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Sommario

Questa tesi si propone di indagare gli e�etti di diverse strategie di manipolazione

dell'opinione applicate a reti sociali sintetiche governate da un modello Markovia-

no multi-agente, i cui tassi di transizione individuali dipendono dalle speci�che

opinioni assunte dai vicini di ciascun agente. Verranno mostrati i risultati di si-

mulazioni Monte Carlo del sistema, al �ne di esaminare le conseguenze dovute alle

variazioni dei principali parametri del modello e di di�erenti strategie di attac-

co sull'opinione media della rete a regime. Verrà dimostrato che alcune strategie

di attacco ottengono consistentemente risultati migliori rispetto alle altre, sebbe-

ne nessuna delle euristiche trattate per la selezione degli agenti più in�uenti è in

grado di ottenere il risultato ottimale in ogni topologia di rete. Particolare at-

tenzione verrà dedicata agli e�etti introdotti sull'attacco dalla presenza nella rete

di una struttura di comunità, dimostrando che perseguire una semplice strategia

come concentrare l'attacco su una singola comunità non sempre costituisce il piano

d'azione più e�cace per manipolare l'opinione media di quella comunità. In�ne,

verrà analizzato come il gestore di un social network come Facebook o Twitter

possa ripristinare un'opinione media neutrale attraverso l'esercizio di un'azione di

�ltraggio dei post condivisi tra gli utenti, e come valutare la gravità di un attacco

dall'entità dello sforzo di �ltraggio richiesto. Si vedrà che, agendo sulle �mano-

pole di controllo centralizzate� utilizzate per esercitare l'azione di �ltraggio, si

intensi�ca la polarizzazione delle opinioni tra le diverse comunità.
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Abstract

This thesis aims at investigating the e�ects of di�erent opinion manipulation

strategies applied to synthetic social networks. The opinion of each individual

in the social network is modelled as a Markovian model, whose transition rates are

dependent on the opinions of the individual's neighbours. Monte Carlo simulations

are carried out in order to inspect the consequences induced by variations of the

main model parameters and di�erent attack strategies on the steady-state average

opinion of the network. It will be proved that some strategies consistently achieve

better results compared to the others, although none of the investigated heuristics

for selecting the most in�uential agents is capable of attaining the optimal result

for every network topology. Some attention is dedicated to the e�ects introduced

on the opinion manipulation attack by the presence of a community structure in

the network, showing that not always a straightforward strategy like concentrat-

ing the attack e�ort on a single community is the most e�ective plan of action for

manipulating the average opinion of that community. Lastly, it is analysed how

the platform manager of an online social network like Facebook or Twitter could

restore a neutral average opinion in the network by exerting a content-dependent

�ltering action on the posts shared between users, and how to assess the severity of

an opinion manipulation attack from the magnitude of the required �ltering e�ort.

It will be showed that acting on the �centralized control knobs� used to exert the

�ltering action intensi�es the opinion polarization between di�erent communities.
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Chapter 1

Introduction

With the advent of online social networks, everyone obtained the capability of

reaching a very broad audience with just a few clicks. People could easily inter-

act with long-lost friends and join international groups based on shared interests.

Communications shifted from a one-to-one paradigm to a one-to-many paradigm,

and the mechanisms for opinion formation and news propagation had to adapt

accordingly. However, the sudden increase of connectedness between people all

around the world came with some drawbacks: malicious actors now have power-

ful tools in their hands for targeting more susceptible people and manipulating

the opinion dynamics of social networks, with the intent of pursuing either social,

economical, or political interests.

In the last years, the most emblematic example of opinion manipulation was

given by the Russian meddling in the U.S. 2016 elections. According to the Report

on the Investigation into Russian Interference in the 2016 Presidential Election,

Russia hindered the democratic process by making use of the Internet Research

Agency, a �troll farm�, i.e. a collection of bots and fake accounts operated by Rus-

sian operatives, with the objective of pushing perspectives and news stories that

favored the Russian government, swayed political conversations, spread disinfor-

mation, and ampli�ed political and social discord. Very large online social net-

works like Facebook, Twitter and Reddit were targeted by the Internet Research

Agency in order to polarize a very broad audience. Twitter declared in 2018 [1]

that it found over 3 800 accounts linked to Russian operatives in the investigations
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following the 2016 elections. For comparison, the estimated number of Twitter

users in the United States in 2016 was about 50 million. Notable examples are the

now-terminated accounts @ten_gop, @jenn_abrams and @pamela_moore13, with

145 244, 70 926 and 70 732 followers at the time of their last tweet, respectively [2].

According to J. Albright [3], research director of the Tow Center for Digital Jour-

nalism at Columbia University, as few as six Facebook pages created by Russians

were responsible for about 340 million �shares� and 19 million �interactions�. In Al-

bright's terminology, �shares� represent the potential number of people who may

have seen the posts created by those pages, and it was estimated based on the

number of followers of the accounts. The �interactions� were calculated as the sum

of reactions, comments and shares of the posts published by the pages. A single

anti-immigration post written by one of those pages was able to collect as high as

797 091 �interactions�. The number disclosed by Facebook [4] as their estimation

for the number of potential readers of posts generated by Russian operatives is

not much lower than the one provided by Albright, at 126 million people who

may have seen the posts during the 2016 U.S. elections. The political scientist

K. H. Jamieson believe that it is �highly probable� that the combined e�ect of the

Russian interferences was able to turn the outcome of the elections [5].

The objective of this thesis is to simulate opinion manipulation attacks on syn-

thetic social networks governed by a suitable opinion dynamics stochastic model, in

order to investigate the e�ects on the steady-state average opinion of the network

caused by variations of the main model parameters and attack strategies. Then, it

will be analysed how the network manager could restore a neutral average opinion

by making use of content-�ltering algorithms, and how to assess the severity of an

opinion manipulation attack from the magnitude of the required �ltering action.

1.1 Main contributions

The main contributions of this thesis are:

� The study of how the model parameters and the choice of the controlled

agents in�uence the e�ects of an opinion manipulation attack;

� The development of a closed-loop control approach for assessing the severity
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of an opinion manipulation attack, through the estimation of the magnitude

of the control variable required for restoring the steady-state average opinion

of the network;

� The study of how the presence of a community structure in�uences the e�ects

of both the opinion manipulation attack and the rebalancing action exerted

by the platform manager;

� The development of an e�cient algorithm for calculating the contingency

tables of the agents' opinions.

1.2 Document structure

The document is structured as follows:

� Chapter 2 introduces the multi-agent Markovian model which will be used

throughout this thesis as the model governing the opinion dynamics of the in-

dividuals belonging to the social network, describing its main characteristics

and related results;

� Chapter 3 covers the algorithm employed for the numerical simulations of the

multi-agent Markovian model and the calculation of the contingency tables

of the agents' opinions;

� Chapter 4 describes the main topological features of social networks, pre-

senting the two models for generating synthetic social networks which will

be used in the simulations for representing the interactions between agents.

Moreover, the chapter describes the algorithm used in this thesis for com-

munity identi�cation, and the centrality indices employed in the selection of

the most in�uential agents in a given network;

� Chapter 5 covers opinion manipulation attacks, describing possible attack

strategies, the parameters involved and the main e�ects of changing them,

and some implications given by the presence of a community structure;

3



� Chapter 6 describes a closed-loop control approach used for assessing the

severity of an opinion manipulation attack and for restoring the average

opinion of a network during the attack, while presenting some drawbacks in

the rebalancing action implied by the presence of a community structure in

the network;

� Chapter 7 concludes the document summarizing the main results of the thesis

and describing possible future developments.
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Chapter 2

Models of Opinion Dynamics

This chapter describes the model governing the opinion dynamics of the individuals

belonging to a social network. First, a very basic overview on models of opinion

dynamics is presented, and then sections 2.2 and 2.3 elaborate further on the multi-

agent Markovian model developed in [6, 7, 8], describing its main characteristics

and related results.

2.1 Overview on models of opinion dynamics

In recent years, many dynamic models of opinion formation in social networks

have been developed. According to [9], these models can be divided in two major

classes: macroscopic models, which describe how the distribution of opinions in a

network evolves over time, andmicroscopic models, which instead describe how the

opinions of individual actors evolve. In this framework, each actor is represented

as an agent and the social connections between actors are modelled by a network.

An important classi�cation in multi-agent models is whether the single opinion is

represented as a real value (typically in the interval [0, 1]), or if it is described by

a logical variable taking values in a discrete set.

One of the �rst models of opinion formation with real-valued opinions was de-

veloped by French [10] and then extended by DeGroot [11] in the so-called iterative

opinion pooling model. This discrete-time model described a simple mechanism

where each individual's opinion is in�uenced by the opinions of the neighbours, and
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it demonstrated the capability of manifesting the social phenomenon of consensus.

One important result of French's work is that it revealed a profound relationship

between opinion formation and centrality measures on the underlying network.

In [12], Abelson proposed a continuous-time counterpart of the French-DeGroot

model, which was extended by Taylor [13] introducing communication sources,

providing static opinions in�uencing agents' opinions, and prejudices, which are

opinions formed by some external factors and which agents converge to in absence

of interpersonal in�uences. A discrete-time counterpart of the Taylor model is the

Friedkin-Johnsen model introduced in [14].

More recent works extended these models along various directions, including

the introduction of gossip-based interactions, which remove the assumption of

synchronicity in the change of opinions among the agents; bounded-con�dence

models accounting for homophily, i.e. the idea that similar individuals interact

more often than dissimilar people; disagreement via cognitive dissonance, e.g. the

boomerang e�ect, which states that an attempt to persuade a person sometimes

shifts his/her opinion away from the persuader's opinion. More details about these

models can be found in [15].

Real-valued deterministic models have two important limits: although well-

suited to treat binary opinions, it is di�cult to apply these models to multi-

dimensional opinion spaces, and the assumption of a deterministic opinion dy-

namics may be an overly simpli�ed description of real phenomena.

In the class of discrete opinion models, Markov chains are often adopted in

order to describe the time evolution of opinions in a stochastic framework. Model

based on Markov chains are very appealing in view of their �exibility, but they

become intractable for modelling social networks as soon as the number of agents

grows. [16] and [17] are examples of discrete-time Markovian models where spe-

ci�c assumptions on the interaction mechanism have been employed in order to

overcome the intractability problem. In the former, the interaction occurs only

between agents sharing the same opinion, while in the latter, at each time step

each agent is a�ected just by a single individual randomly extracted from the set

of his/her neighbours.

Bolzern, Colaneri and De Nicolao proposed in [6] a continuous-time multi-agent

Markovian model, providing an exact analysis of the stochastic model without re-
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sorting to a mean �eld approximation. According to their model, the opinion of

each agent is modelled as a random variable taking values in a �nite set, evolving

as a Markov process with suitable transition rates a�ected by the neighbours' opin-

ions. For a given agent, the probability of moving to a certain opinion increases

proportionally to the number of the agent's neighbours who share that particular

opinion. The model was then extended in [7] with the introduction of the concepts

of in�uenceability, trustiness and stochastic social power, and in [8] with the anal-

ysis of the propagation of joint probabilities. The multi-agent Markovian model

developed by Bolzern, Colaneri and De Nicolao is the model upon which this thesis

is based, and it will be described in the next section.

2.2 Multi-agent Markovian model

A Markov chain is a stochastic process which describes a sequence of possible

events where the probability of each event depends only on the current state of

the system and not on its past states. This property is called Markov property.

In the multi-agent Markovian model, the opinion dynamics is described by a

continuous-time �nite-state Markov chain, where the transition rates of each agent

are dependent on the opinion of his/her neighbours. The transition rates are the

sum of two terms, which in this thesis are based on the following two assumptions:

1. The dynamics of the agents' opinion is in�uenced by the interactions with

other agents due to a single social network, e.g. Facebook. In particular,

one term of the transition rates accounts for the in�uence of an agent's

neighbours and is proportional to the fraction of his/her neighbours that

share a particular opinion;

2. In�uences due to any source exogenous to the network under scrutiny (e.g.

individual prejudice, information media, other social networks, etc.) can all

be lumped into a single constant term.
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The model

A matrix A is Metzler if its o�-diagonal elements are non-negative, i.e. aij ≥
0, ∀i 6= j. Moreover, a N × N Metzler matrix A is reducible if there exists a

permutation matrix P such that:

P ′AP =

[
A11 A12

0 A22

]
,

where A11 is a k×k matrix, 1 ≤ k ≤ N−1. A Metzler matrix that is not reducible

is called irreducible.

The interaction between the agents is described through a weighted graph

G = (N , E ,W ), where N = { 1, ..., N} is the set of nodes representing the agents,

E ⊆ N × N is the set of edges corresponding to reciprocal in�uences, and W =

[wrs] ∈ RN×N represents the interpersonal �trustiness�, i.e. how much credit agent

r gives to agent s and his/her opinion. In the sequel, it will be assumed that the

graph G is connected. In the so-called standard model, the trustiness is uniform:

wrs =

{
|N [r]|−1, (r, s) ∈ E

0, otherwise

where N [r] = {s ∈ N : (r, s) ∈ E} is the set of the neighbours of agent r, and

|N [r]| denotes its cardinality.

In the degree-weighted normalized model, the trustiness is dependent on the

neighbours' popularity, quanti�ed through their degree, and is given by:

wrs =

{
|N [s]| /

∑
i∈N [r] |N [i]|, (r, s) ∈ E

0, otherwise

The system state evolves according to a �nite-state continuous-time Markov

chain with transition rate matrix:

Q̃[r](t) = Q[r] + A[r](t). (2.1)

Q[r] ∈ RM×M is the transition rate matrix of agent r when isolated, modelling
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all the sources of in�uence on the agent's opinion that are not attributed to the

interaction with his/her neighbours in the network under scrutiny, according to

the second assumption listed at the beginning of section 2.2. The elements q
[r]
ij ≥ 0,

i 6= j, are de�ned as:

Pr
(
σ[r](t+ dt) = j | σ[r](t) = i

)
= q

[r]
ij dt+ o(dt), i 6= j,

where σ[r](t) ∈ M = {1, 2, ...,M} is the opinion (i.e. state) of agent r at time

t, while the symbol Pr(A|B) denotes the conditional probability of the random

event A given the event B. The diagonal elements of Q[r] are de�ned as q
[r]
ii =

−
∑M

j=1,j 6=i q
[r]
ij , so that Q

[r] is a Metzler matrix satisfying the equation Q[r]1M = 0.

The symbol 1M denotes the M -dimensional column vector with all elements equal

to 1. Throughout the rest of the thesis, it will be assumed that q
[r]
ij > 0, ∀i 6= j,

in order to guarantee irreducibility of Q[r], which is a necessary condition for the

ergodicity of the Markov process.

In the case of binary opinion, i.e. M = 2, it is convenient to use the so-called

(α, β)-parametrization introduced in [7], which de�nes:

α[r] = q
[r]
12 + q

[r]
21 β[r] =

q
[r]
21

q
[r]
12 + q

[r]
21

so that:

Q[r] = α[r]

[
−(1− β[r]) 1− β[r]

β[r] −β[r]

]
.

β[r] ∈ (0, 1) acts as a bias parameter: as β[r] approaches 1, the agent opinion

becomes more biased towards opinion σ[r] = 1, and viceversa when β[r] approaches

0. The second parameter α[r] > 0 can be seen as a time-scale parameter measuring

volatility, i.e. how �prone� is agent r to changing opinion.

The second term A[r](t) ∈ RM×M in equation (2.1) accounts for the in�uence

of the neighbours of agent r at time t, imposing the transition rates to opinion

j for agent r (excluding the individual contribution given by matrix Q[r]) to be

proportional to the number of his/her neighbours who share opinion j, weighted
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through the respective trustiness. For i 6= j:

a
[r]
ij (t) = λjη

[r]
∑
s∈N [r]

wrsIσ[s](t)=j

Iσ[s](t)=j =

{
1, if σ[s](t) = j

0, otherwise

and the diagonal elements are de�ned as a
[r]
ii (t) = −

∑M
j=1,j 6=i a

[r]
ij (t), such that

A[r](t)1M = 0.

The non-negative parameter η[r] represents the individual in�uenceability of

agent r, i.e. how much he/she is susceptible to the opinion of his/her neighbours.

An agent with η[r] = 0 is not in�uenced by the others and is e�ectively isolated.

As η[r] increases, agent r is more and more in�uenced by the opinion of others.

The non-negative parameter λj re�ects the interaction intensity among agents

regarding opinion j. In the context of this thesis, λj assumes values in [0, 1] and

it represents the fraction of messages in favour of opinion j made visible by the

network, with respect to the total number of messages in favour of j. In online

social networks, λj represents the e�ect of content-�ltering algorithms applied by

the network manager, which limit the fraction of posts in favour of opinion j to

which users are exposed. The extreme case λj = 0 corresponds to a total censorship

by the network manager of posts that are in favour of j, e�ectively stopping the

spread of opinion j through mutual interactions between users. Conversely, λj = 1

represents an un�ltered circulation of posts in favour of opinion j. Moreover, the

interaction intensity parameters acts as �centralized control knobs� which a�ect

the network globally, in contrast with the localized nature of the in�uence given

by the neighbours of an agent.

Due to its stochastic nature, the model can be conveniently analysed by means

of Monte Carlo simulations based on the Gillespie algorithm illustrated in chap-

ter 3.
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2.3 Theoretical analysis of the model

When M = 2 (binary opinion), the state of each agent at time t is completely

de�ned by a single scalar: the probability that the considered agent r has opinion

1 at time t, denoted with zr(t). It can be shown [7] that, if λj = λ, ∀j ∈M, then

z(t) =
[
z1(t) · · · zN(t)

]′
obeys:

ż(t) = −(F + λHL)z(t) + g,

where F = diag{α[r]}, g = col{α[r]β[r]}, H = diag{η[r]}, and L = IN − W .

The symbol diag{v[r]} denotes the diagonal matrix with the scalar elements v[r],

r ∈ {1, 2, ..., N}, on its diagonal, col{v[r]} indicates the column vector obtained by

stacking the scalars v[r], and IN is the N ×N identity matrix.

For t→ +∞, the solution of the di�erential equation converges asymptotically

to:

z̄(λ) = (IN + λF−1HL)−1z̄(0),

where z̄(0) = col{β[r]} is the vector of the probabilities when the agents are isolated
(λ = 0).

From z(t) it is straightforward to calculate the expected value at time t of the

vote share s1(t), i.e. the fraction of agents sharing opinion 1:

E[s1(t)] = E

[
n1(t)

N

]
=

1

N
1′Nz(t),

where n1(t) is the random variable describing the number of agents in opinion 1

at time t.

Given the value of λ, the expected value of s1(t) at steady-state is then calcu-

lated with:

E[s̄1(λ)] =
1

N
1′N z̄(λ). (2.2)
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Stochastic social power

Equation (2.2) can be rewritten as follows:

E[s̄1(λ)] =
N∑
r=1

ψr(λ)z̄r(0),

where, denoting with er(N) the r-th column of the N ×N identity matrix IN , the

scalar:

ψr(λ) :=
1

N
1′N(IN + λF−1HL)−1er(N)

can be interpreted as the stochastic social power [7] of agent r, representing the

contribution of the isolated bias z̄r(0) = β[r] to the steady-state expected vote

share, for a given value of λ.

In general, ψr(λ) is a proper rational function of λ, and depends both on the

graph topology and the ratios η[r]/α[r] of all the agents.

The stochastic social power essentially represents a measure of the in�uence of

each agent on the average behaviour of the network. For this reason, it lends itself

to be used as an index of centrality for assessing the importance of a given node

in a social network.

Vote share variance

Assuming M = 2, let vr(t) := Iσ[r](t)=1 and V (t) := E[v(t)v(t)′]. V (t) is the

correlation matrix of the random vector v(t) = col{vr(t)}. The diagonal element

Vrr(t) represents E[vr(t)vr(t)] = E[vr(t)], i.e. the probability that agent r has

opinion 1 at time t, while the o�-diagonal elements Vrs(t) represent E[vr(t)vs(t)],

i.e. the probability that agents r and s share opinion 1 at time t.

Assuming λj = λ, ∀j ∈ M, the time evolution of V (t) is the solution of the

following di�erential equation [8]:

V̇ (t) = F̂ (λ)V (t) + V (t)F̂ (λ)′ + gz(t)′ + z(t)g′ +D(V (t)),

where F̂ (λ) = −(F + λHL), and F , H, L and g have the same de�nitions intro-
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duced in section 2.2. The diagonal matrix D(V (t)) is given by:

D(V ) = diag
(
F̂ (λ)diag(V ) + g

)
−diag

(
diag

(
F̂ (λ)V + V F̂ (λ) + g(diag(V ))′ + diag(V )g′

))
.

The notation used in the previous expression is the following: if v is a vector,

V = diag(v) is a diagonal matrix with v on its diagonal, while if V is a square

matrix, v = diag(V ) is the column vector containing the diagonal elements of V .

The steady-state correlation matrix V̄ (λ) can be computed as the solution of

the equation:

F̂ (λ)V̄ (λ) + V̄ (λ)F̂ (λ)′ + gz̄(λ)′ + z̄(λ)g′ +D(V̄ (λ)) = 0.

Numerical methods which can e�ciently evaluate both the di�erential and

algebraic equations just presented can be found in [8]. From the correlation matrix

V (t) it is possible to compute the second-order moment of the vote share:

E[s21(t)] =
1

N2
E[1′Nv(t)v(t)′1N ] =

1

N2

∑
r

∑
s

Vrs(t),

and thus the variance:

σ2
s1

(t) = E[s21(t)]− (E[s1(t)])
2 =

1

N2

∑
r

∑
s

(Vrs(t)− Vrr(t)Vss(t)) .

Due to the ergodicity of the process, the steady-state variance depends only on

λ and can be calculated as:

σ̄2
s1

(λ) =
1

N2

∑
r

∑
s

(
V̄rs(λ)− V̄rr(λ)V̄ss(λ)

)
.

All the theoretical results just presented are valid under the hypothesis of unbi-

ased interaction intensity parameters, i.e. λj = λ, ∀j ∈M. At the time of writing,

no such results exist for the case of biased interaction intensity parameters.
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Chapter 3

Simulation Algorithm

Chapter 3 introduces Gillespie algorithm, a Monte Carlo method employed in

this thesis for carrying out numerical simulations of the multi-agent Markovian

model described in chapter 2. Then, section 3.2 provides some insights on the

computation of the contingency tables required for the calculation of indices of

association between agents.

3.1 Gillespie algorithm

Gillespie algorithm is an algorithm used to simulate stochastic processes that pro-

ceed by �jumps�, i.e. discrete movements with random arrival times. It was devel-

oped by Daniel Gillespie in [18, 19] with the intent to numerically simulate systems

of coupled chemical reactions. It is a Monte Carlo method, since it is based on gen-

erating random samples from a given probability distribution in order to determine

the outcome of each state-changing event in the system to be simulated.

The algorithm is well-suited for the simulation of the model introduced in

chapter 2, due to the fact that each agent is modelled as a Markov process and,

in view of the Markov property, the permanence time of the agent in a given state

follows an exponential distribution. In particular, the transition rate matrix of a
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generic agent r ∈ N is Q̃[r](t) = [q̃
[r]
ij (t)] ∈ RM×M , where:

q̃
[r]
ij (t) = q

[r]
ij + λjη

[r]
∑
s∈N [r]

wrsIσ[s](t)=j, i 6= j

q̃
[r]
ii (t) = −

M∑
j=1,j 6=i

q̃
[r]
ij (t)

The de�nition of each term can be found in section 2.2. In this model, the time

required to agent r for jumping away from state i is exponentially distributed with

parameter µ[r] = −q̃[r]ii .

Algorithm outline

Let P (tmin, s, j)dtmin be the probability at time t that the next change of opinion

will occur in the di�erential time interval (t+ tmin, t+ tmin + dtmin), it will involve

agent s, and the new opinion of agent s will be opinion j. The main steps of

Gillespie algorithm applied to the multi-agent Markovian model are:

Algorithm 1 Gillespie algorithm

Input: The simulation end time T , the initial state σ[r](0) ∈M, ∀r ∈ N
1: t← 0
2: while t < T do

3: µ← 0
4: for all r ∈ N do

5: i← σ[r](t)

6: µ[r] ← −q̃[r]ii
7: µ← µ+ µ[r]

8: end for

9: Extract from P (tmin, s, j) the time interval tmin to the next opinion change,
the agent s changing opinion, and the new opinion j of s.

10: t← t+ tmin
11: σ[s](t)← j
12: end while

One big advantage of Gillespie algorithm when applied to the multi-agent

Markovian model of chapter 2 lies in the fact that, in the hypothesis of keep-

ing �xed the values of λj, ∀j ∈ M, and of η[r], ∀r ∈ N , state-changing events
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have a �local� e�ect. In fact, whenever an agent changes opinion, only the agent's

neighbours are a�ected and thus, in step 6, there is no need to recompute the

values of µ[r] for every single agent in the network.

Gillespie presented in [18] two equivalent procedures for carrying out the ex-

tractions from the joint probability density function P (tmin, s, j) of step 9: the

direct method and the �rst-reaction method.

The direct method

The joint distribution P (tmin, s, j) can be rewritten as follows:

P (tmin, s, j) = P1(tmin)P2(s, j | tmin),

where P1(tmin)dtmin is the probability that the next opinion change will be in the

interval (t+ tmin, t+ tmin+dtmin), irrespective of which agent changes opinion and

his/her new opinion, while P2(s, j | tmin) is the probability that the involved agent

and opinion will be s and j, respectively, given that the opinion change occurs at

time t + tmin. In the system under study, P2(s, j | tmin) is actually independent

from tmin.

The direct method consists in extracting three random numbers x1, x2, x3 from

the uniform distribution U(0, 1). Then, tmin is sampled from P1(tmin), which is an

exponential distribution of parameter µ:

P1(tmin) = µe−µtmin

tmin =
1

µ
ln

(
1

x1

)

Given the independency from tmin, P2(s, j | tmin) can be rewritten as:

P2(s, j | tmin) = P3(s)P4(j | s).
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Both P3 and P4 are categorical distribution depending on the state of the system:

P3(s) =
[
µ[1]

µ
· · · µ[r]

µ
· · · µ[N ]

µ

]
P4(j | s) =

[
q̃
[s]
i1 (t)

µ[s]
· · · q̃

[s]
i,i−1(t)

µ[s]
q̃
[s]
i,i+1(t)

µ[s]
· · · q̃

[s]
iM (t)

µ[s]

]
, i = σ[s](t)

Thus, agent s can be determined as the integer for which:

s−1∑
r=1

µ[r] < x2µ ≤
s∑
r=1

µ[r],

while j is the integer for which:

j−1∑
k=1
k 6=i

q̃
[s]
ik (t) < x3µ

[s] ≤
j∑

k=1
k 6=i

q̃
[s]
ik (t),

where i was the opinion of agent s before the extraction.

Alternatively, the commuting agent s and his/her new opinion j can be deter-

mined with a single extraction from a categorical distribution with NM categories

and suitable event probabilities. An example of appropriate distribution is:[
µ
[1]
1

µ
· · · µ

[N ]
1

µ
· · · µ

[1]
M

µ
· · · µ

[N ]
M

µ

]
,

where:

µ
[r]
k =

{
q̃
[r]
ik (t), i = σ[r](t), if σ[r](t) 6= k

0, otherwise

In this case, denoting with c the index of the extracted category, the new opinion

and the commuting agent are given by:

j =
⌈ c
N

⌉
s = c−N(j − 1)

The �rst-reaction method

The �rst-reaction method consists in the extraction of N + 1 random numbers

x1, ..., xN+1 from U(0, 1), and the sampling from the exponential distributions
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Pr(t
[r]) = µ[r]e−µ

[r]t[r] , r ∈ N , of the �tentative event times�:

t[r] =
1

µ[r]
ln

(
1

xr

)
, r ∈ N ,

which are used to determine:

tmin = min{t[r]}, r ∈ N .

The commuting agent s is selected as the one with t[s] = tmin, while his new opinion

j is determined from xN+1 in the same way described in the direct method.

In general, the direct method is more computationally e�cient with respect

to the �rst-reaction method, because the latter requires the calculation of N log-

arithms, compared to the former in which only a single logarithm needs to be

computed.

3.2 Computation of the contingency tables

The calculation of indices for assessing the association between agents requires

the computation of the contingency table associated to each pair of agents in the

network. IfM = {1, ...,M} denotes the set of opinions available in the system, the

contingency table Y [rs] of agents r and s is a M ×M matrix listing the frequency

distribution of the agents' opinions at the end of a system realization, weighted by

the permanence time of the agents in the various opinions. The generic element

y
[rs]
ij of Y [rs] corresponds to the amount of time in which agent r was in opinion i

while agent s was in opinion j. It holds true that:

M∑
i

M∑
j

y
[rs]
ij = T, ∀r, s ∈ N ,

where T is the total simulation time, and N = {1, ..., N} is the set of all the agents
in the network. In total, there are N2 possible pairs of agents (r, s) ∈ N 2, but only
N(N−1)

2
contingency tables are actually needed, since the tables Y [rr], r ∈ N , do

not give any meaningful information, while each table Y [rs], r 6= s, is as informative
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as Y [sr].

As described in section 3.1, the system evolves in time steps extracted from

an exponential distribution dependent on the state and parameters of the system.

In the sequel, the symbol tk, k ∈ {0, ..., K}, will be used to indicate the time

instant in which the k-th event in the system occurred. k = 0 and k = K are

the only events not associated to a change of opinion in any of the agents in the

network, and the related time instants are set to t0 = 0 and tK = T . The time

interval between two consecutive events will be denoted with tmin,k = tk − tk−1,
k ∈ {1, ..., K}.

An ine�cient way of computing the contingency tables would be, at every

event k > 0, to update in each table Y [rs], r < s, r, s ∈ N , the element y
[rs]
ij to

y
[rs]
ij +tmin,k, where i = σ[r](tk−1), i.e. the opinion of agent r in the interval [tk−1, tk),

and j = σ[s](tk−1). The low e�ciency is given by the fact that, with this method,
N(N−1)

2
memory accesses are required for each of the K events occurred during a

realization of the system evolution.

A slightly more e�cient way of proceeding makes use of the fact that, in view

of how Gillespie algorithm works, at each time step no more and no less than one

agent changes opinion. Let the scalar τr, r ∈ N , denote the time elapsed since

agent r last changed opinion. Algorithm 2 shows in pseudo-code form the main

steps for calculating the contingency tables of the agents. As already noted, the

generic table Y [rs] is as informative as Y [sr], and thus there is no need to compute

both of them. To account for this, in steps 17 and 28 only table Y [rs] is updated

if r < s and only Y [sr] if r > s.

With this procedure, each of the �rst K − 1 events in the system requires

N − 1 memory accesses to update the tables, plus the operations to be carried

out on the scalars τr, r ∈ N , which scale as O(N). The last event (end of the

simulation) requires N(N−1)
2

memory accesses as with the previous method. Thus,

the complexity of this algorithm isO(NK+N2), whereas for the previous algorithm

it was O(N2K).
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Algorithm 2 Contingency tables computation

Input: The time instants tk of the events in the system, k ∈ {1, ..., K}
1: for all r ∈ N do

2: τr ← 0
3: for all s ∈ N do

4: Initialize to 0 the table Y [rs]

5: end for

6: end for

7: t0 ← 0
8: for k = 1 to K − 1 do
9: tmin,k ← tk − tk−1

10: for all r ∈ N do

11: τr ← τr + tmin,k
12: end for

13: r ← The agent who changed opinion at tk
14: i← σ[r](tk−1)
15: for all s ∈ N − {r} do
16: j ← σ[s](tk−1)

17: y
[rs]
ij ← y

[rs]
ij + min{τr, τs}

18: end for

19: τr ← 0
20: end for

21: tmin,K ← T − tK−1
22: for all r ∈ N do

23: τr ← τr + tmin,K
24: end for

25: for all (r, s) ∈ N 2 do

26: i← σ[r](T )
27: j ← σ[s](T )

28: y
[rs]
ij ← y

[rs]
ij + min{τr, τs}

29: end for
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Chapter 4

Networks

Chapter 2 introduced the multi-agent Markovian model governing the opinion

dynamics of the agents, which describes the interactions between them through an

underlying network where nodes corresponded to agents and links corresponded to

reciprocal in�uences between them. This chapter elaborates further on networks,

describing the main features found in social networks and introducing the two

models for generating synthetic social networks that have been used throughout

the rest of this thesis. Then, in section 4.2, it is introduced the topic of community

detection and Louvain algorithm, for judging in subsequent chapters the e�ect of

the community structure on an opinion manipulation attack, and the e�ect of an

attack on the opinion distribution of the communities. Another important topic

is the identi�cation of the most in�uential nodes in the network, which is treated

in section 4.3 with the introduction of centrality indices.

Remarks on networks

A network is a collection of nodes connected by links. The topological structure of

a network with N nodes can be represented with a N ×N matrix called adjacency

matrix, which has elements: aij 6= 0 if there is a link from node i to node j, and

aij = 0 otherwise.

If all the links are bidirectional, meaning that for every link from node i to

node j there exists a link from j to i, the network is said to be undirected and the

adjacency matrix is symmetric, otherwise the network is said to be directed.
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If links do not have weights (and there are no multi-links or self-loops), elements

of the adjacency matrix can be either 1 (link present) or 0 (link absent), and the

network is said to be binary. Otherwise, if there are weights attached to links, the

network is said to be weighted and the generic element aij of the adjacency matrix

is equal to the weight of the link from node i to node j.

4.1 Social networks models

A social network is a social structure where nodes represent people and links

represent relationships between them, like �friend of�, �colleague of�, etc. In online

social networks, users are related to pro�les (nodes) and they can connect with

each other by �sending friend requests�. In many social networks, like Facebook,

this type of relationship is symmetrical, meaning that if user i is linked to user j,

then also user j is linked to user i.

Essential characteristics for social networks are believed to include [20, 21]:

� A broad degree distribution;

� An assortative mixing pattern;

� A high clustering coe�cient;

� A short average path length;

� The presence of a community structure;

� A broad community size distribution.

The degree ki of a node i is the number of links incident to i. The degree distri-

bution pk of a network is a probability distribution which provides the probability

that a randomly chosen node of the network has degree k, i.e.:

pk =
Nk

N
,

where N is the total number of nodes in the network, and Nk is the number of

them with degree equal to k. A broad degree distribution is a distribution where
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the degree can span several orders of magnitude. An example of a broad degree

distribution is the power-law distribution:

pk ∼ k−γ, γ > 0.

A network with assortative mixing is a network where nodes tend to connect

with other nodes with a similar degree, i.e. high-degree nodes mostly tend to

connect to other high-degree nodes, and viceversa. Assortativity can be assessed

through the degree correlation function:

knn(k) =
∑
k′

k′Pr(k′|k),

where Pr(k′|k) is the probability that a link of a node with degree k connects to

a node with degree k′. Thus, knn(k) is the average degree of the neighbours of all

the nodes with degree k. In networks with assortative mixing, knn(k) increases

with k.

The clustering coe�cient is a measure of the local link density in a network.

The clustering coe�cient Ci of node i is de�ned as:

Ci =
2Li

ki(ki − 1)
,

where Li is the number of links between the neighbours of node i, and ki is its

degree. The measure can be extended to the whole network by taking the average

of Ci over all nodes i, and it represents the probability that two neighbours of a

randomly selected node link to each other.

A path is a sequence of nodes such that the elements of each pair of consecutive

nodes are adjacent. The length of the shortest path between two nodes i and j,

i.e. the one which has minimum length, is called the distance between node i and

node j, and it is indicated with the symbol dij. The average path length davg is

the average distance between all pairs of nodes in the network:

davg =
1

N(N − 1)

∑
i 6=j

dij.

25



A network with �short� average path length indicates that distances are orders of

magnitude smaller than the size of the network N , which typically means that davg

scales as log(N).

In the context of social networks, a community is a locally dense connected

subgraph of a network. The size of a community is the number of nodes which

belong to that community. Similar to the degree distribution, a community size

distribution is broad if it spans multiple orders of magnitude.

In order to carry out the simulations of the system under study in a setup

similar to real social networks, two models for generating synthetic social net-

works which possess most of the previously listed characteristics has been chosen:

Lancichinetti - Fortunato - Radicchi networks and Toivonen et al. networks.

Lancichinetti - Fortunato - Radicchi networks

Lancichinetti - Fortunato - Radicchi networks (which will be called �LFR networks�

throughout the rest of the document) have been developed in [21] as a benchmark

for community detection algorithms. LFR networks account for heterogeneity in

degree distribution and, di�erently from many other social network models, they

also come with a built-in community structure and a heterogeneous community

size distribution.

The user selects the number of nodes N in the network, the average degree

kavg of the network, the exponents for the degree distribution and community size

distribution power-laws γ and β, and the mixing coe�cient µ.

The algorithm for generating LFR networks employs the con�guration model [22]

in order to construct networks with a pre-determined degree distribution. The pro-

cedure consists of two steps: First a degree extracted from the desired distribution

is assigned to each node, represented as �half-links�. In the case of LFR networks

the degree distribution is a power-law with exponent γ. Then, a random pair of

�half-links� is selected and the two nodes connected. This procedure is repeated

until all �half-links� have been paired. The con�guration model may introduce

unwanted features like self-loops (links connecting a node to itself) and multi-links

(multiple links between the same pair of nodes), which have to be handled appro-

priately. However, the expected number of self-loops and multi-links goes to 0 as
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the network size N approaches ∞.

A LFR network is constructed through the following steps:

1. Each node degree is extracted from a power-law distribution with exponent

γ, with the extremes of the distribution chosen in order to achieve the desired

average degree kavg. The nodes are then connected using the con�guration

model;

2. Each node shares a fraction 1−µ of its links with the nodes belonging to its

community, and a fraction µ of the links with the other nodes in the network;

3. The sizes of the communities are extracted from a power-law distribution

with exponent β, with the additional constraint that the sum of all sizes

must be equal to the the number N of nodes in the network;

4. Initially, all the nodes are not assigned to any community. In the �rst it-

eration, a node is assigned to a random community. If the community size

exceeds the number of neighbours of the node inside the community, it enters

the community, otherwise it remains unassigned. In successive iterations a

unassigned node is again placed inside a random community, but this time,

if the community is complete, a randomly selected node is kicked out of it.

The procedure stops when there are no more unassigned nodes;

5. To enforce the condition given by the mixing coe�cient µ, several degree-

preserving rewiring steps are performed.

Toivonen et al. networks

Toivonen et al. networks have been developed in [20] with the objective to propose

a simple model for generating undirected networks which reproduces all the main

characteristics of social networks.

The algorithm consists of two growth processes: random attachment and pref-

erential attachment. The local nature of the latter give rise to high clustering,

assortativity and community structure.

The algorithm steps are:
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1. Start with a �seed� network of N0 nodes;

2. Pick on average mr ≥ 1 random vertices as �initial contacts� of the node to

be added (random attachment);

3. Pick on average ms ≥ 0 neighbours of each initial contact as �secondary

contacts� of the node to be added (preferential attachment);

4. Connect the new node to the initial and secondary contacts;

5. Repeat steps 2-4 until the network has grown to the desired size.

In steps 2 and 3, any non-negative distribution with expected valuesmr andms

can be used for selecting the number of initial and secondary contacts, respectively.

However, if the distribution of the number of secondary contacts has a long tail, it

may happen that the extracted number of secondary contacts is higher than the

degree of the initial contact, biasing the distribution towards smaller degrees.

For the formation of an appreciable community structure, it is essential that the

number of links to the neighbours of an initial contact varies, and that sometimes

more than one initial contact are chosen in order for the node to be added to act

as a �bridge� between communities.

4.2 Community detection

The community structure of a given network is often unknown a-priori. Given

the topology of the network, being able to determine (if present) the underlying

community structure can be helpful for devising speci�c opinion manipulation

strategies based on that structure, and also to be able to compare the e�cacy of

an attack within the di�erent communities.

Community detection algorithms can be divided in two main classes, based

on whether the structure to be identi�ed allows for the communities to overlap.

Examples of algorithms for overlapping communities detection are the clique per-

colation algorithm [23] and the link clustering algorithm [24]. For simplicity, in

this thesis only non-overlapping communities will be considered.
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Two possible procedures for tackling the problem of non-overlapping commu-

nity detection are hierarchical clustering and modularity maximization.

Hierarchical clustering is based on the de�nition of a similarity matrix, whose

elements indicate the �distance� of any pair of nodes in the network, and then

groups of nodes with high similarity are iteratively identi�ed. Agglomerative algo-

rithms, like Ravasz algorithm [25], construct communities by merging nodes with

high similarity, while divisive algorithms, like Girvan-Newman algorithm [26], iso-

late communities by removing links with low similarity.

Modularity maximization is based on a quantity called modularity, which mea-

sures how much the link density of a given community deviates from the link

density of the same set of nodes in a randomly rewired network. The underlying

assumption is that randomly wired networks lack an inherent community structure.

For a weighted network, the modularity M of a given partition can be calculated

as follows:

M =
1

2m

∑
ij

(
aij −

kikj
2m

)
δ(ci, cj),

where m is the sum of the weights of all the links in the network, aij is the weight

of the link between node i and node j, ki and kj are the sum of the weights of the

links incident to nodes i and j, δ(·, ·) is the Kronecker delta function, i.e. δ(a, b) = 1

if a = b and 0 otherwise, and ci and cj are the communities to which nodes i and

j belong to.

Modularity maximization algorithms, like the greedy algorithm proposed by

Newman [27] and Louvain algorithm [28], aim at obtaining a good community

partition through an approximate maximization of the modularity M . Louvain

algorithm has been adopted throughout this thesis for community detection, given

its computational e�ciency.

Louvain algorithm

Louvain algorithm is a modularity optimization algorithm proposed by Blondel et

al. [28], and it consists of two iteratively repeated steps.

In the �rst step each node is assigned to a community of its own. Then, for

each node i, it is evaluated the change in modularity ∆M of placing node i in the
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community of one of its neighbours j. Node i will be moved in the community

where the gain in modularity is the largest, but only if it is positive. This process

is applied to all the nodes until no further improvements are possible.

The change in modularity ∆M of moving node i in community c is given by:

∆M =

(
Σin + ki,in

2m
−
(

Σtot + ki
2m

)2
)
−

(
Σin

2m
−
(

Σtot

2m

)2

−
(
ki

2m

)2
)
,

where Σin is the sum of the weights of the links inside c, Σtot is the sum of the

weights of the links incident to nodes in c, ki is the sum of the weights of the links

incident to node i, ki,in is the sum of the weights of the links from i to nodes in c,

and m is the sum of the weights of all the links in the network.

In the second step of the algorithm a new network is constructed, where the

nodes correspond to the communities identi�ed in the �rst step and the weights

of the links between nodes are given by the sum of the weights of the links which

connected the communities in the original network. Links that were internal to

communities give rise to weighted self-loops. These two steps are iteratively re-

peated until there are no more improvements in modularity.

As an output example, Figure 4.1 shows the result of the application of Louvain

algorithm to one of the LFR networks used in the simulations for this thesis,

highlighting with di�erent colors nodes belonging to di�erent communities.

4.3 Centrality indices

Centrality indices are metrics used to measure the relative importance of the nodes

belonging to a network. In the speci�c case of this thesis, centrality indices are

employed with the objective to rank the agents based on their �in�uence� in the

network, and then to select the top K of them to be controlled, i.e. to be polarized

towards the speci�c opinion to be spread.
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(a)

(b)

Figure 4.1: (a) The built-in community structure of a LFR network. (b) The com-
munity structure of a LFR network identi�ed using Louvain algorithm. Nodes be-
longing to di�erent communities are �lled with di�erent colors. The LFR network
has 1000 nodes, average degree kavg = 10, mixing coe�cient µ = 0.25, exponent of
the degree distribution γ = −2, and exponent of the community size distribution
β = −1. The modularity attained by Louvain algorithm in (b) is M = 0.6738.
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Degree

The degree centrality Cdeg of a node i is:

Cdeg(i) = ki,

where ki is the degree of node i, i.e. the number of links incident to i.

Operatively, in the case of a binary and undirected network, the degree of node

i can be calculated as follows:

ki =
N∑
j=1

aij,

where N is the network size, aij is the (i, j) element of the adjacency matrix A of

the network, and i, j ∈ {1, ..., N}.
In the context of social networks, a high-degree node corresponds to a so-called

�in�uencer�, i.e. a person with many friends and acquaintances.

Strength

If the considered network is weighted, the generalization of the degree centrality

is the strength centrality, which is the sum of the weights of all the links incident

to a given node. Moreover, if the network is also directed, a distinction can be

done between the in-strength, which is the sum of inward link weights, and the

out-strength, which is the sum of outward link weights.

Betweenness

The betweenness centrality Cbetw of a node i is:

Cbetw(i) =
∑
r 6=s
i 6=r
i 6=s

σrs(i)

σrs,tot
,

where σrs,tot is the total number of shortest paths from r to s, and σrs(i) is the

number of them which pass through i.

In undirected networks, a path σ is a sequence of nodes such that the elements
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of each pair of consecutive nodes are adjacent. If the network is also binary, the

length of the path is given by the number of edges belonging to the path. A

shortest path between two nodes r and s is a path which starts in r, ends in s,

and minimizes the path length.

The �rst formal description of the betweenness centrality is attributed to Free-

man [29]. In the context of social networks, a node with high betweenness acts as

a bridge for the �ow of information between the people it connects.

Coreness

A node has coreness centrality equal to k (or, equivalently, k-coreness) if it belongs

to a k-core of the network but not to a (k + 1)-core.

A k-core is a maximal connected subnetwork in which all nodes have internal

degree greater or equal than k.

The concept of k-core was �rst introduced by Seidman [30] in order to identify

the most cohesive subsets in a social network. Further studies, such as [31], found

that the most e�cient �spreaders� are often those located in the core of the network.

Eigenvector centrality

The eigenvector centrality, often abbreviated with the acronym EVC, is a centrality

measure where the score of a given node is proportional to the sum of the score of

its neighbours, meaning that the importance of a node depends on how many and

how important are the nodes it connects with.

The EVC γi of node i is thus given by:

γi =
1

λ

∑
r∈N

airγr,

where air is the (i, r) element of the adjacency matrix A, N is the set of all the

nodes in the network, and λ ∈ R.
Letting γ =

[
γ1 ... γN

]′
, N = |N |, the previous equation can be rewritten

in matrix form:

Aγ = λγ
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If the network is connected, the only solution with γi > 0, i ∈ N , is given by the

eigenvector of the greatest eigenvalue λ.

PageRank, Google's famous web page ranking algorithm, is essentially similar

to the eigenvector centrality.
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Chapter 5

Manipulation of the Average

Opinion

Chapter 5 illustrates the results obtained by carrying out opinion manipulation

attacks on a social network modelled by the multi-agent Markovian model intro-

duced in chapter 2 and simulated using Gillespie algorithm described in chapter 3.

Section 5.1 introduces the topic by presenting the main features of an attack and

the parameters of interest. The subsequent sections investigate the impact of vary-

ing the main parameters of an attack, such as the number of controlled agents, the

agents selection criterion, etc. Lastly, section 5.6 describes brie�y some peculiari-

ties introduced by the presence of a community structure in the social network.

5.1 Introduction

In the context of this thesis, a manipulation attack carried out on a social network

consists in the selection of a certain number of agents to be controlled, with the

objective to shift the average opinion of the network towards a speci�c direction.

In the sequel, it will be assumed that agents can only adopt opinions in the set

M = {1, 2}. Assuming that the opinion with index 1 is the one to be promoted,

it is denoted with the symbol s1(t) the vote share at time t, i.e. the fraction of

agents that have opinion 1 at time t with respect to the total number of agents in

the network. Thus, the main objective of an attack is to manipulate the opinion
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dynamics in order to maximize E[s̄1(λ)] = µ̄s1 , where s̄1(λ) is the steady-state

value of the vote share as described in section 2.3. Of course, given a �xed amount

of expendable resources (e.g. the number of controlled agents), the larger is µ̄s1

achieved by an attack, the better. The expected value of the vote share is not

the only variable of interest: the dispersion of the vote share around its mean,

quanti�ed through the vote share variance σ2
s1

(t) and in particular its steady-state

value σ̄2
s1

(λ), plays a crucial role on being able to predict with a relative degree of

con�dence the actual outcome of a measure on the network, e.g. the result of an

election in the hypothesis that opinion 1 and 2 represent preferences in a bipartisan

election.

Prior to the attack, it is assumed that all the agents in the network are homo-

geneous with isolated transition rate matrix:

Q[r] :=

[
−1 1

1 −1

]
, r ∈ N = {1, ..., N},

and individual in�uenceability η[r] := η > 0. Using the (α, β)-parametrization

introduced in section 2.2, it is apparent that agents have a bias parameter β[r] =

0.5, meaning that they are not biased towards any speci�c opinion, and volatility

parameter α[r] = 2. The trustiness wrs between the agents depends on whether

the standard or the degree-weighted normalized model is adopted. Throughout

the rest of the thesis the shorthands �std� and �dwn� will be used for referring to

the two types of trustiness models. For the rest of the current chapter, it is also

assumed that the interaction intensity parameters are unbiased, and there is no

�ltering action exerted by the network manager, i.e. λj = 1, ∀j ∈M.

The simulations of the attack have been carried out on two di�erent models

of synthetic social networks: LFR and Toivonen et al. networks, both introduced

in section 4.1. All the synthetic networks employed in the simulations have been

generated using the same set of parameters, chosen in order to have a similar

average degree in both the network types:

� LFR networks: network size N = 1000, desired average degree k̄avg = 10,

mixing coe�cient µ = 0.25, exponent of the degree distribution γ = −2, and

exponent of the community size distribution β = −1;
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� Toivonen et al. networks: network size N = 1000, number of initial con-

tacts k1 ∈ {1, 2, 3} of a given node extracted from the discrete distribution[
0.7 0.2 0.1

]
(mr = 1.4 initial contacts, on average), and number of sec-

ondary contacts k2 ∈ {0, 1, 2, 3, 4} extracted from the discrete distribution[
0.13 0.14 0.13 0.2 0.4

]
(ms = 2.6 secondary contacts per initial con-

tact, on average).

The LFR network employed in many of the simulations had actual average degree

kavg = 9.66, clustering coe�cient C = 0.3585, average path length davg = 3.2379,

and 18 communities with sizes ranging between 16 and 95 members, identi�ed

with modularity M = 0.6738 by using Louvain algorithm described in section 4.2.

The Toivonen et al. network employed in many of the simulations had actual

average degree kavg = 9.608, clustering coe�cient C = 0.4832, average path length

davg = 3.5207, and 19 communities with sizes ranging between 31 and 97 members,

identi�ed with modularity M = 0.5428. For comparison, a 2009 snapshot [32] of a

Facebook subnetwork composed by 63 392 nodes had average degree kavg = 12.886,

clustering coe�cient C = 0.2218, average path length davg = 4.3219, and 63

communities with sizes ranging between 3 and 14 140 members, identi�ed with

modularity M = 0.6361. Figure 5.1 shows the cumulative degree distribution of

each of the three networks.

The strategy employed in the opinion manipulation attack is characterized by

two factors: the number K of controlled agents in the network, and the criterion

used to select the K agents. A controlled agent has isolated transition rate matrix

set to:

Q[r] :=

[
−10−6 10−6

106 −106

]
, r ∈ C ⊂ N ,

where C denotes the set of the controlled agents. Those agents are highly polarized

towards opinion 1, with bias parameter β[r] ≈ 1, and due to a very high volatility

(α[r] ≈ 106) they virtually never leave opinion 1, because even if they were to

change opinion, they would immediately return back to opinion 1. Moreover,

controlled agents have very low in�uenceability, e.g. η[r] = 10−6, r ∈ C, so that

they are basically unin�uenced by the neighbours.

Equation 2.2 allows to compute analytically the theoretical steady-state value
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Figure 5.1: Cumulative degree distribution of a LFR network (a), a Toivonen et
al. network (b), and a 2009 snapshot [32] of a Facebook subnetwork (c).

38



µ̄s1 of the mean vote share, given the model and attack parameters. Thus, denoting

with 2N the power set of N , i.e. the set of all the subsets of N , it is possible to

determine a function f : 2N → [0, 1] that relates the set of controlled agents

C ⊆ N to the value of µ̄s1 achieved by the attack. Since 2N is a �nite set, for

all K ∈ {1, ..., N} it exists at least one optimal set Co ∈ 2N with cardinality K

that maximize f(C). Let A be an algorithm that, given K, the model parameters,

and the network topology, returns one optimal set Co for the K controlled agents.

Notice thatA always exists, because it is always possible to �nd an optimal solution

for the problem by trying all the combinations of K agents. However, the brute-

force approach is computationally prohibitive, requiring in total
(
N
K

)
trials (if N =

1000 and K = 10,
(
N
K

)
≈ 2.63 ·1023). In this thesis, the centrality indices described

in section 4.3 will be employed as heuristics for approximating A. All the agents
in the network are sorted in decreasing order according to the chosen centrality

index, and then the �rst K of them are selected as controlled agents.

5.2 Impact of the centrality index

In this section, six di�erent attack strategies will be taken in consideration. Four

strategies are based on standard centrality indices, considering the social network

as binary and undirected: degree, betweenness, coreness, and eigenvector central-

ity. The remaining two strategies consider the network as weighted and directed,

ordering the agents according to the importance given to them by their neighbours,

quanti�ed through the trustiness. The quantity
∑

swsr, s ∈ N [r], corresponds to

the in-strength of node r, i.e. the sum of the weights of the links pointing towards

node r, where the weight of a generic link from r to s is given by the trustiness

wrs, and N [r] denotes the set of the neighbours of agent r. Notice that, in gen-

eral, wrs 6= wsr. Since there are two possible models for the trustiness between

agents, the standard and the degree-weighted normalized trustiness models, there

are also two di�erent formulations of the strength that can be used as an index of

centrality.

Figure 5.2 and Figure 5.3 show the results obtained varying the centrality index

on a LFR network and a Toivonen et al. network, respectively. The remaining

simulation parameters have been set to in�uenceability η = 10, degree-weighted
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normalized trustiness model, and K = 10 controlled agents.

The theoretical steady-state mean µ̄s1 and standard deviation σ̄s1 of the vote

share s1(t) can be calculated as described in section 2.3. The two quantities can

also be experimentally estimated from a long-enough realization of the process.

In the sequel, the experimental mean and standard deviation of the vote share at

steady-state will be indicated with the symbols µ̂s1 and σ̂s1 . The values µ̄s1 , σ̄s1 ,

µ̂s1 and σ̂s1 relative to the simulations of Figure 5.2 and Figure 5.3 can be found in

Table 5.1, along with the aggregated stochastic social power ψCA of the controlled

agents, calculated as:

ψCA =
∑
r∈C

ψr(λ),

where ψr(λ) is the stochastic social power of agent r as described in section 2.3.

µ̂s1 µ̄s1 σ̂s1 σ̄s1 ψCA
degree 0.7241 0.7261 0.0434 0.0442 0.4522

betweenness 0.7313 0.7333 0.0423 0.0424 0.4665
coreness 0.6307 0.6280 0.0604 0.0648 0.2560

eigenvector 0.6426 0.6434 0.0614 0.0628 0.2868
strength (std) 0.7244 0.7242 0.0448 0.0450 0.4484
strength (dwn) 0.7279 0.7289 0.0433 0.0437 0.4578

(a)

µ̂s1 µ̄s1 σ̂s1 σ̄s1 ψCA
degree 0.7417 0.7427 0.0321 0.0313 0.4854

betweenness 0.7395 0.7425 0.0310 0.0314 0.4850
coreness 0.7220 0.7229 0.0378 0.0376 0.4457

eigenvector 0.7421 0.7427 0.0308 0.0313 0.4854
strength (std) 0.7440 0.7433 0.0316 0.0314 0.4866
strength (dwn) 0.7431 0.7424 0.0309 0.0315 0.4848

(b)

Table 5.1: Experimental mean µ̂s1 and standard deviation σ̂s1 of the vote share and
their theoretical steady-state values µ̄s1 and σ̄s1 , for di�erent centrality indices, in
a LFR network (a) and a Toivonen et al. network (b). The last column of the
table contains the stochastic social power ψCA of the controlled agents.

In the LFR network of Figure 5.2, the betweenness centrality achieved the high-

est value for the mean vote share, both experimentally and theoretically, although
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Figure 5.2: Time evolution of the vote share s1(t) in a LFR network using as
centrality index: degree (a), betweenness (b), coreness (c), eigenvector centrality
(d), strength based on the standard trustiness model (e), and strength based on
the degree-weighted normalized trustiness model (f). The gray lines represent the
ten single realizations. The blue line is the average of the realizations. The black
dashed line corresponds to the theoretical mean vote share µ̄s1 . The orange dashed
lines are traced at ±2σ̄s1 .
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Figure 5.3: Time evolution of the vote share s1(t) in a Toivonen et al. network using
as centrality index: degree (a), betweenness (b), coreness (c), eigenvector centrality
(d), strength based on the standard trustiness model (e), and strength based on
the degree-weighted normalized trustiness model (f). The gray lines represent the
ten single realizations. The blue line is the average of the realizations. The black
dashed line corresponds to the theoretical mean vote share µ̄s1 . The orange dashed
lines are traced at ±2σ̄s1 .
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with a small margin over degree and the two strength centrality indices. In fact,

further simulations with the same set of parameters but on di�erent realizations of

the underlying LFR network showed that the �best� centrality index varies depend-

ing on the network topology. Regardless, degree, betweenness and the two types of

strength consistently got very high and very similar results in simulations on LFR

networks, while coreness and eigenvector centrality consistently achieved lower re-

sults. On the Toivonen et al. network, the results were very close for the whole set

of indices, and comparable to those obtained in the LFR counterpart. The best

result for the network of Figure 5.3, experimentally and theoretically, came from

the strength centrality based on the standard trustiness model, but simulations

on di�erent realizations of the network showed that also for the Toivonen et al.

network the most e�ective index depends on the speci�c topology of the network,

and it can be any of the investigated indices with the exception of the coreness

centrality which consistently got slightly lower results. The fact that, in both LFR

and Toivonen et al. networks, the most e�ective index depends on the network

topology proves that none of the investigated centrality indices is equivalent for

every topology to the algorithm A described in section 5.1.

Figures 5.4a-b display the correlation between the degree and betweenness cen-

trality in the two networks employed in the simulations, which show that the two

indices are highly correlated. Similar results can be obtained comparing degree

and betweenness with the two types of strength, in both LFR and Toivonen et

al. networks, explaining the similarity in the results for the four indices. How-

ever, degree, betweenness and strength seem to be less correlated with coreness

and eigenvector centrality in LFR networks, as it is apparent from Figures 5.4c-d

and Figures 5.4e-f. On the contrary, in Toivonen et al. networks, the eigenvector

centrality is highly correlated with betweenness and the rest of the indices, while

coreness has high correlation with betweenness only in the upper-right corner of

the �gure, obtaining results comparable to the other indices only when the number

of controlled agents K is not very high. Lastly, as it can be noticed by looking at

Figures 5.4c-d, it happens frequently that there are multiple agents who achieve

the highest value of coreness, thus it is important to keep in mind that the actual

performance of the coreness centrality index, in both LFR and Toivonen et al.

networks, depends on the criterion used to select the K agents to control among
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those who got the highest coreness score.

The results suggest that degree, betweenness and the two types of strength are

able to grasp some features of the network that are important for the e�ectiveness

of the attack, while eigenvector centrality in LFR networks and coreness central-

ity in both network topologies seem to pick on less e�ective network features,

consequently obtaining lower results.

5.3 Impact of the number of controlled agents

At a �rst glance, the e�ect on the attack of varying the number of controlled agents

K is relatively straightforward: an increase of K determines a larger number of

uncontrolled agents directly in�uenced via links connected to controlled agents,

which ultimately increases the e�cacy of the attack.

Figure 5.5 shows the time evolution of the vote share s1(t) on a LFR network

with in�uenceability η = 10, degree-weighted normalized trustiness model and

betweenness as centrality index, for K = 10 and K = 100 controlled agents.

The same set of simulations but carried out on a Toivonen et al. network can

be seen on Figure 5.6. The stochastic social power of the controlled agents and

the experimental and theoretical values of the steady-state mean and standard

deviation of s1(t) can be found in Table 5.2. In the LFR network, with K = 100,

the vote share is about 90% in favour of opinion 1, much higher than its expected

value of N+K
2N

= 0.55 in case of non-interacting agents. From the point of view of

the attacker, increasing K also has a bene�cial e�ect on the dispersion of the vote

share, which decreases as the number of controlled agents grow.

Table 5.3 lists the mean and standard deviation of the vote share resulted from

simulations on LFR and Toivonen et al. networks with K = 100, η = 10, degree-

weighted normalized trustiness model, and either betweenness or the two types of

strength as centrality index. While with K = 10 the simulations on the Toivonen

et al. network obtained results comparable to the LFR network counterpart (see

Table 5.1), when the number of controlled agents is increased to 100 the latter

network topology obtains noticeably higher results. It is still an open question the

speci�c reasons why the LFR topology achieves better results for high values of K,

but one possible explanation lies in the speci�c shape of the degree distribution
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Figure 5.4: Scatter plots showing the correlation between degree centrality and
betweenness centrality (a, b), between coreness centrality and betweenness cen-
trality (c, d), and between eigenvector centrality and betweenness centrality (e, f).
Figures on the left (a, c, e) are relative to a LFR network, while �gures on the
right (b, d, f) are relative to a Toivonen et al. network. Each �gure contains all
the N agents of the network.
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Figure 5.5: Time evolution of the vote share s1(t) in a LFR network for K = 10
(a) and K = 100 (b) controlled agents. The gray lines represent the ten single
realizations. The blue line is the average of the realizations. The black dashed line
corresponds to the theoretical mean vote share µ̄s1 . The orange dashed lines are
traced at ±2σ̄s1 .
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Figure 5.6: Time evolution of the vote share s1(t) in a Toivonen et al. network
for K = 10 (a) and K = 100 (b) controlled agents. The gray lines represent the
ten single realizations. The blue line is the average of the realizations. The black
dashed line corresponds to the theoretical mean vote share µ̄s1 . The orange dashed
lines are traced at ±2σ̄s1 .
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of the two investigated network topologies. For relatively low values of K, the

average degree of the controlled agents is similar for the two types of networks,

but as K grows the di�erence increases and the LFR network presents a higher

average degree. Table 5.3 also shows that in the LFR network the two types

of strength yield the best mean vote share, both experimentally and theoretically,

while forK = 10 the most e�ective index on the same network was the betweenness

centrality. Thus, the relative e�cacy of a given centrality index, compared to the

others, depends not only on the network topology as proved in section 5.2, but

also on the number K of controlled agents.

It is interesting to note that the �rst few controlled agents are responsible for

a signi�cant portion of the overall e�ect on the network, while increasing K gives

a diminishing return in the e�cacy of the attack. Figure 5.7 shows the results of

eighty realizations carried out with di�erent sets of parameters. Each line consists

of ten simulations, executed with K ∈ {10, 20, ..., 100}. With the most �extreme�

set of parameters (Toivonen et al. network, degree-weighted normalized model,

η = 10, degree centrality), when K = 10, µ̂s1 goes from the baseline value of

0.5 (i.e. the theoretical value when all agents are homogeneous and unbiased) up

to 0.74, while it reaches µ̂s1 = 0.8649 when K is increased to 100. The �rst 10

selected agents are thus responsible for about 66% of the overall increase of µ̂s1 ,

µ̂s1 µ̄s1 σ̂s1 σ̄s1 ψCA
K = 10 0.7331 0.7333 0.0427 0.0424 0.4665
K = 100 0.9010 0.9008 0.0113 0.0112 0.8015

(a)

µ̂s1 µ̄s1 σ̂s1 σ̄s1 ψCA
K = 10 0.7443 0.7425 0.0307 0.0314 0.4850
K = 100 0.8667 0.8668 0.0146 0.0147 0.7337

(b)

Table 5.2: Experimental mean µ̂s1 and standard deviation σ̂s1 of the vote share
and their theoretical steady-state values µ̄s1 and σ̄s1 , for K = 10 and K = 100
controlled agents, in a LFR network (a) and a Toivonen et al. network (b). The
last column of the table contains the stochastic social power ψCA of the controlled
agents.
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µ̂s1 µ̄s1 σ̂s1 σ̄s1 ψCA
betweenness 0.9004 0.9008 0.0111 0.0112 0.8015
strength (std) 0.9020 0.9027 0.0111 0.0109 0.8053
strength (dwn) 0.9033 0.9033 0.0109 0.0108 0.8066

(a)

µ̂s1 µ̄s1 σ̂s1 σ̄s1 ψCA
betweenness 0.8666 0.8668 0.0144 0.0147 0.7337
strength (std) 0.8707 0.8705 0.0146 0.0142 0.7409
strength (dwn) 0.8728 0.8724 0.0142 0.0140 0.7449

(b)

Table 5.3: Experimental mean µ̂s1 and standard deviation σ̂s1 of the vote share
and their theoretical steady-state values µ̄s1 and σ̄s1 , for di�erent centrality indices
and with K = 100 controlled agents, in a LFR network (a) and a Toivonen et al.
network (b). The last column of the table contains the stochastic social power
ψCA of the controlled agents.
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Figure 5.7: Average value µ̂s1 of the vote share for di�erent values of K controlled
agents. Each line corresponds to ten realizations executed with the same set of
parameters. A blue (respectively, orange) line is used for the LFR (Toivonen et
al.) network. A dashed (solid) line is used for the standard (degree-weighted
normalized) trustiness model. A thick (thin) line is used for in�uenceability of
the uncontrolled agents η = 10 (η = 1). The employed agent selection criterion is
degree centrality for each of the simulations in the �gure.
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while constituting only 10% of all the controlled agents in the network and being

responsible for about 26% of all the controlled links (a link is controlled if at least

one of the nodes it connects to is itself controlled). These results suggest that,

in general, the cost of opinion manipulation increases with the polarization of the

network. Being able to control 10% of the agents in a network (e.g. K = 100

if N = 1000) is most-likely unfeasible in large scale systems such as Facebook or

Twitter, but it is apparent that in order to have a sensible e�ect on the opinion

distribution of the network it is not necessary to take control of such a large portion

of the agents.

5.4 Impact of the agents' trustiness

In the standard trustiness model, from the point of view of a given agent, the same

importance is assigned to each of the agent's neighbours. On the contrary, in the

degree-weighted normalized trustiness model, an agent importance is proportional

to his/her degree, i.e. how many people he/she connects with. For this reason,

the degree-weighted normalized model synergize better than its counterpart with

attacks based on either degree centrality or degree-correlated centrality indices.

Figure 5.8 and Figure 5.9 show the time evolution of the vote share s1(t) on

a LFR and a Toivonen et al. network, respectively, with in�uenceability η = 10

and with K = 10 controlled agents selected according to betweenness centrality,

in both the standard and degree-weighted normalized models. Table 5.4 lists the

stochastic social power of the controlled agents in the two models, along with the

mean and standard deviation of the vote share computed both from the simulations

and from the theoretical analysis of section 2.3.

5.5 Impact of the agents' in�uenceability

Increasing the in�uenceability η of the uncontrolled agents intensify the suscepti-

bility of the agents to the in�uence of the neighbours, making the social network

weaker to opinion manipulation attacks. However, a greater in�uenceability makes

the agents more prone to opinion changes, reducing the average time interval be-
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Figure 5.8: Time evolution of the vote share s1(t) in a LFR network for the
standard trustiness model (a) and degree-weighted normalized trustiness model
(b). The gray lines represent the ten single realizations. The blue line is the
average of the realizations. The black dashed line corresponds to the theoretical
mean vote share µ̄s1 . The orange dashed lines are traced at ±2σ̄s1 .
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Figure 5.9: Time evolution of the vote share s1(t) in a Toivonen et al. network
for the standard trustiness model (a) and degree-weighted normalized trustiness
model (b). The gray lines represent the ten single realizations. The blue line is the
average of the realizations. The black dashed line corresponds to the theoretical
mean vote share µ̄s1 . The orange dashed lines are traced at ±2σ̄s1 .
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tween them and increasing the variance of the vote share, as it is apparent from

Figure 5.10, relative to a LFR network with K = 10 controlled agents selected

using betweenness as centrality index, and degree-weighted normalized trustiness

model. The same happens in the Toivonen et al. network of Figure 5.11. As usual,

Table 5.5 contains the values of the mean and standard deviation of the vote share

s1(t) and the stochastic social power of the controlled agents. The results suggest

that an opinion manipulation attack bene�ts from targeting networks and commu-

nities with people that are, in general, more susceptible to the in�uence of others.

µ̂s1 µ̄s1 σ̂s1 σ̄s1 ψCA
�std� model 0.6417 0.6407 0.0392 0.0393 0.2813
�dwn� model 0.7301 0.7333 0.0432 0.0424 0.4665

(a)

µ̂s1 µ̄s1 σ̂s1 σ̄s1 ψCA
�std� model 0.6115 0.6103 0.0344 0.0352 0.2206
�dwn� model 0.7423 0.7425 0.0320 0.0314 0.4850

(b)

Table 5.4: Experimental mean µ̂s1 and standard deviation σ̂s1 of the vote share and
their theoretical steady-state values µ̄s1 and σ̄s1 , for the two di�erent trustiness
models, in a LFR network (a) and a Toivonen et al. network (b). The last column
of the table contains the stochastic social power ψCA of the controlled agents.
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Figure 5.10: Time evolution of the vote share s1(t) in a LFR network for in�u-
enceability η = 1 (a) and η = 10 (b). The gray lines represent the ten single
realizations. The blue line is the average of the realizations. The black dashed line
corresponds to the theoretical mean vote share µ̄s1 . The orange dashed lines are
traced at ±2σ̄s1 .
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Figure 5.11: Time evolution of the vote share s1(t) in a Toivonen et al. network for
in�uenceability η = 1 (a) and η = 10 (b). The gray lines represent the ten single
realizations. The blue line is the average of the realizations. The black dashed line
corresponds to the theoretical mean vote share µ̄s1 . The orange dashed lines are
traced at ±2σ̄s1 .
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µ̂s1 µ̄s1 σ̂s1 σ̄s1 ψCA
η = 1 0.5512 0.5506 0.0204 0.0203 0.1011
η = 10 0.7345 0.7333 0.0412 0.0424 0.4665

(a)

µ̂s1 µ̄s1 σ̂s1 σ̄s1 ψCA
η = 1 0.5425 0.5432 0.0189 0.0192 0.0865
η = 10 0.7420 0.7425 0.0309 0.0314 0.4850

(b)

Table 5.5: Experimental mean µ̂s1 and standard deviation σ̂s1 of the vote share
and their theoretical steady-state values µ̄s1 and σ̄s1 , for in�uenceability η = 1 and
η = 10, in a LFR network (a) and a Toivonen et al. network (b). The last column
of the table contains the stochastic social power ψCA of the controlled agents.
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5.6 Communities

Intra-community association

The generic element αrs of an agreement matrix corresponds to the association

between agents r and s, measured as the fraction of the total simulation time in

which agents r and s had the same opinion. It can be easily obtained from the

contingency table Y [rs] of agents r and s, by computing αrs = 1
T

∑
j y

[rs]
jj , j ∈ M,

where T is the total simulation time. The calculation of the contingency tables of

the agents has been described in section 3.2.

Figure 5.12 shows the agreement matrices of two di�erent simulations carried

out on a LFR network, for K = 0 and K = 10 controlled agents. The identi�-

cation of the communities has been executed using Louvain algorithm, described

in section 4.2. Without controlled agents (K = 0), people belonging to a given

community present a slightly higher association, measured with the simple agree-

ment index, with respect to the association measured between agents belonging to

di�erent communities. When the network is under attack, the association between

agents belonging to communities containing at least one controlled agent notice-

ably increases, while agents belonging to the rest of the network have just a slight

increase in association.

Attacks on networks without a community structure

Section 4.2 brie�y mentioned the assumption that randomly wired networks lack a

community structure. It is thus possible to apply a �degree-preserving randomiza-

tion� procedure to a network in order to break its community structure while pre-

serving its degree distribution. Simulations carried out on �rewired� LFR networks,

i.e. LFR networks which underwent this procedure, showed slightly better results

in most of the cases with respect to those performed on standard LFR networks and

the same set of parameters. For example, attacks on a set of �rewired� LFR net-

works using betweenness centrality, in�uenceability η = 10, and degree-weighted

normalized trustiness model, achieved on average µ̂s1 = 0.7554 and σ̂s1 = 0.0418

for K = 10 controlled agents, while µ̂s1 = 0.9062 and σ̂s1 = 0.0103 for K = 100

controlled agents. The average modularity of the community partition obtained
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by applying Louvain algorithm to this set of networks isM = 0.2753. For compar-

ison, simulations on the same set of parameters for a standard LFR network (see

Table 5.2) resulted in µ̄s1 = 0.7333 and σ̄s1 = 0.0424 for K = 10 controlled agents,

and µ̄s1 = 0.9008 and σ̄s1 = 0.0112 for K = 100 controlled agents. These results

suggest that the presence of a community structure in the network may slightly

reduce the e�cacy of a given attack.

Targeting a single community

If the target of an attack is not the whole network but a single community, for a

LFR network an e�ective strategy is to select all K agents to be controlled from

the target community. Figure 5.13 shows the mean vote share of each community

obtained from simulations carried out on a LFR network targeting the biggest

community with K = 10 controlled agents, and from simulations of a �standard�

attack with the same set of parameters (K = 10, η = 10, degree-weighted nor-

malized model, and betweenness centrality) but with the controlled agents not
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Figure 5.12: Colormaps of the agreement matrices of a LFR network with K =
0 controlled agents (a) and K = 10 controlled agents (b). Rows and columns
have been sorted in order to have agents grouped by communities identi�ed with
Louvain algorithm. The white dash-dotted lines help in highlighting them. The
communities containing at least one controlled agent are the �rst eight starting
from the upper-left corner, excluding the �fth one. The �rst community from the
top contains two controlled agents, the third community contains three, the other
communities contain one controlled agent each.
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restrained in belonging to a speci�c community. The overall performance of the
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Figure 5.13: Scatter plot of the mean vote share of each community in a LFR
network, versus the number of agents belonging to the community. Blue dots cor-
respond to the mean vote share of the communities in a �standard� attack, i.e. an
attack where the K = 10 controlled agents are not restrained in belonging to a
speci�c community and are selected according to the highest values of betweenness
centrality in the whole network. Orange dots correspond to the mean vote share of
the communities in a �targeted� attack, i.e. an attack where the K = 10 controlled
agents are the ones belonging to the target community and with the highest be-
tweenness score. The target community is the rightmost one in the �gure.

�targeted� attack was expectedly lower (µ̂s1 = 0.6086, µ̄s1 = 0.6137) compared to

the �standard� attack, but with a mean vote share equal to 0.8785 for the agents

inside the target community. The remaining 17 communities had an average mean

vote share equal to 0.5812 and standard deviation of the mean vote share equal to

0.0142. The �standard� attack resulted in µ̂s1 = 0.7313, µ̄s1 = 0.7333, mean vote

share of the biggest community equal to 0.7905, average mean vote share of the

remaining communities equal to 0.7110, and standard deviation of the mean vote

share of the remaining communities equal to 0.0564.

Interestingly, it seems that this strategy does not always work in the Toivonen

et al. network with the usual network parameters. In fact, simulations carried out
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on di�erent realizations of the network showed contrasting outcomes. For exam-

ple, these are the results of three sets of twenty simulations each (ten �targeted�

attacks, ten �standard� attacks) carried out on three realizations of a Toivonen et

al. network:

1. �Targeted� attack: mean vote share of the target community on average equal

to 0.7499. �Standard� attack: mean vote share of the target community on

average equal to 0.7821, and 1 of the 10 controlled agents belonged to the

target community;

2. �Targeted� attack: mean vote share of the target community on average equal

to 0.8072. �Standard� attack: mean vote share of the target community on

average equal to 0.8062, and 9 of the 10 controlled agents belonged to the

target community;

3. �Targeted� attack: mean vote share of the target community on average equal

to 0.8106. �Standard� attack: mean vote share of the target community on

average equal to 0.7633, and 5 of the 10 controlled agents belonged to the

target community.
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Chapter 6

Estimation of the Attack Severity

This chapter introduces a closed-loop control action that can be used by the net-

work manager for counteracting the change in the average opinion of the network

introduced by an opinion manipulation attack, and for assessing the severity of the

attack through the measure of the interaction intensity parameter needed to restore

a neutral average opinion. After the presentation in section 6.2 of some results

relative to di�erent values for the number of controlled agents and the central-

ity index employed, section 6.3 illustrates some of the e�ects on the communities

introduced by the rebalancing action exerted by the network manager.

6.1 Introduction

From the point of view of the network manager, the �magnitude� of an opinion

manipulation attack can be assessed by estimating the variation of the interaction

intensity parameter λj, j ∈ M, needed for rebalancing the average opinion of the

network. In the speci�c case of M = 2 opinions, assuming that the network is

manipulated as described in chapter 5 in order to foster opinion 1, the objective of

the platform manager is to estimate how much λ1 should be lowered for restoring,

at steady-state, the mean of the vote share s1(t) to the value it had prior to the

attack, i.e. µs1,ref = 0.5.

The stochastic process s1(t) with mean µs1 and variance σ2
s1

can be treated

(at steady-state) as a constant signal with value µs1 , with a superimposed �distur-
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bance� whose variance is equal to σ2
s1
. Thus, the estimation of the desired value of

λ1 can be achieved by controlling this process with a closed-loop control system,

suitably tuned so that it is slow enough to ignore the relatively faster dynamics of

the �disturbance� while tracking the dynamics of µs1 .

6.2 Closed-loop control

Figure 6.1 shows the diagram of the closed-loop control system employed for the

estimation of λ1. The reference is given by the desired mean vote share µs1,ref ,

the output variable is the actual vote share s1, and the control variable is the

interaction intensity parameter λ1.

R(s) G(s)
μS  , ref1

+
λ1 s1

Figure 6.1: Closed-loop system used for estimating the steady-state value of λ1
needed for rebalancing the average opinion in an attacked network.

The transfer function G(s) from the interaction intensity parameter λ1 to the

vote share s1 can be approximated as a �rst order system:

G(s) =
ρ

1 + sτ
.

The gain ρ and the time constant τ of the �rst order approximation can be es-

timated through the open-loop response of the system to a step applied to the

interaction parameter λ1. The parameters of G(s) employed in the simulations of

this chapter are ρ = 0.6767 and τ = 0.1762.

The controller R(s) is a linear Proportional-Integral controller, with transfer

function:

R(s) = kp +
ki
s
.

The integral action in the controller is useful for nullifying the tracking error at

steady-state. The proportional and integral constants employed in the simulations
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are kp = 0.0220 and ki = 0.1249, corresponding to a cut-o� frequency of the

closed-loop system equal to ωc = 0.0845 and phase margin ϕm = π
2
.

Although the control system has been designed in the continuous-time domain,

Gillespie algorithm simulates the system with variable-length discrete-time steps.

Due to this limitation, the control variable λ1 cannot be varied continuously by

the controller, and thus, in the following simulations, its value has been updated

in correspondence of state-changing events (i.e. a change of opinion) occurred in

the system. However, the error introduced by the approximation is acceptable in

this setup because, due to the low speed of the control system, the change of the

control variable λ1 between two consecutive events is negligible.

Figure 6.2 and Figure 6.3 show the steady-state value of the interaction inten-

sity parameter λ1 needed for rebalancing the average opinion in a LFR network

and a Toivonen et al. network, respectively, with in�uenceability η = 10, degree-

weighted normalized trustiness model, and K ∈ {10, 20, ..., 100} controlled agents

selected according to the various centrality indices investigated in section 5.2. The

interaction intensity parameter for opinion 2 is constant and set to λ2 = 1. As an

example, Figure 6.4 shows the time evolution of the vote share s1 and the control

variable λ1 in a LFR network for the two extreme cases of K = 10 and K = 100

controlled agents selected using betweenness centrality.

The results are in agreement with the �ndings of chapter 5. Degree, Between-

ness and the two types of strength are highly correlated in both the network

topologies, and thus require very similar values of λ1 for rebalancing the average

opinion of the network. The noticeably higher values of λ1 (meaning that a lower

e�ort is required to the network manager for rebalancing the network) for coreness

and eigenvector centrality demonstrate that the two indices cannot quite keep up

with the other ones in the Toivonen et al. network, and the results for the LFR

network are even worse. Lastly, the values of λ1 for K = 10 controlled agents

are very similar for the two network topologies, around 0.62÷ 0.68 for degree and

correlated indices, but as K increases the LFR network requires lower values of λ1

compared to its counterpart, reaching λ1 ≈ 0.06 for K = 100 against λ1 ≈ 0.22 in

the Toivonen et al. network. It is interesting to note that it is possible to coun-

teract with a λ1 > 0 even an attack with a mean vote share as high as 0.9, such

as the one depicted in Figure 6.4. However, if the number of controlled agents
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Figure 6.2: Steady-state value of the interaction intensity parameter λ1 in a LFR
network for K ∈ {10, 20, ..., 100} controlled agents selected using as centrality
index: degree, betweenness, and coreness in (a), eigenvector, and the two types of
strength in (b).
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Figure 6.3: Steady-state value of the interaction intensity parameter λ1 in a Toivo-
nen et al. network for K ∈ {10, 20, ..., 100} controlled agents selected using as cen-
trality index: degree, betweenness, and coreness in (a), eigenvector, and the two
types of strength in (b).
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increases too much, the control variable λ1 will saturate to zero, meaning that in

some cases it may not be possible to rebalance the average opinion of the network

by simply tuning the interaction intensity parameter λ1.

6.3 E�ect on communities

The previous section showed that, in most of the cases, it is feasible to rebalance the

steady-state average opinion of a social network by suitably tuning the interaction

intensity parameter λ1. However, that does not happen for the average opinion of

the single communities in the network. During an opinion manipulation attack,

the communities containing the controlled agents are the ones which end up to be

polarized the most towards opinion 1. Varying the interaction intensity parameter

λ1 however has a global e�ect on the opinion distribution of the network, a�ecting

all the communities.

Figure 6.5 shows the steady-state value of the mean vote share of each com-

munity of a LFR network, before and after the rebalancing action applied by the

network manager. The parameters of the simulations are: K = 10 controlled

agents selected using betweenness centrality, in�uenceability η = 10, and degree-

weighted normalized trustiness model. The identi�cation of the communities is

carried out using Louvain algorithm, described in section 4.2. As it can be seen
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Figure 6.4: Time evolution of the vote share s1 (blue line) and the interaction
intensity parameter λ1 (orange line), in a LFR network with K = 10 (a) and
K = 100 (b) controlled agents selected using betweenness centrality.
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from the �gure, after the rebalancing action the average opinion of the single com-

munities is often far from the ideal value of 0.5. Two communities have a mean

vote share greater than 0.65, while 8 out of the 18 total communities have a mean

vote share in the range 0.37÷0.4, meaning that they are polarized towards opinion

2, even if there is not a single agent in the whole network with an individual bias

towards opinion 2. Simulations with di�erent values ofK show that the magnitude

of this community polarization e�ect increases as the number of controlled agents

grows.
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Figure 6.5: Scatter plot of the mean vote share of each community in a LFR net-
work, versus the number of agents belonging to the community. Blue (respectively,
orange) dots correspond to the mean vote share of the communities before (after)
the rebalancing action exerted by the network manager. A dashed line of the cor-
responding color indicates the mean vote share of the overall network.

Figure 6.6 shows the agreement matrices, described in section 5.6, for the same

LFR network used in the simulations of Figure 6.5, before the attack (K = 0),

during the attack but before the rebalancing action (K = 10 and λ1 = 1), and after

the rebalancing action (K = 10 and λ1 varied according to the control described

in section 6.2). The third matrix of Figure 6.6 clearly shows the reduction in asso-

ciation, compared with the perfectly balanced case of the non-attacked network,

between the communities containing controlled agents (i.e. the seven above the 0.5
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orange line in Figure 6.5) and the rest of the communities.
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Figure 6.6: Colormaps of the agreement matrices of a LFR network before the
attack (a), during the attack but before the rebalancing action (b), and after the
rebalancing action (c). Rows and columns have been sorted in order to have agents
grouped by communities identi�ed with Louvain algorithm. The white dash-dotted
lines help in highlighting them. The communities containing at least one controlled
agent are the �rst eight starting from the upper-left corner, excluding the �fth
one. The �rst community from the top contains two controlled agents, the third
community contains three, the other communities contain one controlled agent
each.
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Chapter 7

Conclusions

The main results achieved in this thesis are:

� None of the investigated centrality indices is capable of achieving the optimal

value of the steady-state mean vote share in every network topology. The

simulations of section 5.2 showed that the most e�ective index depends on

the speci�c network topology, thus excluding that one of them could be

a perfect implementation of the optimal selection criterion. Nonetheless,

centrality indices like degree, betweenness, and strength consistently proved

to be very e�ective in the limited framework of the executed simulations,

and demonstrated to be very correlated to one another in the investigated

network topologies. The two types of strength employed in this thesis are

both based on link-weights completely determined by the network topology,

which in the case of online social networks is often very easily identi�able by

an attacker through the use of suitable crawlers. The eigenvector centrality

index achieved lower results in one of the two investigated network topologies,

while the coreness centrality index could not stand the competition with the

rest of the indices in both the topologies. The speci�c reasons why degree,

betweenness and strength achieved the highest results, while coreness and

eigenvector centrality proved to be less e�ective, are still an open question.

� A content-�ltering action exerted by the platform manager could intensify

the opinion polarization between the communities of a network. The simula-

tions of section 6.2 proved that this �ltering action is capable of restoring the
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overall average opinion of the network even in the case of an attack where a

signi�cant portion of the network has been controlled. However, section 6.3

showed that this does not happen for the opinion distribution of the single

communities, where the ones containing controlled agents remained more or

less polarized towards the fostered opinion, while the rest of the communi-

ties shifted towards the opposite opinion. This phenomenon could explain

the strong polarization that can be frequently observed in real online social

networks. Moreover, the results raise concerns about the possibility that

a platform manager could employ the content-�ltering action for pushing

speci�c political or economical agendas.

� Selecting all the controlled agents from a single community may not be the

most e�ective strategy for manipulating the average opinion of that com-

munity. Simulations carried out in section 5.6 showed that, for some net-

work topologies, �standard� attacks selecting the most in�uential agents in

the whole network and not restrained in belonging to a speci�c commu-

nity sometimes achieve a higher steady-state mean vote share for the target

community, compared to �targeted� attacks selecting all the agents from the

target community.

� A large part of the total e�ectiveness of an opinion manipulation attack is

given by the �rst few selected nodes. Section 5.3 demonstrated that the num-

ber of controlled agents is a very important attack parameter, predictably

showing an increase in e�cacy of the attack as the number of stubborn

spreaders grows. Moreover, the simulations proved that the �rst few agents

with the highest centrality scores are responsible for a substantial portion of

the total e�ectiveness of an attack, suggesting that in order to manipulate

the average opinion of the agents it is not necessary to take control of a very

large section of the network, and that the cost of the attack may increase

with the polarization of the network. Lastly, the simulations showed that

the relative e�cacy of the centrality indices depends not only on the speci�c

network topology, but also on the number of controlled agents.

� Opinion manipulation attacks bene�t from targeting people more susceptible
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to the in�uence of others, and from targeting networks where the �impor-

tance� assigned to a given person and his/her opinion depends on how pop-

ular he/she is. The simulations carried out in sections 5.4 and 5.5 showed

that the e�ectiveness of an attack improves in networks where the trusti-

ness between agents is proportional to their degree, and in networks where

the uncontrolled agents have an higher in�uenceability. However, a greater

in�uenceability also increases the variance of the vote share.

7.1 Possible future works

Some directions for future developments on the topics covered by this thesis could

be:

� The validation of the presented results on real social network topologies;

� Further investigations on the dependence of the relative e�ectiveness of cen-

trality indices with both the number of controlled agents and the network

topology;

� The investigation of di�erent criteria for selecting the agents to be controlled,

or the employment of di�erent centrality measures, such as the weighted

versions of betweenness and eigenvector centrality;

� The development of strategies for restoring the steady-state average opin-

ion of a network after an opinion manipulation attack which are capable of

restoring a neutral opinion also within the communities;

� The development of theoretical analysis for the multi-agent Markovian model

in the case of biased interaction intensity parameters;

� The extension of both theoretical and experimental results to the case of

more than two possible opinions in the network;

� The development of methods for estimating in real social networks the model

parameters, such as the individual prejudice matrix, the trustiness model,

and the in�uenceability of the agents.
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