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Abstract

THE term extended reality refers to all possible interactions between real and vir-
tual (computed generated) elements and environments. The extended reality
field is rapidly growing, primarily through augmented and virtual reality appli-

cations. The former allows users to bring digital elements into the real world, while
the latter lets us experience and interact with an entirely virtual environment. While
currently extended reality implementations primarily focus on the visual domain, we
cannot underestimate the impact of auditory perception in order to provide a fully im-
mersive experience. As a matter of fact, effective handling of the acoustic content is
able to enrich the engagement of users. We refer to Extended Audio Reality (EAR)
as the subset of extended reality operations related to the audio domain. In this thesis,
we propose a parametric approach to EAR conceived in order to provide an effective
and intuitive framework for the implementation of EAR applications. It is clear that the
main challenges of EAR regard the processing of real sound fields and the rendering
of virtual acoustic sources (VSs); hence, EAR requires the development of properly
designed sound field representations.

As far as sound field representation is concerned, two main paradigms are present
in the literature: parametric and non-parametric. The former describes the acoustic
field assuming a signal model governed by few meaningful parameters, e.g., the source
signal and location, while the latter relies on the solutions of the wave equation provid-
ing accurate results at the cost of higher complexity and lower model interpretability.
Therefore, in the context of the EAR, parametric models represent an appealing ap-
proach. In fact, they provide a compressed and intuitive description of the sound field.
This characteristic promotes the integration of VSs through the parameters of the model
and their manipulation thereof.

Here, we introduce a novel parametric model for sound field representation based on
few parameters. This model allows both the navigation and manipulation of a recorded
sound scene. The main feature of the proposed solution is represented by the modeling
of the acoustic source directivity integrated among the parameters of the representa-
tion. The directivity is a function describing the spatial property of the source sound
radiation. As a matter of fact, sound sources typically present a directional acoustic
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emission imposed by their physical characteristics. It follows that the source directivity
information influences our acoustic scene perception. Therefore, the integration of the
directivity is a fundamental aspect for providing a more natural and immersive EAR,
enhancing the user experience. In order to analyze the sound field, we adopted spatially
distributed acoustic sensors. This configuration allows us to evaluate the acoustic field
from different observation points in order to estimate the parameters required by the
proposed representation. Successively, we exploit the estimated parameters to provide
a sound field reconstruction technique that enables the six-degrees-of-freedom interac-
tion (virtual navigation) with the sound field.

Conveniently, the parameters adopted for describing the acoustic sources can be
exploited for characterizing a VS. Therefore, we can seamlessly implement EAR within
the same parametric representation. Here, the addition of the source directivity into
the model is appealing since it allows the accurate rendering of VSs, including their
directional characteristics. Hence, we can further lead the real-virtual interaction by
implementing VS replicas of actual acoustic sources. A VS replica mimics the source
spatial sound radiation through the VS directivity parameters. For instance, the VS
parameters can be estimated from measurements on the real source. Conversely, we can
rely on fully simulated acoustic sources, e.g., employing Finite Element Method (FEM)
simulations, from which the VS parameters are derived. It follows that an accurate
estimate, prediction, and analysis of the directivity of VSs are fundamental to obtain an
effective EAR.

In this thesis, we studied the VS implementation through a case study. In particular,
we focused on the VS implementation of violins. Whereas violins present a peculiar
directional radiation characteristic, we need to carefully analyze and model their direc-
tivity in order to provide an accurate VS implementation. Regarding the analysis of the
violin directivity, we can outline different solutions according to their invasiveness. In
the first place, one can perform measurements directly on played violin. During our
collaboration with Museo del Violino settled in Cremona (Italy), we had the unique
opportunity to measure, for the first time, a relevant number of valuable historical vio-
lins made by the renowned masters of the Cremonese school such as Antonio Stradivari
and played by professional violinists. From the acquired data, we derived a compressed
representation of the violin directivity pattern based on the spherical harmonics expan-
sion. Besides the VS modeling, the adopted representation allowed us to study and
characterize the directivity patterns of the instruments, giving insights of their direc-
tional behavior. Although the measurement of played instruments allows an analysis
scenario closer to the actual listening conditions, it might not be applicable for particu-
larly fragile instruments.

Less invasive techniques, such as nearfield acoustic holography (NAH), can be em-
ployed when conventional measurements cannot be carried out. It is known that the
acoustic radiation of vibrating objects, such as violins, is determined by their dynami-
cal behavior. Hence, from the knowledge of the vibration velocity field, we can estimate
the directivity of the source. NAH allows the contactless estimation of the velocity field
of a vibrating source from acoustic pressure measured in its proximity. Here, we in-
troduced a novel NAH technique based on deep learning. In particular, we proposed a
convolutional neural network (CNN) with an autoencoder-inspired structure in order to
estimate the velocity field of both rectangular and violin plates.
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Alternatively, simulations allow us to predict the directivity of a source relying on
the FEM simulation of its vibroacoustic behavior. This approach minimizes the inva-
siveness at the cost of reduced accuracy caused by inherent approximations of the sim-
ulated model. It follows that an effective violin simulation requires a 3D model of the
instrument geometry and the mechanical parameters of the material. Unfortunately, we
can typically only acquire the outer surface of existing instruments. Therefore, we de-
veloped a practical technique for reconstructing the 3D model of violin plates, starting
from outer surface scans and sparse thickness measurements taken at reference points.
Furthermore, as regards the estimation of the material mechanical parameters, we pro-
posed the evaluation of the Young’s modulus from the sound wave velocity of wood. As
a matter of fact, the Young’s modulus is a fundamental parameter for mechanical simu-
lations. The developed technique estimates the sound wave velocity from responses of
the wood to an impulsive excitation in a rake receiver fashion. Successively, from the
knowledge of the sound wave velocity, the Young’s modulus is indirectly derived.

Lastly, we propose an EAR proof of concept through which we showcase the benefit
of the proposed parametric approach to EAR. We display an EAR scenario in which
two VSs, a VS replica of a prestigious violin, and a simulated generic model of the
instrument are virtually co-located in a real sound scene with the presence of actual
sound sources. The results give a sneak peek of the power of EAR, showing that the
proposed parametric approach is able to provide the blend between real and virtual
sound elements. Hence, we envision that the proposed solutions will pave the way to
the development of parametric EAR frameworks for extended reality applications.
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CHAPTER1
Introduction

Extended reality is the field in which all the applications concerning the interaction
between real and computer-generated virtual elements and environments are contained.
Therefore, both augmented and virtual reality fall within the scope of extended reality.
On the one hand, augmented reality allows the addition of digital elements into the real
world, while on the other hand, virtual reality lets a user interact with an entirely virtual
environment.

Despite extended reality applications primarily involving the visual domain, audi-
tory perception plays a fundamental role in order to achieve an immersive experience.
As a matter of fact, through our sound perception, we make sense of surroundings, lo-
calizing sound sources and placing ourselves in the environment. Therefore, the correct
handling of the audio contents coherently with the visual information is a key aspect in
extended reality.

In the last decade, we experienced a rapidly growing development of extended re-
ality applications, made possible by the introduction of head-mounted displays and the
increase of computational power in smartphones and portable devices. At the same
time, the interest in multichannel audio systems increased a great deal. A huge number
of technological devices are now equipped with spatial distributions of microphones or
loudspeakers, usually organized in arrays. This allows the acquisition or reproduction
of sound, exploiting the additional information introduced by the spatial dimension.
As a matter of fact, a wide range of tasks such as acoustic source localization, speech
enhancement, and dereverberation, sound source separation, and others benefit from
the space-time analysis of sound fields. Extended reality is no exception, and in the
next future, we expect a growth of advanced extended reality applications made possi-
ble by the availability of low-cost sensors, e.g., MEMS microphones. The deployment
of a large number of sensors, seamlessly integrated with the environment, enables the

1
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Chapter 1. Introduction

analysis of a sound scene from multiple points of view.
This possibility opens to the implementation of algorithms that analyze the entire

acoustic scene, paving the way to powerful handling of the audio contents in extended
reality applications.

1.1 Extended Audio Reality

With Extended Audio Reality (EAR), we refer to the audio branch of extended reality.
More precisely, EAR concerns all the sound-related operations in extended reality ap-
plications. Hence, EAR aims at merging the reality and virtual elements with the focus
on audio signals only.

One can easily understand EAR, imaging, for example, the virtual access to live
concerts or events. In extended reality, the user is able to navigate with the environment,
i.e., exploring the venue enjoying the event from different points of view. In fact, the
goal is to provide an experience as close as possible to “as you were there”. Therefore,
EAR must be able to let a listener explore the recorded scene, and ideally, provide
an accurate “sound experience” independently from the user position. Nonetheless,
this is only a part of the picture. We can also think to add virtual contents to the real
sound scene, for instance, remotely played instruments. It follows that the additional
virtual data must be coherently rendered in the EAR framework allowing the user to
perceive the virtual content as it was present in the scene. It is clear that EAR brings
a series of interesting challenges for the space-time acoustic signal processing research
community.

On the one hand, EAR requires the processing of actual acoustic fields, enabling
user interaction with the sound scene. Here, the sound field navigation problem is
fundamental since it allows a user to interact with a recorded scene with six-degrees-of-
freedom (6DOFs) to change its listening position arbitrarily. Additionally, one might
actively manipulate a sound scene, for instance, excluding one acoustic source or re-
ducing the reverberant component of the sound field.

On the other hand, EAR provides the interaction between virtual acoustic elements,
such as a virtual acoustic source (VS) and real sound scenes. Therefore, we need to
accurately model the VSs in order to correctly include them in the scene, i.e., providing
the same perception as they were actually there.

In order to provide an effective EAR experience, the sound field at the target (lis-
tening) position must be accurately rendered. We can tackle this problem from a sound
field reconstruction perspective. With the aim to let the user freely move in the scene,
we have to estimate the acoustic field at the listening location exploiting the information
acquired by the microphones at different positions.

As regards the VSs, a key aspect is represented by the effective modeling of the
spatial sound radiation of the VS. In fact, this allows a better perception of the source
position and orientation, hence enabling more natural navigation in the environment. It
is clear that EAR requires the development of a suitable sound field representation in
order to solve its main challenges.

In this thesis, we propose an EAR approach based on a parametric sound field repre-
sentation. This allows us to perform the sound field reconstruction and interaction and
the addition of VSs in a compact fashion.

2
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1.2. Goals and Methodology

In general, EAR and extended reality might potentially have a significant impact on
society and our everyday life. It is sufficient to think of potential applications concern-
ing social media, gaming, and, generally speaking, the entertainment business. Limit-
ing our analysis to music-related applications, we can expect a growth of new media
contents and events that can be enjoyed through extended reality, e.g., live concerts and
shows. Therefore, we foresee the development of a market for accessing entertaining
contents or purchasing virtual objects (e.g., virtual musical instruments) to be used in
extended reality applications.

1.2 Goals and Methodology

The goal of this thesis is to propose an approach to EAR that paves the way to the im-
plementation of EAR frameworks. We aim to present a compact and intuitive paradigm
to EAR that is able to provide both sound field reconstruction and seamless integration
of VSs.

Our solution relies on a novel parametric sound field representation. This descrip-
tion is characterized by the inclusion of the sound source directivity into the sound field
model. Therefore, we make explicit expression of the source directional sound emis-
sion in order to improve the sound field reconstruction on the one side and provide a
directional VS model on the other side. Moreover, we discuss the implementation of
VSs through the analysis of a case study. We analyze the VS implementation of violins;
in particular, we focus on different strategies for the estimation of VS parameters.

In the following, we introduce the main challenges of the proposed EAR approach
regarding the sound field processing and the VS modeling.

1.2.1 Sound Field Processing

In the literature, two main approaches to sound field reconstruction emerged: non-
parametric and parametric. Both paradigms are based on their inherent sound field
representation.

As regards non-parametric methods, they rely on the sound field decomposition into
basis functions. Hence, non-parametric sound field reconstruction techniques are di-
rectly derived from the solution of the wave equation [1, 3, 7, 29, 36, 68, 80, 120, 167,
167, 171, 190, 195, 205, 215, 228, 229, 262]. Typically, plane waves [80, 120, 190, 215]
or spherical harmonics [1,88,228,229] are adopted as basis functions, according to the
geometry of the employed configuration of acoustic sensors. Therefore, the coefficients
of the basis functions, estimated at the locations of the sensors, are exploited in order
to provide the description of the sound field.

From the knowledge of the expansion coefficients, the acoustic field is thus poten-
tially reconstructed at arbitrary positions. In practical scenarios, only a finite-order
expansion of the sound field can be adopted, due to the physical limitation of the spa-
tial sampling. It follows that only an approximation of the sound field can be provided
with an accuracy that depends on the number and spatial arrangement of the sensors.
Recent works cope with these limitations employing multiple distributed microphone
arrays able to capture first or higher spherical harmonics expansion [88, 228, 229, 262]
or single sensors distributed in the scene [23, 24, 131, 142, 143, 256]. Interesting meth-
ods [88, 228, 229, 262] rely on the so-called spherical harmonic translation theorem;

3
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Chapter 1. Introduction

this technique relates the local (low-order) spherical harmonics coefficients with the
global (high-order) spherical harmonic coefficients obtained in a convenient center of
expansion. Other approaches [23, 24, 131, 142, 143, 256] rely on sparsity assumptions
of the sound field and compressed sensing processing in order to relax the sampling
requirements. Although compressed sensing allows us to reduce the spatial sampling, a
main limitation for adopting non-parametric techniques in EAR remains; this concerns
the interpretability of the signal representation. In general, the sound field is described
by a set of coefficients estimated from the acquired data, but the interpretation of the
coefficient values is not often straightforward (e.g., differentiate between the values of
two sources).

An alternative approach to the sound field reconstruction is given by parametric or
model-based methods.

Generally, parametric techniques rely on a compact model of the sound field, defined
by the parameters of the model itself. Although parametric methods are not based on
an exact solution of the wave equation, they aim at accurately recreating the perceptual
spatial sound features at the target locations. A great range of parametric methods are
available in the literature [33,70,72,89,90,111,124,141,146,206,211,212,260], among
which the directional audio coding (DirAC) [211] and the high angular resolution plane
wave expansion (HARPEX) [33] have been widely adopted.

In [211] and [33], the sound field is represented as the sum of two distinct com-
ponents: the direct and the diffuse sounds. The direct sound represents the signal
associated to the direct path between a source and the recording location, while the
diffuse component models the reverberation and noise. The model is completed by the
additional information of the source location or the direction of arrival.

Through their original definition, [211] and [33] provide a sound field reconstruction
limited to the recording location, i.e., they enable a three-degrees-of-freedom interac-
tion (rotation) of the user. In order to let the user move in the scene (6DOFs interaction),
improved solutions have been proposed [72, 141, 206, 260].

For instance, in [206], the authors exploit the a-priori information on the source
location in order to allow the translation of a first-order microphone signal in space.
Differently, in [72, 141, 260] spatially distributed sensor arrays are employed for an-
alyzing the sound scene. The source location and the direct and diffuse components
of the sound field are estimated and exploited for reconstructing the signal of a virtual
microphone (VM), namely, a sensor virtually placed in the scene.

In this thesis, we introduce an improved parametric sound field reconstruction tech-
nique inspired by the solution in [260]. In particular, we generalize and extend the
sound field model typically adopted in the literature, which assumes an omnidirec-
tional acoustic radiation of the sources, i.e., the emitted acoustic energy is isotropic. As
a matter of fact, actual sound sources are usually characterized by a directional acoustic
emission inherently caused by their physical properties.

The spatial characteristic of the source sound radiation is generally described by the
directivity function. Therefore, in order to accurately reconstruct the sound field we
have to include the directivity of the sources into the underlying model. As a result,
our sound scene perception is also influenced by the source directivity. For instance,
we can think of the perceptual difference between being behind or in front of a speaker.
It follows that, in the context of sound field reconstruction for EAR, the directivity
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information is a key aspect for providing a more natural experience.
We take advantage of distributed microphone arrays for analyzing the sound field

estimating the parameters of the model. In particular, during the analysis phase we es-
timate the location of the sources and we derive the direct and the diffuse sound field
components of the microphone signals. From the direct signal, we then retrieve the
parameters describing the directional sources as the solution of a sparsity-based opti-
mization. Modeling the direct sound field as the exterior field of the sources we include
their directional properties, overcoming the omnidirectional source model typically as-
sumed in the literature.

Finally, we exploit the estimated parameters in order to synthesize the signal of a
VM arbitrary located in the scene.

In the context of EAR parametric models represent an appealing approach. In fact,
they provide a description of the sound field by means of few meaningful features,
i.e., the model parameters. This might promote an intuitive manipulation of the sound
field and ease the integration of VSs. For instance, during the VM synthesis phase,
we can remove acoustic sources from the scene, simply by selecting the parameters of
the target sources only, or we can remove the reverberant component of the sound field
discarding the diffuse component from the model.

With the goal of enabling the extraction of sound sources from an existing sound
field, we explored solutions based on non-parametric sound field representations. In
particular, we focused on the sound source separation problem.

The adoption of a non-parametric sound field representation allowed us to reduce the
requirements in terms of sensor setup and a priori information. Therefore, we devel-
oped a blind source separation (BSS) algorithm that can be applied on a single extended
linear microphone array. The aim of BSS is to extract multiple unknown audio signals
(sources) by processing a set of mixture thereof. The separation process is defined as
“blind" since no other information, except from the multichannel signal, is available.
We tackled BSS by bringing a new non-parametric sound field representation into the
state-of-the-art BSS technique known as Multichannel Nonnegative Matrix Factoriza-
tion (MNFM) [189, 232]. Nonnegative matrix factorization (NMF) consists of a data
decomposition technique that factorizes a nonnegative matrix into a sum of rank-1 com-
ponents. In the context of BSS this factorization is applied to multichannel signals in
order to decompose each source contribution at the microphones. Different MNMF
techniques [57, 127, 135, 150, 172, 180, 242] take advantage of the spatial information
contained in the signals in order to improve the separation performance. However,
the spatial information these methods is typically limited to the Direction of Arrival
(DoA). In this thesis, we propose to adopt the ray space (RS) [37,160] sound field rep-
resentation in order to better exploit the spatial information in the MNMF framework.
The RS maps the domain of the plenacoustic function [7] parametrizing the directional
components of the sound field according to their direction and position of analysis. Re-
cently, the RS emerged as an effective tool for representing both far and near acoustic
fields since, thanks to its parametrization, the location of the acoustic sources in space
is inherently represented in the data [37, 159]. Therefore, we exploit this characteristic
adopting the RS as the domain of the MNMF, overcoming the limited representation
of the position given by the DoA. As regards EAR, we can employ BSS for the static
manipulation of the scene, namely, separating one or more sources. Additionally, the
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proposed BSS solution can be used for extracting a source signal from a given sound
field that can be later rendered as a VS in a different sound scene as described in the
next section.

1.2.2 Virtual Source Modeling

As underlined in the previous section, acoustic sources usually present a directional
sound radiation. It follows that in order to accurately implement VSs in a given sound
scene, the directivity of the VSs cannot be discarded.

Conveniently, the parametric model introduced for describing directional sources
can be exploited for characterizing a VS. In particular, we model the directivity pattern
of a source or VS by means of its spherical harmonics expansion. This provides a
compact description of the directional behavior of a source through the coefficients of
the expansion. Therefore, we can seamlessly achieve the EAR mixture of actual sound
scenes and VSs within the same parametric model. As a consequence, a further level
of interaction between real and virtual elements can be achieved by implementing VS
replicas of actual sound sources. In practice, a VS replica aims at reproducing the
source acoustic emission through the VS directivity model.

It is clear that the accuracy of the VS model depends on the available data. For
instance, when the source to be modeled as VS is extracted from another sound scene,
for instance by means of BSS, usually no information about its directivity is given. In
this scenario, the VS can be simply rendered with an omnidirectional radiation charac-
teristics.

When possible, instead, we can rely on a set of measurements on the real source for
estimating the directional parameters of the VS. This allows the implementation of VS
replicas of real sound sources.

Another option is represented by simulations. One can derive the VS parameters
from fully simulated sources, e.g., adopting finite element method (FEM) simulations.
Here, the effectiveness of the derived VS is governed by the accuracy of the simulated
source model.

In this thesis we studied the problem of the implementation of VSs by means of
a case study. Our goal is the analysis of the VS implementation of violins. In fact,
the violin is an interesting musical instrument that present a peculiar acoustic behavior.
Hence, we need to carefully analyze and model the directivity of violins in order to pro-
vide their relative VS implementations. We outlined different solutions for the analysis
of the violin directivity, which can be grouped according to their level of invasiveness.

First of all, we can rely on measurement directly taken on played instruments.
Thanks to our collaboration with Museo del Violino setteld in Cremona (Italy), we
had the possibility of measuring the directivity pattern of a relevant number of presti-
gious historical instruments played by professional violinists. The violins under anal-
ysis were made by the great masters from Cremona such as Antonio Stradivari and
Giuseppe Guarneri “del Gesù”.

The acquired data allowed the analysis and the characterization of the directivity
pattern of the instruments, besides the VS modeling. This gave us insights on the
directional behavior of such valuable instruments. The set of violins under analysis
represents an unicum of great scientifc and cultural value. Moreover, to the best of our
knowledge this is first time that the directivity of violins is analyzed in a systematic
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fashion, introducing new tools for the comparison of the directivities. As a matter of
fact, in the literature of violin acoustics only qualitative evaluations of a limited number
of instruments are available.

In this scenario, the analysis is performed in a situation close to the actual listening
conditions. Unfortunately, this might not be applicable for particularly fragile instru-
ments, due to the invasive interaction with the player.

In the case in which customary measurements cannot be employed, we can rely on
less invasive techniques such as nearfield acoustic holography (NAH) [165, 286].

NAH is an interesting method for the analysis of acoustic sources. It allows the
contactless estimation of the velocity field of a vibrating source from acoustic pressure
measured in its proximity. As a matter of fact, the acoustic radiation of a vibrating
sound source, such as the violin, is determined by its mechanical behavior. Therefore,
the directivity of a sound source can be inferred from the knowledge of its vibration
velocity field.

In practice, NAH primarily comprises the inversion of the Kirchhoff-Helmholtz in-
tegral formulation of the radiated sound field. In the literature this problem is known
to be ill-posed, and different solutions based on its regularization have been presented
[56, 58, 94, 237, 270, 287, 295].

Interesting advanced approaches are introduced in [56,94], where the authors exploit
compressed sensing principles and the Equivalent Source Method (ESM) [139, 149] in
order to solve the NAH inversion. The solution is then given by means of a sparse set of
fictitious dimensionless sound sources that equivalently represent the acoustic pressure
field. Nonetheless, the main limitation of ESM techniques resides in the computation
of the optimal set (in terms of number and location) of equivalent sources. Although
the authors in [56] alleviate this limitation by restricting the ESM solution space to a
suitable learned dictionary, the technique is derived solely for square plates with fixed
geometry.

Here, we proposed a novel data-driven NAH technique. In particular, we adopted
a deep learning approach to NAH, where the regularization is performed by exploiting
the knowledge given by the data during the training. Inspired by ESM solutions, where
the acoustic field is represented by a set of feature components, namely, the equivalent
sources, we employ a convolutional neural network (CNN) in order to learn a poten-
tially more powerful feature representation for performing NAH directly from the data
itself.

Among the different CNN architectures, we focused on a structure similar to an
autoencoder. This network allows us to learn useful properties of the data and they
are adopted for dimensionality reduction and features learning other than denoising.
The basic structure of these networks is composed by a compressing phase, known as
encoder, in which a compressed encoded representation of the input is learned, followed
by a decoder where the encoded data is expanded to obtain the desired output. The
CNN is trained using datasets of synthetic data generated using FEM simulations. We
show that the proposed approach is able to work with different geometries and material
properties by applying the CNN to both rectangular and violin plates.

In order to minimize the invasiveness of the analysis on the directivity of the in-
strument, we can also rely solely on simulations. Through the FEM simulation of the
vibroacoustic behavior of a sound source, we can predict its directivity.
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Clearly, the accuracy of such analysis is reduced, with respect to measurements
carried out on actual instruments, due to the approximations of simulated models. Nev-
ertheless, simulations allow more flexibility in the design of the object and in some
contexts this can be useful for the analysis of prototypes.

In order to obtain an effective simulation of a violin, we need the accurate 3D model
of the instrument geometry and the mechanical parameters of the materials. In the
case of existing violins, we can acquire its geometry be means of 3D scans. Usually,
we cannot access to the single body parts, hence we have to rely on the outer surface
geometry only. Therefore, we developed a practical technique for the reconstruction of
the 3D model of a violin plate.

The proposed method requires the outer surface scan of the plate and sparse thick-
ness measurements. In practice, we reconstructed the profile of the inner surface of a
violin plate accordingly to the thickness at the reference points. Then, we combined
the outer and inner surfaces in order to reconstruct the whole 3D geometry of the violin
plate.

For what concerns, the analysis of the mechanical parameters, we introduced a tech-
nique for the estimation of the Young’s modulus in wood. The Young’s modulus rep-
resents a fundamental parameter for the correct simulation of the dynamic behavior of
materials. A direct estimation of the Young’s modulus can he obtain from the mate-
rial by means of destructive tests [222]. More interestingly, we can indirectly derive
the Young’s modulus from the sound wave velocity with repeatable non-destructive
techniques. Luthiers typically estimates the sound wave velocity through the tap tone
technique [128] or by measuring the time of flight (TOF) of an impulsive wave in the
wood. On the one side the tap tone is highly affected by the manual skill of the luthier
that is required to estimated the resonance frequency of the wood. On the other side,
TOF estimation is performed with expensive instrumentation and it is sensitive to the
measurement noise. Here, the proposed technique relies on the impulse responses of the
wood measured by means of accelerometers. Hence, no particular skill is required for
performing the measurements. The acquired signals are processed in a rake receiver
fashion in order to identify the sound wave velocity associated to the measurements.
This allows us to work in the audio bandwidth adopting a less expensive hardware with
respect to TOF devices.

1.2.3 EAR Proof of Concept

A proof-of-concept simulation is proposed in order to demonstrate the parametric ap-
proach to EAR.

We discussed the main challenges of the implementation of a framework for EAR,
in particular as regards the VS synthesis. As a matter of fact, the rendering of the
VS is conditioned by the actual EAR application scenario. In particular, while the VS
modeling allows us to provide an accurate description of the VS spatial sound radiation,
the effective rendering in the EAR scene is governed by the available environment
information.

The direct sound generated by the VS is obtained directly from the VS modeling.
Here, we take advantage of the directivity information in order to accurately render
this component of the sound field. Conversely, as regards the synthesis of the diffuse
component generated by the VS, different strategies arise according to the available

8



i
i

“thesis” — 2021/3/10 — 22:18 — page 9 — #19 i
i

i
i

i
i

1.3. Thesis Outline and Contributions
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Another sound scene

Enables

EAR
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Figure 1.1: A block diagram of the overall space-time parametric approach to EAR developed in this
thesis. Gray-shaded blocks represent parts of the thesis, while blue-shaded elements refers to chap-
ters.

information about the environment.
The scenario of the EAR proof of concept comprises a string trio setup. In partic-

ular, we included two violins as VSs in a sound scene with a cello, as expected in a
string trio. Hence, we analyze the sound field generated by the actual acoustic source,
the cello, through the proposed parametric sound field reconstruction technique com-
puting the signal of a VM in order to navigate the scene. Successively, the violin VSs
are added to the VM signals assuming, for simplicity that the environment is known.
We present two violin VS models. The first VS implements a virtual replica of the
prestigious Il Cremonese violin by Antonio Stradivari derived from measurements on
the instrument. The second VS is computed from a simulated generic violin model.
Here, we estimated the VS parameters from the FEM simulation of a simplified vio-
lin body model. The goal of this proof-of-concept simulation is to display the power
of the parameteric EAR approach, by including different VS models in an interesting
scenario. The results showed that the parametric EAR approach allows the interaction
between virtual elements and real sound scenes. Therefore, we envision that the pro-
posed parameteric model could provide an effective approach to the implementation of
EAR frameworks.

1.3 Thesis Outline and Contributions

In this section, we present an overview of the thesis.
In Figure 1.1 a summary of the overall developed approach to EAR is provided. The

thesis outline directly reflects the main EAR tasks introduced in the previous sections.
Besides a first preliminary part covering the basic definitions of signals and acoustics,
the thesis is divided in two main independent contributions (see Figure 1.1):

• Part II concerning the sound field processing, namely the techniques proposed for

9



i
i

“thesis” — 2021/3/10 — 22:18 — page 10 — #20 i
i

i
i

i
i

Chapter 1. Introduction

the navigation and manipulation of real recorded sound fields;

• Part III devoted to the modeling of virtual sources where techniques for the mea-
surement or prediction of directivity of violins are considered.

Although considered as two independent parts the combination of the sound field pro-
cessing and virtual source modeling allows us to implement a EAR proof-of-concept
simulation in Chapter 10.

We summarize the content for each chapter, underlying its original contribution and
the relation with respect to the overall thesis. In Part I we provide the preliminaries
required for the comprehension of the rest of the thesis.

Chapter 2 introduces the definition of fundamental background elements and the
notation adopted throughout the thesis. Both continuous and discrete signals and their
related operations such as the Fourier transforms are defined.

Chapter 3 provides the relevant acoustic background. The concepts and definitions
introduced in this chapter are the preliminaries of the following chapters. First, the
notation adopted for both 2D and 3D spatial coordinate systems is given. Successively,
the solutions of the wave equation are presented according to the Cartesian and spher-
ical coordinate systems. The introduced sound field representations are at the basis of
the concepts described in Chapter 6 and Chapter 4.

Part II address the sound field processing in the EAR context. In particular, the
sound field reconstruction problem is examined with the introduction of a novel para-
metric technique. Moreover, a blind sound source separation technique based on a
non-parametric sound field representation is presented.

Chapter 4 provides an overview of the sound field reconstruction problem. This
problem is directly related to the navigation of a recorded sound field in EAR. Accord-
ing to the paradigms of the sound field representation, two main categories of sound
field reconstruction methods can be defined: non-parametric and parametric. We pro-
vide a review of state-of-the-art techniques in both categories.

In Chapter 5, we propose parametric sound field reconstruction techniques [199]
that represent the basis of the EAR approach. The methods we developed in [197–199],
include the directivity pattern of the sound source into the parametric model. [197,198]
consider controlled environments, while the technique presented in [199] extends the
parametric model to reverberant sound fields.

Chapter 6 addresses the sound field manipulation through the development of a
novel blind source separation approach. Here, we exploit a non-parametric sound field
representation, known as ray space, in order to perform BSS. First, we describe the pro-
cess of mapping the signal of a uniform linear array to the ray space domain, and we
present a new computationally efficient implementation [44] of [37]. The BSS in [201]
is performed applying the MNMF algorithm to the ray space data in order to estimate
the ray space representation of each source present in the environment. This allows us
to extract the content of an acoustic source when no a-priori information on the sound
scene is given.

Part III address the implementation of virtual sources in the EAR context. We tackle
the virtual source modeling through the analysis of a case study concerning the violin
as VS.

In Chapter 7 we describe the estimation of the directivity pattern of violins and its
characterization given in [200]. First, we review the acoustics of violins with special fo-

10



i
i

“thesis” — 2021/3/10 — 22:18 — page 11 — #21 i
i

i
i

i
i

1.4. List of the included publications

cus on the sound radiation characteristics. The literature on violin acoustics underlines
the relevant directional radiation of this kind of instruments. Therefore, it is funda-
mental to model their directional behavior in a VS. We performed mesurements and
analysis on directivity patterns of historical violins. This provided insights on the di-
rectional radiation characteristics of violins and thus the importance of their accurate
modeling.

In Chapter 8, before the introduction of the novel data-driven NAH technique of
[185], a review of the CNN fundamentals is given. This type of architectures have been
employed in [185] for estimating the vibrating field of rectangular and violin plates
from the acoustic pressure measured in their proximity.

Chapter 9, introduced practical techniques that can be employed in order to obtain
improved models for the FEM simulation of violins. The method developed in [203]
allows the reconstruction of a violin plate 3D geometry from its outer surface scan. In
[273] we introduced a practical technique for the estimation of the sound wave velocity
in wood.

Lastly, Chapter 10 discuss the implementation of VSs in a proof-of-concept simu-
lation. Here, we introduce the VS model that allows the implementation of directional
VSs. We describe how a-priori information about the acoustic environment drives the
rendering of VSs. Later, we present a simulation that shows the EAR approach. In par-
ticular, a string trio scenario is considered, where a cello is simulated as a “real” source
in the scene, while two violins are added as VSs. The VS models are derived both from
measurements on a real instruments and simulations. The first violin represents a vir-
tual replica of an historical instrument, obtained from the directivity analysis described
in Chapter 7. Conversely, the second VS source is derived from the FEM simulation of
a simplified violin body model.

Chapter 11 draws final considerations and outlines the directions of possible future
research and development activities.

1.4 List of the included publications

In this thesis we present a work that includes original contents from the following peer-
reviewed articles. The papers have been published or planned to be submitted by the
author to international journals and conferences.

• [197] M. Pezzoli, F. Borra , F. Antonacci, A. Sarti, and S. Tubaro. Estimation
of the soundfield at arbitrary positions in distributed microphone networks based
on distributed ray space transform. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 186–190. IEEE, 2018.
Abstract
In this paper we propose a parametric sound field reconstruction approach. In
particular, the technique is based on the estimation of three parameters for each
acoustic source (source position, radiation pattern and source signal) given the
signals acquired by few arbitrarily placed microphone arrays. This allows us to
synthesize the signal of a virtual microphone placed in any point of the acoustic
scene.

• [198] M. Pezzoli, F. Borra, F. Antonacci, A. Sarti, and S. Tubaro. Reconstruc-
tion of the virtual microphone signal based on the distributed ray space trans-
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form. In 2018 26th European Signal Processing Conference (EUSIPCO), pages
1537–1541. IEEE, 2018.
Abstract
In this paper we propose a technique for the reconstruction of the sound field at
arbitrary positions based on a parametric sound field description. The methodol-
ogy consists in the estimation of the sources model parameters (source position,
radiation pattern and source signal), starting from the signals acquired by arbitrar-
ily distributed microphone arrays. Given the model parameters it is possible to
synthesize the signal of a virtual microphone at an arbitrary position and with an
arbitrary pick-up pattern.

• [199] M. Pezzoli, F. Borra, F. Antonacci, S. Tubaro, and A. Sarti. A parametric
approach to virtual miking for sources of arbitrary directivity. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol 28, pages 2333–2348,
2020.
Abstract
In this article we propose a methodology for the reconstruction of sound fields
in arbitrary locations based on the signals acquired by a spatial distribution of
compact microphone arrays (virtual miking). The proposed method is suitable
for operating in reverberant environments, thanks to a two-stage analysis pro-
cess, the former of which aims at separating the direct and the diffuse components
of the sound field. The method that we propose is inherently parametric, as the
sources of the acoustic scene are characterized by parameters describing location
and directivity (spherical harmonics expansion), which are extracted from the ex-
terior model of the direct component of the sound field. Once the parameters of
the sources are extracted, the direct sound field at an arbitrary location is recon-
structed. The diffuse component is reconstructed from the joint knowledge of the
diffuse component at the locations of the distributed microphone arrays, under
the assumption of isotropic behavior. Results show that the proposed technique
is able to analyze the sound field and reconstruct the parameters of the sources
that are active in the scene. In addition, the synthesis of the signals at the virtual
microphone locations turns out to accurately match (in terms of spatial cues) the
actual sound field, as measured by a microphone places in the desired location.

• [44] F. Borra, M. Pezzoli, L. Comanducci, A. Bernardini, F. Antonacci, S. Tubaro,
and A. Sarti. A fast ray space transform for wave field processing using acoustic
arrays. In 2020 28th European Signal Processing Conference (EUSIPCO), pages
186–190. IEEE, 2020.
Abstract
The importance of soundfield imaging techniques is expected to further increase
in the next few years thanks to the ever-increasing availability of low-cost sensors
such as MEMS microphones. When it comes to processing a relevant number
of sensor signals, however, the computational load of space-time processing al-
gorithms easily grows to unmanageable levels. The Ray Space Transform (RST)
was recently introduced as a promising tool for soundfield analysis. Given the
collection of signals captured by a uniform linear array of microphones, the RST
allows us to collect and map the directional components of the acoustic field onto
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a domain called “ray space”, where relevant acoustic objects are represented as
linear patterns for advanced acoustic analysis and synthesis applications. So far
the computational complexity of the RST linearly increases with the number of
microphones. In order to alleviate this problem, in this paper we propose an alter-
native efficient implementation of the RST based on the Non Uniform Fast Fourier
Transform.

• [201] M. Pezzoli, J. J. Carabias-Orti, M. Cobos, F. Antonacci,and A. Sarti. Ray-
space-based multichannel nonnegative matrix factorization for audio source sep-
aration. IEEE Signal Processing Letters, vol. 28, pp. 369-373, 2021.
Abstract
Nonnegative matrix factorization (NMF) has been traditionally considered a promis-
ing approach for audio source separation. While standard NMF is only suited for
single-channel mixtures, extensions to consider multi-channel data have been also
proposed. Among the most popular alternatives, multichannel NMF (MNMF) and
further derivations based on constrained spatial covariance models have been suc-
cessfully employed to separate multi-microphone convolutive mixtures. This let-
ter proposes a MNMF extension by considering a mixture model with Ray-Space-
transformed signals, where magnitude data successfully encodes source locations
as frequency-independent linear patterns. We show that the MNMF algorithm can
be seamlessly adapted to consider Ray-Space-transformed data, providing com-
petitive results with recent state-of-the-art MNMF algorithms in a number of con-
figurations using real recordings.

• [200] M. Pezzoli, A. Canclini, F. Antonacci, and A. Sarti. A Comparative Anal-
ysis of the Directional Sound Radiation of Historical Violins. The Journal of the
Acoustical Society of America, (submitted).
Abstract
The directivity pattern of a violin describes the sound energy radiation of the in-
strument as a function of frequency and direction of emission. Violins exhibit
a rather complex directivity pattern, which is known to exhibit rapid variations
across the frequency, and whose behavior cannot be easily predicted except in
the lowest frequency range. The acoustic behavior of the violin is a fascinating
research topic that has prompted numerous published works, but a thorough, com-
prehensive and comparative analysis of violin directivity patterns, is long overdue.
In this article, we propose a set of tools for characterizing the radiative behavior
of musical instruments and, in particular, for comparing their directivity patterns.
We apply such tools for a comparative analysis of the directivity patterns of some
of the most prestigious historical violins ever made, coming grand masters such
as Antonio Stradivari, Giuseppe Guarneri “del Gesú" and members of the Amati
family; which are all preserved in the Violin Museum of Cremona, Italy, where
our lab is located. The tools introduced in this work allowed us to gain insight
on the acoustic behavior of such extraordinary instruments, quantitatively confirm
some widespread beliefs, and draw some surprising conclusions.

• [185] M. Olivieri, M. Pezzoli, R. Malvermi, F. Antonacci, and A. Sarti. Near-field
acoustic holography analysis with convolutional neural networks. In INTER-
NOISE and NOISE-CON Congress and Conference Proceedings, volume 261,
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pages 5607–5618, Institute of Noise Control Engineering, 2020.
Abstract
Near-field Acoustic Holography (NAH) enables the contactless analysis of the vi-
brational field on plates and shells from the acoustic data captured in proximity of
the vibrating object. In this paper, we propose a data-driven approach to NAH by
using a Convolutional Neural Network (CNN) that predicts the vibrational field
on the object from the acoustic pressure field captured by a microphone array de-
ployed in its proximity. We have conducted an extensive simulation campaign on
rectangular plates of different dimensions, boundary conditions and mechanical
properties. This dataset has been generated using Finite Element Method simula-
tion for predicting both vibrational and acoustic pressure fields. The performance
of the proposed data-driven NAH method is assessed by comparing the estimated
vibrational field with the ground truth. Moreover, we offer an analysis of the
robustness of the estimate against noisy input data.

• [203] M.Pezzoli, R. R. DeLucia, F. Antonacci, and A. Sarti. Predictive simulation
of mechanical behavior from 3D laser scans of violin plates. In 23rd International
Congress on Acoustics, pages: 7577-7583, ICA, 2019.
Abstract
In this paper we present a methodology for the predictive simulation of the vibro-
metric behaviour of a violin plate. The 3D outer shape of the plate is acquired
by means of a 3D laser scanner and then smoothed in order to remove artefacts
and details that are unnecessary for the acoustics simulation. The thickness of the
plate is incorporated into the model through a technique that receives as input the
thickness sampled at some points of the plate and interpolates it over the entire
surface. We validate this 3D reconstruction technique by comparing the vibro-
metric behaviour of the 3D model with data measured on the reference plate, and
with simulations on a model with uniform thickness.

• [273] L. Villa, M. Pezzoli, F. Antonacci, and A. Sarti. A methodology for the
estimation of propagation speed of longitudinal waves in tone wood. In 2020 28th
European Signal Processing Conference (EUSIPCO), pages 66–70. IEEE, 2020.
Abstract
In this paper we propose a methodology for the estimation of the longitudinal
wave velocity in tone wood. Differently from techniques adopted in the field of
luthiery, the proposed estimation method does not require neither specific user
skill nor expensive instrumentation. The introduced method exploits the impulse
response of the wood block, acquired by means of accelerometers. The measured
signals are processed in order to compute an estimate of the longitudinal wave
velocity of the tone wood in a rake receiver fashion. We tested the technique
both on synthetic data and measurements of actual tone wood blocks, showing the
effectiveness of the proposed solution with respect to state-of-the-art methods.
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CHAPTER2
Signals and Transformations

This chapter offers a review of signals and their representation, the definition of ba-
sic operations on the signals and the Fourier transformations. Signals are defined as
functions with a proper domain that can be continuous or discrete, one-dimensional or
multi-dimensional and in the scope of this thesis they represent acoustic phenomena.

Both one-dimensional and multi-dimensional continuous signals are introduced in
Section 2.1 along with the definition of the inner product, the Euclidean norm and the
convolution operation.

Additionally, one-dimensional continuous periodic signals and the circular convolu-
tion are defined in Section 2.1.2.

While reviewing basic definitions of signals and Fourier transformation, this chapter
allows us to introduce and defined a unified set of notations that is adopted throughout
the thesis. Nonetheless, the reader accustomed to these topics can skip that chapter.

In Section 2.2 the discrete counterparts of the one-dimensional and multi-dimensional
signals are introduced and the definitions of inner product, Euclidean norm, linear and
circular convolutions of discrete signals are provided.

Finally, in Section 2.3 we define the Fourier transformations for both continuous and
discrete signals. Moreover, we present the local Fourier transform and its inverse op-
eration, a useful and fundamental tool for the processing of signals that show localized
information, e.g. time varying acoustic signals.

2.1 Continuous Signals

2.1.1 One-Dimensional Continuous Signals

Let us define as one-dimensional continuous signals the set of complex functions of a
single continuous variable defined on the domain of real numbers that form the vector

17



i
i

“thesis” — 2021/3/10 — 22:18 — page 18 — #28 i
i

i
i

i
i

Chapter 2. Signals and Transformations

space CR as [271]
f(t), f : R→ C. (2.1)

The inner product of a pair of one-dimensional functions (e.g. f1(t), f2(t) ∈ CR) is
defined as [271]

〈f1(t), f2(t)〉 =

∫ +∞

−∞
f1(t)f ∗2 (t)dt, (2.2)

where (·)∗ represents the complex conjugate operator. From (2.2), the Euclidean norm
`2 is derived as [271]

‖f‖ =
√
〈f, f〉 =

(∫ +∞

−∞
|f(t)|2dt

) 1
2

. (2.3)

The energy of the signal f is defined as the square of (2.3) ‖f‖2. In this manuscript,
we focus on finite-energy one-dimensional continuous time signals for which the `2 is
finite, namely ‖f‖ <∞, and t represents the time.

The convolution between two one-dimensional continuous signals f1(t) and f2(t) is
defined as [271]

(f1 ∗ f2)(t) =

∫ ∞
−∞

f1(τ)f2(t− τ)dτ =

∫ ∞
−∞

f1(t− τ)f2(τ)dτ. (2.4)

2.1.2 One-Dimensional Continuous Periodic Signals

A one-dimensional continuous periodic signal is a continuous function that satisfies the
following equation

f(t+ T ) = f(t), t ∈ R, (2.5)

where T refers to the period of the function. In general, the `2 norm of a continuous
periodic signal is not finite [271], hence, the energy of such signals is defined over one
period as

‖f‖2 =

∫ T
2

−T
2

|f(t)|2dt. (2.6)

The circular convolution between two one dimensional periodic signals is defined in
[271] as

(f1 ~ f2)(t) =

∫ T
2

−T
2

f1(τ)f2(t− τ)dτ =

∫ T
2

−T
2

f1(t− τ)f2(τ)dτ. (2.7)

The result of the circular convolution (2.7) is still periodic of period T , thus (f1 ~
f2)(t) = (f1 ~ f2)(t+ T ).

2.1.3 Multi-Dimensional Continuous Signals

The multi-dimensional continuous signals are defined as a set of functions of D vari-
ables in the domain of real numbers forming the vector space CRD

f(r), f : RD → C, (2.8)

18
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2.2. Discrete Signals

where r = [r0, . . . , rD−1] ∈ RD is the vector of the independent variables. When two
multi-dimensional signals ofD variables are considered, the inner product is defined as

〈f1, f2〉 =

∫
r∈RD

f1(r)f ∗2 (r)dr, (2.9)

while the `2 norm (Euclidean norm) is given by

‖f‖ =
√
〈f, f〉 =

(∫
r∈RD

|f(r)|2dr
) 1

2

. (2.10)

Similarly, to the one-dimensional case, in this thesis we consider finite-energy signals
for which the `2 norm (2.10) is finite.

2.2 Discrete Signals

2.2.1 One-Dimensional Discrete Signals

A one-dimensional discrete signal or sequence, is a single variable function defined on
the domain of integer numbers that forms the vector space CZ. Typically, a discrete
signals is obtained from the sampling of continuous signal and we denote it as

f = [. . . , f [−2], f [−1], f [0], f [1], f [2], . . . ]T , (2.11)

where (·)T is the transpose operator and f [n],= f(nTs) with n ∈ Z refers to the
discrete version of the continuous signal sampled with a sampling interval Ts. Here,
we associate the independent variable with time, hence, n and Ts are also referred as
time index and sampling period, respectively.

Commonly, only a finite N -length section of the infinite-length sequence (2.11) is
considered

f = [f [0], . . . , f [N − 1]] ∈ CN . (2.12)

The inner product between two N -length one-dimensional discrete signals f1 and f2

is defined as [271]

〈f1, f2〉 =
N−1∑
n=0

f1[n]f ∗2 [n] = fH1 f2, f1, f2 ∈ CN, (2.13)

where (·)H is the conjugate transpose operator. The inner product of (2.13) induces the
Euclidean norm definition in the case of finite-length sequences

‖f‖ =
√
〈f , f〉 =

(
N−1∑
n=0

|f [n]|2
) 1

2

. (2.14)

Note that in the case of infinite-length sequences, the indices of the summations in
(2.13) and (2.14) go from −∞ to +∞.

The convolution between two sequences f1, f2 ∈ CZ is defined as [271]

(f1 ∗ f2)[n] =
∑
k∈Z

f1[k]f2[n− k] =
∑
k∈Z

f1[n− k]f2[k], (2.15)
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Chapter 2. Signals and Transformations

while the circular convution between two N -length discrete signals is given by [271]

(f1 ~ f1)[n] =
N−1∑
k=0

f1[k]f2[(n− k) mod N ] =

=
N−1∑
k=0

f1[(n− k) mod N ]f2[k],

(2.16)

2.3 Fourier Transform

2.3.1 One-Dimensional Fourier Transform

The Fourier Transform of a one-dimensional complex continuous function f(t) ∈ CR

with t ∈ R is defined as

F (ω) =

∫ +∞

−∞
f(t)e−jωtdt, (2.17)

where ω ∈ R is the angular frequency and j =
√
−1 is the imaginary unit. In the scope

of this thesis, we interpret t as time and it is standard practice to consider ω/2π as the
temporal frequency measured in Hz, while ω is in rad s−1.

The inverse Fourier Transform of the signal F ∈ CR is defined as

f(t) =
1

2π

∫ +∞

−∞
F (ω)ejωtdω, (2.18)

with t ∈ R. The following notation

F (ω) = Ft{f(t)},
f(t) = F−1

t {F (ω)},
(2.19)

is adopted for referring to the Fourier Transform (2.17) and its inverse (2.18), respec-
tively.

2.3.2 Multi-Dimensional Fourier Transform

The one-dimensional Fourier Transform (2.17) can be straightforwardly generalized to
multi-dimensional signals i.e. CRD as follows

F (k) =

∫ +∞

−∞
f(r)e−j〈k,r〉dr, k ∈ RD. (2.20)

Similarly, the inverse Fourier Transform of a multi-dimensional signal is defined as

f(r) =
1

2π

∫ +∞

−∞
F (k)ej〈k,r〉dk, r ∈ RD, (2.21)

and with the compact notation operators (2.20), (2.21) become

F (k) = Fr{f(r)},
f(r) = F−1

r {F (k)}.
(2.22)
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2.3. Fourier Transform

2.3.3 Fourier Series

The Fourier transformation of periodic signals in the vector space L2([−T/2, T/2))
defines a discrete complex function known as the Fourier Series coefficient sequence
[271]

F [k] =
1

T

∫ T
2

−T
2

f(t)e−j(2π/T )ktdt, k ∈ Z, (2.23)

where f(t) ∈ CR is a periodic function with period T and k, defined on the domain
of the integer numbers Z, is the discrete frequency that indexes the multiples of the
fundamental ω0 = 2π/T . The signal f(t) can be reconstructed from the coefficients of
(2.23) as

f(t) =
∑
k∈Z

F [k]ej(2π/T )kt, t ∈ [−T/2, T/2]. (2.24)

2.3.4 Discrete-Time Fourier Transform

The discrete-time Fourier transform is the Fourier transformation related to infinite-
length discrete signals in CZ and it is defined as

F (ω) =
+∞∑

n=−∞

f [n]ejωn, ω ∈ R. (2.25)

The discrete-time Fourier transform exists in the case when (2.25) converges for all
ω ∈ R and F (ω) is a periodic function of period 2π. The inverse of the discrete-time
Fourier transform is defined as

f [n] =
1

2π

∫ 2π

0

F (ω)ejωndω, n ∈ Z. (2.26)

2.3.5 Discrete Fourier Transform

The discrete Fourier transform of a L-length discrete signal f is defined as

F [k] =
N−1∑
n=0

f [n]e−j(2π/N)kn, k ∈ {0, . . . , N − 1}. (2.27)

The inverse operator of (2.27), called inverse discrete Fourier transform is defined as

f [k] =
1

N

N−1∑
n=0

F [k]ej(2π/N)kn, n ∈ {0, . . . , N − 1}. (2.28)

The following notation is introduced

F [k] = DFT N{f [n]},
f [n] = DFT −1

N {F [k]},
(2.29)

to denote the direct and the inverse discrete Fourier transforms, respectively.
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Chapter 2. Signals and Transformations

2.4 Local Fourier Transform

The different Fourier transformations reviewed in Sec. 2.3 represent a fundamental tool
for the processing of signals. They perform a global analysis of the signal, since the
information encoded by the time dependent function is integrated and projected onto
the Fourier basis. Nevertheless, for some applications, it is interesting to analyze the
local characteristics of the signals rather than their global properties. As an example,
one might want to follow the temporal evolution of the frequency content of a signal.
Therefore, the Fourier transform is not suitable for such task since it is defined on the
whole signal duration. In order to processes the signals locally, in [106] a windowed
Fourier transform, also referred as local Fourier transform, short-time Fourier transform
or short-term Fourier transform was proposed. In the context of this thesis, we adopt
the term local Fourier transform.

2.4.1 Local Continuous Fourier Transform

The local Fourier transform of a signal f(t) ∈ CR is defined as

F (ω, τ)

∫
t∈R

f(t)w(t− τ)e−jωtdt, (2.30)

where ω, τ ∈ R and w(t) is a real valued even function with support confined to a
small interval about zero and usually, it is referred as window function. The inverse
local Fourier transform is then defined as

f(t) =
1

2π

∫
ω∈R

∫
τ∈R

F (ω, τ)w(t− τ)ejωtdωdτ. (2.31)

In [49] the author proved that in order to have the inverse local Fourier transform to
hold the following assumptions must be met

1.
∫
R |w(t)|dt <∞;

2.
∫
R |w(t)|2dt = C;

where C is a constant different from zero and it is commonly assumed equal to one in
order to have a window function of unitary energy.

2.4.2 Local Discrete Fourier Transform

The discrete version of the local Fourier transform is defined for a N-length sequence
f ∈ CN as

F [τ, k] =
N−1∑
n=0

f [n]w[n− τ ]e−j(2π/N)kn, (2.32)

with τ ∈ {0, . . . , N − 1} and k ∈ {0, . . . , N − 1}. The discrete counterpart of the
inverse local Fourier transform is defined as

f [n] =
1

N

N−1∑
τ=0

N−1∑
k=0

F [τ, k]w[n− τ ]e−j(2π/N)kn. (2.33)
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2.4. Local Fourier Transform

Transform Analysis/Synthesis Characteristics

F (ω) =
∫ +∞
−∞ f(t)e−jωtdt

Fourier transform
f(t) = 1

2π

∫ +∞
−∞ F (ω)ejωtdω,

F [k] = 1
T

∫ T
2

−T2
f(t)e−j(2π/T )kt Dual with DTFT

Fourier series
f(t) =

∑
k∈Z F [k]ej(2π/T )kt f(t+ T ) = f(t)

F (ω) =
∑+∞
n=−∞ f [n]ejωn Dual with Fourier series

Discrete-time Fourier transform
f [n] = 1

2π

∫ 2π

0
F (ω)ejωndω F (ejω+2π) = F (ejω)

F [k] =
∑N−1
n=0 f [n]e−j(2π/N)kn

Discrete Fourier transform
f [k] = 1

N

∑N−1
n=0 F [k]ej(2π/N)kn

F (ω, τ)
∫∞
−∞ f(t)w∗(t− τ)e−jωtdt

Local Fourier transform
f(t) = 1

2π

∫∞
−∞

∫∞
−∞ F (ω, τ)w∗(t− τ)ejωtdωdτ

F [τ, k] =
∑N−1
n=0 f [n]w∗[n− τ ]e−j(2π/N)kn,

Local discrete Fourier transform
f [n] = 1

N

∑N−1
τ=0

∑N−1
k=0 F [τ, k]]w[n− τ ]e−j(2π/N)kn

Table 2.1: Summary of the introduced Fourier transform definitions given in Section 2.3 and Section 2.4.
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CHAPTER3
Background on Acoustics

This chapter reviews the physical laws governing the phenomena of sound generation
and propagation in space. We consider the sound or acoustic field as a scalar function.
The domain of sound fields is represented by the union of the temporal and spatial
domains, hence the sound field is a real-valued scalar function

p(r, t), r ∈ R3, t ∈ R (3.1)

where r represents the spatial coordinates and t is time. Thanks to the property of
invariance under space coordinates transformations [175], the sound field can be equiv-
alently expressed adopting different representations of the spatial variable. In this chap-
ter, basic linear acoustics is reviewed, therefore the reader accustomed to the topic can
skip this chapter.

In Section 3.1, we review the common choices for 3D and 2D coordinate systems.
A review of wave acoustics is given by the summary on the wave equation of Sec-
tion 3.2, with the formulation of the homogeneous wave equation in Section 3.2.1 and
the inhomogeneous wave equation in Section 3.2.2. Solutions to wave equations are
given in Section 3.3 and Section 3.4 according to the considered formulation, while in
Section 3.5 the acoustic field is expressed through the well-known Kirchoff-Helmholtz
integral. Finally, in Section 3.6 the representation of acoustic fields in terms of plane
waves and spherical waves are given and the exterior and interior problems are de-
scribed.

3.1 Coordinate Systems

In this section, the notation adopted in the rest of the thesis to denote spatial coordinate
systems is introduced both for 3D and 2D case.
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Chapter 3. Background on Acoustics
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Figure 3.1: Spatial coordinate systems: (a) 3D Cartesian coordinate system, (b) 2D Cartesian coordi-
nate system, (c) Spherical coordinate system and (d) Polar coordinate system.

The position vector in 3D Cartesian coordinates r = [x, y, z]T indicates the three
spatial coordinates in a right-handed orthogonal coordinate system, as depicted in Fig-
ure 3.1(a). For a 2D Cartesian system of coordinates, the position vector is denoted as
r = [x, y]T , with the spatial coordinates on the two perpendicular oriented axes (see
Figure 3.1(b)).

For some applications, it is convenient to adopt a spherical reference frame, in which
the position vector is defined as the radial distance ρ from the origin, the azimuth φ and
the inclination (also called co-elevation) θ angles as shown in Figure 3.1(c). The rela-
tionship between the spherical coordinates and the 3D Cartesian coordinates is given
by

x = ρ sin(θ) cos(φ),

y = ρ sin(θ) sin(φ),

z = ρ cos(θ),

(3.2)

and

ρ =
√
x2 + y2 + z2,

φ = arccos

(
x√

x2 + y2

)
= arcsin

(
y√

x2 + y2

)
,

θ = arccos

(
z√

x2 + y2 + z2

)
.

(3.3)

In a 2D setting, the polar reference system can be adopted, where the position vector is
defined by the radius ρ and polar angle φ as depicted in Figure 3.1(d). The relationship
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3.2. The Wave Equation

between polar coordinates and 2D Cartesian coordinates is defined as

ρ =
√
x2 + y2,

φ = arctan
(y
x

)
.

(3.4)

3.2 The Wave Equation

3.2.1 Homogeneous Wave equation

Under linear assumption, the sound field is described by small variations of the pressure
amplitude p(r, t) as a function of the space r and time t. In the case of a source-free
volume of homogeneous medium, the pressure p must satisfy the homogeneous wave
equation [286]

∇2p(r, t)− 1

c2

∂2p(r, t)

∂t
= 0, (3.5)

where ∇2 denotes the Laplace operator and c is the speed of sound in the medium.
According to the adopted coordinate system, the Laplace operator assumes different
formulations. In particular, when Cartesian coordinates are considered,∇2 becomes

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (3.6)

while in spherical coordinates it reads

∇2 =
1

ρ2

∂

∂ρ

(
ρ2 ∂

∂ρ

)
+

1

ρ2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

ρ2 sin2(θ)

∂2

∂φ2
. (3.7)

In many contexts, the sound field is generated by the harmonic motion of a source,
hence it is convenient to consider the sound field as a function of the temporal frequency
and space. It follows that the time-harmonic dependence of p(r, t) can be expressed as

p(r, t) = P (r, ω)ejωt, (3.8)

with P (r, ω) = Ft{p(r, t)} the temporal Fourier transform of the pressure. Therefore,
the wave equation (3.5) can be rewritten applying the Fourier transform (2.17) as

Ft
{
∇2p(r, t)− 1

c2

∂2p(r, t)

∂t2

}
= 0,

∇2Ft {p(r, t)} −
1

c2
Ft
{
∂2p(r, t)

∂t2

}
= 0,

(3.9)

which results in the well-known homogeneous Helmholtz equation [286]

∇2P (r, ω) +
(ω
c

)2

P (r, ω) = 0. (3.10)

3.2.2 Inhomogeneous Wave Equation

When the considered volumes are not free of sources, the homogeneous wave equation
cannot be adopted for describing the sound field under analysis. In order to take into
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Chapter 3. Background on Acoustics

account of the energy emitted by the source, an excitation term is included in (3.5)
yielding the inhomogeneous wave equation [286]

∇2p(r, t)− 1

c2

∂2p(r, t)

∂t
= −q(r, t), (3.11)

where q(r, t) = Q(r, ω)ejωt is the source function. Similarly to (3.10), the inhomoge-
neous Helmholtz equation is derived by applying the Fourier transform to (3.11)

∇2P (r, ω) +
(ω
c

)2

P (r, ω) = −Q(r, ω). (3.12)

3.3 Solution to the Homogeneous Wave Equation

In this section, we review the solution of the homogeneous Helmholtz equation (3.10)
that leads to well-known time-harmonic sound fields, characterized by the choice of the
adopted coordinate system.

3.3.1 Plane Waves

When a Cartesian reference frame is adopted, candidate solutions of the homogeneous
Helmholtz equation take the forms of complex exponential functions as [134, 286]

P (r, ω) = ej〈k,r〉, (3.13)

where k = [kx, ky, kz]
T denotes the wavenumber or propagation vector. The substitu-

tion of (3.13) in (3.10) leads to acceptable solutions if the dispersion relation is satisfied

‖k‖2
2 =

(ω
c

)2

. (3.14)

The condition in (3.14) relates the wavenumber vector with the frequency and given
that (ω

c
) is constant, the components of k = [kx, ky, kz]

T are not independent of one
another. It follows, that letting, as instance, kz be the dependent variable, in order to
satisfy (3.14) the following relation must hold

k2
z =

(ω
c

)2

− k2
x − k2

y (3.15)

with kx and ky ranging from −∞ to∞.
Therefore, from (3.15) two distinct cases can be identified. When (k2

x+k2
y) ≤

(
ω
c

)2,
kz assumes real values, i.e., kz ∈ R, otherwise it becomes a purely imaginary number,
namely, kz = jk′z, k

′
z ∈ R.

In the first case, when kz ∈ R, the solutions of (3.10) are propagating plane waves,
characterized by wavefronts that are defined by the location of points where the phase
of the function is constant i.e.,

∠P (r, ω) = 〈k, r〉 = C, (3.16)

with C ∈ R being a constant. It is clear from (3.16), that wavefronts are perpendicular
to the wavenumber vector k. Due to this property, (3.13) is named plane wave. It is
worth noting that from the wavenumber vector k, the Direction of Arrival (DoA) of the
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3.3. Solution to the Homogeneous Wave Equation

plane wave is derived as the unit vector k̂ = k/‖k‖. We can express the solution of the
homogeneous wave equation (3.5) by adding the time-harmonic dependence to (3.13)

p(r, t) = P (r, ω)ejωt = ej(〈k,r〉+ωt). (3.17)

When kz takes purely imaginary values, the solution of (3.10) corresponds to evanes-
cent plane waves. The solution of the homogeneous wave equation (3.5) thus becomes

p(r, t) = ej(〈k,r〉+ωt) = e−jk
′
zzej(kxx+kyy)ejωt. (3.18)

In order obtain a solution that provide physical sense, it is customary to consider only
k′z ∈ R+. Through the term e−jk

′
zz in (3.18), this choice leads to exponentially decaying

plane waves as z increases, that would otherwise results in an energy gain as the plane
waves propagate.

3.3.2 Spherical Waves

A second fundamental formulation of the solution to the homogeneous Helmholtz equa-
tion is expressed adopting a spherical reference frame. Employing the definition of the
Laplace operator in spherical coordinates (3.7), equation (3.10) can be rewritten as

1

ρ2

∂

∂ρ

(
ρ2∂P (r, ω)

∂ρ

)
+

1

ρ2 sin(θ)

∂

∂θ

(
sin(θ)

∂P (r, ω)

∂θ

)
+

1

ρ2 sin2(θ)

∂2P (r, ω)

∂φ2
+
(ω
c

)2

P (r, ω) = 0.

(3.19)

The solution to (3.19) is obtained by separation of variables [286] and it consists in
the multiplication of different functions each of them depending on one of the three
variables (ρ, φ, θ) as

P (r, ω) = R(ρ)Φ(φ)Θ(θ). (3.20)

For a detailed discussion and the mathematical derivation of (3.20) the reader is referred
to [286].

Sometime, (see Section 3.6.2) it is useful to represent the solution for the angular
variables in terms of the spherical harmonics functions

Ylm(θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Plm (cos(θ)) ejmφ, (3.21)

where Plm is the associated Legendre function of order l and degree m with |m| < l
and it is defined for positive values of m as

Plm(x) = (−1)m(1− x2)m/2
∂m

∂xm
Pl(x) (3.22)

with Pl(x) the associated Legendre function, while, for negative values of m it is given
by

Pl(−m)(x) = (−1)m
(l −m)!

(l +m)!
Plm(x). (3.23)
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Chapter 3. Background on Acoustics

Given (3.23) one obtains that

Yl(−m)(θ, φ) = (−1)mY ∗lm(θ, φ), m > 0. (3.24)

Hence, a convenient expression of the spherical harmonics is the following

Ylm(θ, φ) =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

Pl|m| (cos(θ)) ejmφ. (3.25)

The dependence on the radial distance in (3.20) is expressed by R(ρ) in terms of the
spherical Bessel function as

R(ρ) = R1jl((ω/c)ρ) +R2yl((ω/c)ρ) (3.26)

where R1 and R2 are constants, jl(·) is the spherical Bessel function of the first kind
and yl(·) is the spherical Bessel function of the second kind. As an alternative, R(ρ)
can be expressed in terms of the spherical Hankel function as

R(ρ) = R3h
(1)
l ((ω/c)ρ) +R4h

(2)
l ((ω/c)ρ) (3.27)

with h(1)
l (·) the spherical Hankel functions of the first kind and h(2)

l (·) the spherical
Hankel functions of the second kind. The values R1, R2, R3 and R4 are properly set
according to the location of the acoustic sources in the scene. In particular, when the
sound field is generated by sources far from the origin and observed around the origin,
condition also known as incoming sound field, the spherical Bessel functions of the first
kind are adopted. On contrary, in an outgoing sound field case, namely a sound field
generated by sources closed to the origin and observed in a region far from the sources,
spherical Hankel functions are employed. More details on the differences between the
two settings are given in Section 3.6.2, where the concepts of the interior and exterior
problem are described.

3.4 Solution to the Inhomogeneous Wave Equation

In this section, we introduce the solutions to the inhomogeneous wave equation (3.11),
which is adopted when the sound field is generated by a sound source in the volume
under analysis. Again, we assume a time-harmonic source, that let us focus on the
solutions to the inhomogeneous Helmholtz equation (3.12).

A remarkable solution to (3.12), that can be used in the construction of arbitrary
solutions, is known as Green’s function and it is given by the adoption of a spatial im-
pulse at r′ as the source termQ(r, ω) = δ(r−r′)δ(ω). The inhomogeneous Helmholtz
equation is thus rewritten as

∇2G (r|r′, ω) +
(ω
c

)2

G (r|r′, ω) = −δ (r − r′) (3.28)

whose solution is given by Green’s function

G (r | r′, ω) =
e−j

ω
c
‖r−r′‖2

4π ‖r − r′‖2

. (3.29)

More specifically, the Green’s function (3.29) provides the sound field of a point source
placed at r radiating in the free space. It is worth noting that the radiation described
by (3.29) is omnidirectional and that G(r|r′) = G(r′|r) since it depends only on the
distance ‖r − r′‖.
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3.5. Integral Formulation of Sound Fields

3.5 Integral Formulation of Sound Fields

This section reviews the formulation of acoustic fields in a confined volume. It follows
that while the sound field is described by the Helmholtz equation inside the volume,
some conditions have to be specified on the boundary. Different conditions exist ac-
cording to the constrained quantity and the constraints specification. Hence, the acous-
tic field in an confined volume must also satisfy the boundary conditions.

3.5.1 Kirchoff-Helmholtz Integral Equation

Let us consider the sound field P (r, ω) generated by a time-harmonic source excita-
tion F (r, ω) in a confined volume V with boundary ∂V . The acoustic field must be a
solution to the boundary value problem

∇2P (r, ω) +
(ω
c

)2

P (r, ω) = F (r, ω), r ∈ V , (3.30)

α〈∇P (r, ω), n̂(r)〉+ βP (r, ω) = 0, ∀r ∈ ∂V (3.31)

where n̂(r) is a unit vector normal to ∂V at the location r. We can recognize two
contributions in the sound field P (r, ω). The first component P0(r, ω) is given by the
radiation of a source F (r, ω) in an unbounded domain expressed as (3.29). The second
component P1(r, ω) instead is a solution of the homogeneous Helmholtz equation that
satisfies the boundary condition in (3.31). In fact, the expression in (3.31) provides the
conditions for the pressure and its relative gradient on the boundary of the volume ∂V .

By properly setting the parameters α and β different boundary conditions can be
achieved, in particular,

• α = 0, β = 1 results in the Dirichlet boundary condition (pressure-release bound-
ary) [6];

• α = 1, β = 0 results in the Neumann boundary condition (sound-hard boundary)
[6];

• α = 1, β 6= 0 results in the Robin boundary condition (absorbing boundary) [96];

The solution of (3.30) that satisfies the boundary condition (3.31) is given by the well-
known Kirchoff-Helmholtz integral equation [286] defined as

a(r)P (r, ω) = P0(r, ω) +

∫
∂V
G (r | r′, ω) 〈∇P (r′, ω) , n̂ (r′)〉

− P (r′, ω) 〈G (r | r′, ω) , n̂ (r′)〉 dA (r′)

(3.32)

where A(r′) is an infinitesimal portion of ∂V while a(r) is a parameter that takes the
values [286]

a(r) =


1, for r ∈ V
0.5, for r ∈ ∂V
0, for r /∈ V .

(3.33)

Therefore, the sound field is composed by the superposition of three contributions
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Chapter 3. Background on Acoustics

• the radiating term P0(r, ω) given by the source F (r, ω) in an unbounded domain
(3.30),

• the acoustic pressure on the boundary surface ∂V ,

• the pressure gradient in the direction normal to ∂V .

The Kirchoff-Holmholtz integral equation (3.32) is at the foundation of many acous-
tic applications, among which Nearfield Acoustic Holography (NAH) [286] that is in
the scope of this thesis (see Section 8.2).

3.6 Acoustic Field Representation

This section provides a review of the representations for sound fields that are directly
derived from the solutions of the Helmholtz equation given in Section 3.3 and Sec-
tion 3.4. The description of the acoustic field is therefore based on a set of independent
basis functions and their relative coefficients, that are derived from such solutions and
they differ according to the adopted reference system.

3.6.1 Plane Waves Representation

The adoption of plane waves as basis functions leads to the Whittaker’s representation,
in which an arbitrary sound field, satisfying the homogeneous Helmholtz equation in
a region V , is represented as an integral expansion of plane waves propagating in all
directions. The plane waves representation provides the advantage of being simple and
easily interpreted, since a plane wave is fully characterized by its direction of propa-
gation and temporal frequency. Let us assume the sound field of a propagating plane
wave in a Cartesian reference system

P (r, ω) = ej〈k,r〉 (3.34)

where k ∈ R3 with the constraint of the dispersion relation (3.14) ‖k‖ = ω
c
. The sound

field can be decomposed on a complete set of basis functions obtained by varying k
fulfilling the dispersion relations. Therefore, the Whittaker’s representation is defined
as the multi-dimensional inverse Fourier transform with respect to space

P (r, ω) =

(
1

2π

)3 ∫∫∫
D
P̃ (k)ej(k,r〉d3r, D =

{
k ∈ R3 : ‖k‖ =

ω

c

}
(3.35)

where P̃ (k) denotes the coefficients of plane waves at different spatial frequencies k.
The coefficients P̃ (k) can be derived from the multi-dimensional Fourier transform

of the sound field P (r, ω) with respect to the spatial variable r

P̃ (k) =

∫∫∫
R3

P (r, ω)e−j(k,r〉d3k (3.36)

and constraining k to satisfy the dispersion relation

P̃ (k) = P̃ (k)|‖k‖=‖k‖=ω
c
. (3.37)
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3.6. Acoustic Field Representation

An intuitive geometric interpretation of the Whittaker’s expansion is obtained factoriz-
ing the wavenumber as

k =
ω

c
[sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)]T , (3.38)

whose norm is ω/c and the vector is pointing in the direction given by (φ, θ), the az-
imuth and inclination angles, respectively. A different form of the Whittaker’s expan-
sion is then obtained by performing a proper change of variable in (3.35) and adopting
(3.38)

P̃ (k) =(ω
c

)3
∫∫
S
P̃ (θ, φ, ω)ej

ω
c

(x sin(θ) cos(φ)+y sin(θ) sin(φ)+z cos(θ)) sin(θ)dθdφ,
(3.39)

where the domain of integration is defined as S = {θ ∈ [0, φ], φ ∈ [0, 2π)} In practice,
we can interpret (3.39) as the superposition of propagating plane waves whose mag-
nitudes and phases are encoded in the coefficients P̃ (θ, φ, ω), while the directions are
dictated by θ and φ,. It is worth mentioning that the values, P̃ (θ, φ, ω), also known in
the literature as Herglotz density are not dependent on the location of observation r.

3.6.2 Spherical Waves Representation

The review of the spherical waves-based acoustic field representation is provided in this
section. The solution of the homogeneous Helmholtz equation using spherical waves
was shown in Section 3.3.2 as

P (r, ω) = R(ρ)Ylm(θ, φ). (3.40)

This formulation is characterized by the separation of the angular and radial distance
contributions. In particular, the dependence on the angles is contained in the frequency
independent spherical harmonics Ylm(θ, φ), while the dependency on the distance is
given in R(ρ) with forms

R(ρ) = R1jl((ω/c)ρ) +R2yl((ω/c)ρ) (3.41)

or
R(ρ) = R3h

(1)
l ((ω/c)ρ) +R4h

(2)
l ((ω/c)ρ) (3.42)

as discussed in Section 3.3.2.
In [286] the description of any solution to the homogeneous Helmholtz equation in

terms of infinite sum of spherical waves is given as

P (r, ω) =
+∞∑
l=0

+l∑
m=−l

(
Alm(ω)jl

(ω
c
ρ
)

+Blm(ω)yl

(ω
c
ρ
))

Ylm(θ, φ)

=
+∞∑
l=0

+l∑
m=−l

(
Clm(ω)h

(1)
l

(ω
c
ρ
)

+Dlm(ω)h
(2)
l

(ω
c
ρ
))

Ylm(θ, φ).

(3.43)

In Section 3.3.2 we discussed the role of the terms jl(·) and h(1)
l (·) with the former

suitable for describing the sound field internal to a source distribution and the latter
adopted in the case of external acoustic fields.
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Chapter 3. Background on Acoustics

Therefore, two different spherical waves representations arise according to the spa-
tial arrangement of the sound sources and the volume under analysis. On the one side,
we talk about interior problem, when the acoustic field is generated far outside of the
analyzed region, namely we are interested in a volume free of sources or scatterers.
On the other side, the exterior problem is defined for regions that includes the acoustic
sources and scatterers. In the following we provide a discussion of the two representa-
tions.

Exterior Problem

In the case of the exterior problem, the dependency on the radial distance is described
by means of the spherical Hankel function hl(·). Hence, the external sound field is
given as the expansion [286]

P (r, ω) =
+∞∑
l=0

l∑
m=−l

Clm(ω)h
(1)
l

(ω
c
ρ
)
Ylm(θ, φ) (3.44)

where the acoustic field is completely defined by the coefficients Clm(ω). Under the
assumption that the pressure P (r, ω) is known over the surface of a sphere of radius
a, the whole external volume V can be completely determined by the knowledge of
the coefficients of the expansion Clm(ω). Let us recall the orthonormal property of the
spherical harmonics∫ 2π

0

∫ π

0

Ylm(θ, φ)Y ∗l′m′(θ, φ) sin θdφdθ = δll′δmm′ , (3.45)

where the Kronecker delta is

δab

{
0 a 6= b

1 a = b
, (3.46)

exploiting (3.45) and applying a multiplication by Ypq(θ, φ) on each side of (3.44) after
the integration over the surface of a unit sphere, we can determine the coefficients as

Cnm(ω) =
1

h
(1)
l

(
ω
c
a
) ∫ 2π

0

∫ π

0

P (a, θ, φ, ω)Y ∗lm(θ, φ) sin θdθdφ. (3.47)

Finally, by inserting (3.47) into (3.44) we obtain the definition of the external pressure
in all the locations with ‖r‖ > a as

P (r, ω)

=
∑+∞

l=0

h
(1)
l (ωc ρ)
h

(1)
l (ωc a)

∑l
m=−l Ylm(θ, φ)

∫ 2π

0

∫ π
0
P (a, θ′, φ′, ω)Ylm (θ′, φ′)∗ dΓ′

(3.48)

where dΓ′ = sin θ′dθ′dφ′.

Interior Problem

The interior problem concerns the case when acoustic sources are located outside a
sphere with radius b where the origin lies. Hence, the spherical Bessel function jl(·)
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3.6. Acoustic Field Representation

that is finite at the origin, is adopted in the expansion of the internal sound field

P (r, ω) =
+∞∑
l=0

l∑
m=−l

Alm(ω)jl

(ω
c
ρ
)
Ylm(θ, φ). (3.49)

Again, the coefficients Alm(ω) of the expansion can be obtained exploiting the knowl-
edge of the pressure of the sphere of radius b as

Anm(ω) =
1

jl
(
ω
c
b
) ∫ 2π

0

∫ π

0

P (b, θ, φ, ω)Y ∗lm(θ, φ) sin θdθdφ. (3.50)

Similarly to the exterior problem, substituting (3.50) in (3.49) the expression of the
pressure field at the points inside a sphere of radius b, i.e., ‖r‖ < b, is given as

P (r, ω)

=
∑+∞

l=0

jl(ωc ρ)
jl(ωc b)

∑l
m=−l Ylm(θ, φ)

∫ 2π

0

∫ π
0
P (b, θ′, φ′, ω)Y ∗lm (θ′, φ′) dΓ′

(3.51)

where dΓ′ = sin θ′dθ′dφ′.

Bandlimited Spherical Wave Representation

Inspecting both the exterior field expansion (3.44) and the interior acoustic field for-
mulation (3.49), we can note that an infinite number of coefficients is required, since
0 ≤ l < +∞. Nevertheless, in [132] it was shown that acoustic fields can be expressed
truncating the expansion to a maximum order L

P (r, ω) =
L∑
l=0

l∑
m=−l

Clm(ω)h
(1)
l

(ω
c
ρ
)
Ylm(θ, φ), (3.52)

in the case of the exterior field, while for an interior field we obtain

P (r, ω) =
L∑
l=0

l∑
m=−l

Alm(ω)jl

(ω
c
ρ
)
Ylm(θ, φ). (3.53)

The equations (3.52) and (3.53) are referred to as bandlimited spherical wave expan-
sions. As shown in [132], the bandlimited representation allows us to describe the
sound field with (L+ 1)2 parameters, and with a truncation error that is upper bounded
by 0.16127e−∆ if

L =
[e

2

ω

c
‖r‖
]

+ ∆, ∆ ∈ Z+. (3.54)
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Part II

Sound Field Processing for Extended
Reality
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CHAPTER4
State of the art in Sound Field Reconstruction

In this chapter, we review the sound field reconstruction problem. In particular, we
present the two main approaches to sound field reconstruction that are divided in non-
parametric and parametric methods. The reconstruction of a given acoustic field is a
fundamental task not limited to the context of EAR. Sound field reconstruction con-
cerns the estimation of the acoustic field in a target location or region exploiting the
information acquired by a set of microphone measurements. Clearly, the solutions to
sound field reconstruction are driven by the availability of data, in terms of the sam-
pling of the acoustic field and they are strictly linked to the sound field representations
introduced in Section 3.6. In practical scenarios, a direct sampling of the sound field,
fulfilling the Nyquist-Shannon condition is usually unfeasible due the high require-
ments in terms of number and position of the sensors. Therefore, different strategies
to the reconstruction of the sound field have been proposed. They can mainly clas-
sified as non-parametric approaches, where the solutions of the wave equations are
employed, and parametric methods that rely on compact models of the acoustic field.
In Section 4.1 we review the state of the art of non-parametric techniques, while in Sec-
tion 4.2 the parametric methods are introduced. The methods presented in this chapter
have been selected due to their strong connection with the proposed sound field recon-
struction technique in Chapter 5 or up-to-date solutions to the problem.

4.1 Non-Parametric Approaches

This section reviews the state-of-the-art non-parametric models presented in [88, 142].
We choose to review [88] since the processing, based on the spherical harmonic transla-
tion, introduced by the authors can be exploited also in the proposed parametric method
in Chapter 5. As regards [142], it represents the state-of-the-art sparsity-based solution
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Chapter 4. State of the art in Sound Field Reconstruction

for non-parametric sound field reconstruction, therefore it is reviewed in order to pro-
vide the reader with up-to-date sound field reconstruction solutions. In general, non-
parametric methods adopt the decomposition of the sound field into spatial Fourier basis
that arises from the wave equation solutions reviewed in Section 3.3 and Section 3.4.
The acoustic field is therefore represented, as discussed in Section 3.6, according to the
adopted reference frame that is dictated by the microphone array setup, e.g., planar and
spherical arrays lead to plane wave functions and spherical harmonics, respectively.

The technique proposed in [88] and reviewed in Section 4.1.1 is based on the spher-
ical harmonics representation. In particular, the sound field reconstruction is accom-
plished exploiting the spherical harmonics addition theorem, sometimes referred as
spherical harmonics translation theorem, which relates the spherical harmonics expan-
sion locally estimated in a given position with the global description of the sound field.
The authors in [88], hence exploit the local spherical harmonics decomposition given
by Higher Order Microphones (HOM) and the spherical harmonics addition theorem
for achieving the reconstruction of the global sound field.

In Section 4.1.2 we present the method developed in [142] that relies on a sparse
representation of the acoustic field making distinction between the direct and the rever-
berant components of the sound field. Leveraging sparsity assumptions of the acoustic
field, the direct and the reverberant components can be estimated from a set of micro-
phones retrieving the solution for reconstructing the acoustic field.

4.1.1 Spherical Harmonics Translation Method

Here, we provide a review of the non-parametric technique for the reconstruction of
sound fields introduced in [88]. The considered setup is composed of a source region,
where the desired sources are located, while the interferers such as reverberation or
background noise and additional sources are confined outside the region. By properly
defining the origin, we can obtain a “source-less” receiver region that separates the
desired sources from the interferers. The acquired signals are then represented as the
superposition of the sound field generated by the desired sources (exterior acoustic
field) and the interferers (interior field).

In [88] the authors propose an efficient technique in order to estimate the sound
field over a large area that is based on the results of [228, 229], where measurements
are performed with HOMs. However, the solution of [88] is limited to the exterior
sound field only, while [229] includes also the interior component.

Problem Formulation

Let us consider, the scenario in which every acoustic source is located outside a spheri-
cal volume of radiusR0. By properly fixing the origin inO(s) we can define the acoustic
pressure using the interior formulation of the spherical harmonics expansion (3.49) as

SI(r, k) =
∞∑
n=0

n∑
m=−n

α(0)
nm(k)jn(kρ)Ynm(θ, φ) (4.1)

where r = [ρ, θ, φ]T denotes a point inside the region, jn(·) is the spherical Bessel func-
tion and α(0)

nm(k) are the interior sound coefficients of the spherical harmonics Ynm(θ, φ)
(3.25) related toO(s).
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On the other hand, when all the sources are located inside the spherical region of
radiusRs withRs < R0, the acoustic pressure at the locations outside the source region
is described with respect to the origin O(s) using the formulation of (3.44)

SE(r, k) =
∞∑
n=0

n∑
m=−n

β(0)
nm(k)hn(kρ)Ynm(θ, φ) (4.2)

where hn(·) denotes the n-order spherical Hankel function and β
(0)
nm(k) indicate the

coefficients of the exterior sound field referred to O(s).
Inspecting both (4.1) and (4.2) we can note that the two acoustic field definitions do

not depend on the point location. Therefore, we can accurately obtain the whole sound
field from the knowledge of the coefficients α(0)

nm(k) and β(0)
nm(k). Hence, the goal of

the methodology is to correctly estimate the interior and exterior coefficients given the
signals of distributed HOMs.

Spherical Harmonics Addition Theorem

The spherical harmonics addition theorem represents the fundamental tool for sound
field reconstruction in [88, 229].

We define the position vectors r = [ρ, θ, φ]T , rq = [ρq, θqφq]
T rr = [ρr, θrφr]

T such
that r = rq + rr. The spherical harmonics addition (or translation) theorem for the
interior formulation with jn(kρ)Ynm(θ, φ) reads as [163]

jn(kρ)Ynm(θ, φ) =
∞∑
ν=0

ν∑
µ=−ν

Ŝmµnν (rq, k) jν (kρr)Yνµ (θr, φr) (4.3)

where

Ŝmµnν (rq, k) =4πiν−n
∞∑
l=0

il(−1)2m−µjl (kρq)Y
∗
l(µ−m) (θq, φq)

×
√

(2n+ 1)(2ν + 1)(2l + 1)

4π
W1W2

(4.4)

with W1 and W2 the Wigner 3− j symbols defined as

W1 =

(
n ν l

0 0 0

)
and W2 =

(
n ν l

m −µ (µ−m)

)
(4.5)

In the case of the exterior sound field, the addition theorem for hn(kρ)Ynm(θ, φ) is
given by [163]

hn(kρ)Ynm(θ, φ) =
∞∑
ν=0

ν∑
µ=−ν

Smµnν (rq, k) jν (kρr)Yνµ (θr, φr) (4.6)

where

Smµnν (rq, k) =4πiν−n
∞∑
l=0

il(−1)2m−µhl (kρq)Y
∗
l(µ−m) (θq, φq)

×
√

(2n+ 1)(2ν + 1)(2l + 1)

4π
W1W2

(4.7)
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Chapter 4. State of the art in Sound Field Reconstruction

The summations in (4.4) and (4.7) can be truncated to I = n + ν + 1 according to the
inherent properties of (4.5).

Sound Field Acquisition with HOMs

We consider a setup in which the recording of the sound field is performed by means
of Q V th order HOMs enclosing the desired region. The qth HOM location is indicated
as rq = [ρq, θq, φq]

T with q = 1, . . . , Q, while each sensor in the HOM is positioned
at rq′ = [ρq′ , θq′ , φq′ ]

T , with q′ = 1, . . . , Q′ and coordinates rq′ expressed in terms of
the HOM location rq. The signals of the qth HOM can be expressed in term of the
V th order spherical harmonics expansion and the coefficients can be obtained adopting
(3.50) as

α(q)
νµ =

1

bν (kρM)

Q′∑
q′=1

S
(
r

(q)
q′ , k

)
Y ∗νµ

(
θ

(q)
q′ , φ

(q)
q′

)
(4.8)

where ν = 0, . . . , V , µ = −ν, . . . , ν and bν(kρM) is defined as [217]

bν (kρM) =

{
jν (kρM) for open sphere array

jν (kρM)− j′ν(kρM )
h′ν(kρM )

hν (kρM) for rigid sphere array
(4.9)

with j′ν(·) and h′ν(·) denoting the first derivatives of the spherical Bessel and Hankel
function, respectively.

Interior Sound Field Estimation

The relation between the overall interior sound field coefficients α(0)
nm of (4.1) and the

local sound field ones α(q)
νµ of (4.8) can be obtained by expressing the sound field at the

location r changing the origin with the qth HOM location rq

SI(r, k) =
∞∑
ν=0

n∑
µ=−ν

α(q)
νµ (k)jν(kρr)Yνµ(θr, φr). (4.10)

Therefore, if we equate (4.1) and (4.10) inserting (4.3) into (4.1) the relation becomes

∞∑
n=0

n∑
m=−n

α(0)
nm(k)jn(kρ)Ynm(θ, φ) =

∞∑
ν=0

ν∑
µ=−ν

α(q)
νµ (k)jν (kρr)Yνµ (θr, φr)

∞∑
n=0

n∑
m=−n

α(0)
nm(k)

∞∑
ν=0

ν∑
µ=−ν

Ŝmµnν (rq, k) jν (kρr)Yνµ (θr, φr) =

∞∑
ν=0

ν∑
µ=−ν

α(q)
νµ (k)jν (kρr)Yνµ (θr, φr) ,

(4.11)

Finally, equating mode by mode (4.11) the relation between the global and the local
interior sound coefficients can be derived

α(q)
νµ (k) =

∞∑
n=0

n∑
m=−n

α(0)
nm(k)Ŝmµnν (rq, k) . (4.12)
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Exploiting the Q HOMs employed in the setup, the relation between the local and the
global coefficients can be expressed as the linear system

αQ(k) = TI(k)α(k), (4.13)

where the vector

αQ(k) = [α
(1)
00 (k), . . . , α

(1)
V V (k), . . . , α

(Q)
00 (k), . . . , α

(Q)
V V (k)]T (4.14)

contains the local coefficients, while global coefficients are in

α(k) = [α
(0)
00 (k), . . . , α

(1)
NINI

(k)]T (4.15)

and

TI(k) =


Ŝ00

00 (r1, k) · · · · · · ŜNI0
NI0 (r1, k)

...
...

...
...

Ŝ0V
0V (rq, k) · · · · · · ŜNIVNIV

(rq, k)

 . (4.16)

with the inifinte summation of (4.1) limited to NI .
It follows that an estimate of the coefficients of the global interior sound can be

obtained by inverting (4.13) as

α(k) = (TI(k))†αQ(k). (4.17)

Exterior Sound Field Estimation

Similarly to the interior sound field case, the relation between the exterior local sound
field coefficients α(q)

νµ and the global β(0)
nm of (4.2) is expressed as

α(q)
νµ (k) =

∞∑
n=0

n∑
m=−n

β(0)
nm(k)Ŝmµnν (rq, k) . (4.18)

Again, a system of linear equation can be set exploiting the Q HOMs as

αQ(k) = TE(k)β(k), (4.19)

where the global coefficients are contained in the vector

β(k) = [β0
00(k), . . . , β0

NENE
(k)]T (4.20)

and

TE(k) =


S00

00 (r1, k) · · · · · · SNE0
NE0 (r1, k)

...
...

...
...

S0V
0V (rq, k) · · · · · · SNEVNEV

(rq, k)

 , (4.21)

with the infinite summation of (4.2) truncated at NE . Hence, the coefficients of the
global exterior sound field can be estimated by inverting (4.19) as

β(k) = (TE(k))†αQ(k). (4.22)
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Mixed Sound Field Estimation

In actual conditions, usually, both the interior and exterior components of the sound
field are captured by the HOMs. Hence, we can easily derive the estimation of the
global coefficients for both the sound field components merging (4.13) and (4.19) in
the linear system of equations

αQ(k) = T(k)d(k), (4.23)

where
T(k) = [TI(k),TE(k)] and

d(k) =
[
αT (k),βT (k)

]T
.

(4.24)

Finally, an estimation of both the interior and exterior coefficients of the global sound
field can be derived as

d(k) = T(k)†αQ(k), (4.25)

where the estimate is limited up to the NI th and NEth order for the interior and exterior
coefficients, respectively.

In order to avoid the system in (4.23) to be under-determined, a minimum number
of HOMs Qmin is required and it is defined according to

Qmin =
(NI + 1)2 + (NE + 1)2

(V + 1)2
, (4.26)

where the truncation limits are given by [229] as NE = dkeRs/2e and NI = dkeR0/2e
with e the Euler’s number and d·e the ceiling operator. It is worth noticing that the order
required for an accurate estimation of the sound field components is directly related to
the radius of the desired region and the frequency. Hence, the maximum frequency
for which an aliasing-free reconstruction can be obtained, is related to the radius as
fE = c[

√
Q(V+1)−1]
πeRs

and fI = c[
√
Q(V+1)−1]
πeR0

.

4.1.2 Method Based on Sparse Sound Field Representation

In this section the non-parametric technique presented in [142] is reviewed. Here, the
sound field is represented as the superposition of the direct source and the reverberant
field. The technique is referred to as sparse, since it assumes a spatially sparse source
distribution, while the reverberant field is represented by means of few plane wave com-
ponents and a low-rank term. The coefficients describing the sound field are estimated
by convex optimization using alternating direction method of multipliers [47].

Sound Field Model

Let us consider a region of interest Ω in which acoustic sources are present. The model
adopted in [142] defines the inhomogenous sound field (3.12) at the location r as the
sum of the source contribution (3.28) described in [142] as the particular solution and
the homogeneous (3.10) term

P (t, ω, r) = PP (t, ω, r) + PH(t, ω, r), (4.27)
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where PP (t, ω, r) is the particular solution defined as [286]

PP (t, ω, r′) =

∫
r′∈Ω

Q(t, ω, r′)G(r|r′, ω)dr′, (4.28)

with G(r|r′, ω) the Green’s function (3.29) and Q(·) the source distribution inside Ω.
The homogeneous component PH(·) can be represented as a linear combination of
plane waves as discussed in Section 3.6.1 and in [142] the authors assumes that only a
limited number of plane wave components contributes as

PH(t, ω, r) ≈
I∑
l=1

ϕl(t, ω)ejk
T
l r (4.29)

where k indicates the wave vector of the lth plane wave and ϕ(t, ω) are the coefficients
of the Herglotz density.

An alternative model for PH(·) is presented in [174], where the reverberant compo-
nent is approximated as the superposition of J source signals

PH(t, ω, r) ≈
J∑
j=1

hj(ω, r)ςj(t, ω), (4.30)

where hj(ω, r) is the direct-path-less transfer function between the jth source and r
while ςj(t, ω) is the signal emitted by the jth source.

To reconstruct the sound field (4.27) a sparsity constraint in [142] is assumed on the
spatial distribution of the sources of (4.28). It follows that the large source region Ω is
discretized into a set ofN smaller regions Ωn with the index n = 1, . . . , N denoting the
different elements. Hence, only a sparse set of small regions will include the acoustic
sources. Then, for each region, a representative point is defined as a grid point rn and
(4.28) is approximated as

PP (t, ω, r) =
N∑
n=1

∫
r′∈Ωn

Q(t, ω, r′)G(r|r′, ω)dr′

=
N∑
n=1

G(r|rn, ω)

∫
r′∈Ωn

Q(t, ω, r′).

(4.31)

Considering a setup of M microphones, each one located at rm, m = 1, . . . ,M and
the sound field models (4.31) and (4.29), a linear system of equations can be written as

y(t, ω) = D(ω)x(t, ω) + W(ω)u(t, ω), (4.32)

where D ∈ CM×N and W ∈ CM×I are matrices with elements

[D(ω)]m,n = G(rm|rn, ω),

[W(ω)]m,l = ejk
T
l rm ,

(4.33)

respectively, while y(t, ω) = [P (t, ω, r1), . . . , P (t, ω, rM)]T is the vector of signals,

x(t, ω) =
[∫
r′∈Ω1

Q(t, ω, r′), . . . ,
∫
r′∈ΩN

Q(t, ω, r′)
]T

represents the source distribu-

tion and u(t, ω) = [ϕ1(t, ω), . . . , ϕI(t, ω)]T contains the plane wave coefficients.
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Chapter 4. State of the art in Sound Field Reconstruction

If (4.30) is adopted, then the system (4.32) becomes

y(t, ω) = D(ω)x(t, ω) + H(ω)s(t, ω), (4.34)

where H ∈ CM×J is the matrix of elements [H(ω)]m,j = h(ω, rm) and the signal of
the sources is contained in s(t, ω) = [ς1(t, ω), . . . , ςJ(t, ω)]T .

Sparse Sound Field Decomposition

The systems (4.32) and (4.34) are defined for a fixed time instant t and frequency bin
ω. Nevertheless, we can exploit the group sparsity physical property of the sound field
when multiple time-frequency bins are considered. In particular, when the sources are
static, the vector x(t, ω) will present a fixed sparsity pattern both in time and frequency
and the same happens for plane waves with a subset of components actually active.
Hence, the third-order tensors X ∈ CN×T×F and U ∈ CI×T×F are defined grouping
x(t, ω) and u(t, ω), respectively and a solution to (4.32) can be found by solving the
optimization problem [142]

argmin
X,U

‖X‖1,2 + µ‖U‖1,2,

s.t. y(t, ω) = D(ω)x(t, ω) + W(ω)u(t, ω)
(4.35)

where µ is a balancing coefficient and the `1,2-norm || · ||1,2 is given as

‖U‖1,2 =
I∑
l=1

√√√√ T∑
t=1

F∑
ω=1

|ϕl(t, ω)|2 (4.36)

with an equivalent expression for ‖X‖1,2.
When the model (4.34) is adopted, again under the assumption that sources are static

within T time frames, the jth transfer function can be collected in the matrix defined as

Z(ω) = H(ω)S(ω) (4.37)

where S(ω) = [s(1, ω), . . . , s(T, ω)]. Due to the sparsity assumption on the source
distribution Q(r), the number of the sources J is relatively small compared with M .
Therefore, the matrix (4.37) presents a rank that approximately corresponds to J . Or-
ganizing the reverberant contributions of the sources for each time frame v(t, ω) =
H(ω)s(t, ω) in V ∈ CM×T×F the system in (4.34) can be solved through the optimiza-
tion problem

argmin
X,V

‖X‖1,2 + ν
F∑
ω=1

‖V(ω)‖?

s.t. y(t, ω) = D(ω)x(t, ω) + v(t, ω),

(4.38)

with ν a balancing parameter and ‖·‖? the nuclear norm [221].
It is worth noticing that the two models present some drawbacks. In particular in

case of the plane wave model (4.35), an optimal number of components in U cannot be
easily determined since it depends on the size and shape of the source region Ω beside
the frequency. Moreover, the balancing parameter µ must be carefully set. As regards
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the transfer function model (4.38), the separation of both X and V is not trivial due
to their low rank. In addition, the flexibility in (4.38) is limited since the parameter ν
cannot be varied as a function of the frequency.

In [142], the authors proposed a mixed model aiming at reducing the aforemen-
tioned drawbacks. This hybrid solution combines both descriptions and through a joint
optimization it aims at refining the plane wave representation (4.35) with the transfer
function formulation (4.38). The mixed model is then defined as

y(t, ω) = D(ω)x(t, ω) + W(ω)u(t, ω) + v(t, ω). (4.39)

Given (4.39), a solution can be found by solving the following optimization problem

argmin
X,U,V

‖X‖1,2 + µ‖U‖1,2 + ν
F∑
ω=1

‖V(ω)‖?

s.t. y(t, ω) = D(ω)x(t, ω) + W(ω)u(t, ω) + v(t, ω).

(4.40)

The joint optimization of the sparse matrix U of the plane waves and the low-rank
matrix V provides a refined model of the reverberant component of the sound field.
In [142], the optimization (4.40) is solved using the alternating direction method of
multipliers [47].

4.2 Parametric Approaches

In this section, a review of the state-of-the-art parametric techniques for the recon-
struction of sound fields is provided. The methods presented here, rely on a parametric
model of the acoustic field that allows a compact and general description of the acoustic
information. A parametric approach provides a complete and intuitive representation
of the sound field that includes both the spatial recording and the manipulation of the
sound field. Therefore, parametric approaches are particularly interesting in the context
of EAR, where the simple static reconstruction of an acoustic scene is not sufficient.
Generally, parametric techniques require two successive steps. First, the sound field
is analyzed and the parameters of the model are estimated. Secondly, the desired sig-
nal is synthesized reconstructing the sound field through the model and the estimated
parameters.

In the literature, a wide range of parametric models have been proposed, among
which the directional audio coding (DirAC) [211, 272] and the high resolution plane
wave expansion (HARPEX) [33] are well known, with extensions and developments
[70, 208, 212, 213]. The final goal of these techniques is to provide the listener a per-
ceptually convincing spatial sound. This can be obtained recreating the spatial sound
features, defined as the direct and diffuse components of the sound field plus additional
data such as the DoA or the location of the source. As regards DirAC, the direct sig-
nal is represented as a single plane wave for each time-frequency bin, while HARPEX
employs two plane waves. The diffuse field corresponds to the reverberant part of the
sound field, but it is also associated to spatially extended sources and interferers. Tech-
niques that take into account both direct and diffuse components are known in the lit-
erature as geometric-based parametric model [141]. In their basic formulation, DirAC
and HARPEX are able to provide the spatial sound restricted to the acquisition location.
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x

y

rm

řv
ǒv

r′

r′m

ř′v

Figure 4.1: The setup adopted in [206]. A first order Ambisonics microphone located in rm acquires
the sound source in r′. The listener is at the target position ř with orientation ǒv .

Hence, although allowing a three-degrees-of-freedom interaction, they are not suitable
for a full EAR experience. In fact, in the context of EAR we are interested in a six-
degrees-of-freedom interaction, which allows the listener to navigate the sound field.
With the aim of allowing the navigation of the sound field, different techniques have
been proposed, and in this section we review [206] and [260]. Both [206] and [260] are
based on the DirAC sound field representation. In particular, [206] exploits the signals
of a single first-order Ambisonics microphone and a-priori information on the source
distance in order to allow the navigation of the sound field. The technique in [260],
instead relies on a spatial distribution of microphone arrays in order to estimate the
parameters of the sound field. Both methods are directly related to the proposed para-
metric sound field reconstruction technique (Chapter 5) which can be considered as an
enhanced version of [260].

4.2.1 Parametric Sound Field Reconstruction with Single Array

In [206], the authors propose a parametric technique for six-degree-of-freedom sound
field reconstruction, based on the signals of a first-order Ambisonics microphone. The
signal at a target position, namely the listener location, is obtained from the data ac-
quired by the microphones placed in a different recording position and the side infor-
mation of the distance between the source and the sensor. We assume that the physical
sources are separable by their angle with respect to the recording position.

The setup is shown in Figure. 4.1, where the location of the microphone is consid-
ered as the origin of the reference frame. An acoustic source is located in r′ and the
distance between the source and the microphone position rm is given as r′m = ‖r′m‖ =
‖r′ − rm‖. In [206], r′m is assumed to be automatically estimated, for instance with a
time-of-flight camera. It follows that the DoA with respect to the recording location is
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d′m = r′m
‖r′m‖

. The target location is řv while orientation of the listener is denoted as ǒv,
both quantities are known a priori.

The technique in [206] works in the time-frequency domain, i.e., the microphone
signals are transformed by means of the short time Fourier transform (discussed in
Section 2.4). For each time-frequency bin, a single direct source is assumed to be dom-
inant resulting in time-frequency varying DoAs d′m(ω, t) = r′m(ω,t)

‖r′m(ω,t)‖ . Since the method
in [206], is based on the the DirAC parametric encoding the estimation of the diffuse-
ness ψ(ω, t, rm) (4.44) and the complex spectrum X(ω, t, rm) are required during the
analysis step. From the synthesis side, the direct and diffuse components of the signal
are computed through a set of virtual loudspeakers properly defined according to the
listener’s location and orientation.

Analsysis and Parameter Estimation

During the analysis phase, the parameters of the DirAC encoding are estimated from the
signals of a first-order Ambisonics microphone. In particular, the signals coming from
the Ambisonics sensor are converted in the B-format [90] four-channels signal consist-
ing in the omnidirectional pressure, and the three first-order gradients. As explained
in [207] B-format signal can be readily derived from the coefficients of the first order
spherical harmonics expansion, namely setting I = 1 in (3.53). The B-format data is
then encoded by a DirAC encoder computing the complex spectrum, the diffuseness
and the DoA of the source. While, the complex spectrum X(ω, t, rm) is directly de-
rived from the omnidirectional pressure, the DoA is estimated exploiting the so called
active sound intensity vector i(ω, t, rm) that is computed as

i(ω, t, rm) =
1

2
Re (X(ω, t, rm)b(ω, t, rm)∗) , (4.41)

where Re is the function that takes only the real part of the complex spectrum and

b(ω, t, rm) = [UX(ω, t, rm), UY (ω, t, rm), UZ(ω, t, rm)] (4.42)

contains the first-order gradients given by the B-format signal. From (4.41) an estimate
of the DoA can be computed as

d̂′n(ω, t) = − i(ω, t, rm)

‖i(ω, t, rm)‖
. (4.43)

The active sound intensity vector is employed also in the estimation of the diffuseness
ψ(ω, t, rm) as [5, 70]

ψ̂ (ω, t, rm) =

√
1− ‖E {i (ω, t, rm)}‖

E {‖i (ω, t, rm)‖}
(4.44)

where the expectation operator over time E {·} is actually approximated by moving
average filtering.

Synthesis

Since we are interested in the synthesis of the signal at a location different from the
recording one, a translation transformation has to be applied on the acquired signals.
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Exploiting the DoA estimate d̂′n(ω, t) and the distance value r′m(ω, t) given as a-priori
information, the actual location of the acoustic source can be estimated as

r̂′(ω, t) = r′m(ω, t)d̂′n(ω, t), (4.45)

from which the vector between the target location and the source is obtained as

ř′v(ω, t) = r̂′(ω, t)− řv(t). (4.46)

Additionally, a rotation transformation is performed in order to render the signal ac-
cording to the listener orientation ǒv(t)

ď′v(ω, t) = R (ǒv(t))
ř′v
‖ř′v‖

(4.47)

where the rotation is given by the rotation matrix R(ǒv(t)). It is worth noting that
both the orientation and location of the listener are time dependent and they have to
be tracked. Finally, the DirAC decoder renders the sound field at the target location
through the computation of I virtual loudspeaker signals that are located around the
target position

Y (ω, t, r̄i) = Ydir(ω, t, r̄i) + Ydiff(ω, t, r̄i) (4.48)

where Ydir(ω, t, r̄i) and Ydiff(ω, t, r̄i) represent the direct and diffuse sound, respec-
tively, with the location of the ith virtual loudspeaker indicated as r̄i. The direct com-
ponent si computed as

Ydir (ω, t, r̄i) =

√
1− ψ (ω, t, rm)X (ω, t, rm)G

(
ď′v(ω, t), r̄i

)
(‖r′m(ω, t)‖ / ‖r̂′(ω, t)‖)−γ

. (4.49)

where G
(
ď′v(ω, t), r̄i

)
is a gain function that depends on the DoA and it aims at pro-

viding the correct perception of the source DoA through the edge fading amplitude
panning technique [45] , while γ is a parameters that governs the distance attenuation.
As regards the diffuse component of the sound field, it is defined as [206]

Ydiff(ω, t, r̄i) =
√
ψ(ω, t, rm)

1√
I
Ỹ (ω, t, r̄i), (4.50)

where the signal Ỹ (ω, t, r̄i) is obtained from ith decorrelated version of the pressure
X(ω, t, rm). It is worth noticing that if the final target signal is reproduced through bin-
aural synthesis, then the signals of the virtual loudspeakers (4.48) are further processed
performing a convolution with the HRTF, otherwise, they are all summed in order to
obtain the sound field at the listener location.

4.2.2 Parametric Sound Field Reconstruction with Distributed Arrays

In this section we review the parametric sound field reconstruction technique proposed
in [260]. Differently from [206], in [260] the authors employ a set of distributed mi-
crophone arrays in order to analyze the sound field and estimate the signal of a virtual
microphone (VM). The VM is characterized by an arbitrary location in the space. The
direct sound field is assumed to be generated by isotropic point-like sources (IPIS),
while an isotropic diffuse sound component models reverberation and noise.
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Data Model and Problem Formulation

Let us consider the signal of a virtual microphone located in řv that is composed by the
superposition of a direct and a diffuse component as [260]

S(ω, t, řv) = Cv(ω)Sdir(ω, t, řv) +Qv(ω)Sdiff(ω, t, řv), (4.51)

where Sdir(ω, t, řv) denotes the direct sound field, Sdiff(ω, t, řv) indicates the diffuse
component, while Cv(ω) ∈ R and Qv(ω) ∈ R represent the characteristics of the VM,
i.e., its pick-up pattern Cv(ω) and sensitivity to the diffuse sound field Qv(ω). In the
case of multiple simultaneous sources, (4.51) requires the source signals to be sparse in
the time-frequency domain. The direct component of (4.51) is defined as

Sdir(ω, t, řv) = Hdir(ω, t, řv, r
′)Sdir(ω, t, r

′) (4.52)

where Sdir(ω, t, r
′) is the direct sound of the IPIS located in r′, while the propagation

from r′ to řv is given by the transfer function Hdir(ω, t, řv, r
′). As regards the diffuse

part of (4.51), it is defined as

Sdiff(ω, t, řv) = Hdiff(ω, t, řv, r
′)Sdiff(ω, t, r′) (4.53)

with Sdiff(ω, t, r′) the diffuse components at the source position r′ andHdiff(ω, t, řv, r
′)

the diffuse transfer function. Tipically, a diffuse sound field is not dependent on the
location, henceHdiff(·) is not deterministic [87,260]. Let us denote with ri, i = 1, . . . , I
the location of the ith microphone recording the sound field, the model for its signal
follows (4.51) as

X(ω, t, ri) = Xdir(ω, t, ri) +Xdiff(ω, t, rv), (4.54)

where
Xdir(ω, t, ri) = Hdir(ω, t, ri, r

′)Sdir(ω, t, r
′), (4.55)

Xdiff(ω, t, ri) = Hdiff(ω, t, ri, r
′)Sdiff(ω, t, r′), (4.56)

and the pick-up pattern and the sensitivity of the sensor are omitted since omnidirec-
tional microphones are assumed (i.e., Ci(·) = 1 and Qi(·) = 1).

Direct Signal Estimation

In order to estimate the direct component at the IPLS location, equation (4.55) can be
inverted as

Sdir(ω, t, r
′) = Hdir(ω, t, ri, r

′)−1Xdir(ω, t, ri), (4.57)

where the direct sound component Xdir(ω, t, ri) is unknown and have to be estimated.
In [260], the authors adopted a Wiener-filtering approach such that

X̂dir(ω, t, ri) = Gdir(ω, t, ri)X(ω, t, ri), (4.58)

where Gdir(·) is defined as the square-root Wiener filter [241, 269]

Gdir (ω, t, ri) =

√
1− 1

CDR (ω, t, ri) + 1
=
√

1− ψ (ω, t, ri) (4.59)
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with ψ(·) the diffuseness as in (4.44). The authors in [260] adopt the square-root Wiener
filter due to its property of preserving the correct direct sound power in the estimate
X̂dir(·). With CDR(ω, t, ri) the authors refer to the coherence-to-diffuse power ratio,
defined as

CDR (ω, t, ri) =
E {Xdir (ω, t, ri)X

∗
dir (ω, t, ri)}

E {Xdiff (ω, t, ri)X∗diff (ω, t, ri)}
=

Φdir,ii(t, ω)

Φdiff,ii(t, ω)
. (4.60)

In the literature, the quantity in (4.60) is also known as signal-to-diffuse power ratio.

Diffuse Signal Estimation

As far as the diffuse signal estimation at the IPIS location is concerned, a complemen-
tary approach with respect to the direct component estimate is adopted.

In particular, the square-root Wiener filter for the estimation of the ith microphone
diffuse component is defined as

Gdiff (ω, t, ri) =

√
1− |Gdir (ω, t, ri)|2 (4.61)

with Gdir(·) given by (4.59). It follows that an estimate of the diffuse component at the
ith microphone can be obtain applying (4.61) to (4.56) as

X̂diff(ω, t, ri) = Gdiff(ω, t, ri)X(ω, t, ri). (4.62)

Finally, the diffuse signal estimation at the IPIS can be derived by inverting (4.56)

Sdiff(ω, t, r′) = Hdiff(ω, t, ri, r
′)−1Xdiff(ω, t, ri). (4.63)

Analysis and Sound Field Parameters Estimation

Adopting the direct and diffuse estimation strategies of Section 4.2.2 we are required
to determine the source position r′(ω, t) and the CDR at microphones for each time-
frequency bin.

Source Position Estimation Thanks to the adoption of more than one microphone array
distributed in space, the location r′(ω, t) of the source can be obtained triangulating the
different DoAs. In particular, in [260], the authors consider a setup of distributed circu-
lar microphone arrays, for which the DoAs are obtained using the technique introduced
in Section 4.2.1. Therefore, for each ath array, a = 1, . . . , A, the DoA is computed
using the active sound intensity vector (4.41)

d̂(a)(ω, t) = − i(ω, t, ra)

‖i(ω, t, ra)‖
. (4.64)

where ra is array center. The source location is then estimated from the A DoAs mini-
mizing

r̂′(ω, t) = argminc

A∑
a=1

‖J (ω, t, ra, c)‖2 (4.65)

where

J(·) =

[
I−

(
d̂(a)(ω, t)

)T
d̂(a)(ω, t)

]
(c− ra) (4.66)

52



i
i

“thesis” — 2021/3/10 — 22:18 — page 53 — #63 i
i

i
i

i
i

4.2. Parametric Approaches

with I the identity matrix and c the line defined by the ath array location and its relative
DoA. In practice, the intersection is found minimizing the squared distance between
the lines.

Coherence-to-Diffuse Ratio Estimation The CDR can be readily derived from the esti-
mated diffuseness (4.44) as [71]

ĈDR (ω, t, ra) =
1

ψ̂ (ω, t, ra)
− 1

=
1√

1− |E{i(ω,t,va)}‖
E{‖i(ω,t,r)‖} − 1

=

√
E {‖i (ω, t, ra)‖}

E {‖i (ω, t, ra)‖} − ‖E {i (ω, t, ra)}‖
− 1.

(4.67)

Once the CDR have been estimated, the square-root Wiener filters (4.59) and (4.61)
can be computed and the direct and diffuse components at the microphone array are
obtained as

X̂dir(ω, t, ra) = Gdir(ω, t, ra)X(ω, t, ra), (4.68)

X̂diff(ω, t, ra) = Gdiff(ω, t, ra)X(ω, t, ra), (4.69)

where the input X(ω, t, ra) is the given by the omnidirectional signal of the B-format
encoding (see Section 4.2.1).

Synthesis

The signal of the VM is synthesized applying the model (4.51) by superimposing the
direct sound component (4.52) and the diffuse signal component (4.53) computed at
the target location. It follows that appropriate models for the direct and diffuse transfer
functions are required.

As regards the direct signal Sdir, in [260] the authors adopt the Green’s function
(3.29) as transfer function

Hdir (ω, t, ra, r
′) =

ej
ω
c
‖ra−r′(ω,t)‖

‖ra − r′(ω, t)‖
, (4.70)

from which the direct component at the source location is obtained as

Ŝdir(ω, t, r
′) = Hdir(ω, t, ra, r

′)−1X̂dir(ω, t, ra). (4.71)

In [260], the homogeneous assumption of the diffuse sound field is exploited in
order to derive the transfer function of the diffuse component as Hdiff(ω, t, ra, r

′) = 1.
Hence, the diffuse sound at the IPSI simplifies to

Ŝdiff(ω, t, r′) = Ŝdiff(ω, t, ra). (4.72)

Finally, the signal is synthesized exploiting the estimated quantities in the model (4.51),
where the pick-up pattern Cv(·) and the sensitivity Q(·) of the VM can be arbitrarily
designed by the final user, reproducing physical or even non-physical microphone char-
acteristics.
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CHAPTER5
Parametric Sound Field Reconstruction with

Directional Sources

In this chapter we introduce two techniques for the reconstruction of the sound field
adopting a parametric model. The main characteristic of these novel methods lies in
the possibility of modeling the acoustic source directivity. In fact, the state-of-the-art
parametric techniques, reviewed in Section 4.2, do not consider the directional behav-
ior of sound sources. Nevertheless, it is known that in general acoustic emitters present
a directional emission of sound energy that characterize their radiation and interac-
tion with the environment. Therefore, in order to properly reconstruct the sound field
with directional sources, extended parametric models are required. The techniques pre-
sented in this chapter explicitly model the source directivity and allow an improved
reconstruction in terms of the spatial cues of sound fields. The possibility of modeling
source directivity is particularly appealing in the context of EAR, where not only an
accurate reconstruction of actual acoustic field is desired, but also the integration of
virtual sources, that could have directional characteristics, is required. The developed
techniques follow a divide et impera approach, thus in Section 5.2, we first introduce
a methodology for sound field reconstruction with directional sources in free-field and
in Section 5.3 the approach is extended to reverberant environments. For both the tech-
niques, the overall system is a combination of individual sub-systems. This structure
brings us two main advantages; on the one hand we can think of distributing part of the
computational load locally to each array (e.g., the estimation of the DoAs, the estima-
tion of the direct and diffuse components); on the other hand such a structure allows
us to possibly substitute sub-systems depending on the application scenario with the
only constraint of maintaining the same input/output relationship. Furthermore, this
structure gives us a wider insight into the system behaviour and promotes the model
interpretability.
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Chapter 5. Parametric Sound Field Reconstruction with Directional Sources
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Figure 5.1: 2D graphical representation of the model. The setup is presented with A = 4 circular
microphone arrays of M = 4 microphones each. Two sources (N = 2) and two VMs (V = 2) are
present in the scene. The directivity function of the source is superimposed on the plot of the scene.

5.1 Parametric Sound Field Reconstruction Model

In this section we introduce the general data model of the proposed parametric sound
field reconstruction techniques. This model can be adapted according to the environ-
ment under analysis. In particular, Section 5.2 considers a controlled acoustic environ-
ment, while Section 5.3 exploits the general model considering also reverberation. We
tackle the sound field reconstruction as a virtual miking problem. Hence, our goal is
the estimation of the signal of a virtual microphone (VM).

5.1.1 Data Model

Given a Cartesian coordinate system, let us consider N acoustic sources, placed in
arbitrary locations r′n = [x′n, y

′
n, z
′
n]T , n = 1, . . . , N ; a network of A ≥ 2 distributed

compact microphone arrays withM microphones each, located at ri = [xi, yi, zi]
T , i =

1, . . . ,M × A; and a set of V VMs positioned in řv = [x̌v, y̌v, žv]
T , v = 1, . . . , V , as

shown in Figure 5.1.
We assume that sources, microphones and VMs lie on the same plane. Moreover,

we define the Region Of Interest (ROI) where the sources lie as the polygonal region
R = (v1,v2, . . . ,vA), where va is the ath vertex of the polygon. The vertices are
defined as the centroids of each array, i.e.,

va =
1

M

aM∑
i=(a−1)M+1

ri , a = 1, . . . , A. (5.1)
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5.2. Parametric Sound Field Reconstruction in the Free Field

Figure 5.2: Graphical representation of the analysis model with two acoustic sources placed in r′1 and
r′2, respectively. The sound field is captured by A = 2 microphone array each of them constituted by
M = 4 omnidirectional microphones.

When only two arrays are present in the acoustic scene, the definition of the ROI de-
generates since we have a polygonal region R with only two vertices. In this case, we
consider the ROI as the whole plane where sources, microphones and VMs lie. In the
most general scenario, we model the signal of the vth directional VM in řv in the time-
frequency domain as the linear combination of a direct sound component and a diffuse
sound component [260], i.e.,

S(t, ω, řv) = Cv(ω)Sn,dir(t, ω, řv)

+Qv(ω)Sdiff(t, ω, řv), n ∈ {1, . . . , N},
(5.2)

where t is the time-frame index, ω = 2πf the radial frequency with f > 0 the temporal
frequency, Cv(ω) ∈ R models the VM microphone pick-up pattern and Qv(ω) ∈ R its
sensitivity to the diffuse field. The model in (5.2) is valid under the assumption that the
N source signals are sufficiently sparse in the time-frequency domain [260,272]. More
precisely, when multiple sources are simultaneously active, their signal content in the
frequency domain must not overlap significantly, i.e. one source is dominant at each
time-frequency bin. In the next sections, we specify the VM signal model according to
the acoustic characteristics of the environment describing the parameters of the signal.
First Section 5.2 focuses on free field scenarios, while Section 5.3 adopts the full model
of (5.2).

5.2 Parametric Sound Field Reconstruction in the Free Field

5.2.1 Signal Model and Problem Formulation

Here, we specify the signal model (5.2) in a free field scenario. In this scenario, we can
express the signal at the vth VM signal located at řv as
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Chapter 5. Parametric Sound Field Reconstruction with Directional Sources

S (ω, t, řv) = Sdir (ω, t, řv) =
N∑
n=1

Cv(ω)Dn

(
ω, t, φ̌v,n

)
H (ω, řv, r

′
n)S (ω, t, r′n)

(5.3)
where N sound sources are present in the scene with signal S (ω, t, r′n) and location
r′n. The directivity (or radiation) pattern of the nth acoustic source is denoted by
Dn

(
ω, t, φ̌v,n

)
: R3 → (0, 1). This function defines the directional energy emission

pattern of the source as a function of the angle φ̌v,n = ∠(řv − r′) (see Figure 5.2) and
frequency ω. Note that since in Section 5.1.1 we assume that sources and arrays lie on
the same plane, Dn(·) in (5.3) -depends on the azimuth angle φ̌v,n only. With Cv(ω)
we denote the VM pick-up pattern, while the free-field transfer function H (ω, řv, r

′
n)

is defined as the Green’s function (3.29)

H (ω, řv, r
′
n) =

ej
ω
c
‖řv−r′n‖

‖řv − r′n‖
. (5.4)

The setup adopted in order to analyze the sound field is composed of a set of A dis-
tributed compact arrays with M microphone each, as shown in Figure 5.2. The signal
at the mth omnidirectional microphone of the ath array can be written as

X
(
ω, t, r(a)

m

)
=

N∑
n=1

Dn

(
ω, t, φ(a)

m,n

)
H
(
ω, r(a)

m , r′n
)
S (ω, t, r′n)

+N
(
ω, t, r(a)

m

) (5.5)

where φ(a)
m,n = ∠(r

(a)
m − r′) is the angle between the nth source and the microphone

and N
(
ω, t, r

(a)
m

)
models the sensor self-noise. We remark that for omnidirectional

microphones the pick-up pattern C(·) is equal to 1 and it is omitted in (5.5). Let us
describe in matrix form the signal model (5.5) for each array

x(a) =
[
D(a) ⊗H(a)

]
s + n(a), ∀a = 1, . . . , A, (5.6)

where
x(a) =

[
X
(
r

(a)
1

)
, . . . , X

(
r

(a)
M

)]T
,

s = [S (r′1) , . . . , S (r′N)]T ,

n(a) =
[
N
(
r

(a)
1

)
, . . . , N

(
r

(a)
M

)]T
,[

D(a)
]
m,n

= Dn

(
φ

(a)
m,n

)
,[

H(a)
]
m,n

= H
(
r

(a)
m , r′n

)
,

(5.7)

with ⊗ the Hadamard product and a the array index. Note that, for the sake of com-
pactness, we omitted the dependency on frequency ω and time t.

5.2.2 Sound Field Analysis and Parameter Estimation

According to the assumed parametric model (5.3), in order to compute the VM signal,
we need to estimate three parameters for each source: its location r′n, its directivity
pattern Dn(·) and the emitted signal S(ω, t, r′n).
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Source Localization

Assuming that the microphones locations are known, the transfer function model (5.4)
requires the localization of multiple sources in the acoustic scene. In this paper we in-
troduce the Distributed Ray Space Transform (DRST) as a tool for source localization.
Recently, the Ray Space Transform (RST) [37], reviewed in Section 6.1.1, has proved
to be a convenient tool for mapping the acoustic information in the ray space. In this
domain, the main acoustic primitives (sources, array and reflectors) are mapped onto
lines due to the fact that each point in the ray space corresponds to an acoustic ray in
the geometric space, and the line parameters are uniquely related to the source location
(see Section 6.1.1). As a consequence, we can easily localize multiple sources in the
ray space through a pattern analysis approach.

The DRST inherits the core idea of the RST, but differently from the RST, which
is based on multiple beamforming operations performed on sub-arrays of a single ex-
tended linear array, the DRST carries out the beamforming independently for each array
within a network of distributed compact arrays. Morever, DRST maps acoustic infor-
mation in the Projective Ray Space (PRS) [161]. Similarly to the parametric technique
in [260] and discussed in Section 4.2.2, the localization is performed with two consecu-
tive steps: the estimation of the DoA at each array and the triangulation of the directions
in order to find the source position. In this case, we adopt a spatial filtering approach
for the DoA identification, employing a Delay and Sum beamforming operation [268].
Successively, the DoAs are triangulated in the PRS domain. The beamforming opera-
tion estimates the directional energy distribution at the center of mass va = [xa, ya]

T

of each microphone array. The pseudospectrum λ(a)(α, t, ω) of the ath array can be
computed as the absolute value of the beamformer output for all the possible directions
α ∈ (0, 2π]. As we are interested only in localizing the acoustic sources, similarly
to [27, 37, 160] we compute a wideband extension of the pseudospectra by averaging
λ(a)(α, t, ω) through

λ̄(a)(t, α) =


W/2∏
w=1

λ(a)(α, t, ωw)


2
W

, (5.8)

where W is the number of points on the discretized frequency axis, gaining robustness
against spatial aliasing and frequency bands with low SNR. It is worth noticing that
(5.8) is not the only possible choice to obtain a wideband pseudospectrum. However,
as investigated in [27], this choice provides a wideband pseudospectrum with greater
resolution, narrower main-lobe and side-lobes attenuation with respect to the one ob-
tained with the arithmetic mean. The DoAs of the sources can be measured as the
directions ᾱ(a)

n (t), n = 1, . . . , N corresponding to the N highest peaks of λ̄(a)(t, α),
i.e., that maximizes the pseudospectrum λ(a)(α, t, ω)

ᾱ(a)(t) = D(λ̄(a)(α, t), N), (5.9)

where D(·, N) is the operator that returns the N highest peaks and

ᾱ(a)(t) =
[
ᾱ

(a)
1 (t), ᾱ

(a)
2 (t), . . . , ᾱ

(a)
N (t)

]T
(5.10)

is the N × 1 vector of the estimated DoAs for the ath array.
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Figure 5.3: A point-like source in the geometric space (a) is mapped, in the projective ray space (b),
onto a plane with normal direction r̄′ = [x′, y′, 1]T

Once the DoAs for each array have been estimated, the source locations in Cartesian
coordinates are estimated through triangulation. In a multi-source scenario the problem
of DoA disambiguation arises, i.e. the matching of the DoAs measured from different
arrays corresponding to the same source. Here, we tackle the disambiguation and trian-
gulation problems employing a localization method based on the Distributed Ray Space
Transform (DRST).

We introduce the DRST, as a tool devoted to the mapping of the signals of distributed
arrays onto the PRS domain [161]. The PRS, derived as a generalization of the ray
space [160], is the domain of representation of the sound field in the scenarios where
the same acoustic scene is observed by multiple viewpoints. This parameterization is
based on a generalization of the ray space reviewed in Section 6.1.1. In fact, the PRS is
defined by the parameters of the implicit equation l1x + l2y + l3 = 0 that identifies an
acoustic ray in 2D, rather than the euclidean equation of the RST (6.1). The distinctive
characteristics of such parameterization, is that the acoustic primitives, such as sources
and reflectors, are mapped in the PRS onto linear subspaces or combinations thereof.

Let us consider a generic point-like acoustic source at a given time instant t placed
in r′(t) = [x′(t), y′(t)]T as in Figure 5.3(a). This can be seen as the point of origin of
acoustic rays and, therefore it is represented in the ray space by all the rays crossing
it. It is worth to underline that since sources, microphones and VMs are assumed to be
lying on the same plane (see Section 5.1.1), we can reduce the location of the elements
to a point in 2D as depicted in Figure 5.3(a). It follows that given the source location in
homogeneous coordinates r̄′(t) = [x′(t), y′(t), 1]T , a ray emitted by the source satisfies

lT r̄′(t) = 0, (5.11)

where l = ε[l1, l2, l3]T , ε 6= 0 are the parameters of the projective line describing the
ray. As described in [161], the representation of r′(t) is given by the set of rays passing
through it, and in the PRS corresponds to a plane (see Figure 5.3(b)). DoAs in ᾱ(a)(t)

60



i
i

“thesis” — 2021/3/10 — 22:18 — page 61 — #71 i
i

i
i

i
i

5.2. Parametric Sound Field Reconstruction in the Free Field

in (5.9) are converted in acoustic rays in the PRS through

l
(a)
1,n(t) = ε sin

(
ᾱ(a)
n (t)

)
;

l
(a)
2,n(t) = ε cos

(
ᾱ(a)
n (t)

)
;

l
(a)
3,n(t) = ε[ya cos

(
ᾱ(a)
n (t)

)
− xa sin

(
ᾱ(a)
n (t)

)
], ε > 0.

(5.12)

These points will form clusters in the PRS on the planes representing the acoustic
sources.

In order to associate DoAs to sources and then proceed to the localization task, we
adopt techniques of pattern analysis. More precisely, we use a RANSAC algorithm [99]
(RANdom SAmple Consensus) over the set ofN×A points in the PRS. Let us indicate
with the subscript n̂ the points identified by RANSAC as pertaining to the nth source

l̂n̂(t) = [l1,n̂(t), l2,n̂(t), l3,n̂(t)]T . (5.13)

Note that l̂n̂ no longer depends on the array index a. The points in (5.13) are then
re-arranged in matrix form such that the condition of (5.11) becomes

Ln(t)r̄′n(t) = 0, (5.14)

where Ln(t) = [̂l1(t), . . . , l̂N̂(t)]T and N̂ is the number of rays related to the nth source.
From (5.14), we can infer that in order to cross the source location point r̄′n, the rays
should belong to the null space of Ln. Therefore, we compute the singular value de-
composition of the matrix Ln

Ln(t) (Ln(t))T = UL,n(t)ΛL,n(t)VT
L,n(t) (5.15)

where UL,n(t) and VT
L,n(t) are the singular vectors matrices of the decomposition and

ΛL,n(t) is the diagonal matrix of the singular values. Finally, the estimate of the source
location r̂′n(t) is obtained as [161]

r̂′n(t) =

[
1 0 0

0 1 0

]
vn(t), (5.16)

where vn(t) is the singular vector of VT
L,n(t) associated to the smallest singular value

in ΛL,n(t) given by the singular value decomposition (5.15). It is worth noticing that,
in the present section, we made explicit the dependence of the nth source position from
the time instant t in order to show that the presented method can account for moving
sources. However, for the sake of readability, we omit such an explicit dependence in
the following sections.

Directivity Pattern Estimation

Let us assume the distance between sources and arrays being much greater than the
arrays size. Therefore, in (5.6) we can assume φ(a)

m,n ≈ φ
(a)
n = ∠(r(a) − r′n) for

each microphone m in the ath array. Similarly to estimate of the source location,
we will omit the time dependence of the directivity pattern D(·). In addition, also
the frequency dependence is omitted from hereinafter for the sake of readability. With
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this assumption, the matrix D(a) becomes
[
D(a)

]
m,n

= Dn(φ
(a)
n ). Hence, defining

P(a) = diag
(
D0(φ

(a)
0 ), . . . , DN−1(φ

(a)
N−1)

)
, the model in (5.6) reduces to

x(a) = H(a)(P(a)s) + e(a), ∀a = 0, . . . , A− 1. (5.17)

After source localization, we have an estimate Ĥ(a) of H(a), thus we can estimate the
vector b(a) = P(a)s through an LCMV beamformer [268] defined by the optimization
problem

g(a)
n = arg min

g
gHg s.t. gHĤ(a) = cn, (5.18)

where cn ∈ C1×N with [cn]i = 1 for i = n and zero otherwise. The solution to the
optimization problem given by [252] is

g(a)
n = Ĥ(a)

(
Ĥ(a)HĤ(a)

)−1

cHn . (5.19)

Therefore, an estimate of b(a) is computed as

b̂(a) = G(a)Hx(a) ∀a = 1, . . . , A, (5.20)

where G(a) =
[
g

(a)
1 , . . . ,g

(a)
N

]
. Let us define the vector qn

qn =
[
|
[
b̂(1)
]
n
|, . . . , |

[
b̂(A)

]
n
|
]T

= |Ŝ(r′n)|
[
D̂n(φ(1)

n ), . . . , D̂n(φ(A)
n )
]T
,

(5.21)

that represents an estimate of the nth source directivity pattern for the directions φ(a)
n ∀a =

1, . . . , A scaled by the factor |Ŝ(r′n)|. Since VMs can be arbitrarily placed in space, we
need to reconstruct Dn(·) under any possibile direction φ̌v,n. Hence, a circular harmon-
ics model for the interpolation of the directivity pattern Dn(·) is adopted

Dn(φ(a)
n ) =

I−1∑
l=0

wn,l cos(lφ(a)
n ) + rn,l sin(lφ(a)

n ). (5.22)

where the coefficientswn,l and rn,l parametrize the directivity pattern enabling the com-
putation for arbitrary angles. In order to estimate the coefficients in (5.22), we define
the matrix

An = [An,1,An,2] (5.23)

where [An,1]a,l = cos
(
lφ

(a)
n

)
and [An,2]a,l = sin

(
lφ

(a)
n

)
and the vector of coefficients

yn = [wn,0, . . . , wn,I−1, rn,0, . . . , rn,I−1]T . (5.24)

An estimate of the coefficients yn can be found by solving the optimization problem
[48]

ŷn = arg min
yn

‖qn −Anyn‖2 s.t. Fyn ≥ 0, (5.25)
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where F = [F1,F2] ∈ DI×2I , [ F1]i,l = cos(lφi), [ F2]i,l = sin(lφi) with φi ∈
[0, 2π) i = 0, . . . , I − 1. It is worth noting that using the result of (5.25) in (5.22) we
will obtain a scaled version of the radiance pattern D̂n due to the presence of the source
signal magnitude spectrum as shown in (5.21). In practice, the scaling is removed by
normalizing the estimates D̂n in the range (0, 1).

Source Signal Estimation

The estimation of the source signal S(ω, t, r′n) takes advantage of the previously esti-
mated parameters. Specifically, an informed spatial filter is designed for the nth source
as

p?n = arg min
p

pHp s.t. pHY = dn, (5.26)

where

Y =

[(
Ĥ(1) ⊗ D̂(1)

)T
, . . . ,

(
Ĥ(A) ⊗ D̂(A)

)T]T
∈ CAM×N (5.27)

and d ∈ C1×N with [d]i = 1 if i = n and zero otherwise. Note that D̂(a) contains
the directivity values obtained using (5.22) with the estimated coefficients (ref. (5.25)).
Finally, we filter the microphones signals with p?n in order to obtain the estimate Ŝ(r′n)
of S(r′n)

Ŝ (r′n) = (p?n)H x (5.28)

where x =
[(

x(1)
)T
, . . . ,

(
x(A)

)T]T . We remark that in the current and previous sec-
tions we omitted the dependency on frequency ω time t of the different quantities for
the sake of readability.

5.2.3 Synthesis

Once the sound field analysis is completed as described in Section 5.2.2, the estimated
parameters are used to compute the signal of the vth virtual microphone as

Ŝ (ω, t, řv) =
N∑
n=1

Cv(ω)D̂n

(
ω, t, φ̂v,n

)
H (ω, řv, r̂

′
n) Ŝ (ω, t, r̂′n) (5.29)

Note thatH(řv, r̂
′
n, ω) is proportional to 1/‖řv−r̂′n‖, thus in practice, it is limited to the

maximum value Hmax to avoid an excessive amplification of the signal when the dis-
tance between the vth VM and the nth source becomes close to zero. Similarly to [260],
one can assign an arbitrary pick-up pattern to the vth VM defining the values of Cv(·).
This enables the simulation of different microphone models. The pick-up pattern of the
common directional microphones e.g. cardioid, supercardioid and hypercardioid, can
be easily modelled by a circular harmonics expansion. As an alternative, the nominal
pick-up pattern of a real microphone can be adopted. It is worth noting that in general,
any function can be assigned to Cv(·), defining even non-physical characteristics to the
VM.
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Figure 5.4: Simulation setup. (a) Two sources scenario with a single VM with cardioid pattern. (b) A
stereo recording scenario with two cardioid VMs in X-Y configuration.

5.2.4 Simulations

In order to validate the VM technique, our procedure is tested through software simu-
lations. We run the simulation using the setup shown in Figure 5.4. Both the sources
and the virtual microphones present a cardioid directivity pattern for all the frequency
range. We employ six circular microphone arrays having a radius of 10 cm, accom-
modating M = 4 omnidirectional microphones. The additive noise at the sensor is
simulated using a random white Gaussian noise, whose variance is set in such a way
to obtain a desired SNR w.r.t each microphone in the acoustic scene. The microphone
signals are processed after performing a STFT with a 20 ms Hann window and 75 %
overlap. The estimated signal Ŝ(ω, t, řv) of the vth VM is obtained using the estimated
values (Section 5.2.2), while the reference signal S(ω, t, řv) is computed adopting the
actual theoretical values. For the tests we employ speech signals taken from [264] in
order to simulate an actual scenario with one or more talkers.

We devise five different metrics as a means to evaluate the proposed technique: the
first three are devoted to the evaluation of the analysis stage while the last two to the
synthesis stage. Here below we report a list of the aforementioned metrics.

1. Localization Error: In order to analyze the performance of the localization step,
the Mean Squared Error (MSE) between estimated and actual positions of the
sources has been adopted:

LE (r′) =
1

N

N∑
n=1

‖r̂′n − r′n‖ (5.30)

2. Directivity Error: The source radiance pattern has been evaluated with an ad hoc
metrics called Directivity Error (DE). DE is defined for each source n as follows:

DEn =

∑
ω

∑
φ

[
D̂n(ω, φ)−Dn(ω, φ)

]2

IW
(5.31)
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where I is the number of considered angles and W the number of frequency bins.

3. Source to Distortion Ratio: The Source to Distortion Ratio (SDR) is defined as
the energy ratio between the desired signal and sources of distortion (i.e. inter-
ferers, noise and artifacts) and it has been used to evaluate the signal extraction
performance using the methodology described in [275].

4. Synthesized Signal Error: The Synthesized Signal Error (SSE) is defined as the
Normalized Mean Squared Error (NMSE) between the vth VM estimated signal
and the reference one:

SSEv = 10 log10

∑
ω

∑
t

∣∣∣Ŝ (ω, t, řv)− S (ω, t, řv)
∣∣∣2∑

ω

∑
t |S(ω, t, řv)|2

(5.32)

5. Intensity Ievel Difference: The ILD is defined as:

ILD(%) = 10 log10

∑
ω

∑
t

∣∣∣Ŝ (ω, t, řI , ǒI(%))
∣∣∣2∑

ω

∑
t

∣∣∣Ŝ (ω, t, řR, ǒR(%))
∣∣∣2 (5.33)

where Ŝ (ω, t, řI , ǒI(%)) and Ŝ (ω, t, řR, ǒR(%)) are the signals of two coincident
cardioid virtual microphones. The microphones angled 90◦ in a XY stereo con-
figuration directed toward % (see Figure 5.4(b)), hence the cardioid patterns of the
two sensor are oriented toward %− π/4 and %+ π/4.

The setup in Figure 5.4(b) is devoted for the evaluation of the ILD, while the other
metrics are computed with the setup of Figure 5.4. Concerning the metrics related to the
analysis stage, we report the results obtained by varying the SNR in Figure 5.5. As we
can see both the LE and the DE decrease as the SNR increases, while the SDR increases
monotonically. It is worth noting that, although at very low SNR we have a localization
error in the order of 30 cm, we are still able to maintain a low DE and a positive SDR.
As far as the metrics related to the synthesis stage are concerned, we can note from

Figure 5.6 that the SSE monotonically decreases as the SNR increases, but the error is
in the order of −3 dB even when the SNR is very low. Moreover, the behaviour of this
metric directly reflects that of the three analysis metrics. As an example, we report in
Figure 5.7 the comparison of the spectrograms of the estimated and reference virtual
microphone signals for a SNR = 40 dB. We notice that the two spectrograms are very
similar especially in the frequency range below 2 kHz. Above that frequency the spatial
aliasing dominates affecting in particular the frequency dependent operations i.e., the
directivity pattern estimation (Section 5.2.2) and the signal estimation (Section 5.2.2).

Concerning the ILD, we consider a stereo recording scenario using two directional
VMs with cardioid pattern and an angular difference of 90°, as shown in Figure 5.4(b).
The difference in sound pressure level between the two microphones is an important
spatial cue to be reproduced. In Figure 5.8 the ILD of the two cardioid VMs is illus-
trated as a function of the stereo VMs look direction %, where the microphone pair is
rotated from 0° to 360°. As expected, the behavior of the ILD curve reflects the orienta-
tion of the microphones, with the maximum and minimum in correspondence of a zero
of the cardioid pattern pointing towards the source (225° and 315°). The zero crossings
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Figure 5.5: Analysis metrics. The markers in DE and SDR curves correspond to the ones in setup
Figure 5.4(a).

of the curve occur at 90° and 270° when the signal of the source is sensed with the
same intensity from the two VMs. The curve of Figure 5.8 corresponds to the expected
behavior of a of a physical stereo pair microphones with the same characteristics.

5.3 Parametric Sound Field Reconstruction in Reverberant Environments

In this section we propose an enhanced version of the parametric method introduced in
Section 5.2, that extends the analysis to directional sources in reverberant environments.
The first step of the sound field analysis concerns the separation of the direct and diffuse
components from the measured signals and the localization of the sources. The direct
component is processed assuming a spherical harmonic representation of the emitted
sound field that inherently describes the directional behavior of the sources. The diffuse
component is assumed to be isotropic and homogeneous. The synthesis of the VM
signal is accomplished by properly mixing the estimated direct and diffuse components
at the desired location.

Results show that the proposed technique is able to reconstruct the main cues of the
VM signal, for instance, the ones related to reverberation (e.g. Direct to Reverberant
Ratio) and spatial recording (Interchannel Ievel Difference). Moreover, by analyzing
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Figure 5.6: SSE of the VM in Figure 5.4(a) for different level of SNR at the microphones.
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Figure 5.7: Spectrograms of the estimated (a) and reference (b) virtual microphone signals.

the metrics at different locations in the space, we show that the proposed approach is
able to capture the spatial characteristic of the recorded acoustic scene.

5.3.1 Data Model and Problem Formulation

Here we characterize the data model in a reverberant environment and the virtual mik-
ing problem. We specify the general data model of Section 5.1 and we also introduce
the parameters that need to be estimated. We then define the model of the signals ac-
quired by the microphones recording the acoustic scene. Finally, in Section 5.3.1 we
describe the virtual miking problem with the help of a block diagram underlying the
needs and requirements of the proposed approach. We report here the VM signal model
(5.2) that is composed of two contribution: the direct sound and the diffuse components

S(t, ω, řv) = Cv(ω)Sn,dir(t, ω, řv)

+Qv(ω)Sdiff(t, ω, řv), n ∈ {1, . . . , N},
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Figure 5.8: ILD as a function of the rotation of the two cardioid virtual microphones in the stereo
recording scenario of Figure 5.4(b).

Let us denote with řv,n = řv−r′n = [x̌v,n, y̌v,n, žv,n] the vector pointing from the source
position to the VM position (see Figure 5.1) and with ρ̌v,n, θ̌v,n and φ̌v,n the coordinates
of řv,n in a spherical coordinate system, i.e.,

ρ̌v,n =
√
x̌2
v,n + y̌2

v,n + ž2
v,n,

θ̌v,n = arc cos
žv,n
ρ̌v,n

,

φ̌v,n = arc tan
y̌v,n
x̌v,n

.

(5.34)

The term Sn,dir(t, ω, řv) represents the direct sound emitted by the nth source and re-
ceived by the vth VM and it is modelled as the exterior field [229] (see Section 3.6.2)

Sn,dir(t, ω, řv) =
I∑
`=0

∑̀
µ=−`

βn`µ(t, ω)h` (kρ̌v,n)Y`µ
(
θ̌v,n, φ̌v,n

)
, (5.35)

where k = 2πf/c, c is the speed of sound, βn`µ(ω) are the exterior sound field coeffi-
cients of the nth source, h` (·) is the `th order spherical Hankel function and Y`µ

(
θ̌v,n, φ̌v,n

)
is the spherical harmonic of order ` and degree µ, defined as

Y`µ
(
θ̌v,n, φ̌v,n

)
= K`µP`µ

(
cos(θ̌v,n)

)
ejµφ̌v,n , (5.36)

with

K`µ = (−1)µ

√
(2`+ 1)

4π

(`− µ)!

(`+ µ)!
(5.37)

and P`µ(·) the normalized associated Legendre polynomial (eq. (3.22) and (3.23)). It
is worth noting that even though sources, arrays, and VMs are assumed to be lying on
the same plane as in Section 5.2, we consider them as placed in a 3D environment.
Hence, in (5.35) we adopt a 3D propagation model. It is worth noticing that the di-
rect signal model in (5.35) differs from (5.3). In this case, we adopt a more efficient
description of the direct sound field. In fact, through (5.35) both the signal and the
directivity of the sources are encoded by means of the spherical harmonics expansion.
This provides a compact description that automatically model the directivity of the
sources, removing the requirement of directly estimating this component as in (5.3).
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Figure 5.9: The virtual miking technique block diagram. The microphone signals x(ri) i = 1, . . . , I
are first transformed using the STFT into X(ri) i = 1, . . . , I which are used as input for the Sound
sources localization (Section 5.3.2) and Direct and diffuse components estimation (Section 5.3.3)
blocks along with the location of the microphones ri, i = 1, . . . , I . The number of sources N
is provided as input to the Sound sources localization block. The estimated location of the sources
r̂′n, n = 1, . . . , N and the direct component estimates X̂n,dir are used as input for the Exterior sound
field coefficients estimation block (Section 5.3.4). As regards the Synthesis phase (Section 5.3.5), the
position of the vth VM řv is shared by both the Synthesis of the direct component (Section 5.3.5)
and Synthesis of the diffuse component (Section 5.3.5) blocks. In addition, the Synthesis of the direct
component block requires the vth VM pick-up pattern Cv,n, n = 1, . . . N , the estimated location
of the sources r̂′n, n = 1, . . . , N and the estimates of the exterior sound field coefficients β̂n, n =
1, . . . , N , while the sensitivity of the vth VMQv and the estimated diffuse components X̂diff are given
as input to the Synthesis of the diffuse component block. Finally, the signal of the vth VM Ŝ (řv) is
obtained as the sum of the synthesized direct and diffuse components.

The term Sdiff(t, ω, řv) represents the diffuse sound field component and it is assumed
as spatially isotropic and homogeneous, i.e., it arrives with equal strength from all the
directions and its mean power does not vary with the position [241, 260]. It is worth
noticing that in (5.2) we implicitly assume that the VM is noiseless.

The signal acquired by the ith omnidirectional microphone placed in ri is modeled
as

X (t, ω, ri) = Xn,dir(t, ω, ri) +Xdiff(t, ω, ri) +N(t, ω, ri). (5.38)
The term Xn,dir(t, ω, ri) is the direct sound emitted by the nth source and received by
the ith microphone and, similarly to (5.35), is modeled as

Xn,dir(t, ω, ri) =
I∑
`=0

∑̀
µ=−`

βn`µ(t, ω)h` (kρi,n)Y`µ (θi,n, φi,n) , (5.39)

where ρi,n, θi,n and φi,n are the spherical coordinates of the vector ri,n = ri − r′n
(see (5.34)). The terms Xdiff(t, ω, ri) and N(t, ω, ri) are the spatially isotropic and
homogeneous diffuse sound component and the ith sensor self-noise, respectively. The
microphone self-noise N(t, ω, ri) is modelled as an uncorrelated zero-mean complex
Gaussian noise with mean power

ΦN,ii(t, ω) = E{N(t, ω, ri)N
?(t, ω, ri)}, (5.40)

where E{·} denotes the mathematical expectation and (·)? refers to the conjugate of a
complex number.

Problem Formulation

In this section we approach the sound field reconstruction problem as a virtual miking
operation performed in a parametric fashion. In particular, in Section 5.1.1, we devel-
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oped in (5.2) and (5.38) an extended parametric model (with respect to the one adopted
in Section 5.2) for both the VMs and the microphones recording the scene, respectively.
The proposed solution can be seen as a system characterized by a set of unknown pa-
rameters that need to be estimated. The inputs to the estimation problem are the signals
X(t, ω, ri), i = 1, . . . , I of the microphones, their positions ri, the characteristics of
each VM, namely the position řv, the pick-up pattern Cv(ω) and the sensitivity to dif-
fuse noise Qv(ω) and the number of sources N . In particular, as regards the latter pa-
rameter, it can be estimated using other sensors in the room or directly from the signals
at the microphones as proposed, for example, in [25, 26, 154, 192, 194, 255, 277, 291].
The output of the algorithm is an estimate Ŝ(řv) of the VM signal S(řv).

In Figure 5.9 a graphical representation of the proposed solution is depicted. In
the block diagram we can identify the two main phases of the procedure namely the
parameters estimation and the synthesis phase. In the former all the parameters needed
for the synthesis of the VM signal are estimated. In particular, as it is clear from
(5.2), in order to synthesize the signal at each VM we need to estimate both the direct
Sn,dir(t, ω, řv) and the diffuse Sdiff(t, ω, řv) components.

VM direct component estimation In (5.35) the model of the direct component Sn,dir(t, ω, řv)
is described. The parameters characterizing the direct sound component of a VM
are the source location r′n, n = 1, . . . , N and the exterior sound field coefficients
βn`,µ(t, ω), n = 1, . . . , N . The positions r′n of the sources are estimated using the acous-
tic source localization algorithm described in Section 5.2.2.

The estimation of the exterior sound field coefficients βn`,µ(t, ω) from the micro-
phone signals requires the knowledge of the direct sound component Xn,dir(t, ω, ri) at
each microphone (see (5.39)). However, only the microphone signals X(t, ω, ri) are
directly available. It follows that a procedure for estimating the direct and the diffuse
components from X(t, ω, ri), i = 1, . . . , I is required. This procedure must be blind
with respect to the room transfer function between sources and microphones. This, in
fact, is a desirable feature, as measuring the transfer functions is not always feasible for
all possible source locations and, in addition, transfer functions can be time-varying.

The algorithm for the estimation of the direct components is described in Sec-
tion 5.3.3. It is worth noticing that the algorithm used for estimating the direct compo-
nent requires the knowledge of the exterior field spherical harmonic coefficients, which
is detailed in the same section. Finally, given the acoustic scene parameters described
above, it is possible to synthesize the VM signals. This is detailed in Section 5.3.5.

VM diffuse component estimation Starting from from the microphone diffuse sound com-
ponents Xdiff(·), the diffuse sound component Sdiff(·), can be estimated, as detailed in
Section 5.3.5. Inputs for the estimation of the diffuse components, as shown in Fig-
ure 5.9, are the VM position řv, the microphone positions ri and the VM sensitivity to
the diffuse field Qv(ω).

As defined in (5.2), an estimate of the vth VM signal is obtained as the linear com-
bination of the estimates of the direct component Ŝn,dir(t, ω, řv) and the diffuse com-
ponent Ŝdiff(t, ω, řv).
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5.3.2 Source Localization

The accurate estimation of the source location is a crucial step, as the estimation of all
the other parameters depend on that. Furthermore, it is well-known in the literature
[178, 244] that accurate source localization in the presence of strong reverberation is
a challenging problem. Again, we approach the source localization problem as a two-
step procedure: in the first step we estimate a set of source DoAs for each array, while
in the second step the locations of the sources are found solving the DoAs association
and triangulation problem [62].

DoA Estimation

In the literature different DoA estimation algorithms can be found and they can be
mainly divided into two classes: parametric [187, 236, 253] and spatial methods [34,
42, 268]. The former class of techniques leverages on assumptions about the covari-
ance structure of the signals, while the latter concerns the computation of a spatial
filter, customarily through beamforming. Here, due to the assumption on the setup (see
Section 5.1.1), we are interested in the 2D position of the sources, hence, we adopt
an improved version of the localization technique introduced in Section 5.2.2 that is
based on spatial filtering. In particular, in this case we are dealing with reverberant
environment, therefore, the presence of reflections due to the reverberation is likely to
introduce errors in the estimate of the DoAs ᾱ(a)

n (5.9). It is also worth noticing that,
in general, correlation between the source signals can negatively affect the estimation
of the DoAs. The use of sufficiently short time windows in the STFT and the assump-
tion of uncorrelation among the time-frequency bins, however, attenuates this problem.
With the aim of reducing the impact of reverberation on the location accuracy, we se-
lect the DoAs in ᾱ(a)(t) compatible with source locations inside the ROI described in
Section 5.3.1. This is done by intersecting the half-lines with origin va and direction
D(a)(t) =

[
d

(a)
1 (t),d

(a)
2 (t), . . . ,d

(a)
N (t)

]
, d(a)

n (t) = [cos ᾱ
(a)
n (t), sin ᾱ

(a)
n (t)]T with the

polygonR that defines the ROI

α̃(a)(t) = I(va,D
(a)(t),R), (5.41)

where I is the operator that returns all the DoAs for which at least one intersection with
the polygon edges exists and

α̃(a)(t) =
[
α̃

(a)
1 (t), α̃

(a)
2 (t), . . . , α̃

(a)

Ñ
(t)
]T

(5.42)

is the resulting DoA vector with dimensions Ñ × 1, Ñ ≤ N .

Association of DoAs and triangulation

The DoA association and disambiguation problem appears in the context of multisource
scenarios. As described in details in Section 5.2.2, this problem can be solved by map-
ping the DoAs in the projective ray space, where the information related to the location
of the acoustic source is conveniently represented by linear patterns. We exploit this
procedure for localizing the acoustic sources in reverberant environments, using α̃(a)

(5.41) in (5.12) instead of ᾱ(a) (5.9).
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5.3.3 Direct and Diffuse Components Estimation

Once the source locations are obtained, we address the problem of estimating the direct
and diffuse components of a microphone signal namelyXn,dir(t, ω, ri) andXdiff(t, ω, ri)
from the recorded microphone signal .This is a crucial step of the process, as the knowl-
edge ofXn,dir(t, ω, ri) is required to estimate the exterior sound field coefficients of the
sources (see (5.39)) and Xdiff(t, ω, ri) is needed for the estimation of the VM diffuse
component Sdiff(t, ω, řv).

The estimation of the direct and the diffuse component is also known as the dere-
verberation problem. The dereverberation algorithms proposed in the literature can be
divided in two categories: inverse filtering algorithms [51, 73, 173]; and algorithms
that estimate and suppress reverberation with spectral subtraction or Wiener filter-
ing [241, 259]. From an operative standpoint, the two categories differ in the fact that
the former requires the knowledge of the room transfer function, while the latter does
not need it. In this work, as stated in Section 5.3.1, the second class meets our require-
ments.

Following [241] and [259] we can obtain an estimate of the direct sound component
Xn,dir(t, ω, ri) at the position ri as the output of a squared root Wiener filter whose
coefficients are computed as [241, 269]

Gdir(t, ω, ri) =

√
1− 1

CDR(t, ω, ri) + 1
, (5.43)

where CDR(t, ω, ri) is the time-frequency dependent signal to diffuse ratio at the ith
microphone, defined as

CDR(t, ω, ri) =
Φdir,ii(t, ω)

Φdiff,ii(t, ω)
. (5.44)

Here Φdir,ii and Φdiff,ii are the auto-power spectra of the direct and diffuse component,
respectively, and are defined as

Φdir,ii(t, ω) = E{Xn,dir(t, ω, ri)X
?
n,dir(t, ω, ri)}

Φdiff,ii(t, ω) = E{Xdiff(t, ω, ri)X
?
diff(t, ω, ri)}.

(5.45)

As shown in [241], an estimate of CDR(t, ω, ri) can be obtained from the knowledge
of the microphone signal coherence function and the diffuse noise coherence function.
This can be accomplished using the CDR estimator defined in [241] as

CDR(ri) =
Γdiff,ii′Re{Γ̂ii′} − |Γ̂ii′ |2

|Γ̂ii′ |2 − 1

−

√(
Γdiff,ii′Re{Γ̂ii′}

)2

−
(

Γdiff,ii′ |Γ̂ii′ |
)2

+ (Γdiff,ii′)
2 − 2Γdiff,ii′Re{Γ̂ii′}+ |Γ̂ii′ |2

|Γ̂ii′ |2 − 1
,

(5.46)

where Re{·} is the operator that retrieves the real part of a complex number. The
dependencies on time and frequency have been omitted for the sake of readability. The
term Γdiff,ii′(ω) in (5.46) is the diffuse noise coherence function between the ith and
i′th microphones. Assuming a spherically isotropic sound field as in (5.38), Γdiff,ii′(ω)
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can be modelled as [241]

Γdiff,ii′(ω) =
Φdiff,ii′(t, ω)√

Φdiff,ii(t, ω)Φdiff,i′i′(t, ω)
=

sin (kdii′)

kdii′
, (5.47)

where
Φdiff,ii′(t, ω) = E{Xdiff(t, ω, ri)X

?
diff(t, ω, ri′)},

dii′ = ‖ri − ri′‖2

(5.48)

with ‖ · ‖2 the `-2 norm of a vector.
The term Γ̂ii′(t, ω) in (5.46) is the estimate of the microphone signal coherence

function between the ith and the i′th microphone. If we assume that the sensor noise
between microphones i and i′ is uncorrelated, the microphone signal coherence func-
tion can be estimated as [259]

Γ̂ii′(t, ω) =
Φ̂ii′(t, ω)√

Φ̂ii(t, ω)− Φ̂N,ii(t, ω)
√

Φ̂i′i′(t, ω)− Φ̂N,i′i′(t, ω)
, (5.49)

where ΦN,ii(t, ω) is the noise auto-power spectrum defined in (5.40) and

Φii′(t, ω) = E{X (t, ω, ri)X
? (t, ω, ri′)}. (5.50)

The auto and cross spectra can be obtained from the microphone signals by recursive
averaging [241]

Φ̂ii′(t, ω) = λΦ̂ii′(t− 1, ω) + (1− λ)X (t, ω, ri)X
? (t, ω, ri′) (5.51)

where λ is a constant in the range [0, 1). In our scenario, the microphone pairs are
chosen as belonging to the same array. The sensor noise auto-spectra Φ̂N,ii(t, ω) and
Φ̂N,i′i′(t, ω) can be obtained applying recursive averaging on the microphone signals
as in (5.51) when neither acoustic sources nor diffuse noise are present (i.e., only the
sensor noise component is active). In order to determine the activity or inactivity of
the sources we use the voice activity detector in [247]. It is worth noting that [247]
assumes that all sources emit speech signals that are sufficiently sparse in the time-
frequency domain thus agreeing with the assumption stated in Section 5.1.1.

Once an estimate of the CDR at the ith microphone is obtained using (5.46) we
can use (5.43) to obtain the Wiener filter coefficients that allows to extract the direct
component of a the ith microphone signal. However, as highlighted in [241], a more
practical implementation of (5.43) is given by [269]

Gdir(t, ω, ri) = max

{
Gmin,

√
1− ν

CDR(t, ω, ri) + 1

}
, (5.52)

where ν is the oversubtraction factor and Gmin the gain floor. The term ν controls the
amount of noise subtracted from the noisy signal. For full noise subtraction, ν = 1
and for over-subtraction ν > 1. The term Gmin acts as a lower bound for the filter
coefficients weights. This is useful in order to reduce artefacts in the output signal.
Inspecting (5.52), it is clear that high values of CDR leads to low filter gain and vice
versa.
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Finally, the filter in (5.52) is used to compute the direct signal component at the ith
microphone through [241]

X̂dir(t, ω, ri) = Gdir(t, ω, ri)U(t, ω, ri), (5.53)

where

U(t, ω, ri) =

√
Z (t, ω, ri) + Z (t, ω, ri′)

2
ej arg{X(t,ω,ri)}, (5.54)

with
Z (t, ω, ri) = |X (t, ω, ri) |2 − Φ̂N,ii(t, ω)

Z (t, ω, ri′) = |X (t, ω, ri′) |2 − Φ̂N,i′i′(t, ω)
(5.55)

and arg{·} the operator that takes the argument of a complex number. The spatial mag-
nitude averaging performed in (5.54) is typically used in order to reduce the variance
of the estimates for microphone array post-filters [166, 294].

The diffuse component of the microphone signal can be obtained using the filter
[259]

Gdiff(t, ω, ri) =

√
1− [Gdir(t, ω, ri)]

2, (5.56)

where Gdir(t, ω, ri) is defined in (4.59). It follows that an estimate of Xdiff(t, ω, ri) can
be obtained as

X̂diff(t, ω, ri) = Gdiff(t, ω, ri)U(t, ω, ri), (5.57)

where U(t, ω, ri) is defined in (5.54). As demonstrated in Appendix A, using the
filters in (5.52) and (5.56) and assuming that ν = 1, Gmin = 0 and that the auto-
spectra of the direct, diffuse and noise components at the i microphone and at the i′

microphone are the same, the power of the estimated sound field components corre-
sponds to the actual sound power (i.e., E{|X̂n,dir(t, ω, ri)|2} = E{|Xn,dir(t, ω, ri)|2}
and E{|X̂diff(t, ω, ri)|2} = E{|Xdiff(t, ω, ri)|2}) [269].

5.3.4 Exterior Sound Field Coefficients Estimation

Once the direct signal components of the microphone signals have been estimated us-
ing (5.53), and the sources have been localized, we can exploit the model of the direct
sound component in (5.39) in order to estimate the set of spherical harmonics coeffi-
cients related to each source in the acoustic scene. Let us define the vector x̂dir(t, ω)
containing the estimates of the direct component for all the microphones, i.e.,

[x̂dir(t, ω)]i = X̂dir(t, ω, ri) i = 1, . . . , I, (5.58)

where [·]i is the ith element of the vector.
We denote the vector of the coefficients of the spherical harmonic for the nth source

as
βn(t, ω) =

[
βn00(t, ω), βn0−1(t, ω), . . . , βnLL(t, ω)

]T
, (5.59)

where (·)T is the transpose operator.
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Let us define the matrix Ŷn(k) containing the spherical harmonics as

Ŷn(k) =

h0 (kρ̂1,n)Y00

(
θ̂1,n, φ̂1,n

)
h1 (kρ̂1,n)Y1−1

(
θ̂1,n, φ̂1,n

)
· · ·hL (kρ̂1,n)YLL

(
θ̂1,n, φ̂1,n

)
h0 (kρ̂2,n)Y00

(
θ̂2,n, φ̂2,n

)
h1 (kρ̂2,n)Y1−1

(
θ̂2,n, φ̂2,n

)
· · ·hL (kρ̂2,n)YLL

(
θ̂2,n, φ̂2,n

)
...

...
. . .

...

h0 (kρ̂I,n)Y00

(
θ̂I,n, φ̂I,n

)
h1 (kρ̂I,n)Y1−1

(
θ̂I,n, φ̂I,n

)
· · ·hL (kρ̂I,n)YLL

(
θ̂I,n, φ̂I,n

)


(5.60)

where ρ̂i,n, θ̂i,n and φ̂i,n. are the estimates of ρi,n, θi,n and φi,n defined in (5.39) obtained
using the estimate of the n source position r̂′n. In the light of the definitions in (5.58)
and (5.60), the direct sound components acquired by the microphones are given by

x̂dir(t, ω) =
[
Ŷ1(k)Ŷ2(k) · · · ŶN(k)

] β1(t, ω)
...

βN(t, ω)


= Ŷ(k)β(t, ω).

, (5.61)

An estimate β̂(t, ω) of β(t, ω) can be obtained as

β̂(t, ω) = Ŷ†(k)x̂dir(t, ω), (5.62)

where † denotes the matrix pseudo-inverse. However, under the assumption that only
one source is dominant in each time-frequency bin, we can solve (5.61) by enforcing
the sparsity of the resulting coefficients vector. In particular, we obtain β̂(t, ω) as the
result of a group lasso optimization problem [293], i.e.,

β̂(t, ω) = argmin
β(t,ω)

1

2
‖Ŷ(k)β(t, ω)− x̂dir(t, ω)‖2

2 + κ
N∑
n=1

‖βn(t, ω)‖2. (5.63)

As shown in [47], this problem can be solved using the alternating direction method of
multipliers (ADMM).

Discussion It is worth noticing that, since sources and microphones are assumed to lie
on the same plane (i.e., θ = π/2), the columns of Ŷn(k) for which ` + |µ| is even
have been removed. As shown in [2, 230], in fact, when θ = π/2 the summation
in (5.35) goes to zero since Y`µ (π/2, φv,n) = 0. The truncation order I is usually
set as I = dkeRs/2e where e is the Euler’s number, d·e is the ceiling operator and
Rs is the radius of the region surrounding a source [229]. Hence, the truncation or-
der should be a function of the source but, in order to simplify the notation, in this
manuscript we assumed that the truncation order is the same for all the sources. As
stated in [216], the radius Rs and, as a consequence, the value of I can be reduced
with a suitable choice of the origin of the reference frame. In this manuscript, the ori-
gin coincides with the coordinates of the sources location estimates. Moreover, as it is
clear from (5.62), in order for the system to be over-determined, the following condi-
tion should be satisfied: [(I + 1)2 − TI ]N < I , where TI = I(I + 1)/2. However,
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considering the assumption that only one source is dominant in each time-frequency
bin, the above-mentioned condition can be relaxed to [(I + 1)2 − TI ] < I . It follows
that I = min

(
dkeRs/2e, (

√
8I + 1− 3)/2

)
.

5.3.5 Synthesis

Synthesis of the Direct Component

An estimate Ŝn,dir(t, ω, řv) of the direct sound component at the vth VM due to the nth
source can be obtained by exploiting the model in (5.35). More precisely, given the
estimate r̂′n of the nth source position obtained in (5.16), and the set of exterior field
coefficients β̂n(t, ω) obtained in (5.63), Ŝn,dir(t, ω, řv) is obtained through

Ŝn,dir(t, ω, řv) =
I∑
`=0

∑̀
µ=−`

β̂n`µ(t, ω)h`
(
k ˆ̌ρv,n

)
Y`µ

(
ˆ̌θv,n,

ˆ̌φv,n

)
, (5.64)

where ˆ̌ρv,n, ˆ̌θv,n and ˆ̌φv,n are the estimates of ρ̌v,n, θ̌v,n and φ̌v,n in (5.35) and can be
computed by inserting in (5.34) the estimate r̂′n of the nth source location.

The term Cv(ω) in (5.2) models the VMs pick-up pattern. Usually this term can be
expressed as a function f(·) that depends on the frequency ω, the angle between the vth
VM and the nth source [ιn,v, ζn,v]

T = ∠r′n− řv, with ι the azimuth and ζ the elevation,
the orientation ǒv of the vth VM,

Cv(ιn,v, ζn,v, ǒv, ω) = f (ιn,v, ζn,v, ǒv, ω) . (5.65)

The proposed framework enables also the estimation of the direct signal component
acquired by a higher order VM located at řv. In particular, given the estimate β̂n(t, ω)
of the exterior sound field produced by the nth source, the spherical harmonics co-
efficients acquired by a Z-order VM can be directly obtained through the spherical
harmonics addition theorem [163] through

γv,nzb (t, ω) =
I∑
l=0

l∑
µ=−l

β̂nlµ(t, ω)T µblz (k, ˆ̌ρv,n,
ˆ̌θv,n,

ˆ̌φv,n),

z = 0, . . . , Z, b = −z, . . . , z

(5.66)

where T µblz (k, ˆ̌ρv,n,
ˆ̌θv,n,

ˆ̌φv,n) is defined according to (4.4). The knowledge of the spher-
ical harmonics coefficients acquired by the Z-order microphone enables applications
like, for example, modal beamforming [292], binaural synthesis [36, 218] etc. In all
these applications the spherical harmonics coefficients of the higher order microphone
are filtered through

Cv(ω)Sn,dir(t, ω, řv) =
Z∑
z=0

z∑
b=−z

[ψv,nzb (ω)]∗ γv,nzb (t, ω), (5.67)

where ψv,nzb (ω) are the spherical harmonics filter coefficients [217].
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Synthesis of the Diffuse Component

In order to synthesize the diffuse component Sdiff(t, ω, řv) of the VM, we use the esti-
mates of the diffuse signal at each microphone obtained in (5.57). More precisely, given
the estimates X̂diff(t, ω, ri), we compute the power of the diffuse signal component in
řv as [260]

E{|Sdiff(t, ω, řv)|2} =
I∑
i=1

$i(ω)E{|X̂diff(t, ω, ri)|2}, (5.68)

where
∑I

i=1 $i(ω) = 1. As stated in [260], $i(ω) are real valued weights that de-
pend on the estimation variance of the power of the signal at the ith microphone (i.e.,
E{|X(t, ω, ri)|2}), i = 1, . . . , I . Since these estimates are usually unavailable, we
choose the weights to be inversely proportional with respect to the distance between
the vth VM and the ith microphone, i.e.,

$i(ω) =
1

‖ri − řv‖2

(
I∑

i′=1

1

‖ri′ − řv‖2

)−1

. (5.69)

For what concerns the estimation of the phase of the diffuse signal component, we
experimentally verify that plausible results can be achieved by using as an estimate
the phase of the nearest microphone. It is worth noting that such a solution does not
provide the desired spatial coherence among closely spaced VMs. It follows that, if one
want to further process the signal coming from different VMs, this fact must be taken
into account. Nevertheless, as we will see in the following section, this solution is
applicable to coincident VMs for simulating, for example, a stereo recording scenario.

Finally, as defined in (5.2), the function Qv(ω) controls the sensitivity of the VM
to the diffuse field. In the most general case, this function can be arbitrarily designed.
However, in most cases the relationship between Qv(ω) and the pick-up pattern of the
VM directivity is well approximated by

Qv(ω) =

√
1

4π

∫ π

0

∫ 2π

0

Cv(ι, ζ, ǒv, ω)2 sin ζ dι dζ. (5.70)

The expression in (5.70) is valid under the assumption of a spherically isotropic sound
field and accounts for the fact that the diffuse component of the VM can be attenuated
depending on the pick-up pattern Cv(ι, ζ, ǒv, ω).

5.3.6 Validation and Results

The proposed virtual miking technique is suitable for many applications thanks to its
flexibility in terms of setup configuration. In addition, the possibility of completely
characterizing the VM and the intrinsic source model paves the way to the use in ad-
vanced spatial audio applications. In order to validate the virtual miking performance,
we tested the system through an extensive software simulation campaign. This allows
us to control both the characteristics of the sources, such as their directivity pattern
and the number and the location of the virtual microphones. Moreover, this eases the
development of test cases that require a significant amount of reference VMs, barely
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Figure 5.10: 2D graphical representation of the first simulation setup. The two sources have a first-order
cardioid directivity and they are located in r′1 = [1.75, 2]Tm and r′2 = [3.25, 2.75]Tm

deployable in practice. The simulation setup is introduced in Section 5.3.6, while in
Section 5.3.6 the different metrics used for the assessment of the VM performance are
defined. The simulation results are discussed in Sec 5.3.6.

Simulation Setup and Parameters

The simulation setup is illustrated in Figure 5.10. It consists of A = 9 circular mi-
crophone arrays with radius 0.04 m, accommodating M = 4 omnidirectional micro-
phones each. Therefore, the total number of microphones is I = A ×M = 36. The
sources emit two speech signals simultaneously (female and male taken from [264]), at
r′1 = [1.75, 2]Tm and r′2 = [3.25, 2.75]Tm, respectively. When a single source setup
is considered, only the source in r′1 is active in the scene at any time. The two sources
present a first-order cardioid directivity with looking direction (i.e., direction of maxi-
mum energy emission) equal to 45° and 270°, respectively. A set of V = V (1) + V (2)

omnidirectional VMs (i.e., C(·) = 1) are placed on two circumferences of radius R
centered around the two sources (see Figure 5.10). In detail, the positions of the VMs
are defined as

ř(1)
v = R[cos η(1)

v , sin η(1)
v ]T + r′1, v = 1, . . . , V (1)

ř(2)
v = R[cos η(2)

v , sin η(2)
v ]T + r′2, v = 1, . . . , V (2),

(5.71)

where η(1)
v = 2π/V (1)v, η(2)

v = 2π/V (2)v and ř(1)
v , ř(2)

v are the positions of VMs
surrounding the first and the second source, respectively. The actual number of VMs,
V , depends on the simulation setup. This arrangement of the VMs allows us to capture
the directional properties of the sources, testing the capability of the proposed virtual
miking technique in rendering a spatial sound perception coherent with the VM position
in the scene.

The signal at the microphones (see (5.38)) is simulated as the convolution between
the signal of the sources and the room impulse response (RIR) computed through the
image source method [11] implemented in [121]. The room is 5 m× 4 m× 3 m with a
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Figure 5.11: 2D graphical representation of the second simulation setup. The source is located at
r′1 = [2.5, 3]Tm while the VMs in X-Y configuration are placed at řX−Y = [2.5, 1.5]Tm.

reverberation time of T60 = 0.4 s. As done in [241] and [212], the diffuse component
in (5.38) is computed from the RIR late reverberation part. This can be accomplished
suppressing the direct path and the early reflections using a cutoff time Te set to a
typical value of 0.05 s [145]. The additive noise component in (5.38) is simulated using
a random white Gaussian noise, whose variance is set so that the desired signal to
noise ratio at each sensor is 60 dB. The signals are processed at a sampling rate of
16 kHz and their time-frequency representation is obtained through a 4096 points Short
Time Fourier Transform (STFT) with a 0.256 s Hamming window adopted both in the
analysis and synthesis phase and 87.5 % overlap.

The localization is performed as described in Section 5.3.2, where, for the compu-
tation of the pseudospectrum λ(a)(α, ω),∀a = 1, . . . , A, we adopted the super directive
beamformer [268]. The averaged pseudospectum in (5.8) is compute with W = 4096.
The actual estimate of the source location r̂′n is obtained as the median value of 1000
RANSAC executions with different algorithm initializations at each time frame t. An
estimate of the direct and diffuse components are obtained as presented in Section 5.3.3
with λ = 0.68, ν = 1.3 and Gmin = −30 dB. Given the described setup, the pairs of
microphones for the estimation of the cross spectra Φ̂ii′(t, ω) are chosen as belonging
to the same array by following their order in terms of azimuth with respect to each
array center. For what concerns the source parameter estimation, we set the spheri-
cal harmonics expansion order in (5.35) according to the discussion in Section 5.3.4.
Moreover, an applicative scenario regarding a spatial acquisition has been simulated.

We test the virtual miking technique in the context of a stereo recording, simulat-
ing a X-Y stereo miking setup. In Figure 5.11 one omnidirectional source, aligned
with the X-Y VM along the y axis, is present. The source emits a female speech sig-
nal similarly to the previous scenario. X-Y stereo recording requires the employment
of two directional microphone (VMI and VMR) with first-order cardioid pick-up pat-
tern. The microphones are characterized by coincident location řI = řR = řX−Y

and different pick-up pattern orientation (5.65), such that |ǒI − ǒR| = [π/2, 0]T rad.
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Hence, given the X-Y looking direction ǒX−Y = [%, 0]T , namely, the direction corre-
sponding to the center of the stereo plane, the orientation of the VMs are defined as
ǒI(%) = [% − π/4, 0]T rad and ǒR(%) = [% + π/4, 0]T rad. Notice that when it is not
explicitly stated, we assume the same setup parameters of the previous scenario.

Metrics

Accordingly to the different simulation setups, we evaluated the virtual miking perfor-
mance in terms of a set of metrics that are generalized power directivity (GPD), signal-
to-distortion ratio (SDR), signal-to-interference ratio (SIR), direct-to-reverberant ratio
(DRR) and interchannel level difference (ILD). The mathematical expression of the
metrics is given in the following.

Generalized Power Directivity (GPD) The GPD of a source is defined as

ĜPD(η(n)
v ) =

∑
w

∑
t |Ŝn,dir(t, ωw, ř

(n)
v )|2

max
v

∑
w

∑
t |Ŝn,dir(t, ωw, ř

(n)
v )|2

, (5.72)

and it measures, for each source, the normalized power of the estimated VM signals
surrounding the given source as a function of the VMs angle η(n)

v in (5.71). In the fol-
lowing we indicate with GPD(η

(n)
v ) the same metric computed with reference signals.

Signal-to-Distortion Ratio (SDR) The SDR is defined as the ratio between the desired
reference signal and the distortion that affects the estimation (i.e. interference, noise
and artifacts). We adopt the SDR estimator of [275] for the evaluation of the estimated
VM signals with respect to the reference VM signals.

Signal-to-Interference Ratio (SIR) The SIR is defined as the ratio of the power of direct
component of a desired signal and the sum of the interfering signals. More precisely,

ŜIR(η(n)
v ) =

∑
w

∑
t |Ŝn,dir(t, ωw, ř

(n)
v )|2∑

n̄6=n
∑

w

∑
t |Ŝn̄,dir(t, ωw, ř

(n)
v )|2

. (5.73)

In the following we indicate with SIR(η
(n)
v ) the same metric computed with reference

signals.

Direct-to-Reverberant Ratio (DRR) The DRR represents the ratio between the power of
the direct and reverberant components

D̂RR(η(n)
v ) =

∑
w

∑
t |Ŝn,dir(t, ωw, ř

(n)
v )|2∑

w

∑
t |Ŝdiff(t, ωw, ř

(n)
v )|2

. (5.74)

This metrics allows us to evaluate the VM in terms of spatial sound characteristics,
since the DRR reflects the spatial properties of the signal. In the following we indicate
with DRR(η

(n)
v ) the same metric computed with reference signals.
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Figure 5.12: (a) GPD of the VMs and their references in a single source scenario. (b) GPD of the first
source when both are active. (c) GPD of the second source when both are active.
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Figure 5.13: The NMSEGPD as a function of the number of arrays A.

Interchannel Ievel Difference ( ILD ) The ILD is defined as the ratio between two VMs in
a stereo configuration

ÎLD(%) =

∑
w

∑
t |Ŝ(t, ωw, řI, ǒI(%))|2∑

w

∑
t |Ŝ(t, ωw, řR, ǒR(%))|2

. (5.75)

where % is the VMX−Y azimuth orientation. In (5.75) the dependence on the VM ori-
entation is made explicit. In the following we indicate with ILD(%) the same metric
computed with reference signals.

As regards the GPD, SIR and DRR, we also evaluate the estimation in terms of
the normalized mean squared error (NMSE). For instance concerning the GPD it is
defined as

NMSE
(n)
GPD = 10 log10

∑
v |ĜPD(η

(n)
v )−GPD(η

(n)
v )|2∑

v |GPD(η
(n)
v )|2

. (5.76)

Moreover, for all the defined metrics we show the results in a decibel scale defined as
10 log10(·) of the relative metrics.

Results

Single-source scenario The single source scenario is simulated using the setup of Fig-
ure 5.10, when only the first source in r′1 is active. The estimated source position is
r̂′1 = [1.7372, 2.0152]Tm giving a localization error of ‖r̂′1 − r′1‖ = 0.0198 m. The
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Chapter 5. Parametric Sound Field Reconstruction with Directional Sources

number of VMs employed is V = V (1) = 90, equally spaced around the source at
distance from the source of R = 0.9 m. The ĜPD, computed using the synthesized
VM signals is reported in Fig 5.12, compared to the GPD computed with the reference
signals. More specifically, Figure 5.12 plots ĜPD and GPD in three different cases: a)
the GDP of the source in r′1 when it is the only active source; b) the GDP of the source
in r′1 when both sources are active; c) the GDP of the source in r′2 when both sources
are active. In the context of the single source scenario we focus on Figure 5.12(a). No-
tice that the ĜPD

(
η(1)
)

fits the general trend of GPD with a NMSE
(1)
GPD with respect

to the reference of −22.8 dB. In order to evaluate the influence of the number of arrays
A on the accuracy of the estimated source directivity, we performed a set of simulations
varying A ∈ {4, 10} with respect to the single-source scenario setup. In particular, the
arrays are equally distributed on a circumference of radius 1.7 m centered in the room so
that the setup withA = 9 corresponds to the one reported in Figure 5.10. In Figure 5.13
the NMSE

(1)
GPD is reported as a function of the number of the arrays A. As expected,

the NMSE
(1)
GPD decreases as A increases since a greater number of arrays guarantees a

wider angle coverage. Additionally, from the inspection of Figure 5.13 we can notice
that betweenA = 6 andA = 10 the difference is around 6 dB in response to an increase
of 16 microphones. The SDR of the VMs is reported in Figure 5.14 for the same three
cases adopted for GDP. The single source scenario is shown in Figure 5.14(a). We can
notice here that for the locations where the VM mostly picks up the diffuse component,
the SDR estimation is less consistent. Hence, the performance is affected by the VM
location and by the averaging of the diffuse estimates of the arrays (Section 5.3.5).

Figure 5.15(a) reports the comparison between D̂RR and DRR. Note that D̂RR is
comparable with the DRR profile of an ideal source with first-order cardioid directivity
pattern. The ideal DRR reaches −∞ in correspondence of the zero in the source car-
dioid directivity pattern since no direct component is propagated in this direction. The
D̂RR does not follow this behavior due to the fact that the GPD is not exactly zero in
this direction (see Figure 5.12(a)). Moreover, we provide as a comparison the estimated
D̂RRomni obtained assuming an omnidirectional sound source. More specifically, we
estimated the exterior sound field coefficients (Section 5.3.4) by setting the spherical
harmonic order L = 0 in (33) and consequently, the synthesized direct signal in (38)
presents an omnidirectional characteristic. Inspecting Figure 5.15(a), we can notice
that the addition of the source directivity greatly enhances the estimate of D̂RR giving
a NMSE

(1)
DRR of −14.3 dB, while the D̂RRomni does not follow the actual trend of the

reference giving a NMSE
(1)
DRRomni

of −1.14 dB.

Two-sources scenario We evaluate the virtual miking technique in a double talk scenario,
where both acoustic sources of Figure 5.10 are simultaneously active. The estimated
position of the sources are r̂′1 = [1.8054, 2.0518]Tm and r̂′2 = [3.3556, 2.7087]Tm
giving a localization error of 0.0759 m and 0.1134 m, respectively. We simulate V =
180 omnidirectional VMs, equally distributed around the sources with V (1) = V (2) =
90 VMs for each source placed accordingly to Figure 5.10.

Both ĜDP and GDP are reported in Figure 5.12(b) and Figure 5.12(c). For both
sources we can notice that ĜDP agrees with GDP suggesting that the spatial radiation
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Figure 5.14: (a) SDR value referred to a single source scenario. (b) SDR value of the first source when
both are active. (c) SDR value of the second source when both are active. Note that η(n) refers to
the angle with respect to the nth source and the location of the VMs according to (5.71).

characteristics of the sources are correctly reconstructed at the VMs. Another important
measure of the sound field spatial characteristics is the SIR. As shown in Figure 5.16,
the ŜIR follows the behaviour of the actual SIR for a wide range of directions. How-
ever, it is worth noting that the SIR goes to−∞ for the directions in correspondence of
the zeros in the directivity pattern of the sources. Since the behavior of ŜIR is related to
the ĜPDs of the two sources shown in Figure 5.12(b) and Figure 5.12(c), respectively it
cannot reach−∞. In fact, the ĜPD is not exactly zero for such directions. Similarly to
what is done for the single-source scenario in Figure 5.15(a), we include in Figure 5.16
the ŜIRomni estimated when the two sources are incorrectly assumed as omnidirec-
tional, i.e. setting L = 0 in (33). As expected, the estimation of the SIR effectively
improves by modelling the source directivity explicitly. In particular, the NMSE

(1)
SIRomni

is equal to 5.3 dB for the first source (Figure 5.16(a)) and the NMSE
(2)
SIRomni

is equal to
−2.4 dB for the second source (Figure 5.16(b)). The NMSE

(1)
SIR and NMSE

(2)
SIR drops to

−12.4 dB and−12.6 dB, respectively when the source directivity is taken into account.
As far as the SDR is concerned, results are reported in Figure 5.14(b) and Fig-

ure 5.14(c). Similarly to the single source scenario, the VM performance is influenced
by the approximation of the diffuse sound field, with lower SDR values when the dif-
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Figure 5.15: (a) Estimated DRR and its reference in a single source scenario. (b) Estimated DRR and
its reference of the first source when both sources are active. (c) Estimated DRR and its reference of
the second source when both sources are active. The subscript omni refers to an estimate obtained
assuming an omnidirectional source directivity (i.e., L = 0). Note that η(n) refers to the angle with
respect to the nth source and the location of the VMs according to (5.71).

fuse component is mainly present and higher values when the VM is close to an array
used for analyzing the sound scene.

Finally, the DRR of the VMs is provided in Figure 5.15(b) and Figure5.15(c). Anal-
ogously to the single source scenario, the D̂DR follows the reference value achieving
a NMSE

(1)
DRR and a NMSE

(2)
DRR of −14.3 dB and −14.7 dB, respectively. As a compar-

ison, also in Figure 9(b)and Figure 9(c) the D̂DRomni, estimated assuming two omni-
directional sources, are reported. Both the NMSE

(1)
DRRomni

and the NMSE
(2)
DRRomni

are
equal to −1.7 dB. Such values are approximately 13 dB higher than the the ones ob-
tained by considering the directivity of the sources. Generally, we can notice that the
behavior of the DRR is mainly determined by the directivity of the sound source. Iow
DRR values in Figure 5.15(b) and Figure 5.15(c) are associated to locations where
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Figure 5.16: (a) SIR value referred to the first source compared to its reference. (b) SIR value referred
to the second source compared to its reference.The subscript omni refers to an estimate obtained
assuming an omnidirectional source directivity (i.e., L = 0). Note that η(n) refers to the angle with
respect to the nth source and the location of the VMs according to (5.71).)

the direct component energy is lower than the diffuse component due to the directivity
pattern of each source.

Stereo recording scenario The X-Y stereo microphone is commonly adopted for spatial
sound acquisition. The spatial characteristics of the sound field are rendered in the
stereo recording through the sound pressure level difference between the two directional
microphones. Therefore, we adopted the ILD (5.75) as a metric to evaluate the ability of
the VM in reproducing the spatial features of the stereo setup. The ILD is computed in
the scenario of Figure 5.11, as a function of the VMX−Y azimuth orientation % varying
from 0° to 360°. The omnidirectional source is localized in r̂′ = [2.5316, 2.9707]Tm
with a localization error of 0.0431 m. Inspecting the curves of Figure 5.17, we can
notice an high agreement between the ÎLD computed with the estimated signals and the
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Figure 5.17: The ILD of the stereo setup.
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ILD computed with the reference signals. In fact the overall NMSEILD = −15.4 dB.
The 0 dB value is crossed around 90° and 270°, when the sound pressure level at VML

and VMR is equivalent.
This coincides with the source located at the center of the stereo plane. In an ane-

choic scenario, the maximum of the ILD function would occur around 315°, in cor-
respondence of the zero in the VMR cardioid pattern and the minimum around 225°,
when the VML amplitude is attenuated. However in Figure 5.17, we cannot observe
this behavior due to the presence of the diffuse field. Indeed this does not let the signal
power of the two microphones in the X-Y configuration go exactly to zero.

The proposed virtual miking procedure aims therefore to provide a promising tool
for a wide variety of spatial sound applications. In particular, we showed that the spatial
sound characteristics e.g. the DRR, the SIR or the ILD can be effectively approximated
by the synthesized VM signal. Moreover, the explicit modeling of the sound source di-
rectional characteristics improves the VM estimation especially in terms of its spatial
cues with respect to the omnidirectional source model commonly adopted in the liter-
ature. Thanks to the possibility of synthesizing the VMs signals in arbitrary locations,
the proposed techniques potentially enables a listener to virtually navigate a recorded
sound field with six-degree of freedom. Therefore, the procedure is particularly inter-
esting for EAR framework, where capturing the sound field spatial features is a relevant
aspect in order to provide an immersive user experience.

86



i
i

“thesis” — 2021/3/10 — 22:18 — page 87 — #97 i
i

i
i

i
i

CHAPTER6
Multichannel Blind Source Separation

In this chapter, we introduce a blind sound source separation (BSS) technique based
on a non-parametric sound field representation. We enable the manipulation of the
acquired sound field, by performing the separation of the target source from a mixture
of acoustic sources.

Differently from the parametric techniques introduced in the previous chapter, here
we aim at processing the sound field with a more flexible setup. As a matter of fact, we
introduce a blind source separation technique, for extended linear arrays. Being blind,
the separation process does not require a priori information on the source location.
Additionally, the setup is limited and it is composed of a single extended uniform linear
microphone array.

We adopt a particular non-parametric sound field representation in order to im-
prove the separation, exploiting the information related to the different locations of
the sources that are inherently represented in the data.

The BSS technique concerns two phases.
First, the multichannel signal, acquired by the microphone array, is mapped onto a

domain known as ray space [37]. This representation is obtained through a beamforming-
like operation that project the signals in a domain where each point represents a ray.
Thanks to a proper parametrization of the ray space data, the location of acoustic
sources is reflected in the data enabling to tackle problems such as data-association
using pattern analysis techniques [37, 159, 160].

In Section 6.1, we review the linear operator devoted to the projection of the multi-
channel signal of a microphone array onto the ray space known as ray space transform
(RST) [37]. Moreover, we introduce a fast implementation of the RST, based on the
formulation of the transformation as a non uniform Fourier transform.

The second phase of the BSS technique performs the separation of the source signals
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through the processing of the ray space data.
A popular approach to BSS is the nonnegative matrix factorization (NMF) [148,

276], which consists of a data decomposition technique factorizing a nonnegative in-
put matrix into a sum of rank-1 components. Traditionally, the input matrix is the
magnitude or power spectrogram of a sound signal, so that each of the components cor-
responds to elementary spectral patterns with a given temporal amplitude modulation.

While standard NMF was only suitable for separating single-channel mixtures, multi-
channel extensions can be obtained by stacking channels into one matrix structure [191]
or by considering a parallel factor (PARAFAC) model [100].

One of the well-known problems of these extensions is that they only take advan-
tage of the amplitude information within the mixing system. Consequently, spatial
information is not exploited when the observed mixtures come from a microphone ar-
ray recording. To overcome this limitation, Lee et. al. [150] proposed a beamspace data
model (BS-NMF) that considers the projection of the input signal onto a set of steered
directions while accounting for the inherent phase-difference information that is present
in this type of recordings. While providing good results, the beamspace model relies
on the assumption that the incident wavefronts will be planar at the array (far field),
leaving room for improvement in more general scenarios.

Due to its close relation to the proposed ray space solution, in Section 6.2 in addition
to the customary multichannel NMF (MNMF) formulation, we provide a review of the
BS-MNMF [150].

In the literature, other approaches to the modeling of the spatial information have
been presented. They rely on the signal representation of the spatial covariance ma-
trix (SCM) [189, 232]. For each time-frequency (TF) point in the Short-Time Fourier
Transform (STFT), the SCM represents the mixing of the sources by magnitude corre-
lations and phase differences between channels. Authors in [232] proposed to estimate
unconstrained SCM mixing filters together with a NMF magnitude model to identify
and separate repetitive frequency patterns corresponding to a single spatial location.

To mitigate spatial aliasing effects and under far-field assumption, [180] proposed a
SCM model based on DoA kernels to estimate the inter-microphone time delay given
a looking direction. The method proposed in [57], here referred to DoA-MNMF, uses
a SCM kernel-based model where the mixing filter is decomposed into two direction-
dependent SCMs to represent and estimate both time and level differences between
array channels disjointly. However, these full-rank spatial models suffers from both
high computational cost and strong sensitivity to parameter initialization. Under mod-
erate echoic conditions, SCMs can be restricted to be rank-1 in a determined scenario,
merging independent vector analysis (IVA) and NMF within a framework called inde-
pendent low-rank matrix analysis (ILRMA) [135].

Several studies have recently proposed to restrict the SCMs of sources to jointly
diagonalize the full-rank matrices for multichannel blind source separation [127, 242].
The technique in [242] is commonly referred to as FastMNMF. While FastMNMF [242]
projects the signals with an optimizable transform matrix, the authors in [172] adopt a
fixed projection, namely, a discrete Fourier transform (DFT) matrix. This transforma-
tion acts as the diagonalizer under the DoA kernel based model from [180] projecting
the signals into the wave number domain. Thus [172] is here referred to WN-MNMF.

In Section 6.3, we propose to adopt a fixed transformation matrix, the RST [37],
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(a) (b)

Figure 6.1: (a) The uniform linear array setup.(b) The representationRr′ of the point source located at
r′ in the ray space.

in order to project the signals of a uniform linear array (ULA) onto the ray space do-
main [160]. In the ray space domain, the geometric location of the sources is directly
encoded in the magnitude of the ray-space-transformed signals [37, 159]. Therefore,
this allows us to overcome the limited location description given by DoA-based rep-
resentations. Although the proposed scheme can be combined with other MNMF ap-
proaches from the literature modeling the phase information, in this thesis, we used
the amplitude-based multiplicate update (MU) algorithm from [189] for an investiga-
tion into the effectiveness of our scheme and to limit the computational costs. The
ray-space-transformed data leads to more efficient exploitation of the spatial informa-
tion contained in the recordings while enabling a direct application of the conventional
multichannel NMF algorithm.

6.1 Mapping in the Ray Space

6.1.1 Review of the Ray Space Transform

This section reviews the ray space transform (RST) presented in [37]. The RST is
defined in order to map the multichannel signal acquired by a linear array of micro-
phones onto the ray space domain. The main advantage of this domain is that acoustic
primitives, such as sound sources and reflectors, are mapped to linear patterns (see
Figure 6.1). Therefore, pattern analysis algorithms have been used in order to solve
problems like source localization, and geometry inference.

The RST can be interpreted as a local Fourier transform, in which a spatial window
function is employed and the similarity between the multichannel signal and modu-
lated and shifted copies of the window is computed. In practice, this is implemented as
a beamforming operated on a portion (windowed) of the array signals through which we
extract the directional components of the sound field on a set of directions. The selec-
tion of the analyzed directions characterizes the final representation of the data. In [37],
the set of directions is chosen according to the ray space parametrization. Therefore, a
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direction is described by the concept of ray that is defined by the parameters of the line
on which the ray lies on. The Euclidean line equation was adopted in [160] in order
to provide the definition of any line in the x-z plane, with the exception of the ones
parallel to the z axis as

z = mx+ q, (6.1)

where m = tan θ and q are the parameters that describe the lines and they form the ray
space. In particular, here we assume that rays are coming from the half-space given by
the positive x-axis.

Let us consider a uniform linear array of I microphones lying on the z-axis between
0 and 2q0 as shown in Figure 6.1(a). The locations of the microphones are defined as

ri = [xi, zi]
T =

[
0,

(
i− I − 1

2
d

)]
, i = 0, . . . , I − 1, (6.2)

where d is the distance between two adjacent microphones. The RST of the multichan-
nel signal of the array is defined as [37]

[Z]l,w(ω) = d
I−1∑
i=0

P (zi, ω) e
− jkzimw√

1+m2
w ψ∗i,l (6.3)

where P (zi, ω) is the signal of the ith sensor, k = ω
c

and

mw =

(
w − W − 1

2

)
m̄, w = 0, . . . ,W − 1,

ql =

(
l − L− 1

2

)
q̄, l = 0, . . . , L− 1,

(6.4)

with L and W the number of points on the m and q axis, respectively that are sampled
with the corresponding m̄ and q̄ steps. The term ψi,l in (6.3) represents a local spatial
window which in [37] is defined as the Gaussian window

ψi,l = e−
π(zl−qi)

2

σ2 . (6.5)

where the term σ controls the width of the window centered in ql. The RST can be intu-
itively interpreted as a beamforming operation, weighted by (6.5), considering a single
spatial window, i.e. at a fixed l. Actually, the multiplication of the signals P (zi, ω) by

the complex exponential e
− jkzimw√

1+m2
w represents a beamforming operation where plane

waves are characterized by DoA defined according to mw√
1+m2

w

. The choice of this pa-

rameterization of the directions follows the ray space definition. More precisely, the
DoA is determined by the angle θ, and considering the ray space parameterization we
obtain that

sin(θ) = sin(arctan(m)) =
m√

1 +m2
. (6.6)

The RST can be compactly expressed in matrix form. Let us introduce the RST
linear operator Ψ ∈ CI×LW whose (i, ι)th element is defined as

[Ψ]i,ι = e
j
kzimw√

1+m2
w e−

π(zi−ql)
2

σ2 d (6.7)
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where ι = (l + wi + 1) is the index of the sampled point in the ray space. Hence, the
RST can be computed as a matrix vector multiplication

z = ΨHp (6.8)

where, p = [P (z0, ω) , . . . , P (zI−1, ω)]T is the vector of the array signals, and z ∈
CLW×1 is the ray space data vector obtained rearranging Z

[z]ι = [Z]l,w, ι = l + wi+ 1. (6.9)

In [37] the inverse operator of the RST is introduced as the canonical dual matrix Ψ̃ ∈
CLW×I given by the pseudoinverse of (6.7)

Ψ̃ =
(
ΨΨH

)−1
Ψ. (6.10)

The inverse RST (6.10) is used in order to reconstruct the microphone signals from the
ray space data as

p̃ = Ψ̃Hz. (6.11)

6.1.2 Fast implementation of the Ray Space Transform

In this section we introduce a computationally efficient implementation of the RST,
reviewed in Section 6.1.1, that we refer as the fast ray space transform (FRST).

The fast implementation of the RST represents a potentially appealing tool in the
context of BSS, since it allows the reduction of the computational cost of the over-
all processing. In fact, the use of extended uniform linear microphone arrays implies
the processing of a high number of channels. In general, any sound field processing
technique in the ray space can benefit from the fast implementation provided by the
FRST.

The customary implementation of the RST given in (6.7) employs a matrix-vector
multiplication which presents a computational cost that increases linearly with the num-
ber of microphones. In the last years, the advantages of low cost digital acoustic sen-
sors, such as MEMS microphones, increased the availability of multichannel systems
accommodating a great number of sensors. An example of such technologies is repre-
sented by the eSticks modular linear microphone array [202]. When it comes to process-
ing a relevant number of sensor signals, however, the computational load of space-time
processing algorithms easily becomes a limitation, especially in contexts like extended
audio reality. Hence, a less computational demanding implementation of the RST is
desirable.

In particular, we show that the RST can be interpreted as a nonuniform Fourier
transform and this fact can be exploited for developing a highly-efficient implementa-
tion of the RST. This implementation is based on the theory of Nonuniform Fast Fourier
Transform (NUFFT) [77, 82, 83, 151, 209, 250, 280]. Similarly to NUFFT algorithms,
the FRST requires two consecutive steps. First, a uniform discrete Fourier transform
is computed adopting the Fast Fourier Transform (FFT) algorithm on an oversampled
range of spatial frequencies. In the second step, the data is interpolated in order to
obtain the required RST samples. Clearly, the NUFFT algorithms show a trade-off be-
tween accuracy and computational complexity given by the oversampling factor and
the interpolation process.
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Chapter 6. Multichannel Blind Source Separation

Let us define the nonuniform discrete Fourier transform of a signal P̄i,l as follows
[95]

[F]l,w =
I−1∑
i=0

P̄l,ie
−jγwi , (6.12)

where γw, w = 0, . . . ,W − 1 is a set of nonuniformly spaced spacial frequency loca-
tions (plane wave directions). In order to show that the RST can be interpreted as a
nonuniform discrete Fourier transform, let us equate (6.3) to (6.12) i.e,

d
I−1∑
i=0

P (zi, ω)e

−jkzimw√
1+m2

w ψ∗l,i =
I−1∑
i=0

P̄l,ie
−jγwi. (6.13)

The equality in (6.13) is verified under the following conditions

P̄l,i = dP (zi, ω)ψ∗l,i, (6.14)

and

γw = k
mwd√
1 +m2

w

. (6.15)

Therefore, given (6.13) and the conditions in (6.14) and (6.15), for each frame l =
0, . . . , L − 1, the RST can be rewritten in the form of a nonuniform discrete Fourier
transform as

[Z]l,w (ω) =
I−1∑
i=0

p̄l,ie
−jγwi. (6.16)

A direct evaluation of (6.16) would require O (IW ) operations for each frame l =
0, . . . , L− 1. However, in the literature many algorithms have been proposed for a fast
computation of the nonuniform discrete Fourier transform [77, 82, 83, 151, 209, 250,
280]. Most of them are based on a two-step approach.

The first step consists of the computation of an oversampled discrete Fourier trans-
form by means of a N−point Fast Fourier Transform:

[Y]l,n =
I−1∑
i=0

siP̄l,ie
−j 2π

N
ni, (6.17)

where n = 0, . . . , N − 1 with N > L and si are known as scaling factors and are
usually designed to reduce the error that is introduced by the subsequent interpolation
step [179]. The computation of (6.17) requiresO (N logN) operations if implemented
with an efficient algorithm [65, 76, 267]. As shown in [95], this cost can be further
reduced to O (N log I) if the ratio N/I is an integer. In fact, in this case, one needs to
perform N/I I-point FFTs [248].

The second step consists in an interpolation of the uniformly spaced frequency sam-
ples [Y]l,n in order to obtain an approximation [Ẑ]l,w of [Z]l,w, i.e.

[Ẑ]l,w =
N−1∑
n=0

v∗wn [Y]l,n , (6.18)
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6.1. Mapping in the Ray Space

where v∗wn are the interpolation coefficients. A direct evaluation of (6.18) would require
O (WN) operations. However, usually the interpolation is accomplished by using only
the B nearest neighbors to γw with B � N . More precisely, this can be written as

[Ẑ]l,w =
B∑
b=1

u∗wb [Y]l,{nw+b}N , (6.19)

where {·}N is the modulo-N operator and nw is defined as

nw =

{
arg minn |γw − 2π

N
n| − B+1

2
, B odd

max
(
n : γw ≥ 2π

N
n
)
− B

2
, B even.

(6.20)

Various algorithms can be used to find both the interpolation coefficients u∗wb and the
scaling factors si as discussed in [82, 83, 156, 179]. We consider here two possible
approaches for the design of these parameters. The first one is the most straightforward
and consists in approximating the value [Ẑ]i,w with the nearest neighbor. This means
setting B = 1 and u∗wb = 1 in (6.19) and (6.20) and sl = 1 in (6.17). The second
approach is the one presented in [95], where the authors adopt a min-max criterion for
optimizing the parameters of a Kaiser-Bessel interpolation kernel [184]. As discussed
by the authors in [95], since in our case we need to compute multiple NUFFTs of the
same size (one for each frame l), using the min-max approach with a Kaiser-Bessel
interpolation kernel provides the highest accuracy among all the methods investigated
in [95]. Moreover, such approach allows the reduction of the neighborhood size B and,
hence, the minimization of the computational complexity. With FRST we refer to the
transformation in (6.19).

Results

In this section we present some simulation results in order to validate both the efficiency
and the accuracy of the FRST. In the following, wheneverB = 1 we refer to the nearest
neighbor criterion, in all other cases we refer to the min-max one. An implementation
of both the RST and the FRST is provided online1.

Simulations The setup adopted for the simulations consists of an array of I = 64 mi-
crophones, comprised between z1 = 0 m and zI = 6.3 m, thus the spacing between
consecutive microphones is d = 0.1 m. The ray space is sampled using W = 51
and L = 64 points on the m axis and the q axis, respectively, with sampling intervals
m̄ = 0.06 and q̄ = 0.1.

Given the previously described setup, let us assume that the source in r′ = [0.5 m, 3.2 m]T

is emitting a sinusoidal signal with temporal frequency f = 1000 Hz. Figure 6.2 shows
both the magnitude and the phase of the output obtained from the RST and FRST. Fig-
ure 6.2(a) and Figure 6.2(b) refer to the RST, Figure 6.2(c) and Figure 6.2(d) to the
FRST in the case where B = 1, while Figure 6.2(e) and Figure 6.2(f) in the case where
B = 5. Clearly, the results obtained with an higher interpolation order B are charac-
terized by an higher accuracy. This fact is particularly evident when one considers the
phase behavior.

1https://github.com/polimi-ispl/ray-space-transform
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Figure 6.2: (a) RST magnitude, (b) RST phase, (c) FRST magnitude, B = 1, (d) FRST phase , B = 1,
(e) FRST magnitude, B = 5, (f) FRST phase, B = 5

In order to objectively measure the accuracy of the FRST, we define the Normalized
Mean Squared Error as

NMSE = 10 log10

(
1

WL

L−1∑
l=0

W−1∑
w=0

|[Z]l,w(ω)− [Ẑ]l,w(ω)|2

|[Z]l,w(ω)|2

)
. (6.21)

In Figure 6.3 we show the NMSE as a function of f in a range between 10 Hz and
10 kHz. Without recurring to a complete evaluation for all possible positions of the
sources, from preliminary results we selected the two most significant positions. In
particular, the first source is placed in r′1 = [5 m, 3.15 m]T and the second in r′2 =
[0.2 m, 10 m]T . Hence, the former is in the end fire while the latter in the broadside
with respect to the array. Figure 6.3(a) shows the NMSE as a function of the frequency
for different oversampling factors N with B = 1. The solid lines are referred to the
source in r′1, while the dashed lines to the source in r′2. As expected higher N values
correspond to a smaller NMSE for both the sources, but a small differences can be
observed between the two positions. In Figure 6.3(b), instead, we keep N = 128
and vary B. As expected, choosing a higher interpolation factor B leads to better
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Figure 6.3: NMSE as a function of temporal frequency when (a) varying the FFT length N and (b)
varying the B nearest neighbors used for the interpolation. Solid lines refer to the source in r′1 while
dashed lines refer to the source in r′2.

results in terms of NMSE. If we compare Figure 6.3(b) with the curve corresponding
to N = 128 in Figure 6.3(a) we can see that, even for B = 2, we achieve higher
accuracy. Moreover, the differences between the two sources considerably decrease.
This suggests that choosing an interpolation order B > 1 leads to more accurate results
with respect to the nearest neighbor approach.

Computational Complexity We provide, here, an analysis of the computational complex-
ity of the FRST and the RST based on the considerations introduced in Section 6.1.2.
For a given frame i, the FRST requires O(N logN + WB) operations when the ratio
N/I is not an integer and O(N log I +WB) operations when the ratio N/I is integer.
On the other hand, the RST requires O(IW ) operations.

Figure 6.4 shows the number of needed operations as a function of the number of
microphones I . In particular, I assumes the values in the set

{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}

and, since we fix N = 2I , the ratio N/I is an integer. In Figure 6.4(a) we keep
W = 51 fixed for each value of I , while in Figure 6.4(b) we choose W = I . In both
cases we set B = 5. By inspecting both Figure 6.4(a) and Figure 6.4(b) it is clear
how our implementation of the RST requires less operations, especially as the number
of microphones I increases e.g., RST requires more than 3x operations with respect
to the FRST for I = 64. For example, the evaluation of RST (6.7) with I = W =
64 implemented in MATLAB [164] required 3.7 ms on a consumer laptop1, while the
FRST (6.19) was evaluated in 1.0 ms with B = 1.

6.2 Multichannel NMF model

In this section, we formulate the problem specification of the MNMF based source
separation. In particular, we provide the underlying microphone signal model and the

1Apple MacBook Pro (15-inch, 2018) with Intel "Core i9" processor (8950HK) and 32GB of 2400 MHz DDR4 RAM.
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Figure 6.4: Number of operations as a function of number of microphones I . (a) considers W = 51
spatial frequencies, while (b) W = I . The x and y axis are on a logarithmic scale.

probabilistic model adopted by MNMF. Successively, we introduce a MNMF technique
closely related to the proposed ray space based MNMF. This approach relies on the
transformation of the multichannel signal onto the beamspace domain i.e., a plane-
wave-based representation of the array data.

6.2.1 Data model and problem formulation

Let us consider the same setup of Section 6.1.1 made up by a uniform linear microphone
array of I microphones (see Figure 6.1(a)). In the presence of N acoustic sources, the
time-frequency representation of the ith microphone signal can be written as [189]

Pi(ω, t) =
N∑
n=1

hi,n(ω)Sn(ω, t) + Ei(ω, t), (6.22)

where i = 1, . . . , I , is the microphone index, t is the index of the time frame, ω =
2πf the angular frequency with f > 0 the temporal frequency, hi,n(ω) is the transfer
function between the ith microphone and the nth source, Sn(ω, t) is the nth source
signal and Ei(ω, t) models the ith microphone self noise.

MNMF can be formulated based on a so-called local Gaussian model (LGM) [79]
that allows modeling and combining spatial and spectral cues in a systematic way. The
LGM [79] assumes that each source contribution (also referred as source image), i.e.,
I-length complex-valued vector pi(ω, t) = [P1,n(ω, t)...PI,n(ω, t)]T ∈ CI , is modeled
as a zero-mean circular complex Gaussian random vector as follows

pn(ω, t) ∼ NC (0,Λn(ω, t)λn(ω, t)) , (6.23)

where the complex-valued covariance matrix is positive definite Hermitian, and is com-
posed of two factors:

1. a spatial covariance Λn(ω, t) ∈ CI×I representing the spatial characteristics of the
nth source image at the time-frequency point (ω, t);
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6.2. Multichannel NMF model

2. a spectral variance λn(ω, t) ∈ R representing the spectral characteristics of the
nth source image at the time-frequency bin (ω, t).

As a matter of fact, these source variances λn(ω, t) can be modeled using a classical
NMF structure as

λn(ω, t) =
K∑
k=1

bn,k(ω)an,k(t) (6.24)

where bn,k(ω) and an,k(t) with k = 1, . . . , K represent the basis functions and the
corresponding time-varying gains, respectively. The time varying components an,k(t)
are also referred as the activation functions. It is worth noticing that the model in (6.23)
is more general than (6.22). In fact, the signal model in (6.22) corresponds to (6.23)
with rank-1 Λn matrices. In the case of static sources and assuming the random vectors
pn(ω, t) to be independent in time, frequency and between sources, the mixture STFT
coefficients in the multichannel mixing in eq. (6.23) may be shown distributed as

Pi(ω, t) ∼ NC

(
0,

N∑
n=1

λn(ω)
K∑
k=1

bn,k(ω)an,k(t)

)
, (6.25)

where Λn(ω) could be modeled as a rank-1 SCM or as a full-rank matrix. Several
full-rank methods have been proposed recently to provide computationally-efficient
solutions [127,172,242] that are less sensitive to initialization of the parameters [242].
Alternatively, other multichannel NMF approaches based on the multiplicative update
(MU) algorithm in [189] provide lower computational costs at the price of discarding
the mutual information between the channels. This is equivalent to set to zero the
off-diagonal elements of Λn(ω) in eq. (6.25). Consequently, these approaches do not
allow exploiting the interchannel phase differences (IPDs), but only the interchannel
level differences (ILDs). However, the IPDs may be very important for multichannel
source separation. In fact, using IPDs becomes even more critical for the far-field case
(i.e., when the distances between the microphones are much smaller than the distances
between the sources and microphones), where the information carried by the ILDs
becomes almost non-discriminating. A possible solution to improve the separation
performance of these approaches is the integration of spatial information within the
observation model, for instance by performing a transformation of the multichannel
signals in a domain where the IPDs are inherently exploited.

6.2.2 Beamspace-Domain Multichannel NMF (BS-MNMF)

The beam space domain is introduced in [150] to exploit the inter-channel phase dif-
ference during the separation. It describes the microphone signals in terms of the di-
rectional components of the sound field. In practice, it starts from a plane-wave de-
composition [286] of the signals over a set of M directions, known as the beam space
transform [150]

p̃(ω, t) = WH
BTp(ω, t), (6.26)

where p(ω, t) = [P1(ω, t), . . . , PI(ω, t)]
T is the vector of the array signals, p̃(ω, t) =[

P̃1(ω, t), . . . , P̃M(ω, t)
]T

is the vector of the beam space signals and WBT ∈ CI×M
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Figure 6.5: (a) An example of the ray space data (6.29). Two sources emit a sinusoidal signal at
ω = 3 kHz with DoA θ1 = θ2 = 45°. The second source (c) starts at n = 0.25 s. Although
the sources reach the array with the same DoA, the different locations of the sources in space are
effectively reflected by the patterns in the ray space data (b) and (c).

is the beam space transform matrix [296], composed by the steering vectors whose
elements are [152]

ui(θm, ω) = e−jω
d sin(θm)

c
(i−1), i = 1, . . . , I, (6.27)

with d the distance between two consecutive microphones, c the speed of sound and j
the imaginary unit. Then, inspired by [189], the square magnitude for each beam space
signal P̂m(ω, t) can be modeled as

P̂m(ω, t) =
N∑
n=1

gm,n
∑
k∈Kn

bk(ω)ak(t), (6.28)

where gm,n ∈ R+ represents the mixing weights of the nth source and the mth beam
space bin, while Kn is the subset of the basis pertaining the nth source. Note that gm,n
in (6.28) is frequency independent since all the frequency components pertaining to the
same signals are assumed to have the same DoA. In general, gm,n reaches its maximum
when θm (6.27) equals the DoA of the nth source [150].

Unlike [189], the beam space domain is based on the plane wave representation of
the sound field (see Section 3.6.1). This allows the authors to exploit the IPD (6.27)
in the MNMF optimization rather than the magnitude difference (ILD). Nevertheless,
the source location information is limited to the DoA only, due to the far field model of
(3.13). This limitation can be overcome thanks to the adoption of the ray space in the
multichannel NMF signal model [37, 159].

6.3 Ray Space based Multichannel NMF (RS-NMF)

In this section we introduce the ray space representation in the context of MNMF source
separation (RS-MNMF). In particular, we show how the MNMF can be applied to the
ray space data in order to perform BSS.

First, the multichannel signal of a uniform linear array is mapped onto the ray space
domain as described in Section 6.1.1. Successively, the MNMF data model, introduced
in Section 6.2, is applied to the ray space data in order to perform the separation of the
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6.3. Ray Space based Multichannel NMF (RS-NMF)

source signals. We aim at exploiting the inherent representation of the source location
in the ray space data in order to enhance the separation capabilities of the MNMF
algorithm.

For the ease of the reader, we report the mapping of the array multichannel signal
onto the ray space domain performed as (6.3), obtaining as a result the ray space data
vector z ∈ CLW×I

z = ΨHp. (6.29)

where z ∈ CLW×I is the ray space data vector and Ψ the linear operator defined in
(6.7). Due to the indexing of the ray space data vector z (6.3), the acoustic sources are
mapped on comb-like patterns as depicted in Figure 6.5.

The inverse RST (6.10) can be used in order to obtained the time-frequency domain
microphone signals from the ray space data (6.29) as (6.11), here reported for the ease
of the reader

p(ω, t) ≈ Ψ̃z(ω, t). (6.30)

Inspired by the BS-MNMF solution and the MNMF signal model, we assume that
the ray space data can be modeled as

Zι(ω, t) =
N∑
n=1

rι,nSn(ω, n) + Eι(ω, t), (6.31)

where rι,n describes the contribution of the nth source to the ιth ray space element.
The original formulation of the cost function in [150, 189] used the Itakura Saito

(IS) divergence [105]. In this thesis, we propose a more general cost function based on
the β-divergence [105] which also takes the IS divergence as a special case (β = 0),

CRS(Θ) =
∑
ι,ω,t

dβ

(
|Zι(ω, t)|2

∣∣∣Ẑι(ω, t)) , (6.32)

where Θ represents the algorithm parameters, namely the mixing weights, the basis
functions and the activation functions. Ẑι(ω, t) is the estimated square magnitude of
the ray space data, modeled as

Ẑι(ω, t) =
∑
n

gι,n
∑
k∈Kn

bk(ω)ak(t), (6.33)

where gι,n = |rι,n|2. It is worth noting that the proposed model is characterized by
a frequency-independent mixing model, since it depends only on the position of the
sources and the same line pattern is expected for every frequency corresponding to the
same active source. Additionally, other than the IS divergence, well-known divergences
can be obtained by properly setting the parameter β in (6.32). In particular, β = 1 and
β = 2 correspond to the Kullback-Leibler (KL) divergence and the squared Euclidean
(EUC) distance, respectively, as described in [257]. We can therefore exploit the simi-
larity with the instantaneous algorithm of [189] to derive the updated algorithm of the
MU method:

gι,n ← gι,n
sum

[
Ẑ·β−2
ι · Zι · (BnAn)

]
sum

[
Ẑ·β−1
ι · (BnAn)

] , (6.34)
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Bn ← Bn ·

∑LD
ι=1 gι,n

(
Ẑ·β−2
ι · Zι

)
AT
n∑LD

ι=1 gι,nẐ
·β−1
ι AT

n

, (6.35)

An ← An ·

∑M
m=1 (gι,nBn)T

(
Ẑ·β−2
ι · Zι

)
∑LD

ι=1 (gι,nBn)T Ẑ·β−1
ι

. (6.36)

where sum[M] is the sum of all the members in M and · represents element-wise matrix
operations. The matrices Bn = [bk(ω)]ω,k∈Kn and An = [ak(t)]k∈Kn,t are the weight
and basis matrices, as in [189], while Ẑι = [ẑι(ω, t)]ω,t contains the estimated mixture
data in the ray space domain.

We can obtain an estimate of the ray space source image in terms of the minimum
mean squared error (MMSE) as in [150, 189]

S̃(ι)im
n (ω, t) =

gι,npn(ω, t)

Ẑι(ω, t)
Zι(ω, t), (6.37)

where S̃(ι)im
n (ω, t) is the estimated contribution of the nth source at the ιth ray space

bin and pn(ω, t) =
∑

k∈Kn
bk(ω)ak(t) represents the estimated power spectral density

of the source factorized through the basis and activation functions. Finally, an estimate
of the sources at each microphone can be obtained applying the inverse RST (6.10)

Ŝim(ω, t) = Ψ̃(ω, t)S̃im(ω, t), (6.38)

where S̃im(ω, n) = [S̃
(1)im
n , . . . , S̃

(LD)im
n ]T and

Ŝim(ω, t) = [Ŝ(1)im
n , . . . , Ŝ(I)im

n ]T (6.39)

is the vector of the nth estimated source signal at the microphones.

6.3.1 Validation and Results

The performance of the RS-MNMF is compared with respect to BS-MNMF and recent
state-of-the-art multichannel NMF techniques. In particular, we considered FastMNMF
[242], DOA-MNMF [57], WN-MNMF [172] and ILRMA [135].

In order to evaluate the proposed technique, we performed a set of experiments in
a reverberant environment. We adopted an ULA of I = 32 microphones composed
by two eSticks [202]. In order to increase the variety of input data, the RIR between
each position of the source and the microphones were estimated using sweep excitation
[91, 176]. Array signals have been computed through the convolution between the
acquired RIR and the first 3 s of the source signals (male and female speakers and no-
drum music signals) taken from dev1 dataset of [186] such that J = 3 or J = 2 sources
are active simultaneously.

The measurements were performed in an office room of dimension 5.5 m× 3.4 m×
3.3 m with an estimated average T60 ≈ 0.4 s. The RIRs between the microphones and
9 source locations were acquired using a Genelec 8020C [188] loudspeaker. Source
locations are organized on a grid with distances between 0.3 m and 0.9 m from the
lying line of the array. The setup is illustrated in Figure 6.6.
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Figure 6.6: 2D graphical representation of the office room setup (top view).

The procedure is implemented in MATLAB [164]2. Signals are processed at a sam-
pling rate of 8 kHz, the STFT adopts a hamming window of size 256 with 75% over-
lap and 512 FFT points. The number of bases for each source #Kj and the num-
ber of iterations were empirically set to 12 and 100, respectively, and we adopted the
same values for all the employed algorithms. For what concerns the beamspace, we
adopted M = I = 32 angles (3.13) uniformly sampled in the range

{
−π

2
, π

2

}
. The

number of Ray Space points (6.7) is set to be equal to the number of microphones
LD = 32, with L = 8 subarrays and D = 4 directions uniformly sampled such that
µw ∈ {−0.09, 0.09}. We empirically found that β = 0.9 in (6.32) provides an overall
improved performance with respect to β = 0 (IS divergence). Results with both β
values are reported. For what concerns the reference algorithms, we set the parameters
following the authors’ suggestions available in the related manuscripts. For all the tech-
niques, the values of the parameters were tuned observing the results obtained with a
validation dataset concerning J = 2 sources with 3 s speech signals taken from [264] in
a subset of locations of Figure 6.6. In order to asses the performance of the proposed al-
gorithm we compute the SAR, SDR and SIR metrics [275] for each microphone signal
and the average value over all the microphone signals of these metrics is considered.

Results

In Figure 6.7 the average and standard deviation of the metrics computed for every
combination of J = 3 with the different algorithms are reported. The results in Fig-
ure 6.7(a) shows the average between the metrics obtained with J = 3 male speech
source signals and J = 3 female speech source signals. It is observed that FastMNMF
provides the best SIR performance, while ILRMA outperforms the other techniques in
terms of SAR and SDR. Compared to FastMNMF, RS-MNMF achieves on average
higher SAR and comparable SDR. As regards the SIR, RS-MNMF records a better
performance with respect to both the DOA-MNMF and the WN-MNMF other than the

2https://github.com/polimi-ispl/rs-mnmf
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Chapter 6. Multichannel Blind Source Separation
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Figure 6.7: The SAR, SDR, and SIR averages and standard deviations obtained by each BSS algorithm
under analysis for J = 3 sources with (a) speech and (b) music signals.

BS-MNMF. The results in Figure 6.7(b) are obtained with music source signals. In this
case the RS-MNMF and the BS-MNMF show the best performance. In particular the
proposed RS-MNMF achieves the highest SIR on average. In general, the possibility of
varying the cost function allows tuning the performance to favor separation (SIR) (e.g.
with β = 0) over distortion and/or artifacts. In fact, it is known [115,140,254,274] that
higher separation capabilities usually correspond to an increased artifact level.

A further analysis concerns a scenario with two sources active simultaneously. We
consider the same setup described previously, adopting all the combinations of J = 2
sources. The source signals are the same employed in the three sources scenario and
taken from [186]. Hence, we considered male and female speech signals and music
signals.

From an overall inspection of Figure 6.8, we can observed the same trend in the
performance of the techniques as in the three sources scenario. In particular, in the case
of speech source signals (Figure 6.8(a)), here, the FastMNMF provides on average the
highest values of the three metrics (SAR = 11 dB, SDR = 5.6 dB, SIR = 12 dB)
followed by ILRMA with (SAR = 9.5 dB, SDR = 4.4 dB, SIR = 8 dB). Nonetheless,
RS-MNMF outperformed DOA-MNMF, WN-MNMF and BS-MNMF in terms of SDR
and SIR. As a matter of fact RS-MNMF(β = 0.9) records SDR = 0.83 dB and SIR =
5 dB on average. In addition, RS-MNMF(β = 0.9) provides the lowest standard deviation
for all the three metrics.

As regards the separation of J = 2 music sources, i.e., a flute and a guitar signal, the
results associated to each technique are reported in Figure 6.8(b). Similarly to the three
sources scenario, also in this case RS-MNMF is able to provide the best performance
in terms of SIR. Moreover, here, the proposed technique records SDR higher than
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6.3. Ray Space based Multichannel NMF (RS-NMF)
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Figure 6.8: The SAR, SDR, and SIR averages and standard deviations obtained by each BSS algorithm
under analysis for J = 2 sources with (a) speech and (b) music signals.

BS-MNMF, namely SDR = 7.8 dB for RS-MNMF(β = 0) and SDR = 6.9 dB for BS-
MNMF.

Finally, in order to evaluate the robustness of the proposed technique with respect
to different initializations, we performed an analysis of the separation performances
randomly varying the initial values of the parameters. In particular, we considered one
fix setup concerning J = 2 sources with two male speech signals. The locations of the
sources are labeled in Figure 6.6 as positions 1 and 3. We run the algorithms 10 times
varying the initial parameters randomly. Successively, the estimates of the sources are
evaluated in terms of SAR, SDR and SIR.

In Figure 6.9 the average and the standard deviations of the metrics given by the
multiple executions are reported. In general from the inspection of Figure 6.9, we can
note that the proposed RS-MNMF presents standard deviations of the metrics in line
with respect to the other techniques under analysis such as FastMNMF, DOA-MNMF
and BS-MNMF. Nonetheless, the lowest values in standard deviation are given by WN-
MNMF SAR (Figure 6.9(a)) and ILRMA SIR (Figure 6.9(b)). Noteworthy, the stan-
dard deviations provided by the RS-MNMF are rather consistent for the two sources,
independently of the metric. In fact, the difference in the performance is below 1 dB
for both RS-MNMF(β = 0.9) and RS-MNMF(β = 0). Only the DOA-MNMF achieves the
same result for all the three metrics.

The results showed that the ray space is a suitable representation for applying MNMF
algorithm and it is effective for the application in real world scenarios. The adoption
of the ray space let us enhance the performance with respect to the other unconstrained
MNMF algorithms and we obtained competitive results with the lastest constrained
MNMF techniques.
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Chapter 6. Multichannel Blind Source Separation
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Figure 6.9: Average and standard deviation of the metrics obtained with ten executions of the algorithms.
(a) Results for the first source. (b) Results relative to the second source.
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Part III

Modeling Virtual Sound Sources for
Extended Reality
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CHAPTER7
Measurement of the Violin Directivity Pattern

In this thesis, we tackle the implementation of a virtual source (VS) through a study
case. We focus our attention on the violin as a virtual source for the EAR. The violin
is an interesting musical instrument that attracted the attention of many researchers due
to its peculiar mechanical and acoustical characteristics. Considering the implementa-
tion of violin as VS, we could rely on different strategies. Distinctions can be made
accordingly to the invasiveness of the approaches. On the one side, we can retrieve
the VS parameters from measurements taken on real instruments. On the other side,
we can rely simulations where the acoustic radiation of the instrument is predicted and
consequently the VS model parameters are estimated.

In this chapter, we estimate the directivity pattern of a set of historical violins. The
goal of this work is twofold.

First of all, we collect measurements that can be exploited for the VSs. As a matter
of fact, we can approach the implementation of violin VSs measuring the directivity
directly from the instruments themselves. This allows us to create VS replicas of ac-
tual instruments virtualizing the violin through the VS parameters retrieved from the
acquired data. Here, we rely on acoustic measurements performed while the instru-
ments are played. Obviously, this scenario is close to the actual listening conditions,
but it presents an high invasive solution, due to the interaction of the player with the
instrument.

The second aim of this chapter is to provide a characterization of the directional ra-
diation properties of violins. Although the violin looks like a simple wooden object, the
geometry and material properties of its components and their interaction with the player
are rather complex. It follows that a complete and exhaustive characterization of violins
is still under analysis, especially when it comes to the comparison between instruments.
In the context of the Musical Acoustics Lab, we have the possibility to collaborate with
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Chapter 7. Measurement of the Violin Directivity Pattern

the “Museo del Violino”1 settled in Cremona (Italy), where some of the most renowned
violins built by the great masters are preserved. This gave us the unique opportunity to
perform acoustic analysis on a relevant number of valuable historical violins. In particu-
lar, for the first time for such refined instruments, we measured their directivity patterns
and we characterized their directional properties on a wide frequency range, providing
a set of tools for quantitive description and comparison of different instruments. While
in Section 7.1, we provide a review of the acoustics of violins, the data model and the
measurement methodology are described in Section 7.2. Due to their complex direc-
tional sound radiation, a comprehensive analysis and comparison between instruments
is difficult to provide. Therefore, in Section 7.3, we introduce different tools that fo-
cus on the identification of the principal radiation regions, i.e., direction of high sound
energy radiation, and metrics of similarity between the directivity patterns of different
instruments. Other than the historical instruments, two twin violins were measured in
order to provide a similarity benchmark for violins with the same geometry and wood.

Results offered in Section 7.4 show that the twins provide similar directivity pattern,
while interesting observations on the historical instruments can be drawn. As a matter
of fact, common directional behavior can be observed, which highlighted shared char-
acteristics among the harmonics of strings; significant examples can be found for A
and E strings. As far as the comparison between individual instruments is concerned,
similarities among violins of the same luthier and time of building are revealed by the
proposed tools. In parallel, some instruments stand out for being different from other
violins of the set. The differences among violin directivity patterns, shown in this chap-
ter, demonstrate that an accurate modeling the VS directivity cannot be neglected since
each single instrument present original directional characteristics.

7.1 Review of the Acoustic of Violins

The quality of a violin is deeply related to the ability of its maker. Instruments made
by the old great Italian masters, like Antonio Stradivari or Giuseppe Guarneri del Gesù
are masterpieces used as inspiration by modern violin makers allover the world. Nev-
ertheless, the preferences of listeners and players, and consequently, the final price of
an instruments may be extremely different from violin to violin demonstrating that the
instrument quality lies in the subtle details. This result is not surprising, if we consider
the complexity of the violin as a physical system.

We can roughly describe the violin as a wooden box with two arched guitar-shaped
plates that generates sound through the vibrations caused by its bowed strings. In prac-
tice, it acts as a converter transforming the energy of the vibrating strings into sound
pressure that is radiated by the body. Therefore, the strings do not actually radiate
sound but rather provide the driving force that finally produces the acoustic waves. It
follows that the sound quality is also related to the string motion generated by the bow-
ing of the player. It is known that the string excitation applied to the body through
the bridge of the violin is generated by highly nonlinear interactions. In particular, a
proper bowing generates oscillations known as Helmholtz wave through the nonlinear
interaction given by the friction between the string and hair of the bow. The Helmholtz
wave presents a saw tooth waveform that is able to excite the body with its transverse

1https://www.museodelviolino.org
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7.1. Review of the Acoustic of Violins

force applied on the bridge. As a consequence, through the bowing action, a skilled
player, is able to control the sound providing expressiveness to the performance.

In the mechanism of sound generation, the coupling between the vibrating strings
and the modes of body shell is fundamental. Therefore, many studies [40,41,113] focus
on the characterization of the dynamical behavior of the body and the influence on the
final radiated sound. As regards the acoustic radiation, other works [169,196,278,284],
instead, focus on the directional properties of sound radiation providing insights on the
spatial radiation characteristics of violins.

Different methodologies have been introduced in the literature in order to measure
the directivity of violins and they can be mainly divided according to the excitation type
and measurement setup.

In [40, 41, 67, 157] the violin is required to be mounted on specifically designed
stand in order to let the instrument freely vibrate. The instrument is excited by means
of an impulsive force applied to the bridge and provided by an impact hammer or a
sinusoidal excitation [169], while the strings are dampened in order to retrieve the body
response only. The radiated sound field is then captured by means of one [67, 169] or
more microphones organized in arrays [40, 41, 157] that are placed or moved in order
to cover all the possible directions around the instrument.

An interesting inverse-like methodology based on the reciprocity principle is adopted
in [283,284], where the violin is excited by means of an incoming acoustic wave emit-
ted by a loudspeaker and the vibrational response of the instrument is measured at the
bridge.

The main limitation of the aforementioned techniques is related to the type of input
excitation. In particular, they do not consider the actual force at the bridge applied
by the bowed strings. The non-linear excitation of the bowed string is known to be a
fundamental aspect of the dynamical behavior of the violin and this is reflected on the
quality of the emitted sound [112, 289].

In [278] the sound radiation of the violin is analyzed by means of near-field acoustic
holography [165, 288]. The violin is supported by an ad-hoc structure and it is excited
by the action of a mechanical bowing machine, while the near-field acoustic pressure
is captured by a roving microphone array.

This wide range of techniques for the estimation of the violin directivity is based
on artificial excitation such as impulsive forces, sound waves or mechanical bowing,
that present the advantage of being repeatable and accurately measurable. Neverthe-
less, they do not consider the effect of the human body on the sound radiation and the
influence of the player on the emitted sound [289].

In order to take into account the presence of the violinist, in [93, 193, 196, 220] the
directivity is measured while the instrument is played adopting well-defined positions
both for the player and the violin.

In general, all the mentioned techniques are based on measurements performed in
an anechoic room. While providing an acoustically controlled environment ideal for
artificially-excited methods, this setup could compromise the performance of the player
when required. In particular, the dry acoustics of the anechoic room is unusual for a
violinist and typically it results in an uncomfortable perception that might affect the
quality the performance in addition to the prescribed unnatural playing positions re-
quired during the directivity sampling.
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Chapter 7. Measurement of the Violin Directivity Pattern

(a) (b)

Figure 7.1: Histogram of the principal radiation directions (0–3dB) for the violins in [169, 170]. (a)
Directions taken on the bridge plane. (b) Directions taken on the horizontal plane. Dark gray
areas: angular region for the first violin oriented directly toward the audience. Light gray areas:
corresponding angular region for the second violins with European seating. The figures are taken
from [170].

Therefore, in [55] the authors propose a methodology for the estimation of the di-
rectivity of violins that enables the measurement with a flexible setup. The violinist is
allowed to move during the measurement while the violin location and orientation are
tracked using a depth map camera and a gyroscope, respectively. The radiated sound
is then captured using a pleancoustic camera, namely a rectangular microphone array
supported by pleancoustic signal processing [160], while the input signal is acquired
by means of a proximity microphone on the instrument. This enables the measurement
of the violin directivity even in low reverberant conditions.

In this chapter, we adopt an enhanced and generalized version of the algorithm of
[55] that has been recently proposed in [54]. In particular, in [54] the authors employ
two pleanacoustic cameras both for measuring the radiated sound and for localizing
the source, while the robustness against reverberation is improved by means of further
signal processing. With respect to the other methods, this allows us to analyze and
compare the directivity of the violins with measurements taken in a context closer to
the actual playing conditions.

The well-known work by Meyer [169] examines the directivity patterns of bowed
stringed instruments, i.e., violin, viola, cello and double bass in terms of principal di-
rections covering a wide range of frequencies. As regards the violin, directivity patterns
are evaluated over two orthogonal planes, the first is the bridge plane perpendicular to
the top plate (see Figure 7.1(a)), while the second horizontal plane is parallel to the
violin body (see Figure 7.1(b)). The directional behavior of violins is summarized for
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7.1. Review of the Acoustic of Violins

Figure 7.2: Superimposed spectra of the radiated sound pressure measured in the bridge plane at dif-
ferent directions. The figure is taken from [114].

each plane by means of histograms that provide the probability for a given direction
to be a principal radiation direction. In general, the histograms reveals the omnidi-
rectional behavior of the instrument up to around 800 Hz for both the planes. At the
middle frequencies [1, 2] kHz, a dipole radiation is present, with two main maxima
on the bridge plane pointing toward the upper front and back sides of the violin (see
Figure 7.1(a)). As regards the horizonal plane, in the same frequency range, one main
direction towards the audience can be noted (see Figure 7.1(b)). Inspecting Figure 7.1
at higher frequencies, more than one main direction is present on the horizontal plane,
while on the bridge plane the directivity is mainly perpendicular to the top plate. The
same analysis approach was also adopted for characterizing the directivity patterns of
other classes of musical instruments in [170].

In [278], the sound radiation of three different violins is compared and evaluated
up to 3 kHz. The results highlight the relevant contribution of the top plate on the
overall radiation, especially at high frequencies, while the back plate barely radiates
sound. Moreover, the authors of [278] corroborate the baffling effect of the violin
body [284] above 880 Hz, when the acoustic wavelength becomes comparable to the
radius of the violin (approximately 6 cm). This value of the radius corresponds to
the distance between the top and the back at the waist of the instrument. In addition,
the predominance of the isotropic radiation is confirmed for the lowest frequencies,
while the acoustic center is located approximately at the soundpost on the top plate.
In general, the studies suggest that the frequency response of the radiated soundfield
can be roughly divided into three main overlapping regions that present very different
characteristics [40, 114, 289] (see Figure 7.2).

7.1.1 The Signature Mode Region

In the lowest frequency range, up to around 1 kHz, the radiation is governed by a small
number of well-defined body resonance modes [39, 40, 113]. Such modes mainly con-
cerns the cavity or Helmholtz-like modes usually referred as A0 and A1 and the corpus
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Chapter 7. Measurement of the Violin Directivity Pattern

modes identified as CBR, B1− and B1+ (see Figure 7.2). They are considered as
an acoustic fingerprint for each individual violin, since their frequency and radiation
intensity are typical of the instrument [39, 40]. In particular, in [40] the radiativity of
the Helmholtz-like mode A0 emerged as a relevant feature for the discrimination of
the violin quality with higher radiativity associated to excellent instruments. The rela-
tionship between the signature modes and the structure of the violin has been studied
in [113] by means of FEM simulations providing a model for determining the influence
of the different components to the final instrument sound. In this frequency region,
the violin mainly presents an overall isotropic monopole-like radiation caused by the
strongly radiating Helmholtz-like modeA0 and the body shell bending modesB1− and
B1+, which are characterized by a significant air volume flow through the f -holes of
the top plate. We refer the reader to the supplementary material 2 of [114] for videos
illustrating the shell modes motion.

7.1.2 The Transitional Region

The frequencies going from around 0.8-1 kHz up to 2-3kHz are characterized by a
complex acoustic response resulting from a superposition of multiple modes. This is
due to a general higher density of the resonances and modal damping with respect to
the signature mode region [40]. In practice, the violin radiates sound as a multipole
with directional properties and the characterization of the directivity in this frequency
range is rather complex since it is known to be variable in frequency [284]. As a matter
of fact, in Figure 7.2, a greater variability of the acoustic radiation sensed from different
directions can be noted in this frequency range. Such behaviour, known as directional
tone color is referred by Weinreich in [284] to provide “the illusion that each note
played by a solo violin comes from a different direction, endowing fast passages with
a special flashing brilliance." and it is assumed to be related to the projection quality
of the instrument. In [284] and later in [196] the authors measure the directional tone
color by computing the radiation ratio between two different directions as a function of
the temporal frequency. Despite making clear evidence of the phenomenon, this metric
does not provide a full analysis of the fluctuating directivity patterns of the instrument
in terms of pattern shapes and principal directions.

7.1.3 The High-frequency Region

In this frequency region the resonance density and overlap makes barely impossible to
perform modal analysis and a statistical approach for describing the acoustic response
is adopted in [290]. Here, the main features are related to the bridge influence on the
overall acoustic response of the violin body. In particular, around 3 kHz the response is
boosted (see Figure 7.2) due to the so called bridge-hill effect [289], mainly caused by
the strong resonance of the bridge placed in this frequency range. In [81] the authors
argue that the bridge hill must be attributed also to the interaction of the bridge and
the f-holes wings. Moreover, at frequencies higher than 3 kHz a rather rapid roll-off of
the radiated energy can be observed due to the bridge damping effect [290] (see Fig-
ure 7.2).

2https://acousticstoday.org/supplementary-text-violinacoustics-colin-e-gough/
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In conclusion, the sound radiation of the violin has been broadly studied in the lit-
erature, and many insights on the relationship between the mechanical behavior and
the acoustic response at the low frequencies have been given. At higher frequencies,
the overall trend of the instruments has been studied, but a specific and complete char-
acterization could not be easily performed. Therefore, usually a qualitative comparison
of different instruments, or an investigation on an interesting but limited set of direc-
tions has been performed. In this thesis, we aim to propose a quantitative analysis of
the directivity patterns that can be used for characterizing the directional properties of
the radiation and comparing different instruments. The proposed methodology is vali-
dated on violins built from the same wood pieces and with very similar geometries, and
applied on a set of historical violins.

7.2 Characterization of the Violin Directivity Pattern

When it comes to the characterization and the comparison of the directivity, we are
mainly interested in the evaluation of the violin directional behavior both as the devia-
tion from an isotropic omnidirectional radiation and in terms of its principal directions,
namely the directions of maximum acoustic energy emission. It is worth to underline
that the directivity is a frequency-dependent quantity and as a result a compact but com-
plete and intuitive description is difficult to provide. In this chapter, we propose a set of
tools for the characterization and comparison of the violin directivity pattern, i.e., the
magnitude of the directivity function. Such tools can be generally applied regardless
of the measurement technique and their goal is to capture the directional characteristics
of the instruments in an intuitive fashion. On the one hand, we take advantage of the
spherical harmonics representation [54,285] (see Section 3.6.2) in order to describe the
directivity pattern as a compact set of features that allows a general characterization of
the directional properties. On the other hand, we rely on signal processing for analyzing
the principal directions and comparing the shape of the patterns. The proposed metrics
are used to characterize the directivity patterns of a set of 10 historical valuable in-
struments made by the well-known great Italian masters: Antonio Stradivari, Giuseppe
Guarneri del Gesu, Nicolò Amati and Andrea Amati. In addition, we characterize and
compare the directivity patterns of a pair of twins violins. The twins violins have been
built by the same violin maker in order to share the very same geometry and wood.
Hence, the twins violins are expected to show very similar directional characteristic.

The developed directivity pattern models could be employed with the aim of cre-
ating synthetic VS directivity whose main features mimic those of a given historical
instrument, allowing a user to virtually listen to the sound field of a desired instrument.

7.2.1 Data Model and Experimental Methodology

Let us consider the directivity pattern measurement setup shown in Figure 7.3 with
the reference system centered on the violin. The acoustic pressure radiated by the
instrument to the ith omnidirection microphone located in the far-field [286] of the
source at ri is defined in the frequency domain as the sum of the direct and reverberant
sound field components (ref. (5.38))

X (t, ω, ri) = Xdir(t, ω, ri) +Xdiff(t, ω, ri). (7.1)
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Figure 7.3: The setup for the directivity pattern measurement with the adopted violin-centric reference
system.

Note that we implicitly assume a noiseless signal. From hereinafter the dependence on
time of the signal X(·) and other quantities will be omitted for simplicity. Similarly to
(5.3) we model the direct sound as the combination of the Green’s function (3.29), the
directivity and the source signal as

Xdir(ω, ri) = D̃(θi, φi, ω)H(ω, ri)S(ω)

= D̃(θi, φi, ω)
e−j

ω
c
ρi

ρi
S(ω),

(7.2)

where D̃(·) is the complex directivity function and in order to conveniently highlight
the directional dependency of the signal we express the microphone location adopting
spherical coordinates (see Section 3.1) centered in the acoustic center of the violin as
shown in Figure 7.3 , hence

ri = [ρi sin θi cosφi, ρi sin θi sinφi, ρi cos θi]
T

with φi the azimuth, θi the inclination and ρi the radial distance from the source. We
are interested in the estimation of the directivity pattern, namely the magnitude of the
directivity D̃(·), and from the knowledge of the direct sound field component, we can
retrieve the directivity pattern inverting (7.2)

D(φi, θi, ω) = |D̃(φi, θi, ω)| = ρi|Xdir(ω, ri)|
|S(ω)|

. (7.3)

The directivity pattern can be conveniently expressed using the radial component of
the spherical harmonics expansion (3.52), described in Section 3.6.2, as [54, 219, 285]

D(φi, θi, ω) =
L∑
l=0

l∑
m=−l

Clm(ω)Ylm(θi, φi), (7.4)
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7.2. Characterization of the Violin Directivity Pattern

where Clm(ω) are the coefficients of the spherical harmonics Ylm(θi, φi) (3.25).
In practice, the direct sound field (7.2) can only be estimated from (7.1) and the

presence of the reverberant component will affect the final estimate of the directivity
pattern (7.3).

Let us introduce the discrete version of the directivity pattern (7.4) obtained from
the B sampled directions (θb, φb), b = 1, . . . , B given by measurement procedure [54]
as

d̂(ω) = Yc(L)(ω), (7.5)

where d̂(ω) ∈ RB×1 is the vector of the estimated samples of the directivity pattern,
c(L)(ω) is the vector of the spherical harmonic coefficients of order L associated to the
directivity pattern

c(L)(ω) = [C00(ω), C1−1(ω) . . . , CLL(ω)]T (7.6)

and

Y =

 Y00 (θ1, φ1) Y1−1 (θ1, φ1) · · · YLL (θ1, φ1)
...

... . . . ...
Y00 (θB, φB) Y1−1 (θB, φB) · · · YLL (θB, φB)

 , (7.7)

is the matrix containing the spherical harmonics as in (3.25). As explained in [54], an
estimate of the spherical harmonics coefficients c(L)(ω) can be obtained by the inver-
sion of (7.5)

ĉ(L)(ω) = Y†d̂(ω), (7.8)

where † represents the least-squares inverse operator.
The adoption of the spherical harmonics expansion gives us two main advantages.

On the one hand, it provides the interpolation of the directivity pattern for arbitrary
directions and on the other hand, the vector of the coefficients ĉ(L)(ω) (7.8) represents
a compact and complete description of the data which can be exploited for the compar-
ison of the patterns.

In order to retrieve the direct sound field component (7.2) and accurately estimate
the directivity pattern (7.5), here we adopt the methodology of [54], where the authors
exploit the plenacoustic analysis [7,160,161] of the sound field for robustly estimating
the directivity pattern of sources.

The measurement setup is depicted in Figure 7.3, where two plenacoustic cameras
are employed for analyzing the sound field. Each camera is composed by M micro-
phones, hence the total number of sensors is I = M × 2 and we assume that the
location of each ith microphone is known and the signals are synchronized. The adop-
tion of two plenacoustic cameras (Figure 7.3) let us analyze the acoustic radiation from
two points of view enabling the accurate localization of the source and speeding up the
procedure by measuring more directions simultaneously. The source signal S(ω) re-
quired in (7.3) is acquired by a microphone placed on the violin in the proximity of the
bridge, while the instrument orientation is tracked by a 9 degrees-of-freedom (DOFs)
Inertial Measurement Unit (IMU), consisting of a 3-axis compass, a 3-axis gyroscope
and a 3-axis accelerometer sensors synchronized with the source signal.

In order to capture a sufficiently dense set of B directions in (7.5), the violinist is
asked to continuously change the position and orientation while constantly playing a
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Chapter 7. Measurement of the Violin Directivity Pattern

given note. We refer the reader to [54] for the detailed description of the measurement
technique.

7.3 Tools for the Analysis of the Directivity Patterns

We introduce the tools that we use to compare the directivity patterns of the violins,
and in general of any acoustic source.

The goal of our approach is twofold. On the one side, we aim at providing quantita-
tive metrics that enable a summarized comparison of the directivity pattern, and on the
other side we aim at defining quantities that emphasize the subtle differences that make
one pattern different from the others.

7.3.1 Spherical-harmonics-based Tools

In order to characterize the directivity pattern in a compact fashion, the metrics are
based on the spherical harmonic representation.

Normalized Cross Correlation Index (NCC) The Normalized Cross Correlation (NCC) of
the directivity pattern of two violins is defined as

NCCn,j(ω) =
ĉ

(L)
n (ω)ĉ

(L)
j (ω)

‖ĉ(L)
n (ω)‖‖ĉ(L)

j (ω)‖
, (7.9)

where ĉ
(L)
n and ĉ

(L)
j are the Lth-order estimated spherical harmonics coefficients (7.8)

of the nth and jth violin, respectively. Note that NCC is frequency dependent, therefore
in order to provide further summarized comparison of the directivity patterns, we define
the averaged NCC as

NCCn,j =
1

W

W∑
w=1

NCCn,j(ωw), (7.10)

where w = 1, . . . ,W is the index of the analyzed frequency bin.

7.3.2 Analysis of the Principal Radiation Regions

In addition to a compact characterization of the directivity pattern, we are also inter-
ested in identifying the principal regions of emission from the directivity pattern, and
analyzing how the directivity is spread around the principal directions.

Similarly to [169] we introduce tools aimed at extracting the principal radiation
regions from the directivity pattern. The principal radiation regions of a directivity
pattern are defined as the set of angles P for which the value of the directivity pattern
is larger than a threshold τ

P(ω) =
{

(θ̄, φ̄) : d̂dB(ω, θ, φ) ≥ τ
}
, (7.11)

where d̂dB(·) = 10 log10
|d̂(·)|

max|d̂(·)| is the normalized directivity pattern in decibel and

we adopt τ = −3 dB. It is worth to underline that the angles (φ, θ) of d̂dB in (7.11)
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7.3. Tools for the Analysis of the Directivity Patterns

can be different from the sampled φb, θb of the measurements in (7.5) thanks to the
interpolation given by the spherical harmonics representation (7.8).

Consequently, we can define the segmented directivity pattern according to its prin-
cipal radiation regions as

d(θ, φ, ω) =

{
1 (θ, φ) ∈ P(ω)

0 otherwise
. (7.12)

The binary pattern d(·) in (7.12) is used for comparing directivity patterns of different
instruments.

The segmentation (7.12) obtained through (7.11), results in areas of the directivity
pattern related to the maximum energy emission. Such areas can be arbitrarily shaped.
They do not extract, therefore, a single preferred direction of emission, rather they
focus on an area of maximum emission. Nevertheless, this approach is preferable with
respect to considering as a principal direction the direction related to the maximum of
d̂(ω), as the proposed approach is more robust to measurement errors.

In order to obtain a point-like descriptor of a principal radiation region in a directiv-
ity pattern, we define the center of mass

r(ω) =
1

M

∑
b∈P(ω)

µbrb, (7.13)

where rb =
[
sin θ̄ cos φ̄, sin θ̄ sin φ̄, cos θ̄

]T are the points belonging to the principal
radiation regions on a unitary sphere which are weighted by the normalized directivity
pattern

µb =
d̂(θ, φ)

max d̂
, (7.14)

and
M =

∑
b∈P(ω)

µb. (7.15)

Principal radiation region probability map (M) Following the same methodology of the
histograms of the principal radiation directions in [169], we can define, for a set of N
violins, the principal direction probability map as

M(θ, φ, ω) =
1

N

N∑
n=1

dn(θ, φ, ω). (7.16)

where dn(·) is the segmented binary directivity pattern of the nth violin. Therefore, for
a fixed frequency ω,M(θ, φ, ω) is a sample estimate of the probability for the direction
(θ, φ) to belong to a principal radiation region.

Jaccard similarity index (JSI) The JSI between the binarized directivity patterns (7.12)
of two violins is defined as

JSIn,j(ω) =
|dn(ω) ∩ dj(ω)|
|dn(ω) ∪ dj(ω)|

, (7.17)
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Chapter 7. Measurement of the Violin Directivity Pattern

where dn(ω), dj(ω) are the binarized principal direction patterns of the nth and jth
violin, respectively.

In other words, the JSI measures the similarity of two binary patterns, therefore,
JSIn,j(ω) = 0 when they are disjoint, i.e., no portion of principal radiation region is
shared between the two violins, and JSIn,j(ω) = 1 when they perfectly match. Simi-
larly to NCC (7.10), with JSI we refer to the average over frequency of JSI (7.17).

Center of mass distance (CMD) In order to evaluate the difference in terms of direction
between two directivity patterns, we define the distance between the centers of mass as

CMDn,j(ω) = arctan

(
|rn(ω)× rj(ω)|
rn(ω) · rj(ω)

)
, (7.18)

where the operators × and · denote the vector cross and dot products, respectively,
and rk(ω) is the center of mass (7.13) of kth violin directivity patterns. It is worth
noticing that when more than one region of principal directions is found, we average the
CMDn,j(ω) of the closest centers of mass r of the two directivity patterns. Furthermore,
similarly to the other quantities, let us denote with CDMn,j the frequency averaged
version of (7.18).

7.4 Violin Directivity Pattern Analysis

The proposed tools for the analysis and comparison of directivity patterns allow us to
analyze a set of violins extracting the main directional characteristics of their radia-
tion. We provide the details of the measurement setup and the set of analyzed violins.
Moreover, A general characterization of the directivity pattern of the violins and a com-
parison of the instruments exploiting the proposed tools are given.

7.4.1 Setup and Dataset Description

The measurements were performed with the setup of [54] in an environment character-
ized by a reverberation time of T60 ≈ 20 ms. Each pleanacoustic camera (Figure 7.3)
consists of M = 4 × 8 = 32 omnidirectional microphones (Beyerdynamic MM1),
hence the total number of employed sensors is I = M × 2 = 64. The estimate of the
source signal is provided by a proximity microphone (T.Bone Ovid System CC 100)
mounted on the instrument close to the bridge, while the violin orientation is tracked by
the 9-DOFs IMU (Phidgets Spatial Precision 3/3/3). For the details on the measurement
setting and parameters setup, we refer the reader to Sec. VI-VII of [54].

The violins were played by a professional violinist. In particular, we asked to play
the four open strings (G-D-A-E, respectively) at an intensity corresponding in the stan-
dard music notation to mezzo-forte. Therefore, the radiated acoustic energy is concen-
trated over a discrete set of frequencies associated to the fundamental and the harmonics
of each string. We denote with ω(s), s ∈ (G,D,A,E) the set of frequencies related to
each string that go from the fundamental to an arbitrary maximum frequency. This al-
lows us to measure the directivity for a total of W = 60 frequencies going from around
196 Hz (the G string fundamental) up to 5 kHz.
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7.4. Violin Directivity Pattern Analysis

Figure 7.4: The normalized directivity pattern d̂dB(ω) of the violin Vesuvius by A. Stradivari. The d̂dB

is computed at 4400 Hz with L = 4. The principal radiation regions P are delimited by the black
lines, while the centers of mass r are marked with a black cross.

n Violin maker Violin Name Year
0 A. Amati Carlo IX 1566
1 N. Amati Hammerle 1658
2 N. Amati Ex Collin 1669
3 A. Stradivari Clisbee 1669
4 Guarneri del Gesù Quarestani 1689
5 A. Stradivari Joachim Ma 1714
6 A. Stradivari Il Cremonese 1715
7 A. Stradivari Vesuvius 1727
8 A. Stradivari Scotland University 1734
9 Guarneri del Gesù Stauffer 1734
A Elena Bardella Twin A 2015
B Elena Bardella Twin B 2015

Table 7.1: The set of violins under study.

We limited our analysis to the upper hemisphere of the directivity pattern, i.e., taking
only θ ≤ π/2 in (7.5), as it is known that the lower hemisphere contributes to the overall
radiation in a minor fashion [278].

We limited our analysis to the upper hemisphere of directivity pattern, i.e., taking
only θ ≤ π/2 in (7.5), as it is known that the lower part contributes to the overall
radiation in a minor fashion [278]. In Figure 7.4, an example of the directivity pattern
(7.5) expressed in decibel is shown. The axes in Figure 7.4 are referred to the reference
system of Figure 7.3 and they are adopted throughout the analysis. In addition to the
directivity pattern, in Figure 7.4 the region of the principal radiation (7.11) is enclosed
by a bold line, and the corresponding centers of mass (7.13) are highlighted by black
crosses. We organize the violins in two groups: historical and twin violins, as reported
in Table 7.1. The first set of analyzed violin is composed of N = 2 twin violins. The
aim of the analysis on twin violins is to establish a benchmark of similarity, as we
expect that they will yield very similar patterns if compared to the other instruments.

The two instruments were made by Elena Bardella, an Italian violin maker. These
two instruments were built purposely for research goals. The geometry is identical,
under the limits of a manual construction (precision up to 1

20
mm). The mechanical

properties of the wood are equal for the two violins, as they were carved from the same
wood blocks. The only aspect for which the two instruments differ is the varnishing,
as alcohol and oil varnishes have been applied. Therefore, we expect the twins to
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Chapter 7. Measurement of the Violin Directivity Pattern

provide very similar directivity patterns. In order to distinguish the twin violins from
the historical instruments, we indicate them with the subscriptsA andB (see Table 7.1).

The second set includes N = 10 prestigious historical instruments made available
by the “Museo del Violino”. These violins were built by some of the most renowned
old Italian masters. The list of the instruments along with the violin maker and building
year is reported in Table 7.1. To the best of our knowledge, this is the first analysis on
the directivity pattern on a large set of valuable instruments by different masters. More
specifically, we measured 5 violins by Antonio Stradivari, 2 by Giuseppe Guarneri del
Gesù, 2 by Nicolò Amati and 1 by Andrea Amati.

In Table 7.1 we assign to each instrument an index v = 0, . . . , 9, to be used in
Sec. 7.3.

7.4.2 General Characterization

As a first analysis, we aim at characterizing the general directional behavior of the
violins adopting the tools presented in Section 7.3.

An important parameter, for the accurate estimation of the directivity pattern is the
spherical harmonic order L in (7.8). On the one hand, a high order L allows more pre-
cision, tracking the details of the shape of the pattern. On the other hand, by including
irrelevant spherical harmonics orders we increase the measurement noise in the data.
In order to empirically determine a suitable value of L, we examined the energy associ-
ated to the coefficients as a function of the order. As expected, the energy associated to
higher spherical harmonics order increases with the frequency, i.e. low-frequency pat-
terns are more omnidirectional than high-frequency ones [39, 41, 113], and therefore,
have most of the energy concentrated in the zeroth order coefficient. We discovered
that, on average, 99 % of the signal energy is associated to L ≤ 4. Based on this
preliminary analysis, we introduce a frequency dependent order Lω defined as

Lω =


1 0 < ω ≤ 500 Hz

2 500 Hz < ω ≤ 800 Hz

3 800 Hz < ω ≤ 3.3 kHz

4 3.3 kHz < ω ≤ 5 kHz

, (7.19)

The frequency-dependent spherical harmonic order turns out to be useful for analyzing
the directivity pattern shapes with the tools for the analysis of the principal radiation
regions (see Section 7.3.2), since an overestimation of the spherical harmonics expan-
sion order could affect the shapes of the principal radiation regions. As regards, the
NCC (7.9) we fix L = 4 for all the analyzed frequencies such that the NCC is referred
to the same spherical harmonics order. In Figure 7.5, Figure 7.6, Figure 7.7 and
Figure 7.8M(θ, φ, ω(s)) (7.16) related to each string is depicted. Note that a different
number of patterns is associated to each string. In particular, for G, D A, E strings we
measure 25, 17, 11, 7 patterns, respectively. As regards the A string 11M(θ, φ, ω(A))
are depicted in Figure 7.7, while 7 harmonics related to the E string are available in the
analyzed frequency range (see Figure 7.8).

At frequencies lower than 800 Hz we can observe that the violins tend to radiate
in an omnidirectional fashion. Nevertheless, a region of principal directions toward
φ = 0° can be observed for (294, 587)Hz in Figure 7.6, while a dipole-like radiation
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196[Hz] (G) 392[Hz] (G) 588[Hz] (G) 784[Hz] (G)

980[Hz] (G) 1176[Hz] (G) 1372[Hz] (G) 1568[Hz] (G)

1764[Hz] (G) 1960[Hz] (G) 2156[Hz] (G) 2352[Hz] (G)

2548[Hz] (G) 2744[Hz] (G) 2940[Hz] (G) 3136[Hz] (G)

3332[Hz] (G) 3528[Hz] (G) 3724[Hz] (G) 3920[Hz] (G)

4116[Hz] (G) 4312[Hz] (G) 4508[Hz] (G) 4704[Hz] (G)

4900[Hz] (G)

Figure 7.5: The principal radiation region probability mapsM(θ, φ, ω(G)) associated to the harmonics
of the G string. Only the historical violins are considered.

occurs at 588 Hz directed towards φ = (80,−80)°. These results are in line with the
ones reported by [169, 170].

As regards the G string, in Figure 7.5, we can note that in the range (588− 1372)Hz
the principal radiation regions are similar to a dipole-like radiation, with lobes on av-
erage directed towards, φ = (80,−80)° and θ = 0°. At high frequencies (ω(G) ≥
4116 Hz), M(θ, φ, ω(G)) clearly shows a narrower region of principal directions at
φ = −15° and θ = 40° that is shared by all the violins, while one third of the ana-
lyzed instruments radiates strongly also around φ = −180° and θ = 40°. As expected,
in the transitional frequency range [289], the regions of the principal directions are large
and only a few directions of preferential emissions are shared by multiple instruments.
This confirms the variability of the directivity pattern in that frequency range, as also
documented in [196, 284].

A similar behaviour can be observed for the harmonics of the D string, shown in
Figure 7.6. In this case the transitional region extends at frequencies above 3 kHz. At
frequencies higher than 4 kHz the principal radiation regions are located on the upper
part of the hemisphere (θb = 0°) i.e., directions perpendicular to the top plate.

As far as the A string is concerned, in Fig. 7.7 we can identify a preferred region of
emission at φb = 0° that is shared by almost all the harmonics in the low and transitional
frequency ranges. Starting from 3520 Hz, a clear dipole-like radiation is shown by
the majority of the violins. This behavior is similar to what can be observed from
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294[Hz] (D) 587[Hz] (D) 881[Hz] (D) 1175[Hz] (D)

1468[Hz] (D) 1762[Hz] (D) 2056[Hz] (D) 2349[Hz] (D)

2643[Hz] (D) 2937[Hz] (D) 3230[Hz] (D) 3524[Hz] (D)

3818[Hz] (D) 4111[Hz] (D) 4405[Hz] (D) 4699[Hz] (D)

4992[Hz] (D)

Figure 7.6: The principal radiation region probability mapsM(θ, φ, ω(D)) associated to the harmonics
of the D string. Only the historical violins are considered.

440[Hz] (A) 880[Hz] (A) 1320[Hz] (A) 1760[Hz] (A)

2200[Hz] (A) 2640[Hz] (A) 3080[Hz] (A) 3520[Hz] (A)

3960[Hz] (A) 4400[Hz] (A) 4840[Hz] (A)

Figure 7.7: The principal radiation region probability mapsM(θ, φ, ω(A)) associated to the harmonics
of the A string. Only the historical violins are considered.

the principal radiation region probability maps of the highest G string harmonics (see
Fig. 7.5).

Finally, M(θ, φ, ω(E)) in Figure 7.8, shows that the principal directions are less
variable with respect to the other strings. In Figure 7.8, the regions of the principal
directions are wide and they tend to be steady in the range θ = (90, 0)° and φ =
(−20,−90)°.

Overall, we can observe that, except the lowest frequencies, where the directivity
patterns tend to be less directional, all the violins under analysis express a clear di-
rectional characteristic. This is particularly evident for frequencies belonging to the
transitional region, where only very narrow regions of principal radiation are shared by
all the instruments. Nonetheless, a relevant overlap of the principal radiation regions
for a wide range of the analyzed frequencies is present. This suggests that all the instru-
ments exhibit a common radiation behavior. Therefore, we can identify some shared
principal radiation regions that can be observed for the directions towards the audi-
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659[Hz] (E) 1319[Hz] (E) 1978[Hz] (E) 2637[Hz] (E)

3296[Hz] (E) 3956[Hz] (E) 4615[Hz] (E)

Figure 7.8: The principal radiation region probability mapsM(θ, φ, ω(E)) associated to the harmonics
of the E string. Only the historical violins are considered.

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0

0.2
0.4
0.6
0.8
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NCCA,B(ω) NCCA,B

Figure 7.9: The Normalized Cross Correlation NCCA,B(ω) of the twins violin as a function of the
frequency along with the average value NCCA,B .

ence, approximately around θ ∈ (45°, 90°), φ ∈ (−20°, 20°) and above the instrument
around θ ∈ (30°, 0°), φ ∈ (−90°, 0°).

7.4.3 Comparison between Instruments

Analysis on twin violins First, in order to validate the proposed metrics, we propose the
comparison between the twin violins. In Figure 7.9 we report NCCA,B(ω) along with
the average value NCC. We can note that for a wide range of the analyzed frequen-
cies (> 70 %) NCCA,B(ω) > 0.8 while the average value over the whole frequency
range is NCC = 0.84. In the frequency range between 1 kHz and 2 kHz, a decrease
of NCCA,B(ω) can be observed with a minimum of 0.7 at 1372 Hz. This decrease in
NCCA,B(ω) is not unexpected, since in the transitional frequency range the directivity
patterns are known to be more variable. The absolute minimum of NCCA,B(ω) is reg-
istered at 3230 Hz, where the violin A presents an overall omnidirectional directivity
pattern, while the other instrument is relatively more directional. In order to evaluate
the differences in terms of principal radiation regions, we compare the binary patterns
d(·) (7.12) in terms of JSI (7.17). In Figure 7.10 we show JSIA,B(ω) along with its
average value JSIA,B = 0.67. In general, the trend of JSIA,B(ω) confirms the simi-
larity of the directivity patterns observed through the analysis of the Normalized Cross
Correlation shown in Figure 7.9. More specifically, more than the 60 % of the analyzed
frequencies have a JSIA,B(ω) > JSIA,B. Similarly to NCCA,B(ω), in the frequency
range between 1 kHz and 2 kHz there is a decrease in JSIA,B(ω).

It is possible to notice that, with respect to NCCA,B, JSIA,B(ω) is on average lower.
This is due to the fact that the Jaccard Similarity Index tends to emphasize minor dif-
ferences in the principal directions between the violins under analysis. In fact the JSI
is devoted to the analysis of the principal radiation regions only, hence it evaluates a
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500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
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Figure 7.10: The Jaccard Similarity Index JSIA,B(ω) of the twins violin as a function of the frequency
along with the average value JSIA,B .
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Figure 7.11: Distance between the centers of mass, CMDA,B(ω), of the twins violin as a function of the
frequency along with the average value CMDA,B .

section of the patterns.
Finally, in Figure 7.11, the distance between the centers of mass CMDA,B(ω) is

depicted for the analyzed frequency range along with the average value. The average
value of the distance between the centers of mass is CMDA,B = 21° and we can note
that for a wide range (70 %) of the analyzed frequencies, CMDA,B(ω) < CMDA,B. It is
worth noting that the overall trend of CMDA,B(ω) is related with JSIA,B(ω). This be-
havior is not surprising, since similar regions of principal directions are likely to present
similar centers of mass r (7.13). The results provided by the proposed tools for the twin
violins validate the proposed metrics, as instruments with almost identical geometries
and built from the same wood blocks are likely to exhibit the same directional behavior.
These results provide a benchmark for the comparison of the historical instruments, as
we expect that the similarity obtained for the twin violins will be unmatched by other
violin pairs.

Analysis of the directivity patterns of the historical violins As a first comparison, we compute
NCCn,j with n = 0, . . . , 8, j = 1, . . . , 9 and n 6= j between all the historical violins.
By looking at the definition ofM(·) in Section 7.4.2, we expect a dependency on the
specific string under analysis (see Figure 7.7 and Figure 7.8 as opposed to Fig. 7.6 and
Figure 7.5). For this reason, in Figure 7.12 we report NCCn,j(ω

(s)), computed at the
frequencies related to each string. Overall, NCC

(G)
in Figure 7.12(a) and NCC

(D)
Fig-

ure 7.12(b) present a less variable correlation with respect to NCC
(A)

in Figure 7.12(c)
and NCC

(E)
Figure 7.12(d). A clear difference between the individual violins can be

observed in Figure 7.12(d), especially as regards the violin n = 2 Ex Collin by N. Amati
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Figure 7.12: Normalized Cross Correlation of the directivity pattern of the historical violins subdivided
by strings. Metrics values related to the twin violins (v = A,B) are reported for comparison.

(see Table 7.1) which presents the lowest correlation values.
In order to provide a compact comparison of the violins, the Normalized Cross Cor-

relation is averaged over the whole W frequencies to yield NCC and this is shown in
Figure 7.13(a).

Some interesting conclusions can be drawn.
First of all, the average correlation among the historical instruments is 0.65. The

lowest value is NCC2,6 = 0.55, and it corresponds to the pair Ex Collin and Stradi-
varius’ Il Cremonese, while the highest value NCC5,7 = 0.73 is between Vesuvius and
Joachim Ma, both by Stradivarius. Interestingly, the violin v = 6 Il Cremonese by A.
Stradivarius reports a good correlation (higher than the average), with other instrument
by Stradivarius of the same period (v = 5, 7, Joachim Ma and Vesuvius, respectively)
and later instruments rather than older violins. These instruments by Stradivarius also
exhibit the highest value of NCC

(E)
as in Figure 7.12(d). Note that the maximum

value NCC5,7 = 0.73 in Figure 7.13(a) is around 0.1 lower than the average correlation
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Figure 7.13: (a) NCC, (b) JSI, and (c) CMD of the set of historical violins. Metrics values related to
the twin violins (v = A,B) are reported for comparison.

obtained for the twin violins NCCA,B = 0.84 (see Figure 7.9).
For what concerns the instruments by Guarneri del Gesù, NCC9,j tends to be mono-

tonically increasing with j, i.e., they are more similar to modern instruments rather than
older. A relatively higher value is shown also for v = 4 Quarestani, the other instru-
ment of the set made by this historical maker.

Among the oldest violins, it is possible to notice that the Hammerle and the Quarestani
(v = 1, 4) present a good correlation, as shown from NCC

(G)

1,4 in Figure 7.12(a) and

NCC
(D)

1,4 in Figure 7.12(b). Considering the whole set of instruments, the oldest violin
Carlo IX by A. Amati (v = 0) appears less correlated with the rest of the set (see Fig-
ure 7.13(a)). In fact, NCC for this instrument is consistently below the average NCC
of the set, except for Hammerle NCC0,1 = 0.67 i.e., the violin closest in time to Carlo
IX. Comparing the results of NCC for the strings in Figure 7.12 withM of the general
analysis in Section 7.4.2, we can confirm the similarity between the directivity patterns
of different instruments for the harmonics of the A and E strings, while G and D strings
tend to differ among the violins.

In Figure 7.14 JSIn,j(ω) is reported for all the pairs of violin in the set. As expected,
at the lowest frequencies we can observe the highest JSIn,j(ω), since almost every
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Figure 7.14: The JSI(ω) metrics of the historical violins. JSIA,B(ω) related to the twin violins is
reported for comparison.

violin exhibits an omnidirectional radiation. It is worth noting that at 196 Hz, only the
Scotland University (n = 8) is characterized by JSI 6= 1. In general, JSI tends to
decrease as the frequency increases. Nevertheless, we can note that at some specific
frequencies the principal directions are shared among the violins, resulting in vertical
stripes in Figure 7.14. As an example, at 1762 Hz, all the violins report JSI > 0.9 (see
also Figure 7.6) with the exception of v = 0 (Carlo IX) and v = 8 Scotland University.
The violin v = 0 Carlo IX shows a low JSI with respect to the other violins also at
784 Hz.

The common directional behavior of the first harmonics of the E string observed in
Fig. 7.8, can be identified in Figure 7.14, where JSI(ω(E)) is greater than the average
JSI of the whole dataset up to 2637 Hz.

Other than the lowest frequencies where, as expected, the JSI is relatively high, in
the frequency range between around 1 kHz and 1.4 kHz we can observe in Figure 7.14
an increase in the JSI meaning that instruments exhibit similar principal radiation re-
gions. A similar trend is observed also at frequencies around 2.3 kHz and 2.7 kHz (see
Figure. 7.14). Ultimately, JSI quantifies the differences between the directional charac-
teristics of individual instruments and the trend in the results confirms the well-known
variability of the directivity patterns in the transitional modes frequency region [289],
also observed in the principal radiation maps of Section 7.4.2.

In Figure 7.13(b) we report JSI averaged over the whole frequency range under
analysis. From the inspection of Figure 7.13(b), we can note that the overall trend of
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Figure 7.15: The CMD(ω) metrics of the historical violins. CMDA,B(ω) related to the twin violins is
reported for comparison.

JSI is similar to NCC of Figure 7.10. Again, JSIA,B of the twins (see Figure 7.10) is
higher than the maximum reported in Figure 7.13(b) that corresponds to JSI5,6 = 0.6.
Similarly to what happens with the NCC metrics, the Carlo IX (n = 0) presents the
lowest overall JSI (see Figure 7.13(b), with peculiar differences as noted in Figure 7.14.

Noteworthy is the fact that while the second highest value of NCC is associated to
violins Hammerle (v = 1) and Quarestani (v = 4), their JSI is lower. This result can
be interpreted as deviations of their principal radiation regions that lower JSI, while
the overall patterns provides high correlation values. On the other hand, the violins by
Stradivarius that provide the highest NCC values in Figure 7.13(a) show a good agree-
ment of the their principal radiation regions, as confirmed by JSI in Figure 7.13(b).

It is important to notice that while NCC is based on the spherical harmonic coef-
ficients of the directivity patterns, JSI is defined for comparing the principal radiation
regions of the patterns. Hence, from the obtained results we can infer that the principal
radiation regions carry most of the information of the directivity patterns.

For what concerns the CMD metrics defined in (7.18), we report in Figure 7.15
CMD of the different combinations of violins as a function of the frequency. Inspecting
Figure 7.15, we can note that as expected and similarly to the case of the twin violins,
CMD(ω) reflects the trend of JSI(ω) (see Figure 7.14). In fact, the frequency ranges
that provide higher JSI in Fig.7.14 are generally associated to low CMD in Figure 7.15,
since similar principal radiation regions relates to close centers of mass. Conversely,
CMD(ω) is higher when two principal radiation regions are “far” from each other,
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7.4. Violin Directivity Pattern Analysis

namely when the sound radiation of the violins is pointing towards different directions.
This is particularly evident in the transitional and high (greater than 3 kHz) frequency
ranges. Accordingly to the results related to NCC and JSI, high CMD are observed
for violin Carlo IX v = 0 and for combinations of v = 6 Il Cremonese and older
instruments. In Figure. 7.13(c), a “small cluster” of Stradivarius instruments (v =
5, 6, 7) can be noted. However, Fig. 7.13(c) shows that according to the CMD metric the
most similar violins are the v = 1 Hammerle and the v = 9 Stauffer. This result differs
from JSI in Figure 7.13(b) and NCC in Figure7.13(a). As a matter of fact, CMDn,j(ω)
computes the distances between the centers of mass (7.13) of the principal directions,
while JSIn,j(ω) directly compares the shapes of the regions of the principal directions
(7.11) in the segmented directivity patterns (7.12). Hence, low values of CMDn,j(ω)
can also be associated to different shapes in d̄ (7.12) but with similar centers of mass.

In conclusion, an overall metrics for the similarity of the directivity patterns is given
by NCC which is also reported by string for an eased comparison with the principal
radiation region probability maps. The results for the JSI(ω) metric gave insights on
the principal radiation regions differences in the frequency. As a matter of fact, it al-
lowed us to easily identify frequency ranges for which the instruments present similar
principal radiation regions. Finally, the results on CMD confirmed the trend observed
in the other metrics and highlighted subtle differences among directivity patterns. This
fact underlines the complexity of the directivity pattern analysis, and the need of con-
sidering multiple metrics at the same time in order to discriminate the subtle differences
between the instruments.
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CHAPTER8
Deep-Leaning-based Nearfield Acoustic

Holography

In this chapter we introduce a novel techniques for the analysis of acoustic sources.
The proposed method relies on data-driven approaches to perform Nearfield Acous-
tic Holography (NAH). Nearfield acoustic holography (NAH) represents an interesting
method for the analysis of acoustic sources with a low invasiveness. In fact, NAH en-
ables the contactless analysis of acoustic sources, an interesting possibility in different
scenarios. As instance, when analyzing particularly fragile instruments and conven-
tional measurements cannot be performed or where deployment of the sensors is dif-
ficult to achieve. Contactless analysis is also preferred when lightweight objects are
considered, since no additional mass needs to be added. Differently from contactless
optical techniques, e.g., Laser Doppler Vibrometer (LDV), NAH can be employed with
objects made of reflective materials. In practice, through NAH one can estimate the
vibrational field of an acoustic source from acoustic measurements performed in its
proximity. This allows the vibroacoustic analysis of a structure without the use of con-
tact devices such as accelerometers. The acoustic pressure is typically captured by a
microphone array deployed on a plane, known as holographic plane. The sensors are
placed close to the vibrating surface in order to retrieve the evanescent wave compo-
nents [286]. It is known [286] that the far field radiation of a source can be inferred
from the knowledge of its surface vibrational field, hence NAH is an appealing contact-
less technique for the estimation of the directivity pattern of violins or any other source
that cannot be conventionally measured.

With the aim of estimating the velocity field of the source from the pressure on the
holographic plane, NAH relies on the inversion of the well-known Kirchhoff-Helmholtz
(KH) integral [181, 286]. This operation is known to be a highly ill-conditioned prob-
lem, thus different strategies for solving NAH have been proposed in the literature. A
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Chapter 8. Deep-Leaning-based Nearfield Acoustic Holography

direct approach to NAH considers the discretization of the KH integral, which leads to
the Boundary Element Method (BEM) [28, 60], adopted to solve the forward problem.
Therefore, NAH is implemented through the inversion of BEM (IBEM) [240, 270], us-
ing Tikhonov regularization. This technique is able to provide accurate results, but it is
severely limited by the extreme computational cost. An alternative regularization strat-
egy is represented by Compressed Sensing (CS) in [58,59], where the solution to NAH
is approximated by a sparse set of plane wave components. However, the use of [58] is
limited to star-shaped planar plates.

The Equivalent Source Method (ESM) [139,149] assumes that the measured acous-
tic pressure field radiated by the source can be equivalently expressed as the sound field
generated by a set of point-like virtual sources located within or in proximity of the real
source. The techniques based on ESM typically involve two phases. First, the solution
to the inverse problem is involved in order to find weights of the equivalent sources,
and in the second step a suitable propagator function is applied to the fictitious sources
to infer the velocity on the target surface. The main problem of ESM is the computa-
tion of the optimal set of equivalent sources. In order to deal with this problem, ESM
techniques based on CS [56, 94] have been proposed with the aim of finding small and
sparse subsets of equivalent sources.

In [56] a dictionary-based ESM (DESM) is proposed in order to consider a sparse
domain for solving ESM limitations. The ESM solution space is restricted to a suitable
compressed dictionary whose components are retrieved from several sets of equivalent
sources. The dictionary is built from synthetic data varying the mechanical parameters
of the object, while the object dimensions are fixed and known. The resulting set of
equivalent sources weights is reduced using principal component analysis and then it
constitutes the learned dictionary. Nevertheless, the location and the number of equiv-
alent sources used to build the dictionary are still an open problem. This is especially
true when the geometry of the objects under study are complex, e.g., whose surface
exhibit curvatures.

The NAH methodology introduced in this chapter represents a novel data-driven
approach to the problem. This solution is inspired by the effectiveness of learned fea-
tures for NAH [56] and the well-known feature learning capabilities of Deep Neural
Networks (DNN) [4, 38, 52, 123]. In particular, we employ a well-known deep learn-
ing (DL) architecture called convolutional neural network (CNN) for performing NAH.
Hence, we let the network learn during the training the optima features for solving NAH
without imposing constraints on the source geometry, boundary conditions and mate-
rial. First, in Section 8.1 we briefly review the characteristics of CNNs and the training
procedure of deep learning architectures. Subsequently, in Section 8.2 we describe in
details the proposed NAH technique. We employ the network in order to estimate the
velocity field of vibrating plates from the pressure sampled on a rectangular grid over
the surface. The CNN is trained using datasets of synthetic data generated using FEM
simulations of rectangular and violin plates. The results shows that the proposed CNN
is able to effectively estimate the vibrational field of sources with arbitrary geometry
and orthotropic mechanical properties of the materials.
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8.1. Convolutional Neural Network Overview

Input
Convolutional

layer
Activation

layer
Pooling

layer
Fully connected

layer Output

Figure 8.1: Graphical representation of a “dummy” CNN architecture. A 2D input is processed through
typical CNN layers i.e., convolutional, activation, pooling and fully connected layers.

8.1 Convolutional Neural Network Overview

In this section we provide an overview of Deep Learning (DL) techniques. In particular,
we focus on Convolutional Neural Network (CNN), a class of DL architectures widely
adopted in different fields including acoustics [38]. We describe the main elements that
constitute CNNs. Moreover, we explain the main principles and the training procedure
of CNNs which is valid, in general, for any DL architecture.

Deep learning approaches based on CNNs provided outstanding results in several
fields, including computer vision [123, 263], image processing [75, 147, 226], speech
processing and music information retrieval [117, 183, 279], geophysics [137, 138], and
not least acoustics [38, 63, 153]. CNNs are a variation of DL architecture usually em-
ployed for temporally or spatially correlated signals.

The computational model of CNNs, similarly to other DL architecture, is inspired
by the neural system. In practice, they consist of a huge number of interconnected
computational nodes, the neurons. A node performs a simple operation on its input,
while every connection among the other neurons has a numeric weight whose value is
tuned based on experience. The set of connections forms the neural network and typi-
cally nodes are organized in multiple stacked layers. The network parameters, i.e., the
connection weights, are used to learn complex functions. Usually, CNNs are composed
of the following operations: convolution, energy normalization, non-linear activation,
and pooling. Through the minimization of a cost function at the output of the CNN,
the parameters of the network are adapted in order to infer patterns in the input data.
Consequently, a set of inherent features are extracted automatically from the data. The
feature extraction process is driven by the data only, differently from traditional ma-
chine learning algorithms where features are “handcrafted”, namely a-priori defined
following signal models. The training of DL architectures such as CNNs, relies on
backpropagation together with gradient descent optimization over a huge set of train-
ing data. In general, three main steps are needed for training a CNN:

• definition of the CNN architecture, i.e., the number of layers, the operations to
perform at each layer, the size and the number of the convolutional filters etc;

• definition of a cost function distinctive for the required task that is minimized
during the training of the network;

• dataset preparation for training, validating and testing the CNN.

In Figure 8.1, a dummy example of a small CNN with customary layers is reported.
In the context of this thesis, we consider only 2D CNN as in Figure 8.1 which are
characterized by two-dimensional input data and convolutional filters. In the following
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Chapter 8. Deep-Leaning-based Nearfield Acoustic Holography

we provide a brief description of the architecture shown in Figure 8.1. Let us define the
ith layer input as a feature map of size Hi×Wi×Pi and its relative output as a feature
map of size Hi+1 ×Wi+1 × Pi+1. Note that for 1D layers, Hi = Wi = 1. The different
types of layers in Figure 8.1 are

• Convolutional Layer: this layer performs 2D convolution, along the first and
second dimensions, with stride Sh and Sw, between the input of the layer and
Pi+1 filters. Each filter has size Kh ×Kw × Pi, while the output of the layer has
dimensions Hi+1 =

⌊
Hi−Kh+1

Sh

⌋
, Wi+1 =

⌊
Wi−Kw+1

Sw

⌋
and Pi+1.

• Activation layer: a non linear activation is applied on each element of the feature
map. Typically in CNNs, the non linearity is a ReLU [177] that transform each
input element x into the output y as y = max(0, x).

• Pooling layer: it performs an extraction of elements from the feature maps with
stride Sh, Sw along the first and second axis, respectively. Each element is ex-
tracted from a Kh × Kw neighborhood of 2D sections of the input. It follows
that the output feature map has size Hi+1 =

⌈
Hi−Kh+1

Sh

⌉
, Wi+1 =

⌈
Wi−Kw+1

Sw

⌉
and Pi+1 = Pi. In the literature different policies for the element extraction have
been presented such as average pooling, sum pooling and the widely adopted max
pooling that extracts the maximum value of the neighborhood.

• Fully-connected layer: this layer performs the dot multiplication between the
input elements and the matrix of the weights that has Pi+1 rows and as many
columns as the number of input elements (Hi ·Wi · Pi). The output is a vector of
features with length Pi+1.

During the training phase, the parameters of the CNN, i.e., the weights of the convo-
lutional and fully-connected layers are learned using backpropagation [31] algorithm,
typically with gradient descent [46] optimization exploiting data belonging to a training
dataset. The loss function, defined according to the application goals, is computed over
the predicted and reference (expected) output, providing prediction error and gradients
used for updating the parameters. The training data is divided in mini-batches [32] of
samples. The goal of mini-batches is twofold, on one side, the data is split in subsets
that can fit into the available memory, and on the other side we average the computa-
tion over a set of samples, proving a better approximation of the ideal gradient descent
method which would otherwise require the estimation of the gradients over the whole
dataset. Hence, the training is composed of iterations which consist of two steps for
each mini-batch: a forward phase where the predictions are estimated and a backward
phase in which the gradients, computed according to the loss function are averaged and
“backpropagated” in order to update the weights of the network.

As mentioned, the dataset preparation involves the split of data into training set and
validation set. The purpose of the training set is to perform the optimization of the
network parameters, while the validation set is used to compute the loss function over
unknown data, i.e., samples unseen during the training phase. Hence, the goal of the
validation set is to tune the network in order to improve the performance of the CNN
over new data. During the learning process of a CNN, the training is repeated for mul-
tiple “epochs”, namely we train multiple times across the training dataset. The learning
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Figure 8.2: Setup for NAH. The vibrating surface S is a finite plane, vectors r, r′ and n are defined
according to a Cartesian reference system located at the bottom-left corner of S. In Acoustic Holog-
raphy, the radiated sound field is acquired at points belonging to a 2D surfaceH, called hologram.

ends when the loss related to the validation dataset reaches its minimum. Finally, once
the training process is completed, the CNN is ready to perform on the test dataset of
unseen new samples.

8.2 CNN-based Nearfield Acoustic Holography

In this section we propose a novel data driven method for NAH. In particular, we em-
ploy a DNN with the structure inspired by convolutional autoencoder architectures, in
order to retrieve the vibrational data of a vibrating source from the pressure field cap-
tured by a microphone array in its proximity. The training data is generated through a
FEM simulation campaign in which we compute the velocity of the surface and its rela-
tive pressure field of rectangular and violin plates. We varied plate dimensions, bound-
ary conditions and mechanical properties in order to obtain a good dataset variability.
The performance of the proposed solution was assessed comparing the predicted vi-
brational fields with the groundtruth coming from FEM simulations. Moreover, we
investigate the robustness of the architecture against noisy input data, positioning er-
rors in the sampling grid and missing data during the training.

8.2.1 Data Model and Problem Formulation

Let us consider the setup for NAH concerning a rectangular plate of dimensions Lx and
Ly lying on the xy plane, as depicted in Figure 8.2. The vibrating surface S generates
a 3D sound pressure field, which is measured on the hologram planeH.

The exterior radiation of S in the air medium can be formulated in the frequency do-
main by means of the well-known Kirchhoff-Helmholtz (KH) integral (3.32) [181,286]
as discussed in Section 3.5, hence, the sound pressure at a given point r = [x, y, z]T on
the hologramH is defined as [139]

P (r, ω) =

∫
S
P (r′, ω)

∂

∂n
G(r, r′, ω)dr′ − jωρ0

∫
S
Vn(r′, ω)G(r, r′, ω)dr′, (8.1)
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Chapter 8. Deep-Leaning-based Nearfield Acoustic Holography

where P (r′, ω) is the sound pressure evaluated at each point r′ = [x′, y′, z′]T belong-
ing to surface S , Vn(r′, ω) is the surface velocity along the outward normal direction
n, ω is the angular frequency and ρ0 ≈ 1.2 kg m−3 is the air mass density at 20 °C.
The term G(·) represents the Green’s function (3.29), which models the acoustic wave
propagation in the free-field as discussed in Section 3.4.

Let us consider the holographic plane H and the surface S be sampled on a reg-
ular grid of N × M points in locations rmn and r′mn, with m = 0, . . . ,M − 1,
n = 0, . . . , N − 1, and where M , N are the number of points along the x and y
axes, respectively. Hence, the discretized pressure field of (8.1) associated to the sam-
pled surface and hologram can be expressed in matrix form with the introduction of the
discrete estimator F as

PH(ω) ≈ F(PS ,V, ω), (8.2)

where PH ∈ CN×M and PS ∈ CN×M are the pressure matrices at the hologram and
the surface, respectively, and the term V ∈ CN×M refers to the sampled velocity field.

In the context of NAH, we are interested in the estimation of the velocity matrix
V(ω) starting from the pressure measurements of the hologram PH(ω) only. As a
matter of fact, it is not possible to acquire the pressure on the surface PS available in
(8.2) since the measurement is performed at the holographic plane H. In practice this
boils down to the inversion of (8.2), i.e.

V̂(ω) ≈ F−1(PH(ω)), (8.3)

where V̂(ω) is the estimate of the normal velocity field. The estimation in (8.3) is
known to be an ill-posed problem [287] and several regularization techniques were
proposed in the literature such as the Tikhonov regularization [107], the L-curve anal-
ysis [122], the Equivalent Source Method [139, 149] and sparse regularization [58].

Here we propose a solution for the estimation of the velocity magnitude in (8.3)
using CNNs (introduced in Section 8.1), in which F−1 has the structure inspired by
a Convolutional Autoencoder [110] and the input of the CNN is the sound pressure
magnitude. The main advantage of this approach is that it avoids explicit matrix inver-
sions, since the inverse operator is learned by the network. The details of the proposed
architecture are described in Section 8.2.2.

8.2.2 Neural Network Architecture Description

The adopted CNN model is inspired by the architecture of the renowned UNet [224].
This architecture consists of three main components: the contraction, the bottleneck,
and the expansion sections. The contracting component A, also known as encoder, is
designed to extract a feature map from input X . This latent representation obtained in
the encoding phase is located at the bottleneck. In the expansion section Z , also known
as decoder, the network exploits the embedding at the bottleneck to provide the desired
output Y , namely Y = Z(A(X)). Autoencoder-like structures have been successfully
employed in denoising tasks [92, 108, 155]. In fact, thanks to their compressive nature,
these architectures prioritize the learning of useful input data description in order to
approximate the output, showing robustness against noisy data. In the context of NAH
this represents an appealing feature, since the inversion of (8.2) is prone to deviations
due to noise in the data.
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Figure 8.3: The proposed UNet architecture. Orange blocks represent layers made by convolutions
and ReLU activation functions, purple blocks are the max pooling operations, while yellow blocks
indicate the upsampling stages. The input and the output of the network are depicted in grey and
blue, respectively.

Therefore, the relation between the estimated velocity magnitude and the magnitude
of the corresponding sound pressure field defined in (8.3) can be expressed in terms of
the autoencoder components as

Φ̂(ω) ≈ Z (A(Ψ(ω); w) ; w), (8.4)

where Ψ(ω) = |PH(ω)|, Φ̂(ω) = |V̂(ω)| and the parameters w are learned by opti-
mizing the network predictions in the Mean Square Error (MSE) sense through

ŵ = arg min
w
‖Y −Z(A(X; w); w)‖2

2, (8.5)

with Y and X representing collections of the normal velocity fields and the sound
pressure fields on the holographic plane, respectively (see Section 8.2.1).

In Figure 8.3 the detailed structure of the proposed CNN is provided along with the
description of the layers dimensions.

Input/Output data: The dataset X is the input of the network representing the sound
pressure magnitude evaluated on the holographic plane Ψ(ω). Each matrix has N×M
values, with N = 16 and M = 64. For the ease of the reader, we will refer to it as
pressure image. The dataset Y is the desired output shown to the network during the
training phase. It collects the normal velocity matrices Φ(ω) = |V(ω)| measured over
the structure surface. Each matrix, which will be referred to as velocity image, has the
same dimensions N×M of the input.

Encoder: The proposed encoder A consists of a series of four dowsampling blocks.
Each block includes two consecutive layers of 2D convolutions with filter size 3 × 3,
each followed by a Rectified Linear Unit function (ReLU) [177]. After each block, a
2× 2 max pooling operation is applied to achieve the compression. The downsampling
starts with 16 extracted features and we double the number of feature channels at each
step. Therefore, we reach 256 features at the innermost layer, thus representing the
information with a structure of 1× 4× 256.
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Decoder: Every step of the decoder Z operates an "up-convolution" by means of a
Conv2DTranspose layer [78] with stride 2 × 2. The skip connections [123] between
each downsampling block and its corresponding upsampling layer enables the reuse of
the encoded features in the decoding process. Moreover, two 3 × 3 convolutions with
ReLU activations follow each upsampling step. In this way, the decoder has also a large
number of feature channels, which allow the network to propagate context information
to higher resolution layers. As a consequence, the decoder is symmetric to the encoder,
and yields a u-shaped architecture.

8.2.3 Dataset Generation

In this section we describe the dataset generation used for the evaluation of the CNN.
The dataset used for training, test and validation has been generated through a FEM

simulation campaign using the COMSOL Multiphysics® software [64]. We evalute the
NAH method on two different datasets. First, focused on isotropic rectangular plates
with dimensions comparable to the body of small bowed-string instruments, while as a
second test we apply the NAH technique on violin plates. We perform the simulations
at the eigenfrequencies ω̄ of each plate, with ω̄ ∈ [0, ωMAX] where ωMAX is defined
such that ωMAX

2π
= 2000 Hz. The synthesized data is sampled on an uniform grid of

N×M points with N = 16 and M = 64. We computed the spatial sampling steps x̄, ȳ
to honor the Shannon-Nyquist conditions, namely

x̄ ≤ Lx
M − 1

, ȳ ≤ Ly
N − 1

and min(x̄, ȳ) <
πc

ωMAX

, (8.6)

with the hologram planeH placed at zH = min(x̄, ȳ) from the vibrating surface.
Finally, data is organized in the input and output datasets as

X, Y ∈ RN×M×D, (8.7)

where X is the input (pressure) dataset, Y contains the expected output (velocity) im-
ages and D is the number of pressure and velocity images generated. Notice that the
datasets consist of the absolute value of the collected data (see Section 8.2.2). From the
condition on spatial sampling (8.6) adopted for creating the dataset (8.7), it follows that
the NN is not aware on the actual grid size i.e., varying distances between grid points.
This simplifies the network structure, which does not consider the different distances,
at the cost of providing the correctly sampled data.

Rectangular Plates

Through COMSOL Multiphysics® we have simulated the vibroacousic behaviour of
different rectangular plates considering three Boundary Conditions (BCs): simply sup-
ported, clamped and free edges.

We varied the dimensions of the plate as Lx ∈ [0.23, 0.36]m, Ly ∈ [0.15, 0.22]m
and Lz ∈ [0.002, 0.007]m and we varied the x and y dimensions with a step of 0.01 m
while the sampling in the z dimension (thickness) had a step of 0.001 m. Therefore,
we obtained a set of 672 different rectangular plates. As far as the material properties
are concerned we simulated isotropic aluminum plates adopting the standard material
definition of COMSOL Multiphysics® [64]. As the eigenfrequencies vary as a function
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Property Variable Value Unit
Density ρ 400 kg m−3

Young’s modulus [E1, E2, E3] [10.8, 0.4644, 0.8424] GPa
Shear modulus [G1, G2, G3] [0.6588, 0.6912, 0.0324] GPa
Poisson’s ratio [ν1, ν2, ν3] [0.467, 0.372, 0.435] 1

Table 8.1: Sitka spruce material properties from [225].

of the BCs and the plate dimensions, a different number of pressure and velocity fields
occur in the three different cases of BCs applied. Therefore, in order to have a balanced
dataset we replicated data associated to less frequent modes, obtaining a total number
of D1 = 342400 velocity and pressure fields of N × M = 16 × 64 = 1024 points,
collected in the input and output datasets (8.7).

Violin Plates

In order to validate the NAH with object of arbitrary shape, a dataset1 of violin plates
has been employed. The synthetic meshes of violin top plates with constant thickness
and arching were generated by the parametric model introduced in [109, 227]. The
parameters defining the shapes are varied according to Gaussian distributions centered
around the parameters of a reference violin, as described by the authors in [109, 227].
Again the response of violin plates to a time harmonic load through COMSOL Multi-
physics® has been simulated. The dataset is constituted of 1111 meshes of violin plates
and each object presents a different outline, while the arching, the largest dimension
Lx = 0.356 m and the uniform thickness of Lz = 27 mm are shared among all the
plates. As regards the material parameters, an orthotropic model of sitka spruces [225]
was adopted, whose parameters are reported in Table 8.1. Similarly to the rectangular
plate case, we sampled the pressure and velocity fields with N ×M = 16× 64 = 1024
points. It is worth noting that, in order to cover all the violin plate, the rectangular
sampling grid defined according to (8.6) provides locations that might fall outside the
plate outline. Therefore, for such points the corresponding velocity value cannot be
computed. In order to deal with points of the velocity images outside the violin plate,
we adopt a binary mask to force the reconstruction only in meaningful locations. The
binary mask assumes zero value when a point of the velocity image is outside the violin
plate and one otherwise. Through a point-wise matrix multiplication the binary mask
is applied to the output of the network in order to remove the contribution of points
located outside the violin plate.

Differently from the rectangular plate case, here we limited the simulation to free
BCs. In fact, free BCs are customarily considered by liuthiers when building and tuning
violin plates. Using this setup and the considered frequency range we obtained around
40 eigenfrequencies for each violin plate, resulting in a final dataset (8.7) composed of
D2 = 48207 elements.

1The violin plate dataset was kindly made available by Dr. Davide Salvi and Sebastian Gonzalez, Ph.D. from Politecnico di
Milano.
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8.2.4 Evaluation Metrics

The performance of the proposed CNN is assessed by comparing the estimated vibra-
tional field with the simulated ground truth. In order to evaluate the prediction accuracy
(8.4), we measured the Normalized Mean Square Error (NMSE) between the recon-
structed plate velocity field Φ̂(ω) and the synthesized ground truth Φ(ω), computed
as

NMSE
(
Φ̂(ω),Φ(ω)

)
= 10 log10

(
‖Φ̂(ω)−Φ(ω)‖2

2

‖Φ(ω)‖2
2

)
. (8.8)

Another metric that we used is the Normalized Cross Correlation (NCC) between
the predicted velocity image and the ground truth, namely

NCC
(
Φ̂(ω),Φ(ω)

)
=

Φ̂T (ω) ·Φ(ω)

‖Φ̂(ω)‖‖Φ(ω)‖
. (8.9)

Note that the NCC corresponds to 1 when the output predictions perfectly match the
ground truth velocity pattern.

8.2.5 Results

The performance of the proposed NAH technique is not limited to the validation over
the two datasets, but additionally, we performed a study on the robustness against noisy
input data and sampling positioning (location of microphones) errors. Moreover, for
the violin plates we observed the performance of the NAH against missing data in the
training set.

Rectangular Plates

The CNN architecture is implemented2 in Python using Keras [61]. The dataset was
splitted in 60 %−30 %−10 % for the training, test and validation sets, respectively. The
model was trained for 7 epochs using Adam optimizer [133] with β1 = 0.9, β2 = 0.999,
learning rate α = 0.001 and applying early stopping in order to prevent overfitting. In
general, the model was able to retrieve a good prediction of the velocity field and to rec-
ognize the different BCs applied. For instance, in Figure 8.4, Figure 8.5, and Figure 8.6
reconstruction examples are reported for the free, clamped and simply supported BCs,
respectively. Here, we label the modes accordingly to the progressive number given
by the frequencies sorted in ascending order. Since the pressure (Ψ(ω̄)) and velocity
(Φ(ω̄)) images are quite similar with simply supported and clamped BCs, we can notice
that the network performs some kind of deblurring and rescaling operations. Neverthe-
less, even if the pressure and velocity images in the free BCs are very different and they
are characterized by more complex patterns, the network predicts correctly the desired
output. We interpret this as if the CNN is able to retrieve hidden information on prop-
agation phenomena and it learns to infer the relation defined by the back-propagation
operator (8.3).

NMSE and NCC evaluated on the test set in ascending and descending order are
shown in Figure 8.7(a) and Figure 8.7(b), respectively. The average NMSE value,
NMSEAVG = −30.87 dB is reported in Figure 8.7(a), note that the 19.59 % of the test

2https://github.com/polimi-ispl/nah-cnn
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Figure 8.4: Examples of pressure field Ψ, velocity field estimates Φ̂ and references Φ for rectangular
plates with free BCs.

Label [Lx, Ly, Lz] [m] Mode Frequency [Hz]
(a) [0.35, 0.16, 0.002] 1 85.98
(b) [0.32, 0.16, 0.003] 4 428.06
(c) [0.36, 0.15, 0.004] 9 1311.71
(d) [0.34, 0.19, 0.004] 14 1735.51
(e) [0.35, 0.20, 0.002] 27 1688.11
(f) [0.36, 0.21, 0.002] 31 1999.08
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Figure 8.5: Examples of pressure field Ψ, velocity field estimates Φ̂ and references Φ for rectangular
plates with simply supported BCs.

Label [Lx, Ly, Lz] [m] Mode Frequency [Hz]
(a) [0.23, 0.18, 0.002] 1 243.07
(b) [0.31, 0.15, 0.002] 3 671.05
(c) [0.30, 0.19, 0.005] 5 1873.51
(d) [0.33, 0.32, 0.003] 10 1741.95
(e) [0.20, 0.20, 0.002] 12 1905.58
(f) [0.35, 0.21, 0.002] 19 1956.3
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Figure 8.6: Examples of pressure field Ψ, velocity field estimates Φ̂ and references Φ for rectangular
plates with clamped BCs.

Label [Lx, Ly, Lz] [m] Mode Frequency [Hz]
(a) [0.26, 0.20, 0.002] 2 85.98
(b) [0.25, 0.18, 0.002] 6 428.06
(c) [0.32, 0.19, 0.002] 8 1311.71
(d) [0.31, 0.22, 0.002] 11 1735.51
(e) [0.36, 0.20, 0.002] 13 1688.11
(f) [0.36, 0.21, 0.002] 15 1999.08
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Figure 8.7: The ordered metrics evaluated over the test set: (a) NMSE along with its average value, (b)
NCC between the output prediction and the ground truth
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Figure 8.8: Metrics evaluation with respect to the mean and the standard deviation confidence error as
a function of SNRTEST. The NMSE (a) and the NCC (b) between the output prediction and the
ground truth, respectively.

set reports a NMSE value above NMSEAVG and only the 1.96 % has a NMSE value
greater than −25 dB.

Inspecting the results related to the worst predictions, we can observe that they are
mainly related to a scaling bias between the reconstruction and the ground truth and do
not influence the estimated patterns. Moreover, since NCC highlights the pattern sim-
ilarity between prediction and ground truth, by looking the graph in Figure 8.7(b) we
can confirm that the large majority of the test set images matches the relative velocity
field reconstructions. Although the minimum NCC value is 0.84, only the 0.015 % of
the predicted velocity fields has a NCC value less than 0.98.

Noisy Input Data In order to simulate measurements in actual scenarios, we trained the
network with an input dataset X corrupted by additive white noise with a fixed value
of SNRTRAIN equal to 40 dB. The learned model has then been tested on 12 additional
versions of noisy dataset by varying the SNRTEST from 5 dB to 60 dB with a step of
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Figure 8.9: Grids of sampling points (microphones) for a rectangular plate with dimensions
[0.36, 0.22, 0.002]m. Complete version (left) and a detail (right): in blue the regular grid (d = 0)
and in red the grid affected by the maximum error (d = 1).

5 dB. In Figure 8.8 the mean value of the metrics evaluated at different SNRTEST are
shown along with the corresponding standard deviation confidence error. As expected,
the model trained at SNRTRAIN = 40 dB was able to estimate correctly the normal
velocity for SNRTEST > 40 dB, with an average NMSE value around −30 dB. It is
noteworthy that the model retrieves similar results up to a value of SNRTEST = 20 dB.
This suggests that the architecture is able to learn a set of features in its encoding stages
such that it describes the correct pattern while it discards the additive noise contribution,
even with data more corrupted than the train set. Comparing the NMSE and the NCC,
we can notice that the performance of the network decreases when SNRTEST ≤ 15 dB.

Comparing the results with the performances of state of the art techniques such
as [56], we can observe that the proposed technique appears as more flexible. A direct
comparison with [56] cannot be readily performed, since the authors in [56] only vary
the mechanical parameters of the plate. On contrary, the proposed technique is able
to work with rectangular plates with different dimensions and boundary conditions ob-
taining an high NCC for a broad range of plates (see Figure 8.7(b)). Nonetheless, a
large dataset is required for training the CNN, while although being data driven [56]
adopts limited data. Noteworthy, the proposed CNN shows a remarkable robustness
with respect to noisy input, with an average NCC > 0.8 for an SNR = 5 dB. Similar
studies in [56] instead showed a significant decrease in the NCC ≈ 0.5 with similar
SNR values.

Positioning Error In actual experimental measurements, microphones are placed on a
regular grid to record the acoustic data, but errors on their positioning often occur.
Hence, we performed the analysis with an error associated to microphone positioning.
We generated new acoustic pressure data with the software COMSOL Multiphysics®

and we exported them using different noisy grids of N×M = 1024 points. In order to
sample the hologram plane on inaccurate grids, a discrete set of points can be defined
as

H = {[x, y, zH]T ∈ H | x ∼ N (mx̄, dσ2
x) ∧ y ∼ N (mȳ, dσ2

y)}, (8.10)

m = 0, ...,M − 1, n = 0, ..., N − 1,
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Figure 8.10: Metrics evaluation of the relative error in percentage with respect to the regular grid as
function of sampling position errors at different frequencies. The percent error in (a) refers to the
NCC, in (b) to NMSE.

where the x and y locations of each microphone are realizations of two Gaussian dis-
tributions with the regular grid locations as mean and two variables controlled by the
parameter d ranging in [0, 1] as variance. The values of σ2

x and σ2
y are fixed to

σ2
x =

( x̄
6

)2

, σ2
y =

( ȳ
6

)2

. (8.11)

This particular choice has been done in order to prevent overlapping or inversion of the
grid points. It is worth noticing that the discrete set of points corresponds to the regular
grid when d = 0, while the maximum random positioning errors occur when d = 1.
We selected a specific plate with dimensions [0.36, 0.22, 0.002]m and we retrieved the
pressure fields associated to the three BCs and different noisy grids by varying the
parameter d from 0 to 1 with a step of 0.1. Figure 8.9 shows an example of regular
and noisy grids used to retrieve the hologram pressure data. We tested the model with
the input pressure images corrupted by different positioning errors on the microphone
grid and we evaluated the performance. In Figure 8.10, the relative error of NCC
and NMSE (∆ε%) is depicted as a function of frequency and the noise parameter d.
The value of the metrics evaluated in the case of a regular grid is taken as reference,
hence ∆ε% provides the relative difference of the metrics when data with positioning
error is instead considered. Frequencies in Figure 8.10 represent some examples of
natural frequencies for the three BCs. As expected, the estimate error increases with
the positioning error. In particular, by inspecting the NCC plot we can infer that the
pattern predictions are robust at low frequencies with a minimum dependence on d.
On the other hand, by increasing the frequency, the dependence on the positioning
errors increases up to a maximum NCC relative error of 0.23 % with respect to the
regular grid. In the NMSE plot we can identify three main regions with different error
behaviors. In the first one, with d ∈ [0, 0.2], the model reconstructions are not affected
by the positioning error. In the second region, with d ∈ [0.3, 0.6], a uniform error
increment is present in all the frequency ranges. In the last region, with d > 0.6, the
NMSE relative error mainly grows at low frequencies with a maximum deviation of
12 % with respect to the regular grid. It must be noticed that this behaviour is due only
to the scaling bias of the reconstruction which does not affect the estimated pattern as
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shown by the NCC. Nevertheless, although the network presents a good fault tolerance,
it is important to place microphones carefully in order to avoid undesirable scaling
errors.

Violin Plates

As a second analysis on the proposed NAH method, we evaluate the performance of
the CNN using the dataset of violin plates. Here, we split the dataset in 60 %− 30 %−
10 % for training, validation and test, respectively. The training was performed for 100
epochs with early stopping and learning rate reduction on plateau.

In Figure 8.11 we report examples of velocity predictions along with the input pres-
sure and reference velocities of the first 6 modes of the plates. These modes are par-
ticularly interesting since violin makers usually analyze such modes in order to drive
the building of instruments. Overall the network is able to predict the velocity of violin
plates also at higher frequencies and some examples are reported in Figure 8.12.

In Figure 8.13(a) the NMSE is reported for the whole test dataset, while Figure 8.13(b)
shows the relative NCC. As regards the average performance of NMSE, we report a
NMSEAVG = −16.46 dB and the 30.68 % of the samples achieved a NMSE greater
than NMSEAVG. We can notice that the NMSEAVG reported for the violin plates is
higher with respect to the one obtained with the dataset of rectangular plates. We inter-
pret this increase as a result of the complexity of the velocity field shapes and reduced
number of elements in the dataset. Nevertheless, by inspecting the definition of the
NMSE in (8.8) we can infer that a NMSEAVG = −16.46 dB corresponds to a relative
error of only 2.26 % between the prediction and expected velocity field. Moreover, we
noted that the mismatch between the network output and the groundtruth is generally
associated to scaling between the data. The observation is confirmed by the inspection
of NCC in Figure 8.13(b), where it is possible to note a good agreement between the
predicted and expected patterns. In particular, only the 10.59 % of the test samples
report NCC < 0.98 and it never goes below 0.88.

Noisy Input Data Similarly to the rectangular plates analysis, we test the robustness of
the NAH technique against noisy input data with the violin plate dataset. The network
was trained with a training dataset X corrupted with additive white noise with variance
set in order to obtain SNRTRAIN = 40 dB. During the test phase, we employed 12 noisy
versions of the test dataset obtained varying the SNRTEST ∈ [5, 60]dB with a 5 dB step.
The average values obtained with the different test datasets are reported in Figure 8.14
along with their standard deviation. We can notice that the performance decreases with
SNRTEST ≤ 15 dB, similarly to what is achieved with rectangular plates.

Positioning Error Again we evaluate the performance of proposed NAH technique in the
case of positioning errors of the pressure field sampling. Here, we test the CNN using
three violin plates modifying the sampling locations of the pressure field according to
(8.10) varying the parameter d ∈ [0, 1]. For each violin plate, we chose 15 modes and
11 realizations of noisy sampling grids were simulated. In Figure 8.15 an example of
sampling grid with positioning error is reported. We consider the values of the metrics
obtained with the correct grid positioning as the benchmark of the analysis since no
train or adaptation has been performed with “corrupted” grids. Therefore, we evaluated
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Figure 8.11: Examples of pressure field Ψ, velocity field estimates Φ̂ and references Φ for violin plates.
Label [Lx, Ly] [m] Mode Frequency [Hz]

(a) [0.356, 0.215] 1 63.3
(b) [0.356, 0.221] 2 98.95
(c) [0.356, 0.205] 3 191.16
(d) [0.356, 0.207] 4 205.22
(e) [0.356, 0.216] 5 265.29
(f) [0.356, 0.206] 6 316.59
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Figure 8.12: Examples of pressure field Ψ, velocity field estimates Φ̂ and references Φ for violin plates.
Label [Lx, Ly] [m] Mode Frequency [Hz]

(a) [0.356, 0.193] 15 711.94
(b) [0.356, 0.222] 25 1077.9
(c) [0.356, 0.205] 30 1285.1
(d) [0.356, 0.204] 35 1596.6
(e) [0.356, 0.211] 40 1784
(f) [0.356, 0.207] 44 1964.7
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Figure 8.13: The ordered metrics evaluated over the test set of violin plates: (a) NMSE along with its
average value, (b) NCC between the output prediction and the ground truth
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Figure 8.14: Metrics evaluation with respect to the mean and the standard deviation confidence error
as a function of SNRTEST. The NMSE (a) and the NCC (b) between the output prediction and the
ground truth, respectively.

the relative error of NMSE and NCC with respect to the value of the metrics obtained
with the correct grid positioning and it is reported in Figure 8.16.

Inspecting the results in Figure 8.16, we can infer that the estimation is almost un-
affected by errors in the sampling locations up to d = 0.6. An increase in the location
error caused a deviation of both NMSE and NCC up to 18.7 % and 3.4 %, respectively.

Missing Data In addition to the previous analysis, we investigate the performance of
the NAH against unknown pressure fields. In practice, we removed different sets of
elements from the training data related to specific frequencies or entire violin plates.
Such elements are therefore used in the test phase only, in order to evaluate the gen-
eralization of the network to “unseen” data. First we removed from the training set
all elements at the frequencies of the first five modes. We first focus on these modes,
since they are analyzed by violin makers during the construction of the instruments. In
fact, it is known that such plate modes are related to the signature modes of the instru-
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Figure 8.15: Grids of sampling points (microphones) for a violin plate with dimensions [0.356, 0.191]m.
Regular grid points are in blue (d = 0) while in red the grid affected by maximum error (d = 1).
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Figure 8.16: Metrics evaluation of the relative error in percentage with respect to the regular grid as
function of sampling location errors at different frequencies. The percent error in (a) refers to the
NCC, in (b) to NMSE.

ments [113, 289]. In Figure 8.17 an example of reconstructions provided for the first,
second and fifth mode are shown. We can notice that the worst prediction is associ-
ated to the first mode, the second and fifth mode velocity reconstructions effectively
estimate the nodal line in the velocity fields, even if clear differences in the patterns are
present. For this subset we obtained a NMSEAVG = −7.58 dB. Further tests are related
to the removal of the data in the frequency range [850, 1477]Hz and [1443, 2000]Hz. In
Figure 8.18 and Figure 8.19 we report examples for the two frequency ranges, respec-
tively. At higher frequencies, the estimates improved with NMSEAVG = −12.26 dB
and NMSEAVG = −9.92 dB for data in [850, 1477]Hz and [1443, 2000]Hz, respec-
tively. The reconstruction is mainly affected by scaling errors, as the NCC never drops
below 0.9 for all the considered cases. Such results are particularly interesting, since
we can infer that the proposed NAH technique can be performed on data at higher fre-
quencies with respect to the training one. As last investigation, we removed from the
training set all the elements relative to 10 violin plates. This allows us to analyze the
performance of NAH with respect to unknown violin plate geometries. In Figure 8.20
some examples of the reconstruction are reported. We can note that the velocity fields
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Figure 8.17: Examples of pressure field Ψ, velocity field estimates Φ̂ and references Φ for modes of
violin plates “unseen” during the training phase.

Label [Lx, Ly] [m] Mode Frequency [Hz]
(a) [0.356, 0.203] 1 66.7
(b) [0.356, 0.227] 2 97.03
(c) [0.356, 0.202] 5 270.76

are correctly estimated, and this is confirmed by the metrics that report values close to
reconstructions obtained including such plates in the training datasets. In particular, the
NMSE is on average NMSEAVG = −15.66 dB, while NCC never drops below 0.95.
Therefore, we envision the feasibility of the proposed NAH technique also to unknown
plates. This possibility is particularly interesting in practical scenarios when we can
train the network with simulated data and successively employ the NAH method with
measurements of actual violin plates with geometries different from those used during
the training.
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Figure 8.18: Examples of pressure field Ψ, velocity field estimates Φ̂ and references Φ for modes of
violin plates “unseen” during the training phase.

Label [Lx, Ly] [m] Mode Frequency [Hz]
(a) [0.356, 0.234] 22 913.77
(b) [0.356, 0.202] 24 1161
(c) [0.356, 0.219] 26 1111.4
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Figure 8.19: Examples of pressure field Ψ, velocity field estimates Φ̂ and references Φ for modes of
violin plates “unseen” during the training phase.

Label [Lx, Ly] [m] Mode Frequency [Hz]
(a) [0.356, 0.233] 41 1560.3
(b) [0.356, 0.197] 42 1849.1
(c) [0.356, 0.202] 43 1915.8
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Figure 8.20: Examples of pressure field Ψ, velocity field estimates Φ̂ and references Φ for violin plates
“unseen” during the training phase.

Label [Lx, Ly] [m] Mode Frequency [Hz]
(a) [0.356, 0.203] 2 116.04
(b) [0.356, 0.203] 5 266.74
(c) [0.356, 0.210] 10 489.56
(d) [0.356, 0.200] 35 1543.7
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CHAPTER9
A Methodological Approach towards the

Numerical Prediction of the Directivity Pattern

Numerical simulation represents the least invasive approach to the analysis of the di-
rectivity pattern of violins. As a matter of fact, one can imagine to simulate the vibroa-
coustic dynamic behavior of the instrument by means of Finite Element Method (FEM)
simulations and successively, to estimate the VS parameters from the synthetic data.

Clearly, in order to provide effective simulations of the vibroacustic behavior of
violins, and consequently a prediction of the directivity pattern, precise models in terms
of the geometry of the instrument and material properties, are required. Unfortunately,
such accurate models are difficult to obtain since violins are handcrafted instruments
composed of different parts (the body, the neck, the strings etc.). Even if we limit
ourselves to the violin body, which is the main responsible of the acoustic radiation,
we discover that the individual parts making the body present variable thickness and
a complex geometry. Actually, each part of the violin body will contribute, even if
with variable influences to the final radiated sound and consequently to the directivity
pattern.

In order to perform simulation of the violin body components, the geometry of the
instrument can be acquired by means of 3D scans. Typically on built instruments, the
different body part cannot be taken apart, hence only their outer surface can be acquired.
It follows that, the development of techniques that are able to reconstruct the 3D profile
of the different violin components is needed.

Among the different parts of the violin, here we focus on the violin plates. In fact
its known that violin plates are the main contributors to the acoustic response of the
instrument as underlined in Section 7.1.

In Section 9.1, we introduce a practical technique for the reconstruction of the plate
3D model from outer surface scans through the modeling of its inner surface according
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Directivity Pattern

to the nonuniform thickness profile. The 3D outer shape of the plate is acquired by
means of a 3D laser scanner and then smoothed in order to remove artefacts and details
that are unnecessary for the acoustics simulation. We assume that the thickness is
known at some reference points from which we retrieve the thickness of the whole
plate. These reference values could for instance be measured by a thickness gauge on
the instrument or given by the literature. In the following, we apply a methodology for
the interpolation of the thickness on a regular grid that covers the whole plate area. The
combined knowledge of the outer and inner surfaces makes it possible to reconstruct the
three-dimensional geometry of the plate. We validate this 3D reconstruction technique
by comparing the vibrometric behaviour of the 3D model with data measured on the
reference plate, and with simulations on a model with uniform thickness.

Additionally to the geometry of the instrument, an effective characterization of the
material mechanical parameters is required in order to provide effective simulations.
Moreover, in the field of liuthery and musical acoustics in general, the accurate es-
timation of the material mechanical properties has a great impact, because relevant
mechanical parameters are used to drive the design and building process of musical
instruments [282]. In this thesis we approach the estimation of mechanical parameters
of wood from the analysis of the wave speed in the material. In fact, from the sound
wave velocity we can estimate parameters such as the Young’s modulus.

The estimation of the wave velocity in a medium can be tackled through matched
field processing. This problem has been studied in different domains such as seis-
mology [16], underwater navigation [126, 245, 246] and microphone array process-
ing [17, 18, 214]. Among violin makers, a well-known method for the estimation of
wave velocity in wood is the tap tone [128]. This technique is widely adopted by
luthiers because of its repeatability and non-invasive characteristic. It consists in the
estimation of the resonance frequency of the wood block, from which the longitudinal
velocity is derived. Unfortunately, it requires a great manual skill in order to correctly
identify the resonance frequency by tapping the tone wood block.

Alternatively, the longitudinal wave velocity can be easily estimated by measuring
the time of flight (TOF) of an impulsive wave between the extremes of the block under
analysis [136, 158]. Due to the high propagation speeds, the adoption of expensive
analog or digital instrumentation with sampling rate in the ultrasound bandwidth is
required. Furthermore, since state-of-the-art techniques measure the TOF of the direct
wave only, the estimated velocity turns out to be sensitive to measurement errors.

In Section 9.2, as a first approach towards the mechanical parameter identification
for numerical simulations, we consider the estimation of the sound wave velocity in
tone wood blocks. The developed technique exploits the impulse response of the wood
block, acquired by means of accelerometers. This results in a simple procedure that is
highly repeatable and non invasive. In addition, it does not require expensive instru-
mentation or specific skills. We analyze in a rake receiver [210] fashion the impulse
responses, extending the analysis of the TOF to a larger portion of the impulse response,
beyond the direct wave. This allows us to work at a sampling frequency in the audible
bandwidth, adopting low cost general purpose digital hardware.

Although the two techniques introduced in this chapter are not directly linked, they
represent two basic steps towards the implementation of violin directivity pattern simu-
lations. In fact, both the geometry and the material parameters are fundamental for the
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9.1. Predictive Simulation of Violin Plates

Figure 9.1: The violin plate acquired by the 3D laser scanner.

final acoustic simulation. We envision the development of a framework for the numer-
ical simulation of violins, in which the proposed techniques can increase the accuracy
of the final simulated model.

9.1 Predictive Simulation of Violin Plates

9.1.1 Reconstruction Methodology

The reconstruction of the 3D of the plate from the outer surface proceeds through mod-
eling the inner surface of the plate as the composition of two separate regions. The
region of the inner surface close to the edge is flat, and therefore it determines a plane
on which the whole plate can lie. Conversely, the central part of the inner surface
exhibits a nonuniform thickness. Starting from the reference points, the thickness is
interpolated on a regular grid that covers the whole central area. Joining the outer and
the reconstructed inner surface the 3D geometry of the plate is reconstructed.

Violin plate scanning and mesh generation

We briefly introduce the measurement process of the 3D geometry of the plate from
laser scanning. A violin plate with definite geometrical properties (outline, arch and
thickness) is employed (see Figure9.1). The violin plate has been measured before the
final varnishing process and assembling on the instrument. The length of the plate is
376 mm and the upper and lower radii are approximately 83 mm and 103 mm, respec-
tively (see Figure 9.1). As regards the thickness reference samples, a thickness gauge (a
tool typically available in a luthier workshop) has been adopted for the measurements.

The 3D geometry of the violin plate is acquired using a Romer ABSOLUTE ARM
laser scanner with 0.01 mm resolution and PolyworksTM acquisition software by Innov-
Metric. A scan of the entire plate has been performed and considered as the groundtruth
in the evaluation of our reconstruction technique.
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Algorithm 1 Violin Plate Surface Reconstruction
Input : Outer Surface Plate Point Cloud

Thickness Samples

Steps:
1. External Boundary Estimation
2. Inner Surface Plane Estimation
3. Curved Region Boundary Estimation
4. Thickness Interpolation
5. Inner Surface Mesh Build
6. Outer and Inner Surfaces Union

Output: Reconstructed Violin Plate Mesh

(a)
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y
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Figure 9.2: (a) The MATLAB graphical interface for the corner selection. (b) The fitted curve of the
outline.

Reconstruction algorithm

Our goal is to estimate the inner surface from the outer surface scan and then merge the
two faces in one single mesh obtaining the reconstruction of the entire plate geometry.

In order to correctly reconstruct the structure of the violin plate, it is essential to
model the inner surface carefully. According to its curvature profile, the inner face can
be subdivided in two main regions: the flat one, which follows the plate border and
a curved central area. The latter determines the nonuniform thickness profile of the
plate. Our method determines the thickness of the central region interpolating the inner
surface point cloud from a set of measurements given by the user. The reference values
required by the interpolation process can be, when possible, directly measured on the
violin plate, or for example given by the luthier.

The reconstruction procedure is summarized in Algorithm 1.

Step 1. External Boundary Estimation Given the point cloud of the outer surface mesh,
the first step requires the identification of the contour of the outer surface. This is
accomplished by means of the well-known alpha shapes algorithm [35]. The contour is
used in Step 3 to determine the curved region boundary.
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9.1. Predictive Simulation of Violin Plates

Step 2. Inner Surface Plane Estimation In the global three dimensional Cartesian coordi-
nate system the outer surface ideally lies on the x, y plane looking toward the z+ di-
rection. Unfortunately, sampled plates may present deformations along the three axis.
As a result, the plate lies on a different plane with respect to the x, y plane. In this
step, we determine this plane employing a polynomial fitting of second degree in x and
third degree in y. The point cloud is then projected onto the lying plane, and rigidly
translated to obtain the inner surface plane with the required thickness along the edges.
This step is essential to obtain the flat region along the edge of the inner surface.

Step 3. Curved Region Boundary Estimation In order to characterize the curved region of
the inner surface, we manually remove the corners from the the contour (Step 1) and we
fit a smooth curve on the remaining points using a spline kernel [69] (See Figure 9.2).
The identified curve is used as a boundary between the flat and curved regions and its
location is determined by the flat area extension. The flat region width differs slightly
from plate to plate, according to the choices of the violin maker. In general, the width
profile follows the plate design and it is wider in correspondence of the corners and on
the upper and lower edges (see Figure 9.3(c)) Given the average, upper and lower flat
region widths we can correctly identify the boundary of the curved surface area.

Step 4. Thickness Interpolation Once the curved central region is identified in (Step 3),
we proceed to the interpolation of the thickness from the sampled points on a regular
and dense grid. The measured values are used to drive an interpolation algorithm [15]
on the surface points. This operation computes the thickness so that the transition from
the flat region to the curved area is smooth. The interpolated thickness map is used
for computing the actual z coordinate of the inner surface point cloud from the outer
surface z coordinates and the normal directions, as shown in Figure 9.3(d).

Step 5. Inner Surface Mesh Build The output of Step 4 consists in the final inner surface
point cloud determined by the thickness interpolation of the curved region. The data
is used as a set of vertices and a triangulation algorithm [13, 14] determines the mesh
of the inner surface, as shown in Figure 9.3(e). Note that after the triangulation of the
vertices has been performed, a further cleaning of the output mesh may be required,
based on the meshing process accuracy.

Step 6. Outer and Inner Surfaces Union Finally, the mesh of the entire plate is obtained
merging the outer and inner surfaces. This can be easily done with standard 3D com-
puter graphics software, such as Blender [43]. The selection of the mesh edge loops
and the connection of the outer and inner edges can be accomplished with built in func-
tions. The unified output mesh of our procedure, consisting in the merged outer and
inner surfaces (see Figure 9.3(f)), represents a reconstruction of the entire violin plate
geometry that can be employed for accurate simulations and analysis, as shown in the
next section.

9.1.2 Validation and Results

In this section we discuss the results of a mechanical simulation of the reconstructed
violin plate. Our reconstruction procedure is compared to the results of a vanilla recon-
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Figure 9.3: (a) Thickness measurements sampling points (white) on the violin plate. (b) External bound-
ary estimated in Step 1. (c) Curved region boundary (red) and flat region points (black) computed
in Step 3. (d) Inner surface point cloud given by Step 4. (e) Inner surface mesh build in Step 5. (f)
Reconstructed plate mesh generated in Step 6

struction method, consisting in a plate with uniform thickness.

Simulation setup

We reconstruct the entire plate surface of Figure 9.1 using its outer surface. We follow
the methodology described in 9.1.1, where the thickness of the curved region has been
sampled in 20 points (see Figure 9.3(a)). The thickness has been measured on the
actual violin plate (see Figure 9.1) by means of a thickness gauge. Hence, we aim
at obtaining the same simulated mechanical behavior between the reconstructed 3D
model and the actual scanned violin plate. The average thickness of the flat region is
set to 3[mm] and as for the width we measured 30.4 mm and 16.9 mm for the upper and

Young’s modulus Shear modulus Poisson’s ratio
Ex = 12.6[GPa] Gxy/Ex = 0.111 µxy = 0.424
Ey/Ex = 0.132 Gyz/Ex = 0.021 µyz = 0.774
Ez/Ex = 0.065 Gxz/Ex = 0.063 µxz = 0.476

Table 9.1: Values of the orthotropic properties of the simulated material.
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9.1. Predictive Simulation of Violin Plates

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9.4: (a) Scanned plate mode 1. (b) Scanned plate mode 2. (c) Scanned plate mode 5. (d) Uniform
thickness reconstruction mode 1. (e) Uniform thickness reconstruction mode 2. (f) Uniform thickness
reconstruction mode 5. (g) Proposed reconstruction mode 1. (h) Proposed reconstruction mode 2.
(i) Proposed reconstruction mode 5.

lower edges, respectively. The average width for the remaining part of the contour is
set to 6 mm. The plate with uniform thickness has been obtained by rigidly translating
the outer surface by 3 mm along the z direction. We analyze the mechanical behavior
of the three plates (reference, vanilla and proposed reconstructions) with free boundary
conditions through an FEM simulation performed with COMSOL Multiphysics® [64]
software. For each plate, we import the polygon mesh data and a tetrahedron mesh is
automatically generated by the software. In order to accurately simulate the vibration
behavior of the plate, the material properties of the object must be carefully set. In this
case, the plate is made of spruce wood, whose elastic properties along the three axes
are taken from [116] and shown in Table 9.1.

Results

As a first study, we compare the eigenfrequencies of three modes that are considered
important by violin makers, which are namely, mode 1, mode 2 (the so called “cross-
mode”) and mode 5 (also known as “ring mode”). In Figure 9.4 the mode shapes of the
eigenfrequencies in analysis are depicted for the scanned surface (Figure 9.4(a),(b),(c)),
the uniform thickness reconstruction (Figure 9.4(d),(e),(f)) and for the surface recon-
structed through the proposed methodology (Figure 9.4(g),(h),(i)).

In order to evaluate the effectiveness of the proposed reconstruction technique, we
consider the absolute error in Hz computed as the absolute value of the difference be-
tween the eigenfrequencies obtained through the mechanical simulation of the scanned
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Scanned Uniform Proposed Eu [Hz] Ep [Hz]
Mode 1 [Hz] 96.5 90 93.2 6.5 (6.7 %) 3.3 (3.4 %)
Mode 2 [Hz] 158.8 144 152.2 14.8 (9.7 %) 6.7 (4.2 %)
Mode 5 [Hz] 337 371.8 337.3 34.8 (10.3 %) 0.3 (0.09 %)

Table 9.2: Eigenfrequency values and the relative error Eu of the uniform thickness plate and the pro-
posed methodology Ep.

F(t,r')

LxLz

Ly2Ly1

Figure 9.5: The shape of a wood block used for building plates of violins or other string musical instru-
ments.

plate and the ones given by the reconstructed plates.
The eigenfrequencies of the three simulations are reported in Table 9.2, along with

the relative and percentage error with respect to the reference plate. From the values
reported in columns Eu and Ep of Table 9.2, it is possible to notice that the plate recon-
structed with the proposed process is characterized by eigenfrequencies that are closer
to the reference values with respect to a plate reconstructed with uniform thickness. In
particular, the error obtained with our reconstruction technique Ep is reduced with re-
spect to the error given by a plate of uniform thickness Eu for all the eigenfrequencies
considered.

This simulation proves the importance of an accurate thickness reconstruction in the
context of eigenfrequency analysis. More precisely, our methodology is able to better
approximate the eigenfrequencies of an actual violin plate, improving significantly the
simulation effectiveness.

9.2 Sound Wave Speed Estimation in Tone Wood

9.2.1 Problem Formulation and Data Model

Let us consider a tone wood block with length Lx. The cross-section is trapezioidal,
with dimensions Ly1, Ly2, Lz, so that the cross section area is A = (Ly1+Ly2)×Lz

2
,

as depicted in Figure 9.5. We measure the signal of N accelerometers, placed at
rn = [xn, yn, zn]T , with n = 1, . . . , N . The signal acquired by the nth sensor can
be modelled, in absence of noise, as

s(t, rn) = h(t, r′, rn) ∗ η(t, r′), (9.1)

where t is the time index, η(t, r′) is the source signal given by an axial load F (t, r′)
placed at r′ = [x′, y′, z′]T , h(t, r′, rn) is the impulse response (IR) of the block and ∗
is the linear convolution operator (2.4). The IR takes into account both the direct path
from r′ to rn and the reflections given by the block boundaries. Therefore, the signal
s(t, rn) in (9.1) contains delayed and attenuated versions of η(t, r′), whose delays are
determined by the distance travelled by the wavefronts and the wave velocity. In solids
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sx(t, xn)

Pre-processing Delays
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Function
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Longitudinal
Velocity

Estimation

ĉc̃, R

s̃(t, xn) d1(c̃), . . . ,dN (c̃) φ(c̃)

Figure 9.6: The block diagram of the longitudinal velocity estimation procedure. The processing chain
is divided in four stages: Pre-processing, Delays Computation, Cumulative Function Computation
and Longitudinal Velocity Estimation.

such as tone wood blocks, we can identify three types of waves (longitudinal or axial,
transverse waves, and bending waves) defined according to the direction of displace-
ment in the medium with respect to the wave propagation. In case of the longitudinal
wave, the displacement in the medium is observed along the direction of propagation of
the wave, i.e. longitudinal waves propagating along the x consist in local displacements
of particles so that wavefronts are parallel to the yz plane. Here, we are interested in the
estimation of the longitudinal wave velocity. Hence, we assume that the measurement
and the excitation points are positioned at the endpoints of the wood block and aligned
on the x axis, i.e. xn = {0, Lx}, yn = y′, zn = z′, ∀n = 1, . . . , N . Hence we define the
longitudinal component of (9.1) as

sx(t, xn) = h(t, x′, xn) ∗ η(t, x′). (9.2)

The longitudinal wave equation [102] is

∂2u(t, x)

∂t2
= c2∂

2u(t, x)

∂x2
, (9.3)

where c is the longitudinal wave velocity and u(t, x) is the longitudinal displacement
field that corresponds to an elongation or contraction caused by the axial load F (t, r′).
The longitudinal velocity in (9.3) can be expressed in terms of the material characteris-
tics [102]

c =

√
EA

m(1− ν2)
=

√
E

ρ(1− ν2)
, (9.4)

where m is the mass of the block, while E, ν and ρ = A
m

are respectively the Young’s
modulus, the Poisson ratio and the density of the material. From (9.4), we can conse-
quently provide an estimate of the Young’s modulus E, assuming a suitable choice of
the Poisson ratio ν.

9.2.2 Longitudinal Wave Speed Estimation

The proposed procedure for the estimation of the longitudinal wave velocity in tone
wood blocks adopts a model fitting approach and given the measured signals, it is able
to estimate in a rake receiver fashion, the longitudinal velocity exploiting a priori infor-
mation provided by the signal model (9.2). The procedure receives as input the signals
sn with n = 1, . . . , N and an integer R that indicates the number of reflections to
be considered during the estimation. The system provides as output an estimate ĉ of
the longitudinal velocity c by testing a set of hypothetical values of the velocity. The
block diagram of the longitudinal wave velocity estimation procedure is depicted in
Figure 9.6.
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Figure 9.7: The hammer signal before (a) and after (b) the pre-processing stage. The response measured
by an accelerometer before (c) and after (d) the pre-processing stage.

Pre-processing

In this step, we process the input signals (9.2) in order to improve the signal-to-noise
ratio of the signals and avoid leakage phenomena [101]. In practice, the samples before
the occurrence of the impulse are discarded and an exponential smoothing windoww(t)
is applied to the signal captured by the nth accelerometer, yielding

s̃(t, xn) = w(t) ∗ sx(t, xn) (9.5)

with w(t) = e−
t
τ and w(t) = 0∀t < ti where ti is the time instant at which the impulse

occurs. In Figure 9.7, an excitation signal and a response are depicted both before and
after the pre-processing stage.

Delays computation

Considering an hypothetical velocity c̃ and the required number of reflectionsR, a set of
hypothetical delays from the impact point r′ to the nth sensor location rn are computed
for all the N measurement points. Let us define the vector dn of the delays associated
to the nth sensor as

dn(c̃) =

[
ln0
c̃
, . . .

lnR−1

c̃

]
∈ R1×R (9.6)

where lnk = 2Lxk + ln0 where k = 0 . . . , R − 1 is the length of the path related to the
kth reflection as seen by the nth sensor. We remark that, here, the length of the wood
block Lx is assumed to be known. Commonly the wood block are cut by numerically
controlled machine, therefore the accurate dimensions of the block are known or read-
ily measurable. The index k = 0 refers to the direct path between r′ and rn. This
corresponds to the distance ln0 = ‖r′ − rn‖ = |x′ − xn|. Each element of the vector
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Figure 9.8: An example of the cumulative function φ(·) (9.7) evaluated at different velocity values.

dn(c̃) = lnk/c̃ corresponds to the delay, expressed in seconds, given by the hypothetical
velocity c̃ and the distance lnk traveled after k reflections.

Cumulative Function Computation

This step represents the core of the proposed method for the estimation of the longi-
tudinal velocity. We exploit the delays computed in the previous step (9.6) in order
to evaluate the fitness of the velocity c̃ with the data at hand. We test c̃ computing a
cumulative function of the measurements defined as

φ(c̃) =
N∑
n=1

R−1∑
k=0

s̃(dn,k(c̃), xn), (9.7)

where dn,k(c̃) refers to the kth element in (9.6).
In practice, given a velocity, in (9.7) we sum the values of the N signals s̃(t, xn) in

correspondence of the time instants in (9.6), which are determined by the combinations
of the candidate velocity c̃ and the R reflection paths. Hence, the computation of the
cumulative function (9.7) requires the computation of N ×R summations for each ve-
locity candidate c̃. It is worth noticing that in actual scenarios we work with discrete
signals, consequently, the delay values in (9.6) may not perfectly correspond to sam-
pled time instants. In order to compute (9.7) at the desired delays (9.6), a parabolic
interpolation [8] is applied to the samples of s̃(t, xn).

Finally, in the last step an estimate of the longitudinal velocity is computed from
(9.7). Inspecting Figure 9.8, we can notice that the graph presents a single prevailing
peak and the cumulative function (9.7) attains its maximum where

c̃? = arg max
c̃

φ(d(c̃)). (9.8)

This can be interpreted as the fact that for a specific velocity value c̃?, the relative delay
vectors match the actual reflection delays in the measurements. As a consequence, the
values s̃(dn(c̃?), xn) in (9.7) will correspond to the peaks in the signals (see Figure 9.8).
Therefore, we assume as an estimate of the longitudinal velocity c, the value c̃? for
which the cumulative function is maximized (9.8). In practice, we evaluate (9.8) on a
discrete set of J candidate velocities such that

ĉ = c̃? ∈ {c̃1, . . . , c̃J} . (9.9)

It is worth noting that from the inversion of (9.4), it is possible to exploit ĉ for the
estimation of the material properties e.g. the Young’s modulus.
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9.2.3 Validation and Results

In order to validate the proposed technique, we tested the longitudinal velocity esti-
mation both on simulated synthetic data and signals measured from actual tone wood
blocks. The whole estimation procedure described in Section 9.2.2 is implemented in
MATLAB [164].

Simulation setup

In order to evaluate the performance of the proposed technique we simulated rectan-
gular blocks of homogeneous isotropic material with length Lx ∈ {0.5, 1}m, width
Ly = 0.15 m and height Lz = 0.03 m. The N = 2 impulse responses (9.2) were
computed using the image source method [66, 118, 119, 121] at two different sampling
frequencies Fs1 = 22.05 kHz and Fs2 = 44.1 kHz. An additive sensor noise is sim-
ulated using a random white Gaussian noise, whose variance is set so that the desired
signal to noise ratio at each sensor is 60 dB. For each block we varied the wave speed
in the range c ∈ {1000, 8000}m s−1 with a step of 500 m s−1. The estimation of the
longitudinal wave velocity is evaluated in terms of the relative error

εrel(c) =

∣∣∣∣c− ĉc
∣∣∣∣ , (9.10)

where c is the actual longitudinal velocity and ĉ is the estimate given by (9.9) con-
sidering J = 4096 uniformly sampled candidates c̃ ∈ {c/1.2, 1.2c}. As regards the
algorithm parameters, in the pre-processing stage we adopted τ = 10 ms (9.5) while
for the delay estimation (9.6) R = 15 reflections are considered.

Measurement setup

The impulsive excitation and the response of the wood block (9.2) are recorded using
N = 2 accelerometers ADXL326 by Analog Devices [74]. The sensors are connected
to the Bela Mini [30], an acquisition board that performs AD conversion with sampling
rate Fs = 22.05 kHz. It is worth noticing that a calibration step is needed in order
to guaranteed the synchronization of the sensors. The algorithm parameters were set
as in the simulation setup (see Section 9.2.3). We measured the longitudinal wave
velocity inK = 7 tone wood blocks made of red spruce coming from woods of Trentino
South Tyrol, in Italy. The length of the K blocks are reported in the last column of
Table 9.3. A total number of 5 measurements have been performed for each tone wood
block and the average of the obtained values have been considered as the longitudinal
wave velocity estimate. In order to asses the performance of the proposed procedure,
we compare the obtained results with the tap tone and when available with the TOF
methods.

The tap tone technique [128] estimates the longitudinal velocity ĉT as follows

ĉT =
0.973 · f · Lx

h
, (9.11)

where Lx and h = Ly1+Ly2

2
are the wood block length and the average thickness, re-

spectively. The resonance frequency f is manually determined by the violin maker by
tapping the block close to an antinode of the resonance mode, while holding lightly
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Figure 9.9: The relative error εrel (9.10) for the simulations with Fs1 = 22.05 kHz (a) and Fs2 =
44.1 kHz (b).

Block ĉ[m s−1] [m]
Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Average Std. Deviation Lx

1 6236 6187 6220 6123 5990 6151 100 0.64
2 5806 5947 5831 5983 5891 5892 75 0.54
3 4937 4985 5083 5174 5217 5079 120 0.30
4 4932 5192 4879 5152 5283 5088 173 0.41
5 6212 6153 6359 5912 5960 6119 184 0.45
6 5025 5299 5245 5211 5274 5211 109 0.45
7 5888 5862 6026 5601 5511 5778 214 0.45

Table 9.3: Longitudinal velocity estimates obtained from the measurements of the tone wood blocks.

the wood on a nodal line. It is worth noting that (9.11), regarded by violin makers as
a ground truth, is valid under the assumption that the tonewood block can be approx-
imated by a bar. The TOF was measured using the Lucchi meter [281], an ultrasonic
tester designed to measure the TOF in a piece of wood. Through the knowledge of Lx
and the TOF it is possible to obtain the average longitudinal wave velocity.

Results

First we evaluate the performance of the sound wave velocity technique on a set of im-
pulse responses obtained through simulations. In Figure 9.9 the relative error εrel (9.10)
is reported considering the two different sampling frequencies. In general, the proposed
technique provides a good estimation for both the sampling frequencies with εrel ≤
0.051 (5.1 %). Inspecting both Figure 9.9(a) and Figure 9.9(b) we can observe that εrel

tends to increase with the wave velocity c, while it decreases with the block length
Lx. As expected, the estimation greatly improves at Fs2, with εrel ≤ 0.017 (1.7 %) as
depicted in Figure 9.9(b).

The second evaluation of the proposed sound wave velocity estimation technique
employs actual impulse responses measured on tone wood blocks. In Table 9.3, the es-
timated velocities for each measurement are reported along with the average value over
the repetitions and the standard deviation. It is worth noting that the consistency and
repeatability of the measurements is confirmed by the standard deviations in Table 9.3,
which present relatively small values with respect to the velocity magnitudes.
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Block ĉ[m s−1] % Error w.r.t. tap tone
Tap Tone Lucchi meter Proposed Lucchi meter Proposed

1 6059 - 6151 - 1.5
2 5886 - 5892 - 0.1
3 5010 - 5079 - 1.4
4 4605 4946 5088 7.4 10.5
5 6420 5885 6119 8.3 4.7
6 5372 5127 5211 4.6 3.0
7 5763 5575 5778 3.3 0.3

Table 9.4: Estimated velocities given by the considered techniques. The percentage error with respect
to the tap tone is reported.

In Table 9.4, the estimated velocities are reported along with the results obtained
using the tap tone and the Lucchi meter. We choose to evaluate the estimation in terms
of the percentage error with respect to (9.11) since the tap tone method is considered
to be the standard by violin makers. Inspecting the third column of Table 9.4, we can
notice that the estimates obtained with the proposed method are close to the reference
ones.

Moreover the proposed estimation outperformed the estimates given by the TOF
technique for all the blocks except for k = 4. A more detailed analysis on this specific
case shows us that the block number 4 presented inhomogeneous wood grains with
respect to the other samples. Hence, the results given by the tap tone (9.11) are less
reliable due to the bar approximation. This hypothesis is confirmed by the fact that the
estimates given both by the Lucchi meter and the proposed estimator are close to each
other.
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CHAPTER10
Virtual Source Synthesis

The purpose of this chapter is to discuss the implementation of a full EAR model.
We demonstrate the potential of the VS model introduced in Section 10.1 in the EAR
framework through a proof-of-concept simulation.

Regarding the synthesis of VSs, in the previous chapters we discussed the deriva-
tion of VS models from measurements of actual acoustic sources or simulations of the
source vibroacoustic behavior. The VS model described in Section 10.1 is borrowed
from the parametric sound field reconstruction technique of Section 5.3, thus it re-
quires the synthesis of direct and diffuse sound field components. The adoption of a
parametric description of VSs provides two main advantages. On the one hand, we can
describe the virtual source by means of few parameters that we can arbitrarily define.
These parameters concern the location of VSs in the scene, the signal emitted and not
least radiation characteristics. On the other hand, we maintain the comprehensibility
of parametric sound field reconstruction techniques, providing a self-contained frame-
work that considers both virtual and actual sound fields within the same description.
While the definition of the direct component is limited to the characteristics of the VS
only, and it does not require further information, the diffuse component is inherently
related to the EAR setup. Hence, in Section 10.1, we discuss possible alternatives for
devising the diffuse component in accordance with the available data.

In Section 10.2 a proof-of-concept simulation of the EAR framework is proposed.
Our goal is to display the combination of both the parametric sound field reconstruction
method, proposed in Section 5.3 and the virtual source model of Section 10.1 for the
development of a complete EAR framework, in which virtual sources are added to a
real acoustic environment.
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Chapter 10. Virtual Source Synthesis

10.1 EAR Signal Model

The signal of the VM computed in the EAR framework is a combination of the VM sig-
nal derived from the sound field reconstruction and the contribution given by the VSs.
More specifically, we adopt the parametric VM model (5.2) discussed in Section 5.3
with the addition of the parametric VS signal model. Therefore, let us define the VM
signal in the EAR scenario as

ˆ̄S(t, ω, řv) = Ŝ(t, ω, řv) + S̄(t, ω, řv), (10.1)

where Ŝ(t, ω, řv) is the sound field reconstruction (5.2) and S̄(t, ω, řv) is the additional
contribution of the VSs. For the ease of the reader, here, we report the definition of
Ŝ(t, ω, řv)

Ŝ(t, ω, řv) = Cv(ω)Ŝn,dir(t, ω, řv) +Qv(ω)Ŝdiff(t, ω, řv).

The contribution of the VSs S̄(t, ω, řv) is given as the sum of each VS component

S̄(t, ω, řv) =
N̄∑
n̄=1

Cv(ω)S̄n̄,dir(t, ω, řv) +Qv(ω)S̄n̄,diff(t, ω, řv). (10.2)

where S̄n̄,dir(·) is the direct signal virtually emitted by the n̄th VS and S̄n̄,diff(·) is
the virtual diffuse sound component generated by the VS. The direct virtual sound
S̄n̄,dir(ω, t, řv) must accurately reflect the source acoustic characteristics. Therefore
here, in order to describe the direct sound of a VS, we assume the parametric model
from (5.3), as

S̄n̄,dir(ω, t, řv) = D̄n̄(ω, t, θ̌v,n̄, φ̌v,n̄)H(ω, řv, r̄
′
n̄)S̄n̄(ω, t, r̄′n̄) (10.3)

where H(ω, řv, r̄
′
n̄) is the Green’s function (3.29), S̄n̄(ω, t, r̄′n̄) is the source signal and

D̄n̄(ω, t, θ̌v,n̄, φ̌v,n̄) is the directivity pattern function. It is worth underlining that we
inherently assume the VS being in the far field with respect to the VM. Hence, the VS
is considered as a point-like source with an arbitrary directivity pattern. We remark that
since the propagationH(ω, řv, r̄

′
n̄,) is inversely proportional to the distance between the

VSs and VMs it is limited to a maximum value Hmax = −6 dB. Therefore, the n̄th VS
can be compactly described using three parameters: the location r̄n̄, the source signal
S̄n̄(ω, t, r̄′n̄), and the directivity pattern D̄n̄(·). As a matter of fact, the VS source signal
S̄n̄(ω, t, r̄′n̄) provides the characteristics of the source timbre, i.e., the time-frequency
and loudness evolution of the radiated sound. The directivity pattern D̄n̄(·), is a funda-
mental parameter for accurately rendering the acoustic source. In practice, the direc-
tivity pattern describes the acoustic energy radiation in space, a property that is strictly
related to the physics of the source. In the context of modeling a virtual violin, we can
define the directivity pattern both from measurements performed on actual instruments
and from simulations of the instruments obtained through FEM. As regards the source
signal, we could employ the data acquired by a microphone placed in the proximity of
an actual instrument while being played, or we could consider the signal generated by
a silent electric violin [157].

As far as the diffuse component S̄n̄,diff(·) is concerned, the computation is directly
related to the EAR setup. In fact, the available knowledge on the EAR setting can be
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10.1. EAR Signal Model

exploited in order to model the diffuse component with different levels of accuracy.
Therefore, we can identify different possible scenarios for the computation of the VS
diffuse component accordingly to the EAR setup.

• The knowledge of the acoustic environment represents the most advantageous in-
formation that we could exploit in order to compute the VS diffuse component.
In fact, if the geometry of the environment (typically a room) in the EAR sys-
tem is known, we can straightforwardly compute the acoustic field generated by
a VS. Usually, this is implemented computing the impulse response between the
acoustic source (VS) and the receiver location (VM). Different algorithms for the
computation of the acoustic field exist which can be mainly divided in two cate-
gories: numerical approaches where the wave equation is numerically solved and
techniques based on geometrical acoustics. Although numerical methods provide
an accurate computation of the acoustic field, they are computationally expensive,
hence we usually employ faster, but less accurate geometrical acoustics methods.
Such techniques rely on the assumption that the amplitude of a wavefront varies
little over a distance that is comparable of the wavelength and that the radii of
the curvature of the wavefront is larger than the wavelength [204, 231]. Hence,
sound is assumed to travel along rays. An example of geometrical acoustics algo-
rithms is the well-known image source method (ISM) [11], in which reflections are
generated by artificial sources obtained “mirroring” the actual source against the
room walls. Alternative approaches are represented by ray tracing [12, 144, 239]
and the more efficient beam tracing [20, 22, 103, 104, 162, 251]. It is worth not-
ing that geometrical acoustics methods are inherently unable to model diffrac-
tion and diffuse phenomena, hence extensions have been proposed in the litera-
ture [19, 182, 231, 238]. A different approach to the generation of RIRs is rep-
resented by feed-back delay network (FDN) [130, 249, 266]. FDN represents an
efficient and parametric technique for the computation of impulse responses that
is based on a set of delay lines interconnected by a feedback matrix. By control-
ling the parameters of the FDN, the computation of the RIR can be guided using
isotropic assumption [168, 212, 235, 249] or directional information [9, 10, 234].
While in the context of VR, the environment is virtually defined by the system, in
ER, we might infer the acoustic environment geometry from some measurements.
As instance one can exploit acoustic sensors for both the sound field reconstruc-
tion and the room geometry inference (RGI). RGI has been widely studied in the
literature and generally they concerns the estimation of the location and orienta-
tion of wall reflectors from the signal of microphones. Usually, arrays of micro-
phones [21, 53, 97, 98, 223] or loudspeakers [84–86, 261] are employed and the
geometry of the room is estimated from a set of measured RIR.

• A second scenario for the computation of the VS diffuse component concerns the
knowledge of a set of measured RIRs. In particular, we can exploit a set of known
RIR for modeling the impulse response and thus compute diffuse (isotropic) com-
ponent of the VS source from such model. In [265] a parametric method for the
modeling a RIR has been presented. The method relies on realizations of velvet
noise signal [125,129,233] which are properly filtered in order to match the mea-
sured impulse responses. The adoption of velvet noise allows a computational
efficient implementation of the RIR, while the parameters of the filters are used as
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Chapter 10. Virtual Source Synthesis

a model to represent the RIR.

• Finally, when no information about the acoustic environment is given we can
mainly follow two approaches. On the one hand, one could discard the VS diffuse
component. Despite reducing the immersivity of the VS rendering, this solution
might be desirable in applications when we are interested in distinguishing be-
tween VSs and actual acoustic sources in the scene. On the other hand, we could
employ an arbitrary user-controlled reverberator that can be tuned in order to pro-
vide a realistic diffuse component to the VS.

In Figure 10.1 a block diagram of the overall EAR approach is shown. The main
goal of our approach to EAR is to combine the sound field navigation, i.e., the sound
field reconstruction at the VM location with the spatial rendering of VSs with arbitrary
directivity patterns. Hence, Figure 10.1 can be divided in two main parallel blocks: the
sound field reconstruction and the virtual source rendering parts.

On the one side, as described in Section 5.1, we process the signals of the arrays
X(·) in order to estimate the parameters of the model. The estimated parameters are
then adopted for synthesizing the VM signal Ŝ(řv) (5.2) at the vth VM location.

On the other side, the sound field contribution of the VS is computed. In particular,
as previously discussed, we describe the n̄ VS through its position r̄′, source signal S̄n̄
and directivity pattern D̄n̄. In the previous chapters, we discussed different approaches
to the estimation or the prediction of the directivity patterns of sound sources with
a focus on the violin. The VS contribution at the VM S̄(řv) (10.2) is computed as
the superposition of the direct component S̄dir(řv) (10.3) and the diffuse component
S̄diff(řv) which requires additional information for the RIR computation.

Finally, the vth VM parameters concerns its location ř, pick-up pattern Cv(·) and
sensitivityQv(·) and they are adopted both for the sound field reconstruction and the the
VS rendering. Lastly, the combination of the outputs of the two main blocks Ŝ(řv) and
S̄dir(řv) provides the EAR signal ˆ̄S(řv) (10.1) comprised of the reconstructed sound
field and the additional VSs.

10.2 EAR Proof of Concept

In this section, we show the parametric EAR approach through a simulation in which
VSs are inserted in an actual sound field with active acoustic sources. The aim of this
simulation is to present the possibility of the EAR adopting the VS model introduced
in the previous section. As a proof of concept we adopt a string trio scenario composed
of a cello and two violins. While the cello is considered as an acoustic source actually
present in the environment, the remaining two instruments are included in the scene as
VSs. As VSs, we consider a violin whose directivity pattern has been estimated using
the technique in Chapter 7 and a violin whose pattern has been predicted using a FEM
simulation of a simplified model of a violin body. Therefore, one instrument provides
a virtual version of an historic violin and the second VS represents a “dummy” model
of a generic violin whose acoustic behavior is computed through FEM.

Therefore, in this proof of concept, we adopt both “measured” and “simulated” di-
rectivity patterns. As regards the diffuse component, its is computed through the convo-
lution of the source signal with late part of the RIR given by [121]. Hence, here we are
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Figure 10.1: The EAR rendering block diagram. Two main macro blocks are present: the sound field
reconstruction (light grey) and the virtual source rendering (light yellow) blocks. Light red blocks
refer to the sound field reconstruction steps. In particular, the microphone signals are exploited for
the estimation of the sound field parameters. The estimated parameters provides the sound field
reconstruction at the VM location. The light blue blocks, instead concerns the computation of the
VS sound field contribution at the VM. Light green blocks are referred to the models of both the VM
and the VS. The parameters defining these models can be arbitrarily specified according to the EAR
scenario.

exploiting the full knowledge of the acoustic environment as discussed in the previous
section.

10.2.1 Violin Model FEM Simulation

As discussed in the previous chapters, the parameters required by the VS model can be
obtained from simulations of acoustic sources. Here, the simulation is performed with
COMSOL Multiphysics®. Clearly, the performance of the VS is directly related to the
simulated model accuracy. In the case of violins, an accurate model of the instrument
geometry and material properties is still an open challenge. Therefore, here we adopt a
simplified model of the violin body as shown in Figure 10.2. The maximum dimension
of the violin body is Ly = 0.32 m, the lower bout dimension is Lx = 0.21 m and
the height of the full body is Lz = 0.041 m. The simplified violin model adopts a
flat design for both the top and bottom plates with a thickness of 2.5 mm and 3 mm,
respectively. The bass bar is 0.25 m long with a square section of 3 mm width. The
sound post, connecting the two violin plates has a radius of 3.2 mm. Finally the bridge
feet position is indicated by the two small rectangles aligned at y = 0 (see Figure 10.2).
As regards the material properties of the model, in order to obtain a close simulation
of the wood behavior, we adopt orthotropic definition of Sitka spruce with the same
parameters given in Table 8.1.
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Figure 10.2: (a) 3D graphical representation of the “dummy” violin model adopted in the FEM simula-
tion. (b) Top view of the violin model.

(a) (b)

Figure 10.3: Directivity pattern of the VS obtained from the FEM simulation of a simplified violin model.
The directivity pattern are expressed in dB and computed at 880 Hz (a) and 1760 Hz (b) with order
L = 4.

In order to compute the response of the violin model, we performed a frequency
domain study in COMSOL Multiphysics® varying the harmonic load frequency in the
range [196, 4000]Hz. A unitary load is applied at the bridge location in order to approx-
imate the excitation provided by a played string. The radiated acoustic pressure is then
computed over a sphere surrounding the instrument, whose radius is varied according
to the analyzed frequency in order to preserve the far field condition.

The acoustic pressure data is sampled adopting spiral sampling [243] on a total of
B = 1024 points on the sphere from which directivity pattern ˆ̄d1 is expressed using the
spherical harmonic representation of (7.5). Hence, the spherical harmonics coefficients
of the simulated violin model are obtained similarly to (7.6) as

ˆ̄c
(L)
1 (ω) = Y† ˆ̄d1. (10.4)

It follows that we can compute the VS directivity pattern for arbitrary VM locations in
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Figure 10.4: 2D graphical representation of the EAR setup. An acoustic source is positioned in the scene
at r′1 = [3.5, 2]Tm, while two VS are included as located at r̄′1 = [2.5, 3]Tm and r̄′2 = [1.5, 2]Tm

(10.3) using the spherical harmonics model of (7.4) as

D̄1(ω, θ̌v,1, φ̌v,1) =
L∑
l=0

l∑
m=−l

ˆ̄Clm,1(ω)Ylm(θ̌v,1, φ̌v,1), (10.5)

where ˆ̄Clm,1(ω) are the coefficients estimated in (10.4) and the dependency on time is
omitted for simplicity. In Figure 10.3 we report examples of the VS directivity pattern
(10.5) obtained from the FEM simulation of the violin model.

10.2.2 EAR Setup and Parameters

The EAR setup is illustrated in Figure 10.4. Similarly to the virtual miking setup de-
scribed in Section 5.3.6, we employ A = 9 circular microphone arrays with radius
0.04 m, composed on M = 4 omnidirectional microphones each. Therefore, the num-
ber of deployed sensors is I = A ×M = 36. The room has dimensions Lx = 5 m,
Ly = 4 m and Lz = 3 m. The real acoustic source (N = 1), representing a cello, is lo-
cated at r′1 = [3.5, 2]Tm, while the N̄ = 2 violin VSs are positioned at r̄′1 = [2.5, 3]Tm
and r̄′2 = [1.5, 2]Tm, respectively. The source signals for both the actual source and
the VSs are 5 s melodic extracts taken from [264]. For simplicity, the acoustic source
(cello) presents a first-order cardioid directivity pattern with looking direction equal to
180°. Nevertheless, such assumption on its directivity pattern seems to be reasonable
from the analysis in [170], where cello present a rather steady principal radiation region
towards direction of sight of the player.
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Figure 10.5: Example of the actual sound field considering the VSs (a) and the estimate provided by the
sound field reconstruction and the VSs (b). The time-domain sound field is shown at instant t = 1.5 s.

The first VS is derived from the simulated violin model (see Section 10.2.1), while
the second VS implements a virtual replica of the prestigious Il Cremonese violin by
Antonio Stradivari whose directivity pattern is analyzed in Section 7.2. Therefore, the
VSs present frequency dependent directivity patterns computed adopting a spherical
harmonics expansion of order L = 4. It is worth underlining that the implemented VS
models provide the spatial sound radiation of the two instruments, while the spectral
sound characteristics are inherently related to the adopted source signal in (10.3) that
is taken from [264]. We set the looking directions equal to −90° for both the VSs. In
order to evaluate the EAR sound field on a large area of the environment, we define
the VMs sampling the plane where VSs, source and arrays lie. We define rectangular
grid of VMs with a spatial sampling step d = 0.1 m obtaining Vx = Lx

d
− 1 and

Vy = Ly
d
− 1 points along the x and y axis, respectively. Hence, the locations of the

V = Vx × Vy = 49× 39 = 1911 VMs are given as

řv = [dvx, dvy]
T , vx = 1, . . . , Vx, vy = 1, . . . , Vy. (10.6)

The aim of VM positioning is to cover a wide area of the room capturing the spatial
sound characteristics of the signals of the virtual sources with respect to the actual
source present in the scene. The signal at the microphones generated by the actual
acoustic source is computed convolving the source signal with the source associated
RIRs obtained through ISM [121].

As previously discussed, we assume that the environment of the EAR setup is
known. Therefore, also the contributions of the VSs at the VM is estimated adopting
the RIRs obtained through ISM [121]. The signals are processed at 16 kHz sampling
rate and the STFT is performed with 1024 points and 64 ms Hamming window with
75 % overlap for both the analysis and the synthesis phase. As regards the rest of pa-
rameters required by the parametric sound field reconstruction technique, we adopted
the same values of Section 5.3.6.
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Figure 10.6: Example of the direct sound field of the source (a) and the estimate provided by the para-
metric sound field reconstruction (b). The time-domain sound field is shown at instant t = 1.5 s.

10.2.3 Results

In Figure 10.5, a snapshot of the EAR sound field at time t = 1.5 s is depicted. The time
domain signal has been computed over the rectangular grid of VMs defined as (10.6).
Although, in general, the spatial pattern of the EAR sound field is similar to the refer-
ence, it is possible to note small differences between the sound field in Figure 10.5(a)
and the EAR signal in Figure 10.5(b). In particular, the EAR sound field appears as un-
derestimated in the region “behind” the real source in r′1. This observation is consistent
with the sound field reconstruction results in Section 5.3.6, for which the acoustic field
estimate deviates for directions where the acoustic radiation given by the ideal cardiod
pattern is null.

As far as the source localization is concerned, the estimated source position, (see
Section 5.3.2) is r̂′1 = [3.518, 1.994]Tm, resulting in a localization error of ‖r′1− r̂′1‖ =
0.019 m.

In order to disclose the performance of the EAR framework in rendering VSs in an
actual acoustic environment, we evaluate ŜIR (5.73) between each VS and the actual
source active in the scene.

We choose to consider the ŜIR since it is directly related to the directivity pattern of
the sources. The energy ratio between a real source and a VS is inherently influenced by
the energy emission of the sources towards the VM locations. It follows that an accurate
estimation of the real source directivity pattern is required as describe in Chapter 5,
while as regards the VS, the modeling of the directivity pattern is directly reflected in
the metrics. Hence, we can compare the ŜIR obtained with the EAR to the SIR that
one would obtain if the VSs were actually present in the environment.

Moreover, in order to inspect performance of the SIR at different frequencies we
introduce the ŜIR between the VSs and the real source as

ŜIRn̄(řv, ω) =

∑
t |S̄n̄,dir(t, ωw, řv)|2∑
t |Ŝn,dir(t, ωw, řv)|2

. (10.7)
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Figure 10.7: Wideband SIR of to the first (a) and second VSs (d). The estimated ŜIR for the first source
and the second VS are depicted in (b) and (e), respectively. The difference between the reference SIR

and its estimate ŜIR for the first (c) and second VSs (f).
VS 1 VS 2

NMSE [dB] −12.1 −18.2

where the dependency on frequency of the ŜIR is highlighted since the VSs provide a
frequency-dependent directivity. We indicate with the subscript n̄ the ŜIR computed
with respect to the n̄th VS. The VS direct signal S̄n̄,dir(·) is defined according to (10.3)
and it is reported here for the reader convenience

S̄n̄,dir(ω, t, řv) = D̄n̄(ω, t, θ̌v,n̄, φ̌v,n̄)H(ω, řv, r̄
′
n̄,)S̄n̄(ω, t, r̄′n̄),

with n̄ = 1, 2 for the simulated violin model and the violin virtual replica, respec-
tively. Therefore, the directivity pattern D̄n̄(ω, t, θ̌v,n̄, φ̌v,n̄) has been derived from the
violin body simulation for n̄ = 1 (see Section 10.2.1), while for the violin virtual
replica n̄ = 2 it has been measured as described in Section 7.2. It is worth noting that
here a 2D setup is assumed, hence the inclination angle is fixed as θ̌v,n̄ = π/2, ∀v =
1, . . . , V, n̄ = 1, . . . , N̄ .

We remark that Ŝn,dir(·) in (10.7) represents the source direct signal estimate given
by the parametric sound field reconstruction method in (5.53). Figure 10.6 shows a
snapshot of both the direct sound field and the estimate provided by the parametric
sound field reconstruction (5.53). The time domain signals are obtained as the inverse
STFT of Sn,dir(·) and Ŝn,dir(·) for the reference and the estimate, respectively.

Similarly to what is done in Section 5.3.6, we evaluate ŜIRn̄(řv, ω) at the VMs
through NMSE

(n̄)
SIR (8.8) computed with respect to the reference SIRn̄(řv, ω). The refer-
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ence SIR(η(n̄), ω) is obtained adopting the actual source direct signal Sn,dir(·) in (10.7)
instead of the estimate Ŝn,dir(·) provided by the sound field reconstruction technique.

In Figure 10.7, the reference wideband SIR and its estimate ŜIR are depicted for
both the VSs. In general, we can observe that the estimate follows the pattern of SIR

in the environment. As expected, a deviation in ŜIR can be noted in the region shad-
owed by the cardiod pattern. This deviation agrees with the results in Figure 10.5 and
it can be explained by the limits of the sound field reconstruction (see Section 5.3.6).
In fact, inspecting Figure 10.7(c) and Figure 10.7(f), we observe a difference between
SIR and ŜIR below 3 dB, in absolute value for the whole room, excluding the region
“behind” the cardioid source. In this area, the absence of the real source acoustic emis-
sion produces SIR → ∞ in the reference values. The NMSESIR, computed excluding
the points for which SIR tends to infinity, corresponds to −12.1 dB and −18.2 dB for
the first and the second VS, respectively.

In Figure 10.8 and Figure 10.9 examples of the narrowband ŜIRn̄(řv, ω) are reported
along with the reference values and their differences are depicted for the first and the
second VS, respectively.

We can note that the trend of ŜIRn̄(řv, ω) follows its reference value. In particular,
the first rows in Figure 10.8 and Figure 10.9, show the SIRn̄(řv, ω) and ŜIRn̄(řv, ω)

evaluated at ω1 = 2πf1 with f1 = 500 Hz. The NMSE
(1)
SIR is equal to −25.9 dB for the

first VS, while NMSE
(2)
SIR is equal to −49.5 dB.

In the second row of Figure 10.8 and Figure 10.9, ŜIR1(řv, ω2) and ŜIR2(řv, ω2)
with ω2 = 2πf2, f2 = 1500 Hz are depicted for the simulated violin model and the
violin virtual replica, respectively. At frequency f2 = 1500 Hz, we report NMSE

(1)
SIR =

−22.8 dB for the first VS and NMSE
(2)
SIR is equal to −21.5 dB for the second VS.

Finally, ŜIR1(řv, ω3) and ŜIR2(řv, ω3) with ω3 = 2πf3, f3 = 2500 Hz are shown in
the third rows of Figure 10.8 and Figure 10.9, respectively. As regards the NMSE

(n̄)
SIR,

at frequency f3 = 2500 Hz we obtain NMSE
(1)
SIR = −29.1 dB for the first VS and

NMSE
(2)
SIR = −14.9 dB for the second VS. We recall that every NMSESIR is obtained

excluding the locations řv for which SIR → ∞ due to the null in the ideal cardioid
pattern.

Overall, we observe a slight overestimation of the ŜIRn̄(řv, ω) with respect to its
reference value. We interpret this deviation as the effect of small deviations of the real
source direct signal estimates provided by the sound field reconstruction technique.
Nevertheless, the pattern of the metrics in space is matched for a wide region of the
room. As a matter of fact, inspecting SIRn̄(řv, ω) in Figure 10.8 and Figure 10.9, we
immediately identify the influence of the frequency dependent directivity pattern of the
sources on the spatial pattern of the metrics. This behavior shows the relevant influence
of the directional sound radiation of the sound field and the advantage of the proposed
EAR model that includes directivity patterns into the signal model for both sources and
VSs.

In conclusion, additional multimedia material1 regarding simulations of the pro-
posed EAR approach is provided online. In order to show further examples of the
EAR simulation, the available additional material comprises different simulations with

1https://youtube.com/channel/UC2Vo9hlO283hGWZCOIe6kUw
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both stereo and binaural rendering. We adopted the very same setup described in Sec-
tion 10.2.2, therefore the number of employed microphones and the locations of the
source and VSs are fixed. Nonetheless, we employed different source signals taken
from [258]. The instruments in [258] are recorded in an anechoic room, and the iso-
lated tracks of each instrument are available. Among the musical pieces of [258], we
adopted 30 s extracts of the RV 315 Opus 8 by A. Vivaldi. The recordings include two
violins, a viola and a cello, therefore, according to our setup, we discarded the viola
track from the set. Multimedia materials provide both three-degree-of-freedom (rota-
tion) and six-degree-of-freedom (navigation) examples. Both stereo and binaural ren-
dering are available for each simulation. The binaural VM is synthesized by employing
HRTFs as pick-up patterns of the VM (see Section 5.3.5). The HRTF adopted in the
simulations are taken from the FABIAN dataset [50]. In addition to the EAR signal
(including the VSs), the sound field reconstruction (without VSs) is available and for
each example the reference sound field rendering is reported for comparison.
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Figure 10.8: The narrowband SIR evaluated with respect to the first VS. The first row is computed at
ω1 = 500 Hz and (a), (b), (c) refer to SIR1(řv, ω1), ŜIR1(řv, ω1), and their difference, respectively.
Figures in the second row are computed at ω2 = 1500 Hz and (d), (e), (f) refer to SIR1(řv, ω1),
ŜIR1(řv, ω1), and their difference, respectively. The third row is evaluated at ω3 = 2500 Hz and (g),
(h), (i) refer to SIR1(řv, ω1), ŜIR1(řv, ω1), and their difference, respectively.

ω1 ω3 ω3

NMSE
(1)
SIR [dB] −25.9 −22.8 −29.1
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Figure 10.9: The narrowband SIR computed with respect to second VS. The first row is computed at
ω2 = 500 Hz and (a), (b), (c) refer to SIR2(řv, ω1), ŜIR2(řv, ω1) and their difference, respectively.
The second row considers ω2 = 1500 Hz and (d), (e), (f) refer to SIR2(řv, ω1), ŜIR2(řv, ω1) and
their difference, respectively. The third row is computed at ω2 = 2500 Hz and (g), (h), (i) refer to
SIR2(řv, ω1), ŜIR2(řv, ω1) and their difference, respectively.

ω1 ω3 ω3

NMSE
(2)
SIR [dB] −49.5 −21.5 −14.9
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CHAPTER11
Conclusions and Future Developments

This thesis proposed a parametric approach to Extended Audio Reality (EAR), that
concerns the interaction between real and virtual acoustic sources (VSs).

In Chapter 5, we proposed a fundamental block for EAR: the sound field reconstruc-
tion. A novel parametric model for sound field reconstruction allowed us to represent
the acoustic scene with few intuitive parameters.

The sound scene is analyzed by means of distributed compact microphone arrays
and the parameters are estimated from their signals. Thanks to the spatially distributed
sensors, the proposed model is able to include the directivity of the acoustic sources,
providing more accurate results with respect to the omnidirectional radiation model
commonly adopted. As a matter of fact, acoustic sources usually present a space de-
pendent sound radiation due to their inherent physical characteristics. This information
is relevant for a correct rendering of the sound scene, since the sound field perception
varies with the user perspective, e.g., the acoustic field is different in front of or be-
hind a loudspeaker. Moreover, the parametric description of acoustic sources adopted
for the sound field reconstruction, provides a suitable model for the implementation of
VSs within the EAR framework.

In Chapter 6, we introduced a novel technique for performing multichannel blind
source separation (BSS), one of the possible sound field processings that can be per-
formed in the context of EAR.

We adopted a sound field representation, introduced in [37] and known as ray space,
as the domain for extracting the source signal through the well-known multichannel
nonnegative matrix factorization (MNMF) technique.

The ray space transform (RST) [37] is adopted in order to map the signal acquired
by a uniform linear microphone array onto the ray space domain, where the location of
acoustic sources is conveniently displayed thanks to the parametrization of the direc-
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Chapter 11. Conclusions and Future Developments

tional components of the sound field as a function of the analysis location. Therefore,
we took advantage of the inherent representation of the location of the sources in the
ray space, in order to improve the performance of multichannel NMF. Additionally, we
introduced a computationally efficient implementation of the RST [37].

In Part III, we discussed the implementation of VSs adopting the violin as a case
study. When it comes to the estimation of the parameters required for implementing a
violin VS, we can rely on different strategies. We group the approaches according to
their invasiveness.

On the one side, we can create VS replicas of actual violins retrieving the parameters
from a set of measurements. Thanks to the collaboration with Museo del Violino in
Cremona, we had the possibility of measuring, for the first time, the directivity pattern
of a relevant number of valuable historical violins. The measurement methodology and
the results are described in Chapter 7. Hence, we can derive VSs that replicate their
directional radiation characteristics. Here, we review the violin acoustics that shows the
importance of the directional characteristics of the instrument radiation, underlining the
need of directional VS models. Therefore, in Chapter 7, we defined a set of tools for
the quantitative description of different instruments in terms of their spatial radiation
behavior useful for comparing the violins. This made clear evidence of the directional
properties of each individual instrument which in principle should be mimicked by VSs.

A less invasive analysis is represented by nearfield acoustic holography (NAH). In
Chapter 8 we explored the application of deep learning to the analysis of sound sources
through the introduction of a novel data-driven approach to NAH. In particular, we
employed a convolutional neural network (CNN) architecture for performing NAH of
rectangular and violin plates. The CNN is trained using datasets of synthetic data gen-
erated through FEM simulations, in order to estimate the velocity field of the vibrating
surface of the object from the acoustic pressure acquired in the proximity of the source.
We showed that the proposed CNN is robust against noisy data, sampling position er-
rors and missing data during the training.

On the other side, one can imagine to simulate the vibroacoustic dynamic behavior
of a violin by means of Finite Element Method (FEM) simulations and successively, to
estimate the VS parameters from the synthetic data. Effective simulations require an
accurate model of the violin in terms of geometry and material properties. Hence, in
Chapter 9 we approached the development of violin model introducing practical tech-
niques for both the estimation of the sound wave speed in wood and the 3D geometry
of violin plates from laser scans.

Finally, in Chapter 10 we provide a first proof of concept simulation of an EAR
system. We discussed the requirements for rendering VSs in different EAR scenarios
and we implemented a proof-of-concept simulation. More specifically, we simulated
a EAR scenario of a string trio. The setup comprised a cello simulated as a sound
source actually present in the environment and two violins rendered in the sound scene
as VSs. We provided two different violin models: the first was derived by the FEM
simulation of a simplified violin body model, while the second is a virtual replica of the
prestigious Il Cremonese violin by Antonio Stradivari derived from the measurements
of Chapter 7.
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11.1 Future Developments

Future works unfold both sound field processing and virtual source modeling. In the
context of sound field reconstruction, we will investigate the implementation of hy-
brid models that consider both parametric and non-parametric approaches in order to
improve the reconstruction performance maintaining the interpretability of parametric
techniques. In the light of the promising results obtained with the proposed data-driven
NAH, we envision the development of full deep-learning-based sound field reconstruc-
tion. We expect that neural networks could potentially perform the sound field recon-
struction exploiting the features learned during the training phase from the signals of
the sensors. Moreover, we can interpret the sound field reconstruction as a spatial in-
terpolation problem in which we exploit the known signals for estimating the missing
information (acoustic field at arbitrary locations). Similar problems have been recently
tackled with deep prior approaches in the field of geophysics and computer vision.
Deep prior techniques are able to reconstruct missing information in the data e.g., holes
in images or unknown seismic data, exploiting the inherent model of the neural net-
work without relying on training data. Therefore, the application of such techniques
in the context of sound field reconstruction is appealing due to the implicit difficulties
in realizing proper datasets for the training of traditional deep learning architectures.
As regards the BSS, we aim at extending the ray-space-based BSS algorithm from the
current single array setup, to a distributed arrays setting. The adoption of properly de-
signed ray space parametrization can be exploited in order to merge the multiple views
of the acoustic scene given by the distributed sensors in a single representation suitable
for the application of BSS algorithms.

As regards the modeling of VSs, the development of effective diffuse sound field
rendering is a relevant aspect to investigate. By means of a further sound field analy-
sis, it would be interesting to derive suitable parameters for the computation of the VS
diffuse component. This will improve the rendering of VSs in scenarios where no a
priori information about the acoustic environment are given allowing a “blind” imple-
mentation of VSs in an acoustic scene. Focusing on the simulation of violins, we aim at
parameterizing the instrument geometry, in order to provide improved 3D models that
can be easily simulated through FEM. Moreover, we envision that the availability of
more and better models will allow us to explore data-driven approaches to the analysis
and simulation of the instrument.

Finally, the development of computationally efficient implementations of the algo-
rithms is fundamental in order to move towards real-time EAR applications.
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APPENDIXA
Demonstration of equality between estimated and

actual power of direct and diffuse components

In this appendix we will demonstrate that

E{|X̂n,dir(t, ω, ri)|2} = E{|Xn,dir(t, ω, ri)|2}
E{|X̂diff(t, ω, ri)|2} = E{|Xdiff(t, ω, ri)|2},

(A.1)

under the assumption that the oversubtraction factor ν = 1, the gain floorGmin = 0 and
that the direct, diffuse and noise power at the ith and at the i′th microphone are equal.

In order to demonstrate the first equality, we make use of the filter definition given
in (5.52) and the definition of the CDR in (5.44). It follows that

E{|X̂n,dir(ri)|2} = |Gdir(ri)|2E{|U(ri)|2}

=
CDR(ri)

CDR(ri) + 1
E

{
Z (ri) + Z (ri′)

2

}
=

Φdir,ii

Φdiff,ii + Φdir,ii

× 1

2
[2E

{
|Xn,dir(ri)|2

}
+

2E
{
|Xdiff(ri)|2

}
+ 2E

{
|N(ri)|2

}
− 2E

{
|N(ri)|2

}
]

=
Φdir,ii

Φdiff,ii + Φdir,ii

Φdiff,ii + Φdir,ii

1
= E{|Xn,dir(ri)|2},

(A.2)

where the dependences on the time frame index t and the radial frequency ω have been
omitted for the sake of readability.

In order to demonstrate the second equality instead, we make use of the filter def-
initions given in (5.56) and (5.52) and the definition of the CDR in (5.44). It follows
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and diffuse components

that

E{|X̂diff(ri)|2} = |Gdiff(ri)|2E{|U(ri)|2}

=

(
1− CDR(ri)

CDR(ri) + 1

)
E

{
Z (ri) + Z (ri′)

2

}
=

Φdiff,ii

Φdiff,ii + Φdir,ii

× 1

2
[2E

{
|Xn,dir(ri)|2

}
+

2E
{
|Xdiff(ri)|2

}
+ 2E

{
|N(ri)|2

}
− 2E

{
|N(ri)|2

}
]

=
Φdiff,ii

Φdiff,ii + Φdir,ii

Φdiff,ii + Φdir,ii

1
= E{|Xdiff(ri)|2}.

(A.3)
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