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Abstract

Controlling and manipulating light-matter coupling is one of the most important branches
of research of quantum sciences and technologies. The greatest achievement in this field
is undoubtedly the study of the interaction between a two-level quantum emitter and a
single confined bosonic mode. In the cavity Quantum Electrodynamics (QED) context
one of the most studied models for single photon interactions (SPI) is the so called Jaynes-
Cummings (JC) model, which describes linear coupling between the qubit and the mode
in the weak and in the strong regimes. Recent results had revealed the possibility of im-
plementing two-photon coupling by engineering superconducting atom-resonator systems
or by applying analog quantum simulation schemes in trapped-ions or ultracold atoms. In
order to properly describe this phenomenon of two-photon interaction (TPI) it is needed
to go beyond the JC model. The interest in TPI is motivated by the emergence of novel
phenomena such as the appearance of distinct selection rules and a two-photon blockade
as a first-order process.
In this thesis work, for the first time, TPI is studied in the context of waveguide QED,
which is the study of the interaction between quantum emitters and a 1D-continuum of
modes. Waveguide QED experiments can be implemented for example with supercon-
ducting artificial atoms coupled to transmission-line resonators or with quantum dots
coupled to photonic-crystal waveguides. In waveguide QED, the 1-D confinement allows
one to implement phenomena which can not be observed in free-space, such as perfect
single-photon scattering. These new possibilities have motivated us to develop a general
theory for TPI in the waveguide framework.
In this thesis work we have first re-obtained the results relative to SPI in waveguide QED
context. Then, we generalized the photon scattering theory to TPI, finding formal solu-
tions for input-output relations. Finally, we applied the general results achieved to two
cases of interest: spontaneous emission and two-photon scattering. Our result paves the
way towards the exploration of a novel quantum phenomenology and to possible applica-
tions in quantum technologies.
Keywords: Two-photon scattering, nonlinear coupling, waveguide QED, quantum cir-
cuits





Abstract in lingua italiana

Il controllo e la manipolazione dell’accoppiamento luce-materia è uno dei rami più impor-
tanti della ricerca di scienze e tecnologie quantistiche. Il più grande successo in questo
campo è senza dubbio lo studio dell’interazione tra un emettitore quantistico a due livelli
e un singolo modo bosonico confinato. Nel contesto di elettrodinamica quantistica (EDQ)
in cavità, uno dei modelli più studiati per interazioni a un fotone (SPI) è il cosiddetto
modello Jaynes-Cummings (JC). Esso descrive l’accoppiamento lineare tra qubit e modo
bosonico in regime di accoppiamento debole e forte. Recenti risultati hanno rivelato la
possibilità di implementare l’accoppiamento a due fotoni mediante sistemi supercondut-
tori risonatore-atomo o applicando schemi di simulazione quantistica analogica in ioni
intrappolati o atomi ultrafreddi. Per descrivere correttamente questo fenomeno di inter-
azione a due fotoni (TPI) è necessario andare oltre il modello JC. L’interesse verso questo
tipo di interazione è motivato dalla comparsa di nuovi interessanti fenomeni come regole
di selezione distinte e blocco a due fotoni come processi al primo ordine.
In questo lavoro di tesi, per la prima volta, TPI viene analizzato in un contesto di EDQ
in guide d’onda, ovvero lo studio dell’interazione tra emettitori quantistici e un continuo
1D di modi. In questo ambito gli esperimenti possono essere implementati ad esempio
con atomi artificiali superconduttivi accoppiati a risonatori lineari o con punti quantici
accoppiati a guide d’onda a cristalli fotonici. Inoltre, il confinamento in una dimensione
dei modi propaganti consente di analizzare fenomeni che non possono essere osservati nello
spazio libero, come la riflessione perfetta di un singolo fotone. Queste nuove possibilità ci
hanno quindi motivato a sviluppare una teoria generale per interazioni a due fotoni.
In questo lavoro di tesi abbiamo innanzitutto riottenuto i risultati relativi allo SPI in guide
d’onda, generalizzando poi la teoria di scattering al caso TPI e trovando le soluzioni for-
mali per le relazioni di input-output. Infine, abbiamo applicato i risultati raggiunti a due
situazioni di interesse: emissione spontanea e scattering a due fotoni. Il nostro risultato
spiana la via verso l’esplorazione di una nuova fenomenologia quantistica e verso possibili
applicazioni nelle tecnologie quantistiche.
Parole chiave: Scattering a due fotoni, accoppiamento non lineare, EDQ in guide d’onda,
circuiti quantistici
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Introduction

Before entering into the details of the main topic of this thesis work, it is useful to have a
general overview of the most important scientific results that have preceded the born of the
modern field of Circuit Quantum Electrodynamics (QED). With the term Circuit QED
we refer to the study of the interaction between nonlinear superconducting circuits with
quantized electromagnetic fields typically operating in the microwave frequency regime.
This superconducting circuits indeed act like artificial atoms with a nonlinear distribution
of their energy levels [1].
This new research field was mostly inspired by already existing studies on cavity QED
which has in Nobel prize Serge Haroche [2] its main representative. Following the trail of
cavity QED, Circuit QED recently led to advances in many areas of interest such as the
fundamental study of light-matter interaction, the development of quantum information
processing technologies or the exploration of novel hybrid quantum systems.
The beginning of the physics of the superconducting circuits study dates back to mid
1980s. At that time, the main question that researchers were trying to give an answer
to was whether quantum phenomena, such as quantum tunneling or energy level quan-
tization, could be observed in macroscopic systems of any kind. One example of such a
macroscopic system can be found in the Josephson tunnel junction ([3]; [4]). This device is
simply constituted by a thin insulating barrier at the interface between two superconduc-
tors (fig.1). For this system macroscopic quantities such as the current flowing through
the junction or the voltage developed across it are governed by the dynamics of the gauge-
invariant phase difference of the Cooper pair condensate across the junction. Different
experiments were done on this particular system and many quantum phenomena evidences
were found. The first quantum effect observed was the quantum tunneling of the phase
degree of freedom of a Josephson junction soon followed by the measurement of quantized
energy levels of the same degree of freedom [5]. In the 1980s it was already supposed the
possibility of observing coherent quantum phenomena in superconducting circuits built
using Josephson junctions, such as coherent oscillations between two quantum states of
the system or quantum superposition effects [6].
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Figure 1: Schematic representation of a Josephson junction: the two blocks identified by the letter S are
made of superconductors; the block labeled with I is made of an insulator.

Further studies in this direction were done in the late 1990s with the aim of realizing
superconducting qubits for quantum computation. The turning point in this story is the
year 1999 when for the first time time-resolved coherent oscillations with a superconduct-
ing qubit were experimentally observed [7]. Since then many progresses were done. For
example coherent oscillations in coupled superconducting qubits were observed [8] and
significant improvements of the coherence times of these devices were achieved.
At the same time, on the other hand, progresses have been made in the study of coherent
interactions between single atoms in cavity and quantized electromagnetic fields [9] and
its possible implementations for quantum computation [10]. In the early 2000s among
the researchers began to spread the idea of implementing cavity QED experiments where
natural atoms are replaced by non-linear superconducting circuits. These artificial atoms
can be coupled with microwave radiation in open 3D cavities or in discrete LC oscillators.
The main reasons for this substitution are to be found in the properties of this kind of
circuits. Indeed by coupling superconducting qubits to photons stored in high-quality
coplanar waveguide resonators it is possible to enter quite easily the so called strong cou-
pling regime: a regime reached when the coupling strength overcomes dissipation rates
and where coherent exchange of excitations can be observed within the excitation lifetime
[11]. Moreover the fact that the circuits, that act like qubits, operate in superconducting
regimes protect themselves from decohere through classical dissipation ways, i.e. by in-
teracting with the circuit resistance. Ultimately the ease with which it is possible to read
out the state of these qubits and with which it is possible to couple them to each other in
a quantum computer make it clear why their use were so popular [12]. This rapid advance
in experimental research culminated in the first experimental realization of a circuit QED
system achieving the strong coupling regime of light-matter interaction [13].
After 15 years of development circuit QED is now the leading architecture for quan-
tum computation. Simple quantum algorithms have been implemented, demonstrations
of quantum-error correction have approached or reached the so-called break-even point
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(point at which the lifetime of a qubit exceeds the lifetime of the constituents of the
system, [14]), and devices with several tens of qubits have been operated with claims of
quantum supremacy [15]. Furthermore circuit QED is now opening new research direc-
tions such as the development of quantum-limited amplifiers and single-microwave photon
detectors, with applications ranging from quantum information processing to the search
for dark matter axions.
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1.1. Introduction

In this section we will introduce the fundamental building blocks of circuit-QED experi-
ments. We will start from the quantum LC oscillator and we will see how it is possible
to build a nonlinear quantum circuit that can be used as a qubit from it, i.e. the trans-
mon. Then we will describe briefly the architecture of the so called flux qubit and of
the SQUID device. Finally we will discuss the implementation of the specific kind of
light-matter interaction studied in this thesis. We will show how an artificial atom could
be excited only by the absorption of two photons and how it is possible to realize it by
using a combination of flux qubit and SQUID.

1.2. The quantum LC resonator

An LC oscillator is a resonant circuit constituted by an inductance L and a capacitance
C (fig.1.1). The circuit resistance R is here neglected since all the system is working in a
superconducting regime. In this way there will be no dissipations or coherence losses via
scattering mechanisms inside the circuit components materials. This kind of resonator
has a resonance frequency ωr =

√
1/LC and an impedance Z =

√
L/C. In order to study

the energy distribution of the oscillator we write the Hamiltonian function associated [16]
as:

H =
Q2

2C
+

Φ2

2L
(1.1)

where Q is the charge of the capacitance and Φ is the magnetic flux threading the induc-
tance. It is useful to recall here that the charge and the flux are related to the current
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Figure 1.1: Left: LC-oscillator circuit scheme with an inductance L in parallel with a capacitance C;
its superconductive phase is ϕ. Right: LC-oscillator harmonic potential energy; every energy level is
equidistantly spaced by the qubit energy quantum ℏωr. Figure taken from [12].

and the potential by the following relations:

Q(t) =

∫ t

t0

I(t′) dt′, Φ(t) =

∫ t

t0

V (t′) dt′ (1.2)

that comes from the charge conservation and from the Faraday’s induction laws. It is
interesting to rewrite Eq.1.1 as:

H =
Q2

2C
+

1

2
ω2
rCΦ

2 (1.3)

This new form of the Hamiltonian function makes clearer the analogy between the LC
oscillator and the usual mechanical oscillator. Indeed our system can be seen as a me-
chanical oscillator with mass equal to C and with conjugated variables Q and Φ. The
second term of the Hamiltonian function proportional to the square of the magnetic flux
represents the well known harmonic potential energy (fig.1.1).
From now on the steps that lead us to the quantization of the Hamiltonian function are
formally the same as those of the mechanical oscillator. With this concept in mind we
can promote the charge Q and the flux Φ to non-commutable quantum operators with
commutator :

[Q̂, Φ̂] = iℏ (1.4)

Moreover we can rerwite the expression of the operators Q̂ and Φ̂ by introducing the
ladder operators for this quantum LC oscillator:

Q̂ = iQzpf (â
† − â), Φ̂ = Φzpf (â

† + â) (1.5)
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with Qzpf =
√

ℏωrC/2 and Φzpf

√
ℏ/2ωrC, the characteristic magnitude of the zero point

fluctuations of the charge and the flux respectively. By using these definitions for the
conjugated variables ii is possible to rewrite the Hamiltonian function in the canonical
way [11]:

Ĥ = ℏωr(â†â+
1

2
) (1.6)

with â†â = n̂ the number operator. In proceeding we will neglect the term ℏωr/2 inside
the Hamiltonian function since it is just a constant factor that will give at the end only
a global phase. The meaning of the ladder operators here is the usual one: â† creates
an excitation inside the LC circuit (equivalently we can say that it creates a photon at
frequency ωr inside the cricuit) while â has the opposite effect.
Despite the fact that all this quantization procedure seems formally correct, what we have
to ask to ourselves now is whether in practice it is possible to work in a regime where all
these quantum treatments are meaningful. For this to be the case two conditions must be
satisfied. Firstly, the energy levels of the LC oscillator must be sufficiently separated from
each other, which means that its energy levels must be less broad than their separation.
This condition can be expressed equivalently by requiring an high oscillator quality factor
Q=ωr/k with k the oscillator linewidth. It is known that losses depends primarily on
couplings on unwanted degrees of freedom. To avoid these losses the use of superconduc-
tive materials on low-loss dielectric substrates such as sapphire or high-resistivity silicon
wafers is ideal. Secondly, we must require an energy separation between adjacent eigen-
states greater than the thermal energy, which means ℏωr ≫ kBT . This last condition is
easily satisfied by using circuits operating at microwave regime at temperatures below the
superconductive materials critical temperature (usually 1− 10 K) [16].
Once the above two conditions are satisfied we can practically operate the LC circuit
in the quantum regime and treat it like a quantum system with a certain ground state
defined by |g⟩ with no excitations (n̂e |g⟩ = 0, with n̂e the number of excitation operator)
and with energy levels separation ℏωr.

1.3. The transmon articial atom

Although LC oscillators behave as coherent quantum systems with their eigenstates and
eigenvalues, in practice they cannot be used to implement qubits not even for quantum
computing. This is made unfeasible from the fact that the LC oscillator is a linear
system, which means that the energy separation between its eigenstates is always the
same (fig.1.1). Indeed before using the LC oscillator as a qubit for processing information,
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Figure 1.2: Left: Josephson qubit circuit where the orange box represents the Josephson junction sub-
circuit in which the nonlinear inductance LJ has substituted the linear one L. Right: Josephson circuit
potential energy (in blue) where it is clear that now the energy levels are not equally spaced. Figure
taken from [12].

we must be able to define a computational subspace consisting of only two energy states
that we can explore without exciting other levels of the system. This is equivalent of
asking a high transition frequencies difference ω1→2

q − ω0→1
q .

To solve this problem, it is necessary to add a nonlinearity in the system . In practice this
is done by replacing inside the circuit the usual inductance L with a Josephson junction
(fig.1.2). Indeed this kind of device is able to introduce a nonlinearity in the potential of
the LC oscillator while satisfying the conditions of working at mK temperatures and pro-
viding a high quality factor. The first studies on these junctions was conducted by Brian
Josephson in 1962. He managed to demonstrate that a supercurrent could flow between
two superconductive layers separated by a thin insulator. It can be demonstrated that
the expression of the Josephson supercurrent is [17]:

I = Ic sin(ψ) (1.7)

where Ic is the Josephson critical current and ψ is the relative phase between the two
condensates that form on both sides of the junction. The meaning of the critical current
is the following: it is the maximum current that can flow across the insulator before
the Cooper pairs break and it depends on materials parameters and junction size. This
means that the current that flows in the junction becomes a normal current and the
superconductive state is lost. For what concerns the current that flows inside the quantum
circuits, it is well below this limit so there is no risk of exiting the superconductive regime.
As we said before, the Josephson junction add a nonlinearity to the LC oscillator potential.
This becomes possible because the new inductance added to the circuit is itself dependent
on the flux Φ.
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This can be demonstrated by using the following expression of the phase difference ψ time
dependence [17]:

dψ

dt
=

2π

Φ0

V (1.8)

with Φ0 = h
2e

the magnetic flux quantum. We note that the above equation can be
integrated and by using Eq.1.2 a direct relation between the phase difference ψ and the
magnetic flux Φ can be written as:

ψ(t) =
2π

Φ0

Φ(t) (1.9)

It is now evident that there is a direct link between the supercurrent flowing across the
junction and the magnetic flux, which in the usual linear case we would write as Φ = LI.
Said so, we can define the nonlinear Josephson inductance [16] as:

LJ(Φ) =

(
dI

dΦ

)−1

=
Φ0

2πIc cos
(
2πΦ
Φ0

) (1.10)

Since the Josephson inductance is a nonlinear element, by replacing the usual LC oscillator
inductance with it we are in practice making the circuit nonlinear. This means that the
energy levels are no more equally spaced and the circuit energy spectrum is similar of
that of a real atom, therefore we can call the circuit in fig.1.2 an artificial atom. In this
case we can focus our attention only to the first two states, the ground state |g⟩ and the
first excited state |e⟩ for which hold: n̂e |g⟩ = 0 and n̂e |e⟩ = 1. Indeed these two states
constitute our qubit levels.
Now that the inductance depends on the magnetic flux, the expression of the Hamiltonian
function in Eq.1.1 is no more valid. In the general case the energy stored in the inductance
can be represented with the following:

EL =

∫
V (t)I(t) dt (1.11)

Using Eq.1.2 and Eq.1.7 we obtain:

EL =

∫
Ic sin

(
2πΦ

Φ0

)
dΦ

dt
dt = −EJcos

(
2πΦ

Φ0

)
(1.12)
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with EJ = Φ0Ic/2π the Josephson energy. Said so, we can easily write the new expression
of the Hamiltonian function [18]:

Ĥ =
(Q̂− Q̂g)

2

2C2
Σ

− EJcos

(
2πΦ

Φ0

)
= 4EC(n̂− n̂g)

2 − EJcos(ψ̂) (1.13)

In the expression of the Hamiltonian function we define CΣ = CS + CJ the total capac-
itance, EC = e2/2C2

Σ the charging energy, n̂ = Q̂/2e the charge number operator and
ψ̂ = (2πΦ/Φ0) the phase operator. The term represented by the operator n̂g takes into
account possible bias induced by external gate potential Vg = Qg/Cg. It can be seen just
as an offset term that we can neglect in the general study of the Hamiltonian function.
From the expression of the Ĥ operator in Eq.1.13 it is possible to see that the shape of
the potential energy and the nature of the encoding of the qubit states depend on the
relative strength between EC and EJ . By tuning the circuit parameters one can achieve
different trade offs between transition energy, anharmonicity and sensitivity to different
noise sources.
Two are the main regimes in which this qubit can work: charge qubit and flux qubit.
Being in one regime or in the other depends on the ratio EJ/EC . Charge qubits are char-
acterized by EJ/EC ≪ 1. In this case the eigenstates of the Hamiltonian operator (that
we can in general label as |j⟩) are given approximately by the eigenstates of the charge
operator, i.e. |j⟩ ≈ |n⟩. Since all the characteristics of the circuit are controlled by the
charge inside it, even the smallest fluctuations of the charge, that can be represented by
the effect of the operator n̂g, have a huge impact on the system. In particular it will be
much more sensitive to charge fluctuations leading to unwanted modifications in the tran-
sition energies and to dephasing. To avoid these kind of problems, or at least to reduce
them, it is better to work in the opposite and most used regime: the so called transmon
regime, for which EJ/EC ≫ 1. In this new situation the first energy levels become almost
independent of the gate charge (fig.1.3). As a consequence in the transmon regime the
device is no more sensitive to the noise due to charge fluctuations. Of course there is
always a price to pay for improvements and in this case it is a reduction in the anhar-
monicity α defined as the energy difference of the first two energy levels α = ω1→2

q −ω0→1
q .

However it is possible to demonstrate that the sensitivity to the charge fluctuations de-
creases exponentially with the ratio EJ/EC while on the other hand the reduction in the
anharmonicity of the junction has a weaker dependence on the ratio as (EJ/EC)

− 1
2 [16].

This different behaviour justifies the huge implementation of the transmon qubit because
the little reduction of the anharmonicity α payed for the large reduction in sensitivity to
the charge fluctuations is not an impediment in controlling the system with high fidelity.
To access the transmon regime the most used approach is to make the charge energy EC
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Figure 1.3: Frequency difference ωj − ω0 of the first three energy levels of the transmon Hamiltonian
obtained from numerical diagonalization of Eq.1.13 expressed in the charge basis n̂ for different EJ/EC

ratios. For large values of EJ/EC the energy levels become insensitive to the offset charge n̂g. Figure
taken from [16].

small by shunting the junction with a large capacitor CS ≫ CJ . In this way the supercon-
ducting phase ψ is a good quantum number and the eigenstates of the low energy levels
are well localized in the potential well.
We can gain more insight by expanding the EJ term in Eq.1.13 into a power series since
ψ is small [12]:

EJcos(ψ̂) =
1

2
EJ(ψ̂)

2 − 1

24
EJ(ψ̂)

4 + o(ψ̂6) (1.14)

The first term in the above equation is the one that alone would give us the linear LC
oscillator Hamiltonian function. The second term however being quartic breaks the har-
monicity of the system and introduces a negative anharmonicity α (since the coefficient of
the quartic term is negative). Moreover by using the usual relations between the ladder
operators and the conjugated operators we can write the Hamiltonian function in Eq.1.13
in the standard form [12]:

Ĥ = ℏωqâ†â+
ℏα
2
â†â†ââ (1.15)

with qubit frequency ωq = (
√
8EJEC − EC)/ℏ and anharmonicity α = −EC . Typical

values for the α parameter are 100-300 MHz, designed to obtain ωq = 3 − 6 GHz and
EJ/EC > 50 [12].
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1.4. Tunable qubit and SQUID

In the most recent and advanced quantum processors architectures frequency tunable
qubits are needed. Indeed, in order to perform logical gate operations with high fidelity
this requirement is necessary. For example, in some cases, to exchange energy two circuits
must be in resonance while, on the other hand, in the idling period they must not interact
with each other so to preserve their own coherence. In order to perform these kind of
operations an external parameter capable of accessing the system degree of freedom is
needed. The most diffused technique is to replace the single Josephson junction with
a loop constituted by two different junctions (fig.1.4a). This new device is called DC-
SQUID (DC-Superconducting quantum interference device). Thanks to the interference
between the two arms of the loop, the total critical current Ic that flows in the system can
be controlled with the application of an external magnetic flux threading the circuit ϕext.
To see why this happens, it is usefull to rewrite the inductance part of the Hamiltonian
function in Eq.1.13 as [17]:

ĤL = −EJcos(ψ̂1)− EJcos(ψ̂2) (1.16)

where the two junctions have the same Josephson energy but different phase operator.
Due to the physics of the superconductors, the phase of the total wavefunction that
describes the system is single valued. This implies that the total phase difference around
the superconducting loop must be an integer of 2π. In addition to that, the external
magnetic flux will affect the total phase of the wavefunction and the fluxoid quantization
condition requires then that the algebraic sum of all the magnetic fluxes threading the
loop must be a multiple of the magnetic flux quanta. This condition can be summarized
in the following expression [17]:

ψ̂1 − ψ̂2 = 2πk + 2ψ̂e (1.17)

with ψ̂e = πϕ̂ext/Φ0. Using Eq.1.17 it is possible to eliminate one degree of freedom of the
system expressing the branch flux of one arm of the loop as a function of the branch flux
of the other one. In this way the SQUID can be treated as a single junction with energy
EJ tunable by the external flux. This last statement could be demonstrated quite easily
[17] by using simple trigonometric identities and rewriting Eq.1.16 as:

ĤL = −2EJcos
( ψ̂1 − ψ̂2

2

)
cos
( ψ̂1 + ψ̂2

2

)
(1.18)
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Inserting Eq.1.17 in Eq.1.18 and with the definition of the new phase operator
ψ̂ = (ψ̂1 + ψ̂2)/2, gives the new Hamiltonian operator of the system:

Ĥ = 4EC(n̂− n̂g)
2 − 2EJ

∣∣∣cos(ψ̂e)∣∣∣cos(ψ̂) (1.19)

which is formally identical to Eq.1.13 but with the difference that now the Josephson
energy is controllable. In particular it is periodically tunable in a range of values that
goes from 0 to the maximum 2EJ , with period Φ0. The introduction of another Josephson
junction in the circuit on one hand enables frequency tunability via an external magnetic
flux, on the other one increases the system sensitivity to flux fluctuations (flux noise).
Indeed due to the presence of a noisy environment, the qubit has now a new way through
which could lose coherence. As a result, the loop size of the SQUID is often extremely
small (typically of the order of 10 µm on each side of the loop) and the qubits are kept
inside a shielded enclosure to minimize the sensitivity to environmental flux noise [12].
At first order of approximation the flux noise is represented by the first derivative of the
qubit transition frequency with respect to the external applied flux ∂ωq/∂ϕext. In general
as it can be seen from fig.1.4b the slope of the qubit spectrum is different from zero
for every possible value of the external flux except when it is equal to multiples of the
magnetic flux quantum. For these particular values of ϕext not only the noise sensitivity
is minimum but also the anharmonicity is the largest possible for this particular device.
In order to mitigate this unwanted effect of not negligible noise sensitivity for a very large
range of values of the external flux, asymmetric Josephson junctions in the loop, each one
with its own different energy EJ , could be implemented (fig.1.4c). Indeed, it is possible
to demonstrate that the new Josephson energy of the asymmetric system is [12]:

EJ(ϕ̂e) = (EJ1 + EJ2)

√
cos2(ϕ̂e) + d2sin2(ϕ̂e) (1.20)

with d = (γ − 1)/(γ + 1) and γ = EJ2/EJ1 the junction asymmetry parameter. In the
cases where there is no asymmetry (d=0) or where the asymmetry is too high (d=1) the
SQUID loop loses its properties and the Hamiltonian of the system becomes again the one
in Eq.1.13. However as it can be seen from the qubit spectrum (fig.1.4d), for particular
values of the parameter γ, the flux sensitivity could be reduced enormously with respect
to the symmetric case and the shape of the energy levels becomes smoother.
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1.5. Flux qubit and fluxonium

In the previous paragraph the most important characteristics of the split transmon qubit
were shown. Despite the fact that this new device adds in the circuit a way with which
one can tune the circuit characteristic energy, it shares with the single junction circuit
the same topology and the same potential energy shape. Indeed, since the split transmon
(both the symmetric and the asymmetric one) behaves like the single junction version, it
is quite obvious that it will also share with it its sinusoidal potential energy and its weak
anharmonicity. A residual excitation of the upper energy states cannot be eliminated
unless a deeper change in the circuit topology is made. This drastic change is realized by
adding in the second arm of the loop another Josephson junction. In this way the circuit
is constituted by three Josephson junctions: one with energy EJ1 and two with energy
EJ2 (fig.1.4e). The two Josephson junctions with energy EJ2 are bigger than the other
one so that the asymmetry parameter γ is indeed greater than 1. The presence of another
junction might seem as a small change in the circuit. This however it is not true. The
new junction not only increases the complexity of the circuit topology but also modifies
intrinsically the shape of its potential energy. Moreover, to each junction is associated a
phase variable and, again, by exploiting the fluxoid quantization condition:

ψ̂1 − ψ̂2 − ψ̂3 + ψ̂e = 2πk (1.21)

it is possible to eliminate one degree of freedom from the system. Indeed, one could express
the phase of one junction function of the other two. In this way the problem becomes
tridimensional and this increases a lot the computational complexity with respect to the
simple transmon device. Of course, this new device, called flux qubit will also have a
tridimensional potential energy. Under the assumption that γ > 1 fortunately the system
could be treated as the system of a single particle moving in a quasi one-dimensional
potential. This simplifies enormously the computational part of the problem and allows
one to write the Hamiltonian function of the circuit as [12]:

Ĥ ≈ 4EC(n̂− n̂g)
2 − EJ1(2ψ̂ + ψ̂e)− 2γEJ1cos(ψ̂) (1.22)

where ψ̂ = ψ̂2+ψ̂3

2
is the average phase of the two array junctions, calculated under the

hypothesis that they are crossed by the same current in the same direction. The second
term of Eq.1.22 is weighted by EJ1 and it is due to the smaller junction. On the other
end the third term of Eq. 1.22 is weighted by 2γEJ1, which is indeed equal to 2EJ2, and
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Figure 1.4: Schematic circuit representations of the symmetric and asymmetric SQUID, flux qubit and
fluxonium with their corresponding transition frequencies of the first two energetic levels, function of the
external magnetic flux Φext.a) and b): symmetric transmon qubit with Josephson energy EJ .c) and d):
asymmetric transmon qubit with asymmetry parameter γ = 2.5. e) and f): capacitively shunted flux
qubit, where a smaller junction is shunted with two larger ones. g) and h): C-shunted fluxonium qubit,
where a small junction is shunted with an array of N larger junctions. Figure taken from [12].

it is due to the two larger array junctions. It should be clear that now the eigenstates
and the eigenvalues of the system depend both on the external flux and the γ parameter.
Moreover now the sum of the second and the third term of the Hamiltonian operator
does not give a simple cosinusoidal function and this reflects directly on the shape of the
potential energy (fig1.4f).
To increase even further the anharmonicity of the flux qubit while preserving it from
decohere through charge and flux environmental interactions, a new type of qubit has
been developed. The fluxonium is indeed an extension of the flux qubit that can preserve
its advantages while increasing the anharmonicity of the energy levels. The scheme of
the fluxonium is quite similiar to that of the flux qubit: in one branch of the loop there
is a small Josephson junction with energy EJ1 ; on the other branch there are N different
junctions with the same Josephson energy EJ2 and bigger than the first one (fig.1.4g). In
most of the cases, the number N of the junctions in the second branch of the loop could
be of the order of 102 [12]. The Hamiltonian function of the fluxonium is similar to that
of the flux qubit but with the array induction part given by the term −NγEJ1cos

(
ψ̂/N

)
,

where the phase operator is defined as the average of the all phase contributions of all
the junctions. Since the number of array junctions N can reach high values, it is possible
to expand in series the cosine function to the second order. In the usual assumption
of having an asymmetric parameter greater than the unity, the problem can be treated
similarly to that of a particle moving in a quasi one-dimensional potential.
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The fluxonium Hamiltonian function is then [12]:

Ĥ ≈ 4EC(n̂− n̂g)
2 − EJ1(ψ̂ + ψ̂e) +

1

2
ELψ̂

2 (1.23)

with EL = (γEJ1)/N the inductive energy given by the sum of all the contributions of
the array junctions. It is clear that the potential of this new system could be treated as a
quadratic potential modulated periodically by a cosine function weighted by the Joseph-
son energy of the smaller junction. As it can be seen from fig.1.4h the anharmonicity of
the fluxonium in the minima of the frequency levels is quite stronger with respect to each
previous device analyzed. Indeed, in the ideal working point of the device a high coherent
time (from hundreds of microseconds to few milliseconds) together with a higher anhar-
monicity is expected. Despite all the advantages that derive from the implementation of
the fluxonium instead of the flux qubits, there are also some disadvantages. Indeed, it
is quite difficult to combine high coherence times with fast operations such as gate oper-
ations, redout operations or others with high fidelity. This is primarly due to the large
shunt inductor, composed by the hundreds of larger Josephson junctions, which is sensi-
tive to additional dechoerence sources. A useful parameter that can be used to measure
the dielectric losses is the loss tangent, defined as the ratio between the qubit decay rate
and its fequency. The loss tangent of the best fluxonium qubit is approximately 10−6, one
order of magnitude greater than that of the state of the art transmon qubit. Therefore,
fluxonium qubits need to be operated at a much lower frequency than a typical transmon
qubit to reach a comparable coherence time [19].

1.6. Linear light-matter coupling

In the recent field of cavity and circuit quantum electrodynimcs, as already anticipated
in the introduction part of this thesis work, the interaction between atomic systems and
confined optical modes is studied. The most important model used in this studies is
the so called Jaynes-Cummings (JC) model ([20];[21]). This one simply consists of a
single qubit interacting with a single confined bosonic mode, for example in a cavity or
in a waveguide (fig.1.5). Being it analytically solvable, the JC model has gained a large
success in QED research field and it has been applied for systems made of different kind of
technologies. It is based on two fundamental approximations: the dipolar approximation
and the rotating wave approximation (RWA). The former implies that the interaction
between the electromagnetic field and the qubit is dominated only by the electric field of
the wave; moreover it is seen as uniform in space by the qubit (its wavelength is much
larger than the qubit size). The RWA implies that all the terms rotating at high frequency
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Figure 1.5: Left: scheme of a two-level emitter inside a resonant cavity . Right: energy levels scheme for
linear light-matter coupling.

are neglected, since in normal conditions their time evolution is so rapid with respect to
the other terms preserved, that they tend to average to zero [22]. This kind of model
however could be used only in the weak and strong coupling regime, i.e. in a regime
where the coupling strength is much smaller than the cavity losses (weak) or the cavity
frequency (strong) [11]. The Hamiltonian operator related to this particular model in the
context of cavity QED could be written as:

ĤJC =
ω0

2
σ̂z + ωâ†â+ gσ̂x(â

† + â) (1.24)

where ω0 and ω are the frequencies of the atom and the field respectively, while g is
the coupling strength of the interaction. As it can be seen from Eq.1.24, the interaction
between the qubit and the field in the cavity is linear, in the sense that it is directly
proportional to the electric field operator. In the RWA the terms σ̂+â† and σ̂−â are
neglected since they are rapidly oscillating. Thanks to this approximation the problem
becomes integrable and this is one of the main reasons of its large implementation and
success. Ultimately, from fig.1.5 it is possible to see that in the RWA the number of
excitations is preserved, i.e. in the single photon interaction case to each atomic transition
corresponds the emission or absorption of just one photon.
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1.7. Nonlinear light-matter coupling

Recent progresses in the QED field had make it possible to even reach the so called ultra
strong coupling regime, where the coupling strength is comparable or even higher than
the cavity frequency. In the ultra strong coupling regime the dynamics of the system
cannot be described anymore by the JC model since the high frequency terms, previously
neglected, now becomes relevant and the rotating wave approximation ceases to be appli-
cable. The model that better describes the interaction between the qubit and the bosonic
modes in this regime is the so called Quantum Rabi model [23]. In the last years the
theoretical interest for this particular regime has been growing mostly due to all the pos-
sible innovative and peculiar phenomena that happens when it is reached. One of these
is the two-photon interaction process: a single atomic excitation process involving the
simultaneous absorption of two photons (fig.1.6). In the ultra strong coupling regime the
two-photon interaction acquires new counterintuitive properties. For example the theory
predicts the collapse of the discrete energy spectrum into a continuous band for this kind
of two-photon systems ([24];[25]).
For all these considerations, it is clear why huge efforts were done in the few past years
to implement a physical system for which this ultra strong coupling regime is reachable
and observable experimentally. To reach this kind of regime it is needed to go beyond the
dipolar approximation of the JC model. So far two-photon lasing and Rabi oscillations
have been observed in processes of second or higher order in resonantly driven systems.
In order to obtain a two-photon interaction in an undriven system, it is necessary to have
a strong nonlinear interaction between the qubit and the field. The ideal candidate of re-
producing this ultrastrong nonlinear interaction is indeed a superconducting circuit. One
possible circuit scheme that could be used to obtain a nondipolar interaction is proposed
in fig.1.6. This superconducting circuit is constituted by a dc-SQUID with junction energy
EJ , who acts like an optical resonator, coupled with a flux qubit with junction energy
E

′
J via a small inductive element L. The phase operators of each junction are showed in

fig.1.6. Two different external magnetic fluxes are used to bias the SQUID (fs = ϕexts /Φ0)
and the flux qubit (fq = ϕextq /Φ0). To understand why this circuit is suitable to imple-
ment the two-photon quantum Rabi model it is useful to analyze briefly the Hamiltonian
function that describes it. It can be written as the sum of three contributions:

Ĥtp = Ĥ0 + ĤFQ + ĤI (1.25)

where the first term is due to the presence of the SQUID, the second is due to the flux qubit
and the last is the interaction one. Without entering into the details of the derivation of
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Figure 1.6: Left: scheme of the superconducting circuit used to implement the two-photon Quantum
Rabi Model. It is constituted by a dc-SQUID (red) and a flux qubit (blue) coupled by a small inductance
(green). Figure taken from [24]. Right: energy levels scheme for nonlinear light-matter coupling.

this Hamiltonian operator, the most important thing to point out is the interaction term
ĤI . Its explicit expressions is the following [24]:

ĤI =
S

4EL
Σ̂mϕ̂

2
+ (1.26)

where S = EJsin(fs/2), EL the coupling energy and Σ̂m = αE ′
Jsin(2ϕ̂m+fq). The phase

operators that appear in Eq.1.26 are defined as ϕ̂+ = (ϕ̂a + ϕ̂b)/2 and ϕ̂m = (ϕ̂1 − ϕ̂3)/2

obtained using the flux quantization rule for the SQUID and the flux qubit respectively.
The interaction Hamiltonian operator has a direct relation of proportionality with the
square of the phase operator of the SQUID. It is indeed this term that is responsible
for the two-photon interaction. This can be understood better if we write the explicit
expressions of the conjugated variables that were used to obtain the circuit Hamiltonian
operator Ĥtp [24]:

ϕ̂+ =

√
ℏωcLeff
2Φ2

0

(â† + â) ; p̂+ = i

√
2Φ2

0

ℏωcLeff
(â† − â) (1.27)

with ωc the frequency of the bosonic mode supported by the circuit and Leff the circuit
effective inductance. The square of the SQUID phase operator depends on the square
of the field ladders operators â† and â. Since the effect of these kind of operators is the
destruction or the creation of one optical excitation inside the system, the meaning of the
square of one of them is therefore the creation or the destruction of a pair of excitations.
Furthermore, by comparing the interaction Hamiltonian of the superconducting circuit in
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Eq.1.26 with the Hamiltonian function of the quantum Rabi model [26]:

ĤQRM = Ĥ0
QRM + g2σ̂x(â

† + â)2 (1.28)

where σ̂x is one of the Pauli operators, it is possible to give an explicit expression of the
coupling strenght of the two-photon interaction for the circuit under examination [24]:

g2 =
S

4EL

√
EC

K + S2

2EL

⟨0| Σ̂m |1⟩ (1.29)

with EC the energy of the Capacitors of the SQUID loop and K = 2EJcos(
fs
2
). The two-

photon coupling strength depends on the circuits parameters and directly on the matrix
element of the operator Σ̂m, i.e. it can be tuned via the two magnetic fluxes threading
the loops fs and fq. The fact that the coupling strength is controllable is crucial. Indeed
in the expression of the Hamiltonian function of the circuit in Eq.1.25 are present both
dipolar and nondipolar terms. With the correct choice of the circuit parameters and of the
external magnetic fluxes it is possible to suppress the dipolar term and enhance up to the
ultra strong coupling regime the two-photon coupling coefficient. This makes this kind
of superconducting circuit the ideal device with which investigate two-photon interaction
phenomena.
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QED

In the previous chapter different types of superconducting circuits were illustrated. These
kind of devices are used nowadays as qubits for quantum algorithms or for QED experi-
ments due to their tunability and reliability. In this new chapter the main topic of this
thesis work, i.e. the study of photon-qubit interaction, will be presented. Starting from
the simple case of the interaction between a single photon with a qubit and passing then
to the more complex case of two-photon interaction in chapter 3, the general state of the
considered system and its dynamics will be illustrated and analyzed. Particular attention
will be put on the study of the phenomena of reflection and transmission of the input field
after the scattering with the qubit. The study of this kind of effects is motivated by the
perspective of making the qubit to act as a quantum switch for the coherent transport of
a photon inside a waveguide [27]. Moreover the implementation of nonlinear qubits (for
example the circuit in fig.1.6) makes it possible to have interesting effects that could be
used to engineer quantum gates.

2.1. System dynamics

The system that it will be considered from now on is constituted by a two level quantum
emitter situated in the center of a waveguide coupled linearly to electromagnetic modes.
The qubit could be implemented using superconductive circuits such as the transmon
or the flux qubit. Its two energy levels, the ground state and the excited state, will be
labeled as |g⟩ and |e⟩ respectively. The electromagnetic modes that are supported by
the waveguide will be labeled as |0ω⟩ and |1ω⟩ depending on the number of photons for
each particular mode. Since one of the aims of this work is the study of single photon
interactions, here the maximum number of photons in each mode will be 1. Another
degree of freedom is represented by the direction of propagation µ of the photons inside
the waveguide. The convention used here is to take µ = + if the photons are moving from
left to right and µ = − otherwise. A simple scheme of the considered system is proposed
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Figure 2.1: System scheme: a two level artificial atom inside a waveguide interacting with an incoming
electromagnetic field.

in fig.2.1. In order to obtain the dynamics of the system it is necessary to write the
explicit expression of the Hamiltonian function that better describes it. Since the qubit
could be treated as a perfect two level system (in chapter 1 for example it was shown that
the flux qubit has a large anharmonicity parameter) it is quite natural to use in this case
the JC model adapted to the waveguide context. Then the Hamiltonian operator of the
system can be written as:

Ĥ = ω0σ̂
+σ̂− +

∑
µ=±

∫
ω(âµω)

†âµωdω +
∑
µ=±

∫
gµω(â

µ
ω)

†σ̂− + (gµω)
∗âµωσ̂

+dω (2.1)

In Eq.2.1 ω0 is the qubit characteristic frequency, which means that Ee−Eg = ω0, with E
the energy of the level; the operators σ̂+ and σ̂− are the ladder operators for the artificial
atom, which means that their effect on the state of the qubit is to create an excitation or
to destroy it (σ̂+ |g⟩ = |e⟩ and σ̂− |e⟩ = |g⟩). On the other hand the operators (âµω)

† and
âµω are the electromagnetic field ladder operators and their effect on the field state is to
create or to destroy a photon with a particular frequency ω and in a particular direction
µ ((âµω)† |0⟩ = |1µω⟩ and âµω |1µω⟩ = |0⟩). The parameter gµω is the coupling strength of
the interaction between the qubit and the incoming photon. It depends in general both
on the particular photon frequency and the particular direction of propagation. The
Hamiltonian operator in Eq.2.1 is constituted basically by three terms. The first two
terms can be grouped in the operator:

Ĥ0 = ω0σ̂
+σ̂− +

∑
µ=±

∫
ω(âµω)

†âµωdω (2.2)

which indeed represents the total energy of the system when the interaction is turned
off. The first term of Eq.2.2 is the qubit energy where the origin of the energy reference
system has been put in correspondence of the ground state energy. The second term of the
non interacting Hamiltonian operator represents the total energy of the electromagnetic
field expressed as the sum in all the possible directions of the energy of all the possible
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supported modes. The last term in Eq.2.1 is, on the other side, the interaction operator:

ĤI =
∑
µ=±

∫
gµω(â

µ
ω)

†σ̂− + gµω
∗âµωσ̂

+dω (2.3)

It comprehends all the energies of all the possible events that could happen, weighted by
the coupling strength coefficient: the emission of a photon from an excited qubit (âµω)†σ̂−

and the absorption of an incoming photon âµωσ̂+. It is important to notice that in writing
Eq.2.1 two important approximations were made: the dipolar approximation and the
rotating wave approximation (RWA). This last one is valid only if the interaction is weak
or strong, which means that the coupling strength must be much smaller than the qubit
characteristic frequency [26]. In this case all the terms that would correspond to the
phenomena of destruction of a photon and qubit in the ground state âµωσ̂−, absorption of
a photon and field in the excited state (âµω)†σ̂+, are neglected. Since these phenomena that
apparently seem violate the conservation of the total energy of the system are neglected,
it is possible to write the total number of excitations operator as:

n̂1 =
∑
µ=±

∫
(âµω)

†âµωdω + σ̂+σ̂− (2.4)

It can be demonstrated that the two operators Ĥ and n̂1 do commute, which means that,
apart from the fact that they share the same eigenvectors, the expectation value of the
total number of excitations operator does not change in time. This means that either the
atom is excited and the field is not, either the field is excited and the atom is in the ground
state. This is equivalent of saying that we cannot exit the Hilbert subspace defined by
the operator n̂1. If we would like to write a full expression of the Hamiltonian operator
in the linear algebra formalism for every possible number of excitations, this would lead
to a block diagonal matrix and each block with linear dimension given by the expected
value of the relative operator n̂i. Due to the fact that the interaction is weak, every block
will not interact with the others: once the system is in a particular Hilbert subspace it
cannot exit it.
After all these considerations, in order to study the system dynamics, it is possible to use
as a general expression for the system state the following:

|Φ(t)⟩ =
[
Ce(t)σ̂

+ +
∑
µ=±

∫
Cµ
ω(t)(â

µ
ω)

†dω

]
|0⟩ (2.5)
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where |0⟩ = |g⟩ |0⟩ is the ground state of the two dimensional Hilbert subspace obtained
as the tensor product between the possible states of the qubit and the incoming field. This
kind of expression arises from the Wigner-Weisskopf model. It is a mathematical ansatz
(trial state) built from a coherent superposition of an excited qubit and a propagating
bosonic mode. Indeed, the two coefficients Ce(t) and Cµ

ω represents the amplitude prob-
ability of the qubit and of the electromagnetic mode respectively. Their modulus square,
then, represents the probability of finding the qubit or the field in the excited state for
each possible instant of time. Their sum must then be equal to the unity in order to have
a normalized problem:

|Ce(t)|2 +
∑
µ=±

∫
|Cµ

ω(t)|
2 dω = 1 (2.6)

It is licit to express the general state of the system considered using Eq.2.5 thanks to
the fact that the total number of excitations is constant in time, being valid the RWA
hypothesis. It is clear then, that to study the dynamics of the system in fig.2.1 it is
enough to find an explicit expression for the two amplitude probability coefficients and
then inserting them in Eq.2.5. Indeed, once the system state is defined one could compute
all the desired expectation values and analyzes.

2.2. Formal solutions for the amplitude probability

coefficients

The most direct way for finding the amplitude probability coefficients Ce(t) and Cµ
ω(t) is

via the time dependent Scrhödinger equation (TDSE):

i
∂ |Φ(t)⟩
∂t

= Ĥ |Φ(t)⟩ (2.7)

This is indeed a linear differential equation that links the time evolution of the state of the
system with its Hamiltonian operator effect. Since we already have an explicit expression
both for the Hamiltonian function and for the state |Φ(t)⟩, it is possible to solve Eq.2.7
for the unknowns Ce(t) and Cµ

ω(t).
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Let us now focus our attention on the second term of Eq.2.7, dependent on the Hamilto-
nian operator:

Ĥ |Φ(t)⟩ = Ĥ
[
Ce(t)σ̂

+ +
∑
µ=±

∫
Cµ
ω(t)(â

µ
ω)

†dω
]
|0⟩ =

= Ce(t)Ĥ |e⟩ |0⟩+
∑
µ=±

∫
Cµ
ω(t)Ĥ(âµω)

†dω |0⟩ (2.8)

The last equation is constituted by two terms: the first is given by the action of the
Hamiltonian operator onto the state |0⟩ |e⟩ (corresponding to the atom in the excited state
and the field in the vacuum state); the second is given by the action of the Hamiltonian
operator onto the state |1ω⟩ |0⟩ (field in the 1-photon state and atom in the ground state).
Each term is then weighted by the corresponding amplitude coefficient. The explicit
expression of the first term of Eq.2.8, is simply given by:

Ĥ |e⟩ |0⟩ = ω0 |e⟩ |0⟩+
∑
µ=±

∫
dωgµω(â

µ
ω)

† |0⟩ (2.9)

This is due to fact that applying the number operator (âµω)
†âµω to the field ground state

|0⟩ gives zero as result since there are no photons in that particular mode. Similarly, since
the qubit can be thought of as a perfect two level system, applying the rising operator
σ̂+ to the excited state |e⟩ again gives us zero as a result. All these considerations could
also be thought of as direct consequences of the impossibility of the system to leave its
Hilbert subspace.
On the other hand, the second term in Eq.2.8 needs much more attention. It is useful to
first analyze what is the effect of the operator Ĥ(âµω)† onto the system ground state |0⟩.
In particular, remembering that, in principle the frequencies and the directions inside the
expression of the Hamiltonian operator Ĥ could be different with respect to the ones of
the field ladder operators, it is possible to write:

Ĥ(âµω)
† |0⟩ = ω0σ̂

+σ̂−(âµω)
† |0⟩+

∑
λ=±

∫
dνν(âλν)

†âλν(â
µ
ω)

† |0⟩+

+
∑
λ=±

∫
dνgλν (â

λ
ν)

†σ̂−(âµω)
† |0⟩+

∑
λ=±

∫
dν(gλν )

∗âλν σ̂
+(âµω)

† |0⟩
(2.10)
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The first and the third term in Eq.2.10 are equal to zero since the operator σ̂− is acting
onto the system state with the atom in the ground state |0⟩ |g⟩. The other terms are non
null only if ν = ω and λ = µ. This arises from the properties of the field ladder operators:
the creation and the annihilation operators do commute if they are acting onto different
field states (different frequencies or different directions of propagation), otherwise their
commutator is equal to the unity. This can be summarized in the following:

âλν(â
µ
ω)

† |0⟩ = δνωδλµ , [âλω, (â
µ
ω)

†] = δνωδλµ (2.11)

with δνω and δλµ the Kronecker deltas in frequency and direction respectively. Finally
after combining together Eq.2.9 and the non null terms in Eq.2.10, it is possible to give
the complete expression of Eq.2.8:

Ĥ |Φ⟩ = Ce(t)ω0 |e⟩ |0⟩+ Ce(t)
∑
µ=±

∫
dωgµω(â

µ
ω)

† |0⟩+

+
∑
µ=±

∫
dωCµ

ω(t)ω(â
µ
ω)

† |0⟩+
∑
µ=±

∫
dωCµ

ω(t)(g
µ
ω)

∗ |e⟩ |0⟩
(2.12)

Now that the second term of Eq.2.7 has been simplified and expressed explicitly, we can
calculate the time derivative of the quantum state directly. This is possible since the
only terms that are time dependent are the amplitude probability coefficients. The direct
calculations of the time derivative lead to:

i
∂ |Φ⟩
∂t

= i
∂Ce(t)

∂t
|e⟩ |0⟩+ i

∑
µ=±

∫
∂Cµ

ω(t)

∂t
(âµω)

†dω |0⟩ (2.13)

Now that all the terms in the TDSE have been calculated explicitly, it is enough to solve
it to find the time dependent coefficients. What it is necessary to do now is to obtain two
different linear differential equations from Eq.2.7. This could be done by exploiting the
orthonormality properties of the system state eigenvectors. Indeed, this means that the
scalar product between these states is equal to the unity if they are equal, null if they
are different: ⟨i|j⟩ = δij, with i,j=e,0 and g,1. If Eq.2.7 is multiplied first by the bra
⟨e| ⟨0| and then by the bra ⟨g| ⟨0|, a set of two coupled differential equations for the time
dependent coefficients Ce(t) and Cω(t) can be obtained.
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In particular, after all the simplifications that here are neglected for brevity, the resulting
system can be written as:

iĊe(t) = ω0Ce(t) +
∑
µ=±

∫
dω(gµω)

∗Cµ
ω(t)

iĊµ
ω(t) = ωCµ

ω(t) + gµωCe(t) (2.14)

The most direct way of solving this kind of system is to first solve the differential equation
for the field amplitude coefficient Cµ

ω(t) and, then, substitute the result in the other
equation for the qubit amplitude coefficient Ce(t). Indeed the second equation of the
system 2.14 can be solved immediately using the usual explicit formula for the complete
linear differential equations. The final result is the following:

Cµ
ω(t) = Cµ

ω(t0)e
−iω(t−t0) − igµωe

−iω(t−t0)
∫ t

t0

Ce(τ)e
iω(τ−t0) dτ (2.15)

where the time integration has been done from the initial instant of time t0 and the
generic final instant of time t, with t > t0. The field coefficient Cµ

ω(t0) can be seen as the
amplitude probability of having an excited mode in the waveguide at frequency ω in an
instant of time t0 far before the event of interaction with the qubit.
Inserting the result in Eq.2.15 inside the first equation of the system 2.14 allows one to
find a differential equation in the only unknown Ce(t):

iĊe(t) = ω0Ce(t) +
∑
µ=±

∫
dω(gµω)

∗Cµ
ω(t0)e

−iω(t−t0)+

− i
∑
µ=±

∫ [
(gµω)

∗gµωe
−iω(t−t0)

∫ t

t0

Ce(τ)e
iω(τ−t0) dτ

]
dω

(2.16)

This last equation for the qubit amplitude probability coefficient depends on three terms.
While the first of them is just the coefficient Ce(t) weighted by the qubit characteristic
frequency, the other two require much more attention since they both depend on an
integral over all the possible modes. The first integral in Eq.2.16 can be easily calculated
if the initial condition of the input field is defined and an explicit expression of the coupling
coefficient is given. It is possible to state that this term depends only on the input field
characteristics and on the circuit model (indeed gµω is defined by the circuit components).
The second integral in Eq.2.16 (called from now on I), on the other hand, can be simplified
further.
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To proceed in this simplification, we operate the following change of variable:

T = t− τ dT = −dτ (2.17)

With this change, integral I can be rewritten as:

I = −i
∑
µ=±

∫ +∞

0

|gµω|
2

[ ∫ t−t0

0

Ce(t− T )e−iωT dT

]
dω (2.18)

In addition to that, an hypothesis on the the possible final profile of the quantum emitter
amplitude probability is made. Indeed we write Ce(t) as the product of a term which
varies slowly in time and a rapidly oscillating phase at frequency ω0:

Ce(t) = Csv
e (t)e−iω0t (2.19)

The slowly varying function can be then brought out from the integral over time. In this
way I becomes simply:

I = −i
∑
µ=±

∫ +∞

0

|gµω|
2Csv

e (t− T )e−iω0t

[ ∫ t−t0

0

e−i(ω−ω0)T dT

]
dω (2.20)

If we first calculate the integral over all the possible frequencies,it is easy to recognize
in the last equation the Fourier Transform of the Heaviside function, whose result is
already known in the literature. It is indeed equal to a Dirac delta centered on the qubit
characteristic frequency weighted by π (this weight comes out when ω is used instead
of the actual real frequency ν = ω/2π) and a imaginary term that would give rise to
the Lamb shift phenomenon. In this thesis work, this shift of the resonance frequency is
neglected.
The final expression of integral I, after having applied all these simplifications and after
having used the Dirac delta function properties, is:

I = −iCe(t)
∑
µ=±

π|gµ|2 = −iCe(t)
γ

2
(2.21)

where γ is the qubit spontaneous emission rate. The value of the parameter γ gives
the probability of having an atomic emission at a certain frequency ω after an absorption
event. Moreover, the higher the value of γ sooner the atom will emit a photon and shorter
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will be the period of time during which the atom can be found in the excited state |e⟩. In
general the spontaneous emission rate, as already said, depends on the particular emission
frequency ω. However, for our particular system, it is taken constant in frequency. This is
equivalent of saying that the coupling parameter is constant for a wide range of frequencies
centered on the qubit characteristic frequency ω0. This hypothesis is quite reasonable since
the frequency dependence of g is determined by the superconducting circuit scheme and
its components that could both be engineered properly. The explicit definition of the
spontaneous emission rate is the following:

γ =
∑
µ=±

γµ (2.22)

with γµ = 2π|gµ|2. Finally we can write the more simplified expression of the partial
differential equation for the qubit amplitude probability coefficient as:

iĊe(t) = ω0Ce(t)− i
γ

2
Ce(t) +

∑
µ=±

(gµ)∗
∫
dωCµ

ω(t0)e
−iω(t−t0) (2.23)

In Eq.2.23 the final term is nothing but the Fourier Transform of the field amplitude
probability evaluated in the instant of time t0. We define this quantity as the input field
in the time domain Ψµ

in(t):

Ψµ
in(t) =

1√
2π

∫ +∞

0

dωCµ
ω(t0)e

−iω(t−t0) (2.24)

Using this new definition in Eq.2.23 allows us to rewrite the qubit coefficient differential
equation as:

iĊe(t) = (ω0 − i
γ

2
)Ce(t) +

∑
µ=±

√
γµΨµ

in(t) (2.25)

If the input conditions are given, the solution of Eq.2.25 is straightforward. In order to
find easily a solution for the field in output after the interaction between the qubit and the
input field, it is useful to derive a direct relation that links what enters in the waveguide
and what exit from it.
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2.3. Input-output relation

The input-output relation is an equation that links in a linear way the field distribution in
input Ψµ

in(t), defined in Eq.2.24, and the field distribution in output, when the interaction
has already happened, Ψµ

out(t). This last term could be defined as follows:

Ψµ
out(t) =

1√
2π

∫
dωCµ

ω(t1)e
−iω(t−t1) (2.26)

with t1 an instant of time much grater than t and t0, i.e. t1 > t > t0. As it can be seen
from its definition, the output field distribution is nothing but the Fourier Transform of
the field amplitude probability coefficient evaluated at the instant of time t1.
In order to obtain the input-output relation seeked, we start from the second equation in
the system 2.14. In the previous section, it has been integrated forward in time, i.e. from
a past instant of time t0 to the instant of time t, to find the general solution of the field
coefficient. Now what we do is to take that equation and integrate it backward in time,
i.e. from the instant of time t to a future instant t1. The result of this integration is the
following:

Cµ
ω(t) = Cµ

ω(t1)e
−iω(t−t1) + igµe−iω(t−t1)

∫ t1

t

Ce(τ)e
iω(τ−t1) dτ (2.27)

With the variable substitution T = τ − t the last equation can be simplified further as:

Cµ
ω(t) = Cµ

ω(t1)e
−iω(t−t1) + igµ

∫ t1−t

0

Ce(T + t)eiωT dT (2.28)

Now if we take Eq.2.15 and do the following variable substitution T = t− τ , we obtain:

Cµ
ω(t) = Cµ

ω(t0)e
−iω(t−t0) − igµ

∫ t−t0

0

Ce(T − t)eiωT dT (2.29)

The two equations for the field amplitude probability coefficient Cµ
ω(t), i.e. Eq.2.28 and

Eq.2.29, can be compared. If we multiply both of them by the constant 1/
√
2π and

integrate both of them in frequency, it is possible to identify, after these operations, the
exact definitions of the input and output fields in the time domain:

Ψµ
out(t) +

igµ√
2π

∫ +∞

0

[ ∫ t1−t

0

Ce(T + t)eiωT dT

]
dω =

Ψµ
in(t)−

igµ√
2π

∫ +∞

0

[ ∫ t−t0

0

Ce(T − t)eiωT dT

]
dω

(2.30)
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The two integrals in frequency domain that appear in the last identity are formally equal
to the integral in Eq.2.18. If we proceed in the same way as it has been done in the
previous section, we can simply write:

Ψµ
out(t) +

igµ√
2π
Ce(t) = Ψµ

in(t)−
igµ√
2π
Ce(t) (2.31)

At this point, after some trivial mathematical simplifications, we are able to write a direct
relation that give us the expression of the output field in time domain as a function of the
input field in time domain, the qubit amplitude probability coefficient and the coupling
strength of the interaction. Finally the input-output relation expression is:

Ψµ
out(t) = Ψµ

in(t)− i
√
γµCe(t) (2.32)

From this explicit relation it can be noticed that the output field in time domain is simply
given by the input field in the time domain plus a correction due to the presence of the
emitter, weighted by the square root of the γµ parameter (which depends directly on the
coupling strength). The dependence on the direction of propagation is enclosed in the
input field and in the particular value of the interaction strength. More physical insight
regardin these input-output fields could be found in Appendix B.
With the input-output relation in Eq.2.32 and the Eq.2.25 for the artificial atom amplitude
probability coefficient, it is possible to calculate both the unknown coefficients seeked and
finally obtain the explicit expression for the system state in Eq.2.5.

2.4. Example: spontaneous emission

Now that the system of differential equations has been solved and the equations for the
amplitude probability coefficients are set, different situations of interest can be investi-
gated. The two phenomena studied in this thesis work will be the atomic spontaneous
emission and the single photon scattering. In this particular section we will focus our
attention on the former.
With the expression spontaneous emission we refer to the phenomenon of the emission of
a radiation from an atom that had previously absorbed a photon and had undergone a
transition from the ground to the excited state. For the particular system considered here,
the situation could be schematized as follows: the artificial atom initially in the ground
state |g⟩ has absorbed an incoming photon at a certain frequency ωin in the waveguide;
the qubit, now in the excited state |e⟩, emits a photon at a certain frequency ωout after
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Figure 2.2: Left: at time t0 the qubit is in the excited state |e⟩. Right: after a certain amount of time
the qubit spontaneously emits a photon and relaxes in the ground state |g⟩. In principle the emission
could be in the right or in the left direction with a certain probability.

a certain time t, usually of the order of the excited level lifetime (fig.2.2). The first step
that has to be done for finding the two amplitude probability coefficients is defining the
initial conditions of the system, i.e. the value of the qubit and field coefficients at t0,
with t0 the instant of time when the artificial atom is in the state |e⟩. Said so, the initial
conditions of the system can be expressed as:

Ce(t0) = 1 ; Cµ
ω(t0) = 0 (2.33)

since there is no input field in the waveguide for t = t0. With this in mind, it is easy to
verify that Ψµ

in = 0. The direct consequence of this condition is that now Eq.2.23 can be
simplified further, becoming in this way directly integrable:

iĊe(t) = (ω0 − i
γ

2
)Ce(t) (2.34)

The solution of the partial differential equation for the qubit amplitude probability coef-
ficient is then:

Ce(t) = e−iω0(t−t0)e−
γ
2
(t−t0)H(t− t0) (2.35)

where H(t − t0) is the Heaviside function centered in t0. This function has been added
in Eq.2.35 to underline the fact that the expression of the coefficient Ce(t) is the one
computed above only when we are looking at the system at a time t grater than t0. If we
look at the system in an instant of time before t0, we are putting ourselves in a situation
different from that described by the initial conditions in Eq. 2.33, i.e. in a situation where
the input field cannot be considered null. Consequently, for t < t0, the calculations that
permitted us to find Eq.2.35 do not hold anymore.
Since the qubit amplitude probability coefficient has been calculated, by inserting its
expression inside the input-output relation in Eq.2.32 we can find also the expression for



2| Photon scattering in waveguide QED 33

the output field in the time domain. Its definition, since Ψµ
in(t) = 0, is simply:

Ψµ
out(t) = −i

√
γµe−iω0(t−t0)e−

γ
2
(t−t0)H(t− t0) (2.36)

From the above expression, the field amplitude probability coefficient can be found by an
inverse Fourier Transform operation of Eq.2.26:

Cµ
ω(t1) = −i

√
γµ√
2π

∫ +∞

0

e−iω0(t−t0)e−
γ
2
(t−t0)eiω(t−t1)H(t− t0) dt (2.37)

The solution of the above integral is straightforward since the integrand is just an expo-
nential function. The final expression of the field amplitude probability is the following:

Cµ
ω(t1) = −i

√
γµ√
2π

e−iω(t1−t0)

γ
2
+ i(ω0 − ω)

(2.38)

where ω is the frequency of the spontaneously emitted radiation and ω0 − ω = ∆ω the
frequency detuning between the qubit characteristic frequency and the emitted photon. It
is interesting now to take Eq.2.35 and Eq.2.38 and evaluate the modulus square of these
coefficients. Indeed, the modulus square of the amplitude probabilities represents the
probability distribution function of time, that gives us information about how probable
is to find the qubit or the field in the excited state respectively. The expression of the
modula squared of Ce(t) and Cµ

ω(t1) (fig.2.3) are:

|Ce(t)|2 = e−γ(t−t0)H(t− t0) (2.39)

|Cµ
ω(t1)|

2 =
1

2π

γµ

γ2

4
+ (ω0 − ω)2

(2.40)

For what concerns the probability distribution represented by |Ce(t)|2, it can be seen that
it depends on time exponentially. This means that the probability of finding the qubit in
the state |e⟩ after a certain time t, grater than the initial one t0, decreases exponentially
as soon as we let the system evolve in time. The time constant of this decrease is given
by the reciprocal of the spontaneous emission rate parameter γ. This parameter has been
taken constant in frequency over a wide range around ω0 so once the superconducting
circuit defining the qubit has been set, the parameter γ is therefore defined.
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Figure 2.3: Left: plot of the modulus square of the qubit amplitude probability coefficient function of
time (in units of 1/Γ0). Right: plot of the modulus square of the field amplitude probability coefficient
function of the output frequency ω (in units of ω0, which has been set equal to 1). The parameter Γ0 has
been set equal to ω0/100.

On the other hand, the probability distribution function regarding the output field, does
not depend on time. This arises from the fact that through the input-output relation
what is retrieved is the field amplitude probability coefficient evaluated in the instant of
time t = t1, with t1 much larger than t0. Moreover, the only time dependence in Cµ

ω(t1)

is in the phase term that the field acquires through the propagation along the waveguide
from the instant t0 to the final one t1, which becomes equal to 1 when the modulus square
is taken. In any case, the modulus square of Cµ

ω(t1) depends on the output frequency
ω. Its frequency distribution, as it can be seen from Eq.2.40, is a normalized Lorentzian
function centered around the emitter characteristic frequency ω0, with a full width at
half maximum (FWHM) proportional to the parameter γ (fig.2.3). This means that the
probability of measuring in output a photon with a frequency ω becomes lower and lower
as soon as this frequency is too different from ω0, in agreement with the fact that the
spontaneous emission of a photon at a completely different frequency with respect to that
of the atom is practically impossible. In addition to these considerations, the modulus
square of the field coefficient depends on the direction parameter µ. In principle the two
different parameters γ+ and γ− could be taken different from each other. However the
best choice for the system we are considering is to take both of them equal to half the
spontaneous emission rate, i.e. γ+ = γ− = Γ0. This choice would correspond to having a
symmetric coupling inside the waveguide (isotropic spontaneous emission) and a value of
the total spontaneous emission rate γ equal to 2Γ0.
In conclusion of this paragraph it is useful to check whether the results found are coherent
with the definition of our problem. To verify this, it is enough to check if the normalization
condition in Eq.2.6 is satisfied by the two amplitude probability coefficients evaluated in
the instant of time t = t1. Indeed, t1 is the time instant in which we observe our system
and it is, by definition, much larger than the initial one t0.
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This leads to the following equation:

|Ce(t1)|2 +
∑
µ=±

∫
|Cµ

ω(t1)|
2 dω = 1 (2.41)

For what it has been said, for t → t1 the emitter amplitude probability vanishes and,
since the field probability distribution is a normalized Lorentzian function, the validity of
Eq.2.6 is assured.

2.5. Example: scattering event

Another fundamental phenomenon that is worth studying related to our considered system
is the opposite case with respect to what it has been analyzed before, i.e. the single photon
scattering event. With this term we refer to a particular situation in which the qubit,
that is prepared in its ground state |g⟩, interacts with an incoming input field in the
state |1ω1⟩. Usually, in the free space, this kind of interaction would bring us to observe
firstly an absorption of the incoming photon by the qubit and subsequently an emission.
Of course the probability of having such an interaction would depend on the detuning
between the input field frequency ω1 and the qubit characteristic frequency ω0, with a
bigger probability as soon as the detuning approximates the zero. In principle, once the
scattering event has happened, it is possible to observe the emission of the absorbed
photon in any space directions with equal probability. This is equivalent of saying that
the scattering event in free space is isotropic. This, however, is not true for the system
represented schematically in fig.2.1. Indeed, being the atom confined in the waveguide,
the only possible directions in which it is possible to observe an emission are those labeled
by the index µ,i.e. from left to right for µ = + and from left to right for µ = −. The
presence of the waveguide, thus, simplifies enormously the problem since now all the
directions of emission could be neglected except for those two. A direct consequence of
this simplification is that the problem studied here becomes linear in space and the only
two possible output field states are represented by the kets

∣∣1+ω1

〉
and

∣∣1−ω1

〉
.

Similarly to what has been done in the previous paragraph, in order to study the behaviour
of the system in this case of single photon scattering, it is necessary to define the initial
conditions. Regarding the qubit amplitude probability coefficient, we must impose that
in the instant of time in which the scattering event happens, i.e. t0, the qubit is prepared
in its ground state |g⟩. On the other hand, we must define a field amplitude probability
coefficient in input. For simplicity, in this thesis work, the input field will be taken as a
monochromatic plane wave.
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This corresponds to the following definitions:

Ce(t0) = 0 ; Cµ
ω(t0) =

1√
σ
√
2π
e−

(ω−ω1)
2

4σ2 δµ+ (2.42)

The monochromatic plane wave in input has been taken as a Gaussian function centered
on the generic input frequency ω1. The condition of plane wave is reached when the width
of this Gaussian field is small enough with respect to the input frequency. Formally, it is
possible to write:

δ(ω − ω1) = lim
σ→0

1

2σ
√
π
e−

(ω−ω1)
2

4σ2 (2.43)

Indeed, to a function really narrow in the frequency domain corresponds a function that
is really broad in the time domain, being the two functions linked via a Fourier Trans-
form operation. For what concerns the direction index µ, the input field has been taken
arbitrarily propagating in the direction + (from left to right). This choice is expressed
by the Kronecker delta δµ+. Ultimately, it is important to notice that, to be precise, in
input, it has been chosen the square root of a Gaussian function. This choice is related to
the normalisation condition in Eq.2.6, that has to be satisfied for every instant of time,
included t0.
Now that the initial conditions have been set, it is possible to explicitly calculate the two
amplitude probability coefficients, using Eq.2.25 and Eq.2.32. Before solving the differ-
ential equation for the qubit coefficient Ce(t), we need first to obtain the expression of
the input field in the time domain. In order to do this, we perform a Fourier Transform
operation on the coefficient Cµ

ω(t0), i.e. we use its definition in Eq.2.24. Substituting
Eq.2.42 inside the definition of Ψµ

in(t) leads to the following:

Ψµ
in(t) =

1√
2π

∫ +∞

0

dω
1√
σ
√
2π
e−

(ω−ω1)
2

4σ2 δµ+e
−iω(t−t0) (2.44)

At this point, if the width of the input Gaussian field σ is small enough (in the extreme
case σ → 0), the function inside the integral could be replaced by a Dirac delta. With
this substitution in mind, the expression of Ψµ

in(t) becomes:

Ψµ
in(t) =

4

√
2

π

√
σδµ+

∫ +∞

0

dωδ(ω − ω1)e
−iω(t−t0) (2.45)

The integration over all the possible frequencies is now trivial, since it is enough to apply
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the effect of the Dirac delta distribution on the phase function. The final expression of
the input field in the time domain is:

Ψµ
in(t) =

4

√
2

π

√
σδµ+e

−iω1(t−t0) (2.46)

As it can be seen from its expression, the time dependence of the input field is enclosed
in the phase term, which represents the phase that the incoming photon acquires from
the initial instant of time t0 to the generic one t. The amplitude of Ψµ

in(t) depends on
the square root of the width of the input Gaussian function. This is consistent with the
approximation done at the beginning of the paragraph when the input monochromatic
field was expressed as the limit in Eq.2.43. It is important to notice that, although the σ
parameter tends to zero, the input field does not vanish since what is relevant here is its
integral over all the frequencies, which, as it will be clear later, is well defined.
Now that the input field Ψµ

in(t) has been calculated, we can insert its expression inside
Eq.2.25. The differential equation for the qubit amplitude probability coefficient reads:

iĊe(t) = (ω0 − i
γ

2
)Ce(t) +

∑
µ=±

√
γµ

4

√
2

π

√
σδµ+e

−iω1(t−t0) (2.47)

The Kronecker delta δµ+ selects inside the summation over all the possible directions the
one of the input field, which, in this case, is the direction from left to right (µ = +). The
differential equation for the qubit amplitude probability coefficient is then linear with the
addition of a driven function represented by the input field in the time domain. Using
the well known closed formula for this kind of differential equations leads to the following
solution for Ce(t):

Ce(t) = −ie−(iω0+
γ
2
)(t−t0)

∫ t

t0

√
γ+

4

√
2

π

√
σe−iω1(τ−t0)e(iω0+

γ
2
)(τ−t0) dτ (2.48)

By grouping together all the constant terms in front of the integral, the solution for the
qubit coefficient could be rewritten in a much more compact way as:

Ce(t) = −i
√
γ+σ

4

√
2

π
e−(iω0+

γ
2
)(t−t0)

∫ t

t0

e(i(ω0−ω1)+
γ
2
)(τ−t0) dτ (2.49)

The solution is then straightforward since inside the integral over time there are only
exponential functions. At this point it is necessary to specify that the instant of time
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Figure 2.4: Up: schematic representation of the reflection phenomenon. Bottom: schematic representa-
tion of the transmission phenomenon.

in which the system is observed will be t1, with t1 much larger than the initial instant
t0. In this framework we could neglect all the terms that are directly proportional to the
exponential function e−

γ
2
(t−t0) since when evaluated in t = t1, they will vanish. Said so,

the final expression for the qubit amplitude probability coefficient is:

Ce(t) = −i 4

√
2

π

√
σγ+

(γ
2
+ i(ω0 − ω1))

e−iω1(t−t0) (2.50)

Inserting now the expression obtained for the coefficient Ce(t) inside the input-output
relation in Eq.2.32, allows us to retrieve the output field in the time domain. Its expression
would be:

Ψµ
out(t) =

4

√
2

π

√
σδµ+e

−iω1(t−t0) − 4

√
2

π

√
σγ+γµ

(γ
2
+ i(ω0 − ω1))

e−iω1(t−t0) (2.51)

By looking at the last equation it is immediate to notice that both the terms that appear
in it have as a common factor the input field in the time domain Ψµ

in(t), whose full
expression is given in Eq.2.46. It is possible then to bring this common factor in front of
both the terms and rewriting the expression of the output field in a simpler way as:

Ψµ
out(t) = Ψ+

in(t)χ
µ
ω1

(2.52)

where Ψ+
in(t) is just the input field in the time domain in the direction corresponding to

µ = + and χµω1
the function that remains after the grouping. Its explicit expression is the

following:

χµω1
= δµ+ −

√
γµ
√
γ+

γ
2
+ i(ω0 − ω1)

(2.53)

The function χµω1
depends on the detuning ∆ω = ω0 − ω1 between the input frequency
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Figure 2.5: Plot of the reflection coefficient R (in blue) and of the transmission coefficient T (in orange)
function of the input frequency ω1, expressed in units of the qubit frequency ω0. The characteristic
frequency ω0 has been set equal to 1, while the parameter Γ0 has been set equal to ω0/100.

ω1 and the qubit frequency ω0. It depends also on the spontaneous emission rate γ and
on the direction index µ. Indeed, this particular function could be seen as the system
transfer function, i.e. it gives us information about how the input field Ψ+

in(t) is modified
through the interaction with the qubit inside the waveguide. This interaction modifies
the input field in a different way, depending on the direction of propagation of Ψµ

out(t). It
is possible to define the output field Ψ+

out(t) as the transmitted field along the waveguide,
since it propagates in the same direction of the input field, and the field Ψ−

out(t) as the
reflected field along the waveguide, since it propagates in the opposite direction of the
input field (fig.2.4). With these definitions in mind, it should be clear now that the
modulus square of the transfer function χµω1

represents the transmission coefficient T for
µ = + and the reflection coefficient R for µ = −. By taking the modulus square of χµω1

for
a particular value of µ allows us to calculate the reflection and transmission coefficients.
Their expressions are the following:

T =
∣∣χ+

ω1

∣∣2 = ∣∣∣∣1− √
γ+

√
γ+

γ
2
+ i(ω0 − ω1)

∣∣∣∣2 = (ω0 − ω1)
2 + (γ

2
− γ+)

2

γ2

4
+ (ω0 − ω1)2

(2.54)

R =
∣∣χ−

ω1

∣∣2 = ∣∣∣∣− √
γ−

√
γ+

γ
2
+ i(ω0 − ω1)

∣∣∣∣2 = γ−γ+
γ2

4
+ (ω0 − ω1)2

(2.55)

In the approximation that has been already done in the previous paragraph regarding
the spontaneous emission phenomenon, it is possible to state that the coupling between
the waveguide and the qubit is symmetric. This means that it is possible to state that
γ− = γ+ = Γ0 and, being the spontaneous emission rate the sum of the two of them,
γ = 2Γ0.
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With this in mind, the final expression of the reflection and transmission coefficients is:

R =
∣∣χ−

ω1

∣∣2 = Γ2
0

Γ2
0 + (ω0 − ω1)2

(2.56)

T =
∣∣χ+

ω1

∣∣2 = (ω0 − ω1)
2

Γ2
0 + (ω0 − ω1)2

(2.57)

The plot of the two coefficients function of the input field frequency is shown in fig.2.5.
For what concerns the reflection coefficient R, it is clear that, with respect to the input
frequency ω1, it behaves like a Lorentzian function centered in ω0 and FWHM propor-
tional to Γ0. On the other hand, the transmission coefficient T is constantly equal to
the unity except for a deep well of FWHM proportional to the parameter Γ0 around the
resonance frequency. From fig.2.5 it is possible to notice that a particular phenomenon
happens when the input frequency perfectly matches the qubit one. Indeed, in the reso-
nance condition (ω0 = ω1) the input field is completely reflected back by the interaction
with the qubit. This means that, at resonance, R = 1 and the transmission coefficient T
is null, i.e. the probability of measuring the photon coming out from the left side of the
waveguide (the one in which initially the field entered) is exactly 100%. As soon as the
input frequency mismatches the emitter one, the probability of reflection soon decreases
while the transmission event becomes more and more probable until, for ω1 ≫ ω0, the
incoming field does not interact with the qubit anymore. The phenomenon of total re-
flection is typical of the system we are considering, in which the qubit is linearly coupled
with a superconducting waveguide. The interest related to this phenomenon relies in its
possible applications in quantum gates controls. By driving externally the resonance fre-
quency of the qubit, we could make the system acting like a switch where the incoming
photons would totally pass or totally be reflected back [28].
The last thing that remains to do is the calculation of the output field amplitude prob-
ability coefficient Cµ

ω(t1). Its computation is quite straightforward, since it is just the
inverse Fourier Transform of the output field Ψµ

out(t), which means that:

Cµ
ω(t1) =

1√
2π

∫ +∞

0

eiω(t−t1)Ψ+
in(t)χ

µ
ω1
dt (2.58)
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The only dependence on time is enclosed in the input field Ψ+
in(t). If we bring outside

the integral all the non-time dependent terms and if we multiply and divide by the phase
term eiωt0 , we obtain:

Cµ
ω(t1) = χµω1

e−iω(t1−t0)
1√
2π

∫ +∞

0

Ψ+
in(t)e

iω(t−t0) dt (2.59)

The integral is exactly the definition of the input field amplitude probability coefficient
C+
ω (t0). The final expression of the output field amplitude probability is then:

Cµ
ω(t1) = C+

ω (t0)χ
µ
ω1
e−iω(t1−t0) (2.60)

The physical meaning of this result is quite evident: the amplitude probability coefficient
of the output field is given by the input field coefficient, defined in Eq.2.42, multiplied
by the transfer function χµω1

and by a phase term. The latter simply indicates that the
time evolution of the electromagnetic field during the propagation along the waveguide
contributes to the final result with a phase term, which corresponds to the phase accumu-
lated by the photon from the initial instant of time t0 to the final one t1. The amplitude
of the input coefficient, on the other hand, is modified only by the interaction with the
qubit via the transfer function.
As it has been done before, to check the consistency of all the results found until now, it
is necessary that the two amplitude probability coefficients Ce(t) and Cµ

ω(t1), Eq.2.50 and
Eq.2.60, satisfy the normalization condition in Eq.2.6. In the limit we have been working
so far, i.e. in the limit of having a really narrow input field in the frequency domain,
it is possible to neglect the contribution of the modulus square of the qubit amplitude
probability coefficient inside Eq.2.6, being it multiplied by the parameter σ. Inserting the
modulus square of Eq.2.60 inside the normalization condition leads to the following:

∑
µ=±

∫
|Cµ

ω(t)|
2 dω =

∫ ∣∣C+
ω (t1)

∣∣2 dω[∣∣χ−
ω1

∣∣2 + ∣∣χ+
ω1

∣∣2] = 1 (2.61)

It is easy to see that the normalization condition is verified. Indeed, the input field
amplitude probability coefficient is normalized by definition, while the sum of the reflection
coefficient

∣∣χ−
ω1

∣∣2 and the transmission coefficient
∣∣χ+

ω1

∣∣2 is always equal to the unity. All
the results are then coherent with the formal theory developed so far for the particular
system we have been considering.
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two-photon interactions

In this chapter the analysis of the interaction between a two level quantum emitter and
two-photons will be presented. This kind of light-matter interaction process has already
been observed in many other cases. For example, it has been implemented in cavity QED
experiments or simply in free space. However, in all those cases, two-photon interaction
has been possible to implement only as a second order process. A direct consequence
of this is that the coupling strength of the process is really small, requesting often high
driving to be observed properly. On the other side, in the context of waveguide QED, it
is possible to implement and then study this interaction as a first order process, without
needing any driving. A simple way to do this is by using superconducting quantum circuits
[29]. Indeed, with a proper engineerization of the circuit showed and analyzed briefly in
paragraph 1.7, it is possible to implement a nonlinear coupling between the waveguide
and the circuit itself. The detailed analysis of how to do this coupling in a practical way
will not be presented in this work. Our main goal was to be able to define a proper
model that could describe this two-photon nonlinear coupling in the context of waveguide
QED. Indeed, in the following paragraphs will be presented both the theoretical model,
mainly focusing on input-output theory, and its application to the two cases of interest,
i.e. spontaneous emission and two-photon scattering.

3.1. System dynamics

The system that we will be considering from now on is quite similar to that already seen
in chapter 2. It is constituted by a two level quantum emitter situated in the center of the
waveguide and interacting with two input fields. The qubit in this particular case could be
implemented using the superconducting quantum circuit in fig.1.6. Its two energy levels
will be labeled as |g⟩ and |e⟩ for the ground and the excited state respectively. Regarding
the electromagnetic fields propagating along the waveguide, they will be labeled as |0ω, 0ω′⟩
and |1ω, 1ω′⟩ depending on the number of photons inside them. In this case the maximum
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Figure 3.1: System scheme: a two level artificial atom inside a waveguide interacting with two incoming
electromagnetic fields.

number of photons that we can have inside the waveguide is equal to 2. In addition to
that, we have to consider the direction of propagation of each mode, defined by the two
indexes µ and µ′. The convention remains the same: + means propagation from left to
right; - propagation from right to left. Of course, in principle the directions of propagation
of the two fields could be different. A simple scheme of the system described can be seen
in fig.3.1. In order to study the time evolution of the system, it is necessary to write
the full expression of the Hamiltonian operator related to it. Since here the light-matter
interaction involves the simultaneously absorption or emission of two photons, the Jaynes-
Cummings model is no more suitable. Indeed, in the case of two-photon interaction, it is
necessary to switch to the Two-photon Quantum Rabi model. Here, we have generalized
its expression to adapt it to the waveguide QED context in which we are working. Said
so, the Hamiltonian operator describing the system in fig.3.1 is defined as:

Ĥ = ω0σ̂
+σ̂− +

∑
µ=±

∫
ω(âµω)

†âµω dω +
∑

µ,µ′=±

∫∫
(gµµ

′

ωω′ )
∗σ̂+

âµωâ
µ′

ω′
√
2
dωdω′ + h.c (3.1)

In Eq.3.1 ω0 is, as usual, the qubit characteristic frequency defined as the difference of
the energies of its two lowest eigenstates, while σ̂+ and σ̂− are the ladder operators for
the artificial atom. For this new system considered here, since there is the presence of two
photons, inside the expression of the Hamiltonian operator it is necessary to have fields
ladders operators for each of them. In particular with the operators (âµω)† and âµω we refer
to the particular photon with frequency ω and direction of propagation µ. On the other
side, with the operators (âµ

′

ω′ )† and âµ
′

ω′ we refer to the particular photon with frequency
ω′ and direction of propagation µ′. Of course, the effects of these operators on the field
state is simply the creation or the destruction of two photons:

(âµω)
†(âµ

′

ω′ )
† |0ω, 0ω′⟩ =

∣∣∣1µω , 1µ′ω′

〉
âµω â

µ′

ω′

∣∣∣1µω , 1µ′ω′

〉
= |0ω, 0ω′⟩ (3.2)

The parameter gµµ
′

ωω′ is the coupling strength of the two-photon interaction. It depends
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in principle on both the possible fields frequencies, ω and ω′, and on the two possible
directions of propagation, µ and µ′.
By looking at Eq.3.1, we can see that it is constituted by different terms. The first two
terms can be grouped in the following expression:

Ĥ0 = ω0σ̂
+σ̂− +

∑
µ=±

∫
ω(âµω)

†âµω dω (3.3)

This term represents the total energy of the system when the interaction between the
qubit and the two photons is turned off. The first term of Eq.3.3 is the emitter energy
where the origin of the energy reference system has been put in correspondence of the
ground state eigenvalue. The second term of the non interacting Hamiltonian operator
represents the total energy of the electromagnetic fields expressed as the sum in all the
possible directions of the energy of all the possible supported modes. The last term in
Eq.3.1 corresponds, on the other side, to the interaction operator:

ĤI =
∑

µ,µ′=±

∫∫
(gµµ

′

ωω′ )
∗σ̂+

âµωâ
µ′

ω′
√
2
dωdω′ + h.c (3.4)

While Eq.3.3 is exactly what one would obtain in the case of single photon interaction (it
is simply the total energy of the two uncoupled objects), the expression of the interaction
Hamiltonian operator is fundamentally different. It is indeed dependent on a new coupling
parameter gµµ

′

ωω′ , which is function of two different frequencies and directions of propaga-
tion. In addition to that, it is easy to see that to each atomic transition, mediated by
the atomic ladder operators σ̂− and σ̂+, correspond two field ladder operators (âµω)†(â

µ′

ω′ )†

and âµω â
µ′

ω′ respectively. This means that it is possible to have only two different situa-

tions: the atom in the ground state |g⟩ and the field in the excited state
∣∣∣1µω , 1µ′ω′

〉
or the

atom in the excited state |e⟩ and the field in the ground state |0ω, 0ω′⟩. It is important
to point out that in writing down the expression of the Hamiltonian operator in Eq.3.1,
we have performed the same approximations made in the single photon interaction case:
the dipolar approximation and the rotating wave approximation (RWA). Indeed, here we
are working in the strong coupling regime where the coupling parameter is taken greater
than the losses outside the waveguide but much smaller with respect to the frequencies
involved in the interaction. This translates into having the following condition for the
coupling strength:

k < g ≪ ω (3.5)
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Due to the RWA the highly rotating terms have been discarded and only the terms in
Eq.3.4 are preserved. Since the terms that apparently do not respect the law of con-
servation of the energy are not considered, we can write the excitation number operator
as:

n̂2 = 2
∑
µ=±

∫
(âµω)

†âµωdω + σ̂+σ̂− (3.6)

where in this case, since to each atomic excitation correspond two field excitations, a
factor 2 is needed to take into account that the weight of each field excitation is half
of that of the atom. All the previous considerations make it evident that also in this
two-photon interaction case the excitation number does not change in time. This means
that the operators Ĥ and n̂2 do commute and that we cannot exit from the Hilbert space
defined by the operator n̂2. It must be clear that all what has been said until this point
regarding the two-photon interaction holds only when this kind of interaction is the first
order one. As it has been remarked before, this goal can be achieved, for example, by
using superconducting quantum circuits coupled in a nonlinear way to the waveguide.
In addition to the Hamiltonian operator in Eq.3.1, we could write down the expression for
the general state of the system considered. Indeed, it is possible to generalize the Wigner-
Weisskopf ansatz to this new two-photon situation. In this way the general expression of
the state of the system is given by:

|Φ(t)⟩ =
[
Ce(t)σ̂

+ +
∑

µ,µ′=±

∫∫
Cµµ′

ωω′(t)
(âµω)

†(âµ
′

ω′ )†
√
2

dωdω′
]
|0⟩ (3.7)

where |0⟩ = |g⟩ |0ω, 0ω′⟩ is the ground state of the two dimensional Hilbert subspace ob-
tained as the tensor product between the possible states of the qubit and the incoming
fields. As already seen in the single photon interaction case, since the RWA holds, it is
licit to express the general state of the system as the linear superposition of the possible
states in which the system can be observed. Each of these states is then weighted by its
own time-dependent amplitude probability coefficient. For the atom, we have again Ce(t)
while for the field we consider Cµµ′

ωω′(t), which now depends in principle on two different
frequencies and two different directions of propagation. For what concerns the field ampli-
tude probability coefficient, it is necessary to add that it must be symmetric with respect
to the photon swapping. With this, we mean that, being the photons propagating along
the waveguide indistinguishable and being them bosonic particles, changing one with the
other must not change anything in the formulation and in the results of the problem. This
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leads to the following new additional property for the field weight:

Cµµ′

ωω′(t) = Cµ′µ
ω′ω(t) (3.8)

The meaning of these weights is exactly the same that has already been discussed in
chapter 2: their modulus square represents the probability distribution function of finding
the atom or the fields in the excited states in a certain instant of time t. The sum of
these probabilities must be equal to one to have a well posed problem, which leads to the
following normalization condition for the two-photon interaction phenomenon:

|Ce(t)|2 +
∑

µ.µ′=±

∫∫ ∣∣∣Cµµ′

ωω′(t)
∣∣∣2 dω = 1 (3.9)

Again, in order to study the dynamics of the system showed in fig.3.1, we need to find out
the explicit expression for the amplitude probability functions, since the time dependence
of the system state in Eq.3.7 is enclosed in them. In the following paragraphs, we will try
to outline the main steps that brought us to obtaining the seeked expressions for Ce(t)
and Cµµ′

ωω′(t), with particular focus on the formulation of a general input-output theory for
the two-photon interaction situation.

3.2. Formal solutions for the amplitude probability

coefficients

At this point, in order to obtain the expressions for the two amplitude probability func-
tions, we will follow the same method illustrated in chapter 2 when we were dealing with
single photon interaction. Firstly, we start from the TDSE that we report again here for
simplicity:

i
∂ |Φ(t)⟩
∂t

= Ĥ |Φ(t)⟩ (2.7)

Also in this case, we have both the expressions of the Hamiltonian operator and of the
general state of the system. It is possible then to insert Eq.3.1 and Eq.3.7 inside the
TDSE and solve this differential equation for the two unknowns Ce(t) and Cµµ′

ωω′(t). As
one could imagine, the fact that now the coupling between the two level artificial atom
and the electromagnetic fields is nonlinear (indeed ĤI ∝ [(â)† + â]2) makes the solution
of Eq.2.7 much more complicated than that of the linear coupling case.
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Let us now try to expand the two members in the TDSE. Making explicit the right term
in Eq.2.7 leads to the following:

Ĥ |Φ(t)⟩ = Ĥ
[
Ce(t)σ̂

+ +
∑

µ,µ′=±

∫∫
Cµµ′

ωω′(t)
(âµω)

†(âµ
′

ω′ )†
√
2

dωdω′] |0⟩ =
= Ce(t)Ĥ |e⟩ |0ω, 0ω′⟩+

∑
µ,µ′=±

∫∫
Cµµ′

ωω′(t)Ĥ
(âµω)

†(âµ
′

ω′ )†
√
2

dωdω′ |0⟩
(3.10)

The last equation is constituted by two terms: the first one is given by the action of the
Hamiltonian operator onto the system state |e⟩ |0, 0⟩ (corresponding to the atom in the
excited state and the fields in the vacuum state); the second one is given by the action
of the Hamiltonian operator onto the state |g⟩ |1ω, 1ω′⟩ (fields in the 2-photon state and
atom in the ground state). Focusing on the first term in Eq.3.10, we obtain simply:

Ĥ |e⟩ |0ω, 0ω′⟩ = ω0 |e⟩ |0ω, 0ω′⟩+
∑

µ,µ′=±

∫∫
(gµµ

′

ωω
′ )

∗ â
µ
ωâ

µ′

ω′
√
2
dωdω′ |0⟩ (3.11)

This derives from the fact that applying the number operator (âµω)†âµω to the field ground
state |0ω, 0ω′⟩ gives as result zero since there are no photons in any particular mode.
Similarly, since the qubit can be thought of as a perfect two level system, applying the
rising operator σ̂+ to the excited state |e⟩ gives again zero as a result. Thus, the only
remaining terms are those showed in Eq.3.11.
On the other hand, the second term in Eq.3.10 needs much more attention. It is useful
to first analyze what is the effect of the operator Ĥ(âµω)

†(âµ
′

ω′ )† onto the system ground
state |0⟩. In particular, remembering that, in principle the frequencies and the directions
of propagation inside the expression of the Hamiltonian operator could be different with
respect to the ones of the field ladder operators, we could write:

Ĥ(âµω)
†(âµ

′

ω′ )
† |0⟩ = ω0σ̂

+σ̂−(âµω)
†(âµ

′

ω′ )
† |0⟩+

∑
λ=±

∫
dνν(âλν)

†âλν(â
µ
ω)

†(âµ
′

ω′ )
† |0⟩+

+
∑
λ,λ′=±

∫∫
dνdν ′√

2
(gλλ

′

νν′
)∗σ̂+âλν â

λ′

ν′
(âµω)

†(âµ
′

ω′ )
† |0⟩+

+
∑
λ,λ′=±

∫∫
dνdν ′√

2
gλλ

′

νν′
σ̂−(âλν)

†(âλ
′

ν′
)†(âµω)

†(âµ
′

ω′ )
† |0⟩

(3.12)
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In Eq.3.12, the first and the last terms are null. This is because we are applying the atom
ladder operator σ̂− to the state |0⟩ = |g⟩ |0ω, 0ω′⟩. For what concerns the other two terms,
the second and the third ones, they are different from zero only if the following identities
are satisfied:

λ = µ λ′ = µ′ ν = ω ν ′ = ω′ (3.13)

These constrains on the values of ν and λ comes directly from the properties of the field
ladders operators explicitated in Eq.2.11.
After all the above simplifications we are able now to write the final expression for the
right term in Eq.2.7 as :

Ĥ |Φ(t)⟩ = Ce(t)ω0 |e⟩ |0ω, 0ω′⟩+ Ce(t)
∑

µ,µ′=±

∫∫
(gµµ

′

ωω′ )
∗ â

µ
ωâ

µ′

ω′
√
2
dωdω′ |0⟩+

+
∑

µ,µ′=±

∫∫
dωdω′
√
2

(ω + ω′)Cµµ′

ωω′(t)(â
µ
ω)

†(âµ
′

ω′ )
† |0⟩+

+
∑

µ,µ′=±

∫∫
dωdω′(gµµ

′

ωω′)
∗Cµµ′

ωω′(t) |e⟩ |0ω, 0ω′⟩

(3.14)

Here, for the sake of simplicity, the complete calculations and simplifications done to pass
from Eq.3.12 and Eq.3.11 to the final expression in Eq.3.14 were omitted.
Returning back to the TDSE, since now the right term of the equation has been computed,
it remains only to expand the left one. In order to do so, it is necessary to operate a time
derivative onto the system state in Eq.3.7. Being the amplitude probability coefficients
the only time-dependent terms, the calculation is straightforward. Indeed, we directly
obtain:

i
∂ |Φ⟩
∂t

= i
∂Ce(t)

∂t
|e⟩ |0, 0⟩+ i√

2

∑
µ,µ′=±

∫∫
∂Cµµ′

ωω′(t)

∂t
(âµω)

†(âµ
′

ω′ )
†dωdω′ |0⟩ (3.15)

Now that all the terms in Eq.2.7 have been calculated explicitly, it is enough to solve the
partial differential equation to find the time dependent coefficients. What it is necessary
to do then is to obtain two coupled linear differential equations from the TDSE. This could
be done by exploiting the orthonormality properties of the state eigenvectors. Indeed, if
we multiply first by the bra ⟨e| ⟨0ω, 0ω′| and then by the bra ⟨g| ⟨0ω, 0ω′ | Eq.2.7, a set of
two coupled differential equations for the time-dependent coefficients Ce(t) and Cµµ′

ωω′(t)

can be obtained.
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In particular, after all the simplifications that here are neglected for brevity, the resulting
system can be written as:

iĊe(t) = ω0Ce(t) +
∑

µ,µ′=±

∫∫
dωdω′(gµµ

′

ωω′)
∗Cµµ′

ωω′(t)

iĊµµ′

ωω′(t) = (ω + ω′)Cµµ′

ωω′(t) + gµµ
′

ωω′Ce(t) (3.16)

At a first look, the system of linear coupled differential equations is quite similar to
the one already seen in chapter 2. However, there is a fundamental difference between
the two: while in the single photon interaction case the problem was one dimensional,
here it becomes a bidimensional one due to the fact that now both the field amplitude
probability and the coupling parameter depend on two different frequencies ω and ω′.
This bidimensionality in the frequency dependence adds of course more complexity to the
problem, making it even more difficult to solve. As we did in the previous chapter for the
single photon interaction case, in order to solve the system 3.16, we will follow the most
direct way. To begin with, we compute the differential equation for the field amplitude
probability coefficient Cµµ′

ωω′(t) and then, we substitute the result in the other equation for
the qubit amplitude probability Ce(t). Indeed, the second equation of the system 3.16 can
be solved immediately using the usual explicit formula for the complete linear differential
equations. The final result is the following:

Cµµ′

ωω′(t) = Cµµ′

ωω′(t0)e
−i(ω+ω′)(t−t0) − igµµ

′

ωω′e
−i(ω+ω′)(t−t0)

∫ t

t0

Ce(τ)e
i(ω+ω′)(τ−t0) dτ (3.17)

where the time integration has been done from the initial instant of time t0 to the generic
final instant of time t, with t > t0. The field amplitude probability function Cµµ′

ωω′(t0) can
be seen as the amplitude probability of having two excited modes in the waveguide at
frequencies ω and ω′ respectively in an instant of time t0 far before the event of interaction
with the emitter.
Inserting the result obtained in Eq.3.17 inside the first equation of the system 3.16 allows
us to find a linear differential equation in the only unknown Ce(t):

iĊe(t) = ω0Ce(t) +
∑

µ,µ′=±

∫∫
dωdω′(gµµ

′

ωω′)
∗Cµµ′

ωω′(t0)e
−i(ω+ω′)(t−t0)+

− i
∑

µ,µ′=±

∫∫ [
(gµµ

′

ωω′)
∗gµµ

′

ωω′e
−i(ω+ω′)(t−t0)

∫ t

t0

Ce(τ)e
i(ω+ω′)(τ−t0) dτ

]
dωdω′

(3.18)
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This last equation for the qubit amplitude probability coefficient depends basically on
three terms. While the first of them is just the coefficient Ce(t) weighted by the qubit
characteristic frequency (term that was present also in Eq.2.16 in the single photon in-
teraction case), the other two require much more attention since they both depend on a
double integral over all the possible modes supported by the waveguide. The first integral
in Eq.3.18 could be easily calculated if the initial conditions related to the input fields
are defined and an explicit expression of the two-photon interaction coupling strength is
given. The second integral in Eq.3.18 (called from now on I2), on the other hand, can be
simplified further. Firstly, we operate a change of variables inside the integral over time:

T = t− τ dT = −dτ (3.19)

In this way I2 can be rewritten as:

I2 = −i
∑

µ,µ′=±

∫∫ [∣∣∣(gµµ′ωω′)
∣∣∣2 ∫ t−t0

0

Ce(t− T )e−i(ω+ω
′)T dT

]
dωdω′ (3.20)

At this point another change of variables is performed but, in this case, it regards the
double integral over the possible frequencies. In particular we pass from using the two
frequencies ω and ω′ to using as new variables the ones obtained from their linear combi-
nation. These variables can be defined as follows:

ω = ω′ + ω ∆ = ω′ − ω (3.21)

Of course, since now we are working in a two dimensional space in the frequency domain,
when performing a change of variables, we must also compute the Jacobian matrix asso-
ciated to this change. This step is needed to properly rescale the differential area related
to the function inside the integral. In our case the Jacobian matrix associated to ω and
∆ is given by:

J =

(
1 −1

1 1

)
(3.22)

whose determinant is equal to 2. With this in mind, the differentials elements of the new
variables are related to the previous ones by the following:

dωdω′ =
dωd∆

2
(3.23)
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Before going on with the calculations, we perform here an approximation similar to the one
made for the coupling parameter in the single photon interaction case. The two-photon
interaction coupling strength, which now has to be written as a function of the new
variables ω and ∆, is taken constant over a band of frequencies around the characteristic
frequency of the atom ω0 in the sum direction. This means that the coupling parameter
in this case does not depend on ω but it depends only on the frequency difference ∆.
Performing this important approximation is indeed equivalent of saying that the coupling
between the two-level quantum emitter and the electromagnetic fields in the waveguide
does not change in a relevant way for a band of frequencies around the resonance condition.
In a two-photon interaction framework it can be formally be expressed as:

gµµ
′

ω,∆ ≈ gµµ
′

∆ if ω ≈ ω (3.24)

Indeed, in the system we are considering ω = ω + ω′ can be seen as the total frequency
interacting with the qubit. On the other hand, it is not possible to eliminate also the
dependence on the ∆ variable since it gives us information about the capability of the
atom to interact to very different frequencies. This concept will be analyzed better in the
following paragraphs.
With these simplifications in mind, we can return back to the expression of I2 and rewrite
it as:

I2 = − i

2

∑
µ,µ′=±

∫ +∞

−∞

[∣∣∣(gµµ′∆ )
∣∣∣2 ∫ t−t0

0

Ce(t− T )

∫ +∞

0

e−iωT dω

]
dTd∆ (3.25)

If we first calculate the integral over all the possible sum of the frequencies ω, it is easy to
recognize in the last equation the Fourier Transform of the Heaviside function, whose result
is already known. It is indeed equal to a Dirac delta in time centered in T = 0 weighted
by π (this weight comes out when ω is used instead of the actual real frequency ν = ω/2π)
and an imaginary part that would lead to the Lamb shift phenomenon. However, this
frequency shift will be neglected in the following.
After having applied all the above mentioned simplifications and after having used the
Dirac delta distribution properties, finally the most simplified expression for I2 is:

I2 = − i

2
Ce(t)

∑
µ,µ′=±

∫ +∞

−∞
π
∣∣∣(gµµ′∆ )

∣∣∣2 d∆ = −iCe(t)
γ

2
(3.26)

where γ is the qubit spontaneous emission rate. The value of the parameter γ gives the
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probability per unit time of having an atomic emission of a pair of photons at frequencies
ω and ω′ after an absorption event. Moreover, the higher the value of γ sooner the atom
will emit the photon and shorter will be the period of time during which the atom can be
found in the excited state |e⟩. The explicit expression of the qubit spontaneous emission
rate in this case of two-photon interaction is:

γ =
∑

µ,µ′=±

∫ +∞

−∞
γµµ

′

∆ d∆ (3.27)

with γµµ
′

∆ = π
∣∣∣gµµ′∆

∣∣∣2. The expression of γ in Eq.3.27 can be compared directly with the
qubit spontaneous emission rate in the case of single photon interaction in Eq.2.22. In
the latter situation, its expression was simply given by the sum of all the possible values
of the index µ of the parameter γµ, which was taken approximately constant over a band
of frequencies centered around ω0. In this new situation of two-photon interaction, the
expression of γ is much more complicated. Its expression is given by the sum of all
the possible pairs of the indexes µ and µ′ of the integral over the frequencies difference
∆ of the parameter γµµ

′

∆ , directly linked to the coupling strength. Being the problem
now bidimensional in the frequency domain, although the coupling parameter has been
taken constant in the frequencies sum variable, it still has a dependence on the frequency
difference. Since to retrieve the total qubit spontaneous emission rate γ we need to
perform an integral on the possible values of ∆, there will be a constrain on the shape of
γµµ

′

∆ . Indeed, γµµ
′

∆ needs to be a rapidly decaying function as soon as the two frequencies
become too different one with respect to the other so to have a convergent integral. As
it was said in the previous paragraphs, the coupling parameter is directly linked to the
superconducting circuit scheme, so it is possible to engineering it properly to satisfy the
above constraints.
Now that all the terms in Eq.3.18 have been simplified, we are able to write a more
compact expression for the atom amplitude probability differential equation:

iĊe(t) = ω0Ce(t)− iCe(t)
γ

2
+
∑

µ,µ′=±

∫∫
dωd∆

2
(gµµ

′

∆ )∗Cµµ′

ω∆ (t0)e
−iω(t−t0) (3.28)

In the last term of the previous equation we can recognize the Fourier Transform of the
field amplitude probability coefficient, evaluated in the instant of time t0, in the variable
ω. Analogously to what we did in the case of single photon interaction, we define here



54 3| Photon scattering with two-photon interactions

the input field in the time domain for the two-photon interaction as:

Ψµµ′∆
in (t) =

1√
2π

∫
Cµµ′

ω,∆(t0)e
−iω(t−t0) dω (3.29)

The definition of the input field in the time domain in Eq.3.29 is a straightforward gen-
eralization of the one in Eq.2.24. Even though it is defined as a Fourier Transform in the
variable ω, with the change of variable ω = ω + ω′, it can be seen as a two dimensional
Fourier Transform operation. This is indeed what we could expect from the moment in
which the problem we are facing has become bidimensional in the frequency domain. An-
other important element that needs to be pointed out is the fact that Ψµµ′∆

in (t) not only
depends on time but also on the frequency difference ∆. This dependence, not observable
in the single photon interaction case, adds, of course, complexity to the solutions of the
problem and could probably lead to new interesting aspects.
Said so, we can now write the final expression for the atom amplitude probability coeffi-
cient:

Ċe(t) = −i(γ
2
+ ω0)Ce(t)−

i

2

∑
µ,µ′=±

∫ +∞

−∞

√
γµµ

′

∆ Ψµµ′∆
in (t) d∆ (3.30)

In this case, it is not enough to define the initial conditions of the system to solve Eq.3.30.
It is necessary also to define properly the coupling parameter γµµ

′

∆ , now dependent on ∆.
The need of having an explicit expression for the coupling opens here to new interesting
possibilities, since it adds, in a certain way, a new degree of freedom to the solutions of the
problem (γµµ

′

∆ depends on the circuit scheme). Ultimately, in order to obtain an explicit
solution for the field amplitude probability, we need to generalize the input-output theory
expressed in Eq.2.32 to this case of two-photon interaction.

3.3. Input-output theory with two-photon interac-

tion

As we already know, the input-output relation is an equation that links in a linear way
the field distribution in input, in the two-photon interaction case defined by Ψµµ′∆

in (t) in
Eq.3.29, and the field distribution in output, when the interaction has already happened,
Ψµµ′∆
out (t). This last term could be defined as follows:

Ψµµ′∆
out (t) =

1√
2π

∫
Cµµ′

ω,∆(t1)e
−iω(t−t1) dω (3.31)
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with t1 an instant of time much grater than t and t0, i.e. t1 > t > t0. As we could expect,
the output field distribution is nothing but the Fourier Transform of the field amplitude
probability coefficient in the variable ω evaluated at the instant of time t1.
In order to obtain the generalized expression to the two-photon interaction case of the
input-output relation, we proceed in the same way as we did in section 2.3. In the previous
paragraph the second equation in system 3.16 has been integrated forward in time from
the past instant t0 to the generic instant t. Now what we do is to take that equation and
integrate it backward in time, from the generic instant t to the future instant of time t1.
The result of this integration is the following:

Cµµ′

ω,∆(t) = Cµµ′

ω,∆(t1)e
−iω(t−t1) + igµµ

′

∆ e−iω(t−t1)
∫ t1

t

Ce(τ)e
iω(τ−t1) dτ (3.32)

With the variable substitution T = τ − t the last equation can be simplified further as:

Cµµ′

ω,∆(t) = Cµµ′

ω,∆(t1)e
−iω(t−t1) + igµµ

′

∆ e−iω(t−t1)
∫ t1−t

0

Ce(T + t)eiωT dT (3.33)

Performing the same change of variables in the Eq.3.17 leads to:

Cµµ′

ω,∆(t) = Cµµ′

ω,∆(t0)e
−iω(t−t0) − igµµ

′

∆ e−iω(t−t0)
∫ t−t0

0

Ce(T − t)eiωT dT (3.34)

The two equations for the field amplitude probability Cµµ′

ω,∆(t), i.e. Eq.3.33 and Eq.3.34,
can be compared. If we multiply both of them by the constant 1/

√
2π and integrate both

of them in the frequency sum variable ω, it is possible to identify, after these operations,
the exact definitions of the input and output fields in the time domain in the two-photon
interaction case:

Ψµµ′∆
out (t) +

igµµ
′

∆√
2π

∫ +∞

0

[ ∫ t1−t

0

Ce(T + t)eiωT dT

]
dω =

Ψµµ′∆
in (t)− igµµ

′

∆√
2π

∫ +∞

0

[ ∫ t−t0

0

Ce(T − t)eiωT dT

]
dω

(3.35)

The two integrals in frequency domain that appear in the last identity are formally equal
to the integral in Eq.3.25: they are simply equal to a Dirac delta centered in T = 0. If we
proceed in the same way as it has been done in the previous section, we can simply write:

Ψµµ′∆
out (t) +

igµµ
′

∆√
2π
Ce(t) = Ψµµ′∆

in (t)− igµµ
′

∆√
2π
Ce(t) (3.36)
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At this point, after some trivial mathematical simplifications and by keeping in mind the
definition of the qubit spontaneous emission rate in Eq.3.27, we are able to write a direct
relation that gives us the expression of the output field in time domain as a function of
the input field distribution, the qubit amplitude probability coefficient and the coupling
strength of the two-photon interaction. Finally, the input-output relation seeked is:

Ψµµ′∆
out (t) = Ψµµ′∆

in (t)− i

√
2γµµ

′

∆ Ce(t) (3.37)

From the two-photon input-output relation it is easy to see that the output field in
the time domain is given by the input field in the time domain plus a correction term
dependent on the interaction with the emitter. This last term is indeed the product of
the qubit amplitude probability function and the coupling parameter γµµ

′

∆ . Apart from
the different multiplicative factor in the square root of the last term, the main difference
of the input-output relation in Eq.3.37 with respect to the same relation for the single
photon interaction case in Eq.2.32 relies in its frequency dependence. Indeed both the
input-output fields and the coupling parameter depend on the frequency difference ∆.
More physical insight regarding these input-output fields could be found in Appendix B.
In any case, thanks to the atom amplitude probability differential equation expressed in
Eq.3.18 and the input-output relation in Eq.3.37 the problem becomes self consistent.
Once the input fields and the particular profile of the coupling parameter have been
defined, it is possible to calculate both the emitter amplitude probability Ce(t) and the
output field amplitude probability Cµµ′

ω,∆(t), thus solving the problem considered.

3.4. Example: spontaneous emission

Until now we have been able to define a general set of equations that allow us to com-
pute quite easily the two amplitude probabilities for two-photon interaction in waveguide
QED context. In the following paragraphs we will investigate two cases of interest: the
spontaneous emission and two-photon scattering. In particular, after having obtained the
explicit expressions for the two amplitude probability coefficients Ce(t) and Cµµ′

ω,∆(t), we
will analyze and compare them with the same solutions already found in chapter 2 for
single photon interaction.
Let us start in this paragraph with the example of spontaneous emission. For the partic-
ular system of two-photon interaction considered (fig.3.1), the situation could be schema-
tized as follows: the artificial atom initially in the ground state |g⟩ has absorbed two
incoming photons at certain frequencies ωin1 and ωin2 in the waveguide; the qubit, now
in the excited state |e⟩, emits two photons at certain frequencies ωout1 and ωout2 after a
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Figure 3.2: Left: at time t0 the qubit is in the excited state |e⟩. Right: after a certain amount of
time the qubit spontaneously emits two photons and relaxes in the ground state |g⟩. In principle the
emitted photons could propagate in different directions with respect to that showed here with a certain
probability.

certain time t, usually of the order of the excited level lifetime (fig.3.2). The first step
that has to be done for finding the two amplitude probability coefficients is defining the
initial conditions of the system, i.e. the value of the qubit and of the fields coefficients
at t0, with t0 the instant of time when the artificial atom is in the state |e⟩. Said so, the
initial conditions of the system in this case can be expressed as:

Ce(t0) = 1 ; Cµµ′

ω,∆(t0) = 0 (3.38)

since there is no input field in the waveguide for t = t0. Furthermore, being Cµµ′

ω,∆(t0) = 0,
it is easy to verify that also Ψµµ′∆

in (t), defined in Eq.3.29, is null. The direct consequence
of these conditions is that now Eq.3.28 can be simplified further, becoming in this way
directly integrable:

iĊe(t) = (ω0 − i
γ

2
)Ce(t) (3.39)

The solution of the linear differential equation for the emitter amplitude probability co-
efficient is then:

Ce(t) = e−iω0(t−t0)e−
γ
2
(t−t0)H(t− t0) (3.40)

where H(t− t0) is the Heaviside function centered in t0. Also in this case, the Heaviside
function has been added in Eq.3.40 to underline the fact that the expression of the co-
efficient Ce(t) is the one calculated above only when we are looking at the system at an
instant of time t grater than t0. If we observe the system in an instant of time before
t0, we are putting ourselves in a situation different from that described by the initial
conditions in Eq.3.38, i.e. in a situation where the input fields cannot be considered null.
Consequently, for t < t0, the calculations that permitted us to find Eq.3.40 do not hold
anymore. If we compare the result in Eq.3.40 with the one obtained in the single photon
interaction case in Eq.2.35, we will notice that they are basically identical. However,
there is an important difference between the two, i.e. a different spontaneous emission
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rate. This different definition for the two γ parameters results of course in a different
slope of the decaying exponential function. Despite this consideration, the general shape
of Ce(t) remains unaltered.
Now that the qubit amplitude probability coefficient has been computed, it is possible to
insert its expression inside the input output relation in Eq.3.37 to obtain the output field
distribution. Its definition, since Φµµ′∆

in (t) = 0, is simply:

Φµµ′∆
out (t) = −i

√
2γµµ

′

∆ e−iω0(t−t0)e−
γ
2
(t−t0)H(t− t0) (3.41)

From the previous expression, the field amplitude probability coefficient can be computed
by an inverse Fourier Transform operation of Eq.3.31:

Cµµ′

ω,∆(t1) = −
i
√
2γµµ

′

∆√
2π

∫ +∞

0

e−iω0(t−t0)e−
γ
2
(t−t0)eiω(t−t1)H(t− t0) dt (3.42)

The solution of the above integral is straightforward since the integrand is just an expo-
nential function. The final expression of the field amplitude probability is given by:

Cµµ′

ω,∆(t1) = −
i
√

2γµµ
′

∆√
2π

e−iω(t1−t0)

γ
2
+ i(ω0 − ω)

(3.43)

where ω = ω + ω′ is the frequency sum of the spontaneously emitted radiation and
ω0 − ω = ∆ω the frequency detuning between the qubit characteristic frequency and the
sum of the emitted photons frequencies.
As usual, it is interesting to take Eq.3.40 and Eq.3.43 and evaluate the modulus square of
these coefficients. Indeed, the modulus square of the amplitude probabilities represents the
probability distribution, function of time, which gives us information about how probable
is to find the qubit or the field in the excited state respectively. The expression of the
modula squared of Ce(t) and Cµµ′

ω,∆(t1) are:

|Ce(t)|2 = e−γ(t−t0)H(t− t0) (3.44)

∣∣∣Cµµ′

ω,∆(t1)
∣∣∣2 = 1

π

γµµ
′

∆
γ2

4
+ (ω0 − ω)2

(3.45)

For what concerns the atom probability distribution represented by |Ce(t)|2, it can be seen
that it is really similar to the modulus square in Eq.2.39, obtained in the case of single
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photon interaction as it is defined by a decreasing exponential in time. This means that
the probability of finding the qubit in the state |e⟩ after a certain instant of time t grater
than the initial one t0 decreases exponentially as soon as we let the system evolve in time.
The time constant related to this decrease is given by the reciprocal of the spontaneous
emission rate parameter γ, which now, as we pointed out above, is defined in a different
way (Eq.3.27). Furthermore, this parameter depends directly on the particular coupling
between the superconducting circuit in fig.1.6 and the waveguide.
On the other hand, also in this two-photon interaction case, the probability distribution
regarding the output field, does not depend on time. This derives again from the fact that
through the input-output relation, what it is retrieved is the field amplitude probability
coefficient evaluated in t = t1, with t1 much larger than t0. Moreover, the only time de-
pendence in Cµµ′

ω,∆(t1) is in the phase term that the photons acquire during the propagation
along the waveguide from the initial instant of time t0 to the final one t1. The amplitude
of the phase term of course becomes equal to the unity when the modulus square is taken.
In addition to that, as it can be seen from Eq.3.45, Cµµ′

ω,∆(t1) depends on the frequency
sum ω and on the frequency difference ∆. This is indeed a direct consequence of the
bidimensionality of the system 3.16 in the frequency domain and it will result in a much
more complicated frequency distribution for the coefficient considered.
Before going on with the analyzes of the expression in Eq.3.45, it is necessary at this point
to define properly the parameter γµµ

′

∆ . Indeed, the expression of the modulus square of
Cµµ′

ω,∆(t1) computed above, is generic, i.e. it holds for every possible profile of the cou-
pling parameter that would satisfy the convergence constrain imposed by the integral in
Eq.3.27. However, to obtain its specific value we must first study in details how the non-
linear superconducting circuit in fig.1.6 would couple to a waveguide. This, due to lack of
time, has to be done yet. In the following, we will consider an arbitrary plausible shape
for the coupling parameter. Of course, once its exact value will be computed, it would
be possible to repeat the following analyzes regarding the examples considered. In the
continue of this thesis work, we have chosen for the coupling parameter in the two-photon
interaction case the following expression:

γµµ
′

∆ =
Γµµ

′

0√
2πσ

e−
∆2

2σ2 (3.46)

It is defined as a normalized Gaussian function in the variable ∆, with a full width at half
maximum (FWHM) proportional to σ. Its maximum value, reached when ∆ = ω−ω′ = 0

is given by the constant Γµµ
′

0 , which, at least in principle, depends on the particular
direction of propagation of the two photons along the waveguide. However, as we did for
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Figure 3.3: Left: 2D-colormap of the modulus square of the output field amplitude probability as a
function of the two emitted frequencies ω and ω′. Right: sections of the 2D-colormap at resonance along
the frequency sum ω and frequency difference ∆ directions. All the frequencies are expressed in units of
ω0, which has been set equal to 1. The coupling parameter Γ0 has been set equal to ω0/100.

the single photon interaction case, we will consider a symmetric waveguide, i.e. there will
not be any preferential direction of emission. This means that it is possible to eliminate
the dependence on the indexes µ and µ′ from the coupling parameter. With all the above
considerations in mind, it is clear that the specific value for the qubit total spontaneous
emission rate will be simply given by:

γ = 3Γ0 (3.47)

where the factor 3 derives from the fact that there are only three possible combinations
of the direction indexes (remember that having µµ′ or µ′µ is the same). At this point, we
can rewrite the expression of the modulus square of the field amplitude probability taking
into account all the above assumptions. Its new expression (fig.3.3) is the following:

∣∣Cω,∆(t1)∣∣2 = 1√
2π3

Γ0e
− ∆2

2σ2

9Γ2
0

4
+ (ω0 − ω)2

(3.48)

To be more precise, the expression in Eq.3.48 is related to only one possible combination
of the indexes µ and µ′. To retrieve the total probability distribution for the output field
it is necessary to add another multiplicative factor of 3, but that would not change in any
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case the frequency dependence and it is omitted here.
Now that the final expression for the modulus square of the field amplitude probability has
been obtained, it is possible to continue with the analyzes of its frequency distribution.
In fig.3.3 is showed a 2D-colormap of Cω,∆(t1) as a function of the two possible emitted
frequencies in output, ω and ω′, side by side to its sections along the directions identified by
ω and ∆ at resonance. As it could be easily seen from the plots, the resonance condition
in this two-photon interaction picture is given by having ω = ω′ = ω0/2. Indeed, the
probability of observing at the output of the waveguide a pair of emitted frequencies is
maximum when these frequencies match, or are close to, this resonance condition. This
is coherent with the fact that the atom is more likely to emit photons close to its own
transition frequency ω0 and with the fact that the spontaneous emission of a pair of
photons at a completely different sum of frequencies with respect to that of the atom is
practically impossible. The novelty related to considering only two-photon interactions
with respect to the single photon ones, is that, since the problem is bidimensional, we
could have in principle different bandwidths of emission probability for each direction.
While it is always true that the shape of the modulus square along the frequency sum
direction ω will be Lorentzian with FWHM proportional to γ, the shape on the opposite
direction ∆ will be determined by the particular expression of γµµ

′

∆ . In this thesis work it
has been chosen to have a Gaussian profile with a FWHM proportional to σ. However,
as it has already been mentioned, by a properly design of the superconducting circuit, it
is possible to tune it.
In conclusion of this paragraph it is useful to check whether the results found are coherent
with the definition of our problem. To verify this, it is enough to check if the normalization
condition in Eq.3.9 is satisfied by the two amplitude probability coefficients evaluated in
t = t1. Indeed, t1 is the time in which we observe our system, much larger than the
initial instant of time t0. Since we are working now with the two variables ω and ∆, the
normalization condition can be written as:

|Ce(t1)|2 +
∑

µ.µ′=±

∫ +∞

0

∫ +∞

−∞

∣∣∣Cµµ′

ω,∆(t1)
∣∣∣2 dωd∆

2
= 1 (3.49)

For what it has been said, for t = t1 and t1 → ∞, the qubit amplitude probability van-
ishes. Regarding the modulus square of the field amplitude probability, it is a normalized
Gaussian function along ∆ and a normalized Lorentzian function along ω. Thus, Eq.3.9
is satisfied and the solutions are coherent with the problem definition.
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3.5. Example: scattering event

The other case of interest investigated in this thesis work also for the two-photon inter-
action case, is the opposite situation with respect to what it has been analyzed in the
previous paragraph, i.e. the two-photon scattering phenomenon. With this term we refer
here to a particular situation in which the qubit, that is prepared in its ground state |g⟩,
interacts with an incoming electromagnetic field in input in the state |1ω1 , 1ω2⟩. As we
have already remarked in chapter 2, in free space, this kind of interaction would bring
us to observe firstly an absorption of the two incoming photons by the qubit and sub-
sequently an emission. Of course the probability of having such an interaction would
depend on the frequency detuning between the sum of the input fields frequencies ω1+ω2

and the qubit characteristic frequency ω0, with a bigger probability as soon as the detun-
ing approximates the zero. In principle, once the scattering event has occurred, it would
be possible to observe the emission of two photons in any possible space directions with
equal probability. This is equivalent of saying that the scattering event in free space is
isotropic. This, however, is not true for the system represented schematically in fig.3.1.
Indeed, being the atom confined in the waveguide, the only possible directions in which it
is possible to observe an emission are those labeled by the parameters µ and µ′, i.e. right
when they are equal to + and left when they are equal to − respectively, for each photon.
The presence of the waveguide, thus, simplifies enormously the problem since now all the
directions of emission could be neglected except for those two. A direct consequence of
this simplification is that the problem studied becomes linear in space.
As it has been done in the previous paragraph for the spontaneous emission example, in
order to study the behaviour of the system considered in this case of two-photon scat-
tering, it is necessary to define its initial conditions. Regarding the emitter amplitude
probability coefficient we must impose that in the instant of time in which the scattering
event happens, i.e. t0, the qubit is prepared in its ground state |g⟩. On the other hand,
we must define the field amplitude probability coefficient in input. For simplicity and
to be coherent with the choice made while studying the single photon scattering, in this
thesis work, the input fields will be taken as monochromatic plane waves. These two
incoming monochromatic fields will be centered in two generic input frequencies labeled
as ω1 and ω2. However, since to derive Eq.3.37 and Eq.3.30 we have performed a change
of variables, these input fields will be expressed as functions of the frequency sum ω and
the frequency difference ∆.
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The above considerations correspond to the following initial conditions:

Ce(t0) = 0 Cµµ′

ω,∆(t0) =
1

σ
√
π
e−

[ω−(ω1+ω2)]
2

4σ2 e−
[∆−(ω1−ω2)]

2

4σ2 δµ+δ
µ′

+ (3.50)

While the atom amplitude probability is null for t = t0, the field one is expressed as the
product of two normalized Gaussian functions dependent on ω and ∆, centered in ω1+ω2

and ω1 − ω2 respectively. The condition of having two monochromatic plane waves in
input is reached when the width of this Gaussian fields is small enough with respect to
the input frequencies. Formally we could write:

δ(ω − (ω1 + ω2))δ(∆− (ω1 − ω2)) = lim
σ→0

1

4σ2π
e−

[ω−(ω1+ω2)]
2

4σ2 e−
[∆−(ω1−ω2)]

2

4σ2 (3.51)

For what concerns the direction indexes µ and µ′, the input fields have been taken arbi-
trarily propagating in the direction + (from left to right). This choice is expressed by the
Kronecker deltas δµ+ and δµ

′

+ . Ultimately, it is important to notice that, to be precise, in
input it has been chosen the square root of two Gaussian functions. This choice is related
to the normalisation condition in Eq.3.9, that has to be satisfied for every instant of time,
included t0.
At this point, since the initial conditions have been set, it is possible to compute the
atom and field amplitude probabilities by means of Eq.3.37 and Eq,3.30. However, before
directly solving the differential equation for the qubit coefficient Ce(t) it is necessary to
first obtain the expression of the input field in the time domain. In order to do this, we
perform a Fourier Transform operation on the field coefficient Cµµ′

ω,∆(t0) in the variable ω,
using the definition in Eq.3.29. Substituting Eq.3.50 inside the definition of Φµµ′∆

in (t) leads
to the following:

Ψµµ′∆
in (t) =

1√
2π

∫
1

σ
√
π
e−

[ω−(ω1+ω2)]
2

4σ2 e−
[∆−(ω1−ω2)]

2

4σ2 δµ+δ
µ′

+ e
−iω(t−t0) dω (3.52)

If we are considering a Gaussian function with a really narrow width (ideally we can think
of having σ → 0), we can use the definition of Dirac delta in Eq.3.51. After this formal
substitution and after noticing that, since the integral is performed only on the variable
ω, we could bring outside the integral the Dirac delta distribution in ∆, the expression
for the input field in the time domain becomes:

Ψµµ′∆
in (t) = 2

√
2σδµ+δ

µ′

+ δ(∆− (ω1 − ω2))

∫
δ(ω − (ω1 + ω2))e

−iω(t−t0) dω (3.53)
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The integration over all the possible sum of frequencies is now trivial, since it is enough to
apply the effect of the Dirac delta distribution on the phase function. The final expression
of the input field in the time domain is then:

Ψµµ′∆
in (t) = 2

√
2σe−i(ω1+ω2)(t−t0)δ(∆− (ω1 − ω2))δ

µ
+δ

µ′

+ (3.54)

A direct comparison between the input field in the time domain just computed with the
one in Eq.2.46 in the case of single photon interaction allows us to understand how different
they are. Apart from the different constant terms that depend on the Gaussian functions
normalization condition, it is possible to observe that now, as it might be expected, the
time dependence in the phase term is weighted by the sum of the two input frequencies
ω1 and ω2. In addition to that, the input field continues to depend on the output variable
∆. It is not, for this case of two-photon interaction, independent on frequencies. Finally,
we can notice that it is directly proportional to the parameter σ, but, although it tends
to zero, the output field does not vanishes. This is because what is relevant is the integral
over all the possible frequencies, which is well defined.
Since the input field Ψµµ′∆

in (t) has been calculated, we can insert its expression inside
Eq.3.30 to find Ce(t). The Kronecker deltas δµ+ and δµ

′

+ select inside the summation over
all the possible directions the ones of the input fields, which, in this case, are the directions
from left to right (µ = µ′ = +). The differential equation for the qubit amplitude
probability coefficient reads:

Ċe(t) = −i(γ
2
+ ω0)Ce(t)− i

∫ +∞

−∞

√
γµµ

′

∆

√
2σe−i(ω1+ω2)(t−t0)δ(∆− (ω1 − ω2)) d∆ (3.55)

In the last equation the parameter γµµ
′

∆ was not explicitated on purpose. This is because
there are three possible situations that could happen regarding the frequency distributions
of the profiles of the input fields and of the coupling parameter. These possibilities are
listed below:
i): the width of the input fields matches the width of the coupling parameter;
ii): the width of the input fields is narrower than that of the coupling parameter;
iii): the width of the coupling parameter is narrower than that of the input fields.
Depending on the particular relation between the fields and the coupling parameter, the
solution of the integral in Eq.3.55 and the results will be different. In this thesis work we
will present the results regarding the first situation of width-matching. For what concerns
the second one (fields narrower than the coupling parameter) more details could be found
in Appendix A. Unfortunately, due to lack of time the last situation (coupling parameter
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narrower than the fields) has not been investigated yet. This of course opens to new
future possibilities and researches.
From now on let us focus on the situation in which the width of the input fields matches
the one of the coupling parameters. As it has been said previously, the exact shape of γµµ

′

∆

has to be determined yet. That is why, in the following analyzes, we will keep considering
as its prototype shape the one in Eq.3.46. Using the formal definition of the Dirac delta
as the limit of a really narrow Gaussian function (Eq.2.43), we will express the square
root of the coupling parameter as:

√
γµµ

′

∆ =
4
√
8π
√

Γ0σδ(∆) (3.56)

By inserting the last expression in Eq.3.55, we are able to compute the integral over the
frequency difference:

Ċe(t) = −i(γ
2
+ ω0)Ce(t)+

− i2
4
√
2π
√

Γ0σ
3
2 e−i(ω1+ω2)(t−t0)

∫ +∞

−∞
δ(∆)δ(∆− (ω1 − ω2)) d∆

(3.57)

The integral over the frequency difference in the last equation can be computed quite
straightforward from the moment in which we consider the first Dirac delta as an actual
mathematical distribution acting on the second Dirac delta, which in this case behaves
like a normal function. This kind of operation, although might seem not so formal, does
hold. A direct way of demonstrating its validity would be that of rewriting the Dirac
deltas as Gaussian functions using Eq.2.43 and then apply the well known formula for
the Gaussian integral. In both cases, the differential equation for the atom amplitude
probability will simplify as follows:

Ċe(t) = −i(γ
2
+ ω0)Ce(t)− i2

4
√
2π
√
Γ0σ

3
2 e−i(ω1+ω2)(t−t0)δ(ω1 − ω2) (3.58)

The last equation for the coefficient Ce(t) is simply a linear differential equation with a
driving term determined by the sum and the difference of the input frequencies ω1 and
ω2. In order to solve it, we can apply the standard resolutive formula that will lead to :

Ce(t) = −i2 4
√
2π
√

Γ0σ
3
2 δ(ω1 − ω2)e

−(iω0+
γ
2
)(t−t0)

∫ t

t0

e(i(ω0−ω1−ω2)+
γ
2
)(τ−t0) dτ (3.59)
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where we have taken into account the fact that Ce(t0) = 0. As for the case of single
photon interaction, at this point it is necessary to specify that the instant of time in
which the system is observed will be t1, with t1 much larger than the initial instant t0.
In this framework it is possible to neglect all the terms that are directly proportional to
the exponential function e−

γ
2
(t−t0), since, when evaluated in t = t1 with t1 → ∞, they will

vanish. Said so, the final expression for the qubit amplitude probability coefficient is:

Ce(t) = −i2
4
√
2πσ

3
2

√
Γ0δ(ω1 − ω2)e

−i(ω1+ω2)(t−t0)

γ
2
+ i[ω0 − (ω1 + ω2)]

(3.60)

The qubit amplitude probability function obtained is quite different from what has been
obtained in the same framework for the single photon interaction in Eq.2.50. In this
case Ce(t) depends on time via the phase term which takes into account both the phases
accumulated by the two input photons from the initial instant of time t0 to the final
generic time t. In addition to that, it is clear that now its shape is determined by the
detuning between the atom characteristic frequency and the two input fields frequencies
∆ω = ω0 − (ω1 + ω2), and by the relative difference between ω1 and ω2. It is important
to notice here that in the limit of having σ → 0, the amplitude of Ce(t) will tend to zero.
This is because even if at the numerator there is a Dirac delta function, it is not enough
to compensate for the term σ

3
2 (Eq.2.43). However, we can use the generic expression in

Eq.3.60 to compute the output field in the time domain Ψµµ′∆
out (t). This is done by inserting

Eq.3.60, Eq.3.54 and 3.56 inside the input-output relation for the two-photon interaction
in Eq.3.37. The general expression obtained in this way is given by the following:

Ψµµ′∆
out (t) = 2

√
2σe−i(ω1+ω2)(t−t0)δ(∆− (ω1 − ω2))δ

µ
+δ

µ′

++

− 4
√
8π
√

2Γ0σδ(∆)
2 4
√
2πσ

3
2

√
Γ0δ(ω1 − ω2)e

−i(ω1+ω2)(t−t0)

γ
2
+ i[ω0 − (ω1 + ω2)]

(3.61)

The above equation for the output field in the time domain, although it might seem hard
to interpret, can be simplified a lot after several trivial mathematical operations and by
grouping together the common factors. This results in the following simpler and clearer
equation for Ψµµ′∆

out (t):

Ψµµ′∆
out (t) = 2

√
2σe−i(ω1+ω2)(t−t0)χµµ

′∆
ω1,ω2

(3.62)

with χµµ′∆ω1,ω2
a function dependent on the input frequencies ω1, ω2 and the output frequency
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difference ∆, whose explicit expression is given by:

χµµ
′∆

ω1,ω2
= δ(∆− (ω1 − ω2))δ

µ
+δ

µ′

+ − Γ02
√
πσδ(∆)δ(ω1 − ω2)

γ
2
+ i[ω0 − (ω1 + ω2)]

(3.63)

At this point it is possible to compare directly the two expressions of the output field
in time domain after an event of scattering in the cases of single photon interaction (see
Eq.2.52) and two-photon interaction (see Eq.3.62). In the first case we were able to express
the output field as the product of the input field in the time domain and the function χµω1

,
which assumed the role of a transfer function for the system we were considering. More-
over that transfer function did not depend on the output frequency but only on the input
ω1. Thanks to this, we managed also to retrieve immediately the scattering coefficients,
i.e. R and T (Eq.2.56 and Eq.2.57), simply by selecting the particular direction index
µ and taking the modulus square of the relative transfer function (χ− for the reflection
event and χ+ for the transmission one). All the above considerations do not hold anymore
in this two-photon interaction framework. This is because, as it can be seen directly by
comparing Eq.3.54 and Eq.3.62, the output field in the time domain is not expressed as
the product between Ψµµ′∆

in (t) and a transfer function. Indeed, although the common
term in the expression for the output field in Eq.3.62 resembles the input field in time
domain in Eq.3.54, they are not exactly equal since there is a missing dependence on the
output frequency difference ∆. Furthermore, in this case the function χµµ

′∆
ω1,ω2

cannot be
considered as the system transfer function since it depends on ∆ and not only on the input
frequencies ω1 and ω2. It should be clear now that we cannot use the same procedure
implemented in the single photon interaction case to obtain the scattering coefficients.
We must follow another path.
Since it seems not possible to exploit the definition of Ψµµ′∆

out (t) to compute the scattering
coefficients, we will focus on the output fields amplitude probability function Cµµ′

ω,∆(t1).
The meaning of the scattering coefficients is indeed the following: they give us informa-
tion about the probability of observing a particular scattering event depending on the
particular input. In this case the input is indeed given by the amplitude probability func-
tion Cµµ′

ω,∆(t0). It follows immediately that another way of defining the seeked scattering
coefficients is then:

Xµµ′ =

∫∫ ∣∣∣Cµµ′
ω,∆(t1)

∣∣∣2
2

dωd∆∫∫ ∣∣∣Cµµ′
ω,∆(t0)

∣∣∣2
2

dωd∆

(3.64)
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Figure 3.4: Up: schematic representation of the two-photon reflection phenomenon. Middle: schematic
representation of the two-photon transmission phenomenon. Bottom: schematic representation of the
two-photon splitting phenomenon.

where Xµµ′ is the generic scattering coefficient. They are defined as the ratio between
the integral over all the possible frequencies of the modulus square of the output fields
amplitude probability function and the the integral over all the possible frequencies of the
modulus square of the input fields amplitude probability function. It is clear now that
once we compute Cµµ′

ω,∆(t1), we could use the definition in Eq.3.64 to find the scattering
coefficients. In order to obtain the expression for the output fields amplitude probability
it is enough to perform an inverse Fourier Transform operation onto the output field in
Eq.3.62. Since the only time dependence of the output field in the time domain relies in
its phase term, we can bring outside the integral all the other factors and write:

Cµµ′

ω,∆(t1) = 2
√
2σe−i(ω1+ω2)(t1−t0)χµµ

′∆
ω1,ω2

1√
2π

∫ ∞

0

e−i(ω−(ω1+ω2))t dt (3.65)

The integral over all the possible instants of time is indeed equal to a Dirac delta function
weighted by a proper factor needed to take into account that we are working with ω = 2πν,
with ν the formally defined frequency. After the integration and the trivial simplifications,
the output fields amplitude probability expression is:

Cµµ′

ω,∆(t1) = 4
√
πσδ(ω − (ω1 + ω2))e

−i(ω1+ω2)(t1−t0)χµµ
′∆

ω1,ω2
(3.66)

From its expression in Eq.3.66 it is easy to see that Cµµ′

ω,∆(t1) is given by the product of
two terms: the first is constituted by a phase term, which takes into account the phase
accumulated by the two input photons from the initial instant of time t0 to the final one
t1, times a Dirac delta in the frequency sum ω; the second one is exactly the function
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χµµ
′∆

ω1,ω2
, already discussed above. It is also directly proportional to the input fields width

parameter σ, which in this case is entirely balanced by the presence of the two Dirac delta
functions (one in ω, one in ∆). In addition to that, we can also notice that the dependence
on the particular direction of propagation is enclosed in the Kronecker delta functions in
the term χµµ

′∆
ω1,ω2

. Also in this case, although the waveguide has been considered symmetric
(isotropic spontaneous emission rate), the output field amplitude probability depends on
µ and µ′ due to the presence of the input field.
Before going on with the calculations, it is important to have in mind what kind of scat-
tering events could be observed in this two-photon interaction situation. To individuate
the particular scattering events, it is necessary to select a particular value for the two
direction indexes µ and µ′. Indeed, in the single photon scattering case, to the choice
µ = + corresponded the transmission of one photon, while to the choice µ = − the
reflection of one photon. Now, for the system we are considering (fig.3.1), the possible
combinations of the direction indexes pairs are 3. In fig.3.4 are showed the schemes of
these three possible events of scattering: the pair µ = µ′ = − correspond of the reflection
event of two photons; the pair µ = µ′ = + correspond to the transmission event of two
photons; the pair µ ̸= µ′ correspond to the reflection of one photon and the transmission
of the other one. From now on we will refer to these three different events of scattering as
reflection, transmission and splitting scattering event respectively. Said so, it is clear that
by choosing a particular pair of direction indexes it is possible to select the amplitude
probability function corresponding to that particular scattering event.
At this point we can proceed with the calculations for the seeked scattering coefficients.
Let us start by selecting the pair of indexes µ = µ′ = −, i.e. by considering the reflec-
tion event. Since both the direction indexes are different from those of the input fields,
the Kronecker delta functions become null. From Eq.3.66, the expression of the modulus
square of C−−

ω,∆(t1) is:

∣∣C−−
ω,∆(t1)

∣∣ = 16πΓ2
0σ

2e−
(ω1−ω2)

2

2σ2 |δ(ω − (ω1 − ω2))δ(∆)|2
γ2

4
+ (ω0 − (ω1 + ω2))2

(3.67)

Where we used Eq.2.43 to rewrite the term 2
√
πσδ(ω1 − ω2) in the definition of χµµ′∆ω1,ω2

as
a Gaussian function. Now that the modulus square of the amplitude probability function
of the reflection scattering event has been computed, we can insert it inside Eq.3.64 to
compute R.
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Figure 3.5: Left: 2D-colormap of the modulus square of the Reflection scattering coefficient as a function
of the two input frequencies ω1 and ω2. Right: sections of the 2D-colormap at resonance along the input
frequency sum ω′ and the input frequency difference ∆′ directions. All the frequencies are expressed in
units of ω0, which has been set equal to 1. The coupling strength Γ0 has been set equal to ω0/100.

Since, by definition, the input field amplitude probability Cµµ′

ω,∆(t0) is normalized, the
expression of the coefficient R (fig.3.5) is:

R =
Γ2
0e

− (ω1−ω2)
2

2σ2

γ2

4
+ (ω0 − (ω1 + ω2))2

∫ +∞

0

∫ +∞

−∞
16πσ2|δ(ω − (ω1 − ω2))δ(∆)|2dωd∆

2
(3.68)

Finally, using Eq.3.51 to express the product of the two Dirac delta functions as the
product of two Gaussian functions, it is possible to solve directly the integral over the
frequencies. Indeed the Dirac delta functions will be substituted formally with two inde-
pendent normalized Gaussian functions in ω and ∆ respectively. After this formal step,
remembering that γ = 3Γ0 (see Eq.3.47), we can write the explicit expression of the
reflection scattering event R:

R =
Γ2
0e

− (ω1−ω2)
2

2σ2

9Γ2
0

4
+ (ω0 − (ω1 + ω2))2

(3.69)

The first thing to notice is the fact that if we had selected the pair of direction indexes
µ ̸= µ′ we would have obtained the same result in Eq.3.69. The proof of this statement is
straightforward since also for this selected pair the Kronecker delta functions are equal to
zero in Eq.3.63 and the waveguide is considered symmetric. More in general we can say
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that the reflection and the splitting scattering coefficients are equal. Thus, the following
identity holds:

R = S =
Γ2
0e

− (ω1−ω2)
2

2σ2

9Γ2
0

4
+ (ω0 − (ω1 + ω2))2

(3.70)

In fig.3.5 it is possible to observe the 2D-colormap of the reflection coefficient as a function
of the two input frequencies ω1 and ω2, together with the sections performed at resonance
(remember that in this two-photon interaction case it is equal to ω1 = ω2 = ω0/2) in
the two directions defined by the sum of the input frequencies ω′ = ω1 + ω2 and their
difference ∆′ = ω1 − ω2. At a first look the 2D-colormap in fig.3.5 might seem the same
plot as the one in fig.3.3 obtained in the spontaneous emission example. However, they
are fundamentally different: in the spontaneous emission example we were looking at the
modulus square of the output fields amplitude probability Cµµ′

ω,∆(t1) function of the two
possible emitted frequencies in output ω and ω′; in this situation of two-photon scattering
event we are looking at the probability of observing an event of reflection (or splitting)
dependent on the particular input frequencies ω1 and ω2.
As the reflection and the splitting scattering coefficients share the same expression, the
following analyzes of Eq.3.70 do hold for both of them, despite the fact that, for the sake of
simplicity, we will refer to the coefficient R only. From Eq.3.70 and from the 2D-colormap
in fig.3.5 it is possible to identify directly a Lorentzian profile in the direction defined
by ω′ with a FWHM directly proportional to the qubit spontaneous emission rate γ. On
the other hand, in the direction defined by ∆′, we can observe a Gaussian profile with
FWHM proportional to the parameter σ. For the particular choices that we have made
through this thesis work the parameter Γ0 results to be greater than the parameter σ.
Due to this reason in the direction ∆′ the coefficient R has a really narrower profile with
respect to the one in the direction ω′. This is also coherent with the fact that in the sum
of the input frequencies direction what we observe in this two-photon interaction case is
the same profile that we would have observed in the single photon interaction situation if
we had considered the qubit interacting with a single photon with frequency Ω = ω1+ω2.
Regarding the profile in the difference of the input frequencies direction, it is so narrow in
agreement with the fact that the qubit is not capable of interacting with two photons with
very different frequencies (this also prevent the system to interact with a single photon
only). Ultimately, from the 2D-colormap in fig.3.5 it is easy to see that there is an increase
of the probability of having both the input photons reflected after the interaction with
the qubit as soon as those are in a band of frequencies around the resonance condition.
This was quite expected since the interaction between the input fields and the two-level
quantum emitter is stronger if their sum matches its characteristic frequency. It is indeed
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when ω1 = ω2 = ω0/2 that the maximum probability of observing a reflection event is
achieved. From Eq.3.70, at resonance we have:

Rmax = Smax =
4

9
(3.71)

Now that both the reflection and the splitting scattering coefficients have been computed,
it remains only to calculate the transmission coefficient to have a complete overview of
the two-photon scattering problem. For what concerns its amplitude probability function,
it corresponds to the selection of the pair µ = µ′ = + of the direction indexes. For this
particular choice the Kronecker delta functions in Eq.3.63 are equal to the unity. Said so,
the modulus square of the transmission scattering event amplitude probability function
is:

∣∣C++
ω,∆(t1)

∣∣ = 16πσ2

∣∣∣∣δωδ∆(γ2 + i∆ω′)− Γ0δωδ0e
− ∆2

2σ2

∣∣∣∣2
γ2

4
+ (∆ω′)2

(3.72)

where δω = δ(ω−(ω1+ω2)), δ∆ = δ(∆−(ω1−ω2)), δ0 = δ(∆) and ∆ω′ = ω0−(ω1+ω2) the
detuning between the atom and the input fields. To obtain Eq.3.72 we have substituted
the Dirac delta function in Eq.3.63 with a Gaussian function, using Eq.2.43, similarly to
what has been done for the reflection event amplitude probability. Now that the modulus
square of the amplitude probability function of the transmission scattering event has been
computed, we can insert it inside Eq.3.64 to compute T. Again, since by definition the
input field amplitude probability Cµµ′

ω,∆(t0) is normalized, the expression of the coefficient
T is:

T =

∫ +∞

0

∫ +∞

−∞

16πσ2

∣∣∣∣δωδ∆(γ2 + i∆ω′)− Γ0δωδ0e
− ∆2

2σ2

∣∣∣∣2
γ2

4
+ (∆ω′)2

dωd∆

2
(3.73)

The solution of the above double integral over all the possible frequencies is not trivial.
To solve it in a direct and simpler way it is enough to use Eq.3.51 to express the two
pairs of Dirac delta distributions as Gaussian functions. In this way we can perform in
the classical sense the modulus square of the quantities inside the double integral. This
will result in having a series of pairs of normalized Gaussian functions that allow us to
compute directly the double integral.
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Figure 3.6: Left: 2D-colormap of the modulus square of the Transmission scattering coefficient as a
function of the two input frequencies ω1 and ω2. Right: sections of the 2D-colormap at resonance along
the input frequency sum ω′ and the input frequency difference ∆′ directions. All the frequencies are
expressed in units of ω0, which has been set equal to 1. The coupling strength Γ0 has been set equal to
ω0/100.

The final result (fig.3.6), after performing all the above described mathematical steps, is:

T = 1− 2Γ2
0e

− (ω1−ω2)
2

2σ2

9Γ2
0

4
+ (ω0 − (ω1 + ω2))2

(3.74)

To verify if the expression in Eq.3.74 of the transmission scattering coefficient is the
correct one, it is enough to check if the sum of the three scattering coefficients is equal
to one. Indeed, the total probability of observing a generic scattering event must be
equal to %100. By making the sum of Eq.3.74 and twice the Eq.3.70, since R = S, it is
straightforward to verify that the following expression does hold:

T +R + S = 1 (3.75)

In fig.3.6 is shown the 2D-colormap of the Transmission scattering coefficient in Eq.3.74
function of the two input frequencies ω1 and ω2, together with with the sections performed
at resonance in the two directions defined by the sum of the input frequencies ω′ = ω1+ω2

and their difference ∆′ = ω1 − ω2. From its definition and from the two sections, it can
be seen that the frequency dependence of the coefficient T is exactly the same as that of
the other two: it has a Lorentzian profile of FWHM proportional to γ in the sum of the
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input frequencies direction and a Gaussian profile with FWHM proportional to σ in the
difference of the input frequencies direction. However, regarding the transmission scatter-
ing event, we have the opposite situation of what has been observed for the reflection one.
The probability of observing the transmission of two input photons along the waveguide
increases as soon as their frequencies are much far away from the resonance condition. Of
course this behaviour could be explained if we consider that, since the interaction between
the two input photons and the qubit is stronger around resonance, it will be harder to
observe a transmission event in that particular bandwidth around ω0. Indeed, we have to
remember that transmission could also be seen as the probability for the input fields of
not interacting with the two-level quantum emitter. At perfect resonance the maximum
strength of interaction is achieved and consequently we will observe a minimum in the
probability of having transmission. From Eq.3.74 we can compute the minimum value of
the coefficient T, which is indeed:

Tmin =
1

9
(3.76)

Since the transmission coefficient is always different from zero even at resonance, we will
always have a certain probability of not observing any interaction between the input
photons and the qubit.
In conclusion of this chapter it remains only to discuss if the results we have found for this
two-photon interaction scattering example satisfy the normalization condition in Eq.3.9.
As it can be seen from Eq.3.60, the atom amplitude probability is directly proportional
to the parameter σ, which, as it has been said, ideally tends to zero. This means that
the modulus square of Ce(t1) can be neglected. To see if the normalization condition is
verified, it is enough then to use the result in Eq.3.66 and compute:

∑
µ.µ′=±

∫∫ ∣∣∣Cµµ′

ωω′(t1)
∣∣∣2 dω = 1 (3.77)

Expanding explicitly the sum over all the possible pairs of the direction indexes leads to
having the sum of all the scattering coefficients. Since we have already checked that the
sum of all the scattering probabilities is equal to the unity, the normalization condition
is always verified and the results obtained are coherent with the definition of the problem
considered.
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4| Conclusions

At the end of this thesis work we were able to obtain important results regarding the
general theory of two-photon interaction in waveguide QED systems. In particular, we
succeeded in defining a set of self-consistent equations (Eq.3.37 and Eq.3.30) that could
allow us to compute the amplitude probability coefficients after the initial state of the
system has been defined. We have analyzed two specific examples, spontaneous emission
and two-photon scattering, to show explicitly how those results could be applied to cases
of interest. This work represents a first analysis of two-photon couplings in the context
of waveguide QED. Our result paves the way towards the exploration of a novel quantum
phenomenology and to possible applications in quantum technologies.
In conclusion, in the following last paragraphs we will compare the general results achieved
in the case of two-photon interaction with those regarding the single photon interaction
situation. In this way it would be possible to have a general overview of all the specific
characteristics of both the situations of interest with particular focus on the differences
between the two. Lastly, we will propose an example of possible practical application of
the general theory of two-photon interaction in the field of quantum engineering.

4.1. Single photon and two-photon scattering in waveg-

uide QED: a direct comparison

In this direct comparison between the two different situations of interest, we will first start
by considering the single photon interaction case. In this particular situation the two-level
quantum emitter, situated in the middle of a superconducting waveguide, interacts with
a single photon. Since we have been working in the strong regime where the coupling
parameter g is greater than the losses k in the directions outside the waveguide but much
smaller with respect to the frequencies involved in the interaction, the RWA, together
with the dipolar approximation did hold. This means that the total number of excitations
does not change in time and to each atomic transition correspond only one field transition
(emission or absorption of one photon, fig.1.5). With these approximations, it is possible
to describe the system using the well known Jaynes-Cummings model adapted to the
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context of waveguide QED. The JC Hamiltonian operator can be decomposed in two
parts: the non-interacting and the interacting one. In particular, the interaction term of
this operator is given by:

ĤI =
∑
µ=±

∫
gµω(â

µ
ω)

†σ̂− + (gµω)
∗âµωσ̂

+dω (4.1)

The most important thing to notice here is that ĤI is directly proportional to the electric
field operator (remember that in general for a single mode it is possible to state that
Ê ∝ [â + â†]). The consequence of this proportionality is that the coupling between the
qubit and the incoming field in the waveguide is linear. The linearity of the coupling
in this single photon interaction case reflects also on the frequency dependence of the
coupling parameter. Indeed, in this case the problem is one dimensional in the frequency
domain. For this particular reason the solutions of the associated system of linear dif-
ferential equations for the amplitude probability coefficients (system 3.16) were obtained
without any particular computational effort. For what concerns the input-output relation
in Eq.2.32, it links the output and the input fields in time domain through the interaction
with the qubit. It is important to underline that those fields defined in time domain de-
pends only on time and not on frequency. It is for this particular reason that in applying
the input-output theory to the specific example of single photon scattering we were able
to define the output field in the time domain as the product between the input field and
the system transfer function (Eq.2.53). Thanks to this direct equation, the scattering
coefficients were computed immediately by calculating the modulus square of the transfer
function for a particular choice of the direction index µ. The most important result in
the study of single photon scattering in the waveguide QED context is the fact that at
resonance it is possible to achieve the condition of total reflection of the input field, which
is not possible to observe in free space.
On the other hand, we can analyze the situation of having two-photon interaction. In this
case we are considering the interaction between a two-level quantum emitter situated in
the middle of the superconducting waveguide and two incoming photons. Also in this new
case we have been working in the strong regime with a two-photon coupling parameter
g2 greater than the losses k in the directions outside the waveguide but much smaller
than the frequencies involved in the interaction. Said so, both the RWA and the dipolar
approximation were made. This means that the total number of excitations does not
change in time and to each atomic transition correspond two field transitions (emission or
absorption of two photons, fig.1.6). In addition to that, each atomic transition has twice
the weight of the single field transition (for the single photon interaction case the ratio
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was 1:1). For what concerns two-photon interaction systems, they cannot be described
using simply the Jaynes-Cummings model. Indeed, in order to describe them properly
it is necessary to use the two level quantum Rabi model adapted to the waveguide QED
context. In the regime of validity of the above mentioned approximations, the Hamilto-
nian operator related to the two-level Rabi model can be decomposed in two terms: the
non-interacting and the interacting one. The interaction term in this framework can be
written as:

Ĥ2ph
I =

∑
µ,µ′=±

∫∫
(gµµ

′

ωω′ )
∗σ̂+

âµωâ
µ′

ω′
√
2
dωdω′ + h.c (4.2)

The fundamental difference between this two-photon interaction Hamiltonian operator
and the one analyzed above relies in the fact that now it is directly proportional to the
square of the electric field operator (Ê ∝ [â+ â†]2). The terms that compare in Eq.4.2 are
then the ones that after the expansion of the square of the sum of the fields ladder oper-
ators have not been neglected due to the RWA. The most important consequence of this
dependence is that the coupling between the two-level quantum emitter and the incoming
electromagnetic fields is nonlinear. Indeed, in this new situation of two-photon coupling,
the problem is bidimensional in the frequency domain. Due to this more complicated
frequency dependence the solutions for the system 3.16 were obtained with much more
computational effort. Moreover, the spontaneous emission rate of the qubit could not be
taken constant in the frequency domain as it has been done with the single photon inter-
action case. This frequency dependence introduces constrains on the particular functional
shape of the coupling parameter. Although during this thesis work it has been chosen to
be a Gaussian function, a complete microscopic description of the two-photon coupling
between the superconducting circuit in fig.1.6 and the waveguide is still missing. Further
studies in that direction would probably lead to a deeper insight of the phenomenology
behind this particular two-photon interaction and would give also the exact expression for
the coupling parameter. Of course, since we are working with superconducting circuits,
we could expect that by engineering properly the circuit scheme it would be possible to
tune in a desired way the main characteristic of the system such as the bandwidth or even
the coupling parameter itself. For what concerns the two-photon interaction input-output
relation in Eq.3.37, it is a really important result achieved. Indeed, this relation could
allow one to study really different and interesting situations that, due to lack of time,
have not been investigated yet in this thesis. Also in this case the input-output relation
links the output field in time domain with the input field in the time domain through the
interaction with the qubit. The main aspect to notice here is that the fields considered
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depend not only on time but also on the difference of the frequencies in output. For this
particular reason, in the example of application of the two-photon interaction theory to
the scattering event, it was not possible to obtain an equation that could express the
output field as the product between the input field and the system transfer function. In
order to compute the scattering coefficients we had to first go back from the definition
of the output field in the time domain to the amplitude probability function in output.
After that mathematical step, using Eq.3.72, we were able to obtain the expressions for
the seeked scattering coefficients. In the context of two-photon interaction in waveguide
QED, the possible observable scattering events are three. Indeed, in addition to the reflec-
tion and the transmission events, already present in the single photon scattering case, it
is possible to have a phenomenon of splitting. With this term we refer to the situation in
which the two incoming photons are split, i.e. one is reflected back and one is transmitted.
At the end, by selecting a particular pair of the direction indexes µ and µ′, we managed to
compute the modulus square of the amplitude probability coefficient related to each scat-
tering phenomenon and, finally, the expression of all the scattering coefficients. The most
interesting difference with respect to the results obtained in the single photon scattering
case is that the phenomenon of total reflection cannot be observed anymore. Indeed the
maximum probability of observing a reflection event is 4/9. In addition to that, the prob-
ability of observing a splitting event is the same of that of observing a reflection one. This
means that, with equal probability, we will see two photons interacting with the qubit
and consequently being reflected back or the reflection of just one photon and the other
being transmitted without any interaction with the two-level emitter. Ultimately, the
probability of transmission is never equal to zero. This leads of course to having always
a certain probability of not observing any interaction between the incoming photons and
the qubit.
It has to be remembered that all the considerations made until now, do hold for the
particular framework we have been working in, i.e. for the particular input fields shape
considered and for the chosen expression of the coupling parameter. This does not mean
that it is not possible to have different expressions or even to tune the probabilities of ob-
serving a certain scattering event. Working in a different framework would lead certainly
to different results, which might be more suitable for possible practical implementations
of the two-photon interaction phenomenon.
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4.2. Perspectives: possible application in controlled

quantum phase-gate

In the past few decades quantum computing has been object to the interest of many
researches around the world which has lead to a rapid evolution of its architectures and
techniques of implementation. The origin of this incredible success has to be found in the
idea of the so called quantum supremacy. With this term we refer to the capability of
quantum devices to solve problems that cannot be solved by usual classical computers in
a feasible amount of time. The main ingredients for quantum computation are basically
three: preparation of the input state, preparation of the unitary transformation acting
on the state and measurement of the output state [30]. There are different ways of im-
plementing the above mentioned operations such as using trapped ions, superconducting
circuits or photonics. The last two possible ways of implementation are surely related
to the nature of this thesis work. In particular, for what concerns photonic quantum
computing architectures, what it is required is a source of single indistinguishable pho-
tons and a way in which they could interact. Since this requirements were first stated,
single photon sources have been hugely improved [31]. Photon-photon interactions have
been implemented using nonlinearities outside the waveguide in which they are propa-
gating (measurement and feed forward). However, in principle this interactions could be
mediated by the presence of a nonlinear few-level emitter situated in the waveguide (as
sketched in fig.3.1) in a deterministic way ([32];[33]). The potentially deterministic nature
of this in-line nonlinearities makes this approach particular attractive for the realization
of controlled photonic phase gates. A possible implementation example of such a device is
shown in fig.4.1. It is constituted by two phase shifters, two directional couplers and two
two-level quantum emitters. The main idea behind this device is that it could be used to
implement two-photon gate. The state of the electromagnetic field in input could be only
one of this four alternatives:

|0s⟩ |0c⟩ |0s⟩ |1c⟩ |1s⟩ |0c⟩ |1s⟩ |1c⟩ (4.3)

where c denotes the control zone and s the signal one. To better understand how the
showed device works, it is useful to consider in input monochromatic fields and analyze
how they are modified through the propagation in the waveguides. Consider first in input
two photons in the state |0s⟩ |0c⟩: they will propagate and each of them would simply
acquire a phase equal to ϕ. For the input states |0s⟩ |1c⟩ or |1s⟩ |0c⟩, the photon in the
state |0⟩ will simply acquire the phase ϕ while the other one will be affected by the
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Figure 4.1: Schematic of the controlled-PHASE gate, which uses chiral waveguides, directional couplers,
phase shifters, and two identical quantum emitters.

directional coupler and the two-level emitter. The combination of their effects simply

modifies the |1⟩ states as follows:

|1⟩ → eiθ |1⟩ (4.4)

Ultimately, regarding the input state |1s⟩ |1c⟩, it will enter the first directional coupler
whose main effect is to give rise to the Hong-Ou Mendel effect. This means that the
directional coupler, acting as a 50/50 beam splitter, will create a superposition of the
situations in which two photons interact with each emitter. Immediately after the first
directional coupler the state is defined by:

[(â†1c)
2 + (â†1s)

2] |ψ⟩ (4.5)

where |ψ⟩ is the vacuum. At the end, the possible input states are transformed in the
following schematic way:

|0s⟩ |0c⟩ → ei2ϕ |0s⟩ |0c⟩

|1s⟩ |0c⟩ → eiϕeiθ |1s⟩ |0⟩

|0s⟩ |1c⟩ → eiϕeiθ |0⟩ |1c⟩

|1s⟩ |1c⟩ → eiχ |1s⟩ |1c⟩

(4.6)

where χ is the phase accumulated by the input state |1s⟩ |1c⟩. If the photon-emitter
interaction could be tuned in such a way to have ϕ = θ and χ = 2ϕ + π the control
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gate implements the unitary transformation diag(1,1,1,-1). The situation becomes more
complicated when we consider in input single photons with spectral profiles having FWHM
proportional to the parameter σ. However, standard light-matter couplings have some
intrinsic limitation. For example, achieving perfect fidelity in the implementation of
controlled-phase gates is not possible [34]. Without entering too much into the details,
it can be proved that the maximum fidelity of the device analyzed is around %84. This
is because in order to maximize this value two different constrains must be satisfied.
First let us consider the transformation of the states |0s⟩ |0c⟩ and |0⟩ |1⟩. Since there
is at most one photon entering into the directional coupler, the transformation is linear
(single photon interaction). On the other hand, for the state |1s⟩ |1c⟩, as stated in Eq.4.5,
the transformation is nonlinear (two-photon interaction). To maximize the fidelity of
the linear transformation it is required that the spectral pulse width must be narrow
compared with the emitter linewidth. On the other hand, to maximize the fidelity of
the nonlinear interaction the pulse width and emitter linewidth must be comparable.
These two constrains are clearly in contrast with each other. It is at this point that the
general theory of two-photon interaction developed in this thesis work might come in help.
Indeed, as it was remarked many times in the previous chapters, the coupling between
the two-level quantum emitter and two-photon in input is nonlinear. The relevant aspect
here is that the coupling will be nonlinear in any case, independently from the fact that
the interaction between the input photons and the qubit will happen or not. In this way
one of the two above mentioned constrains does not hold anymore and just the constrain
related to the input state |1s⟩ |1c⟩ must be satisfied. Hopefully, in the future a possible
new implementation of devices similar to that in fig.4.1 with superconducting circuits
exploiting two-photon interactions and a complete microscopic theory regarding the two-
photon coupling of the circuit in fig.1.6 in waveguide QED context will lead to a fidelity
higher than the fundamental limit of %84, making this two-photon controlled phase-gate
actually useful for quantum computing.
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In this section we will analyze the two-photon scattering situation in the case in which
the input fields spectral width is narrower than that of the coupling parameter. In the
following we will express the coupling parameter as:

γ∆ = Γ0f(∆) (A.1)

where f(∆) is a function of the output frequency difference with spectral width much
larger than the parameter σ. Let us now start by computing the expression for the atom
amplitude probability coefficient using Eq.3.30. With the input field defined in Eq.3.54,
the differential equation for the coefficient Ce(t) can be written as:

Ċe(t) = −i(γ
2
+ ω0)Ce(t)− i

√
2σe−i(ω1+ω2)(t−t0)

∫ +∞

−∞

√
γ∆δ(∆− (ω1 − ω2)) d∆ (A.2)

In this case the Dirac delta centered in the input frequencies difference ω1 − ω2 could be
considered as a distribution acting on the function γ∆. The result of this effect is the
following:

Ċe(t) = −i(γ
2
+ ω0)Ce(t)− i

√
2σe−i(ω1+ω2)(t−t0)√γω1−ω2 (A.3)

The expression in Eq.A.3 is a simple linear differential equation that can be solved for the
amplitude probability Ce(t) by using the well known resolutive formula. The final result
is then:

Ce(t) = −
i
√
2σe−i(ω1+ω2)(t−t0)√γω1−ω2

γ
2
+ i[ω0 − (ω1 + ω2)]

(A.4)

In obtaining the result in Eq.A.4, the terms proportional to e−
γ
2
(t−t0) have been discarded

since the system at the end is observed in an instant of time t1 much larger to the initial
one t0 (ideally t1 → ∞). At this point, since the expression of the coefficient Ce(t) has
been computed, it is possible to use the input-output relation in Eq.3.37 to obtain the
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output field in the time domain. Its expression is given by:

Ψµµ′∆
out (t) = Ψµµ′∆

in (t)−
i4σe−i(ω1+ω2)(t−t0)√γ∆γω1−ω2

γ
2
+ i[ω0 − (ω1 + ω2)]

(A.5)

Also in this case, it is not possible to express the output field in the time domain as the
product between the input field in the time domain and the system transfer function. In
addition to that, the second term in Eq.A.5 is directly proportional to the input fields
spectral width parameter σ. The fundamental difference here is that there is not a Dirac
delta function that could compensate the fact that σ is ideally close to zero. Indeed, the
coupling parameter has a really large spectral width compared to that of the input fields.
In this way, analogously to what has been done with the modulus square of the atom
amplitude probability function in checking the normalization condition, the second term
in Eq.A.4 can be neglected. The consequence is that now the output field is simply equal
to the input field in the time domain:

Ψµµ′∆
out (t) = Ψµµ′∆

in (t) (A.6)

The system transfer function is then just equal to the unity and the only scattering event
that is possible to observe is the total transmission of both the input photons:

T = 1 ; R = S = 0 (A.7)
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In this last section we will investigate the physical meaning of the input fields expressed
in the time domain for both the single photon and the two-photon interaction cases.
Let us begin by considering the single photon interaction situation. In order to have a
better insight of the function Ψµµ′∆

out (t), we can start by calculating the intensity of the
electromagnetic field at the output of the waveguide in an instant of time t grater than
t1. From the quantum mechanics theory, it is known that the expected value of any
observable is given by the scalar product between the state of the system considered and
the operator associated to that particular observable applied to the state. The intensity
operator for single photon interaction is defined as follows:

Î = (âω′)†(t)âω(t) =
1

2π

∫∫
e−i(ω−ω

′)(t−t1)(âω′)†âω dωdω
′ (B.1)

On the other hand, the state of the system after the scattering event could be obtained
by inserting Eq.2.50 and Eq.2.60 inside the state definition in Eq.2.5. This will lead in
having:

|Φ(t1)⟩ =
∑
µ=±

∫
Cµ
ω(t1)(â

µ
ω)

†dω |0⟩ (B.2)

since at time t = t1 the coefficient Ce(t) can be neglected. Said so, the expected value of
the intensity of the output fields can be computed as follows:

Iµ(t) = ⟨Φ(t1)| (âµω′)
†(t)âµω(t) |Φ(t1)⟩ =

=
1

2π

∫∫
dωdω′e−i(ω−ω

′)(t−t1) ⟨Φ(t1)| (âµω′)
†âµω |Φ(t1)⟩

(B.3)

In order to calculate the effect of the operator âµω onto the system state |Φ(t1)⟩, we must
take into account the properties of the field ladder operators in Eq.2.11. Since in the
definition of the system state we are applying a creation operator onto the vacuum state
with a certain frequency ν and direction λ, applying consequently the destruction operator
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âµω will give zero apart when the two frequencies and directions do match. In that case
we have:

âµω |Φ(t1)⟩ =
∑
λ=±

∫
Cλ
ν (t1)â

µ
ω(â

λ
ν)

†dν |0⟩ = Cµ
ω(t1) (B.4)

Finally the expected value of the intensity observable is:

Iµ(t) =
1

2π

∫∫
dωdω′e−i(ω−ω

′)(t−t1)(Cµ
ω′)

∗(t1)C
µ
ω(t1) = (Ψµ

out(t))
∗Ψµ

out(t) =
∣∣Ψµ

out(t)
∣∣2
(B.5)

where in the last expression we recognized the definition of the output field in the time
domain (Eq.2.26). From this derivation it is clear that the physical meaning of the field in
the time domain is the following: it is the amplitude probability of measuring one single
photon in a certain instant of time t in a certain direction given by µ. In particular,
the modulus square of Ψµ

out(t) gives the probability of measuring a photon far after the
scattering event.
Let us now focusing on the two-photon interaction case. Since now we are dealing with
pairs of photons, the observable we are interested in is the two-photon flux outside the
waveguide. This means that the two photons outside the waveguide are measured with
two photodetectors in a certain instant of time, which in principle could be different for
each photon. The expected value desired could be written as:

I(t, t′) = ⟨Φ(t1)| (âµω)†(t)(â
µ′

ω′)
†(t′)âµ

′′

ω′′(t
′)âµ

′′′

ω′′′(t) |Φ(t1)⟩ =

=
1

(2π)2

∫
dωdω′dω′′dω′′′ei(ωt+ω

′t′−ω′′t′−ω′′′t) ⟨Φ(t1)| (âµω)†(â
µ′

ω′)
†âµ

′′

ω′′ â
µ′′′

ω′′′ |Φ(t1)⟩

(B.6)

where for sake of simplicity we have omitted the phase term accumulated until the instant
of time t1. To simplify the above expression, we can study the effect of the double field
ladder operator on the system state in Eq.3.7:

âµ
′′

ω′′ â
µ′′′

ω′′′ |Φ(t1)⟩ =
∑
λ,λ′=±

∫∫
Cλλ′

ΩΩ′(t1)
âµ

′′

ω′′ â
µ′′′

ω′′′(âλΩ)
†(âλ

′

Ω′ )†
√
2

dΩdΩ′
]
|0⟩ (B.7)
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By using the properties of the fields ladder operators one can demonstrate that finally it
is possible to write:

âµ
′′

ω′′ â
µ′′′

ω′′′ |Φ(t1)⟩ =
√
2Cµµ′

ω′′ω′′′(t1) |0⟩ (B.8)

Inserting the result in Eq.B.8 in the expression for the two-photon flux in Eq.B.6 and
focusing on the same arrival time t lead to:
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∫∫
dωdω′

2π2
ei(ω+ω

′)t(Cµµ′

ωω′)
∗(t1)

∫∫
dω′′dω′′′e−i(ω

′′+ω′′′)tCµµ′

ω′′ω′′′(t1) =

=

∫∫
dω∆

8π2
eiωt(Cµµ′

ω∆ )∗(t1)

∫∫
dω′∆′e−iω

′tCµµ′

ω′∆′(t1) =

=
1

4π

∫
d∆(Ψµµ′∆

out )∗(t)

∫
d∆′Ψµµ′∆′

out (t) =

=
∣∣∣Ψµµ′

out(t)
∣∣∣2

(B.9)

where from the second to the third line we identified the definition of the output field in
the time domain (Eq.3.31) and from the third to the fourth we used the definition:

Ψµµ′

out(t) =
1

2
√
π

∫
d∆Ψµµ′∆

out (t) (B.10)

It is now clear from Eq.B.9 that the physical meaning of the output field in the time
domain is the following: it is the amplitude probability distribution in the difference of
the output frequencies of measuring outside the waveguide two photons in the same instant
of time. Integrating it in the frequency difference ∆ and taking the modulus square give
us the probability of measuring a couple of photons in the same instant of time in the
directions µ and µ′. If we had computed the expected value of the two-photon flux in
different instants of time, we would have obtained as result simply the product between
the output field in the time domain evaluated in t and the output field in time domain
evaluated in t′. Its physical meaning remains however unchanged.
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