivities calculated with finite differences and with the discrete adjoint method. A direct
comparison between the two methods is observable in Figure 6, where the cavitation sensitivity is plotted with
respect to the design variables.
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Figure 5: 2D box and design variables

Figure 6: Cavitation sensitivity computed with the adjoint method and with the finite difference

The graph below (Figure 7) illustrates the trends of cavitation and drag sensitivities, normalized to the same
magnitude. From this comparison, it is evident that the decrease in cavitation does not align with the decrease
in drag.
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Figure 7: Sensitivity of drag and cavitation

4. Results

This section presents the results of the cavitation optimization, which is divided into two parts: the first part
focuses on the 2D case using the NACA 0015 airfoil, while the second part discusses the 3D Moth foil.

4.1. NACA 0015 Optimization

Starting with the two-dimensional profile, the chosen free stream conditions are provided in Table 5. The target
of the optimization is to reduce the possible area of cavitation. The optimizations are carried out with a fixed
value of Cl, which was determined through prior direct simulations. The angle of attack is let free to vary in
order to more easily respect the constraint about the lift. The free stream velocity was chosen to be equal to
that in the paper [29], as mentioned above. The density and dynamic viscosity are typical values for water.
The Reynolds number was calculated considering the chord length of the profile, which is equal to 1 m, as the
reference length.

Velocity 8 m/s

Temperature 20°C

Density 998.2 kg/m3

Viscosity 8.9× 10−4kg/(m · s)
Reynolds 8.97× 106

Cl constraint 0.876

Table 5: Free stream conditions

Given the boundary conditions mentioned above, the cavitation number σ is found to be 1.937. This value is
obtained using Equation 30, knowing that the reference pressure is computed as Pref = ρrefv

2
ref = 63884.8Pa.

Considering the water temperature to be 20°C, the vapor pressure value Pvap = 2000Pa is extracted from the
tabulated data. By comparing the value of σ with the pressure coefficient plot in Figure 3, it confirms the
presence of cavitation on the upper surface of the profile, specifically in the leading edge region. Here, the
magnitude of the pressure coefficient is greater than the cavitation number. The same result is visible in Figure
11, which depicts the cavitation area ACav before optimization. The cavitation area includes elements on the
profile that satisfy the inequality stated in Equation 27.
The body is parameterized with a single FFD box and has 14 design variables that can be moved in the y
direction (Figure 5). The mesh deformation in this two dimensional study follows the linear elastic equation
ELA. The history of optimization is reported in Figure 8. It can be noticed that, after 9 design loops, cavitation
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decreases to zero. Additionally, the trend of the cavitation area is also shown in the same graph, demonstrating
a clear decrease. The cavitation area is expressed as a percentage relative to a reference area Aref . The chosen
reference area has a value of unity.

Figure 8: Objective function and cavitational area wrt design loops

Figure 9 depicts the evolution of the airfoil shape after 9 design loops of optimization. The obtained profile is
asymmetric, with a downward-leading edge and an upward-trailing edge. The modification of the leading edge is
a characteristic feature of profiles aimed at increasing the pressure ahead of the flow. The increase in curvature
on the leading edge generates a lower peak in the pressure coefficient. The last part of the profile is deflected
upright, to compensate for the change in the leading edge, as well as to satisfy the constraint on the lift. Graph
10 compares the pressure coefficient distribution of the NACA 0015 airfoil with that of the optimized airfoil.
It highlights that the magnitude of the pressure coefficient decreases in the leading-edge region, eventually
becoming lower than the cavitation number. This result is further confirmed by the comparison of Figures 12
and 13. The first image represents the NACA 0015 profile, while the second image represents the optimized
profile. We can observe that the peak value of the coefficient of pressure (Cp) has decreased, and simultaneously,
the area of minimum Cp along the profile’s upper surface has increased. In the given operating conditions, the
previously existing cavitation area on the NACA 0015 profile has now been completely eliminated through
shape modification. This remarkable achievement signifies that the air bubble, which used to occupy the dark
blue-colored region along the profile, has been effectively flattened due to the optimized profile shape.

Figure 9: Comparison between NACA0015 (blu) and the optimized profile (red)
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Figure 10: Pressure coefficient of NACA0015 and the optimized profile

Figure 11: Cavitation area on NACA0015
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Figure 12: Pressure contours on the NACA 0015

Figure 13: Pressure contours on the optimized profile

It can be noticed that the reduction in cavitation area generates an increase of drag. This can be expected
since the two sensitivities are different and have different local minima. Actually, we are not able to simulate
cavitation, so if we had a cavitation model, the actual drag would likely be higher. Therefore, reducing cavitation
could also mean reducing drag. It cannot be concluded that reducing cavitation automatically leads to an
increase in drag, but it may depend on the specific case and further studies are needed. For example, in the
next section, it will be shown that the drag has not increased.
Leaving the angle of attack unconstrained aids in the optimization process, but there is a significant modification
of 5 in the angle of attack, which is a substantial change.

1 loop 9 loop

Cavitation Area 3.52788% 0.24247%

AoA 7.25413° 12.3547°

Cd 0.011729 0.012295

Table 6: 2D results
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The elimination of the cavitation area is of significant importance as it indicates a successful mitigation of the
detrimental effects caused by cavitation. The modified profile shape reduces the occurrence of low-pressure
regions that could trigger cavitation.

4.2. Hydrofoil Optimization

Regarding the 3D case, the main foil of the Moth sailboat designed by the PoliMi Sailing Team was optimized.
The target of optimization is the cavitation area, keeping constant the lift of the baseline geometry. The main
foil is equipped with a central bulb, which serves as the junction point with the vertical surface. In the analyzed
case, only half of the foil was considered, taking advantage of its symmetry to reduce computational time.
The foil was encapsulated within a free-form deformation box, as shown below in Figure 14. The vertices
highlighted in black represent the control points with freedom of displacement in the z-direction. The DVs are
126, 7 in the chord direction, 9 in the span direction. Since the design variables are only allowed to move along
the z-axis, neither the chord length nor the span length can change. The bulb is not part of the optimization.
First-order continuity properties are applied at the intersection.
Similar to the 2D case, the boundary conditions used for this optimization were applied, as the Moth sailboat
is assumed to operate at a speed of approximately 15 knots in lake waters during the summer. As a result, the
cavitation number remains unchanged at 1.937. Only the fixed value of Cl is different, in this case equal to 1.41.
The grid surrounding the foil was created using Pointwise and is an unstructured grid in the shape of a hemi-
sphere. The region around the wing was structured using the T-Rex mode in 3D.
RANS equations are solved with SA turbulence model, JST is used to calculate the fluxes. 2nd and 4th order
artificial dissipation coefficients are 0.5 and 0.02. It is required to have at least six order reduction of the relevant
residuals and the finals lower than 10(−13).
As mesh deformation method in this optimization test case RBF has been used. RBF has been settlend using
Wendland C2 as baseline functions are selected, using a number of control points equal to 15% of total number
of surface elements.

Figure 14: 3D box

In Figure 16, the surface area affected by cavitation is highlighted. It was visualized by examining the pressure
coefficient, using a threshold value of σ = 1.937. The reference area used to compute the ACav corresponds to
0.0287 m2.
Due to limited computational resources, only 5 design loops were completed. The optimality conditions are
not fullfilled, but we are stuck in a local minimum. We can consider the obtained shape as optimized since the
cavitation coefficient is reduced of the 3%. As can be seen from Table 7, a decrease in cavitation area suggests
that the modifications made to the profile have effectively mitigated the detrimental effects of cavitation.
In this three-dimensional case, an improvement in fluid dynamics performance was also achieved, as the drag
coefficient decreased from the first to the fifth design loop. The decrease in the drag coefficient observed during
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the cavitation optimization process is a positive outcome, despite not being the objective of the optimization.
In this case, it can be observed that the angle of attack has changed much less compared to the 2D case.

1 loop 5 loop

Cavitation Area 7.11743% 4.58159%

AoA 7.91938° 9.76929°

Cd 0.052297 0.051707

Table 7: Design loops

Figure 15 compares the original foil with the optimized foil, while Figures 16 and 17 display their respective
cavitation areas. The original foil is colored yellow, and its cavitation area is depicted in blue, extending
throughout the foil span, particularly at the leading edge. In contrast, the optimized foil is colored aqua green,
and its cavitation area is a small red area observed near the junction with the bulb.
For further clarity, the pressure coefficient distributions are shown from a top view (Figures 18, 19). It is
noticeable that in the optimized foil the region with the lowest Cp is narrower compared to the original case
and close to the interface with the bulb. However, this is nearby the area that is not optimized. This suggests
the possibility of optimizing the junction region between the bulb and the foil in the future.
The residual presence of cavitation could be due to the premature termination of the optimization; otherwise,
it would have decreased further.

Figure 15: The original foil (yellow) and the optimized foil (aqua green)
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Figure 16: Cavitation area on the baseline foil

Figure 17: Cavitational area on the optimized foil

Figure 18: Pressure coefficient of the original foil
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Figure 19: Pressure coefficient of the optimized foil

Moreover, the wing has been discretized into sections, with each section corresponding to a specific location
along the span of the foil. The 2D contours of these sections have been provided, allowing for a convenient
visual assessment of the shape variations throughout the wing span. The sections were selected at four key
positions: 25%, 50%, 75%, and 98% of the wing span, excluding the bulb region. Among these sections, the
most notable change in shape is observed at the 75% span location. In this area, the wing exhibits significant
morphing, with noticeable alterations in its contour. On the other hand, the sections closer to the root of
the wing display relatively minor morphing, while those towards the wingtip primarily exhibit increased twist
rather than substantial shape changes. This section-wise analysis provides valuable insights into the morphing
characteristics of the wing, highlighting the localized variations in shape and twist along its span.

Figure 20: Sections

21



(a) Section A (b) Section B

(c) Section C (d) Section D

Figure 21: Sections of the original foil (blue) and optimized foil (red)

5. Conclusions

This thesis is focused on the application of adjoint shape optimization techniques for reducing cavitation on
hydrofoils. Indeed, usually in this field, the inverse design method had been predominantly used to search for the
optimal shape that avoids cavitation. The use of adjoint shape optimization offers the advantage of not requiring
prior knowledge of the pressure distribution, unlike inverse design. The objective of this research project was
to optimize the profile shape of a 2D and a 3D foil, with the goal of minimizing cavitation. To achieve this,
the optimization framework implemented in the open-source finite volume solver SU2 was exploited. In order
to address this objective, a new objective function was developed to estimate the potential cavitation area.
A successful result has been achieved in both the two-dimensional and three-dimensional studies. By utilizing
sensitivity information obtained from the adjoint solver, it was possible to systematically modify the hydrofoil’s
shape to mitigate cavitation-related issues. In the 2D case, a profile with virtually no cavitation area was
achieved, accompanied by a significant change in the angle of attack. In the 3D case, after only 5 design
iterations, a reduction in the cavitation area was observed, resulting in a decrease in the drag coefficient as a
side effect. In this case, the variation in the angle of attack was only 2°. The 3D hydrofoil studied in this case
is the main foil dseigned and produced for a Moth by the PoliMi Sailing Team. The successful elimination of
the cavitation area demonstrates the effectiveness and potential of the adjoint shape optimization method in
addressing cavitation-related challenges.
It should be noted that the optimal solution highly depends on the specific design requirements and operating
conditions. The choice of design variables, objective functions, and constraints must be carefully tailored to
the hydrofoil’s intended application and operational environment. Future studies can explore additional design
variables and multi-objective optimizations to achieve a more comprehensive and robust hydrofoil design. Over-
all, the successful implementation of adjoint shape optimization for cavitation reduction presents a promising
avenue for further research and potential real-world applications. In the future, for instance, the optimization
could be repeated while keeping the angle of attack fixed. It is hoped that the outcomes of this study will con-
tribute to the advancement of hydrofoil design and optimization techniques, ultimately benefiting the efficiency,
sustainability, and performance of hydrofoil-based systems in various industries.
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Abstract in lingua italiana

In questa tesi, il problema della riduzione della cavitazione viene affrontato attraverso l’ottimizzazione della
forma utilizzando il metodo dell’aggiunto. L’obiettivo è progettare un’ala idrodinamica ottimizzata che min-
imizzi la possibilità di avere effetti di cavitazione in specifiche condizioni di flusso. Infatti, la cavitazione è
un fenomeno indesiderato che si verifica quando la pressione locale su una superficie idrodinamica scende al
di sotto della pressione di vapore dell’acqua, generando bolle di vapore che possono causare danni strutturali
e ridurre l’efficienza aerodinamica. Il solver a volume finito SU2 viene adottato per simulare il flusso attorno
all’ala idrodinamica e calcolare il fenomeno di cavitazione. Il metodo dell’aggiunto discreto viene applicato per
calcolare il gradiente della funzione obiettivo rispetto alle variabili di progettazione, guidando l’ottimizzazione
verso la forma più adatta per la riduzione della cavitazione. La verifica di sensitività è stata eseguita su un pro-
filo bidimensionale. L’ottimizzazione della cavitazione è stata condotta su un’ala idrodinamica tridimensionale
progettata per il moth del PoliMi Sailing Team.

Parole chiave: cavitazione, foil, ottimizzazione, metodo dell’aggiunto
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