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Abstract

An over-actuated vehicle is a system that presents more control variables than
degrees of freedom. Therefore, more than one configuration of the control
input can drive the system to a desired state in the state space, and this
redundancy can be exploited to fulfill other tasks or solve further problems. In
particular, nowadays, challenges concerning electric vehicles regarding their
autonomy and solutions to reduce energy consumption are becoming more and
more attractive. OA vehicles, on this problem, offer the possibility of using
the redundancy to choose the control input, among possible ones, so as to
minimize energy consumption.
In this regard, the research objective is to investigate different techniques
to control, in real-time, an over-actuated autonomous driving vehicle to
guarantee trajectory following and stability with the aim of minimizing
energy consumption. The research project focuses on a vehicle able to drive
and steer the four wheels (4WD, 4WS) independently. This work extends
the contribution of previous theoretical energy-based research developed by
providing a control algorithm that must work in real-time on a prototype
vehicle (RCV-E) developed at the ITRL within KTH with the over-actuation
investigated. To this end, the control algorithm has to balance the complexity
of a multi-input system, the optimal allocation objectives, and the agility to
run in real-time on the MicroAutoBox II - dSPACE system mounted on the
vehicle.
The solution proposed is a two-level controller which handles separately high
and low-rate dynamics with an adequate level of complexity. The upper level is
responsible for trajectory following and energy minimization. The allocation
problem is solved in two steps. An LTV-MPC solves the trajectory-following
problem and allocates the forces at the wheels considering the wheel energy
losses due to longitudinal and lateral sliding. The second step re-allocates
the longitudinal forces between the front and rear axles by considering each
vehicle side independently to minimize energy loss in the motors. The lower
level is responsible for transforming the forces at the wheels into torques and
steering angles; it runs at a faster rate than the upper level to account for the
high-frequency dynamics of the wheels.
Last, the overall control strategy is tested in simulation concerning the
trajectory-following and energy minimization performance, and after on
MircoAutoBox II mounted on the RCV-E to assess the real-time performance.



ii | Abstract

Keywords

LTV-MPC (Linear Time-Varying Model Predictive Controller), Trajectory
following, Energy consumption, Vehicle stability, Vehicle model, Real-time
performance.



Sommario | iii

Sommario

Un veicolo sovra-attuato è un sistema che presenta più variabili di controllo che
gradi di libertà. Pertanto, più di una configurazione dell’ingresso di controllo
può portare il sistema a uno stato desiderato nello spazio degli stati e questa
ridondanza può essere sfruttata per svolgere altri compiti o risolvere ulteriori
problemi. In particolare, al giorno d’oggi le sfide relative ai veicoli elettrici
per quanto riguarda la loro autonomia e le soluzioni per ridurre il consumo
energetico stanno diventando sempre più interessanti. I veicoli sovra-attuati,
riguardo a questo problema, offrono la possibilità di utilizzare la ridondanza
per scegliere l’ingresso di controllo, tra quelli possibili, che minimizza i
consumi energetici.
A questo proposito, l’obiettivo della ricerca è studiare diverse tecniche per
controllare, in tempo reale, un veicolo a guida autonoma sovra-attuato per
garantire l’inseguimento della traiettoria e la stabilità con l’obiettivo di
minimizzare il consumo energetico.
Questo studio si concentra su un veicolo in grado di guidare e sterzare le
quattro ruote (4WD, 4WS) in modo indipendente, ed estende il contributo
delle precedenti ricerche teoriche fornendo un algoritmo di controllo che deve
funzionare in tempo reale su un prototipo di veicolo (RCV-E) sviluppato
presso l’ITRL all’interno del KTH, che presenta la sovra-attuazione studiata.
A tal fine, l’algoritmo di controllo deve bilanciare la complessità di un sistema
a più ingressi, gli obiettivi di allocazione dell’azione di controllo ottimale
e l’agilità di funzionamento in tempo reale sul sistema MicroAutoBox II -
dSPACE montato sul veicolo.
La soluzione proposta è un controllore a due livelli che gestisce separatamente
le dinamiche ad alta e bassa frequenza. Il livello superiore è responsabile
dell’inseguimento della traiettoria e della minimizzazione dell’energia. Il
problema di allocazione viene risolto in due fasi. Un LTV-MPC risolve
il problema dell’inseguimento della traiettoria e assegna le forze alle ruote
tenendo conto delle perdite di energia agli pneumatici dovute al loro
scorrimento longitudinale e laterale. Il secondo passo rialloca le forze
longitudinali tra l’asse anteriore e quello posteriore considerando ciascun lato
del veicolo in modo indipendente per minimizzare le perdite di energia nei
motori. Il livello inferiore è responsabile della trasformazione delle forze alle
ruote in coppia e angolo di sterzo; funziona a una più alta frequenza rispetto
al livello superiore per tenere conto delle dinamiche veloci delle ruote.
Infine, la strategia di controllo viene testata in simulazione per quanto
riguarda le prestazioni di inseguimento della traiettoria e di minimizzazione
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dell’energia, e successivamente su MircoAutoBox II montato sull’RCV-E per
valutare le prestazioni in tempo reale.

Parole chiave

LTV-MPC (Controllo a predizione del modello lineare tempo variabile),
Inseguimento di traiettoria, Consumo energetico, Stabilità del veicolo,
Modello del veicolo, Prestazioni in tempo reale.
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Chapter 1

Introduction

This chapter describes the specific problem that this thesis addresses, the
context of the problem, the goals of this thesis project, and outlines the
structure of the thesis.
Section 1.1 describes the background of the thesis project. Section 1.2
describes the problems that guide this project and state the research question
that this thesis intends to answer. Section 1.3 explains the purpose of this
project and its social, ethical and environmental contribution. Section 1.4 lists
the sub-goals that the project goes through to fulfill its purpose. Section 1.5
explains the research methodology utilized for the research in this project.
Section 1.6 defines the boundaries and limits of the thesis project. Section 1.7
provides a structure of the thesis report.

1.1 Background

1.1.1 Trajectory following and autonomous driving

Autonomous driving vehicles are becoming more and more interesting
because of their driver-assistance capabilities, but as we look to the future,
their real purpose is to replace the driver and allow him or her to focus on other
things that are often the cause of distraction. An autonomous driving vehicle
is required to estimate the route it has to pursue, the obstacles present along it,
and decide the driving mode to use along the path. This can be achieved using
an environment detection algorithm and a trajectory planner that evaluates all
these conditions and translates them into the choice of a reference trajectory
that the car has to follow. In robotics [1], a path is a term for how to get
from one pose (defined by vehicle position and its direction) to another. A
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trajectory is a path with the specification of the speed (even if not constant)
that must be traveled. Therefore, a car performing trajectory following will
have to proceed autonomously along the reference path at the required speed.
To pursue the trajectory reference provided by the planner, a vehicle adopts a
trajectory-following strategy, namely a more or less complex control algorithm
that requests the car an adequate actuation to follow as close as possible the
trajectory reference. To go a little deeper into the topic, a trajectory can be
specified in different ways. Some basic possibilities are:

• Through a series of points in the space represented by the vector (vehicle
position, heading, speed) that the car has to be close each time.

• Through a series of points in the space represented by the pose vector
(vehicle position, heading) and an additional term representing the time
instant at which every pose has to be reached. The time instant related
to the travel distance between points indirectly provides the velocity.

• Through a mathematical function that represents a continuous definition
of the car’s position within the space, the desired heading, and the speed
that the vehicle has to track. In addition, to better mimic real situations,
a car driving on a street that follows a trajectory must stay within the
road boundaries, so additional constraints can be added along with the
trajectory specification. These constraints represent the maximum error
allowed by the car to deviate from the trajectory reference.

Further, the control algorithm to pursue the path at the given speed
is responsible for replacing the driver to perform autonomous driving.
Depending on the vehicle structure and, in particular, its actuation (wheel
torque and steering), the complexity may vary. The more actuators there are,
the more complex the algorithm will be to select the best vehicle actuation, and
this will play a decisive challenge for real-time purposes. The case of over-
actuated vehicles is an example of this problem and will be better explained in
the following section.

1.1.2 Over-actuated vehicle

A rigid body in the space has six Degrees of Freedom (DoFs), three for the
translation (x,y,z) and three for the rotation (yaw, pitch, roll). A vehicle can be
approximated to a rigid body in three-dimensional space and having thus six
DoFs, but it can also be further approximated by considering only its planar
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motion, which is the most predominant. In this case, the vehicle model reduces
the number of DoFs to three (x,y, yaw) without loosing much accuracy [2].
Generally speaking, road cars can be controlled through longitudinal
acceleration/deceleration and front-wheel steering, and the actuation cannot
control the three DoFs independently. Road vehicles are generally constrained
by Ackermann kinematics and can only follow an Ackermann-constrained path
because of the low number of actuators.
Over-Actuated (OA) vehicles, on the other hand, offer more freedom in this
respect. They have more control inputs than DoFs to control, and this
means that, first, different DoFs can be controlled independently, and second,
multiple actuators can be employed for the same DoF, generating redundancy
in the choice of the actuation. Because of this redundancy, infinite control
input combinations drive the car equivalently through its DoFs. The problem
now is to have a criterion to select a control action among the infinite ones.
Actually, this is not an issue but an advantage: it is now possible to choose
the control action, among the infinite ones, that fulfills other tasks or solves
additional problems.
For example, over-actuation can be exploited to drive the vehicle along the
desired trajectory and, as a further task, improve its stability. This is done
by defining stability margins and selecting the optimal control action that
better stays within these margins. Another example of an additional task is
the minimization of the energy consumed by the vehicle while performing
trajectory-following. An estimation of all the sources of energy loss can be
performed, and the optimal control action is selected to minimize the energy
loss.
There are multiple levels of over-actuation, depending on the actual DoFs to
be controlled and the configuration of the actuator, the solutions are different.
Not only vehicle pose (x,y, heading) can be directly controlled, but also
specific vehicle dynamics, such as lateral dynamics, where the DoFs
investigated are the yaw rate and the side slip angle [3, 4]. Therefore,
depending on the controlled system or subsystem, the number of DoFs can
vary, and if the number of actuators affecting the system is higher than DoFs,
the system is defined Over-Actuated (see Section 2.1 for details).
Control techniques to increase the number of actuators in vehicles compared
to usual road cars are:

• Torque vectoring (4WD, 4WB), which distributes the torque on the
four wheels independently to each other and consequently reduces the
dependency of the vehicle’s rotation from the longitudinal translation.



4 | Introduction

• Four-Wheel Steering (4WS), where also rear wheels are involved,
improves the vehicle’s steering and provides the possibility to translate
the vehicle laterally without affecting rotation.

• Active camber and active suspension improve the availability of
force allocation to the wheels, providing better maneuverability and
performance in critical conditions.

1.1.3 KTH-Research Concept Vehicle (KTH-RCV)

The KTH-Research Concept Vehicle E (RCV-E) is an over-actuated vehicle
built at the Integrated Transport Research Lab (ITRL) at KTH in 2012
[5]. This vehicle has four in-wheel electric motors with electric individual
steering wheels (4WS), traction/braking (4WD-4WB), active camber, and
active suspensions. A peculiarity of in-wheel electric engines is that no
transmission is required to convey motion from the engines to the wheels,
resulting in lower power losses due to friction. The high level of over-actuation
allows for a wide range of experimental evaluations in several fields. As a
result, research (Section 2.2) is addressed to study how different combinations
of over-actuation affect driving performance, safety, and energy consumption
and how redundancy can be exploited to improve them. The vehicle mount
as control software a dSPACE unit (MicroAutoBox II 1401/1513) [6] that
uses a CAN bus for transmitting the signals through sensors and actuators.
MicroAutoBox is the control interface developed by dSPACE to control
prototyping vehicles; it handles sensors and actuators and is responsible for
scheduling the processes at the defined rate.
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Figure 1.1: RCV-E developed at the ITRL within KTH.

1.1.4 Importance of energy optimization

The future of electric vehicles will be likely certain, especially with the
European decree Fit for 55 [7], car manufacturers will only be allowed to
produce zero-emission vehicles from 2035. For this purpose, the transition to
electric will have to compensate for discrepancies with combustion vehicles,
like vehicles’ energy autonomy. Several components of the power-train
influence the autonomy of electric vehicles, the energy density of the batteries,
the power transmission from the engine to the wheels, and the efficiency of the
electric motors. The energy density of batteries is not comparable to that of
fossil fuels, which is why combustion vehicles have a significant autonomy
advantage. Nonetheless, the efficiency of electric engines is substantially
higher than that of combustion engines, thanks in part to the ability to use
regenerative braking to recover some of the energy. However, this advantage
is not enough to even out the disparity.
Therefore, research on electric vehicles becomes fundamental from the energy
improvement aspect. The advantage electric vehicles have from a future
perspective is that they are suitable for more precise control of the actuation
than combustion-engine vehicles, allowing researchers to study novel energy
optimization technologies ahead of 2035.
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1.2 Problem

As Over-Actuated vehicles, by definition, have more actuators than Degree
of Freedom, they offer the advantage of exploiting the redundancy of the
control action to fulfill additional tasks. As regards the importance of
energy minimization in electric vehicles, explained in Section 1.1.4, actuation
redundancy can play a relevant role. Besides, autonomous driving represents
the future of road vehicles, where a structured control strategy will replace
the driver’s duties. Merging these two fields, the problem of combining
autonomous drive with energy minimization for an OA vehicle arises. In
particular, the research topic of this project is to develop a control strategy for
an OA vehicle that guarantees trajectory-following and solves the allocation
problem while reducing energy consumption. However, for road cars,
additional constraints must be considered and guaranteed. The control action
must be such to ensure stability during driving so that there is no risk for the
vehicle to behave unexpectedly. It represents an additional constraint for the
controller, but stability is critical to ensure passenger safety. In addition, the
possibility of testing such a controller on an OA vehicle developed within the
KTH adds additional demands. The control strategy for properly working
on the RCV-E [5] must be such to run in real-time. Here, the necessity to
develop a sufficiently agile and fast controller to cope with this problem. The
requirement to balance between complexity in a control strategy that must
accomplish multiple tasks, i.e., trajectory-following and allocation over many
actuators, and agility to function in real-time on an embedded platform [6] is
the central problem that will guide this research project.

1.2.1 Research question

How can different control techniques guarantee trajectory following and
stability with the aim of optimizing the energy consumption required in an
Over-Actuated electric vehicle (RCV-E [5]) in real-time?

1.2.2 Hypothesis

The control techniques and in particular the solution that will be implemented
can effectively work in real-time on the RCV-E [5].



Introduction | 7

1.3 Purpose

The objective of this project is to advance research on Over-Actuated vehicles,
with a focus on trajectory-following and energy optimization. Previous works
within KTH [8, 9] analyzed the convenience of Over-Actuation to improve
energy consumption and stability. Their goal (see also Chapter 2) is to
investigate how over-actuation affects forces allocation at the wheels to fulfill
a given task. In particular, active camber control and torque allocation
(torque vectoring) characterize the actuation in previous works. This research
project intends to build on them and develop a controller that solves the
problem presented in Section 1.2. The purpose of the research derives
from the necessity to have an embedded implementation on the RCV-E of a
controller able to allocate an optimal control action on multiple actuators. This
contribution can provide the basics for the experimentation on the RCV-E for
control that employs an optimal solver to choose the control action.
Besides, the benefits are also related to the relevance of energy consumption.
This project plays a role in the environmental problem of energy shortage and
clean energy requests. From the necessity to investigate multiple solutions
to reduce power consumption in transportation, Over-Actuation in vehicles
represents one of the candidates to contribute to solving this condition. The
following paragraph (Section 1.3.1) shows the benefits of this research on
social and ethical aspects from a more tangible perspective.

1.3.1 Social, ethical and environmental aspects

This thesis project intends to advance the research on OA electric vehicles
with energy minimization purposes. According to the European plan for the
green transition Fit for 55 [7], cars and vans will have to guarantee zero CO2
emission since 2035. This proposal is one of the many stated in this package,
and all aim of ensuring that EU policies are in line with the climate goals
agreed by the Council and the European Parliament.
The main option to satisfy the zero-emission car’s goal is to rely on electric
and hydrogen cars. Therefore, research on electric vehicles becomes essential
to face all people’s necessities by 2035, and one of these necessities is the
electric vehicles’ autonomy. This project study intends to face this problem
and advance the research to minimize the consumption of electric vehicles, in
particular exploiting the Over-Actuation.
Minimizing the energy consumption of electric vehicles has results from both
social and environmental perspectives. It will make electric vehicles more
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appealing because it improves their autonomy, and long-distance travel will
become more sustainable for people. This will facilitate also the transition
from the combustion to electric engines by 2035. In addition, the improvement
in energy consumption impacts the environment independently from European
regulations. The reduction of the energy lost while driving entails less energy
utilized and fewer resources employed for driving cars.

1.4 Goals

To find an answer to the research question Section 1.2.1 and develop a control
algorithm able to run in real-time on the RCV-E [5], the thesis project will go
through different steps and fulfill intermediate goals:

1. Investigate the possible sources of energy consumption and understand
which are more affected by the Over-Actuation (4WD, 4WB, 4WS) and
which highly influence the total amount of energy employed on the
vehicle.

2. Adopt a car model for the over-actuated vehicle. Previous research
projects (Chapter 2) studied and analyzed the effect of different vehicle
models on over-actuation control. In this thesis project, an adequate car
model will be chosen to take into account the predominant dynamics
of the vehicle and neglect others less relevant to reduce the complexity.
The model will have to take into account the actuation of the vehicle and
consider the relevant sources of energy consumption as investigated at
point 1).

3. Develop and tune a control algorithm to fulfill the primary tasks of
trajectory following and vehicle stability. Simultaneously it must handle
the control input allocation by solving an optimization problem such that
the vehicle exploits the minimum amount of energy.

4. Embed the controller on the RCV-E [5], investigate different options for
this scope, and properly tune the controller for real-time purposes.

1.5 Research Methodology

The scope of this thesis is to face a specific goal (Section 1.3) and subgoals
(Section 1.4) to give an answer and solve a specific problem (Section 1.2). A
qualitative research methodology [10] will be adopted in order to understand
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and assess the different models, algorithms, and tools to reach the goal.
Besides, large data sets do not concern the scope of the research, and the
assessments will be carried out on smaller amounts of data collected during
tests. The framework of the degree project is predominantly constituted by
analytical and applied research methods [10]. The work starts from existing
knowledge, both from previous research projects and from control theory
fundaments. Later, after examining a set of circumstances, the results are
addressed to the specific goal of implementing a controller with real-time
purposes. The thesis work aimed to develop a control algorithm, and an
inductive research approach [10] is adopted since is recommended in the
development of artifacts. Besides, this research approach better fits with
qualitative methods used during the projects, and no deduction of the best
control strategy from large data sets was possible within the characteristics of
this thesis project.

1.6 Delimitations

The boundaries within which this thesis project takes place are related to
its different parts. As regards the trajectory-following objective, the vehicle
is expected to stay as close as possible to the provided references, but no
constraints on its position are considered. Although a correct tuning of the
control action should guarantee a good trajectory-following, the boundaries
of the road are disregarded. This represents a limit of this research’s results
that affects real applications where the presence of additional vehicles or road
conditions presume the inclusion of the constraints.
Besides, regarding energy minimization, this project is mainly focused on
exploiting Over-Actuation for energy consumption goals when a positive
traction force is required. Therefore, although the vehicle’s kinetic energy
recovery in braking conditions may also be affected by a different torque
allocation at the wheels, it is not considered within the scope of this research.
Finally, concerning the implementation of the controller on the RCV-E, only
tests to validate the controller regarding real-time purposes were performed.
These tests were held in a stand-still condition, without driving the vehicle,
because it was not possible to validate the controller’s performance on the
RCV-E from the point of view of trajectory tracking and energy minimization.
These validations were carried out only in simulation.
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1.7 Structure of the thesis

Chapter 2 presents the literature study and works concerning over-actuation,
vehicle stability, and energy consumption. Chapter 3 analyzes the controller’s
tasks, i.e., trajectory-following, power consumption, and stability, and presents
how they are included in the control strategy. Chapter 4 defines the vehicle
model the controller utilizes, considering the actuation available (4WD, 4WS)
and the driving objectives. Chapter 5 describes the control strategies chosen
to perform trajectory-following and presents the simulation results on the
performance. Chapter 6 introduces the energy minimization control strategies
and shows the improvements obtained. Chapter 7 discusses the problems
and the solution to embed the controller on dSPACE - MicroAutoBox II [6].
Besides, it shows the real-time performance and the limits of the control
strategy on the RCV-E. Finally, Chapter 8 draws conclusions and opens new
challenges for future work.
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Chapter 2

Related works

This chapter describes the relevant work on which this thesis intends to build.
In particular, Section 2.1 presents a brief overview of the general control
techniques adopted to manage Over-Actuation. Section 2.2 presents previous
works within KTH that investigate Over-Actuated vehicles with a focus on
energy consumption. Section 2.3 analyzes all the other relevant work on Over-
Actuation (OA) for energy optimization. Section 2.4 introduce vehicle stability
and identifies previous projects on OA vehicles for stability purposes. Last,
Section 2.5 presents works that combines energy minimization and stability.

2.1 Over-actuation control

Over-Actuated systems find wide use in aircraft vehicles. One of the
advantages for which they are exploited is the use of actuator redundancy to
improve safety in case of failure [11, 12]. However, in the case of failure-
free situations, the control systems of aircraft and road vehicles have both the
objective to use redundancy to solve further tasks and improve driving or flying
conditions. Here, controllers aim to solve the allocation problem, which for
linear problems, is formulated as follows [13]:

Bu = ddes
umin ≤ u ≤ umax

u̇ ≤ u̇max

(2.1)

ddes is the desired virtual control input, i.e. the desired overall control action.
u is the real control variable, i.e. the input to the actual actuators.
B is the matrix that link the real control action to the desired one.
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A necessary condition for a system to be Over-Actuated is that the number
of columns of B must be greater than the number of its rows [13]. Depending
on the freedom of choice that Over-Actuation allows and the operational
constraints on actuators, like saturation, different control approaches can be
adopted: from the simplest to more complex ones.
When it is obvious how to combine two or more redundant control effectors,
explicit ganging [13] represents a good solution. It uses a linear combination
of the redundant control effectors to reduce the control space dimension of an
Over-Actuated system.
An approach that weakly exploits the redundancy is to use one actuator to
control a controllable variable until saturation occurs, then a second actuator
supports the previous one. This method is referred to as Daisy Chaining
[13, 14].
Another direct approach is to use the pseudo-inverse of matrix B to find the u
solution, and an iterative method called Redistributed Pseudo Inverse [13,14]
can be adopted to handle actuator saturation.
The solution most widely used in literature is optimization, which is
formulated as follows [13]:

min
u

J = ||Bu− ddes||
s.t. umin ≤ u ≤ umax

(2.2)

The norm used depends on the algorithm used to perform minimization,
with 1-norm and INF-norm the problem results in a Linear Program (LP) [14].
A very common solution is to formulate the problem Eq. 2.2 as a Quadratic
Program (QP) and write it as a 2-norm.
In the case where the control effectors are not saturated, the redundancy of
Over-Actuation may produce multiple solutions that lead to J = 0, and a
secondary objective can be introduced to select the final control action [13,14].
Fixed up as the preferred control action, the problem can be reformulated as a
Mixed Optimization [13]:

min
u

J = ||Bu− ddes||+ v||u− up||
s.t. umin ≤ u ≤ umax

(2.3)

For nonlinear effector models, formulated as follows [14]:
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min
u

J(u)

s.t. F (u) = 0, G(u) ≥ 0
(2.4)

one option is to linearize the equations locally, to represent the model as an
affine model [15] and to solve it locally as a linear model. The other option is
to solve a nonlinear optimization [14].
This list represents a theoretical introduction to the Over-Actuated control
allocation methods, whereas applications on vehicles is presented in the
following sections.

2.2 Over-actuation at KTH with a focus on
energy optimization

This project intends to build on the work of P. Sun [8,16,17]. In his Doctoral
Thesis [8], he explores the energy-efficient control methods and models for
OA Electric Vehicles (EVs). Besides particular attention to camber control for
this purpose, an analysis of front steering wheels (FWS) and torque vectoring
(4WD-4WB) to directly control the yaw moment DYC for stability and energy
efficiency purposes is carried out [8, 16, 17]. The result of an offline optimal
torque distribution to minimize the power consumption is exploited to relate
the engine efficiency with the yaw moment (Mz) at steady-state cornering
[16, 17]. Besides, a stability region based on yaw rate and side slip angle
is defined, and a sliding mode control is adopted to select the stability yaw
moment (Mz) [16, 17].
In [17], a comparison between the energy-efficiency DYC and the stability
DYC under double lane change at different speeds is made. The first distributes
the torque so that the average power consumption is reduced, whereas the
second guarantees a smaller yaw rate and side slip angles but it cost higher
power consumption even under light maneuvers. A trade-off is proposed with
a switching principle [16] that moves the control set from DYC for energy
minimization to DYC for stability in the case of safety-critical maneuvers.
This solution guarantees stability, reduces power consumption, compared to
the only stability DYC case, and is also promising for real-time purposes.
In J. Edrén’s work [9], a general investigation of the over-actuation possibilities
has been outlined. Different types of vehicle and tire models are analyzed
from the point of view of real-world fidelity and computational performance.
The effect of camber, active suspension and torque allocation on over-actuated
vehicles is examined to improve performance and safety. First, a force



14 | Related works

allocation algorithm based on optimization is presented, then a simplified
one, which geometrically allocates the longitudinal and lateral forces and
yaw moment to the wheels proportionally to their possibility to generate
force. Later, evaluations on a small-scale prototype vehicle are realized.
Importance is also given to energy optimization in [18], where different
variants of actuation (combinations of steering and torque allocation) are
investigated during non-safety-critical cornering situations. Results suggest
a front-wheel torque drive vehicle with torque vectoring combined with four-
wheel steering. It was noticed that the largest contribution to the reduction
of energy consumption during cornering is provided by rear-axle steering:
compared to traditional road car driving, the improvements are about 10%.
In [19], Edrén focuses the research topic particularly on force allocation at the
wheels, investigating the problem for a small-scale prototype.
In S. Bath’s thesis [20], front and rear axle camber angles combined with front
and rear axle steering angles are used to stabilize the vehicle lateral dynamics
(yaw rate and side slip angle) while minimizing the cornering resistance
for energy minimization purposes on an over-actuated vehicle. Dynamic
Programming (DP) is used to derive an offline optimal solution that is useful
as a benchmark for energy reduction dissipation. Later, a Model Predictive
Controller (MPC) formulation starting from the DP results is responsible for
the online tracking of the car reference states yaw rate and side slip angle. The
MPC [21] implementation on a KTH-Research Concept Vehicle (RCV) [22]
is performed.
In M. M. Davari’s work [23], tire energy losses are studied to improve
the energy efficiency of over-actuated vehicles under the effect of camber
angle, side slip angle, and slip rate. He investigated different tire models
for energy purposes, and a high-fidelity semi-physical non-linear tire model
called Extended Brush tyre Model was developed [24]. Half-car model [25],
bicycle model [26,27], and 3-DoF vehicle model [28] were used for tire energy
loss analysis. In addition, the effect of the road tarmac [29] on tire losses
was considered. In the end, control allocation strategies exploit Dynamic
Programming and MPC to optimally control over-actuation, and tests on
RCV [22] were performed to investigate separately the vehicle’s actuation on
different maneuvers.
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2.3 Over-Actuated vehicles with a focus on
energy optimization

Research studies on over-actuated vehicles for energy optimization are
outlined here; the goal is to estimate the sources of power consumption in
the car and adopt a control allocation strategy that reduces this consumption.
As in [30], the control allocation scheme allocates torque and steering angles
to track the vehicle’s planar velocities (vx, vy, yaw rate) provided by the upper-
level controller. The solution proposed is a two-step optimization where two
cost functions are optimized simultaneously; one for reference tracking and
one for the engine’s energy minimization. A two-step optimization simplifies
the tuning compared to the case where only one cost function is used. However,
this solution showed lower efficiency in terms of speed, and to speed up
the search for the minimum a tuned-offline heuristic function was used to
approximate the energy consumed.
A technique to minimize power consumption in a four-wheel driving vehicle
is to distribute the torque between the front and rear axles according to
the necessities. Different studies adopted this solution based on engine
efficiency characteristics [31–37]. In [31], an OA vehicle with in-wheel
electric motors exploits a control strategy to allocate the total reference torque
on the two axles, and the optimal allocation ratio can be obtained offline from
experimental data. Results show that for straight driving at a constant speed,
two-wheel drive is more efficient than four-wheel drive. A similar approach
is proposed in [32, 33], where the two sides of the car, left and right, are
considered independent to better track the reference yaw moment beyond the
longitudinal force. The power optimization relies on the motor efficiency,
and the allocation ratio per side can be obtained from an offline generated
table based on experimental data as in [31]. The same results as in [31]
show that when the torque required is low, the optimized solution is the two-
wheel-driving mode. In [33], when the two-wheel-driving mode is preferred,
the allocation is on the front wheels to lower the over-steering behavior. In
[34], a search algorithm based on the golden section method is proposed to
allocate the total torque on the two axles. It is an iterative method to find
the minimum of a function, namely the engine power consumption, inside a
specified interval. A linear derivation of the wheel slip ratio is considered
in the problem formulation because tests were performed on a high-friction
road, and no stability boundaries on the slip ratio were added. Optimal axle
torque allocation is adopted in [35], where the friction losses are included in
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the problem formulation to estimate the additional amount of torque to apply at
the wheels. Particular attention is also added to avoid opposing torque between
the front and the rear axle to prevent inferior energy efficiency. For low-torque
requests, the optimization leads to the use of only one axle. Conflicting results
are obtained in [36], where the torque allocation between the front and rear
axle for power minimization purposes leads to equally distributed torques on
the axles. This is due to the efficiency characteristics of the PMSM. In [37], it
is described a novel efficiency torque distribution on the two axles, the aim is
to minimize the power losses by providing the requested wheel torque and yaw
moment. An analytical solution that fits the engine power losses with a third-
order polynomial curve is compared with two offline optimization solutions.
The results of the online optimization strategy are very close to the more
sophisticated offline optimization control strategies.
Further works to improve energy consumption are focused on the minimization
of tire energy losses. In particular, driving on the outer wheels of a vehicle
[38], similar to [18], reduces the cornering resistance and, consequently, the
energy consumed by the tires. This result is verified by an optimization
performed with a simpler four-wheeled handling model. In [39], an online
control system is proposed in order to improve the vehicle’s energy efficiency
by minimizing tire power losses: tire slip resistance, and rolling losses.
The controller developed, named Tire Inflation Pressure Regulation System
(TIPReS), regulates the tire pressure, which affects both the rolling losses and
the tire slip resistance. For the estimation of the latter term, an inverse tire
model derives the slip rate from the longitudinal tire force using a second-
order polynomial fitting curve. This model improves online optimization to
compute the best tire pressure. In [40], a semi-empirical tire slip energy model
is developed to easily estimate the slip energy online with high accuracy.
Section 2.5 presents further works on energy minimization that take into
account also vehicle stability.

2.4 Vehicle stability

Electronic Stability Control (ESC) is a massive innovation and has become
essential in nowadays’ vehicles. The impact on vehicle crashes is astonishing:
results indicate that the ESC prevents about 40% of all crashes involving
loss control [41, 42]. Vehicle stability control systems prevent vehicles from
spinning, drifting out, and rolling over [43]. In particular, systems responsible
for preventing vehicles from skidding and spinning out are often referred
to as yaw stability control systems, and strategies like Torque Vectoring
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(4WD, 4WB) and Four-Wheel Steering (4WS) can highly affect the yaw
stability for an over-actuated vehicle. ESC is also responsible for the vehicle’s
longitudinal stability in terms of wheel slipping or locking. Therefore, tire
stability is necessary to ensure vehicle stability. As proof of this, vehicle
stability (longitudinal, yaw, and roll over stability) can be referred to as a
comprehensive indication of the four tires’ force state [44], and it is evaluated
and predicted from the forces acting on the wheels and the driver’s input.
In summary, vehicle stability is critical and depends on the stability of its
components, such as tires.
The following section discusses the state-of-the-art of stability-optimized over-
actuated vehicles.

2.4.1 Over-actuation for stability purposes

Yaw stability control has been highly investigated in W. Zhang’s work.
In his Doctoral thesis [45], he shows how path-following and yaw-
stability performance in critical maneuvers are improved using over-actuation.
Different vehicles and tire models are analyzed at various levels of complexity
depending on the specific application. Both torque vectoring [46] and active
camber control [47] to directly control yaw moment (DYC) are analyzed. The
controllers based on MPC are designed to compare one-level to two-level
structured torque allocation controllers, as well as rule-based and optimal
solutions, and assess their performance to achieve yaw stability [46]. Active
camber control can produce extra lateral tire forces and overcome their
saturation on normal actuation during critical situations. It can be seen that
active camber results in higher tire usage, which contributes to performance
improvement.
Other works adopting Direct Yaw moment Control (DYC) follow.
In [48], a hierarchical control strategy to control lateral vehicle dynamics (yaw
rate and lateral slip angle) is presented. A top layer that uses a feed-forward and
feedback controller provides the reference yaw moment (Mz) to the allocation
step that, together with the desired longitudinal force from the driver, allocates
the torques at the wheels. The allocation step is an MPC that starts from
a pre-allocated solution, exploits torque vectoring, and keeps the wheel slip
ratio in the stability area. A similar control hierarchical structure is proposed
in [49], where the upper-level exploits Sliding Mode Control (SMC), and the
allocation problem also handles camber angles.SMC is adopted also in [50] for
the higher-level controller, while the lower level uses a cost function where the
forces on the axles are proportional to the vertical load. DYC is also addressed
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in [51], where a comparison between three toque allocation controllers during
different maneuvers is presented. Optimal torque distribution with as objective
the maximization of the stability margin given by the friction circle performs
better in all cases than the average torque distribution and than the torque
distribution proportional to the wheels load. A further structured control
algorithm for yaw stability is proposed [52]. The driver requests steering and
velocity references, so the forces and the yaw moment on the car’s Center of
Gravity (CoG) are computed with an adaptive robust controller for reference
tracking. The allocation problem is solved using torque vectoring and rear
steering to improve yaw stability while limiting the forces on the wheels by
the friction circle. In [53], an MPC allocation approach is adopted to track
reference yaw moment and longitudinal force at the car’s CoG; it relies on
a pre-allocation step that computes the torques using the pseudo-inverse of
the geometrical vehicle structure matrix. Attention is given to limiting the
longitudinal tire slip and reducing the input utilization. Similar attention is
paid in [54], but a different solution from DYC is proposed. An MPC stabilizes
the two-state system (side slip angle and yaw rate) using wheel torque and
front wheel steering without computing the yaw moment required for the yaw
stability. The reference yaw rate is computed from the steering angle using
the bicycle model, and the reference side slip angle is set ideally to zero. The
same approach is proposed in [55], where the friction circle is considered to
guarantee tire stability. A nonlinear MPC [56] is used to control the wheel
torque to keep the longitudinal slip angles in a safety region and to the desired
value for the traction force generation. In [57], the concern is given to the side
slip angles, where constraints are used to maintain vehicle stability. A high
emphasis on tire stability is given in [58], where the allocation problem is
performed by assigning slip rate and side slip angles as virtual controls to the
wheels to follow forces and yaw moment at the CoG of the vehicle computed
by a higher-level SMC. Using these virtual inputs, it is possible to directly limit
them to the stable region such that the friction ellipse nonlinear constraint can
be decoupled into two linear constraints because the slips depend linearly on
the friction coefficient.
A combination between Active Front-wheel Steering (AFS) and Direct Yaw
moment Control is adopted to perform yaw stability control of the vehicle [59]
and [60].
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2.5 Over-actuation for stability and energy
minimization purposes

In the following works, vehicle stability and power consumption reduction
are achieved simultaneously. The combination of these two goals is realized
by exploiting over-actuation on EVs, often mixing solutions presented in
Sections 2.3 and 2.4.1.
In [61, 62], a first step torque allocation algorithm is realized to allocate
the requested longitudinal force on the wheels using the in-wheel engine
characteristic in order to minimize the power consumption. A further
allocation step starts from this result to find a close solution that bounds the
longitudinal slip ratio within linear boundaries and provides the requested total
traction force. Lateral forces are also considered [63] and estimated to limit
the longitudinal forces at the wheels by defining a stability region within the
friction circle. The tire slip dynamic is omitted in the interest of real-time
performance, and an MPC solution is adopted to track longitudinal force and
yaw moment at the CoG while considering the engine efficiency map to lower
the power consumption.
Yaw stability is also taken into account in [64, 65]. A hierarchical control
structure is proposed [64] and exploits the upper level (SMC) to control the
yaw rate and the side slip angle beta and provides references to the lower
level, which allocates the wheel torques for reference tracking and power
minimization. The allocation differentiates the solution depending on the
situation: it exploits a rule-based strategy when steering and a motor efficiency
optimization when driving straight. Similarly, in [65], the middle layer
(MPC) controls yaw stability and supplies longitudinal force and yaw moment
references to the lower level, which minimizes power consumption in terms of
engine efficiency and tire slip power losses.
In Y. Chen’s work, different control techniques are analyzed to handle the
asymmetry between energy consumption during driving and regenerative
braking [66–69]. In [66], after developing a torque allocation algorithm
for virtual variables tracking and energy optimization during driving and
regenerative braking, he formulated the problem solution in order to handle the
two modes. In [67,68], he proposed a KKT-based algorithm to find the global
minimum for both single and dual-mode energy-efficient Control Allocation
(CA) problems. Comparison [69] between the previous solution with a rule-
based one and the KKT-based CA algorithm consumed the least energy among
the three methods thanks to global optimization.
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Chapter 3

Analysis of the control tasks

This chapter aims to analyze the different tasks the controller has to fulfill, i.e.,
trajectory-following, energy minimization, and vehicle stability, and how the
control strategy intends to include each. Section 3.1 introduces the simulation
environment, explaining its features and the changes needed to model an Over-
Actuated vehicle. Section 3.2 describes how the trajectory-following problem
is defined, which references are tracked, and how the problem is solved in the
control strategy. Section 3.3 explores the sources of power consumption in
electric vehicles, and stands out those that can be influenced by over-actuation
(4WD-4WS). These are compared to one another from the simulation results
to see how much they affect energy consumption. Section 3.4 analyses the
sources of instability and considers which are fundamental to be guaranteed
and which are less affected by the driving conditions.

3.1 Simulation environment

This research project was carried out to obtain usable and implementable
results on a real vehicle. Before implementation and testing on the RCV-E,
validation was performed in IPG CarMaker [70], a simulation software for
virtual test driving for automobiles and light-duty vehicles. IPG CarMaker
provides the opportunity to be integrated into the MATLAB/Simulink
environment [71], where the IPG CarMaker features were added to
the Simulink environment using S-functions and MATLAB/Simulink API
functions. "CarMaker for Simulink" [71] offers the possibility to apply
changes to the IPG CarMaker environment, namely modify the vehicle model,
change the vehicle’s parameters, replace the vehicle driver with a controller,
and log data from IPG CarMaker’s simulation.
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The vehicle used during the simulation is a Tesla Model 3, Figure 3.1, whose
principal parameters are shown in Table 3.1.
In Simulink, different changes to the test car are applied to match the
characteristics of the Over-Actuation considered. The vehicle power-train is
changed to request an individual torque to the four wheels. Four Permanent
Magnet Synchronous Motor (PMSM) are modeled to mimic the behavior of
the in-wheel engines of the RCV-E as the torque-speed efficiency characteristic
(Appendix A). Besides, the Tesla’s four wheels are adapted such that the
controller can steer them independently.

Figure 3.1: Side view of the test vehicle in simulation.

Tesla Model 3

Parameter [Unit] Value
Mass [kg] 2108
Total yaw inertia [kgm2] 3954.3
CoG height [m] 0.545
Wheelbase [m] 2.97
Track width [m] 1.68
Wheel radius [m] 0.33
Engine maximum torque available [Nm] 230

Table 3.1: Vehicle parameters.

3.2 Trajectory following strategy

This section explains how the trajectory is defined within the context of this
project, how the reference points are sampled from it, and how the controller
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is configured to follow the references. Besides, a brief overview of other
projects dealing with trajectory-following will be presented along with the
additional considerations to introduce for a vehicle able to move sideways
without affecting its direction (yaw angle).

The objective of the vehicle is to follow a given trajectory, so path coordinates
(x, y) must be provided. The car will have to remain as much as possible
close to these reference coordinates while performing autonomous driving.
Besides, since the Over-Actuation allows the RCV-E to control rotation and
lateral motion independently from each other, the desired vehicle direction θ

can be arbitrarily provided as an additional reference to track. One advantage
of having this DoF tunable by a path planner is that it is possible to force
lateral motion, with the vehicle yaw angle fixed, to improve vehicle stability
as in a double-lane change. The reference path coordinates may slide sideways
while the reference heading remains unchanged, as in Figure 3.2. If this
is not the case, then the desired reference heading θ can be defined as the
linking direction between two consecutive points (x1, y1) and (x2, y2). Last,
the vehicle has to follow the path with the desired admissible velocity. In the
context of this project, the main movement of the car is longitudinal, so only
the longitudinal reference speed vx is required, however, the solution proposed
can also be easily adapted if a lateral velocity reference is to be provided.

Figure 3.2: Representation of path moving sideways.

Now, the vehicle has to follow a trajectory made by four elements
(x, y, θ, vx), and as explained in Section 1.1.1, the planner sends the references
for the controller, which can be described in multiple ways. In this thesis, a
point-to-point trajectory is chosen (Figure 3.3), with each point represented by
the vector (x, y, θ, vx). However, this is not a binding choice; as a matter of
fact, the framework of the control algorithm presented in this project is also
flexible to other trajectory representations and does not depend on the used
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one. In fact, the controller (see Chapter 5) presents an interface that allows it
to select only a few points to perform prediction along the given path. It will
be sufficient to adapt this interface to the type of representation the planner
provides. In addition, for point-to-point trajectory, denser points approximate
better a continuous path and guarantee a smoother reference to follow. On
the contrary, if the distance between points is higher, the controller will be
less bound by the references and consequently less precise in following the
trajectory.

Figure 3.3: Trajectory specification.

3.2.1 How the controller performs trajectory following

This section explains the strategy adopted by the controller to track the
reference trajectory.

As it will be better explained later (see Section 3.6), the control strategy used
in this project relies on MPC for the trajectory-following task. MPC exploits
prediction along the path to decide the control action, and a solution to select
references along the trajectory is needed. From a point-to-point trajectory, N
points along the prediction horizon must be sampled, with N the number of
prediction steps of the MPC.
To sample them, the nearest trajectory point to the car’s current position is
located (Figure 3.4a). From it, the first reference is selected to have a distance
of Ts ∗ vx along the path, and the subsequent references will be sampled to
have a distance Ts ∗ vx from their previous one. In particular, Ts represents
the sampling time, whereas vx is the longitudinal reference velocity of the
previous reference point. As a result, the distance Ts ∗ vx is not constant and
depends on the varying reference velocity vx along the path and the sampling
time Ts which can also be chosen as not constant.
Besides, the trajectory representation consists of a discrete number of points.
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Therefore, to move along the path of a distance Ts ∗ vx and select the
next reference from the previous one, the crow-flies distance between two
consecutive points is used until the sum of these distances exceeds Ts ∗ vx
(Figure 3.4b). The selected reference will be the last point that does not exceed
the distance Ts ∗ vx.

(a) (b)

Figure 3.4: Trajectory sampling over the prediction horizon.

From the N references provided to the controller, a control strategy for
trajectory-following has to be derived.
The vehicle state is defined by its position in the global reference frame
(xcar, ycar), heading direction, and the three planar velocities, i.e., lateral,
longitudinal, and yaw rate, in the vehicle reference frame.

x =



xcar

ycar
θ

vx
vy
θ̇


(3.1)

The simplest option is to ask the MPC to lower the difference between
the reference position, heading direction, and longitudinal speed with the
corresponding vehicle’s states, as in Equation 3.2. However, in this way, the
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tracking of the position reference will also affect the longitudinal velocity of
the car. In fact, the more aggressively the controller is while tracking the
next reference position, the faster it will drive the vehicle despite the speed
reference. Proper tuning can find a trade-off in this problem, but a more
reliable solution can be developed. The idea consists of separating the control
of the lateral and longitudinal dynamics of the vehicle and exploiting the speed
reference to control the longitudinal dynamics and the lateral deviation from
the trajectory to control the lateral dynamics.

min


x

y

θ

vx

−


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0




x

y

θ

vx
vy
θ̇


(3.2)

where [x, y, θ, vx]
T is the next reference vector, and [x, y, θ, vx, vy, θ̇]

T is the
vehicle’s state.

This control strategy is also widely used in literature. Previous research
projects [72–74] define the vehicle model as the error model where the lateral
distance of the vehicle from the reference trajectory and the difference between
the vehicle yaw angle and the reference yaw angle become states of the new
system. In particular, works [72, 73] define a spatial-based vehicle model
where the error states are a function of the position along the path, whereas
[74] also considers forces at the wheels. These projects model a front wheel-
steering vehicle and account for a path that can only run in the direction of
its reference yaw angle to be compatible with the car considered. Therefore,
the car’s lateral displacement is dependent on its heading and cannot slide
sideways, as the RCV-E does, and the reference path has only the yaw angle as
a fundamental component to track because no lateral sliding is admissible. In
this case, it is possible to write the vehicle’s lateral deviation from the reference
path as a function of the yaw angle error, defined as the difference between the
car’s and the path’s yaw angles.
The vehicle error model has as a reference frame the path to follow, and the
MPC aims to minimize the two states of the system since they represent the
error from the reference. For the case of the RCV-E and a reference trajectory
that can slide sideways, the MPC tracking is more complicated. The lateral
deviation no longer depends only on the yaw angle error, and the reference
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path cannot be defined only by its yaw reference: the position of the points is
independent of their yaw angle. As a result, the vehicle error model utilized in
the previous works must be extended to account for the car’s and path’s lateral
velocities.
A different approach to separate the lateral and longitudinal dynamics of the
vehicle is proposed in [75]. Here, the control of a standard road car is no
longer dependent on the error model and exploits the vehicle lateral dynamics
model to track the given trajectory. The work minimizes the distance between
the lateral position, as the predicted output, and the road center line as follows.

J = ||Y (k)−R(k)||2 (3.3)

In this thesis project, a similar approach to [75] is used.
The objective function intends to minimize the vehicle’s lateral deviation LD

from the reference position and track the reference yaw angle θr and the
longitudinal velocity vxr. Therefore, the output of the system (y) and the
reference to track (r) are:

yi =

 LD

θ

vx



ri =

 0

θr
vxr


(3.4)

where i is the i-th step along the prediction horizon

The lateral deviation LD is the difference between the predicted position of
the vehicle and the corresponding i-th reference pose, as in Figure 3.5.

Figure 3.5: Vehicle lateral deviation from the trajectory.

Given the i-th position of the car along the prediction horizon (xi
c, y

i
c) and
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the pose of the i-th reference point (xi
r, y

i
r, θ

i
r), the lateral deviation is computed

according to Equation 3.5.

LD = −xi
c sin θ

i
r + yic cos θ

i
r + xi

r sin θ
i
r − yir cos θ

i
r (3.5)

From Equation 3.5, it is possible to identify two terms dependent on the
vehicle state and two that only depend on the reference i-th. Since the objective
of the controller is to have LD = 0, Equation 3.5 can be written as a function
of the vehicle state as follows:

[− sin θir, cos θ
i
r]

[
xi
c

yic

]
= −xi

r sin θ
i
r + yir cos θ

i
r (3.6)

[− sin θir, cos θ
i
r, 0, 0, 0, 0]x

i = −xi
r sin θ

i
r + yir cos θ

i
r (3.7)

Combining Equation 3.7 with Equation 3.4, the output of the system and
the reference to track can be rewritten as:

yi = Cixi

ri =

 −xi
r sin θ

i
r + yir cos θ

i
r

θir
vixr



with Ci =

− sin θir cos θir 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0


(3.8)

where xi is the vehicle state (Eq 3.1) computed at the i-th step over the
prediction horizon.

Combining all the outputs of the system at each step of the prediction horizon,
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and doing the same with the references, one obtains:

Y (k) =


y1(k)

y2(k)
...

yN(k)



R(k) =


r1(k)

r2(k)
...

rN(k)


(3.9)

where k is the time at which the prediction is realized, and N is the number of
steps the prediction horizon is made of.

The cost function in the MPC for the trajectory following task will be realized
as Equation 3.3.
Chapter 5, will present the optimization phase to minimize the cost function
for trajectory following.

3.3 Sources of power consumption

This section considers the sources of power consumption of an Electric Vehicle
and analyzes those that can be affected and reduced by over-actuation.

The sources of energy consumption that depend on the forces acting on the
vehicle, whether combustion or electric, are listed in [76]. Forces presented in
the paper are:

1. Air resistance against the vehicle.

Fair =
1

2
ρaCDAf (v + vwind)

2 (3.10)

ρa is the mass density of the air.
CD is the aerodynamic drag coefficient.
Af is the frontal area of the vehicle.
v is the longitudinal vehicle velocity.
vwind is the frontal wind velocity.
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2. Free rolling resistance forces at the tires.

Froll =
4∑

i=1

frFNi (3.11)

fr is the rolling resistance coefficient under free rolling.
FNi is the normal load on the tire i.

3. The acceleration force action on the vehicle.

Facc = Mδa (3.12)

M is the vehicle mass.
δ is the rotational inertia factor.
a is the vehicle acceleration in m/s2.

4. The grade related force.

Fgrade = Mg sin θ (3.13)

M is the vehicle mass.
g is the gravitational acceleration.
θ is the slope (positive uphill).

All these sources of energy loss are not directly affected by vehicle over-
actuation. In fact, the first term depends only on the aerodynamics coefficient,
the properties of the air, the wind, and car speed. Speed is a term that is given
as a reference and that the vehicle has to track, and it does not depend on
the choice of the actuation. The second term depends on the vehicle mass
and the tire rolling resistance coefficient fr, which is mainly constant, but
with further evaluation, the only dependence is from the speed [77]. Also,
vehicle acceleration is not directly dependent on over-actuation, of course, it
highly affects the vehicle power consumption, but it is more dependent on the
aggressiveness of the controller in tracking the reference speed rather than
on the torque allocation. An evaluation of the controller aggression will be
carried out in Chapter 5, but it is not a source of energy loss that will be
minimized in this thesis project because it is preferable to consider the drive
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mode (comfort o sport) as a varying parameter that the vehicle’s user can select
at will. Last, the grade force Fgrade depends only on the road slope and is the
additional force needed to drive uphill. It is a necessary force in addition to the
acceleration force Facc, and the same reasoning as before applies. However, in
this project, all tests will be conducted on a surface with no inclination.
Beyond these contributions, tires dissipate power due to the sliding part of the
contact zone. As presented in [39], the traction force due to tire slip is opposed
to the sliding velocity of the contact patch and dissipates power.

5. Power consumed due to opposite direction of the traction force with the
contact patch velocity.

Pσ = −Fxvs
where vs = rω − vx = σxrω

(3.14)

Fx is the longitudinal force at the contact patch.
vx is the wheel’s longitudinal velocity.
r is the wheel’s radius.
ω is the wheel’s rotational velocity.
σx is the longitudinal slip ratio.
Equation 3.14 can be written as a function of the tire slip ratio as:

Pσ = −Fxσxrω (3.15)

If the longitudinal slip ratio σx remains within the stable region, then it is
possible to approximate the longitudinal force Fx as linearly dependent
to σx [43], and Equation 3.15 becomes:

Pσ = −CσxFzrωσ
2
x (3.16)

Cσx is the normalized longitudinal slip stiffness.

This power depends on the tire slip ratio, which is directly affected by
the torque at the wheels. Therefore, it will be further evaluated, and its
contribution to the total energy consumed will be analyzed.

Tire cornering resistance is also a further source of power consumption
[18, 38]. Thanks to the lateral sliding movement of the wheel due to a lateral
component of the velocity, the tire is able to generate a lateral force opponent to
the motion. The sliding is the source of energy loss, and it must be considered.
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6. Power consumed by the cornering resistance.

Py = Fyvy (3.17)

Py is the power consumed by the cornering resistance.
Fy is the cornering resistance.
vy is the lateral velocity of the wheel.

For small slip angles α it is possible to write the lateral force Fy as linear
function of α [43] as:

Fy = −CαFzα (3.18)

Cα is the cornering stiffness.
α is the side slip angle or slip angle.

Same can be done for the wheel’s lateral velocity vy. The wheel’s slip
angle α is defined as:

α = arctan
vy
vx

(3.19)

vx is the longitudinal velocity of the wheel.

If α is small, then Equation 3.19 can be linearly approximated as

α =
vy
vx

(3.20)

The lateral velocity can be written as function of α as:

vy = vxα (3.21)

From Equations 3.18 and 3.21, Equation 3.17 can be rewritten as:

Py = −CαFzvxα
2 (3.22)

This power depends on the slip angle, which is directly affected by the steering
angle of the wheels. Therefore, it will be further evaluated, and its contribution
to the total energy consumed will be analyzed.

Important contribution to the power loss is due to the engine efficiency, i.e.
the difference between the Electrical Power taken from the battery and the
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Mechanical Power provided at the shaft.

7. Energy loss in the engine.

PenginePowerLoss = PEl − PMech (3.23)

PEl is the Electrical Power provided to the engine.
PMech is the Mechanical Power provided at the shaft.

In literature (Chapter 2), the engine losses are estimated both analytically,
computing the power loss in the copper [30, 36], or empirically, exploiting
the engine efficiency map [31–33, 35, 61, 63, 64] or directly measuring the
Electrical Power and Mechanical Power [34].
In this project, the engine efficiency map (Appendix A) was available and it
has been utilized for the engine power loss estimation.
Since the engine efficiency is not constant but depends on the rotational
speed and torque at the shaft, and the vehicle utilizes in-wheel engines (see
Section 1.1.3), then the energy loss contribution can be affected by the vehicle
actuation.

8. Power losses in the transmission.
As previously said (Section 1.1.3), the vehicle possess in-wheel engines,
so there is no transmission and, consequently, no losses due to it.

9. Regenerative braking.
In the end, another important energy source that helps reduce energy
consumption is regenerative braking. It represents an efficient way to
recover energy and is already implemented in nowadays road electric
vehicle. However, this project work does not take it into account, but
focuses more on how over-actuation can reduce energy consumption
while driving.

3.3.1 Comparison of Power losses

This Section presents a comparison between the power losses affected by
over-actuation, i.e., longitudinal slip losses, power consumed by cornering
resistance, and engine power losses. Simulation is exploited to analyze the
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three sources of power consumption during different maneuvers: a) driving
on a mixed-profile road, b) straight driving (acceleration and steady-state
driving), and c) steady-state cornering, as reported in Figure 3.6. In a),
the vehicle travels a profile long 560 m where straight and corner sectors
are combined. The lateral acceleration is limited to 6 m/s2, and when
not constrained by that, it reaches a speed of 90 km/h with a maximum
longitudinal acceleration of 5 m/s2. In b), the vehicle accelerates at 5 m/s2

from 0 km/h to 100 km/h and keeps the speed until 400 m when it brakes
to stop. In c), only the sector at steady-state cornering long 80 m is analyzed.
The vehicle faces the 30m-radius curve with a lateral acceleration of 6m/s2

and a constant speed of 47.9 km/h. Tests are realized in the IPG CarMaker
environment on a vehicle test (Table 3.2) with front steering wheels and torque
distributed on all four wheels, where in-wheel engines are modeled.
Here, the energy lost during maneuvers is computed as the time integral of
the power from Equations 3.15, 3.17, and 3.23. Longitudinal slip losses are
measured only at positive torque values because regenerative braking is not
taken into account, and hence energy must be wasted while braking. The
RCV-E’s engine efficiency characteristic in Figure A.1 is scaled for simulation
tests to match the torques and angular velocities available in the vehicle test,
keeping the efficiency profile unchanged, as shown in Figure A.2.
Table 3.3 reports the three values of energy consumption for each maneuver.

Tesla Model 3 - FWS, 4WD

Parameter [Unit] Value
Mass [kg] 2108
Total yaw inertia [kgm2] 3954.3
Wheel radius [m] 0.33
Engine maximum torque available [Nm] 230
Engine maximum angular velocity [rad/s] 1000
Gear ratio [−] 9.73

Table 3.2: Vehicle parameters in IPG CarMaker for the energy tests.



Analysis of the control tasks | 35

(a) (b) (c)

Figure 3.6: Different road profiles. a) Is a road where the vehicle follows
different profiles of velocity. b) Is a straight road where the vehicle accelerates,
travels at constant speed, and then brakes. c) Is a circle road, where steady state
cornering is investigated.

Energy consumption

Road Source of energy loss due to: Value [kJ]

Mixed Road (Fig. 3.6a)
Longitudinal slip (Eq 3.15) 14.3
Cornering resistance (Eq 3.17) 125
Engine efficiency (Eq 3.23) 344

Straight Road (Fig. 3.6b)
Longitudinal slip (Eq 3.15) 12.0
Cornering resistance (Eq 3.17) 0.02
Engine efficiency (Eq 3.23) 266

Circle Road (Fig. 3.6c)
Steady-state cornering only

Longitudinal slip (Eq 3.15) 0.130
Cornering resistance (Eq 3.17) 49.0
Engine efficiency (Eq 3.23) 47.8

Table 3.3: Energy consumed due to longitudinal slip, cornering resistance,
and engine efficiency in different maneuvers.

From Table 3.3, it can be stated that the losses due to longitudinal slip
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have less impact on overall energy consumption. Increasing also the maximum
longitudinal acceleration during straight and mixed driving to 8 m/s2, the
losses due to the slip ratio reach 18.6 kJ and 25.6 kJ respectively, and still
play a less relevant role. The cornering resistance losses regard more on the
overall energy consumption; a comparison to the other energy terms can be
seen in the mixed road where they count for one-third of the energy loss in the
engine. This term represents the more significant contribution to the energy
loss that can be affected by OA, as also stated in [30], and its minimization
will produce the most relevant result in the overall energy minimization.

3.4 Stability Considerations

This Section analyzes the sources of instability for a road vehicle and explains
how the stability conditions are considered for a 4WS, 4WD vehicle.
As mentioned in Section 2.4, the main sources of instability for a vehicle are
caused by rollover, skidding, and spinning. The first case refers to a vehicle that
lifts its inner wheels off the ground when cornering, and this phenomenon is
mainly caused by a high-positioned CoG. The other two terms refer to the risk
of a vehicle over-steering or under-steering when cornering, and controllers
that aim to prevent this are called Yaw Stability control systems. Besides,
to properly control the vehicle and guarantee yaw and rollover stability, the
wheels force request has to be bounded considering the limitations of the
vehicle and road conditions. The following subsections discuss more in
detail the three mentioned vehicle stability conditions: rollover, yaw, and tire
stability.

3.4.1 Rollover stability

Generally, rollover for road cars is usually not a problem. From [43], can
be used the static stability factor to compute an approximated value of the
maximum lateral acceleration the vehicle can withstand before experiencing
rollover.

ay_lift−off =
lw
2h

g (3.24)

lw is the track width.
h is the height of the CoG.

For the vehicle model used in the simulation and for the RCV-E (Table 3.4),
the lateral acceleration experienced during cornering is significantly below the
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limit value in Eq. 3.24, and therefore, there is no need to consider sources of
rollover instability.

Tesla Model 3 RCV

Parameter [Unit] Value Value
Track width [m] 1.68 1.6
CoG height from ground [m] 0.545 0.6
ay_lift−off limit [m/s2] 15.12 13.08

Table 3.4: Vehicle parameters for the maximum lateral acceleration of the car
before experiencing rollover.

3.4.2 Yaw Stability

Yaw stability is also focused on the vehicle’s lateral dynamics and is monitored
using the state variables of yaw rate and the car’s side slip angle β, as
extensively discussed in Section 2.4.1. However, a vehicle with four steering
wheels that can move deliberately sideways is not comparable to a road car
constrained laterally by its kinematics. A distinction must be made between
straight driving and cornering. During cornering, a 4WS vehicle, as explained
in [78], does not need a body sideslip angle β different from zero to generate
lateral forces at the rear wheels because these are generated as the wheels are
steered by an angle relative to their velocity vector. As a result, a vehicle with
four wheel-steering can improve Yaw Stability by more efficiently minimizing
the body sideslip angle, as investigated in works [3, 4].
A different scenario regards straight driving and lane-change maneuvers
in particular. In this situation, introducing a nonzero body sideslip angle
facilitates the maneuvers. As discussed in [78], the vehicle’s ability to crab,
i.e., steering front and rear wheels in the same direction, accelerates the
response of the vehicle’s lateral acceleration compared to the case of front
wheel-steering. The reason is that lateral forces do not need to wait for the
dynamics of the vehicle’s rotation around its CoG because they are generated
at the moment the wheels begin to steer. As a result, the 4WS vehicles can
make lane changes more stably and with less correction by the driver since
the lateral acceleration response is shorter. Lane-change maneuvers are also
investigated in [79] within KTH, where the vehicle (RCV) was not supposed
to be driven by a driver, but an MPC was responsible to perform the maneuver.
Here, the crabbing angle β (the body sideslip angle) was meant to be a nonzero
reference to guide the vehicle in sideways movements.
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In addition to these considerations, as stated in Section 3.2.1, the vehicle
must track the desired yaw angle while performing trajectory-following, and
this results in a double advantage. First, the vehicle is forced to maintain its
direction while performing lane changes and exploits the vehicle’s crab ability,
and second, it guarantees the vehicle to remain tangentially positioned to the
turning path and works as a kind of integral yaw rate reference.
Last, to properly guarantee Yaw Stability, the body sideslip angle has to be
minimized during cornering. However, minimizing it has the same result
as minimizing the vehicle’s lateral velocity when the longitudinal speed is
fixed. As mentioned in Section 3.2.1, to perform trajectory-following, the
lateral deviation from the reference trajectory is minimized, and applying an
additional reference on the vehicle’s lateral dynamics, as the one of limiting
vy, could partially override the effect of the previous one without additional
benefits. In fact, lateral movements are feasible for the RCV-E, and limiting
them may result in a superfluous constraint as soon as the lateral displacement
and the yaw direction are perfectly tracked.

3.4.3 Wheel Stability

Tire stability concerns the ability of wheels to generate forces and depends
on the tire-road friction coefficient µ and the vertical load Fz. In fact, the
combination of the lateral and longitudinal forces that can be generated is
limited by the so-called friction circle, as in Equation 3.25.

F 2
x + F 2

y = µF 2
z (3.25)

This constraint expresses the relation between the longitudinal and lateral
forces, which not only depend on their respective slip values but also on one
another. Therefore, counting on this constraint assure feasible requested forces
at the wheels and limits them to the stable region.
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Chapter 4

System model

This chapter introduces the vehicle model used by the controller (Chapter 5).
A compromise is sought to consider all the relevant dynamics and exclude
unnecessary ones in the name of simplicity. A less complex model allows the
controller to handle fewer variables and achieve better real-time performance,
whereas a more complex model assures a more accurate estimation.
This section is divided into two parts: the first part chooses and justifies the
vehicle type, and the second assesses numerous tire models and chooses one
of them.

4.1 Vehicle model

In this thesis project, the vehicle will be treated as a rigid body with
predominant motion in the plane [2]. Only the translation in the plane and
the rotation along the z-axis will be regarded (Figure 4.1), whereas the vehicle
roll, pitch, and vertical motion will not be part of the system states. Even if the
6 degrees of freedom system was considered sufficient for optimization in [9],
an additional simplification was deemed to improve real-time performance on
an embedded system [5]. The vehicle state will be represented by its pose and
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velocities in the plane, as follows

x =



xcar

ycar
θ

vx
vy
θ̇


(4.1)

where the pose of the car CoG (xcar, ycar, and θ) are in the global reference
frame, whereas the velocities (vx, vy, and θ̇) in the vehicle reference frame
centered in the CoG of the car, as in Figure 4.1.

Figure 4.1: Vehicle state representation.

From these considerations, the vehicle system equations are:

ẋcar = vx cos θ − vy sin θ

ẏcar = vx sin θ + vy cos θ

θ̇ = θ̇

v̇x = vyθ̇ +
Fx

m

v̇y = −vxθ̇ +
Fy

m

θ̈ =
Mz

J

(4.2)

m is the mass of the car.
J is the yaw moment of inertia of the car
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Fx is the longitudinal force acting on the CoG of the car as in Figure 4.3.
Fy is the lateral force acting on the CoG of the car as in Figure 4.3.
Mz is the yaw moment acting on the CoG of the car as in Figure 4.3.

Figure 4.2: Forces acting on the CoG of the car.

Forces in the CoG depend on the forces generated by the wheels. To
properly exploit the over-actuation of a Four-Wheel Steering (4WS) and Four-
Wheel Driving (4WD) vehicle, all sources of actuation must be taken into
account. It follows that a single-track vehicle model (also known as the bicycle
model) [45] cannot be used, as it compacts the left-hand side with the right-
hand side into one track and reduces the actuation redundancy. Besides, it has
been noticed in the literature [18, 38] that separately controlling the torque of
the inner and outer track on the vehicle while cornering could affect the power
consumption caused by cornering resistance. Thus, a double-track vehicle
model [45] is chosen because it can include all the actuation of the RCV-E
and separate the left with the right wheel track of the vehicle. In addition to
the model utilized in [45], the rear-wheel steering angles are also included,
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and forces at the CoG are as in the following equation:

Fx = Fx,FL cos δFL + Fx,FR cos δFR + Fx,RR cos δRR + Fx,RL cos δRL−
− Fy,FL sin δFL − Fy,FR sin δFR − Fy,RR sin δRR − Fy,RL sin δRL

Fy = Fx,FL sin δFL + Fx,FR sin δFR + Fx,RR sin δRR + Fx,RL sin δRL−
+ Fy,FL cos δFL + Fy,FR cos δFR + Fy,RR cos δRR + Fy,RL cos δRL

Mz = Fx,FL(−ll cos δFL + lf sin δFL) + Fy,FL(lf cos δFL + ll sin δFL)+

+ Fx,FR(lr cos δFR + lf sin δFR) + Fy,FR(lf cos δFR − lr sin δFR)+

+ Fx,RR(lr cos δRR − lb sin δRR) + Fy,RR(−lb cos δRR − lr sin δRR)+

+ Fx,RL(−ll cos δRL − lb sin δRL) + Fy,RL(−lb cos δRL + ll sin δRL)
(4.3)

where
Fx,i is the longitudinal force on the i-th wheel, with i=FL, FR,RR,RL,
Fy,i is the lateral force on the i-th wheel,
δi is the steering angle of the i-th wheel,
lf is the distance between the CoG of the car and the front axle,
lb is the distance between the CoG of the car and the rear axle,
ll is the distance between the CoG of the car and the left wheels track,
lr is the distance between the CoG of the car and the right wheels track.

Figure 4.3 show the vehicle model utilized.

Figure 4.3: Forces acting on the wheels.
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4.2 Tire model

Forces at the wheels are functions of the longitudinal slip ratio σx and the side
slip angle αi. There are several models for estimating tire forces, including the
Direct Torque model (DT), the linear model [43] the Dugoff model (Dugoff,
et. al., 1969) [43], and the Magic Formula model (Pacejka and Bakker, 1993)
[43]. In this thesis, an analysis to evaluate them in terms of accuracy and
simplicity for real-time applications is conducted. The analysis is performed
in simulation using the IPG CarMaker environment, and the various models
are compared to one another. The tests are carried out as follows.
The driver implemented in CarMaker drives the vehicle test, whose parameters
are listed in Table 4.1, on various roadways, as shown in Figure 3.6 with the
same acceleration profile reported in Section 3.3.1.

Tesla Model 3

Parameter [Unit] Value
Mass [kg] 2108
Total yaw inertia [kgm2] 3954.3
Distance from front axis to CoG [m] 1.43
Distance from rear axis to CoG [m] 1.54
Track width [m] 1.68
CoG height from ground [m] 0.578
Wheel radius [m] 0.33
Tire cornering stiffness Cα [N/rad] 14.5
Longitudinal tire stiffness Cσ [−] 32

Table 4.1: Vehicle parameters in IPG CarMaker for the tire forces experiment.

Longitudinal and lateral tire forces are evaluated as follows.
For the tire longitudinal forces Fxi, a direct torque actuation model (Eq 4.4), a
slip ratio linear model (Eq 4.5), and the Dugoff model (Eq 4.6) are examined.
The longitudinal forces obtained by these models are compared with the actual
longitudinal forces measured during the three simulations, and the RMSE
values are reported in Table 4.2. The model implemented in CarMaker
to simulate the behavior of the tires is a Pacejka model (Magic Formula
5.2). For the wheel lateral forces Fyi, the same approach is used. The
side slip angle linear model (Eq 4.5) and the Dugoff model (Eq 4.6) are
investigated and compared with the actual lateral forces measured during the
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three simulations, and the RMSE values are reported in Table 4.3. For the
Circle Road (Fig 3.6c) values corresponds only to the steady state cornering
phase because acceleration and braking are investigated in the other Roads.
During the tests, the values of σx and Fz for each wheel are assumed to be
measured, while the values of α are computed geometrically from the the
vehicles velocities vx, vy and θ̇. The direct torque actuation model is defined
in the following equation

Fxi =
Ti

rw
(4.4)

Where rw is the wheel radius. The linear tire model is

Fxi = CσFz,iσx,i

Fyi = CαFz,i(δi − αi)
(4.5)

where Cσ is the longitudinal tire stiffness, Cα is the cornering stiffness of the
tire, Fz is the vertical force on the tire.
The Dugoff’s model of the forces at the tires is

Fxi = Cσ
σx,i

1 + σx,i

f(λ)

Fxi = Cα
tanαi

1 + σx,i

f(λ)

where

λ =
µFz,i(1 + σx,i)

2{(Cσσx,i)2 + (Cα tanαi)2}
1
2

and

f(λ) =

{
(2− λ)λ, λ < 1

1, λ ≥ 1

(4.6)

where µ is the tire-road friction coefficient.



System model | 45

Longitudinal Forces Fx

Road Model RMSE

Mixed Road (Fig. 3.6a)
Direct Torque (Eq 4.4) 72.9
Linear Model (Eq 4.5) 181.1
Dugoff Model (Eq 4.6) 126.5

Straight Road (Fig. 3.6b)
Direct Torque (Eq 4.4) 84.1
Linear Model (Eq 4.5) 365.6
Dugoff Model (Eq 4.6) 194.6

Circle Road (Fig. 3.6c)
Steady-state cornering only

Direct Torque (Eq 4.4) 47.6
Linear Model (Eq 4.5) 63.2
Dugoff Model (Eq 4.6) 41.7

Table 4.2: RMSE of the longitudinal tire forces compared to the measured
ones in IPG CarMaker. The RMSE in the table is the average between the
RMSEs computed for each wheel.

From the results in Table 4.2, it can be derived that the DT model
is generally the most accurate. Especially, from a deeper analysis, it
approximates better than the other ones the values ofFx during the acceleration
and braking phases (5m/s2 acceleration, −8m/s2 braking), as can be noticed
in Figure 4.4a. However, by requesting a stronger deceleration phase, the
system becomes unstable, and in the nonlinear area, the Dugoff model has
the best results (Figure 4.4b), whereas the linear model diverges to unrealistic
values because the slip ratio is in the unstable nonlinear region. The RMSE
values for Fx during the deceleration phase on Road 2 at −10 m/s2 are
[DT=2243.3, Dugoff=517.4, Linear=1.29× 105]. It should be mentioned that
the tests were performed without a braking stability control system (ABS),
and stability solutions, discussed in Section 3.4, will have to be taken into
account in the control to keep the system in the stable area as one of the
objects of the research. Despite this, the linear model has the worst results
during acceleration and braking when Fx is high and reaches values close to
Fz (µ = 1) but remains in the stable area (Figure 4.4a). In fact, the linear
region exists only for small values of σx, and while approaching the maximum
values of the longitudinal force, the relation becomes nonlinear. Differently,
the DT model does not seem to suffer from this problem as soon as the system
remains in the stable area.
During straight steady-state driving, the models that depend on the slip ratio
have better results than the DT model (Figure 4.5). The RMSE values for
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Fx during steady-state driving at 100 km/h on Straight Road (Fig. 3.6b) are
[DT=43.2, Dugoff=1.87, Linear=1.82]. The DT model generally estimates a
longitudinal force above the measured one, this is because the measure of slip
ratio allows the two models to consider the information of the rolling losses,
which results in a lower force at the tires for the same torque.
From this reflection, under the assumption of tire stability (Section 3.4), the
option that presents a good balance between accuracy and simplicity is the
Direct Torque model (Eq. 4.4). So, no tire dynamics will be considered for the
wheel longitudinal force generation, as in previous works [33, 37, 40, 61–63].
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(a)

(b)

Figure 4.4: Longitudinal tire forces representation. a) Represents the
acceleration and braking phase at 5 m/s2 and −8 m/s2 for the left front and
rear wheels. The right side is symmetrical because the car was driving straight.
b) Represents the braking phase at −10m/s2 for the left front and rear wheels.
In these figures, the linear model is not represented because it has a divergent
behaviour and was out of scale.
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Figure 4.5: Longitudinal tire forces representation during steady-state straight
driving at 100 km/h. The linear and Dugoff models are superimposed in the
figures.

Lateral Forces Fy

Road Model RMSE

Mixed Road (Fig. 3.6a)
Linear Model (Eq 4.5) 262.2
Dugoff Model (Eq 4.6) 262.3

Straight Road (Fig. 3.6b)
Linear Model (Eq 4.5) 209.5
Dugoff Model (Eq 4.6) 209.7

Circle Road (Fig. 3.6c)
t=6.6s-13.0s

Linear Model (Eq 4.5) 260.9
Dugoff Model (Eq 4.6) 237.8

Table 4.3: RMSE of the lateral tire forces compared to the measured ones in
IPG CarMaker. The RMSE in the table is the average between the RMSEs
computed for each wheel.

From Table 4.3, one noticeable aspect to highlight is that during straight
driving (Straight Road Fig. 3.6b), the two models present a relevant RMSE
for estimating the lateral tire forces Fy. The reason is that there is an offset
between the estimated lateral forces, around zero when straight driving, and
the measured ones, a value compatible with the RMSE. The offset is negative
for the left wheels and positive for the right wheels. Assumptions suggest the
effect of an additional angle, such as the Toe or Camber angle, however since
this is an average offset of 200 N per side (which balances itself out) further
investigation was not done.
Beyond this result, the most interesting case to analyze lateral forces is during
cornering and so Circle Road (Fig. 3.6c). Here, the two models estimate more
precisely the lateral forces at the inner wheels, whereas the overall error derives
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mainly from the outer track, as in Figure 4.6a. The same behavior can be
observed during the "snake" section in the Mix Road (Fig. 3.6a), as can be
seen in Figure 4.6b.
To conclude, results show no significant differences between the two models,
and both can estimate lateral forces effectively. As a result, the Linear
model (Eq. 4.5) is the optimal alternative because fewer parameters need to
be measured, and the future implementation of the algorithm requires fewer
sensors. Besides, the wheel’s sideslip angle α can be computed geometrically
from the vehicle’s velocities in the CoG (vx, vy, θ̇).
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(a)

(b)

Figure 4.6: Lateral tire forces representation. a) Shows the lateral tire forces
estimation during steady-state cornering. b) Shows the lateral tire forces
estimation during a "snake" section.
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Chapter 5

Trajectory-following control strat-
egy

This Chapter introduces the main issues concerning the control strategies
adopted to reach the purpose of the thesis (Section 1.3): perform trajectory-
following while guaranteeing vehicle stability and minimizing energy
consumption. In particular, the controller will be implemented on the RCV-
E (Chapter 7), and it must be sufficiently agile and fast to prevent over-
run errors in its execution. However, the complexity of handling multiple
tasks can be critical to real-time performance. Therefore, before introducing
solutions to minimize energy consumption, the structure of the controller must
be defined to address an embedded implementation and drive the vehicle along
the desired trajectory.
This project develops a control strategy based on MPC to perform trajectory-
following because it predicts the state of the car along the route. Besides,
optimal control is a necessary solution when exploiting the redundancy of
Over-Actuation to accomplish additional tasks. In this regard, preliminary
considerations must be made.
The first part of this Chapter deals with the nonlinearities in the vehicle model
concerning the MPC (Section 5.1), and the second one (Section 5.2) introduces
the problem related to the control rate of the different components of the
system. Faster dynamics must be controlled with a sufficiently high sample
rate, while slower dynamics can be handled less quickly and exploit optimal
control.
Later, Section 5.3 presents the results of these solutions, while Section 5.4
introduces and demonstrates the benefit of an integral action on the
longitudinal velocity to better follow the reference.
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5.1 LTV-MPC for trajectory-following

From Section 3.2, the MPC is responsible to track the lateral deviation, the
yaw angle, and the longitudinal velocity references by minimizing the cost
function defined in the Equations 3.3 and 3.9. However, the system model,
defined in Chapter 4, is nonlinear, and consequently, the MPC cost function
has to be solved by a nonlinear optimizer. From simulations, the outcomes
highlight the unfeasibility of a nonlinear MPC for trajectory following if the
algorithm has to guarantee real-time performance and, in order not to give up
the use of vehicle state prediction along the route, it was decided to opt for a
Linear Time-Varying MPC (LTV-MPC).
At each control-sample step, the MPC algorithm linearizes the system’s
equations using a first-order Taylor approximation along the predicted state
trajectory computed at the previous sample time. As a result, at time k, N
triplets [Ak+i, Bk+i, Ck+i] are obtained, with i = 0, ..., N − 1 and N the
prediction horizon steps. The linearized system becomes as in the following
equation

{
x(k + i+ 1) = Ak+ix(k + i) +Bk+iu(k + i) +Gk+i

y(k + i) = Ck+ix(k + i)
i = 0, ..., N − 1

(5.1)
where

Gk+i = f(x̂(k + i|k), uo(k + i|k − 1))−
− (Ak+ix̂(k + i|k) +Bk+iu

o(k + i|k))
(5.2)

is the linearization error computed at time k along the prediction horizon.

Defining the predicted output Y (k), the reference values R(k), and the control
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action U(k) along the predicted horizon N as:

Y (k) =


y(k + 1)

y(k + 2)
...

y(k +N)

 U(k) =


u(k)

u(k + 1)
...

u(k +N − 1)



R(k) =


r(k + 1)

r(k + 2)
...

r(k +N)


(5.3)

The LTV-MPC can be formulated as a quadratic problem, as follows.

min
U(k)

J = [R(k)− Y (k)]TQ0[R(k)− Y (k)] + UT (k)R0U(k)

s.t. x(k + i+ 1) = Ak+ix(k + i) +Bk+iu(k + i) +Gk+i

y(k + i) = Ck+ix(k + i)

LB ≤ V · U(k) ≤ UB

∀ i = 0, . . . , N − 1

(5.4)

where Q0 and R0 are the positive definite weight matrices, V is a matrix for
the constraints definition, and LB and UB are the lower and upper bounds of
the constraints.

Please refer to Appendix B for the mathematical derivation of LTV-MPC
equations that can be directly implemented into code.

5.2 Two-level control strategy

Chapter 4 presented the system model that includes the vehicle’s and the tire’s
behavior, whose dynamics are different. As a result, when simulating the
prediction of the vehicle states along the prediction horizon, problems arise,
even employing the nonlinear system model. Using a time step relatively high,
comparable with 0.1 s, the state prediction turns out to be incorrect and often
divergent, especially at low speeds, as shown in Figures 5.1. Whereas, with
a higher sample rate (0.02 s), the problem is reduced or disappears, as in
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Figure 5.2. Here, the results are obtained by discretizing the system model
and estimating the wheel’s sideslip angles with the car’s velocities in the CoG
(vx, vy, θ̇) in such a way predicting the state of the vehicle allows predicting
the wheels’ sideslip angles along the horizon. A constant input is applied to
the system model, and the states along the prediction horizon are derived.

(a) (b)

Figure 5.1: MPC prediction. Sampling time 0.1s, initial speed 5 m/s, wheel
torque 100Nm, front steering angles 0.1 rad, rear steering angles -0.05 rad.
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(a) (b)

Figure 5.2: MPC prediction. Sampling time 0.02s, initial speed 5 m/s, wheel
torque 100Nm, front steering angles 0.1 rad, rear steering angles -0.05 rad.

Figures 5.1 and 5.2 show that a sampling time (Ts) of 0.1s produces some
oscillations in the predicted states of the vehicle, whereas with Ts = 0.02s

the prediction is smoother. Additional tests showed that by reducing the initial
velocity vx or increasing the sampling time, the oscillations increase until
divergence Figure 5.3.
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(a) (b)

Figure 5.3: MPC prediction. Sampling time 0.1s, initial speed 4 m/s, wheel
torque 100N, front steering angle 0.1 rad, rear steering angle -0.05 rad.

To find an explanation for this phenomenon, the eigenvalues of the velocity
system (vx, vy, θ̇) are analyzed in different state conditions (Table 5.1).

Condition [m/s, m/s, rad/s] eig 1 eig 2 eig 3
vx = 2, vy = 0, θ̇ = 0 0 -70 -84
vx = 5, vy = 0, θ̇ = 0 0 -29 -33
vx = 10, vy = 0, θ̇ = 0 0 -15 + 1.6i -15 - 1.6i
vx = 5, vy = 1, θ̇ = 1 0.25 -33 -26
vx = 15, vy = 1, θ̇ = 1 -0.18 -10+1.8i -10-1.8i

Table 5.1: Eigenvalue of the system [vx, vy, θ̇] linearized in different points.

Table 5.1 shows that the system’s eigenvalues are significantly high in
absolute value for low car speeds (vx). Consequently, the current system has
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too fast dynamics to be controlled at a low rate, and the prediction step must
be sufficiently short to be compatible with the rapid dynamics. If this is not
the case, considering the system’s states constant for a long prediction step
generates oscillations in the prediction.
The prediction step of the MPC, on the other hand, cannot be chosen
arbitrarily; it must be greater or equal to the control step, and decreasing
the control step excessively jeopardizes real-time performance. Besides, the
system is expected to follow the reference trajectory for each velocity, and
it must guarantee reliability also at a low speed. In particular, the problem
derives from the forces generated at the wheels that depend on the sideslip
angles and can vary at high frequencies. So, to solve this problem, the control
strategy must separate the different dynamics to control them at a different rate.

The idea is to solve the MPC problem using, as control inputs, the forces at the
wheels in the vehicle’s reference frame (Figure 5.5a). In this way, the MPC can
be executed at a low rate, reducing problems in the programming solver, and
the system employed is presented in Equation 5.5. A faster low-level controller
translates the forces from the vehicle’s reference frame into the wheel’s frame
(Figure 5.5b) and derives the torques and steering angle values (Eq. 5.6).
Figure 5.4 shows the structure of the controller.

Figure 5.4: Structure of the controller.

Regarding the prediction and control rates of the MPC and the control
rate of the lower-level controller, problems are now extinguished. The upper-
level system (Eq. 5.5) has zero eigenvalues for each condition, so its variation
depends only on the inputs applied and not on its current state. As a result, the
prediction step does have to be kept small, and consequently, the control step
of the LTV-MPC can be sufficiently high to exploit an optimizer in real-time.
These two parameters can be changed depending on the real-time necessities;
however, 10 Hz is an appropriate control rate for a controller to have a reaction
time slightly better than any driver.
Concerning the lower-level control rate, it is decided to set it at 100 Hz in order
to assure a sufficiently fast controller for the wheels’ dynamics.
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(a) (b)

Figure 5.5: Two-level model. a) Is the model utilized by the LTV-MPC. b) Is
the model utilized by the lower level controller to allocate the forces for each
wheel.

The upper-level controller system equations are defined as follows,

ẋcar = vx cos θ − vy sin θ

ẏcar = vx sin θ + vy cos θ

θ̇ = θ̇

v̇x = vyθ̇ +
Fx

m

v̇y = −vxθ̇ +
Fy

m

θ̈ =
Mz

J
with

Fx = FXFL + FXFR + FXRR + FXRL

Fy = FYFL + FYFR + FYRR + FYRL

Mz = −(FXFL + FXRL) ∗ ll + (FXFR + FXRR) ∗ lr+
(FYFL + FYFR) ∗ lf − (FYRR + FYRL) ∗ lb

(5.5)

where the control variable U(k) in Equation 5.4 is represented by the term:
U(k) = [FXFL, FXFR, FXRR, FXRL, FYFL, FYFR, FYRR, FYRL, . . . , N times]T
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Whereas, the low-level system equations are:

Fx,i = FXi cos(δi) + FYi sin(δi)

Fy,i = −FXi sin(δi) + FYi cos(δi)

Ti = Fx,i ∗ rw

δi =
Fy,i

Cα ∗ Fzi

+ αi

i = FL, FR,RR,RL

(5.6)

In addition, this approach allows the wheel stability to be considered, in terms
of the friction circle (Section 3.4.3), directly in the MPC solution. To include
this nonlinear constraint in the LTV-MPC, the friction circle is approximated
to an octagon, as in Figure 5.6. The combination of longitudinal and lateral
forces in the vehicle’s reference frame is bounded to stay inside the octagon
to remain in the stable region. The sides of the polygon can be expressed as
linear constraints in the cost function.

Figure 5.6: Friction circle constraint applied to the wheel’s forces in the
vehicle’s reference frame.

5.3 Results

This Section presents the simulation results obtained to evaluate the
controller performance for trajectory-following. The tests are performed
in IPG CarMaker [70] (Section 3.1) considering three different maneuvers
(Figure 3.6): a) mixed driving that combines braking and acceleration during
cornering and straight driving, b) straight driving (acceleration, steady-state
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driving, braking), and c) steady-state cornering.
In a), the vehicle travels a profile long 560 m where straight and corner
sectors are combined. It should follow a reference speed set at 90 km/h for
straight sectors and 40 km/h for curved sectors. The reference path starts
on the right lane and, after 20 m, slides to the left, with the reference yaw
angle pointing forward, to reach the road’s centerline to mimic a partial lane-
change maneuver. Then, it continues on the road’s centerline to allow a visual
assessment of the trajectory-tracking performance in addition to numerical
values. Before the vehicle reaches the end of the track, the reference speed
drops from 90 km/h to 0 km/h in 30 m.
In b), the reference speed changes from 0 km/h to 100 km/h in 20 m, and the
reference path performs a double lane-change maneuver starting after 50 m
for 130 m to mimic an overpass. Besides, the reference speed increases to
130 km/h, and the vehicle travels at steady-state until 800 m, where the speed
reference decreases to 0 km/h in 50 m.
In c), only the sector at steady-state cornering long 80 m is analyzed. The
vehicle faces the 30m-radius curve at the required speed of 50 km/h.

These tests assess the Lateral Deviation (LD) from the desired trajectory and
the tracking of the reference Longitudinal Velocity (VEL) and Yaw angle
(YAW). For each of these components, the RMSE and the maximum values
of the difference between the references and the vehicle’s output are provided.
In particular, to better mimic the behavior of cars’ cruise control, where the
driver can set any desired velocity, the speed reference given to the vehicle
during these tests is not always constant and does not match the vehicle’s thrust
limits. Therefore, the maximum value of the difference between the vehicle’s
speed and the desired one loses meaning, and won’t be considered.
To validate better the LTV-MPC, six combinations of the prediction horizon
are analyzed.
1) A prediction horizon (Th) of 2 s with a sampling time (Ts) of 0.2 s and 10
samples (N).
2) A prediction horizon of 1.5 s with a sampling time of 0.15 s and 10 samples.
3) A prediction horizon of 1 s with a sampling time of 0.1 s and 10 samples.
4) A prediction horizon of 1.4 s with a sampling time of 0.2 s and 7 samples.
5) A prediction horizon of 1.5 s with a sampling time of 0.3 s and 5 samples.
6) A prediction horizon of 1 s with a sampling time of 0.2 s and 5 samples.

As a quadratic programming optimizer to solve the cost function of the LTV-
MPC, DAQP [80, 81] was used. The reasons that led to the use of this
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software aim to solve embedding necessities, as explained in Section 7.1, and
for coherence, the same optimizer employed on the RCV-E is adopted in the
simulation.

Table 5.2, 5.3, and 5.4 show the results.

Mixed Road Fig. 3.6a

MPC params. LD
RMSE

LD
MAX

YAW
RMSE

YAW
MAX

VEL
RMSE

Th=2.0s, Ts=0.20s, N=10 0.193 0.411 0.024 0.148 2.20
Th=1.5s, Ts=0.15s, N=10 0.171 0.362 0.019 0.134 2.22
Th=1.0s, Ts=0.10s, N=10 0.124 0.371 0.014 0.092 2.66
Th=1.4s, Ts=0.20s, N= 7 0.217 0.417 0.022 0.158 2.26
Th=1.5s, Ts=0.30s, N= 5 0.307 0.598 0.034 0.191 2.26
Th=1.0s, Ts=0.20s, N= 5 0.176 0.363 0.021 0.134 2.60

Table 5.2: Results of the two-level controller for the trajectory following
performance on the Mix Road Fig. 3.6a.

Straight Road Fig. 3.6b

MPC params. LD
RMSE

LD
MAX

YAW
RMSE

YAW
MAX

VEL
RMSE

Th=2.0s, Ts=0.20s, N=10 0.087 0.455 0.006 0.021 2.23
Th=1.5s, Ts=0.15s, N=10 0.076 0.399 0.010 0.050 2.61
Th=1.0s, Ts=0.10s, N=10 0.078 0.397 0.053 0.290 3.51
Th=1.4s, Ts=0.20s, N= 7 0.086 0.452 0.019 0.098 2.67
Th=1.5s, Ts=0.30s, N= 5 0.110 0.523 0.027 0.128 2.50
Th=1.0s, Ts=0.20s, N= 5 0.075 0.432 0.050 0.265 3.43

Table 5.3: Results of the two-level controller for the trajectory following
performance on the Straight Road Fig. 3.6b.
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Circle Road Fig. 3.6c

MPC params. LD
RMSE

LD
MAX

YAW
RMSE

YAW
MAX

VEL
RMSE

Th=2.0s, Ts=0.20s, N=10 0.347 0.348 0.007 0.012 1.51
Th=1.5s, Ts=0.15s, N=10 0.268 0.270 0.005 0.009 1.35
Th=1.0s, Ts=0.10s, N=10 0.176 0.193 0.004 0.009 1.19
Th=1.4s, Ts=0.20s, N= 7 0.382 0.383 0.010 0.013 1.40
Th=1.5s, Ts=0.30s, N= 5 0.561 0.562 0.016 0.020 1.48
Th=1.0s, Ts=0.20s, N= 5 0.279 0.289 0.014 0.020 1.28

Table 5.4: Results of the two-level controller for the trajectory following
performance for steady-state cornering condition long 80 m on the Circle Road
Fig. 3.6c.

From Tables 5.2, 5.3, and 5.4, it is possible to notice that lateral deviation
mostly depends on the sampling time of the MPC. When the samples are closer
to one another, the vehicle tends to cut less of the path, and the lateral deviation
is smaller. The prediction horizon has some impact as well, though less. When
the MPC’s vision field is shorter, it tries to stick as close as possible to the
path just ahead of it, disregarding points farther away; therefore, it does not
jeopardize the tracking of the near points for the remote ones. Although a
driver may be tempted to cut corners, the vehicle is expected to follow the path
accurately, especially since no upper limits on lateral deviation are considered.
Therefore, the optimal choice regarding lateral deviation is for a prediction
horizon of 1 s with 10 samples, and during cornering (Table 5.4), it has the
best performance.
Regarding yaw angle tracking, the same behavior affects the result. The
more the vehicle cuts corners, the less tangent its direction will be to the
trajectory. However, beyond this, another phenomenon affects the results.
When severe braking is required, as in Straight driving where the desired
velocity drops from 130 km/h to 0 km/h in 50 m, the vehicle loses the desired
direction. The reason is that the MPC tries to reduce the longitudinal velocity
by changing the direction of the car despite the reference yaw angle. By
increasing the weight of the desired yaw angle, this problem can be decreased
but not totally removed, especially for high speed. However, the longer the
prediction horizon, the lower this problem, and for the 2s-prediction horizon, it
becomes irrelevant. A solution that solves this problem even for lower horizons
is presented in Section 5.4; even if for lower velocity, such as braking from
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90 km/h to 0 km/h (Mixed Road), this problem is no more present for every
value of Th.
The best performance between the corners cut and heavy brakes are provided
by a higher number of samples (N=10), and Th=1.5 s represents a good trade-
off regarding yaw rate tracking performance.
Regarding speed tracking, the differences during steady-state cornering (Circle
road) are due to the fact that if the vehicle keeps a more inner path, it will have
lower velocity, whereas if it does not cut turns, it will travel a little bigger
circles and consequently can keep the speed higher. Beyond this, if the MPC
has a longer prediction horizon (Th), it can predict before the variation of
the reference velocity along the trajectory, and consequently, it will have an
earlier response and better tracking. However, analyzing the case when the
vehicle is at steady-state during straight driving, as on a Straight road, when it
is required to track 130 km/h for more than 400 m (Figure 5.7), a small error in
the velocity at steady-state is present. Table 5.5 shows the longitudinal speed of
the vehicle during steady-state straight driving and cornering. For the straight
driving situation, it is considered the car’s speed at the end of the steady-state
sector at 650 m, as in Figure 5.7, which remains constant within this section.
For cornering, the section considered is the turn (80 m long) while the vehicle
has a constant speed, which is measured at the end of the steady-state sector.

Steady-state speed

MPC params. Straight driving Cornering
Th=2.0s, Ts=0.20s, N=10 128.80 km/h 44.37 km/h
Th=1.5s, Ts=0.15s, N=10 128.78 km/h 45.13 km/h
Th=1.0s, Ts=0.10s, N=10 128.64 km/h 45.70 km/h
Th=1.4s, Ts=0.20s, N= 7 128.72 km/h 44.98 km/h
Th=1.5s, Ts=0.30s, N= 5 128.67 km/h 44.65 km/h
Th=1.0s, Ts=0.20s, N= 5 128.57 km/h 45.40 km/h

Table 5.5: Steady-state velocity of the vehicle during straight driving and
cornering. During straight driving the reference velocity is 130 km/h, during
cornering is 50 km/h.

50 km/h for cornering is a speed quite at the limits of the vehicle friction,
but even lowering the reference, the error remains substantially high. Failure
to reach the appropriate speed during stationary driving is due to unmodeled
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opposing forces (air drag and rolling resistance). To compensate for these
disturbances, an integral action is added to the LTV-MPC and discussed in
Section 5.4.

Figure 5.7: Vehicle velocity and reference velocity during Straight driving
maneuver.

5.4 Integral action on the the longitudinal
velocity

The integral action introduced to the LTV-MPC to improve velocity tracking
is discussed below, and Figure 5.8 depicts the system’s new structure.

Figure 5.8: System structure with the integral action to the LTV-MPC.

From the system in Equation B.9, the new system is enlarged with an
additional state w representing the integral of the velocity error evx, and the
state equations are:
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x(k + i+ 1) = Ak+ix(k + i) +Bk+iu(k + i) +Gk+i

w(k + i+ 1) = w(k + i) +K evx(k + i+ 1)

evx(k + i+ 1) = yrefvx − yvx(k + i)
x(k + i+ 1) = Ak+ix(k + i) +Bk+iu(k + i) +Gk+i

w(k + i+ 1) = w(k + i) +K (yrefvx (k + i+ 1)−
−CvAk+ix(k + i)− CvBk+iu(k + i)− CvGk+i)

where i = 0, ... , N − 1

Cv =
[
0 0 0 1 0 0

]

(5.7)

K is a tuning parameter for the integral action set to 0.25 and the state x is as
in Equation 3.1.

The enlarged system, in the equivalent form of Eq. B.9, that is directly
implementable into code is:[

x(k + i+ 1)

w(k + i+ 1)

]
=

[
Ak+i 0

−KCvAk+i I

] [
x(k + i)

w(k + i)

]
+

+

[
Bk+i

−KCvBk+i

]
u(k + i) +

[
I 0

−KCv K

] [
Gk+i

yrefvx (k + i+ 1)

]
y(k + i) =

[
Ck+i 0

0 I

] [
x(k + i)

w(k + i)

] (5.8)

The C matrix is as defined in Equation 3.4, and the statew, as additional output,
is required to be minimized to zero in the LTV-MPC cost function, and the
reference vector from Equation 5.10 becomes:

ri =


−xi

r sin θ
i
r + yir cos θ

i
r

θir
vixr
0

 (5.9)

A basic anti-wind-up solution is also employed. The integral error is
decreased to small values when the velocity error (reference minus measured
velocity) changes sign. The integral error is not zeroed in order to prevent
heavy reductions in the control action. It was important to consider an anti-



66 | Trajectory-following control strategy

wind-up solution to reduce overshoots in the vehicle’s velocity and the risk of
the car exceeding the speed limit.
Besides, the integral control action improves the car’s capacity to follow the
reference velocity; however, it also aggravates the problem of yaw angle
tracking during hard braking, as reported in Section 5.3. The MPC tries
to reduce the longitudinal velocity by turning the car and crabbing laterally
during braking. A simple and effective solution to this problem is to set a
reference to the lateral vehicle velocity equal to zero when the car faces heavy
brakes. As a result, the new output, the C matrix, and reference of the system
in Equation 5.8 and 5.9 becomes:

y(k + i) =

[
Ck+i 0

0 I

] [
x(k + i)

w(k + i)

]

ri =


−xi

r sin θ
i
r + yir cos θ

i
r

θir
vixr
0

0



with Ci =


− sin θir cos θir 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0



(5.10)

The performances of this solution are reported in Table 5.6 and are obtained
in the same way as Table 5.5.
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Steady-state speed with Integral Action

MPC parameters Straight
driving

Yaw Max dur-
ing braking Cornering

Th=2.0s, Ts=0.20s, N=10 130 km/h 0.021 rad 50.00 km/h
Th=1.5s, Ts=0.15s, N=10 130 km/h 0.041 rad 49.99 km/h
Th=1.0s, Ts=0.10s, N=10 130 km/h 0.117 rad 50.02 km/h
Th=1.4s, Ts=0.20s, N= 7 130 km/h 0.036 rad 49.87 km/h
Th=1.5s, Ts=0.30s, N= 5 130 km/h 0.043 rad 49.32 km/h
Th=1.0s, Ts=0.20s, N= 5 129.97 km/h 0.046 rad 49.64 km/h

Table 5.6: Steady-state velocity of the vehicle during straight driving and
cornering when an integral action is applied. During straight driving the
reference velocity is 130 km/h, during cornering is 50 km/h. The Yaw Max
value is the maximum yaw angle that the vehicle has during hard braking from
130 km/h to 0 km/h.

A comparison with Table 5.5 shows significant improvements in velocity
tracking. During straight driving, the vehicle achieves a steady-state speed of
130 km/h for all controllers. Regarding cornering, the same improvements
are obtained. At the beginning of the turn, the vehicle’s speed drops around
48 km/h for all the controllers despite the constant reference at 50 km/h, and
the integral action successfully takes the car at the desired speed within a short
distance.
In addition, the null lateral velocity reference during hard braking keeps the
yaw angle limited, especially with the integral action that provides additional
control efforts for velocity tracking also during braking.
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Chapter 6

Energy minimization control strat-
egy

This Chapter introduces the control strategy that exploits Over-Actuation
redundancy (4WD, 4WS) for energy minimization and includes it in the
solution presented in Chapter 5. From Section 3.3, two principal sources of
energy consumption are derived: due to the wheel slip (longitudinal σx and
lateral α) and due to the engine power losses.
This strategy minimizes these two components by introducing an additional
allocation step, and the solution is presented in Section 6.1. Section 6.2
presents the results on energy minimization obtained in simulation.

6.1 Control strategy

Regarding slip power losses, they depend on the wheel slip squared values, as
in Equations 3.16 and 3.22. It is clear that the minimum value of the power
losses due to cornering resistance and longitudinal sliding of the contact patch
is minimized when the slips at the wheels are similar for all four wheels.
This result can be obtained from the solution of the following optimization
problems.

min
αi

4∑
i=1

CαFz,ivxα
2
i

s.t.
4∑

i=1

−CαFz,iαi = F des
y

(6.1)
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min
αx,i

4∑
i=1

CσFz,irωiσ
2
x,i

s.t.
4∑

i=1

CσFz,iσx,i = F des
x

(6.2)

To create this condition, the requested forces (FXi, FYi) at the wheels
(Figure 5.5a) must be proportional to the normal ones (Fz,i). In [38], shifting
the torque request to the outer wheels reduces cornering resistance because
the outer wheels stand the higher normal forces.
To achieve this result, the weighting term R0 of the quadratic cost function
(Eq. 5.4) should have its terms inversely proportional to the normal forces
(Fz,i) on the wheels, as follows:

R0 = diag(
1

Fz,FL

,
1

Fz,FR

,
1

Fz,RR

,
1

Fz,RL

,
1

Fz,FL

,
1

Fz,FR

,
1

Fz,RR

,
1

Fz,RL

, . . .

. . . , N times)

(6.3)

In addition, this solution, allocating the forces proportionally toFz,i, allows
for exploiting better tire availability maximizing the distance of the wheel’s
forces (FXi,FYi) to the friction circle limit. The result is less wheel saturation
and higher wheel stability.
The results on energy reduction are reported in Section 6.2.

Concerning the power losses due to the engine efficiency, the ideal solution
is to model and include them inside the LTV-MPC cost function. In this
way, the MPC solution minimizes the energy consumed along the horizon.
The goal is to allocate the torques at the wheels such that the overall vehicle
torque remains unchanged and the engine efficiencies, dependent on the
operating condition (T , ω), are maximized. However, the nonlinear efficiency
characteristic of the engines must be linearized to be included in the cost
function, with consequent loss of information. The MPC’s solution does not
find convenient points of the engine characteristic but reduces the energy lost
along the prediction horizon by minimizing the torques and the speeds of all
the engines. The consequence is a reduction in the vehicle velocity and a worse
pursuit of the reference. Therefore, an additional allocation step is required to
incorporate the engine’s nonlinear efficiency characteristic into the controller
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(Figure 6.1). This step redistributes the FX forces provided by the LTV-MPC
between the front and rear axles of the vehicle based on the nonlinear efficiency
characteristic. The two sides are independent to preserve the yaw moment
provided by the longitudinal forces, and the friction circle constraint is still
satisfied.
This allocation step is explained below.

Figure 6.1: System structure with the engine energy optimization step.

The LTV-MPC provides FX and FY forces for each wheel, and the
normal ones (Fz,i) are estimated as in [82]. From these, the reallocation of
the FX forces is bounded by the friction circle, as follows:

FXi,max =
√
µ F 2

z,i − FY 2
i

i = FL, FR,RR,RL
(6.4)

This technique is only activated if the sum of the two FX forces per side
is positive; otherwise, this phase is skipped because braking does not require
engine power.
Now, considering one side, the k value is defined as the distributed ratio of the
desired FXdes force with respect to the front wheel. k = 0 if the desired total
FXdes (per side) is applied only on the rear wheel, and k = 1 if applied only
on the front wheel. The k value is bounded by the constraint in Equation 6.5,
as follows:

ki = (max(1− FXmax,rear,i

FXdes,i

, 0) , min(
FXmax,front,i

FXdes,i

, 1))

i = left, right

(6.5)

Optimizing the power consumed by the engine as a function of the k

parameter, the optimal kopt value is derived, and the new allocation on the
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front and rear wheels is as follows:

FXfront,i = kopt
i FXdes,i

FXrear,i = (1− kopt
i ) FXdes,i

i = left, right

(6.6)

The optimization of the power consumed by the engine is obtained by
minimizing the used electric power (Tω/η), which assumes that theFX forces
are directly linked to the torque as FX = T/rw. This assumption is valid
for small steering angles δ. However, thanks to the four steering wheels, the
vehicle can turn by limiting the steering angles to small values(<0.1 rad).
Hence, this approximation can stand and the electric power is approximated
to FX · V X/η.
The wheels’ velocity is known and can be assumed constant within a control
step of 0.1 s. The electric power consumed by one side of the car depends only
on the forces FXfront,i and FXrear,i of that side, which are constrained by the
desired force FXdes,i. Therefore, the nonlinear-optimization deals with only
one variable (k) and does not affect the real-time performance of the vehicle.
This solution has a side effect that does not consider the previous allocation
step of the FX forces, increasing the energy lost by the longitudinal slip of
the tires. However, as analyzed in Section 3.3.1, the energy lost due to engine
efficiency is significantly greater than that wasted due to sliding of the wheels’
contact point, so preferring the former brings better results in terms of energy
consumption. In addition, this solution keeps the distribution of lateral forces
of the wheels unchanged, keeping the same attention to the energy lost due to
cornering resistance.
Results on the advantage of this solution in terms of energy minimization are
reported in section 6.2.

6.2 Results on energy minimization

This section presents the results obtained from this solution regarding
energy minimization. In particular, it is relevant to distinguish between the
contribution generated by the vehicle’s weight distribution on the wheels and
the strategy investigated to reduce the power lost in the engines. The two
solutions act on vehicle losses from different perspectives. The first reduces
the losses produced by the tires due to cornering and slipping, and the second
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reallocates the forces to maximize the overall efficiency of the four engines.
Simulation results are produced by investigating five different maneuvers:

a) The vehicle travels a mixed-profile road long 560 m where straight and
corner sectors are combined, as shown in Figure 3.6a. It should follow
a reference speed set at 90 km/h for straight sectors and 40 km/h for
curved sectors. The reference path starts on the right lane and, after
20 m, slides to the left, with the reference yaw angle pointing forward,
to reach the road’s centerline to mimic a partial lane-change maneuver.
Then, it continues on the road’s centerline to allow a visual assessment
of the trajectory-tracking performance in addition to numerical values.
Before the vehicle reaches the end of the track, the reference speed drops
from 90 km/h to 0 km/h in 30 m.

b) The vehicle follows a straight trajectory where the reference speed
changes from 0 m/h to 100 km/h in 100 m. As soon as the car reaches
the desired speed of 100 km/h, the maneuver ends.

c) The vehicle follows a straight trajectory where the reference speed
changes from 0 m/h to 100 km/h in 40 m. As soon as the car reaches the
desired speed of 100 km/h, the maneuver ends.

d) The vehicle follows a straight trajectory where the reference speed
changes from 0 km/h to 100 km/h in 15 m. As soon as the car reaches
the desired speed of 100 km/h, the maneuver ends.

e) The vehicle follows a 30m-radius right-curved trajectory where the
required speed is 50 km/h. The maneuver investigated is for steady-state
cornering long 80 m.

At the end of these maneuvers, five power source measurements were obtained.

1. The electric power requested by the engines.

2. The power lost in the motors, computed using the engine efficiency
characteristic.

3. The mechanical power at the shaft of the four engines.

4. The power lost due to wheel slipping, computed according to
Equation 3.15, only for positive longitudinal forces at the wheels Fx

since braking is not considered.
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5. The power lost due to wheel cornering, computed according to
Equation 3.17.

For each of the five terms, the energy was computed as the time integral of
the power during the maneuvers. The different MPC configurations, analyzed
in Section 5.3, are investigated from the energetic perspective by varying the
prediction horizon parameters: prediction horizon (Th), prediction sampling
time (Ts), and the number of samples (N). However, only the case (Th=1.5 s,
Ts=0.15 s, N=10) is reported in Table 6.1 for brevity, whereas the entire set of
simulations is provided in Appendix C.
The tests are performed to compare the cases when no energy minimization
strategy is implemented (B), when only the vehicle’s weight distribution on
the wheels is considered (W), and when, in addition to weight distribution,
also the engine efficiency optimization strategy is included (E).

The main objective of this research is to minimize the electric energy
provided to the engines from the batteries. Table 6.1 shows that the two
solutions investigated (W and E) can successfully contribute to the goal by
reducing multiple energy losses. However, further considerations are required.
The vehicle weight distribution impacts mainly, as expected, on the losses at
the wheels (longitudinal and lateral sliding) in all the maneuvers, reducing,
consequently, the mechanical energy at the motor shaft.
The losses caused by longitudinal slip increase with vehicle acceleration, as
it can be observed by comparing maneuvers c) and d). In addition, when the
car acceleration is higher, case d), the weight distribution has more impact
on the slip losses. The average reduction of energy losses due to longitudinal
slip among all the MPC variations investigated is 8% for maneuver c) and
11% for maneuver d). Whereas, regarding maneuver a), where the vehicle
accelerates several times and has short traits to reach the desired velocity, the
improvements are even better; among all the MPC set-ups, the energy losses
due to longitudinal slip are reduced by 36%.
The objective of the vehicle weight distribution, as explained in Section 6.1,
is to produce an equal longitudinal slip ratio (σx) at the four wheels, and
this achievement is the reason for energy minimization, as in Equations 6.2.
Figure 6.2 shows the slip ratio at the wheels during maneuver d), before and
after considering vehicle weight distribution.
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(a) (b)

Figure 6.2: Comparison of the tire longitudinal slip ratio during maneuver d)
when the vehicle weight distribution is considered b) and when it is not a).

During steady-state conditions, the longitudinal slip is almost null, and the
losses are irrelevant, as it can be observed during steady-state cornering e).
In addition, the torque distribution, proportional to the wheel’s vertical forces,
is not optimized for the energy wasted in the engines, as a result, during straight
driving, this component partially compensates for the energy saved due to slip
losses and results in an almost null advantage in the electric energy consumed.
For cornering resistance losses, similar results are obtained. In all cases, the
vehicle weight distribution helps to reduce the energy wasted by lateral sliding.
During steady-state cornering, maneuver e), the average energy loss reduction,
due to this term, is around 29%. Besides, the wheel sideslip angles (α) have
similar values, Figure 6.3, to fulfill the solution of Equation 6.1.

(a) (b)

Figure 6.3: Comparison of the tire sideslip angles during maneuver e) when
the vehicle weight distribution is considered b) and when it is not a).
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Regarding the second step for energy minimization, which considers the
losses due to motor efficiency, the results assert further improvements. In
particular, they are more evident when the overall longitudinal force is not
sufficiently high to employ all four wheels to generate it. In this case, the
optimization step allocates the torques only on the rear wheels. The reason
lies in the shape of the engine efficiency characteristic, which has higher
values at higher torques (see Appendix A). Therefore, using only two engines
rather than four allows for exploiting more efficient working points at the
same overall torque. As a result, the greatest benefits, between the several
maneuvers, occur during low accelerations, maneuver b), and steady-state
cornering, maneuver e), when the torque necessary to keep the vehicle speed
is not high and can be distributed only on two wheels. This method, however,
is less efficient during rapid acceleration, when all four wheels must produce
the thrust and no room for reallocation is allowed.
During maneuvers b) and e), the reduction of the energy wasted in the engines
is 23% and 37%, respectively, which corresponds to an overall electric energy
reduction of 2% and 13%.

In the end, this strategy presents a drawback. Allocating the torques only on
two wheels, rather than four, increases the slip ratio of these and, consequently,
the longitudinal slip losses. This phenomenon is visible in all the maneuvers
investigated, although the reduction of the engine power losses overcomes the
increased losses due to longitudinal slip, which results in lower electric energy
consumption.
Despite this, energy consumption does not represent the only cost of a vehicle,
both from an economic and resource perspective. Tire wearing represents
another factor, and increasing the slip ratio might affect this aspect with more
problems than benefits from energy saving. Moving beyond the scope of this
project, additional research may be needed to determine the limits of this
approach from this point of view.
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Maneuver a)
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 2580.7 kJ 393.9 kJ 2186.8 kJ 104.86 kJ 72.79 kJ
W 2542.0 kJ 390.3 kJ 2151.7 kJ 58.00 kJ 67.59 kJ
E 2502.7 kJ 349.7 kJ 2153.0 kJ 68.68 kJ 68.36 kJ

Maneuver b)
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1075.4 kJ 163.7 kJ 911.7 kJ 12.03 kJ 0.00 kJ
W 1075.1 kJ 163.5 kJ 911.6 kJ 11.91 kJ 0.00 kJ
E 1052.6 kJ 126.0 kJ 926.6 kJ 28.29 kJ 0.00 kJ

Maneuver c)
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1030.5 kJ 122.2 kJ 908.3 kJ 27.34 kJ 0.00 kJ
W 1028.8 kJ 122.5 kJ 906.3 kJ 25.09 kJ 0.00 kJ
E 1025.1 kJ 114.8 kJ 910.3 kJ 29.27 kJ 0.00 kJ

Maneuver d)
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1029.6 kJ 116.2 kJ 913.4 kJ 36.28 kJ 0.01 kJ
W 1028.8 kJ 118.5 kJ 910.3 kJ 32.27 kJ 0.01 kJ
E 1028.7 kJ 115.9 kJ 912.8 kJ 35.14 kJ 0.01 kJ

Maneuver e)
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 197.5 kJ 72.9 kJ 124.6 kJ 0.70 kJ 79.28 kJ
W 154.0 kJ 55.5 kJ 98.6 kJ 0.16 kJ 54.90 kJ
E 134.7 kJ 35.3 kJ 99.4 kJ 0.45 kJ 55.60 kJ

Table 6.1: Energy consumed by the LTV-MPC with parameters (Th=1.5 s,
Ts=0.15 s, N=10) during the different Maneuvers a)-e). Three cases are
reported: B) the base version with no energy minimization implementation,
W) when only the vehicle’s weight distribution is considered, E) when also the
engine efficiency optimization is included.
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Chapter 7

Implementation on the RCV

This Chapter examines the implementation of the controller on the RCV-E. In
particular, Section 7.1 talks about the problem faced to embed the controller
on dSPACE - MicroAutoBox II, whereas Section 7.2 tests the controller’s
performance and limits on the platform from a real-time point of view.

7.1 Implementation of the LTV-MPC in dSPACE

To integrate the controller into the dSPACE platform, a Simulink model
containing the vehicle architecture is provided with dSPACE. Here, the
communication between sensors, actuators, and vehicle control is managed.
Therefore, to integrate the controller in dSPACE, the simplest procedure is
to write it in Simulink and integrate it in the pre-existing dSPACE-Simulink
environment. The Simulink environment must be built into C-code before it
can be uploaded to MicroAutoBox II and run on the vehicle.
However, the Matlab version implemented on the RCV-E is the 2016b and
does not support the built-in optimization functions, like quadprog [83], for
standalone code generation. As a result, a third-party optimization solver is
necessary. In addition, to integrate a third-party software in the Simulink
environment and build it into C-code, the solver must be provided with its
source code which must be added to the Simulink environment and compiled
in C-code along with the entire environment using Simulink Coder, like DAQP
[80,81]. An alternative is for an already tested procedure to be provided along
with the solver to cross-compile the software libraries with dSPACE so that
the optimization problem can be formulated and linked to the software, like
acados [84, 85].
The software utilized to solve the quadratic problem of the LTV-MPC is DAQP,
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which provides both the source code and an S-function, written in C-code, that
can be integrated into the Simulink environment and built along with it.
The S-function requires as input the matrices (H, f, A, ub, lb) to solve the
following quadratic problem.

min
x

1

2
xTHx+ fTx

s.t. lb < A x < ub
(7.1)

Besides, the S-function is provided in the 2021a Matlab version and must be
downgraded to the 2016b version. The structure of the S-function includes
an Initialization and Termination step where the variables are allocated and
deallocated. Automatically downgrading it to the 2016b version would include
these two steps in the Output function, which is called at each iteration step.
This result reduces the computation time needed to execute the solver at each
iteration, because beyond providing the optimal output, it must also allocate
and deallocate the variables. To solve this issue, the S-function must be
reformulated using the legacy code tool [86]. In such a way, the Initialize
and Terminate functions in the original S-function are kept unchanged and not
automatically included in the Output function.

Next, the engine’s efficiency optimization step, described in Section 6.1,
exploits a nonlinear optimization problem to find the solution. However,
it is a nonlinear optimization on one optimization variable, so to include
the nonlinear problem in dSPACE, it was easier and more straightforward
to rewrite it in vector form. The k value, defined as the distributed ratio
of the desired FXdes force with respect to the front wheel per each side,
is discretized within its boundaries (defined in Equation 6.5) with a step of
0.01 and consequently, the electric power FX · V X/η is discretized and
written in the vectorial form. To obtain the optimal value is sufficient to
find the minimum value of the array and then find the corresponding optimal
distributed ratio kopt.

This approach used to embed the controller on the RCV-E, is also used in
simulation to obtain the results presented in Section 6.2.
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7.2 Real-time performance of the controller

The real-time performance of the controller on the RCV-E is evaluated without
driving the vehicle. The controller receives a fictitious state of the vehicle,
and while running on MicroAutoBox II, it must provide the expected control
action, without it being connected to the actuation.
The real-time performance is affected only by the prediction horizon (N)
chosen for the LTV-MPC. It affects both the time to generate the matrices (H,
f, A, ub, lb) for the quadratic problem and the time to solve the optimization
problem.
Multiple prediction horizons of the LTV-MPC have been tested to assess the
limits of the solution. The execution time of the controller is measured by
logging from the dSPACE interface the execution time of the controller Task.
Results are reported in Table 7.1.

Prediction Horizon N Execution time
N = 5 0.005 s
N = 7 0.014 s
N = 10 0.033 s
N = 12 0.086 s
N = 13 0.113 s
N = 15 0.129 s

Table 7.1: Execution time of the controller on dSPACE - MicroAutoBox II.

Results in Table 7.1 show that the controller does not suffer from
execution problems in real-time. In particular, the control sample time
used in the simulations for the LTV-MPC is 0.1 s, which would limit the
prediction horizon of the controller to 12 samples. This value is sufficiently
high to guarantee excellent performance of trajectory following and energy
minimization in simulation. As presented in Chapters 5 and 6, the tests on
the controller performance were obtained with a maximum of 10 prediction
samples, which means that the implementation in MicroAutoBox II does not
limit the controller during its real-time functioning.
In conclusion, methods requiring higher computational efforts might be
examined in future studies to optimize the RCV-E execution availability.
Nonetheless, the control strategy investigated in this study is relatively
conservative in terms of the vehicle’s computational efforts, and as a result,
it may be suitable for even more computationally limited platforms.
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Chapter 8

Conclusions and Future works

This chapter draws conclusions on the results obtained from this research
project. In particular, Section 8.1 describes the achievements obtained to
answer the research question in Chapter 1, and Section 8.2 proposes alternative
ways to investigate the problem and build upon this research study.

8.1 Conclusions

In this project, a control strategy that exploits the redundancy of the vehicle’s
Over-Actuation (4WD, 4WS) to minimize energy consumption in addition to
autonomous trajectory-following is presented.
The investigated control strategy is evaluated considering the trajectory-
following performance, the energy reduction results, and its ability to run in
real-time on an embedded platform.

8.1.1 Trajectory-following

The control strategy for trajectory-following employs an LTV-MPC, and to
assess its performance, multiple time horizons are compared. Results show
that a higher number of predicted samples (N=10) along with a short prediction
step (Ts=0.1 s) have the best results in reducing the lateral deviation from the
desired path and tracking the reference yaw angle. However, during heavy
braking, this prediction horizon combination suffers more from tracking the
desired yaw angle, and a higher prediction horizon helps to improve it. This
problem affects, in different ways, all the considered prediction horizons and
is reduced by setting a reference on the lateral velocity during hard braking.
An integral action is also considered to null the effect of unmodeled forces,
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such as aerodynamic and wheel rolling loss, and guarantee a perfect tracking
of the longitudinal velocity at steady-state conditions.

8.1.2 Energy minimization

From an initial analysis of the sources of energy consumption that can be
affected by the over-actuation considered within this project, two terms are
identified: the energy wasted by the tires due to longitudinal and lateral
sliding and the energy wasted in the motors. Different control techniques
are integrated into the control strategy to minimize these sources of energy
loss: the first considers the vehicle weight distribution to allocate the forces
at the wheels, and the second reallocates the longitudinal forces optimizing
the engine efficiency characteristic. Regarding the first control technique, it
allocates the longitudinal and lateral forces at the wheels proportionally to the
vertical ones to reduce the energy consumed by the tires due to sliding and
improve vehicle stability by ensuring a higher safety margin while generating
the forces. As expected, this control strategy affects more maneuvers where
the wheels’ sideslip angle and slip ratio are higher, so during cornering
and longitudinal acceleration. Results show that during high acceleration
the reduction of the energy wasted due to longitudinal slip reaches 11%;
nevertheless, the torque distribution, proportional to the wheel’s vertical
forces, is not optimized for the energy wasted in the engines, which results in a
null advantage in the electric energy consumed. During steady-state cornering
at a constant speed, the reduction of the energy wasted due to lateral sliding is
29% for the case investigated, and since the engine torque is less affected, this
reduction impacts more on the electric energy provided to the engines, which
decreases by 19%. Concerning the second control technique, results show that
when the total requested torque is sufficiently low, the reallocation step is better
exploited, and the overall torque is delivered only by the rear wheels that work
at more efficient engine conditions. In this regard, this technique affects more
low accelerations and steady-state cornering, reducing the overall electric
energy by 2% during straight acceleration and by 13% during steady-state
cornering. However, along with the electric energy reduction, this technique
presents a drawback. When allocating the forces only on two wheels rather
than four, the tire’s longitudinal slip increases with the consequence of an
increase in the energy consumed by it. Results show a higher reduction of
the energy lost in the engines compared to the one increased due to higher
longitudinal slips. Nonetheless, other problems, such as tire wearing, may be
affected, with a possible increase in costs and resources used.
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8.1.3 Real-time performance

The controller presents excellent performance on MicroAutoBox II regarding
real-time performance. Tests were conducted with the vehicle still, without
connecting the controller’s output to the actuation. A fictitious state of the
vehicle was provided to the controller to test its correct functioning.
Results show that the critical factor is the number of samples (N) along the
prediction horizon, which increase the computational time required to find the
control action. Nevertheless, with a control sample time of 0.1 s, the maximum
number of samples to prevent overrun error is N=12, which is a high value for
the trajectory tracking performance in simulation.

8.2 Future works

The results obtained from the controller implementation on the RCV-E show
margins to exploit and develop a more computationally expensive control
action. Research may be oriented to study additional solutions that solve the
autonomous driving problem and exploit the actuation redundancy to achieve
better performance in energy saving and trajectory following while sacrificing
computational efficiency.
The model’s complexity can be increased by including more DoF, such as roll
and pitch angles, which can be exploited for a better estimation of the vehicle
weight distribution on the wheels.
Regenerative braking may also be investigated. In particular, a further step
may be to investigate the optimal braking torques at the wheels that provide
the highest energy recovery in the four engines and compare them to the
stability and braking performance. The next step after this research project
is to evaluate the performance of the controller regarding trajectory following
and energy minimization directly on the RCV-E to confirm the results obtained
in the simulation and face the problem of a real application.
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Appendix A

RCV’s engine efficiency charac-
teristic

Figure A.1: RCV-E PMSM efficiency map.
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Figure A.2: Variation of the RCV-E engines efficiency map for the Tesla
motors used in simulation.
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Appendix B

LTV-MPC equations

In here, form the LTV-MPC’s equations, the H and f matrices are derived
such that they can be immediately implemented in any quadratic programming
solver in the form:

min
x

1

2
xTHx+ fTx (B.1)

Given the discrete-time nonlinear system:{
x(k + 1) = f(x(k), u(k))

y = g(x(k))
(B.2)

At time k − 1 the optimal control sequence has been computed:

uo(k − 1 : k +N − 2|k − 1) =

= [uo(k − 1|k − 1), uo(k|k − 1), ..., uo(k +N − 2|k − 1)]
(B.3)

Now, at time k, consider the future control sequence:

ūo(k − 1 : k +N − 1|k − 1) =

= [uo(k|k − 1), ..., uo(k +N − 2|k − 1), uo(k +N − 2|k − 1)]
(B.4)

Using this control sequence ūo, the current state x̂(k), and the nonlinear model,
it is possible to predict the state trajectory.

x̂(k + i+ 1|k) = f(x̂(k + i|k), ūo(k + i|k − 1)) i = 0, ... , N − 1 (B.5)

This predicted state trajectory is used to linearize the system.
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Define

δ̃x̂(k + i|k) = x(k + i)− x̂(k + i|k)
δ̃u(k + i|k − 1) = u(k + i)− ūo(k + i|k − 1)

i = 0, ... , N − 1 (B.6)

Then

x(k + i+ 1) = f(x̂(k + i|k), ūo(k + i|k − 1))+

+ Ak+iδ̃x̂(k + i|k) +Bk+iδ̃u(k + i|k)

A(k + i) =
δf

δx

∣∣∣∣∣ x̂(k+i|k),
ūo(k+i|k−1)

B(k + i) =
δf

δu

∣∣∣∣∣ x̂(k+i|k),
ūo(k+i|k−1)

C(k + i) =
δg

δx

∣∣∣∣∣ x̂(k+i|k),
ūo(k+i|k−1)

i = 0, ... , N − 1

(B.7)

Define

Gk+i = f(x̂(k + i|k), uo(k + i|k − 1))−
− (Ak+ix̂(k + i|k) +Bk+iu

o(k + i|k)),
i = 0, ... , N − 1 (B.8)

Then

x(k + i+ 1) = Ak+ix(k + i) +Bk+iu(k + i) +Gk+i

y(k + i) = Ck+ix(k + i) i = 0, ... , N − 1
(B.9)

Now, we have to rewrite y(k + i) as a function of the N inputs along the
prediction horizon, u(k+ i) with i = 0, ..., N−1, and the current state at time
k, x(k).
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y(k + 1) = Ck+1x(k + 1) = Ck+1(Akx(k) +Bku(k) +Gk) =

= Ck+1Akx(k) + Ck+1Bku(k) + Ck+1Gk

y(k + 2) = Ck+2x(k + 2) = ... =

= Ck+2Ak+1Akx(k)+

+ [Ck+2Ak+1Bk, Ck+2Bk+1]

[
u(k)

u(k + 1)

]
+

+ [Ck+2Ak+1, Ck+2]

[
Gk

Gk+1

]
(B.10)

... and so on until y(k +N).

To make the process more feasible from the code point of view, the output
vector Y (k) can be written in the matrix form as a function of the current state
x(k) and the input vector U(k) as follows:



102 | Appendix B: LTV-MPC equations

Y (k) = Ac x(k) +Bc U(k) + Ec G(k)

Y (k) =


y(k + 1)

y(k + 2)
...

y(k +N − 1)

y(k +N)

 U(k) =


u(k)

u(k + 1)
...

u(k +N − 2)

u(k +N − 1)

 G(k) =


Gk

Gk+1
...

Gk+N−2

Gk+N−1



R(k) =


r(k + 1)

r(k + 2)
...

r(k +N − 1)

r(k +N)

 Ac =



Ck+1Ak

Ck+2Ak+1Ak
...

Ck+N−1

N−2∑
i=0

Ak+i

Ck+N

N−1∑
i=0

Ak+i



Bc =



Ck+1Bk 0 . . . 0

Ck+2Ak+1Bk Ck+2Bk+1 . . . 0

Ck+3Ak+2Ak+1Bk Ck+3Ak+2Bk+1 . . . 0
... ... . . . ...

Ck+N

N−1∑
i=1

Ak+i Bk Ck+N

N−1∑
i=2

Ak+i Bk+1 . . . Ck+NBk+N−1



Ec =



Ck+1 0 0 . . . 0

Ck+2Ak+1 Ck+2 0 . . . 0

Ck+3Ak+2Ak+1 Ck+3Ak+2 Ck+3 . . . 0
... ... ... . . . ...

Ck+N

N−1∑
i=1

Ak+i Ck+N

N−1∑
i=2

Ak+i Ck+N

N−1∑
i=3

Ak+i . . . Ck+N


(B.11)

The quadratic cost function becomes as follows:

J = [R(k)− Y (k)]TQ0[R(k)− Y (k)] + U(k)TR0U(k) (B.12)
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Minimizing J as a function of the control input U(k), given the current
state x(k), the reference vector R(k), and the matrices in Equation B.11, one
obtains:

min
U(k)

J = min
U(k)

[R(k)− Y (k)]TQ0 [R(k)− Y (k)] + U(k)TR0 U(k) =

= . . . =

= min
U(k)

2 (x(k)TAT
c +GTET

c −R(k)T ) Q0 Bc U(k)

+ U(k)T (BT
c Q0 B

T
c +R0) U(k)

(B.13)

Therefore, the matrices H and f in Equation B.1 are:

H = 2 (BT
c Q0 Bc +R0)

fT = 2 (x(k)TAT
c +GTET

c −R(k)T ) Q0 Bc

(B.14)
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Appendix C

Energy minimization strategy: full
simulation results tables

Here, all the results of the simulations to assess the control strategy for energy
minimization are reported. The tests consider the five maneuvers specified in
Section 6.2, a)-e), for which the following power components are measured,
and the energy is computed as the time integral of the power during the
maneuvers.

1. The electric power requested by the engines.

2. The power lost in the motors, computed using the engine efficiency
characteristic.

3. The mechanical power at the shaft of the four engines.

4. The power lost due to wheel slipping, computed according to
Equation 3.15, only for positive longitudinal forces at the wheels Fx

since braking is not considered.

5. The power lost due to wheel cornering, computed according to
Equation 3.17.

The tests are performed to compare the cases when no energy minimization
strategy is implemented (B), when only the vehicle’s weight distribution on
the wheels is considered (W), and when, in addition to weight distribution,
also the engine efficiency optimization strategy is included (E).
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Maneuver a)

Th=2s, Ts=0.2s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 2507.5 kJ 388.4 kJ 2119.1 kJ 83.61 kJ 74.64 kJ
W 2466.3 kJ 382.5 kJ 2083.8 kJ 52.62 kJ 68.39 kJ
E 2436.6 kJ 342.7 kJ 2094.0 kJ 62.81 kJ 69.01 kJ

Th=1.5s, Ts=0.15s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 2580.7 kJ 393.9 kJ 2186.8 kJ 104.86 kJ 72.79 kJ
W 2542.0 kJ 390.3 kJ 2151.7 kJ 58.00 kJ 67.59 kJ
E 2502.7 kJ 349.7 kJ 2153.0 kJ 68.68 kJ 68.36 kJ

Th=1s, Ts=0.1s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 2633.1 kJ 388.7 kJ 2244.4 kJ 165.09 kJ 79.84 kJ
W 2553.2 kJ 381.8 kJ 2171.4 kJ 63.19 kJ 71.02 kJ
E 2530.9 kJ 352.4 kJ 2178.5 kJ 70.93 kJ 71.57 kJ

Th=1.4s, Ts=0.2s, N=7
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 2471.2 kJ 382.9 kJ 2088.4 kJ 76.87 kJ 68.57 kJ
W 2439.4 kJ 382.8 kJ 2056.6 kJ 49.79 kJ 62.98 kJ
E 2406.7 kJ 340.4 kJ 2066.3 kJ 59.99 kJ 63.74 kJ

Th=1.5s, Ts=0.3s, N=5
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 2412.9 kJ 373.5 kJ 2039.4 kJ 59.38 kJ 62.77 kJ
W 2403.8 kJ 374.7 kJ 2029.1 kJ 46.38 kJ 58.72 kJ
E 2377.8 kJ 337.4 kJ 2040.4 kJ 58.51 kJ 59.75 kJ

Th=1s, Ts=0.2s, N=5
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 2470.5 kJ 378.8 kJ 2091.7 kJ 59.76 kJ 76.81 kJ
W 2471.2 kJ 384.0 kJ 2087.2 kJ 49.46 kJ 67.47 kJ
E 2443.0 kJ 344.5 kJ 2098.5 kJ 61.17 kJ 67.91 kJ

Table C.1: Energy consumed by the LTV-MPC with different combinations of
the prediction horizon during Maneuver a). Three cases are reported: B) the
base version with no energy minimization implementation, W) when only the
vehicle’s weight distribution is considered, E) when also the engine efficiency
optimization is included.
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Maneuver b)

Th=2s, Ts=0.2s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1088.8 kJ 169.5 kJ 919.3 kJ 11.60 kJ 0.00 kJ
W 1088.5 kJ 169.3 kJ 919.1 kJ 11.50 kJ 0.00 kJ
E 1062.0 kJ 127.3 kJ 934.6 kJ 29.23 kJ 0.00 kJ

Th=1.5s, Ts=0.15s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1075.4 kJ 163.7 kJ 911.7 kJ 12.03 kJ 0.00 kJ
W 1075.1 kJ 163.5 kJ 911.6 kJ 11.91 kJ 0.00 kJ
E 1052.6 kJ 126.0 kJ 926.6 kJ 28.29 kJ 0.00 kJ

Th=1s, Ts=0.1s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1078.2 kJ 159.5 kJ 918.6 kJ 13.01 kJ 0.00 kJ
W 1078.1 kJ 159.6 kJ 918.5 kJ 12.86 kJ 0.00 kJ
E 1056.9 kJ 125.7 kJ 931.2 kJ 26.67 kJ 0.00 kJ

Th=1.4s, Ts=0.2s, N=7
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1078.0 kJ 164.3 kJ 913.7 kJ 12.02 kJ 0.00 kJ
W 1082.4 kJ 165.8 kJ 916.6 kJ 11.82 kJ 0.00 kJ
E 1059.1 kJ 126.7 kJ 932.4 kJ 29.65 kJ 0.00 kJ

Th=1.5s, Ts=0.3s, N=5
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1091.3 kJ 170.6 kJ 920.7 kJ 11.55 kJ 0.00 kJ
W 1090.9 kJ 170.4 kJ 920.6 kJ 11.45 kJ 0.00 kJ
E 1064.1 kJ 127.8 kJ 936.3 kJ 29.20 kJ 0.00 kJ

Th=1s, Ts=0.2s, N=5
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1080.0 kJ 163.2 kJ 916.7 kJ 12.27 kJ 0.00 kJ
W 1079.7 kJ 163.0 kJ 916.6 kJ 12.14 kJ 0.00 kJ
E 1056.7 kJ 126.2 kJ 930.5 kJ 26.84 kJ 0.00 kJ

Table C.2: Energy consumed by the LTV-MPC with different combinations of
the prediction horizon during Maneuver b). Three cases are reported: B) the
base version with no energy minimization implementation, W) when only the
vehicle’s weight distribution is considered, E) when also the engine efficiency
optimization is included.
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Maneuver c)

Th=2s, Ts=0.2s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1033.1 kJ 122.8 kJ 910.4 kJ 26.52 kJ 0.00 kJ
W 1031.6 kJ 123.0 kJ 908.6 kJ 24.49 kJ 0.00 kJ
E 1028.6 kJ 115.1 kJ 913.5 kJ 29.39 kJ 0.00 kJ

Th=1.5s, Ts=0.15s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1030.5 kJ 122.2 kJ 908.3 kJ 27.34 kJ 0.00 kJ
W 1028.8 kJ 122.5 kJ 906.3 kJ 25.09 kJ 0.00 kJ
E 1025.1 kJ 114.8 kJ 910.3 kJ 29.27 kJ 0.00 kJ

Th=1s, Ts=0.1s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1028.7 kJ 119.1 kJ 909.6 kJ 29.28 kJ 0.00 kJ
W 1026.7 kJ 119.5 kJ 907.2 kJ 26.68 kJ 0.00 kJ
E 1026.2 kJ 114.5 kJ 911.7 kJ 30.72 kJ 0.00 kJ

Th=1.4s, Ts=0.2s, N=7
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1040.7 kJ 126.7 kJ 914.0 kJ 25.78 kJ 0.00 kJ
W 1041.0 kJ 128.6 kJ 912.3 kJ 23.28 kJ 0.00 kJ
E 1032.8 kJ 116.5 kJ 916.3 kJ 27.59 kJ 0.00 kJ

Th=1.5s, Ts=0.3s, N=5
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1041.6 kJ 127.9 kJ 913.6 kJ 23.59 kJ 0.00 kJ
W 1040.8 kJ 128.2 kJ 912.6 kJ 22.16 kJ 0.00 kJ
E 1033.2 kJ 115.9 kJ 917.2 kJ 27.23 kJ 0.00 kJ

Th=1s, Ts=0.2s, N=5
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1047.0 kJ 129.9 kJ 917.1 kJ 24.78 kJ 0.00 kJ
W 1045.8 kJ 130.2 kJ 915.6 kJ 22.95 kJ 0.00 kJ
E 1037.0 kJ 116.9 kJ 920.1 kJ 27.94 kJ 0.00 kJ

Table C.3: Energy consumed by the LTV-MPC with different combinations of
the prediction horizon during Maneuver c). Three cases are reported: B) the
base version with no energy minimization implementation, W) when only the
vehicle’s weight distribution is considered, E) when also the engine efficiency
optimization is included.
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Maneuver d)

Th=2s, Ts=0.2s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1033.6 kJ 116.5 kJ 917.1 kJ 36.74 kJ 0.12 kJ
W 1033.3 kJ 118.8 kJ 914.5 kJ 32.54 kJ 0.05 kJ
E 1033.2 kJ 116.3 kJ 916.9 kJ 35.21 kJ 0.06 kJ

Th=1.5s, Ts=0.15s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1029.6 kJ 116.2 kJ 913.4 kJ 36.28 kJ 0.01 kJ
W 1028.8 kJ 118.5 kJ 910.3 kJ 32.27 kJ 0.01 kJ
E 1028.7 kJ 115.9 kJ 912.8 kJ 35.14 kJ 0.01 kJ

Th=1s, Ts=0.1s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1038.2 kJ 118.1 kJ 920.0 kJ 35.24 kJ 0.00 kJ
W 1037.6 kJ 120.5 kJ 917.0 kJ 31.46 kJ 0.00 kJ
E 1036.3 kJ 116.8 kJ 919.5 kJ 34.22 kJ 0.00 kJ

Th=1.4s, Ts=0.2s, N=7
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1042.5 kJ 125.4 kJ 917.1 kJ 31.70 kJ 0.00 kJ
W 1046.2 kJ 130.0 kJ 916.2 kJ 28.01 kJ 0.00 kJ
E 1038.1 kJ 118.3 kJ 919.8 kJ 32.00 kJ 0.00 kJ

Th=1.5s, Ts=0.3s, N=5
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1044.7 kJ 125.1 kJ 919.6 kJ 31.35 kJ 0.00 kJ
W 1044.7 kJ 127.5 kJ 917.1 kJ 28.22 kJ 0.00 kJ
E 1038.6 kJ 117.6 kJ 921.0 kJ 32.56 kJ 0.00 kJ

Th=1s, Ts=0.2s, N=5
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 1039.0 kJ 126.2 kJ 912.8 kJ 30.19 kJ 0.00 kJ
W 1039.0 kJ 128.7 kJ 910.4 kJ 27.23 kJ 0.00 kJ
E 1032.3 kJ 117.2 kJ 915.1 kJ 32.48 kJ 0.00 kJ

Table C.4: Energy consumed by the LTV-MPC with different combinations of
the prediction horizon during Maneuver d). Three cases are reported: B) the
base version with no energy minimization implementation, W) when only the
vehicle’s weight distribution is considered, E) when also the engine efficiency
optimization is included.
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Maneuver e)

Th=2s, Ts=0.2s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 199.5 kJ 73.5 kJ 126.0 kJ 0.75 kJ 80.59 kJ
W 156.1 kJ 55.8 kJ 100.3 kJ 0.17 kJ 55.32 kJ
E 136.9 kJ 35.4 kJ 101.4 kJ 0.47 kJ 56.01 kJ

Th=1.5s, Ts=0.15s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 197.5 kJ 72.9 kJ 124.6 kJ 0.70 kJ 79.28 kJ
W 154.0 kJ 55.5 kJ 98.6 kJ 0.16 kJ 54.90 kJ
E 134.7 kJ 35.3 kJ 99.4 kJ 0.45 kJ 55.60 kJ

Th=1s, Ts=0.1s, N=10
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 196.4 kJ 72.6 kJ 123.7 kJ 0.69 kJ 78.10 kJ
W 153.7 kJ 55.4 kJ 98.2 kJ 0.16 kJ 54.60 kJ
E 134.5 kJ 35.3 kJ 99.2 kJ 0.44 kJ 55.27 kJ

Th=1.4s, Ts=0.2s, N=7
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 197.1 kJ 73.0 kJ 124.1 kJ 0.65 kJ 74.81 kJ
W 158.2 kJ 56.8 kJ 101.4 kJ 0.17 kJ 52.42 kJ
E 138.4 kJ 35.9 kJ 102.5 kJ 0.48 kJ 53.07 kJ

Th=1.5s, Ts=0.3s, N=5
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 190.7 kJ 71.0 kJ 119.7 kJ 0.54 kJ 71.30 kJ
W 160.4 kJ 57.4 kJ 103.0 kJ 0.18 kJ 51.10 kJ
E 140.4 kJ 36.0 kJ 104.4 kJ 0.50 kJ 51.69 kJ

Th=1s, Ts=0.2s, N=5
Case Elect. En Eng. Loss Mech. En Slip loss Cor. Res.
B 185.4 kJ 69.0 kJ 116.4 kJ 0.48 kJ 66.25 kJ
W 156.1 kJ 56.7 kJ 99.4 kJ 0.16 kJ 50.17 kJ
E 136.2 kJ 35.8 kJ 100.4 kJ 0.45 kJ 50.70 kJ

Table C.5: Energy consumed by the LTV-MPC with different combinations of
the prediction horizon during Maneuver e). Three cases are reported: B) the
base version with no energy minimization implementation, W) when only the
vehicle’s weight distribution is considered, E) when also the engine efficiency
optimization is included.
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