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Abstract

Focusing on the problem of Drone vs. Unknown classification based on radar frequency-
amplitude spectra using Deep Learning (DL), especially 1-Dimensional Convolutional
Neural Networks (1D-CNNs), this thesis aims at reducing the current gap in the research
related to adequate pre-processing techniques for hardware deployment. The primary
challenge tackled in this work is determining a pipeline that facilitates industrial de-
ployment while maintaining high classification metrics. After presenting a comprehen-
sive review of existing research on radar signal classification and the application of DL
techniques in this domain, the technical background of signal processing is described to
provide a practical scenario where the solutions could be implemented. A thorough de-
scription of technical constraints, such as Field Programmable Gate Array (FPGA) data
type requirements, follows the entire project justifying the necessity of a learning-based
pre-processing technique for highly skewed distributions. The results demonstrate that
data-adaptive pre-processing eases hardware deployment and maintains high classification
metrics, while other techniques contribute to noise and information loss. In conclusion,
this thesis contributes to the field of radar frequency-amplitude spectra classification by
identifying effective methods to support efficient hardware deployment of 1D-CNNs, with-
out sacrificing performance. This work lays the foundation for future studies in the field
of DL for real-world signal processing applications.

Keywords: Deep Learning, Adaptive Pre-processing, 1D-CNN, Radar, Spectrum, micro-
Doppler, Signal Processing, Hardware Deployment, Drone, Unmanned Aerial Vehicle,
FPGA
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Abstract in lingua italiana

Mirando a ridurre l’attuale gap di ricerca relativo alle tecniche di pre-processing per la
distribuzione hardware di reti neurali, questa tesi si concentra in particolare sul prob-
lema della classificazione di "Drone vs. Unknown" basata sugli spettri radar (frequenza-
ampiezza) utilizzando una tecnica di Deep Learning (DL), in particolare le Reti Neurali
Convoluzionali 1-Dimensionali (1D-CNN). La principale sfida affrontata consiste nella
determinazione di una pipeline che faciliti l’implementazione industriale, mantenendo
alte le metriche di classificazione. Dopo aver presentato una rassegna completa delle
ricerche esistenti sulla classificazione dei segnali radar e sull’applicazione delle tecniche
di DL in questo dominio, segue il contesto tecnico dell’elaborazione dei segnali (Signal
Processing) per fornire uno scenario pratico in cui le soluzioni indagate potrebbero es-
sere implementate. Una descrizione approfondita dei vincoli tecnici, come ad esempio
i requisiti del tipo di dato richiesti da Field Programmable Gate Array (FPGA) segue
l’intero progetto, giustificando la necessità di una tecnica di pre-processing che si adatti
alle distribuzioni altamente asimmetriche. I risultati mostrano come il pre-processing
adattivo faciliti l’implementazione su hardware, mantenendo elevate le metriche di classi-
ficazione, mentre altre tecniche contribuiscono alla creazione di rumore e alla perdita di
informazione. In conclusione, la tesi contribuisce al campo della classificazione di spettri
radar identificando metodi efficaci per supportare un’efficiente implementazione hardware
delle reti neurali convoluzionali, senza sacrificare le prestazioni. Pone le basi per studi
futuri in ambito DL sulla classificazione di spettri radar 1D.

Parole chiave: Deep Learning, Pre-processing adattivo, Reti Neurali Convoluzionali 1D,
Radar, Spettro, micro-Doppler, Signal Processing, Implementazione Hardware, Drone,
Aeromobile a pilotaggio remoto, FPGA
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AI Artificial Intelligence

AUC Area Under the Curve

CFAR Constant False Alarm Rate

DL Deep Learning

DFT Discrete Fourier Transform
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1| Introduction

The development of radar systems has consistently followed technological
advancements in pursuit of enhanced performance relative to existing state-of-the-art
systems. These advancements typically focus on hardware design and signal processing
techniques. The rapid proliferation of Artificial Intelligence (AI) and Deep Learning (DL)
algorithms has ushered in a new age of exceptional performance in areas such as Com-
puter Vision. Alongside these applications, the radar domain is also benefiting from the
innovative DL approaches, as researchers seek to develop signal processing solutions that
increase sensing accuracy by capitalizing on novel signatures present in the backscattered
signals. The focus has been mainly set on unconventional features extraction, thanks
to Convolutional Neural Networks (CNNs), and adequate pre-processing techniques that
require signal processing expertise. Within this research field, hardware deployment is
hardly considered upstream.

First, there is a lack of work focusing on radar targets’ 1D spectra classification, so this
project aims at creating a baseline that can be used for future comparison. Then, the
problems arising from hardware deployment are listed, including the type and distribution
of the data: highly skewed distributions, which are the result of high amplitude spikes,
are hard to rescale without losing information if they exceed the targeted 8-bit integer
dynamic. This work shows that static approaches like scaling using the maximum value
or clipping to an arbitrary value fail at retaining post-quantization accuracy, if compared
to methods that adapt to the input distribution during the learning phase. It is proven
by setting up pipelines that follow different data pre-processing methods. They are fed
with 221k frequency-amplitude spectra which values occupy a 16 bit dynamic. These
are labelled in two classes, Drone and Unknown, forming a binary classification task.
Results show how with the same data and similar CNN models for feature extraction,
the adaptive pre-processing techniques highly contrast post-quantization accuracy drop
compared to static techniques, reaching an accuracy of above 98% on the final quantized
model. The final discussion interprets the results and points at how this technique could
benefit problems with similar input type, datasets and requirements.
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1.1. Background

The aerial landscape scanned by radars is becoming increasingly complex, dynamic, and
diverse due to a range of new targets, including commercial drones and new types of
Unmanned Air Vehicles (UAVs). Detection and classification need to advance in order to
effectively address the newly emerging threats that are on the horizon.

Within the defence context, enhancing radar spectra classification adds useful information
to the situational awareness and makes the subsequent engagement actions more effec-
tive. UAVs classification relies on the ability to extract key features from the target that
uniquely distinguish it among the others. The frequency domain brings the opportunity
to separate target’s moving parts from its steady body, providing a great advantage in
rotary-wings drone classification.

Drones represents today one of the most challenging radar targets because their low
electromagnetic signature comparable, for example, to that of birds which must be treated
as non-dangerous targets. There are several classification tasks, that can be divided by
the different nature of the input. Traditional images are the latest trend, as several
CNNs like ResNet [1], Alexnet [2] and VGG-16 [3] are ready to use with very little
effort and show outstanding results as shown in [4], where all the models scored above
90% in classification accuracy, with Alexnet winning the comparison at 98.53%. Another
popular approach is the classification of micro-Doppler (MD) spectrograms: it involves the
frequency-amplitude spectrum of the target and its time evolution, resulting in a 2D time-
frequency image where amplitude is represented by the intensity of the colour, which is
used for feature extraction and classification. In [5], pre-processing and data augmentation
techniques are presented for human vs. vehicles targets, as well as a comparison of
CNNs architectures and feature extraction methods for micro-Doppler classification with
exhaustive results. It shows the remarkable results obtained by employing neural networks
in the frequency domain, hinting already to the necessity of an appropriate pre-processing
technique. The last and least common approach is time-invariant frequency-amplitude
spectra classification, which aligns with the scope of this project. It is equivalent as
taking one column (fixed time) from a MD image, better represented with a spectrum.
For this reason, similar feature extraction and pre-processing techniques made for the
micro-Doppler dimension, can be applied to the 1D frequency spectra as well. There are
already algorithms for automatic radar target classification that work with 1D spectra
as shown in [6], which features are not extracted with artificial intelligence methods, but
require a certain level of domain specific knowledge.

These different techniques presented in table 1.1, change in the input shape, which is
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Figure 1.1: From left to right: a drone image, a general target’s micro-Doppler and a
general spectrum.

strictly related to the complexity of the final model and number of operations required,
as well as the domains in which they exist. This project is going to focus on 1D spectrum
classification, envisioning an industrial development of the final solution. This considers
several constraints that are rarely encountered in pure deep learning projects.

Table 1.1: Different inputs and techniques for classification.

Input Shape Domain Channels Lightweight

Traditional Image 2D Object shapes 3 No

Micro-Doppler 2D Frequency, amplitude, time 1 No

Spectrum 1D Frequency, amplitude 1 Yes

1.2. Problem

Hardware deployment and the problems arising from it do not strictly come from the
research field itself, but from an industrial necessity instead. It is in fact common for a
scientific work regarding classification to either focus on the pre-processing and the model
or just the quantization strategy (mostly with 8bit int compliant input images), but not
both. The research related to MD and spectral classification strongly focuses on feature
extraction via CNNs and Long-Short Term Memory (LSTM) networks as shown in [7]
with state-of-the-art results on multi-class classification, with standard precision (float32)
models. In order to deploy on hardware, there are several constraints that need to be
considered: these constraints define the problem that this project aims at resolving. The
most significant one is related to the data types required by the Field Programmable
Gate Array (FPGA), which are, at the time of writing, 8 bit signed integers for both the
input data and the neural network’s weights and biases. To match this requirement, the



4 1| Introduction

network must be quantized [8], a procedure that adapts the parameters to a lower dynamic
resolution (typically from float32 to int8). The input data suffers from this problem as
well, two different scenarios can be identified:

1. Fixed range inputs like traditional images as RGB channels are already described by
8 bits, there is no loss in the dynamic as only rescaling dictated by the quantization
process and shifting are required.

2. Wide range amplitude values like MD and 1D spectra, the ones treated in this work.
Rescaling such inputs to fit into an 8 bits dynamic is harder, especially when the
distribution is far from being normal and the effect of large values is heavier on
information loss when applying max value-dependant pre-processing and rounding.

The information loss problem can be extended to any scenario where the input occupies
a wide range of values, not only in the radar Signal Processing (SP) field where the high
amplitude values are spikes in the radar recording. The same problems could be faced in
the medical and financial fields.

1.3. Purpose

The thesis discusses a set of pre-processing techniques for spectral classification pipelines,
in the context of SP and aims to demonstrate the effective application of CNNs for 1D
spectra and data-adaptive techniques to mitigate the distribution’s skewness. It presents
the technical constraints and sets them as leading forces for the adoption of certain solu-
tions, highlighting the strength of adaptive pre-processing to retain quantization accuracy.
These research questions have been identified:

1. Can a lightweight 1D-CNN achieve good performance on a spectral classification
task?

2. How can pre-processing learn from and adapt to the classification task?

3. Can data-adaptive pre-processing mitigate the post-training quantization accuracy
drop?

The first question aims at creating a baseline for future work, the second and third aim
at proving the effectiveness of techniques that adapt to the data distribution.
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1.4. Goal

The goals have been set according to Rheinmetall Italia (RhI)’s AI roadmap. For this
project, they are articulated as:

1. Identify and implement a CNN architecture able to perform binary classification
with 1D drone spectra.

(a) A classification accuracy of at least 90% has been set as threshold to consider
the result satisfying.

2. Quantize the neural network and pre-process the input in order to run the inference
on FPGA, according to constraints. It can be divided into:

(a) Find a suitable pre-processing technique.

(b) Retain accuracy after quantization. Minimize the quantization accuracy drop.

1.5. Benefits, Ethics and Sustainability

Apart from the benefit related to RhI advancing in their technology roadmap, the entire
Signal Processing community will benefit from the findings of this thesis, as well as every
industry that wants to employ DL to work on one dimensional signals, waves or series like
the medical and financial fields, especially for hardware deployment of the final models.

When it comes to ethics, deep learning can often be a black box that doesn’t necessarily
show at first glance what is the algorithm learning in order to classify, in this case.
A small step towards explainability is done by showing the results of one of the two
proposed pre-processing layers. This helps identifying which frequencies are taken more
into considerations by the network.

Sustainability issues are not directly raised from the start and are not at the centre of
the discussion, but it’s worth noting that compared to other techniques in the field [4] [5],
1D convolution is much lighter in terms of computational resources and model size. This
project could help shifting the attention from 2D micro-Doppler images to 1D spectra if
state-of-the-art accuracy are possible.

1.6. Research Methodology

The methodologies that can be employed in a research project follow a larger concept,
the Research Design, as [9] describes. The design influences assumptions, data collec-
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tion, analysis and how decisions are taken. It composed of three elements: Philosophical
worldviews, Strategies of Inquiry and, as anticipated, Research Methods.

Framing the worldview, which is “a basic set of beliefs that guide action”, the Postpositive
view certainly defines the most this type of research. This is mainly because of one of the
key assumptions of this position states that “Data, evidence, and rational considerations
shape knowledge”. It is clear that the adoption of the Postpositive worldview is adequate
for Quantitative methods, which set data and results as the main source of comparison.
As a Data Science project, it strongly relies on quantitative measures, so an Experimental
research method is going to validate decisions.

When it comes to strategies, a broader consideration must be made on the project. Strat-
egy provides a specific direction for procedures in a research design. Even if the final
success of a solution is evaluated on quantitative and experimental methods, the necessi-
ties of the industry and the company must be taken into account to create a successful
research project. This introduces some qualitative considerations, directions suggested by
necessities and field expertise.

Moving downwards in the portal of research methods [10], the Deductive approach is
certainly the most suitable, as the theories behind the assumptions are tested by using
quantitative methods. Applied to this project, the initial pipeline is designed accord-
ing to RhI’s necessities, using some qualitative measures, like implementability. Then,
the building blocks that compose the pipeline will be chosen and fine-tuned according
to quantitative measures, comparing the effectiveness of each solution. The pipeline is
presented in Chapter 3, where the focus is set also on data collection, data analysis and
quality assurance (validation).

1.7. Stakeholders

The project has been issued by Rheinmetall Italia S.p.A., more specifically the company’s
Research, Innovation Technology (RT) department. The findings are presented in a Mas-
ter’s Thesis published by KTH Royal Institute of Technology, following EIT Digital’s Data
Science track requirements. The people directly involved in the thesis are the academic
supervisor Dr. Niharika Gauraha, the examiner Professor Sarunas Girdzijauskas and the
company supervisor Dr. Francesco De Palo.



1| Introduction 7

1.8. Delimitations

Delimitations go on par with the problems described in 1.2. It could be argued why are
some solutions adopted, and it will be hinted referencing the delimitations listed here.
The objective is to overcome such delimitations with the introduction of smart solutions
along the pipeline.

The first constraint is the FPGA’s required data type: signed int8. It implies that both
the neural network model weights and the inputs must be quantized. The complexity of
the model is fixed, and so is the complexity of pre-processing. For instance, Histogram
Equalization has been considered to fit the input dynamic into 8 bits, but it would require
a secondary structure on unseen data, if performed globally. The ideal pre-processing is
kept as simple as possible.

1.9. Outline

In Chapter 2, the technical background of Radar Theory is presented to provide an overall
view of the context around the thesis. Target classification is then described, focusing
on the targets considered in this work, including a review of the existing solutions for
classification.

Chapter 3 focuses on the methods, describing the pipeline and the recorded data, while
Chapter 4 presents the experiments conducted emphasizing some solutions. The latter are
compared in Chapter 5, which elects the best one with the evaluation after the training
of the model.

A discussion based on the initial research questions is held in Chapter 6, ending with the
conclusion and future work.
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2| Technical Background

A detailed description about the background of the degree project is presented together
with related work. First, the Radar Theory is introduced to grasp the environment
around the project, with particular attention to Signal Processing as the classifier will be
implemented in its domain. Then, drone targets are described from a classification point of
view highlighting their characteristics, together with a horizontal view of the classification
methods in 2.2. The focus is then shifted vertically on deep learning classification methods
in section 2.3. Some attention will be given also to the medical field, where the use of
1D CNNs is wider [11], for early diagnosis, structural health monitoring and anomaly
detection [12]. While analysing the current classification methods, reasons about the
applicability of such methods is provided, together with a brief discussion about the
uniqueness of this research project.

2.1. Radar Theory

Radar, which stands for "Radio Detection and Ranging," is a remote sensing device that
detects and locates objects in the environment by using electromagnetic waves. In this
subchapter, the high-level functionalities and design of radar systems is covered together
with the Signal Processing of radar data up to the Discrete Fourier Transform (DFT) and
spectrogram representation. Most of the information about this topic is extracted from
Barton’s “Radar System Analysis and Modeling” [13], and Skolnik’s “Radar Handbook”
[14], milestones and reference points in the radar world.

2.1.1. High level Architecture and Functionality

When it comes to high-level functionality, radar systems operate by sending electromag-
netic waves into the atmosphere, where they reflect off objects in their path. The radar
antenna then receives the reflected waves, or echoes, and the system analyses the incoming
signals to calculate the range, direction, and relative velocity of the detected objects.

As anticipated, there are several components in the architecture of a radar system. The
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transmitter, antenna, receiver, signal processing, and controller are the five main radar
components. A high-frequency electromagnetic wave is produced by the transmitter,
and the antenna is in charge of broadcasting the wave and catching any echoes that
are reflected back to it. The signal processor inside the receiver retrieves the pertinent
information for further analysis after the receiver amplifies and filters the incoming signals.
It is worth providing an overview of what happens in the receiver, as it generates the input
learned by the neural network.

Figure 2.1: Simplified generic radar system and its internal components with focus on the
Receiver.

First in a radar receiver, the Radio Frequency (RF) component is in charge of detecting
reflected radar signals (echoes) and converting them into an Intermediate Frequency (IF)
or baseband signal for further processing. The Analog-to-Digital (A/D) converter follows
the RF and intermediate frequency signal processing stages, but before the Digital Signal
Processing (DSP). Its principal role is to convert a continuous-time analog signal to a
discrete-time digital signal that can be handled by DSP algorithms.

After converting the signal to a digital one it is passed through a Beamforming layer,
to focus the receiver signals in a particular direction. By raising the gain, boosting the
Signal-to-Noise Ratio (SNR), and enhancing target recognition capabilities, this strategy
improves the performance of the radar system. The Direction of Arrival (DOA) estima-
tion is the technique of detecting the direction of origin of a received radar signal. It is
important to determine the target’s angle. Constant False Alarm Rate (CFAR) detection
is a technique used in radar systems to set the detection threshold adaptively in order to
maintain a constant false alarm rate. False alarms arise when the radar system misiden-
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tifies noise or clutter as a target. CFAR detection can lower the risk of false alarms while
retaining the required probability of detection.

Finally, the Discrete Fourier Transform turns the discrete-time sequence of data points
into a frequency-domain representation, which is the one used in this project. Given a
sequence of complex numbers xk of length N its DFT Xk can be computed as follows:

Xk =
N−1∑
n=0

xn · e−
2πi
N

kn (2.1)

The result of the DFT is a frequency-domain spectrum that can be directly fed to an
algorithm. Traditionally, the detection made of target information including range and
velocity (Doppler frequency) are fed through a Plot Extractor. The extractor provides
representation of the target data from different detections after filtering, peak detection
and parameter extraction. The Track While Scan (TWS) mode is responsible for building
up the track after various plots. It is commonly represented as the target with a vector
that describes the direction and velocity.

Traditional classifiers consider the kinematic information. The aim of the project is to
classify the target solely looking at the DFT.

Figure 2.2: A generic 1D spectrum.

2.1.2. Micro-Doppler Image

The Doppler frequency modulation generated by the target’s internal motion, such as the
rotation of a drone’s propellers or the flapping of a bird’s wings, is referred to as the
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micro-Doppler effect [15]. The leading factors for this effect are rotations, vibrations and
oscillations of some of the parts of the target. A micro-Doppler image represents time on
the horizontal axis, and the Doppler frequency shift on the vertical axis. The intensity
of the image is higher as the power amplitude at a given frequency in the radar response
increases. From a spectrum perspective, each column of the micro-Doppler image has a
fixed time. It is understandable that a MD image is just the representation of a frequency
spectrum evolving in time. This consideration will lead to the assumption that deep
learning algorithms are suitable for the spectral classification, as explained in Chapter 3.

2.2. Target Classification

Radar classification involves categorizing detected objects according to their character-
istics, such as size, shape, speed, or Radar Cross-Section (RCS). For applications like
surveillance, air traffic control, and military operations, where it’s critical to discriminate
between different sorts of targets like airplanes, vehicles, or even tiny drones, accurate
classification is vital.

UAVs, or drones, are aircraft systems piloted remotely or autonomously by onboard com-
puters. These adaptable machines have grown in popularity in recent years due to their
wide variety of applications in both the civilian and military sectors. Ranging from small
consumer versions to large-scale military UAVs, they have transformed several sectors and
have become indispensable instruments in modern life. Equipped with cameras, thermal
imaging, LiDAR, or radar systems, they can be used for aerial photography, environmental
monitoring and especially the military field.

Figure 2.3: Two UAVs with different propellers and body.

Low-Small-Slow (LSS) targets are challenging for radar systems because, as suggested by
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the name, they have small radar cross-sections, slow speeds, and may travel close to the
ground or in cluttered settings. Small drones, birds, and even intruders are examples of
LSS targets.

Modern methods for LSS target classification in radar systems frequently include the
combination of advanced signal processing techniques and machine learning algorithms.
Among these approaches are:

1. Micro-Doppler Analysis: by evaluating the observed objects’ micro-Doppler signa-
tures, features indicative of their motion characteristics can be extracted and used
for classification. Typically, 2D CNNs are employed for the task, in order to consider
both vertical time invariant and horizontal time dependent features.

2. Kinematic Features Analysis: as anticipated, a traditional approach consists in
the classification of targets based on kinematic features extracted during the radar
recording. These features including RCS, Doppler frequency, range, azimuth and
elevation are perfect candidates for traditional machine learning algorithms like
Support Vector Machines (SVM) [16] and Random Forests [17].

3. Traditional Images: another way of extracting features from a target is by taking a
picture and learning its components with a CNN. It strongly relies on the scenario
and use case. Images must have a certain quality in order to be effective, and
environmental conditions strongly influence the ability to detect targets. Nigh time,
rain, clouds and buildings can all negatively affect the use of images for detection
and consequently, classification.

The next section 2.3 expands what is discussed in Chapter 1, providing a complete view
of the current target classification field, focusing on DL models and drone targets, where
possible.

2.3. Literature Review

This review aims at showing the great results obtained by employing deep learning algo-
rithms in the context of drone classification, with a focus on spectral targets, as well as
the success of 1D-CNNs in the medical field because of the similar input to the spectra
in this project.

Drone images are the perfect target for perfect conditions. Distinguishing a drone from
a bird or generic background is an easy task for a deep (large number of convolutional
layers) CNNs. The paper [4] shows it by training several CNN models on an image
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dataset, and comparing the three-class accuracies, as well as the processing time and
size of the networks (in terms of megabytes). Results over 97% of accuracy have been
reached by three different architectures, with AlexNet [2] claiming the number one spot
at 98.53%. It shows the robustness and stability of deep learning methods for this task.
As highlighted by [18], the main drawbacks of visual-automated techniques are related
to disguised drones or odd-looking targets, which may be the consequence of not ideal
conditions like fog or night time. Limited visual range is also keeping visual approaches
away from some sensible military domains.

Closing the gap towards the spectral target treated in this work, there are micro-Doppler
images. From a DL point of view, the technique consists in combining image features
extraction with the time-variant frequency domain. In [19] an extensive review is pre-
sented, together with a comprehensive table of micro-Doppler based target recognition
and classification with both ML and DL algorithms and their accuracy. In particular,
[20] achieves over 90% of accuracy using a deep CNN for human activity classification,
while [21] utilise merged Doppler images to classify drones with pre-trained GoogLeNet
[22], obtaining the outstanding result of perfect classification. With the same architec-
ture, [23] reached 98.5% of accuracy on a 4-class task, including drones, birds, clutter and
noise. It is important to focus on drone and clutter (alias unknown) as they mimic the
same binary classification task proposed in this work. In [5] both micro-Doppler noise
reducing pre-processing and data augmentations techniques are presented. Among a wide
comparison of previous research, it highlights the importance of adequate pre-processing.

Because of hardware implementation, model complexity has a high level of priority. Light
CNN [24] is a lightweight model for drone vs. noise multiclass classification. It achieves
97.14% of accuracy after a stationary point concentration method is applied to the input.
The technique is designed to improve the signal-to-noise ratio in frequency-modulated
continuous-wave radar systems, particularly for detecting small drones [25]. For the scope
of this project, the relevant result is the high classification accuracy using a fairly simple
architecture. Light CNN’s main components are taken and reworked to fit the 1D input
task, explained in Chapter 4.

This thesis could be interesting for the medical field, as one-dimensional inputs are fre-
quent compared to the radar field (especially after the recent success of micro-Doppler
based approaches) and because of the nature of most hardware-implementation aimed
prototypes. It is in fact common in this field to merge Machine Learning (ML) and DL
models with sensors to detect, predict and classify problems or diseases. Electro Cardio-
gram (ECG) classification is one of the most popular tasks, [26] shows its effectiveness, as
well as proposing a low-cost hardware CNN architecture for inference on FPGA. The ac-



2| Technical Background 15

curacy drop in percentage is only 0.07 between the CPU and the target hardware device,
achieving a final 98.84%.

As outstanding as it seems full hardware implementation requires strong domain knowl-
edge. For this reason Xilinx’s Vitis AI [27] , a comprehensive AI inference development
solution is used to move from a floating point model to the final quantized model, com-
piled for Deep learning Processing Unit (DPU) on Xilinx’s target board. The framework
and methods are described in the next Chapter 3.
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Methodology

This chapter presents the data used for the project starting from the collection to the
statistical analysis of the dataset. Then, the model and its architecture are described
justifying the choice, and the final pipeline that each data point follows from collection
to model evaluation on hardware is depicted. The pipeline has been designed following
company necessities and qualitative measures, like implementability, but each component
of the pipeline has been then evaluated with a comparison among selected solutions with
quantitative metrics.

3.1. Data Collection Scenario

The collection activity is not strictly related to the thesis work, as it has been performed
by RhI in previous projects. An attempt to describe the scenario is still done, to show the
high level of representativity of the dataset in real situations. An S-Band Pulsed Radar
has been deployed on RhI’s building, with the target identifying drones’ landing point.
The drone is then maneuvered along a specified path in the scope of the specific radar’s
scan range. The distance between the target and the radar is about 1.7 km. In order to
obtain a clean result and avoid most of the clutter, the antenna has been properly tuned
and positioned.
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Figure 3.1: Geographical representation of the data collection scenario.

3.2. Dataset

Emerging from the measurements is a dataset composed of 221k samples belonging to
two classes: Drone (class 1) and Unknown (class 0). Samples are slightly unbalanced
towards drones, which are around 60% of the total dataset. Each sample is a spectrum
with 360 values (representing the frequency bins), and the value of each bin is the power
amplitude of such frequency bin. The spectrum is the direct result of the DFT performed
by the radar, described previously in subsection 2.1.1. From a data science perspective,
samples are just vectors of amplitudes, having length 360. Amplitudes are therefore the
most important measure worth examining further. The values of amplitudes range in
the natural numbers set N, from zero to a maximum around 24k. The distribution is
highly skewed positively, similar to a Rayleigh distribution with a small value of the scale
parameter σ.

This characteristic may seem irrelevant, but it creates problems when applying normal-
ization or scaling the values to fit inside a specified dynamic. Traditional images are
already in the 8-bit integer range, to fit them in a 8 bit signed data type, they just need
to be shifted by a value of -128. The same doesn’t hold for data that highly surpasses the
maximum 8-bit value of 255. Applying a famous and widely used normalization technique
as min-max scaling would bring most of the values down to small values leaving most of
the dynamic empty.
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Figure 3.2: Distribution of the data on the left, distribution of clipped data on the right.

The rounding then nullifies most of the information retained by the data, being these
the wanted target’s response representation. The problem of outliers strongly influences
the project and the use of an adaptive pre-processing solution, which solves the problem
keeping all the outliers untouched.

x′ = round

(
x−min

max−min
· 255

)
− 128 (3.1)

3.3. Convolutional Neural Networks for Signal Pro-

cessing

The effectiveness of CNNs for classification tasks has already been discussed in the Intro-
duction 1 and Literature Review 2.3, here a brief description of the convolution operation
and the overall architecture aims at providing an answer to their eligibility in the signal
processing scenario.

Convolution is a mathematical operation between two functions that produces a resulting
function that describes how the shape of one is influenced by the other. In the discrete
scenario it involves a filter, which is typically a N -dimensional matrix, that slides across
the input, performing element wise multiplications and summations that result in a single
value. Taking every small region once at a time, it creates a spatially aware feature map
that represents the presence of a feature in the original input matrix. Convolutional Neural
Networks extend this procedure. Each convolutional layer has multiple filters initialized
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at random, so that different features can be learned. The result is then activated via
a function to introduce a degree of non-linearity and subsampled with pooling layers for
dimensionality reduction. These filters slide across the input just like convolutional filters,
but apply a function aimed at obtaining a smaller output with respect to the input size,
like max or avg. It doesn’t only help quicker computation but also the generalization
capabilities of the network, as the features appear to be more abstract.

Just like other fields, stacked convolutional filters are useful in signal processing for local
feature learning, detecting recurrent and highly significant patterns from the input signal.
If the filters are not manually initialized and the only supervised aspect is labelling of the
target, it is the case of automatic feature extraction as it doesn’t require domain expertise.
Features are then used as signatures for discrimination tasks, like the binary classification
that this project aims at. The input spectra are passed through many convolutional
filters, which goal is to learn local features that are significant enough to understand if
the target is a drone or an unknown object.

3.4. Straight-Through Estimator

The concept of Straight-Through Estimator (STE) [28]is described in this section to lay
down the thoretical tools that will help explain what has been done in the Development
Chapter 4. It is a trick often employed to enable the training of neural networks with
non-differentiable functions, such as the rounding function which is used in this work, or
the sign function.

The main constraint that STE is designed to address arises from the fact that neural
networks, built on backpropagation, require differentiable activation functions. When a
function is non-differentiable, its gradient is undefined, stopping backpropagation. STE
acts as a workaround by providing an approximate gradient for the non-differentiable
function.

The STE operates as so: during the forward pass, it applies the non-differentiable function,
such as rounding in this work. During the backward pass, it approximates the gradient
of the non-differentiable function instead, as a constant - usually as the identity function.
Essentially, it "pretends" that the function is differentiable and that the derivative is
a constant. This allows the backpropagation process to proceed as if the function was
differentiable, enabling the training of the network which is the main goal.

One common application of the STE [29] [30] is in the training of networks with quantized
weights or activations, such as binary or ternary networks, where the activation values are
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constrained to a set of discrete values. The STE allows these networks to be trained effec-
tively using gradient-based optimization methods by providing a means to backpropagate
through the quantization function.

It is important to note that while STE allows us to train networks with non-differentiable
functions, it does not provide a perfect solution. The use of STE introduces a discrep-
ancy between the forward pass and the backward pass, which could potentially lead to
suboptimal training results. Moreover, the theoretical underpinnings of STE are not yet
fully understood, and it remains an active area of research.

3.5. Pipeline

This subsection presents the pipeline that each sample follows after the collection de-
scribed in 3.1. First, an overall view is provided, then it is articulated in two configurations
that change in the way pre-processing is performed on data.

Figure 3.3: The overall proposed pipeline from the database to the quantization and final
evaluation.

The pipeline 3.3 starts from the database where spectra are saved. After being analysed,
they pass through a layer of radar-based pre-processing where the focus is set on a certain
subrange of frequencies from the original spectrum. Then according to the nature of the
pre-processing technique, either three different paths are followed for traditional methods
or two paths for learning-based methods. The split into training, validation and test set
is performed with percentages of respectively 64%, 16% and 20%. The test set is saved
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until the very end of the model selection procedure while the validation set is used to tune
hyperparameters. This phase is anticipated when adaptive pre-processing is applied, as
it will automatically learn the data scaling parameters and apply the transformation to
the test set before evaluation.

Figure 3.4: The pipeline for starting pre-processing methods.

After the training phase, the model performance is evaluated on the unseen test set, both
before the quantization with different metrics and after quantization with the classification
accuracy. The last step includes both turning the CNN into its 8-bit counterpart and
compiling the model to enable the inference on hardware, thanks to Xilinx-provided Vitis
AI. Evaluating the quantized model, the accuracy drop is calculated to measure the
effectiveness of each solution. More on the evaluation metrics in the next section 3.6.
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Figure 3.5: The pipeline for adaptive pre-processing methods.

3.6. Evaluation

The evaluation methodology is purely quantitative, as the only qualitative choice has
been limited to the definition of the pipeline and to the size of the initial model, which
wants to be “relatively small”. Here, the objective is to understand which pipeline and
which technique is the best one based on evaluation metrics that are presented in order
of importance. First, it is worth mentioning that drones are going to be considered as
the positive class and unknowns as the negative class. With this decision the Confusion
Matrix labels are defined as follows:

Table 3.1: Prediction Results

Label Prediction Result

Drone (1) 1 True Positive

Drone (1) 0 False Negative

Unknown (0) 0 True Negative

Unknown (0) 1 False Positive

Accuracy: in the context of a classification task, the first metric that has been considered
essential is the accuracy with which the model is able to classify spectra. This metric is
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defined as the number of samples correctly classified (sum of true positives and true
negatives) over the total number of samples.

Acc =
TP + TN

TP + TN + FP + FN
(3.2)

Recall: choosing to assign the drones as the positive class, one of the most significant
metrics is recall. It is defined as the number of elements of the positive class correctly
classified over the total positive class. In the defence scenario, sending an alert for a target
that might be dangerous is key. It has been preferred to keep track of the times that a real
drone target is correctly classified over the number of drones, in order to understand (and
minimize) the times that a dangerous target bypasses the classifier. It is clear from the
formula below that the maximization of recall relies on the minimization of false negatives.

Rec =
TP

TP + FN
(3.3)

Post-Quantization Accuracy Drop: this metric is calculated as the difference between
post-quantization accuracy and the original accuracy. It is important to define which pre-
processing method, under the same quantization settings, results in the lowest accuracy
drop.

Drop = P.Q.Acc ˘Acc (3.4)

Thresholding: the defence scenario requires additional certainty, especially when au-
tomations are embedded in systems that act on the external environment. Presenting the
radar pipeline in Chapter 2, it was mentioned that a track on the operator’s screen is
made of several detections. For safety reasons it has always been discussed to mitigate
the uncertainty of the network. One way to do it is to higher the probability threshold
above 0.5 and create an uncertainty range in which samples are not notified as drones or
unknown but as “probable targets”, to be further investigated in a subsequent classifica-
tion stage. For this work the threshold has been set at 0.75, an analysis of the accuracy
removing the samples falling in this region is performed, counting the percentage of the
test set that is “probably a drone” to provide a measure of model uncertainty.

AUC-ROC: the Receiver Operating Characteristic (ROC) curve is a plot that shows
the binary classification ability of a model as the threshold used for discrimination is
changed. In the ROC space, the y-axis describes the True Positive Rate (TPR), that
above is defined as recall. On the x-axis there is the False Positive Rate (FPR). Each
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point of the curve expresses how, given a certain threshold for binary classification, the
model is able to correctly classify the positive class with the y-value and how poorly it
is able to classify the negative class with the x-value. Given this definition, a perfect
classifier has a ROC point at (0, 1) with an outstanding ability to classify the positive
class and the worst possible result in badly classifying the negative class.

Decreasing the threshold from left to right, the ROC curve summarizes all the confusion
matrices (hence TPR and FPR) that each threshold produces. The performance of a
random classifier lies on the quadrant bisector, while good classifiers tend to have a curve
that moves towards the perfect classification point.

The Area Under the Curve (AUC) of the ROC curve, is a great measure of a model
threshold-independent performance, as it sums up to 1 for perfect classifiers.

Figure 3.6: Example of a ROC curve and its AUC score.

Other useful quantitative metrics are used in Chapter 5, even if they are not at the centre
of discussion. They help to provide additional context to what could be an industrial
product based on the classifier.
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3.7. Development Framework

The project has been developed on two Docker containers, one dedicated to the design,
training and evaluation of the models and one for model inspection, quantization and
additional evaluation.

The first one is Tensorflow’s official Docker image [31], with Tensorflow 2.10 and all the
necessary libraries for data loading, multi-dimensional array and plot creation like pandas,
numpy and matplotlib. It eased the development incredibly by providing an all inclusive
solution that would avoid conflicts with the versions of the libraries in the quantization
Docker.

Xilinx Vitis AI’s [27] Docker image is an excellent way to have a complete toolbox for
model inspection, quantization and evaluation. The first step is crucial to understand
which layers are accepted for quantization, e.g. 1D convolutional layers are not, forcing
the use of 2D layers. Quantization is eased incredibly with the dedicated functions, which
are highly customizable.

The hardware board for deployment is the Xilinx evaluation board, Zynq UltraScale
ZCU102. The board gives the possibility to deploy a DPU exclusively designed to accel-
erate Deep Learning operations.

To train the neural network, the workstation has been equipped with a Ryzen 9 3.4 GHz
16 Core processor, 64GB RAM and a RTX3080Ti Gaming 8GB GPU. It enables a much
quicker training phase, resulting in a better fine tuning capability.

Figure 3.7: The Zynq UltraScale ZCU102 board.
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This chapter is dedicated to the work itself. The pipeline presented in Chapter 3 is
expanded approaching different solutions, which are described now and then evaluated
in Chapter 5. After choosing the blocks in a semi-qualitative way according to RhI’s
necessities, quantitative measures elect the best solution that contributes to the highest
accuracy and recall and lowest drop in these metrics from the original model to the
quantized correspondent.

4.1. Model Choice and Resizing

The first step is the model selection, which has been narrowed down to a convolutional
neural network, because of the great results obtained by 2D CNNs for the micro-Doppler
classification task, as depicted in the Literature Review 2.3.

It may be argued why is a CNN adequate for the task. Being the convolutional layers’
task to automatically extract spatial features from the input as described in section 3.3,
2D convolutional layers perform such feature extraction both time wise (horizontally) and
frequency wise (vertically) in a micro-Doppler image. It is not wrong to assume that a
1D convolutional layer that acts only on frequencies could extract spatial features, as it
is a subspace of a MD spectrogram.

For this reason, the previously mentioned (Chapter 2) Light CNN has been taken and
reworked to be adapted to the input. The input layer has been rescaled calculating the
ratio r between the original network’s input (128) and this work’s input size (N). The
ratio has then been used to rescale the convolutional kernels, rounding them to either an
even or odd value, respecting the order of the original network.

Then, the Fully Connected (FC) layer’s size is set to 2, for binary categorical classification,
and a Batch Normalization layer has been added before every activation following [32].
Finally, Dropout is implemented before the FC layer to introduce some regularization and
mitigate overfitting [33].
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Figure 4.1: High level architecture of the employed CNN.

4.2. Radar-specific Pre-processing

The first pre-processing applied to the spectra comes from a radar-specific assumption.
Knowing that targets velocities fall in a certain range, and frequencies are synonym of
velocity via the wavelength λ. First, the input is FFT-shifted of half the range, then
a specific subrange of the shifted input is extracted, reducing dimensionality and noise.
This subrange is where the targets main frequencies are expected to be found.

Figure 4.2: Position of drone’s body and propellers.
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4.3. Data Pre-processing

The last block to be described before training, that holds also the highest level of impor-
tance, is the pre-processing block. Now, action is taken directly on the samples rather
than using radar-related assumptions. Every consideration made from now on is solely
related to the data science part of the project.

4.3.1. No outliers, min-max, int8 scaling

The first, and most intuitive approach addresses the problem of high amplitudes. As
earlier described in the Dataset section 3.2, the amplitude values fall in a 16-bit dynamic
(log2 (24K) ∼ 14.55). Being skewly distributed, applying min-max scaling x′ = x−min

max−min

to such a high value of maximum would shrink all the significant values to low values,
which must be rounded to be accepted by the hardware, operation that will destroy almost
the entire information held by the input.

For this reason, a threshold for maximum value has been set according to statistical
considerations. The objective was set to retain 99% of the original amplitude values and
clip all the values above the threshold. Clipping is a numerical operation directly provided
by NumPy; given an upper bound, it sets all the values above it to the bound value. The
same holds for the lower bound which has not been set in this case (same as setting it to
0). The output value is then min-max scaled with the new Nmax value from the clipping
step, and rescaled in the int8 dynamic. The complete transformation is defined in the
following equation 4.1.

x′ = round

(
x−min

Nmax −min
· 255

)
− 128 (4.1)

4.3.2. Bit Split

This naive bit split approach is presented, even if not described in the pipeline. The results
are presented in Chapter 5 even if massively underperforming compared to the others, in
order to avoid replicating the attempt in other scenarios. It comes from the idea that each
amplitude could be divided into its most significant bits and least significant bits. After
the transformation and a -128 shift, the CNN input layer would just require an additional
channel, as a traditional image requires 3 for the red, green and blue representations. Do-
ing so, the convolutional layers are looking for features with a divide-et-impera approach,
discriminating between the high values and low values (< 256).
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A discussion about why this method shall be avoided is carried out in Chapter 6.

4.3.3. Adaptive Pre-processing

While developing the pipeline, a key concept started getting relevance: if the hardware
device requires a signed 8-bit input and signed 8-bit quantized model (which is not a
problem given quantization), where does the model struggle to retain the key metrics
used for evaluation?

If trained on data that has been statically pre-processed, the loss due to quantization has
no ability to decrease under a certain value, related to the optimal clipping parameter
used in the “No outliers” approach. To overcome this problem, an attempt to shift the
pre-processing inside the learning phase has been considered. Can the Convolutional
Neural Network’s loss positively influence the optimal action performed on data, effectively
"learning" how to scale and shift the input?

Test-bed

Before explaining the solution, here is a small description of the initial idea of transforming
radar spectra into their optimal 8-bit representation.

The very first brute force approach was to place a N × 8 matrix in front of the neural
network, as a result of the product between the input vector N × 1 and a 1 × 8 layer
with eight units. It would then be activated with a sigmoid function σ(x) = 1

1+e−x and
rounded to the nearest integer value. This way, each row of the matrix would be cast to an
8-bit integer and learn an alternative representation of the input. The idea was discarded
because it would require an explicit cast of the data and it wouldn’t have great library
support. The objective is to use Tensorflow’s layers, or fairly simple custom layers given
the constraint of Vitis AI supported operations. This approach has been implemented
with a Dense(N) layer, exlplained later.
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Figure 4.3: Naive ideated matrix.

Another idea was to tune the clipping parameter Nmax given the network loss. If done
in a naive way, it requires processing the data at each step, that is why a single unit FC
layer has been employed instead. It doesn’t explicitly tune the clipping parameter, but it
sill performs the scaling required to fit the data to the network in the best possible way.

Dense(1)

The first approach uses a single unit (neuron) to scale the input, inserting a Dense(1)
layer (FC) right after the input layer. It holds only two parameters: a weight w and a
bias b. These parameters create a response of the type X ′ = Xw + b. Where X is a
N × 1 vector and w, b are 1 × 1 vectors. It generates a N × 1 output, the same size as
the original vector.
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Figure 4.4: From left to right: the input vector, the Dense(1) layer and the results that
is then activated.

The output of this layer is then activated with a custom version of a Quantized ReLU
q(x) (the generic function is described in the appendix of [29]), which in this case is not
clipped at 0, but operates between the values -128 and 127 instead, the ones required by
the signed int8 DPU.

As anticipated in section 3.4, the problem arises because of the non-differentiable nature of
the activation function (because rounded). While training the model, the backpropagated
gradient of the layer would be null. To overcome this, the STE is employed. A work on
the application of STE to train quantized neural networks [29] poses the question “How
to estimate the gradient of a loss function with respect to the input of such stochastic or
non-smooth neurons? i.e., can we “back-propagate” through these stochastic neurons?”.
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Figure 4.5: The activation function is a rounded ReLU, clipped at -128 and 127.

Figure 4.6: Backpropagation function.
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Here there are no stochastic neurons, but the problem still holds for non-differentiable
functions, like the Quantized ReLU. Backpropagating, the original ReLU operating be-
tween -128 and 127 is used instead as a replacement. Following this approach, the CNN
is fed with signed 8-bit activated inputs and the gradient is not null to update the weight
and bias of the Dense(1) layer.

Dense(N)

What happens if instead of one single unit the FC layer has the same size as the input,
Dense(N)?

The parameters create a response of the type X ′ = Xw + b. Where X is a N × 1 vector
and w, b are 1×N vectors. It generates a N ×N matrix output. To mimic a dot product
between the two vectors, a custom layer takes the diagonal, resulting in a N×1 output as
the original amplitudes vector. It is worth mentioning that a custom layer that performs
the dot product (and bias sum) between N weights and the input vector would have the
same result.

Figure 4.7: High level design of the adaptive pre-processing.

4.4. Training Phase

The training (learning) phase is one of the most sensible components of the pipeline,
as it influences the stability of the model especially if quantization is required after the
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training. It has been empirically noticed in this project that unstable trainings result
in higher post-quantization accuracy drops, leading to the choice to present the settings
used for this phase.

4.4.1. Exponential Decay

Before introducing the decay, it is worth mentioning that learning rate α is a hyperpa-
rameter that regulates the strength of the weight update at each iteration. The weights
(and biases) of each layer are updated as follows (L is the loss function):

W ′ = W − α · ∂L

∂W
(4.2)

Exponential Decay is a learning rate scheduling method, where the α hyperparameter is
reduced over time following an exponential curve. It helps the starting phase by setting
a higher value of the learning rate, leading to quick initial convergence and then the
parameter is gradually decreased over time to perform smaller steps and finer adjustments.
It is not decreased every epoch, but only after a certain number of epochs as it increases
stability in almost all the configurations that have been tried in the degree project. This
is obtained by setting ’staircase=True’ in Keras’ ExponentialDecay class. The obtained
schedule follows the graph below:

In this case, the decay has been set every 50 epochs, with an upper bound of 500 epochs. It
provides a quick learning in the first epochs and a later smaller tuning when approaching
the end. In the next tables are condensed the training and pre-processing techniques
tested in the project.

Figure 4.8: Training strategies.
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Figure 4.9: Pre-processing strategies.
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This chapter is purely dedicated to the presentation of the results obtained by training
the CNN model described in Chapter 4, following the different settings of the pipelines
presented in the AI Methodology Chapter 3. The results want to prepare a response
to whether the research question of adaptive pre-processing’s success turns out to be
positive or the technique is not able to achieve better performance, compared to traditional
methods.

For the first model tested no action has been performed on data to set a baseline for
other tries. Of course, this is the only model that cannot be deployed as the CNN is not
trained on data of a fixed 8-bit dynamic. This problem is going to be stated again to ease
understanding.

Although Xilinx’s Vitis AI quantization procedure extracts a scaling factor that can be
applied to data before hardware inference, the same data has to be rounded to the nearest
integer anyway after the scaling, losing information that translates in an uncontrolled
accuracy loss. To control accuracy and limit the accuracy drop upfront several methods
have been tested.

Last, at this point in the project the validation set has been merged with the training
set, as the adequate hyperparameters have been found in the development stage, so the
models are trained with more data to hold as much knowledge as possible. The test set
evaluation is the real method to present the unbiased performances. It must be noted
that model size is increased only at the end, when the best pipeline path is assessed.
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Figure 5.1: Results.

5.1. Model comparison: accuracy, recall and % drop

The baseline model (ID=1) achieves a good 94.4% on the training set and a 94.5% on the
test set. Recall stands at 95%. It can be seen from the result table 5.1 that increasing the
discrimination threshold to 0.75, the accuracy stands at 97% with 8.33% of test samples
in the uncertainty region of [0.5, 0.75]. The Post Training (PT) quantization accuracy on
the test set is 92.4%, even if this result is not informative as this network is not deployable,
the baseline drop in accuracy is -2.1%.

When introducing unclipped pre-processing (ID=2) the train and test accuracies fall to
90% and 89% respectively, with similar recall, a higher level of uncertain samples that
fall in the [0.5, 0.75] range and an accuracy drop of -3.9%. The results were expected to
improve with the introduction of clipping (ID=3), that again, was set to retain 99% of the
original values. The table clearly shows the competitive results of the third strategy with
94.5% of accuracy and 95% of recall, reaching the performance of the baseline model. This
approach doesn’t only saturate the input using a method that is between quantitative and
qualitative, but also fails to match the quantized accuracy of the baseline model, as it
stops at 91.1%. The number of samples in the uncertain region remains similar, but the
accuracy drop stands at -3.4%, quite worse than the baseline. The bit-split model (ID=4)
underperforms after quantization, as it only reaches 77.8% of quantized accuracy, despite
showing results that are in line with other methods at the training and test phases, 93.3%
and 92% respectively. This drop shows that the method causes some noise in the data,
discussed in 6.

The adaptive pre-processing layers step up both in terms of overall performance, achieving
96.2% and 95.7% on training and test accuracies and 96.3% recall for the Dense(1) layer
(ID=5), 96.2% and 95.9% accuracies and 96.6% recall for the Dense(N) layer (ID=6). The
number of samples in the uncertain region is decreased to 5.8% and 5.5%. It doesn’t only
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increase general accuracy but after dividing the layer from the network and quantizing the
CNN, both methods hold the original accuracy with drops of only -0.3% and -0.2%. These
methods do not significantly differ between them when analysing results but outperform
all the previous methods keeping the dataset intact with no semi-supervised clipping, but
with a learned rescaling.

As the difference between training and test accuracies is small for most models, it is
possible that the complexity of tested models is not enough to separate the dataset. This
is why after obtaining the results, the filters number of each convolutional layer of the
CNN has been doubled, creating a model (ID=7) with 24358 parameters, to which the
Dense(N) pre-processing is applied as it has shown the best result. The final model scores
99.5% and 98.8% of accuracy on the training and test sets and 99% recall, with the same
quantization accuracy drop of -0.2% and less than 1% of samples in the uncertain region
below the 0.75 threshold. The procedure was tested to show additional adequacy of the
model for this task.

Figure 5.2: This bar plot shows how models fed with different pre-processed data perform
in different way in retaining accuracy after quantization.
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Figure 5.3: This bar plot shows different Full Precision test Recall values for the applied
pre-processing methods.

5.2. ROC-AUC score

The area under the ROC curve importance was stated in the Evaluation section 3.6.
Only the most significant models have been tested to provide a fair comparison, leaving
out the baseline as it lacks deployment capabilities, the bit-split method as it strongly
underperforms and the final enlarged model because its results are clearly biased because
of the higher complexity (it is presented on its own).

The rescaled input pre-processing obtains an AUC score of 0.9551, which is immediately
surpassed by introducing the input clipping with 0.9839. The two adaptive pre-processing
layers improve again the model capabilities calculated at various thresholds, reaching
0.9904 for the Dense(1) layer that surprisingly outperforms (slightly) the Dense(N) layer
at 0.9901 for this metric. Although the two methods are similar, the discussion section is
going to highlight major conceptual differences between them.

Below, the comparison of the ROC curves and, on its own, the ROC curve of the expanded
model.
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Figure 5.4: On the left, the ROC-AUC scores of the four compared pre-processing meth-
ods. On the right, the score of the final enlarged model.

5.3. Dense(N) Weights

This section provides a visual representation of the difference between the Dense(1) layer
and the Dense(N) layer with one weight and one bias dedicated to each frequency bin,
printing the weights with a colormap. Considerations about the effectiveness of one
solution compared to the other are carried out in the Discussion section 6.1.

For this result, the Viridis colormap embedded in matplotlib is used to show the weights
with higher value.

Figure 5.5: Weights of the Dense(N) layer plotted with a Viridis colormap. The descend-
ing order of value is: yellow, green, blue, purple.

It can be clearly noticed by Figure 5.5 that some frequencies (in yellow) have a higher
weight, while other parts seem to not respond to the activation of the layer (the purple
areas). Especially, the central part is highlighted: the meaning could hide behind the fact
that in the second step of radar-based pre-processing, explained in section 4.2, the input
is FFT-shifted of half the range. This way, the edge frequencies of the spectrum, which
have a higher chance of containing the drone body and propellers, are in the central part.
They of course would have a higher weight compared to other frequencies. This moves a
step towards explainability as radar experts would expect such behaviour from the first
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layer, that again, has the goal of scaling the input and activating it in the defined (8-bit)
dynamic.
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This section presents once again the research questions formulated in Chapter 1 and aims
at answering with a discussion of the results presented in Chapter 5. Then, some insights
on future work are provided, in order to highlight the open questions that can be answered
in projects that start based off this research.

The first research questions asked whether a lightweight Convolutional Neural Network
could be used to discriminate between drone and unknown spectra, reducing dimensionally
what traditional techniques excellently do with micro-Doppler signatures [19] and RGB
images [4]. Results affirmatively answer the question obtaining well over 90% of accuracy
with very a lightweight design in almost all the settings. It must be said that binary
classification is not the best scenario to demonstrate the assumption, as less classes mean
less required complexity to divide the input space, but it is still an excellent starting point
to move towards compact and computationally efficient directions.

To assess the effectiveness of adaptive pre-processing compared to other traditional tech-
niques, the discussion section will focus on explaining why some methods work better
than others and what are the findings of the project, in general.

6.1. Discussion

The first, simple pre-processing technique, strongly underperforms when compared to
other methods. The intention was to fit the data into an 8-bit dynamic to present the
same data to the quantized network and enable DPU inference, controlling the accuracy
drop upfront. It is clear that, being min-max scaling too sensible to the maximum value
and the distribution of the dataset, when rounding the numbers too much information is
lost, and the majority of values are shrunk towards zero making feature extraction very
difficult.

Introducing a clipping parameter is beneficial, but not optimal as it has been chosen
statistically, with no real fit on the data. Another discussed solution was to tune the
clipping parameter with the CNN loss, detaching it after the training. It still doesn’t



44 6| Conclusions

justify the higher drop in quantization accuracy compared to the baseline model, which
may derive from the fact that most high peaks are related to just one class of the two,
them being drones (they will have high amplitude peaks for certain frequencies). Clipping
only one of the two classes could create this type of instability.

The bit-split solution clearly doesn’t work as one of the two channels, more specifically
the least significant bits channel, creates cycles of values in the rage [0, 255] which confuse
the learning phase. To provide an example, the amplitudes 511 and 515 are represented
respectively as (1, 255) and (2, 3). While the most significant bit representation remains
ordered (1 < 2 as 511 < 515), it is trivial that the same doesn’t hold for the least significant
bits representation.

Adaptive pre-processing not only increases accuracy and recall compared to the baseline
model, but it does so:

• Lowering the post training quantization drop by a factor of 10 (-0,2% and -0,3%
compared to ∼ -3.5%), which was the main goal of the project.

• Introducing only 2 parameters for the Dense(1) layer and 2N parameters for the
Dense(N) layer, very few compared to the size of the network (for the second method
it strongly depends on the input size, in this work it was short).

• The Dense(1) layer performs the same number of operations that traditional min-
max scaling does. A product, a sum and a clipped rounding operation. The number
increases by a factor of N for the Dense(N) solution, but it guarantees slightly
higher accuracy.

• It doesn’t require any explicit pre-processing: no outlier is removed from the data.

• As the drop is quite low, it is a way to gain upfront control of the final accuracy,
without quantizing models that lead to poor results saving time and computational
resources.

• With generalization: the technique is not field-related, and it could be applied to
any scenario.

The difference between the two approaches is small especially in terms of results, but an
attempt to understand and interpret it must follow. The Dense(1) layer’s two parameters
see pass through the entire input data. Doing so, it rescales and shifts the spectra at
each iteration with the same exact values. What it learns is the optimal representation
of the input in another domain imposed by the activation function, in this case the
natural numbers in [-128, 127], without making any distinction between frequencies. The
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Dense(N) layer on the other hand is design in such a manner that each element of an
input sample has a weight and a bias dedicated to itself. It results in a distinction between
frequencies, being the composing elements of each sample. Having two parameters for
each frequency translates in a different rescaling and shifting for each bin. It performs
slightly better in term of accuracy as it may be seen as an a-priori feature selection,
because a bigger weight in such an early stage could be symptom of more importance
for that specific frequency in the context of distinction between the two classes. Initially,
it was expected to have an higher impact, but the Dense(1) layer performs just fine.
The answer could be linked to the feature extraction nature of the CNN: being itself
dedicated to the task, a layer that performs an early and premature selection of the most
important frequencies could collide with the network learning capabilities, without getting
an outstanding increase of performance when compared to a simple transformation learned
and applied with a single pair of parameters.

Nonetheless, it is clear that the adaptive method outperforms static pre-processing in this
context.

6.1.1. Future Work

When talking about future work, the first natural evolution of this project consists in
multi-label classification, expanding the number of targets to different drone types, birds,
and other relevant objects that could be found in such a complex defence scenario. Its
purpose is to also validate the use of such a simple model, working on the accuracy-
complexity trade off.

It would be beneficial to test the adaptive pre-processing with a micro-Doppler input,
as well as other research fields where one-dimensional inputs combined with hardware
deployment are predominant, such as the medical and the financial field. Certainly, a
wider validation would come from an extensive comparison of different traditional pre-
processing techniques with the proposed one. In this work, only few worth mentioning
methods were compared to the final solution, but quite a few were tried throughout the
project. It is no doubt that domain expert could have better solutions to test against this
one.

Finally, a computational cost based comparison could focus on electing the best tech-
nique in terms of both accuracy/quantization drop and computational/spatial resources
required, mainly because in a complex machine as a radar is, every single computation is
relevant and lightweight solutions are strongly needed by design.
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6.1.2. Final Words

Adaptive pre-processing, a method aimed at inserting data transformations inside the
learning phase to extract a more adequate representation, has been proposed to ease
hardware deployment, given the constraints imposed by the DPU accepted data types.

It has shown great results in the optimization of the quantization step, as it "listens" to
the CNN by updating the scaling factors with the training loss. This way, both the input
and quantized weights fall in the lower dynamic and the network doesn’t suffer a high loss
because it has been trained on 8-bit data. It has enabled hardware inference with high
accuracy on 8-bit accepting hardware.

Future work must focus on cross-field validation of this method, as well as a theoretical
validation of both the idea and its capabilities.
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