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Abstract

Emotions have a pivotal role in many cognitive functions thus it’s important to study
them in the context of human behaviour.
There is a need to define and characterize human emotion, and it can be performed using
discrete and continuous models. The first rely on the universality of facial expressions
to define a set of basic emotions; the latter use a multidimensional space to represent
fundamental emotional characteristics, like the Circumplex Model of Affect that maps
emotions in a space defined by valence, arousal, and dominance.
Affective computing uses these models to create systems that interact with human emo-
tions. To build affective recognition models it’s necessary to evoke specific emotions in
controlled laboratory environments through rigorous elicitation methods.
This work explores the integration of Virtual Reality and Affective Computing; a novel
experimental framework was developed in an immersive virtual environment to test the
validity of VR as medium for targeted emotional triggers, against a traditional method
that uses pictures from the OASIS database, presenting them through a Flat Screen
(FS). The comparison was two-fold: an analysis of subjective data, collected by two
post-elicitation surveys; and an analysis of physiological signals. Trends of the extracted
features were observed and showed that VR-induced variations were generally more pro-
nounced and showed a higher arousal than the Flat Screen-ones (as also confirmed by a
Friedman’s test). A square method for feature selection isolated the best three features
for each method in differentiating the four emotions and a 3D graphical representation
of the emotional separation was presented for both stimulations. A Machine Learning
classification approach was carried out for both methods; the models trained on VR data
outperformed the one trained on Flat Screen data in all cases.
This work defines a new VR-based protocol for targeted emotion elicitation that induces
more specific responses in the subjects than traditional FS picture-based methods and
proves the efficacy of VR as an emotional elicitation tool and its potential in enhancing
the field of affective computing.
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Abstract in lingua italiana

Le emozioni hanno un ruolo centrale in molte funzioni cognitive, è quindi importante
studiarle nel contesto del comportamento umano.
È necessario, in primo luogo, definire e caratterizzare le emozioni utilizzando modelli dis-
creti o continui. I primi si basano sull’universalità delle espressioni facciali per definire un
insieme di emozioni di base; i secondi rappresentano le principali caratteristiche emotive
in un continuo, come il Circumplex Model che mappa le emozioni tramite valenza, arousal
e dominanza.
L’Affective Computing usa questi modelli per creare sistemi che interagiscano con le
emozioni. Per costruire modelli di riconoscimento affettivo è necessario evocare emozioni
specifiche in ambienti di laboratorio controllati con metodi di stimolazione rigorosi.
Questo lavoro esplora l’integrazione della Realtà Virtuale e dell’Affective Computing; è
stato sviluppato un nuovo framework sperimentale in un ambiente virtuale immersivo
per testare la validità della VR come mezzo per stimolare emozioni mirate, rispetto a un
metodo tradizionale utilizzando immagini dal database OASIS. Il confronto è stato du-
plice: un’analisi dei dati soggettivi, raccolti tramite due sondaggi, e un’analisi dei segnali
fisiologici raccolti. Sono state osservate i trend delle features estratte, le variazioni indotte
dalla VR erano generalmente più pronunciate e mostravano maggior arousal rispetto a
quelle della stimolazione a schermo, come confermato dal test di Friedman. Lo square
method è stato usato per isolare le migliori tre features per ciascun metodo nella sep-
arazione delle quattro emozioni; è stata poi creata una rappresentazione 3D delle con-
seguenti separazioni emotiva. Per entrambe le stimolazioni è stato usato un metodo di
classificazione Machine learning; i risultati dei modelli trainati sui dati VR hanno sempre
superato i corrispettivi dai dati provenienti dalla stimolazione tradizionale. Questo lavoro
definisce un nuovo protocollo basato sulla VR per l’elicitazione mirata delle emozioni che
induce nei soggetti risposte più specifiche rispetto ai metodi tradizionali basati sulle im-
magini e dimostra l’efficacia della VR come strumento di elicitazione emotiva e il suo
potenziale nel migliorare il campo dell’affective computing.

Parole chiave: Affective Computing, Realtà Virtuale, Machine Learning
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Summary

Emotions serve a pivotal role in numerous cognitive functions, including rational decision-
making, perception, and learning, among others. The physiological and psychological
statuses of humans are profoundly influenced by emotions, thus underscoring the critical
importance of recognizing and comprehending them in the context of human behavior
research.
Affective Computing has emerged in the last few decades as a significant area of research
that aims at the development of systems and devices able to recognize, interpret, process,
and simulate human emotions. The interdisciplinary nature of this field encompasses psy-
chophysiology, computer science, biomedical engineering, and artificial intelligence.
To create affective recognition models a lot of implicit data, such a physiological signals, is
needed; thus a rigorous and effective way to elicit specific emotions is necessary. It’s also
important that researchers evoke affective states in controlled laboratory environments
through various elicitation methods. To measure affection, it is necessary to define and
characterize human emotion; this can be done through discrete and continuous models.
Discrete models rely on the universality of facial expressions to define a set of basic emo-
tions, such as the Pick-A-Mood (PAM) model or the Self-Assessment-Mannequin (SAM);
Continuous models use instead a multidimensional space to represent fundamental emo-
tional characteristics, like the Circumplex Model of Affect (CMA) in which emotive states
are identified through valence, arousal, and dominance.
This work explores the integration of Virtual Reality and Affective Computing using rig-
orous quantitative methods, such as advanced signal processing, to extract and analyse
high-quality features. A novel experimental protocol was developed in a fully immersive
virtual environment to test the validity of the VR technology as medium for targeted
emotional triggers, against an already validated picture-based method for emotion elici-
tation, using pictures from the Open Affective Standardized Image Set (OASIS).
The comparison was carried out in two ways: an analysis of self-reported data, collected
with two post-elicitation assessment surveys using the previously cited PAM and SAM
models to place the reported states on Russell CMA’s two dimensions of arousal and
valence; and an analysis of acquired physiological signals such as galvanic skin response



(GSR or EDA), respiration, Electrocardiograms (ECG) and blood volume pressure (BVP
or PPG) collected using a ProComp device with four channels. From the four acquired
physiological signals, a total of 30 features were extracted. Specifically, for the cardiac
features a Point Process Model of Heart Rate Variability was created and 9 features were
computed, both regarding the time component and spectral component of the signal;
other cardiac features computed were the Pulse Arrival Time (PAT) and Pulse Pressure
(PP).
Regarding the extracted features, their trends throughout the experiment were first ob-
served, and showed that VR-induced variations in the features were generally more pro-
nounced than the Flat Screen-induced ones, and that the VR stimulation generated a
general higher level of arousal in the subjects; this was confirmed by a Friedman’s test
aimed at identifying statistically significant features in distinguishing between different
emotions. The results showed that none of the extracted features from the more tradi-
tional elicitation were statistically significant, 17 features from the VR stimulation were
instead significant in distinguish at least two of the elicitated emotional states, with GSR
being the most relevant signal in this context. A Wilcoxon signed rank test was also
carried out to assess differences between corresponding elicitated emotions in the two
stimulations, only one feature resulted significantly different for all four emotions.
A square method for feature selection was carried out to isolate the best three features for
each stimulating method in differentiating the four emotional states, and a 3D graphical
representation of the emotional separation was presented, highlighting the better capabil-
ity in distinguish the four emotions of the VR extracted features against the Flat Screen
ones. This insight was then confirmed by analysing the outcomes of the machine learning
classification models that were developed. Three different models were created for each
stimulation method: a multiclass classification model for the four emotions and two bi-
nary classifiers to distinguish arousal level and valence level. Arousal separation achieved
the highest accuracy, followed by valence separation and multiclass separation for both
elicitation methods. The model trained on VR data consistently outperformed the one
trained on Flat Screen data in all cases.
In conclusion, our work defines a new VR-based protocol for targeted emotion elicitation
that induces more specific responses in the subjects than traditional flat screen image-
based methods and demonstrates the efficacy of virtual reality as an emotional elicitation
tool and its potential in enhancing the field of affective computing.
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Introduction

Emotions play a pivotal role in rational decision-making, the learning process, general per-
ception, and various other physiological and psychological functions in humans. Therefore,
the recognition of emotions is a crucial aspect of human behavioural science.

In laboratory settings, affective states can be induced using various stimulation modali-
ties that can both be active (such as Behavioral Manipulation and Active Recalling) and
passive such as images, audio, videos, and, more recently, virtual reality (VR) and aug-
mented reality (AR) [1][2].
The scientific interest and use of VR began in the 1990s and has significantly increased
due to the advent of a new generation of low-cost headsets, made possible by the consid-
erable investments in the gaming market and the rise of new VR hardware and software
companies [3]. These new devices and the developer tools that come with them, led to
the start of a change in the direction of the scientific studies in Affective Computing.

VR presents a unique prospect to create simulated environments that can elicit a powerful
sense of presence while providing a cost-effective mean of isolating and controlling the
variables of an experiment, which is unfeasible in real-world settings. The integration
of VR, physiological signal recordings, and advanced signal processing techniques offers
novel prospects to extract valuable features that can be utilized for emotion recognition.

Previous studies examining the emotional aspects and elicitation potential of VR have
shown a tendency towards moderation. These studies focused on the feasibility of eliciting
diverse emotional states using simple stimuli, such as static images or moderately intricate
settings, without fully utilizing the potential of virtual reality as a medium for stimulation
[4]. In real-world scenarios, it’s not possible to isolate emotional stimuli. Therefore, a VR
protocol tests the hypothesis that more immersive and realistic scenarios may be better
triggers for specific emotional responses compared to traditional visual stimulation using
validated pictures on a flat screen surface.

The aim of this work is to develop a new framework for targeted emotion elicitation using
VR; to compare it with a traditional flat screen, image-based method, and evaluate the
differences in subjects’ responses, both through subjective assessments and analysis of
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physiological signals. The results will help to identify the strengths and weaknesses of
this new approach in respect with the traditional one.

The resulting data will also be used to train a machine learning classifier that can separate
the emotional state of a person and two binary classifiers that separate levels of arousal
and valence, based on a certain subset of features derived from the acquired physiological
signals. This tools could be used to more accurately assess the emotional responses of
future subjects, improving the efficacy of the elicitation method.

Thesis Outline

To better understand the structure of the document a brief outline of what will follow in
the next chapters is presented below:

In Chapter 1 an introduction to the context of emotion and the field of Affective Com-
puting is proposed, discussing then the Autonomic Nervous System and its role in this
field. The focus will then shift to affective modeling and affective elicitation modalities,
introducing in more detail the most commonly used and the chosen ones for this thesis
work. The chapter ends with an introduction to the physiological signals acquired during
this project.

Chapter 2 will present the materials and the methods used in this thesis work. At first the
tools and strategies used to build the stimulation protocol are explained in detail, for both
the traditional, the VR elicitation and the post experience emotional assessments. Then
the focus will shift to signal acquisition and processing, and move to the performed Statis-
tical Analysis and feature selection. To conclude the used Machine Learning approaches
are described in the last portion of the chapter.

In Chapter 3 the results obtained from the various analysis described in the previous
chapter are presented, so it will follow a similar outline. At firs the results from the two
post-elicitation assessment are shown and compared in detail for each part of the stim-
ulation. The results from the physiological response analysis and the statistical analysis
are then presented in detail. The chapter will conclude with the feature selection results
and machine learning models performances.

The document will end in chapter 4 with a critical discussion of the obtained results
and the conclusions, which will summarize the biggest achievements of this work, its
limitations and possible future improvements.
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Emotions are very complex phenomena that make up a significant part of human life; they
affect behaviour, perception, memory retrieval and cognition. They can be described as
a sensory condition that leads to instinctive physical and psychological changes [5].

1.1. Affective Computing

To investigate the connections and interactions between emotional states, cognition and
decision-making processes, the field of Affective Computing was introduced. Affective
Computing analyses human responses using implicit measures, such as psychophysio-
logical responses, with the aim to develop automatic emotion recognition tools using a
combination of computer science and physiology [6], aspiring to narrow the communica-
tive gap of human-computer interfaces [7].

Various sources are efficiently used in Affective Computing as an input to classify emo-
tions [7]. We will briefly introduce the most used ones (fig.1.1):

• Voice: paralinguistic features of speech; affective information is carried in what
is said (explicit message, often analysed through text) and how it is said (implicit
paralinguistic message), for example pitch appears to be an index of arousal.

• Facial Expressions: online face video capturing, used to track face movements in
real time and use them to identify expressions linked to specific emotions.

• Body language and posture: usually acquired through pressure sensors and
video tracking, posture and body movements contain a great amount of nonverbal
affective information.

• Neuroimaging: new developments in brain imaging, such as Functional Magnetic
Resonance Imaging (fMRI), are used in attempts to map the neural pathways that
are involved in emotional experiences and use them to identify emotions.
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• Physiological Activity: research in this field is known as psychophysiology and it
studies how an affective stimulus (independent variable) influences a physiological
measure (dependent variable). Most of the measures used are “non-invasive” such
as:

– Electroencephalography (EEG)

– Respiration (RESP)

– Galvanic Skin Response (GSR)

– Skin temperature (SKT)

– Electromyogram (EMG)

– Electrooculogram (EOG), measuring eye movement

– Electrocardiography (ECG or EKG)

– Heart rate (HR) and Heart Rate Variability (HRV)

– Photopletismography (PPG), used as a non-invasive measure for blood pressure

All these physiological signals bring information related to the central nervous sys-
tem activity (the EEG signal in particular) and the autonomic central system (ANS)
activity [8].

Figure 1.1: Emotion Recognition Technologies
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1.1.1. Autonomic Nervous System

The Autonomic Nervous System (ANS) is the portion of the nervous system that
innervates various internal organs: stomach, intestine, genitals, lungs, bladder, pupils,
heart, blood vessels, kidneys and liver and multiple glands (digestive, sweat, salivary).
Also, skin is innervated by the sympathetic system only. A graphical representation of
ANS can be seen in figure 1.2.
The ANS regulates body processes such as the respiration pattern, the heart rate, the
contraction of the digestive tract’s muscles or the blood pressure; all these processes
are autonomous, they occur without conscious exertion from the subject, thus the name
“Autonomous Nervous System” (or Autonomic).
The ANS can be divided in two subsystems:

• Sympathetic nervous system

• Parasympathetic nervous system

Figure 1.2: The Autonomic Nervous System and its branches.
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These two subsystems innervate mostly the same organs and tissues but have diametrically
opposed effects: the sympathetic system prepares the body for action by increasing the
heart rate, blood pressure and accelerating the respiratory rate, the so called “fight or
flight” response; in contrast, the parasympathetic (or vagal) system predisposes the body
to rest through the "rest and digest" response: it slows the heartbeat and respiratory
rate and reduces blood pressure, concentrating the blood flow and energy resources to
processes like digestion [9].
Different affective states such as relaxation, sadness or fear are defined by different activity
of the parasympathetic and sympathetic systems, and these differences can be studied
observing physiological signals as was done in numerous studies.
The results of these studies, in which different specific ANS activations are associated
with four main emotions (of which we will discuss in more detail in the following section),
can be summarized as follows [10]:

• Sadness: The feeling of sadness is physiologically characterized by a heterogeneous
pattern of parasympathetic-sympathetic co-activation. Regarding sadness there’s an
important differentiation between a crying and a non-crying sadness status; physio-
logically a crying sadness is correlated to an uncoupled sympathetic activation and
a non-crying status is linked to parasympathetic-sympathetic withdrawal.

• Relaxation or contentment: Characterized by a strong deactivation of the sym-
pathetic branch and mild cardiac vagal activation, related to a HR deceleration and
a decrease of both respiratory and electrodermal (GSR) activation.

• Happiness: The autonomic response pattern for the feeling of happiness is dis-
tinguished by vagal withdrawal, that causes increased cardiac activity, increased
respiratory activity, vasodilation, and increased electrodermal activity. The physi-
ological response to happiness includes increased HR and increased blood pressure,
but a few exceptions can occur in the case of elicitation with visual material (videos,
pictures): instead of the typical increased HR some studies reported unchanged or
decreased HR; this variance may lead to the possibility that a large range of positive
feelings is clustered under the umbrella term “happiness”.

• Fear: The physiological effect of fear is related to broad sympathetic activation,
that causes vasoconstriction, increased myocardial contractility, cardiac acceleration
(increased HR) and increased electrodermal activity; this response is accompanied
by decreased cardiac vagal influence, that increases respiratory activity, leading to
faster breathing resulting in decreased carbon dioxide blood levels.
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1.2. Affective Models

To measure affection, we first need to define and model human emotions.
Although the two terms are often used interchangeably in scientific literature, affect and
emotion refer to two different things: in [11], affect is defined as a short-term perceptual
feeling of pleasure-displeasure (valence) and of calmness-excitement (arousal), while emo-
tion is a long-term complex mental construction.
Both can be measured through signals in the form of bodily activation and responses to
inputs.

In this work, we will use these two terms as in literature, but it is important for the reader
to understand their differences; both terms will refer to emotion and not affect.
Proposed models of affection can be divided in two categories: continuous models and
discrete models.

1.2.1. Continuous Models

Circumplex Model of Affect (CMA)

This model was the first to represent affective states as a circle in a two-dimensional
bipolar space, taking as variables the ranges of valence and arousal felt by the subject
[12]. Such values are then used as coordinates and, depending on the position of the
resulting point, the most likely emotion felt is selected. When the model was developed,
the ranges of valence and arousal were derived from a subjective assessment through the
Mehrabian and Russell’s state affect scales [13], and the results were linked with a rating
of how accurately 518 adjectives described how the subjects were feeling. In the end,
15 affect states were derived and identified into the two-dimensional space, defining the
Circumplex Model (fig. 1.3).
Notice that this graph represents a specter, a continuous space where affective states
overlap over one another.
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Figure 1.3: 2-dimensional CMA

1.2.2. Discrete Models

Discrete models define a set of basic emotions such as anger, disgust, tension, happiness,
sadness, and surprise; this method is based on the concept of emotional facial expressions
being universal, transcending cultural differences, an example of this approach, that also
finds application in this thesis work, is the Pick-A-Mood model [14].

Pick-A-Mood Model (PAM)

The Pick-A-Mood (PAM) model is a cartoon-based graphical tool for reporting and ex-
pressing subjective moods. The idea is to use cartoon characters instead of pictures of
real people in order to enable the subjects to unambiguously and visually express their
mood in an intuitive way. PAM requires little time and effort to be compiled, which makes
it useful for design research applications. This model focuses on moods, which are not
evoked by a single stimulus (unlike emotions) but are rather complex phenomena that are
difficult to explain and describe for people. At the same time, mood can be influenced
by little changes in the environment and in one’s emotional state and can bring to highly
different behaviors [15]. Finally, mood can only be measured through self-report.
The PAM model represents eight moods that can be grouped in four main mood cate-
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gories:

• excited and cheerful (energized-pleasant),

• irritated and tense (energized-unpleasant),

• relaxed and calm (calm-pleasant),

• bored and sad (calm-unpleasant),

plus a neutral mood.

The final iteration of the PAM model is composed of nine drawings, each for one mood
state in the form of a neutral-aged woman, as can be seen in figure 1.4.

Figure 1.4: Pick-A-Mood Model graphical representation.
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SAM

The Self-Assessment Manikin (SAM) is a pictorial assessment technique that directly mea-
sures the pleasure, arousal, and dominance associated with a person’s affective reaction
to stimuli [16]. A different set of five images was developed to subjectively assess each
variable, and it was validated against the Semantic Differential Scale (SDS), which is a
psychometric technique used to measure the attitude of an individual towards an object
or concept. It is an adaptation of the Likert Scale [17], that is a 7-point scale made up
of bipolar adjectives (for example, good-bad, strong-weak, etc.) that are used to measure
the connotation of a stimulus.
Other then the already cited valence and arousal, the SAM model also measures domi-
nance, which is the degree of control perceived by the subject in response to a stimulus,
be it an image, a video, an event etc.
Below, the graphical representations of the SAM Arousal (fig. 1.5), Valence (fig. 1.6) and
Dominance (fig. 1.7) scales are reported.

Figure 1.5: SAM Arousal graphical representation

Figure 1.6: SAM Valence graphical representation

Figure 1.7: SAM Dominance graphical representation
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1.3. Affective Elicitation Methods

Emotion elicitation refers to the capacity to consistently and ethically elicit affective
states. This process is essential in the development of a system capable of detecting,
interpreting, and adapting to human emotions. Elicitation may be either active or passive,
with the former utilizing means such as behavioral manipulation, social interaction, and
dyadic engagement to directly impact individuals. Conversely, passive methods typically
present stimuli through visual, auditory, or audiovisual media [1].

1.3.1. IAPS Database

Behavioral and brain sciences often rely on the use of images that can elicit a diverse range
of emotions associated with social and non-social phenomena. To facilitate such research,
the Center for the Study of Emotion and Attention started developing the International
Affective Picture System (IAPS) [18], which is a standardized and internationally avail-
able set of visual emotional stimuli. The latest version of the IAPS consists of 1,195 color
photographs, each of which has been assigned normative ratings on three dimensions:
valence, arousal, and dominance. The IAPS has been extensively utilized in psychologi-
cal, psychophysiological, and neuroscience research, covering a broad spectrum of topics.
However, it should be noted that the IAPS was developed in a pre-Internet era, and the
images are therefore dated and subject to copyright restrictions.

Figure 1.8: Sample of pictures from the IAPS.
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1.3.2. OASIS Database

The Open Affective Standardized Image Set (OASIS) [19] is a freely accessible online
database that includes 900 color images depicting a wide range of themes such as humans,
animals, objects, and scenes. The images are accompanied by normative ratings on two
affective dimensions, valence and arousal, which measure the positive or negative affective
response and the intensity of the affective response, respectively. The images in the
OASIS database were sourced from online platforms, and the related ratings were obtained
through an online study involving more than 800 participants, with diverse backgrounds
and ages. The valence and arousal ratings covered a significant proportion of the CMA’s
space and exhibited high reliability and consistency across gender groups.

There are four key advantages of the OASIS dataset. First, it contains a substantial
number of images across four distinct categories. Second, the data collection process was
conducted in 2015, allowing for a more contemporary selection of images and up-to-date
ratings of valence and arousal than pre-existing datasets [19]. Third, the OASIS database
allows users to interactively explore images by category and ratings. Finally, and most
importantly, OASIS gives free use of its images for both online and offline research studies,
as they are not subject to copyright restrictions that apply to other similar databases,
such as the IAPS.

Figure 1.9: Sample of pictures from the OASIS.
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1.3.3. Virtual Reality

VR can be defined as a computer-simulated environment that replicates physical presence
in a three-dimensional space. It is achieved through the use of specialized hardware and
software (usually VR headsets and hand controllers) to generate a simulated environment
that allows users to interact with objects, people, and entities, although VR can also be
used in a passive way, like through the vision of 360° movies. The experience of being
inside the virtual world can be enhanced by the use of immersive audio, visual, and haptic
(tactile) feedback.
VR has been used as a medium for games, entertainment, education, physical and cog-
nitive training, rehabilitation and therapy. In recent years, studies have registered an
increase in interest in human emotional behavioural studies using VR to evoke emotions
in the subjects [5].
The previously cited methods of emotional elicitation use their stimulating content as if
it possessed intrinsic affective qualities, without taking context into consideration. The
response of a subject will be different if they see the image of a spider on a computer’s
screen, and if they see it in real life. As in [20], «there is a lack of ecological validity
to presenting a stimulus that has an assumed intrinsic emotional quality but is otherwise
disconnected from its meaning in other components of emotion».
Where talking about “ecological validity”, the VR-related concepts of immersion and pres-
ence are brought up. Immersion, that «relates to the feeling of being physically present
in a nonphysical world» [21] is achievable through the removal of real-world sensations,
substituting them with virtual ones that absorb the user, limiting a sense of separation
from what is experienced in the simulation. As in [22], «Immersion is intended to instill
a sense of belief that one has left the real world and is now "present" in the virtual en-
vironment». Presence is the psychological, subjective, cognitive consequence of the more
objective and technologically related immersion and can be thought of as the perception
of “being in” and “existing in” the virtual environment.
Through enhanced immersion and, thus, presence, the connection between the subject and
the stimuli is reinforced, bringing to heightened responses than those acquired through
more traditional protocols.
VR can be integrated with numerous elicitation modes as bidimensional images, videos,
games, 360-degree panoramas or a combination of more modes, with or without other
sensorial information than visual ones.
As a result, with proper development, VR can be used to represent complex, realistic and
three-dimensional scenarios that are fully controlled by the developer, without taking into
consideration the complexities of building or finding the same scenario in physical life.
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To create such environments, free and easy-to-use software such as Unity, or similar game
engines, can be used.

Figure 1.10: Examples of commercial VR headsets.
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1.4. Physiological Signals

Various sources can be efficiently used in Affective Computing. This work will focus on
physiological activity, by acquiring signals such as the Electrocardiogram, Blood Volume
Pulse, Galvanic Skin Response and Respiration. In the following section an introduction
to these signals is proposed.

1.4.1. ECG

Electrocardiograms (ECGs) have been a subject of scientific investigation for over a cen-
tury. ECGs are essential biomedical signals, typically depicted as a graph of voltage
versus time that represents the electrical activity of the heart. Electrodes placed on the
skin detect the electrical changes that occur during each cardiac cycle as a result of cardiac
muscle depolarization and re-polarization.

The typical morphology of the ECG signal is shown in figure 1.11 and consists of three
segments within a single cycle. The first segment, known as the P wave, corresponds to
atrial depolarization. The second segment is the QRS complex, which is the highest am-
plitude waveform caused by ventricular depolarization. The distance between successive
R peaks is used to obtain the inter-beat interval (IBI), also known as RR interval from
the name of the peaks, for heart rate detection. QRS detection is essential for extracting
heart rate variability (HRV) features from ECG signals. The T wave appears after a
few milliseconds of plateau, as a consequence of ventricular re-polarization, and the cy-
cle repeats. ECG signals are considered high-sensitivity physiological signals, with a low
recording voltage ranging from 0.5 to 5 mV. The typical frequency for high-quality ECG
acquisition is 256 Hz or higher, while the minimum frequency required to appreciate the
QRS morphology of the ECG signal is 100 Hz [23]. The brain and heart are connected
through the ANS, whereby both organs influence each other’s behavior in a closed loop.
As such, emotional experiences can cause changes in heart rhythm, which can be detected
through ECG readings.
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Figure 1.11: ECG wave

1.4.2. Blood Volume Pulse

The Blood Volume Pulse (BVP) signal is a valuable tool for extracting blood pressure
information, when acquired using specific sensors it can also be called Photoplethysmog-
raphy (PPG) (fig.1.12). BVP is composed of a pulsatile (AC) component and a super-
imposed (DC) component [24], where the AC component is contributed by variations in
blood volume that occur synchronously with cardiac activity; meanwhile, the DC compo-
nent is shaped by respiration, sympathetic nervous system activity, and thermoregulation.
The AC component of BVP reflects changes in blood volume, which are dependent on
the systolic and diastolic phases. The systolic phase, referred to as the "rise time," be-
gins with a valley and concludes with the pulse wave systolic peak, while the end of the
diastolic phase is marked by another valley. The PPG signal is divided into two blocks:
the rising edge of the pulse (anacrotic) corresponding to systole and the falling edge (cat-
acrotic) corresponding to diastole. In addition, a dicrotic notch is typically observable at
the catacrotic phase.

Features such as rise time, amplitude, and shape can predict vascular changes in the
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bloodstream. Moreover, PPG can be used in addition or alternative to the ECG to assess
HRV or variations in the intervals between heartbeats.

Figure 1.12: Photoplethysmographic Signal

1.4.3. Galvanic Skin Response

GSR, which is the signal shown in figure 1.13, refers to the variations in electrical conduc-
tance of the skin due to sweat secretion. This data is acquired by applying a low constant
voltage to the skin and measuring the resulting variations in skin conductance. GSR is
linked to the regulation of internal body temperature and has been found to be strongly
associated with emotional arousal. The Skin Conductance Response (SCR), which is of-
ten used as an indicator, is modulated autonomously by the sympathetic nervous system,
leading to changes in skin conductance that offer direct insights into emotional regulation.
The time course of the GSR signal comprises two additive processes: a tonic base level
driver that fluctuates slowly (seconds to minutes) and a faster-varying phasic component
that fluctuates within seconds [25]. Changes in phasic activity can be identified in the
continuous data stream as bursts characterized by a steep incline to a distinctive peak
and a slow decline relative to the baseline level. When significant changes in GSR activity
occur in response to a stimulus, an Event-Related Skin Conductance Response (ER-SCR)
occurs; these responses are called GSR peaks and provide information about emotional
arousal to stimuli.
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Figure 1.13: GSR Signal.

1.4.4. Respiration

The respiratory system is primarily responsible for oxygen supply and carbon dioxide
removal from the body’s tissues. The process of breathing is regulated by muscular con-
tractions that increase and decrease lung volume, facilitating precise and sensitive control
of arterial blood carbon dioxide levels. In healthy individuals, this process occurs rhyth-
mically, respiratory rate can be derived from the respiratory signal and as said in 1.1.1 it
can be highly correlated to emotion [26, 27]. Respiratory pattern contains rich informa-
tion about emotional states. Respiration velocity and depth usually varies with human
emotion. For example, deep and fast breathing shows excitement that is accompanied by
happy, angry or afraid emotion; shallow and fast breathing shows tension; relaxed people
often have deep and slow breathing; shallow and slow breathing shows a calm or negative
state [28].
This signal can be acquired by a belt with a displacement sensor placed around the sub-
ject’s chest since the respiratory cycle is accompanied by changes in the thoracic volume.
In the figure below a typical morphology of the respiratory signal is shown in figure 1.14.
The respiratory activity also reflects on the heart rate variability in a physiological phe-
nomenon known as Respiratory Sinus Arrhythmia, the high-frequency component of HRV
is affected by respiration as the heart rate tends to increase during inspiration and decrease
during expiration.
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Figure 1.14: Respiratory Signal.

In conclusion, this section reported information about the research field this work is placed
in, Affective Computing. After a brief introduction on the ANS and its spontaneous
mechanisms when an emotion is felt and the main emotional models that have been
presented and used in literature, some elicitation strategies were discussed. It is here
that this work’s aim finds its roots: such methods use one single type of stimulation, be
it pictures, sounds or compound like videos, assuming that these contents have intrinsic
emotive qualities that can be considered outside of the context in which they are perceived
by the subject (which is, usually, a laboratory setting where these inputs are presented
through a screen).
Immersive environments, powered by VR technology, present a new venture for Affective
Computing with their ability to remove the subject from the aseptic real world laboratory
environment and transporting them to a specifically designed setting. Enhancing the
feeling of presence, the hypothesis is that VR as a medium has potential for new and
more accurate ways to elicit specific emotional states in humans.
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2.1. Development of the Emotion Elicitation Proto-

col

As said before in 1.3, emotion elicitation is essential in the development of a system
capable of detecting, interpreting, and adapting to human emotions. In this work an
emotion elicitation protocol composed by two different elicitation techniques is proposed.
The two methods are a traditional Flat Screen picture-based elicitation method (FS) and
a fully immersive VR elicitation protocol. Both are designed to elicit sadness, relaxation,
happiness, and fear, and were developed using the Unity graphic engine.
Several tools were used to build the protocol:

• Data Acquisition Tools: as said in 1.4 the ECG, BVP, GSR and Respiratory
signal were collected for this protocol.
The data acquisition method utilized in the study involved the use of the ProComp
Infiniti (fig. 2.1), which is a portable multimedia system for acquiring biofeedback
signals.

Figure 2.1: Procomp Infiniti Device

The system is designed to interface with any computer featuring a USB port and is
equipped with 8 channels to enable parallel signal acquisition. The specific sensors
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used in the study include a 3-lead ECG (fig. 2.2 a), a respiration band (fig. 2.2 c),
a reflectance pulse oximeter (fig. 2.2 b), and an EDA sensor (fig. 2.2 d).

(a) (b)

(c) (d)

Figure 2.2: Procomp Infiniti Sensors:
(a) ECG sensors, (b) PPG sensor, (c) Respiratory Band, (d) GSR sensors.

• Graphic Engine:
Unity (formerly known as Unity 3D) is a cross-platform game engine developed by
Unity Technologies. It was first released in 2005 and has since been used to create
videogames, VR experiences and mobile apps, both in 2D and in 3D [29]. Being
free and easy to use, Unity has rapidly gained popularity among developers in a
variety of industries, including education, engineering, architecture, medical, film
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and advertising.
The engine, whose starting screen is shown in figure 2.3 (b), is written in the C#
programming language and includes a comprehensive suite of tools for creating
3D content, including a terrain editor, animation tools and a particle system. A
physics engine is also integrated, which can be used to create realistic physics-based
simulations.
The engine natively supports the use of VR headsets, facilitating the development
of immersive experiences.

(a)

(b)

Figure 2.3: Unity Engine
(a) Unity logo, (b) Unity’s environment

• Questionnaires: two different surveys were created to qualitatively assess, through
self-report, the perceived affective state of the subjects after each section of the
protocol. These surveys were created and distributed through the Microsoft Form
platform.
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Figure 2.4: Microsoft Forms Environment

• Data Analysis Tools: The acquired data have been processed for statistical anal-
ysis using the MATLAB environment. For the Machine Learning part, Jupiter
Notebook’s environment was used.

2.1.1. Experimental Protocol Structure

The developed emotion elicitation protocol is made of two different parts, each followed
by an emotional assessment survey; for each acquisition a rigorous protocol was followed
to minimize inter-subject variability in the response.
Each subject was sat on a chair at a standard distance of 80-100cm from a 24’ monitor,
sensors were applied to standard positionings on the hands (the non-dominant hand was
always chosen to position the electrodes; the skin conductance’s on the pointer and middle
finger and the PPG sensor on the index’s fingertip) as can be seen in figure 2.2 b) and d),
torso (ECG sensors on the two shoulders and one on the abdomen above the navel) and
abdomen (respiratory band).
A schematic representation of the experimental station is presented in figure 2.5.
Prior to each use, the electrodes were cleaned with alcohol, and the virtual reality headset
was sterilized and cleaned.
The room temperature was maintained within a range of 20 to 25°C.
The protocol has a total duration of about one hour and 15 minutes, considering the
set-up process, the two elicitation protocols and the time needed to answer the two post
elicitation assessment forms.
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Figure 2.5: Experimental setup.

Each of the two elicitation methods starts with a 90 seconds adaptation period, followed by
eight parts: four sections of emotion elicitation, each portion representative of a different
quadrant of the Circumplex plane (1.2), interspersed with four baselines. The order was
designed to progress in a counterclockwise direction through the valence-arousal plane,
commencing with sadness, followed by relaxation, happiness and ultimately, fear.

2.1.2. Flat Screen Elicitation

As stated before, the FS elicitation part is composed by 4 baselines (each lasting 1 and
a half minutes), alternated with 4 stimulant sections (each lasting 2 and a half minutes).
Each elicitation scene shows 5 pictures to the subjects, each picture is present on the
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screen for 30 seconds, and they are always presented in the same order, chosen by rising
arousal value.
These images were selected from the OASIS database, for its advantages over the IAPS
database reported in 1.3.2, and were carefully picked in the most outlying regions of
the CMA plane, so to induce highly distinguished reactions in the various scenes. The
baselines were instead as stimulus-less as possible, in order to induce a neutral reaction
in the subject and making them ready and unbiased for the next stimulant section.

Baseline

Since the entire FS part of the experiment is based on validated pictures, for the base-
line moments, whose importance resides in their supposed ability to “reset” the emotional
response of the subject, it was decided to proceed with the screen only reporting a uni-
form, neutral color. The color that was ultimately picked was the so-called Eigengrau or
Eigenlicht (translated from German and Dutch: own light, brain gray or dark light). This
particular color was first mentioned in the XIX century [30], and was related to the color
perceived by human beings in total darkness with eyes closed.

Figure 2.6: The baseline screen for the FS part.

The utility of this choice was twofold: giving a neutral stimulus, and at the same time
assuring the subject that the screen was not switched off, that the experiment was still
ongoing. Also, a little light-gray cross was added at the center of the screen, to remind
the subject not to look around and get distracted. A representation of the baseline screen
can be seen in figure 2.6.
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Sadness

The first emotion inducing section is Sadness, this emotion is identified by low values of
both valence and arousal. Using the OASIS database scores for each picture (for each di-
mension the scores went from 1 to 7), it was selected the portion of databases with scores
of valence under 3,6 and arousal under 3,25 to isolate a significant group of pictures on
the periphery of the plane.
From this group a selection of five pictures was chosen, shown in figure 2.7, the corre-
sponding scores of valence and arousal are presented in the following table 2.1 in order
of appearance during the experiment, so with rising arousal values; the selected pictures
have a mean valence score of 2.509 and a mean arousal score of 3.081.

Figure 2.7: Sadness pictures selected

Sadness Pictures Scores

Picture Valence Arousal

Garbage Dump 2,196 2,861

Feces 2,137 3,069

Toilet 2,535 3,155

Fence 2,882 3,158

Miserable Pose 2,796 3,163

Table 2.1: Values of Valence-Arousal for the selected pictures: Sadness
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Each picture is presented on the screen for 30 seconds, for a total duration of 2.30 minutes.

Relaxation

The second emotion inducing section is Relax, this emotion represents the fourth quadrant
of the Circumplex plane, so it is identified by high values of valence and low arousal. Using
the OASIS database scores for each picture (for each dimension the scores went from 1
to 7), the portion of databases with scores of valence over 4.5 and arousal under 2,25 was
selected in order to isolate a significant group of pictures on the periphery of the plane.

Figure 2.8: Relax pictures selected

Relaxation Pictures Scores

Picture Valence Arousal

Pinecone 4,637 2,069

Bark 4,627 2,089

Grass 5,010 2,109

Rocks 4,520 2,178

Acorns 4,520 2,228

Table 2.2: Values of Valence-Arousal for the selected pictures: Relaxation

From this group a selection of five pictures was chosen, shown in figure 2.8, the corre-
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sponding scores of valence and arousal are presented in the following table 2.2 in order
of appearance during the experiment; the selected pictures have a mean valence score of
4,663 and a mean arousal score of 2,135.
Each picture is presented on the screen for 30 seconds, for a total duration of 2.30 minutes.

Happiness

The third emotion inducing section is Happiness, this emotion represents the first quadrant
of the CMA plane, so it is identified by high values of valence and arousal. Using the
OASIS database scores for each picture (for each dimension the scores went from 1 to 7),
the portion of databases with scores of valence over 5 and arousal over 4.5 was selected
in order to isolate a significant group of pictures on the periphery of the plane.

Figure 2.9: Happiness pictures selected

From this group a selection of five pictures was chosen, shown in figure 2.9, the corre-
sponding scores of valence and arousal are presented in the following table 2.3 in order
of appearance during the experiment, so for rising arousal; the selected pictures have a
mean valence score of 6,249 and a mean arousal score of 4,777.
Each picture is presented on the screen for 30 seconds, for a total duration of 2.30 minutes.
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Happiness Pictures Scores

Picture Valence Arousal

Couple 5,971 4,535

Lake 6,376 4,728

Beach 6,366 4,738

Rainbow 6,257 4,903

Fireworks 6,275 4,980

Table 2.3: Values of Valence-Arousal for the selected pictures: Happiness

Fear

The fourth emotion inducing section is Fear, this emotion represents the second quadrant
of the CMA plane, so it is identified by high values of arousal and low values of valence.
Using the OASIS database scores for each picture (for each dimension the scores went
from 1 to 7), the portion of databases with scores of valence under 2.5 and arousal over
4.5 was selected in order to isolate a significant group of pictures on the periphery of the
plane.

Figure 2.10: Fear pictures selected

From this group a selection of five pictures was chosen, shown in figure 2.10, the corre-
sponding scores of valence and arousal are presented in the following table 2.4 in order of
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appearence in the experiment, so with rising arousal values; the selected pictures have a
mean valence score of 1,902 and a mean arousal score of 4,851.

Fear Pictures Scores

Picture Valence Arousal

Injured Foot 1,971 4,535

Fire 1,743 4,602

Car Crash 2,029 4,663

Explosion 2,376 4,990

Injury 1,392 5,465

Table 2.4: Values of Valence-Arousal for the selected pictures: Fear

Each picture is presented on the screen for 30 seconds, for a total duration of 2.30 minutes.

To better visualize the placement of each section on the Valence-Arousal plane a plot with
the mean values of the two dimensions is shown in figure 2.11.

Figure 2.11: Section Placement on Valence-Arousal Plane.

2.1.3. Virtual Reality Elicitation

Similarly of the FS Elicitation part, also the Virtual Reality one is composed of 4 baselines
and 4 stimulant parts. Each of these scenes is a VR 360° environment in which the subject
is immersed.



32 2| Methods

High
Arousal

Low
Arousal

High va-
lence

Low valence

Static Vi-
sual Cues

Shape Angular Rounded Rounded Angular

Lines Rounded Straight
Hue Green-

Yellow,
blue-green
and green

Purple-
blue and
yellow-red

Blue,green
and purple

Yellow

Saturation N/A N/A Saturated Unsaturated
Brightness N/A N/A Bright Dark
Visual
Complex-
ity

N/A N/A Extremely
complex or
extremely
simple

Neither

Non-static
Visual cues

Speed Fast Slow

Motion
shape

Spherical linear N/A N/A

Direction N/A N/A Downwards-
right, inward

Upwards-left,
outward

Path cur-
vature

Jerky Straight Jerky Straight

Sound
Cues

Source lo-
cation

Outside
field view

Inside field
view

N/A N/A

Distance
from sound
source

Near Far N/A N/A

Sound
Source
Movements

Approaching receding N/A N/A

Heartbeat
Sound

Fast(over
100bpm)

Slow(under
60bpm)

N/A N/A

Music Tempo Fast Slow N/A N/A
Harmony N/A N/A Major scale Minor Scale

Table 2.5: Summary of audio-visual cues associated with affective states.
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At all times, the subject is free to look around in any direction, but is unable to physically
move and the only device tracked is the headset, as no hand controller was given to the
participants. Instructions were given to the participants so that, although they moved
their head during the acquisition, such movements always had to be slow and possibly
not sudden, in order to reduce motion artifacts in the signals.
The elicitation scenes are based on the OASIS images that were used in the Flat Screen
part of the protocol, while the baselines were emotionally neutral environments. In the
design process, careful attention was put into using the suggestions derived from the
review [31], a summary of them is reported in table 2.5.

Finally, in each stimulating scene certain events were inserted, and they were always
activated at the same time and in the same order for all subjects. Such events and
their timeline is reported in each of the following sections. Also, while some events were
repeated more than once across the scenes, some others were one-shot only.
In all scenes, both assets created internally using the Blender environment and taken from
internet free sources were used.
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Baseline

The baseline scenes are two neutral environments, previously used and created for [32]:
the first is the interior of a modern apartment, while the second is a professional office
in a high building. Although fully furnished, the two places are devoid of stimulating
elements and only present background and constant sound stimulation. The modern
apartment scene is used for the first and third baseline, while the office is used for the
second and the fourth (so that they are alternated). Every time, the position of the player
inside the environment is different: the perceived novelty was in charge of avoiding the
insurgence of boredom in the subject.

(a)

(b)

Figure 2.12: The apartment environment; (a) represents the point of view of the subject
in the first baseline of the VR elicitation part, while (b) represents the point of view in
the third baseline
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(a)

(b)

Figure 2.13: The office environment; (a) represents the point of view of the subject in the
second baseline, while (b) represents the point of view in the fourth baseline

Sadness

Getting inspiration from the 5 images chosen from the OASIS dataset for the FS sadness
part, it was decided to ambient this scene in a garbage dump (2.14) placed in the periphery
of a big city. Fenced with high barriers covered in barber wire, the dump is full of trash
clusters and barrels with fires light up in them. Dogs roam the scene, looking for food, and
there is an abandoned and rusty toilet lying in a corner of the environment. To complete
the sad/depressing atmosphere, a homeless man sits, remaining completely still, against a
container, and it is raining but with low intensity. Textures and models are mostly in low
resolution, colors have low saturation, movement is rare and the scene is overall pretty
dark, all in accordance with [31].
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Figure 2.14: Subject’s point of view in the VR Sadness scene

(a) (b)

(c) (d)

Figure 2.15: Some details from the VR Sadness scene: (a) A dog licking from an aban-
doned shoe; (b) particular of the barbed wired fence that surrounds the damp; (c) the
toilet left in a container; (d) the homeless man.

The events that were selected for this scene are reported in table 2.16 and comprehend
light-poles’ flickering, dogs barking, trash rolling and a glass bottle falling nearby the
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location of the homeless man.

Figure 2.16: Sadness Scene Events

Relax

As all the selected OASIS pictures for the Flat Screen Relax part were related to a natural
environment, the scene for the VR Relax stimulation was a pristine wood environment in
a sunny day (2.17. A little creek flows right in front of the subject, the surroundings are
made of trees and flowers and a soft wind makes the leaves and the grass move. Stones
and acorns are also spread all around. It is to be noted that the resulting environment
is strikingly similar to those used for video and/or VR meditation apps [21], as natural
scenes (be them physical or virtual) show enhanced ability in inducing or facilitating
relaxation [33].

Figure 2.17: Subject’s point of view in the VR Relax scene
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The movements of the leaves and branches are rhythmic with low frequency, the colors are
bright and the sun rays are clearly visible through the branches. All sounds are natural,
to be expected, and surround the subject enhancing immersion.

(a) (b)

(c) (d)

Figure 2.18: Some details from the VR Relax scene: (a) a little water stream; (b) flowers
spread all around; (c) the sun shining from above; (d) one of the bunnies.

The events that were selected for this scene are reported in table 2.19 and comprehend
birds chirping and two bunnies that appear in different positions of the scene and then
start wandering around.

Figure 2.19: Relaxation Scene Events
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Happiness

For this elicitation section, it was decided to proceed by designing a party setting, at
night time, nearby a lake. The subject is placed on a bench right in front of a bonfire
(2.20). Five young people can be seen all around and they are either eating, talking or
standing in front of the lake. Music, played inside the house, can be heard from the
player. The atmosphere is one of inclusion but also freedom, as everyone shows to be
enjoying the situation on their own terms. Later on, highly saturated fireworks are fired
in the distance, with distinct loud but easily recognizable sounds that also help in their
localization. Colors and lights are bright, dynamic, and highly saturated, and they are
even more noticeable in contrast with the dark night sky, as in [34] it is stated that these
features, and not hue in itself, are mainly related to a positive valence of the stimulus.

Figure 2.20: Subject’s point of view in the VR Happiness scene

As for the events of this elicitation part (refer to table 2.22), cicadas sing at fixed intervals.
Cheering from inside the house, where people are implicitly dancing and singing, can be
heard from outside. Near the end of the scene, fireworks are shot on the other shore of
the lake, at the right side of the subject.
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(a) (b)

(c) (d)

Figure 2.21: Some details from the VR Happiness scene: (a) A couple looking at the lake;
(b) the house where the party is going on; (c) ping pong table and a play castle, near
the house; (d) the fireworks that appear near the end of the stimulation, shining over the
lake.

Figure 2.22: Happiness Scene Events

Fear

The Fear elicitation scene was the most difficult to create from the OASIS pictures pre-
viously chosen. It was in the end decided to recreate a car crash, happening in real time
nearby the subject (fig. 2.23), in an indifferent city, devoid of people and with only cars
and trucks wandering. During the 5 minutes of stimulation a car crash happens in real
time in the field of view of the subject.
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Figure 2.23: Subject’s point of view in the VR Fear scene

(a) (b)

(c) (d)

Figure 2.24: Some details from the VR Fear scene: (a) traffic goes on in the streets; (b)
a snapshot of the impact; (c) hazard lights blinking during the alarm, right after the
impact; (d) the flames coming from the hood of the pick-up.
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This scene’s elicitating content is mostly made of the events, that induce increasing con-
cern with time. A white pick-up truck appears from a corner, moving at high speed; it
takes a turn but it is going too fast, and this leads it to crash into a parked car, at 10
perceived meters from the subject. As the alarm of the car that was hit goes on, flames
appear from the hood of the pick-up truck, and nobody comes out of it. After a while,
the flames’ intensity increases, until (refer to fig. 2.25 for the timing of the events), the
pick-up explodes, leaving only the background city sounds and silence otherwise. In the
last 30 seconds of stimulation, an ambulance can be heard getting closer and closer, but
it will never actually show up in the subject’s visual field. This last design choice was
based on [35], where it is stated that when the sound source is not visible to the subject
its arousing effect is increased, and also that the sound of something getting near is more
arousing than one going away.

Figure 2.25: Fear Scene Events

2.1.4. Subjective Emotional Assessment

In this study a post elicitation emotional assessment survey was administered through the
Microsoft Forms platform after each portion of affective elicitation. The two forms were
designed to assess qualitatively the coherence of the resulting stimuli with the intended
elicitation, and also to collect additional information about the test subjects. To achieve
these results, discrete models cited in 1.2 such as SAM and PAM were used to perform a
self report on the emotional state.

To assess values of valence and arousal, the graphical representations of SAM that are
shown in figure 1.5 and 1.6 were used: the subject had to report their state in a scale from
1 to 5 where, for valence, a score of 1 meant unhappy and 5 happy, while for arousal a
score of 1 meant excited and 5 calm (this score was then flipped to better be represented
on a valence-arousal plane).
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Both surveys were divided in different sections:

• In the first section the test subject was asked to create a unique identifier code
and type in some useful information, such as their age and if they had previous
experience with VR; an estimation on the duration of the elicitation part they just
experienced was also surveyed.

Figure 2.26: First section of the form.

• The following sections referred to the 4 elicitating parts (sadness, relaxation, hap-
piness and fear). Each subject had to rate their experience based on the emotion
they felt during it, using SAM for self report on valence and arousal and PAM for
the main mood they felt (fig. 2.28). For each section a representative picture of the
scene was added above the questions that referred to it, an example can be seen in
figure 2.27.

Figure 2.27: Emotional assessment introduction to the scene.
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Figure 2.28: Emotional assessment example of SAM and PAM.

• An additional part was added in the post-VR survey, to further investigate the effect
of the four baselines, using the same tools as the ones used for the scenes.

2.2. Signal Acquisition and Processing

The designed protocol was applied without changes to each participant. Signal acquisition
was conducted with strict consistency and stability to ensure optimal quality. In the
following sections, the different signals that were recorded and their specific processing
methods will be illustrated. Each acquisition session involved the recording of GSR,
Respiration, ECG, and PPG, as depicted in the figure 2.29.
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Figure 2.29: The four signals that were sampled for each subject.

As mentioned before in 2.1 the ProComp Infiniti system was used to acquire the signals,
the sampling frequency was 2048 Hz for ECG and PPG and 256 Hz for GSR and Respi-
ration. Data and metadata were then stored in a txt file with a time vector.
Signal processing is a crucial step in enhancing the quality of signals by mitigating noise
and optimizing spectral components. The acquired signals include GSR, Respiration,
ECG, and PPG, as previously mentioned. Starting from the raw signals, additional time
series were obtained. HRV was extracted from ECG, and a point process model was cre-
ated. From ECG and PPG, Pulse Arrival Time (PAT) was extracted. PAT was calculated
as the difference between R peaks in ECG and systolic peaks in PPG. The last time series
was Pulse Pressure, which was computed using the photoplethysmographic signal as the
difference between Systolic pressure and Diastolic pressure each beat.

2.2.1. Galvanic Skin Response Signal

In order to extract the features of GSR (Galvanic Skin Response), the signal was used in
both complete (Tonic + Phasic) form and Phasic form as in [36]. A lowpass filter with a
cutoff frequency of 2 Hz was used to filter the signal, which was then downsampled to 8
Hz. The phasic component was extracted from this time series using a median filter. A
second version of the signal was obtained by applying a bandpass filter from 0.5 Hz to 1
Hz in addition to the lowpass filtering.
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(a)

(b)

(c)

Figure 2.30: Time series obtained from GSR : (a) GSR processed with low pass filter; (b)
GSR processed with a bandpass filter; (c) phasic component of GSR signal

By combining the information extracted from the phasic component, it was possible to
identify the onset and offset in the low pass filtered signal. The peak was identified as the
maximum value in the two-point range. This allowed the computation of the amplitude
of the peaks as the difference between the onset and the actual peak value. Peaks with a
difference between onset and offset less than 1 sample were excluded from the analysis.
The features extracted from the GSR signal are shown in the table 2.6.



2| Methods 47

Feature Description

Avg amplitude
peaks

The average amplitude of the peaks is calculated by determining the
height of the individual peaks in the GSR signal and then taking the
average of those values.

Avg rise time The "average rise time" refers to the average time expressed in seconds
between the peak and the onset and provides information about the
speed at which the GSR signal changes in response to a stimulus.

Avg recovery
time

The Average recovery time is computed as the average time in seconds
between the found peaks and the offset.

N peaks Computed as the number of peaks found in the considered time win-
dow.

Sd amp peaks Computed as the standard deviation of the amplitudes of the found
peaks.

Slope gsrbp It is the slope of the band-pass (0.5 -1 Hz) filtered GSR signal.
Max sign amp
gsrbp

It is the maximum amplitude value of the band-pass filtered GSR
signal.

Avg der gsrbp It is the average of the first derivative of the band pass filtered GSR
signal.

Sd der gsrbp It is the standard deviation of the first derivative of the band pass
filtered GSR signal.

Max der gsrbp It is the maximum value of the first derivative of the band pass filtered
GSR signal.

Average It is the mean of the low pass filtered signal taking into account both
tonic and phasic components.

Sd It is the standard deviation of the low pass filtered signal taking into
account both tonic and phasic components.

Avg abs1 It is the mean of low pass filtered GSR first derivative under absolute
value taking into account both tonic and phasic components.

Avg abs1 norm It is the mean of low pass filtered GSR first derivative under absolute
value taking into account both tonic and phasic components normal-
ized by the standard deviation of the signal.

Avg abs2 It is the mean of low pass filtered GSR second derivative under abso-
lute value taking into account both tonic and phasic components.

Avg abs2 norm It is the mean of low pass filtered GSR second derivative under ab-
solute value taking into account both tonic and phasic components
normalized by the standard deviation of the signal.

Env It is the mean of the envelope of the low pass filtered GSR signal.

Table 2.6: GSR extracted features.
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2.2.2. Respiration

With the aim of generating time series containing the respiration peaks and inter-respiration
intervals in the form of frequencies, the raw respiration signal is passed through a band-
pass filter with a pass frequency of 1 Hz and a stop frequency of 1.5 Hz. Next, peak
detection is carried out using a minimum peak prominence of 0.3 times the standard de-
viation of the signal, and a minimum peak distance of 2 times the sampling frequency.
The identified peak times are stored and differentiated to obtain the second time series.
This series is then converted to frequencies by taking the inverse of the time intervals,
and can be seen in figure 2.31.

Figure 2.31: Respiratory time series.

The features extracted from the Respiratory signal are shown in table 2.7.

Feature Description

Respiratory fre-
quency

It is the respiratory frequency expressed in breaths per minute.

Resp amplitude it is calculated as the mean of the amplitudes of the breathing cycles
in the considered time interval.

Table 2.7: Respiration extracted features.

2.2.3. Cardiac

The raw ECG signal is processed using a Matlab-based tool called SyncTool, which was
previously developed at the Spinlabs of Politecnico di Milano and can be seen in figure
2.32. This tool is a semi-automated annotator that identifies the R peaks in the ECG
and the systolic, diastolic, and onset of the PPG waves. It has been used in numerous
research studies [37–39].
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Figure 2.32: Example of signal annotation via SyncTool.

The annotations obtained from SyncTool (that uses the Pan-Tompkins method to recog-
nize R peaks) are essential in defining the HRV time series and instantiating the point
process model. However, the annotations obtained using SyncTool were not always suit-
able for the feature extraction phase due to the presence of anomalous drifts in the signals.
Specifically, the PPG and the ECG tend to lose their typical morphology when for exam-
ple the subject inattentively moves their hand, so the automated annotation with the tool
does not perform well. The tool is also equipped with a correction mode to manually erase
and replace the incorrect annotations. If the morphology of the signal does not allow any
form of annotation, as it can be seen in figure 2.33, a window of at least 3 seconds was
left without annotations, to allow for recognition and interpolation in further processing
of the signal. Signals that needed to be interpolated for more than 10% of their length
were discarded from the dataset.

Figure 2.33: Example of incorrect annotation.
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Point Process Model

A Point Process is defined as a stochastic process composed of a time series of binary events
that occur in continuous time [40]. They are used to describe data that are localized at
a finite set of time points. As opposed to continuous-valued processes, which can take
on any of countless values at each point in time, a point process can take on only one of
two possible values, indicating whether or not an event occurs at that time. In a sense,
this makes the probability models used to describe point process data relatively easy to
be expressed mathematically, as shown in [41]. In figure 2.34 it is shown an example of
an estimated tacogram, obtained through the use of Point Process.

Figure 2.34: Point Process Time series.

The features extracted from the Point Process are shown in table 2.8.

Feature Description

Mu It is the average of the estimate RR distance.
S2 Computed as the variance of the modeled RR distances.
lf It is the estimate of the low frequency power.
hf It is the estimate high frequency range power.
bal It is the ratio between lf and hf.
vlf It is the estimate of very-low frequency range power.
tot It is the estimate of the total PSD.
lfn It is the estimate of the low frequency range power normalized.
hfn It is the estimate of the high frequency range power normalized.

Table 2.8: Point Process extracted features.

PAT

As previously stated in 2.2, PAT is defined as the temporal difference between the occur-
rence of the R peak on the ECG and the corresponding systolic event in the PPG. More
specifically, PAT can be calculated as the difference between the R peak and one of three
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fiducial points (systolic, diastolic, or onset) in the PPG pressure wave; the onset-derived
PAT was ultimately selected as it proved to be the most consistent and reliable metric.

An example of PAT time series is presented in figure 2.35.

Figure 2.35: Pulse Arrival Time time series.

The features extracted from the PAT are shown in table 2.9.

Feature Description

PAT It is the normalized onset PAT computed as the difference between
each PPG onset and its corresponding R peak.

Table 2.9: PAT extracted features.

Pulse Pressure

Figure 2.36: PPG annotations.
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PP is a time series derived from the blood volume information obtained from PPG. Specif-
ically, PP was computed as the difference between systolic and diastolic blood pressure,
as illustrated in figure 2.36.
The obtained signal is reported in figure 2.37.

Figure 2.37: PP time series.

The features extracted from the PP are shown in table 2.10.

Feature Description

Average PP It is the average of the Pulse Pressure.

Table 2.10: PP extracted features.

2.3. Statistical Analysis

2.3.1. Questionnaire Assessment

Once the questionnaire collection is complete in the experimental phase, some generic
statistical information about the subjects (such as medium age and previous experiences
with VR) were observed and analysed.
A more in-depth study was then carried out for the SAM and PAM results in the various
scenes for both parts of the protocol.

SAM Analysis

In both questionnaires, as reported in 2.1.4, the subjects were asked to report their per-
ception of valence and arousal of the various elicitating parts, using the SAM maniquin
(as reported in figures 1.5 and 1.6). These values were collected and their mean values
and standard deviation in the various parts were computed and then used to plot the
global subject’s perception on the Circumplex plane.
As for the FS part, the resulting plot was compared with the mean of the validated val-
ues of the OASIS pictures used in the elicitation. This analysis is useful to understand
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whether the emotional stimulation was not only effective but also accurate.
This kind of comparison was not performed for the VR PAM results: although the scenes
were inspired by the same OASIS pictures used in the FS part, more stimuli and an overall
higher variability were introduced. This lead to the use of such data mainly to understand
the efficacy of the VR scenes in the sense of centrality of the valence and arousal values
with respect to the targeted emotional quadrant.

PAM Analysis

The moods of the subjects referring to each elicitation part was inspected through their
answers to the PAM graphical assessment model (2.1.4).
The answers were collected and visualized through a histogram for each elicitation section,
to have additional qualitative information on the elicitation results. Also, as moods are
not directly related to the OASIS values, but are a way more complex phenomenon, a
comparison with the scores of the OASIS pictured used was not possible. On the other
hand, a comparison between the FS and the VR PAM answers has been be performed in
order to check the coherence of the elicitated emotions with the intended ones.

2.3.2. Extracted Features Analysis

Once the selected 30 features were extracted from all signals, they were organized in a
dataset to make the statistical analysis easier.
The dataset was composed by two tables, one for the feature extracted from the signals
during the Flat Screen elicitation and a structurally identical one for the VR elicitation’s
features.
Each table has 30 columns for the extracted features, and one row for each subject, in
each cell was contained a vector of 8 elements, one for each elicitating section, in order
baseline 1, Sadness, baseline 2, Relaxation, baseline 3, Happiness, baseline 4 and Fear.

At first the median values of each feature were plotted for all 8 parts, to better visualize
the trends within each elicitation method and to qualitatively compare the two. An
example of the obtained plot is shown in figure 2.38.
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Figure 2.38: Median trends for Flat Screen and VR elicitation of the feature avg from
GSR.

With these plots the neutralizing effect of the baselines is also surveyed. To move forward
and perform statistical testing a dynamic depolarization based on the baseline before the
scene was performed, with the aim to identify the actual variation from a neutral state to
the response to the emotional stimuli of each portion of the protocol and better compare
the two elicitation methods.

Once the depolarized features were computed some statistical test were performed.
The first chosen approach was a Friedman’s test, on each elicitating method, to assess
the differences between the 4 elicitation parts. The Friedman’s test is a non-parametric
statistical test used to determine whether there are differences among two or more related
groups. It is similar in nature to the one-way ANOVA with repeated measures, but it is
more suitable for analyzing data that are not normally distributed.

The null hypothesis of the Friedman’s test is that there is no difference among the groups.
If the test statistic is significant at a chosen level of significance (e.g., α = 0.05), the null
hypothesis is rejected in favor of the alternative hypothesis that at least one group is
different from the others.
One of the advantages of the Friedman’s test is that it does not assume that the data are
normally distributed, and it is more robust to outliers than parametric tests. However, it
does not provide information about which group is different from the others, so a post-hoc
test with the Bonferroni correction was performed to determine which groups significantly
differ from each other.
The Bonferroni correction is a statistical adjustment method that is often used to con-
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trol for multiple comparisons in hypothesis testing; it involves dividing the desired level
of alpha by the number of comparisons being made, this adjusted significance level is
then used to determine whether the null hypothesis can be rejected for each individual
comparison.

After the Friedman’s test a second statistical test was performed to assess the differences
between the two elicitation methods. A Wilcoxon signed-rank test was performed between
each pair of corresponding section of the two elicitations modalities.
The Wilcoxon signed-rank test, also known as the Wilcoxon paired test, is a non-parametric
statistical hypothesis test used to determine whether two related samples have equal medi-
ans. It is often used as an alternative to the paired t-test when the normality assumption
is violated.
The Wilcoxon signed-rank test works by comparing the differences between the paired ob-
servations, ranking these differences from smallest to largest in absolute value, and then
summing the ranks of the positive and negative differences separately.
The null hypothesis of the Wilcoxon signed-rank test is that there is no difference between
the medians of the two related samples. If the test statistic is significant at a chosen level
of significance (e.g., α = 0.05), the null hypothesis is rejected in favor of the alternative
hypothesis that the medians are different.

2.3.3. Feature Selection

Further analysis was performed to assess what were the best features capable of distinguish
the four emotional states for each elicitation method.

A Square Method feature selection approach was selected. This feature selection procedure
is based on successive binary comparisons. For each possible pair of features the mean
values, the standard errors (calculated as the standard deviation divided by the square
root of the number of samples) and 95% confidence intervals (calculated as 1.96 multiplied
by the standard error) were computed and then plotted on the plane defined by the two
compared features as squares, where the average was highlighted at the center of the
square and the sides were computed as the average ±1.96 ∗ standard error [42].
To create a ranking of importance of the available features a metric was assigned to
each feature, the metric is determined by finding the area of the intersection between
two distributions and normalize it dividing it by the total area of the distribution being
evaluated.

Afterwards, the amount of times each feature appears in valid couples is counted and a
weight proportional to the magnitude of the occurrences (with higher values indicating
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better performance) is assigned to each feature. Subsequently, the correlation matrix
is calculated and a second weight is assigned to the analyzed feature by counting how
many times the feature has a correlation higher than 80% with another (with lower values
indicating better performance). In cases where the features have the same value, the
second weight is taken into account and the one with the highest value is placed second
on the ranking. The outcome of this process is a list of uncorrelated features combined
with the most pertinent correlated features.
To isolate only the three best features per method a distributions’ inter- section threshold
has been set for each elicitation method.
This representation was also implemented to visualize how the selected features could
distinguish high valence states from low valence ones and high arousal states from low
arousal ones.
The best 3 features for both elicitation methods are then used for a three-dimensional
visualization of the emotion separation they induce. Such graphical representation will be
useful in determining, at a glance, the efficacy of the stimulation in generating different
emotional responses.

2.4. Machine Learning Classification Model

Although the subject count, as initially designed, was going to be too low to have a high
accuracy in classification through a machine learning approach, it was still attempted
to train various models to try and discriminate between: all 4 emotional stimulations
(multiclass classification); high/low arousal; high/low valence (binary classification).
A new dataset were created, containing the features cited in 2.2 but only for the VR data.
Such dataset was obtained starting from the one described in 2.3.2: each row (that refer to
a single subject) was unpacked into 4 rows, one for each elicitating part, bringing the total
row count to 176. The dataset has a column for each extracted feature and a final one with
the target value, a number from 1 to 4, were 1 identifies Sadness, 2 identifies Relaxation,
3 identifies Happiness and 4 identifies Fear, used to train a multiclass classification model.
This target column can be easily modified to accommodate a classification model that aims
to distinguish only a different arousal or valence state, so to create a binary classification
model. Before experimenting with the classification model, it was necessary to do more
tests for feature selection, using different methods other than the one in 2.3.3, including:

• Variance: removing the features with low variance, as they could be unable to
represent a high enough degree of variability between emotional states;

• Correlation: removing redundant features;
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• K-Best Method: uses an ANOVA F-value based function to give a score to each
feature, selecting the k best ones, where k is an hyperparameter.

Once different sets of features were generated, it was possible to proceed with the model
testing, after having opportunely separated the dataset into training (80% and test (20%),
and having scaled the data of both through the generation of a scaler on the train test and
then by its application on both on train and test sets. KNeighbors was used to compare
in an efficient way the various sets, to then proceed and train other models.

The score that was used to evaluate the model’s results is accuracy, defined as the number
of correct predictions over the total number of predictions [43]. To assess the performance
of the trained binary classification models the ROC curve was computed. A ROC (Re-
ceiver Operating Characteristic) curve is a graphical representation of the performance
of a binary classification model. It shows the trade-off between the true positive rate
(sensitivity) and the false positive rate (1-specificity) of the model for various threshold
values. To have a quantitative metric to assess, the Area Under the Curve (AUC) was
also computed.

The tested models are reported in the next bulleted list with a brief description adapted
from [44]:

• KNN: K-Nearest Neighbors is a supervised machine learning algorithm used for
classification and regression tasks. It is a non-parametric, instance-based learning
algorithm that assigns a label to a data point by considering its closest “neighbors”.
In KNN, each data point is compared to its nearest neighbors in the training set,
based on a similarity metric, and the majority label of the neighbors is assigned
to the data point. KNN is considered to be an effective and simple classification
method, although not computationally optimized.

• Decision Tree: Decision Tree is a supervised machine learning algorithm used
for both classification and regression tasks. It is a tree-like model of decisions,
where each branch of the tree represents a possible outcome of a given input. The
algorithm builds a model by making predictions based on the available data, and
the predictions are made by traversing down the tree. Decision Tree is a powerful
and easy to interpret algorithm, however, it can be prone to overfitting if the tree
becomes too complex.

• Random Forest: Random Forest is an ensemble machine learning algorithm used
for both classification and regression tasks. It is an ensemble of decision trees
(group of models that work in parallel), where each tree is trained on a different
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subset of the data and their predictions are averaged, resulting in the final output.
Random Forest is considered to be an accurate and robust algorithm, but it is not
recommended for small datasets.

• MLP Classifier: Multi-Layer Perceptron Classifier is a supervised machine learn-
ing algorithm used for classification. It is a neural network-based algorithm that
consists of multiple layers of neurons and is trained through backpropagation. It is
considered a powerful model for classification, but can result prone to overfitting if
the number of layers and neurons is too large.

• Linear SVC: Support Vector Classifier is a supervised machine learning algorithm
used for classification. It is a linear classifier that uses a Support Vector Machine
(SVM) to build a model that can separate the data points into two classes. Linear
SVC is considered to be an accurate and robust algorithm, however, it can be
computationally expensive and prone to overfitting if the number of features is too
high. This model couldn’t be used for multiclass classification.

• Logistic Regression: Logistic Regression is a supervised machine learning algo-
rithm used for classification tasks. It is a linear classifier that uses a logistic function
to build a model that can separate the data points into two classes. Logistic Re-
gression is considered to be an effective and simple algorithm, however, it can be
prone to overfitting if the number of features is too high. This model can only be
used for binary classification.

• Gaussian Bayesian Classifier: Gaussian Bayesian Classifier is a supervised ma-
chine learning algorithm used for classification tasks. It is a probabilistic classifier
that uses a Gaussian distribution to build a model that can estimate the probabil-
ity of an input belonging to a certain class. Tends to overfitting if the number of
features is too high.

• Discriminant Analysis: Discriminant Analysis is a powerful supervised statistical
technique used to classify data into distinct categories. Discriminant Analysis is
based on finding a linear combination of features that best separate the different
classes.

2.5. Summary of Methods

In this section the methodology of the signal acquisition, of the protocol’s design and
of all subsequent analyses (both statistical and machine learning) were explained in
detail. To summarize the main points:
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– Protocol Structure: the protocol was divided into two elicitating methods,
that were presented to all the subjects of the experiment. The first part was
a traditional image-based flat screen method (FS), in which five selected OA-
SIS pictures were presented for each target emotion. Each elicitating part was
separated by a neutral baseline. The second part of the protocol, the VR stim-
ulation, was structured in the same way as the FS and consisted of a series of
3D immersive scenarios that tried to elicit the target emotions using the full
range of VR’s capabilities. After each part of the protocol, a subjective evalu-
ation questionnaire was submitted to every subject, where their perception of
the emotitional elicitation was surveyed using graphical methods such as SAM
and PAM.

– Signal Acquisition and Processing: for each partecipant, signals such as
ECG, BVP, GSR and Respiratory were acquired, filtered and analysed. 30
features were extracted from these signals and, as for the cardiac features,
they were obtained through the use of a Point Process Model.

– Statistical Analysis: the questionnaire’s SAM results of the FS section were
used to qualitatively identify the subjective emotional response against the
expected arousal and valence taken of the used OASIS pictures, in order to
assess the precision of the FS stimulation. A similar work was done for VR
responses, as they were plotted against the FS ones to assess the differences
within the two protocols. Statistical analysis of the extracted features followed
a number of steps, starting from a visual assessment of their medians’ trends,
following with a depolarization of the features acquired in the elicitating scenes
in respect with the previous baseline, and then proceeding with statistical tests
such as Friedman’s (to assess which features responded significantly to certain
emotive states) and Wilcoxon (to view differences in response related more to
the method of elicitation than the emotive state).

– Feature Selection and Machine Learning: using the Square Method, three
features that best responded to the various target emotions were found for both
elicitating methods. Then, after having selected a number of possible subsets
of features, their values were used to train a number of machine learning-based
classification algorithms to assess their separating power in three tasks: multi-
class classification (trying to separate all 4 emotive states), arousal level-based
classification (binary separation among low and high arousal states) and va-
lence level-based classification (binary separation among low and high arousal
states).
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3.1. Questionnaires Assessment

In the following section the results collected from both surveys are shown, the results will
be divided in subsections for each elicitation section of both experimental modalities.

3.1.1. General Subjects Information

The subject were 23± 2.56 years old, in a range from 18 to 29 years.
Half of the subjects reported previous experience with VR headsets. The average perceived
protocol duration is of 17.6 minutes for the FS stimulation section of the protocol (while
the actual duration was of 17.5 minutes) and 27.4 min for the VR elicitation part (against
the actual 32 minutes).

(a) Previous VR experience (b) Age distribution

Figure 3.1: General subjects’ information
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3.1.2. Post-Flat Screen Questionnaire

Sadness

The qualitative assessment of the self-report post elicitation surveys shows a significant
displacement towards higher valence than expected from the validated values of the OASIS
pictures used (2.08 VS 1.79); arousal is also higher (2.88 vs 2.20). This could be due to
a culturally based bias and, as will be shown later in this section, a perceived prevalent
neutral mood (that has a more positive valence than the expected one). To better visualize
the results figure 3.2 is reported; it is possible to observe the mean value of arousal-valence
obtained from the survey (in red) against the mean values from the used OASIS pictures
(black dot), the square represents the confidence intervals (calculated as previously stated
in 2.3.2) among the votes.

Figure 3.2: Placement of the perceived Sadness valence/arousal values in respect with the
OASIS.

As for the PAM results, the prevalent mood was Neutral, followed by Sad and finally
Irritated.
The results can be seen in figure 3.3.
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Figure 3.3: PAM results for Flat Screen Sadness

Relax

As for the Relax Flat Screen stimulation, the subjective perception of valence was signif-
icantly higher (3.88 vs 3.33), while arousal perception was similar to the expected (1.80
vs 1.52). To better visualize the results figure 3.4 is reported;

Figure 3.4: Placement of the perceived Relaxation valence/arousal values in respect with
the OASIS.

it is possible to observe the mean value of arousal-valence obtained from the survey (in
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blue) against the mean values from the used OASIS pictures (black dot), the square
represents the square represents the confidence intervals (calculated as previously stated
in 2.3.2) among the votes.
The reported PAM moods were highly on point, with the majority of subjects reporting
Relaxed and Calm.
The results can be seen in figure 3.5.

Figure 3.5: PAM results for Flat Screen Relaxation

Happiness

The qualitative assessment of the self-report post elicitation surveys shows a slightly more
neutral response with respect to the tabulated values from the OASIS database, for both
the valence (4.2 in the self-report vs 4.46 medium value from OASIS) and the Arousal
(2.76 in the self-report vs 3.41 medium value from OASIS) scores, it is notable that with
a mean score of 2.76 the resulting self-reported Arousal value it is under the neutral value
of 3, missing the intended quadrant of the Circumplex plane.
To better visualize the results figure 3.6 is reported; it is possible to observe the mean
value of arousal-valence obtained from the survey (in green) against the mean values from
the used OASIS pictures (black dot), the square represents the square represents the
confidence intervals (calculated as previously stated in 2.3.2) among the votes.
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Figure 3.6: Placement of the perceived Happiness valence/arousal values in respect with
the OASIS.

As for the PAM results, the prevalent mood was Cheerful, followed by Relaxed and Calm.
The results can be seen in figure 3.7.

Figure 3.7: PAM results for Flat Screen Happiness

Fear

As for the Fear FS Fear elicitation, the subjective perception of valence was slightly
higher than the OASIS tabulated mean value (1.55 vs 1.36), and the arousal perception
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was similar to the expected one(3.51 vs 3.47).
To better visualize the results figure 3.8 is reported; it is possible to observe the mean
value of arousal-valence obtained from the survey (in light blue) against the mean values
from the used OASIS pictures (black dot), the squares represents the square represents
the confidence intervals (calculated as previously stated in 2.3.2) among the votes.

Figure 3.8: Placement of the perceived Fear valence/arousal values in respect with the
OASIS.

Figure 3.9: PAM results for Flat Screen Fear

The reported PAM moods were on point, with the majority of subjects reporting Tense
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and Sad.
The results can be seen in figure 3.9.

3.1.3. Post-Virtual Reality stimulation Questionnaire

Baselines

In the second self-report assessment an additional section to qualitatively assess the effect
of the used baselines was introduced.
The subjective perception of valence was slightly positive with a mean value of 3.37; the
self-reported arousal was instead located significantly in the low arousal part of the axis,
with a mean value of 1.76.
A graphical representation of the baseline self reported values is shown in figure 3.10.

Figure 3.10: Placement of the perceived VR Baseline valence/arousal values

As for the PAM results, the prevalent mood reported was Bored, followed by Calm and
Relaxed, coherently with the intended stimulation.
The results can be seen in figure 3.11.
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Figure 3.11: PAM results for the baselines.

Sadness

The qualitative assessment of the self-report post elicitation surveys shows a mean valence
score of 2.04, slightly less that the Flat Screen elicitation results for the corresponding
scene; the mean arousal score is 2.35 (versus the 2.88 from the FS stimulation). The
elicitated emotion seems more polarized toward the extreme regions of the quadrant with
respect to the one elicitated with the FS stimulation.

Figure 3.12: Placement of the perceived VR Sadness valence-arousal values in respect
with the FS values.
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To better visualize the comparison figure 3.12 is reported; it’s possible to observe the mean
value of arousal-valence obtained from the second survey (in red) against the mean values
from the first survey (in black), the square represents the confidence intervals (calculated
as previously stated in 2.3.2) among the votes.

As for the PAM results, the prevalent mood was Sad, coherently with what was expected
followed by Tense and Neutral (probably due to the low value of arousal).
The results can be seen in figure 3.13.

Figure 3.13: PAM results for VR Sadness

Relaxation

The qualitative assessment of the second self-report post elicitation survey shows a mean
valence score of 4.31, higher than the Flat Screen elicitation results for the corresponding
scene; the mean arousal score is 1.55 (versus the 1.80 from the FS stimulation). The
elicitated emotion seems more centered toward the extreme regions of the quadrant with
respect to the one elicitated with the FS, for both arousal and valence values.
To better visualize the comparison figure 3.14 is reported; it’s possible to observe the mean
value of arousal-valence obtained from the second survey (in blue) against the mean values
from the first survey (in black), the square represents the confidence intervals (calculated
as previously stated in 2.3.2) among the votes.
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Figure 3.14: Placement of the perceived VR Relaxation valence-arousal values in respect
with the FS values.

As for the PAM results, the majority of the collected answers was Relaxed and Calm
coherently with what was expected, with a notable number of "Cheerful" (probably due
to the positive valence of the elicitated emotion).
The results can be seen in figure 3.15.

Figure 3.15: PAM results for VR Relaxation
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Happiness

As for the Happiness VR stimulation, the subjective perception of valence was similar
to the Valence score from the FS elicitation (4.25 vs 4.20), while arousal perception was
significantly higher, with a score of 3.81 against the 2.76 from the FS stimulation. It is
notable that in the VR stimulation the self reported score for arousal is coherent with the
intended elicitated emotion in terms of Circumplex plane’s quadrant position.
To better visualize the comparison figure 3.16 is reported; it’s possible to observe the
mean value of arousal-valence obtained from the second survey (in green) against the
mean values from the first survey (in black), the square represents the confidence intervals
(calculated as previously stated in 2.3.2) among the votes.

Figure 3.16: Placement of the perceived VR Happiness valence-arousal values in respect
with the FS values.

As for the PAM results, the majority of the collected answers was Cheerful and Excited
coherently with what was expected, followed by Relaxed and Calm, that refer to the
correct value for valence but lower arousal states.
The results can be seen in figure 3.17.
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Figure 3.17: PAM results for VR Happiness

Fear

As for the Fear VR stimulation, the subjective perception of valence was slightly higher
than the valence score from the FS elicitation (2.06 vs 1.55), probably because of the less
visually explicit nature of the stimuli, also the arousal perception was higher, with a score
of 4.06 against the 3.51 from the FS stimulation.
To better visualize the comparison figure 3.18 is reported; it’s possible to observe the
mean value of arousal-valence obtained from the second survey (in Cyan) against the
mean values from the first survey (in black), the square represents the confidence intervals
(calculated as previously stated in 2.3.2) among the votes.
As for the PAM results, the majority of the collected answers was Tense and Irritated
coherently with what was expected.
The results can be seen in figure 3.19.
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Figure 3.18: Placement of the perceived VR Fear valence/arousal values in respect with
the FS values.

Figure 3.19: PAM results for VR Fear

Summary of Comparisons

To summarize the above results, a plot referring to all 8 parts is reported in figure 3.20;
the four elicitated emotional states are differentiated by color, where red corresponds to
Sadness, blue corresponds to Relaxation, green corresponds to Happiness and cyan refers
to Fear. To distinguish the two different stimulation modalities from one another a darker
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version of the four colors was used for the FS elicitation. The mean values of the used
OASIS pictures are reported as black dots on the plot.

Figure 3.20: Placement of the perceived VR valence-arousal values with respect to the
FS and OASIS.

To easily read figure 3.20, the following tables 3.1 have been reported summarizing the
comparisons between the scores of the selected OASIS pictures and the self-reported scores
of FS stimulation(a), and the aforementioned with the VR stimulation scores (b).

Scene ∆Arousal ∆Valence
Sad 0.48(↑) 0.29(↑)
Rlx 0.28(↑) 0.55(↑)
Hap -0.65(↓) -0.26(↓)
Fear 0.04(≃) 0.19(↑)

(a) Variations of valence-arousal scores
between FS stimulation and used OASIS.

Scene ∆Arousal ∆Valence
Sad -0.53 (↓) -0.04(≃)

Rlx 0.25(↑) 0.43(↑)
Hap 1.05(↑↑) 0.05(≃)

Fear 0.55(↑) 0.51(↑)
(b) Variations of valence-arousal scores
between FS and VR elicitation.

Table 3.1: Variations of valence-arousal scores
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3.2. Physiological Response Analysis

The plots of median values of some of the acquired features for the Flat Screen and Virtual
Reality stimulations are shown in the following sections.

3.2.1. GSR Features

The GSR signal is a measure of sweat gland activity in the skin, which reflects changes in
the activity of the sympathetic nervous system. It provides information about the strength
of the response of the sympathetic nervous system, so in an emotional stimulation scenario
it is an indicator of arousal; in general an higher value of the features is indicator of a
high arousal emotional state.
Taking as an example the trends of the features shown in the table 3.2, it is shown
that the VR stimulation elicits a stronger response of the sympathetic nervous system,
so it can be linked with higher states of arousal. From the oscillatory trend between
baselines and stimulating scenes in each elicitation modality seen in the feature N Peaks,
the neutralizing effect of each baseline is observable.

Feature Name Median trends

Avg rise time



76 3| Results

N peaks

Average

Env

Table 3.2: Example of Median Trend of Extracted GSR Features
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3.2.2. Point Process Features

From the features extracted from the Point Process Model time series information about
the activity of the Autonomic Nervous System can be deduced.
From the reported trends we can see that the ANS response was coherent with the liter-
ature. For example the high frequency (HF) power of the modeled heart rate variability
signal is associated with parasympathetic nervous system activity, responsible for slow-
ing down the heart rate and promoting relaxation. Therefore, a higher HRV HF power
indicates greater parasympathetic activity, which is associated with a relaxed state. In
contrast, a lower HRV HF power indicates a lower level of parasympathetic activity and
may indicate a more stressed or aroused state.
Instead, the low frequency power (or the normalized LF) is associated with sympathetic
activation, and is expected to be lower in relaxed states and higher in more aroused ones,
as can be observed in Table 3.3 the two trends are both rising during the protocol and
the VR stimulation results more arousing in general.

Feature Name Median trends

HF

lfn

Table 3.3: Example of Point Process features median trends.
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3.2.3. Respiratory

From the extracted features from the respiratory signal information about the activity of
the ANS can be deduced.
From the two extracted features trend it is observable a response that is coherent with
what was expected. Increased respiratory frequency is associated to states of increased
arousal, such as happiness in which it is observable a noticeable peak in the VR stimulation
part, while decreased respiratory frequency is often observed during states of decreased
arousal, like relaxation. From both trends it is observable the presence of higher values
during the first two halves of the elicitation (corresponding to lower arousal states) and
lower values in the remaining halves.
On the opposite higher respiratory amplitude is associated with low states of arousal and
low values with high arousal states, as is confirmed in the shown trends in Table 3.4.

Feature Name Median trends

Respiratory frequency

Resp amplitude

Table 3.4: Respiration features median trends.
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3.2.4. PAT

With respect to the ANS, the PAT is affected by changes in sympathetic and parasympa-
thetic activity. Sympathetic activity causes arterial vasoconstriction, increasing arterial
stiffness and decreasing the PAT. In contrast, parasympathetic activity causes arterial
vasodilation, decreasing arterial stiffness and increasing the PAT, these higher values are
associated with lower arousal states. In Table 3.5 is shown that in both trends there is a
significant decrease corresponding to the last elicitated emotion, that also corresponds to
the most arousing one (Fear).

Feature Name Median trends

PAT

Table 3.5: PAT median trends

3.2.5. PP

A higher Pulse Pressure value indicates a higher parasympathetic activity, in contrast,
a lower PP value indicates a lower parasympathetic activity and a high sympathetic
activation.
Therefore, PP can be used as an indicator of the ANS’s activity, and coherently with what
just said the two trends shown in table 3.6 slightly rise from the first baseline to the two
low arousal stimulations and then decrease with rising arousal in the elicitation protocol.
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Feature Name Median trends

PP

Table 3.6: PP Median trends

3.3. Statistical Analysis Results

As stated in 2.3.2, the statistical testing has been performed over the depolarized dataset,
using a dynamic depolarization based on the baseline before the elicitation part of the
protocol.

3.3.1. Friedman’s Test Results

Following the method explained in 2.3.2, a Friedman’s test was performed between the
four elicitation sections for both the FS and the VR part of the protocol, to assess whether
the extracted features are effective in distinguish the four elicitated emotions.

For the FS elicitation none of the extracted features resulted significant in distinguish the
four different elicitated emotions.
For the VR elicitation, the performed Friedman’s Test resulted significant for 20 over 30
extracted features.
The following results refer only to extracted features from the VR stimulation.

To further investigate which couples of comparisons resulted significant a post-hoc test
with Bonferroni correction was performed on the features that resulted significant in the
previous test.
These comparison results are shown in the following section through the box-plots of the
significant Features. The comparisons between emotions are marked with asterisks that
represent the significance of the comparison: no asterisks means that the test resulted
in a non significant difference, otherwise it resulted significant (there will be one for a
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p−value < 0.05, two for p−value < 1∗10−2 or three asterisks for p−value < 1∗10−3 to
easily visualize the magnitude of the significance). Only three of the previously significant
features show no significance after the Bonferroni restriction, these are the average Rise
Time from the GSR signal, the Mu from the Point Process model and the Respiratory
Amplitude.

To better visualize which comparison had most significant features figure 3.21 is reported.

Figure 3.21: Number of significant features per comparison

GSR Features

The skin conductance features proved to be the most significant in term of emotional dif-
ferences, with 13 significant features over 17 extracted; 12 after the Bonferroni correction.
In particular all the significant features can distinguish Fear from the lower arousal state
Relax, 6 features are significant for distinguishing Fear from Sadness, 3 for differentiat-
ing Happiness from Fear, the comparisons Sadness-Relax, Sadness-Happiness and Relax-
Happiness only have one significant feature each.
In the following tables box-plots will have a standard colors for corresponding emotions:
Red for Sadness, blue for Relaxation, Green for Happiness and Cyan for Fear, same as
the plot colors in sec.3.1.2 and 3.1.3.
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Feature Name Box-Plot

Env

Average

N Peaks
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Avg Amplitude of Peaks

Avg Rise Time

Sd Amp of Peaks
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Max sign amp gsrbp

Sd Der gsrbp

Max Der gsrbp
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Avg Abs 1

Avg Abs 1 Normalized

Avg Abs 2
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Avg Abs 2 Normalized

Table 3.7: Statistically significant GSR Features Friedman’s Test.

Point Process Features

Three out of the nine Point Process extracted Features from the VR stimulation resulted
significant from the Friedman’s test, two also resulted significant after the post-hoc test
with the Bonferroni restriction.
In particular the HF resulted significant for the comparison Sadness-Fear (so to distinguish
a low level of arousal from an high one), and Tot power resulted highly significant for the
comparison happiness-fear (so to distinguish a low level of valence from an high one).
In the following table 3.8 box-plots will have a standard colors for corresponding emotions:
Red for Sadness, blue for Relaxation, Green for Happiness and Cyan for Fear, same as
the plot colors in sec.3.1.2 and 3.1.3.

Feature Name Box-Plot

Mu
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HF

Tot power

Table 3.8: Statistically significant Point Process Features Friedman’s Test.

Respiration Features

Both of the respiration derived features resulted initially significant after the Friedman’s
test, only the Respiratory frequency remained significant after the post-hoc test with the
Bonferroni correction, in particular it resulted significant in distinguishing Happiness from
the lower arousal states.
In Table 3.9 box-plots will have a standard colors for corresponding emotions: Red for
Sadness, blue for Relaxation, Green for Happiness and Cyan for Fear, same as the plot
colors in sec.3.1.2 and 3.1.3.
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Feature Name Box-Plot

Respiratory Frequency

Amp Resp

Table 3.9: Statistically significant Respiration Features Friedman’s test.

PAT

PAT resulted hugely significant for the comparison Sadness-Fear, so in distinguish lower
arousal states from, higher ones.
In Table 3.10 box-plots will have a standard colors for corresponding emotions: Red for
Sadness, blue for Relaxation, Green for Happiness and Cyan for Fear, same as the plot
colors in sections 3.1.2 and 3.1.3.
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Feature Name Box-Plot

PAT

Table 3.10: Statistically significant PAT Feature Friedman’s Test.

PP

The PP time series resulted significant also after the post-hoc test with the Bonferroni cor-
rection, it is hugely significant in comparisons that involve Happiness with lower arousal
states (Sadness and Relax), and slightly less significant in distinguishing Fear from Hap-
piness.
In table 3.11 box-plots will have a standard colors for corresponding emotions: Red for
Sadness, blue for Relaxation, Green for Happiness and Cyan for Fear, same as the plot
colors in sec.3.1.2 and 3.1.3.

Feature Name Box-Plot

PP

Table 3.11: Statistically significant PP Feature Friedman’s Test.
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3.3.2. Wilcoxon Signed-rank Test Results

As stated in 2.3.2 a Wilcoxon Signed-rank test was performed between corresponding
stimulation parts of the Flat Screen and the VR part of the protocol, to assess whether
there are significant differences between the two elicitation techniques. This test can
give information about whether features depend on the stimulation modality or just the
elicitated emotion itself.
To easily display these comparison results, the box-plots of the most significant Features
are shown in the following section divided by respective signal. In each plot eight box-
plots are shown side by side, four for each elicitation modality with standard colors for
corresponding emotions: Red for Sadness, blue for Relaxation, Green for Happiness and
Cyan for Fear, same as the plot colors in sections 3.1.2, 3.1.3 and 3.3.1.
The comparisons between corresponding emotions are shown with asterisks, those symbols
represent the significance of the comparison, no asterisks means that the test resulted in a
non significant difference, otherwise the comparison resulted significant (there will be one
for a p−value < 0.05, two for p−value < 1∗10−2 or three asterisks for p−value < 1∗10−3

to easily visualize the magnitude of the significance).

GSR Features

From the GSR extracted features some resulted significantly different in the two elicitation
modalities.
In particular Average resulted very significant in the two lower arousal scenes (Fear and
Relax); Avg Abs2 Norm resulted instead significantly different for the two low valence
sections (Sadness and Fear); the Slope of the band pass filtered signal resulted significantly
different for all the elicitated emotions so it seems to distinguish well the two stimulation
modes, but as seen in section 3.3.1 it does not result significant in distinguish one emotion
from the other.
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Feature Name Box-Plot

Average

Slope GRSbp

Avg Abs2 Norm

Table 3.12: Statistically significant GSR Features Wilcoxon Test.

Point Process Features

From the extracted Point Process features, Balance and HF resulted slightly significantly
different for Fear, and Mu for Happiness.
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Feature Name Box-Plot

Mu

HF

Bal

Table 3.13: Statistically significant RESP Features Wilcoxon Test.

Respiration Features

The respiratory frequency resulted highly significantly different only in the Happiness part
of the stimulation.
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Feature Name Box-Plot

Respiratory Frequency

Table 3.14: Statistically significant Point Process Features Wilcoxon Test.

PAT

The Pulse Arrival Time resulted highly significantly different for the Fear section of the
two stimulation.

Feature Name Box-Plot

PAT

Table 3.15: Statistically significant PAT Feature Wilcoxon Test.

PP

The Pulse Pressure resulted highly significantly different only in the Happiness part of
the stimulation.
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Feature Name Box-Plot

PP

Table 3.16: Statistically significant PP Feature Wilcoxon Test.
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3.4. Feature Selection Results

To assess what were the best features capable of distinguishing the four emotional states
for each elicitation method the Square Method feature selection approach was chosen.
As previously stated in section 2.3.3 the square method gives as output a list of features
ranked by their ability to separate the observations based on their emotional nature.
To isolate only the three best features per method a distributions’ intersection threshold
has been set for each elicitation method. The resulting limit value of the threshold for the
FS method was 39% of overlap, placing at the first places in the ranking three Galvanic
Skin Response derived features: Avg abs2 normalized, Avg der GSRbp and Slope GSRbp.
Using the three selected features a 3D representation of the separation between emotion
is represented in the following figure (fig. 3.22), and the three possible two-dimensional
views are reported in fig. 3.23, in the following plots each emotion is visible in a different
colors, yellow for Sadness, green for Relaxation, blue for Happiness and Red for Fear.
Coherently with the results from the Friedman’s Test the four emotions are not clearly
separated in the 3-feature space.

Figure 3.22: 3-dimensional emotion separation Flat Screen stimulation



96 3| Results

(a) (b)

(c)

Figure 3.23: 2-dimensional views of emotion separation of Flat Screen stimulation

This representation was also implemented to visualize how the selected features could
distinguish high (in red) valence states from low (in blue) valence ones (fig. 3.24) and
high arousal states (in red) from low arousal (in blue) ones (fig. 3.25).

Figure 3.24: 3-dimensional Valence separation Flat Screen stimulation
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Figure 3.25: 3-dimensional Arousal separation Flat Screen stimulation

As for the VR stimulation, the resulting limit threshold was set at 18.54% of overlap and
it isolated four features (third and fourth matching in score, but placed in the ranking
following the rules cited in 2.3.3), in rating order: Respiratory frequency, GSR Avg abs2,
GSR Average and GSR N peaks.
Using the first three selected features a 3D representation of the separation between emo-
tion is represented in the following figure (fig. 3.26), another 3D space was plotted using
the fourth feature (N Peaks) to visually assess the difference between the two matched
ranking features (fig. 3.27). In the following plots each emotion is visible in a different
colors, yellow for Sadness, green for Relaxation, blue for Happiness and red for Fear.

Figure 3.26: 3-dimensional emotion separation of VR stimulation, best three features

The three possible two-dimensional views derived from the best three features are reported
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in figure 3.28. As is shown the four elicitated emotional space are separated in the 3-
dimensional space defined by the three selected features.

Figure 3.27: 3-dimensional emotion separation of VR stimulation, with N Peaks feature.

(a) (b)

(c)

Figure 3.28: 2-dimensional views of emotion separation of VR stimulation

This representation was also implemented to visualize how the selected best three features
could distinguish high (in red) valence states from low (in blue) valence ones (fig. 3.29)
and high(in red) arousal states from low (in blue) arousal ones (fig. 3.30).
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Figure 3.29: 3-dimensional Valence separation VR stimulation

Figure 3.30: 3-dimensional Arousal separation VR stimulation

To better compare the selected features in both elicitation methods the following two 3D
plots were created: in each of them it is possible to see the four emotion distribution
obtained by using the best three feature selected for the other elicitation modality. In
figure 3.31(a) the VR elicitated emotion distribution using the best three feature selected
for the FS stimulation can be seen, meanwhile in figure 3.31(b) the FS elicitated emotion
distribution using the best three feature selected for the VR stimulation is shown.
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(a) (b)

Figure 3.31: 3D emotion separation space, selected features comparison.

3.5. Machine Learning Classification Results

After conducting a comprehensive evaluation of multiple feature sets derived from the Flat
Screen and Virtual Reality results datasets, it was determined that the Square Method
was the most effective technique to identify the optimal features.
The selection threshold were raised as necessary to find more than just the three more
relevant features listed in 3.4. From the FS part, the top ten features were selected, and
the top seven features were retained from the VR part. These feature sets yielded the
most beneficial results when employed with a K-Neighbors model. Such sets are:

• Flat Screen: GSR: GSR sd amp peaks, GSR max der GSRbp, GSR slope GSRbp,
GSR max sign amp, GSR avg der GSRbp, GSR avg abs2 norm; Cardiac: vlf PP,
tot PP, PAT; Respiratory: f resp.

• Virtual Reality: GSR: GSR avg, GSR n peaks, GSR max der gsrbp, GSR avg
abs2; Cardiac: tot (Point process), PP; Respiratory: Respiratory Frequency.

Using these feature sets, the training database was used to train all the models listed in
2.4; their hyperparameters were adjusted in order to obtain the highest accuracy level
possible and this was done for each one of the three classification tasks.
Although all models were trained and tested with various combinations of values for their
hyperparameters, the best model resulted being K-Neighbors for all classification tasks,
for both datasets. It is important to note that these results are supposed to be qualitative
and non-final, as the datasets were way too small than what is usually needed to optimally
train and test machine learning models. The accuracy level with the selected number of
neighbors are reported in the next paragraphs, along with the confusion matrices obtained
for all tasks and the ROC curves obtained in the arousal and valence separation tasks (as
such graphical method can’t be applied in multiclass tasks).
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3.5.1. Results of Classification of Flat Screen data

Starting from the first task, which was the multiclass classification in which the models
tried to separate all 4 emotional states, the best accuracy was of 25% (using 9 neighbors),
identical to the dataset proportion for each class. The resulting classification matrix can
be seen in figure 3.32.

Figure 3.32: Classification matrix of multiclass classification for FS data.

(a) (b)

Figure 3.33: Classification matrix (a) and ROC curve (b) of the Arousal classification
task for FS data

As for the second task, which was classification of the level of arousal, the maximum
accuracy obtained was of 61.1%, obtained using 5 neighbors (fig. 3.33) and the obtained
AUC value was 0.61.

The third task was classification of the level of valence, for which the best accuracy was
of 47.2% using 13 neighbors (fig. 3.34) and the obtained AUC value was 0.47.
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These results highlighted a difficulty in separating valence levels from physiological signals,
while arousal separation is easier.

(a) (b)

Figure 3.34: Classification matrix (a) and ROC curve (b) of the Valence classification
task for FS data.

3.5.2. Results of Classification of Virtual Reality data

The best K-Neighbors model for the multiclass separation achieved provided an accuracy
of 48.5% and considered 9 neighbors to classify the data. The resulting classification
matrix can be seen in figure 3.35.

Figure 3.35: Classification matrix of multiclass classification for VR data.

As for the separation of the arousal level, K-Neighbors achieved an accuracy of 80% (9
neighbors), the highest of all tasks for both datasets (fig. 3.36) and the obtained AUC
value was 0.87.
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(a) (b)

Figure 3.36: Classification matrix (a) and ROC curve (b) of the Arousal classification
task for VR data

Finally, the third task was separating the valence level. The highest obtained accuracy was
of 65.7% (4 neighbors) and the obtained AUC value was 0.69, confirming the observation
made in the previous paragraph (fig. 3.37).

(a) (b)

Figure 3.37: Classification matrix (a) and ROC curve (b) of the Valence classification
task for VR data

3.6. Summary of Results

In this section the results of the thesis were reported.

• Questionnaire’s Results: SAM and PAM results and their comparison (among
FS data and OASIS values for FS, and among VR and FS data for VR) were
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shown and evaluated. While the flat screen method evoked responses with lower
arousal than expected, data coming from the post-VR questionnaire indicate that
VR doesn’t have this limitation; the elicited responses seem to be more centered in
the respective quadrant of the Circumplex Plane.

• Physiological Response Results: the median trends of a selection of features was
reported. The trends were coherent with the expected response and showed that
VR-induced variations in the features were generally more pronounced than the FS-
induced ones, and that the VR stimulation generated a higher level of arousal in
the subjects.

• Statistical Analysis: the results of the Friedman test and the Multcompare test
with Bonferroni correction were reported. These tests identified 17 features that
significantly differed in specific comparisons between two different emotive states.
Notably, all these features were from the VR dataset, while none were relevant in
the flat screen dataset. The study also reported the results of the Wilcoxon test.

• Feature Selection Results: using different thresholds for the FS and VR datasets,
the Square method was applied in order to find the best three features for each
elicitating method that are capable of separating the 4 emotional states. The results
were plotted in a 3-dimensional graph, and also their separation capacity for arousal
level and valence level was reported. The feature set identified for VR separates the
4 emotional states in a more clear and definite way than the FS feature set (figs.
3.22 and 3.26).

• Machine Learning Classification Results: after having identified a different set
of best features for FS and VR, found applying the Square method to find more than
just three features, they were used to train a number of machine learning models.
The best one, for all the three tasks, was always a K-Neighbors. For both datasets,
the most accurate classification task was the one based on arousal level. VR trained
models always performed better than FS trained ones.
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4.1. Discussion

This work explores the integration of Virtual Reality and Affective Computing using rig-
orous quantitative methods, such as advanced signal processing, to extract and analyse
high-quality features. A novel experimental protocol was developed in a fully immersive
virtual environment to test the validity of the VR technology as medium for targeted
emotional triggers, against an already validated picture-based method for emotion elici-
tation.

One of the main hypothesis that were formulated in the early stages of this work is that
the traditional methods for laboratory-based emotion elicitation are to be considered
outdated. The quantity and variety of stimuli that the modern occidental human being
takes as input every day, from an ever increasing quantity of devices, mediums and content
creators, could be limiting our responses to non-immersive emotional stimulations.
In this thesis work both self-reported and physiological data have been acquired from 49
subjects, 5 of this acquisitions were later discarded.
For the flat screen stimulation part of the experiment, pictures taken from the OASIS
database were used; this database was chosen instead of the more widely used IAPS for
its more contemporary selection of images, up-to-date ratings and for its free access.

The average perceived protocol duration is extremely on point for the FS stimulation
section of the protocol and about 5 minutes less than the actual duration for the VR
elicitation part; this suggests a lower level of boredom for the VR stimulation, despite it
being longer than the FS section, and possible application of VR stimulation for longer
protocols.

The collected results from the post FS stimulation assessment show that in no case, among
the 4 different emotional parts, the mean of the expected value of valence-arousal is even
inside of the 95% confidence interval, built with the self-reported data of the subjects,
mirroring the evaluating process of the OASIS database itself (fig. 3.20). In the specific
case of happiness, not only the evoked response is far from the expected, but even falls
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into the quadrant associated with lower levels of arousal, that identifies emotional states
such as Relaxation and Contentment. This could hint to a difficulty in inducing high
arousal states, except if the selected pictures have graphic content, like in the case of the
fear stimulation, which elicited an on-point response.

While the Flat Screen method evoked responses with lower arousal than expected, PAM
data coming from the post-VR questionnaire indicate that VR doesn’t have this kind of
limitation. As also the median plots of many physiological features indicate, VR elicitating
parts were generally more arousing. As stated in [3], arousal level and the perception of
being present in a virtual environment are correlated. Thus, a slightly higher arousal may
be linked with the immersiveness of the VR environments and events, and not just to the
specific content. Indeed, looking at Table 3.1 it is clear that the VR valence-arousal plots
on the Circumplex plane are more centered in their targeted emotional quadrant then
their FS counterpart.

Physiologically, the extracted features (both in time and frequency domain) are consistent
with the literature. All used signals (HRV, GSR, BVP and RESP) follow the expected
trends of ANS activation in respect with the target emotion.
Signals acquired during the VR stimulation are still coherent with the expected trends,
but show a higher variability than the ones induced by the FS method. This variability is
even more accentuated in those features that are directly linked with arousal, like those
derived from the GSR.

Friedman’s test, followed by a post-hoc with Bonferroni correction, revealed that no fea-
tures filled by data acquired during the FS stimulation were useful in separating emotional
states.
However, for VR derived data, these tests identified a set of 17 features that are signif-
icantly capable of separating specific emotional states. These features are particularly
effective at distinguishing between Fear and Relaxation, which are opposite emotions and
achieved the highest distance on the CMA graph that displayed the questionnaire’s SAM
data (fig. 3.20). Also Fear and Sadness resulted separable by 6 features, highlighting that
a separation by arousal level may be generally more simple, especially after a VR stimu-
lation that, as mentioned before, may induce a more aroused and variable response in the
subjects. This insight was then confirmed by analysing the machine learning’s outcomes,
in which binary arousal-based classification achieved the highest accuracy among all three
tasks for both datasets.
Binary classification based on valence had lower accuracy than the arousal-level separa-
tion, and again this result was already predicted by the Friedman’s post-hoc test, where
valence level was significantly identified only by 4 features.



4| Discussion and Conclusions 107

As for the performed multiclass classification keeping the four elicitated emotions as tar-
gets, the small dimensions of the dataset have to be taken into consideration, only 35
instances for each target class were available to train the model. Nonetheless the out-
comes of the VR trained model have an accuracy score of 48.5% against an accuracy of
25% of the FS derived model, that is the limit value for random classification for four
target classes.

4.2. Main Innovations

The main innovations of this work can be summarized by the following points:

• This thesis proposes a novel Virtual Reality experimental framework for targeted
emotion elicitation, validating the use of this new technology in the field of Affective
Computing.

• One of the key innovations is that this study directly compares a traditional emo-
tion elicitation method and a Virtual Reality-based one, through a comprehensive
approach that uses coherent stimuli, subjective assessment, advanced signal pro-
cessing, and machine learning.

• The environments used in this study for the VR stimulation were designed to create
lifelike scenarios by implementing audio and visual cues, both static and dynamic
(timed event-related), rather than relying on single isolated stimuli as vastly done in
literature. This approach aims to provide a more immersive and realistic experience
for the subjects, which may elicits specific emotional responses.

• It’s one of the first times that, in the field of Affective Computing, Point-Process
algorithms are used for the extraction of cardiac features over time.

• This study introduces a novel definition of physiological feature sets that can differ-
entiate not only between high and low arousal or valence, but also between specific
pairs of emotional states among Sadness, Relax, Happiness and Fear. This insight
will be extremely useful in building emotional classifiers.

4.3. Limitations and Future Developments

The study presents a preliminary method for emotion elicitation using a VR device, but
acknowledges a limitation in the potential effect of sound on the subjects’ response during
VR stimulation. As sound wasn’t present in the Flat Screen part, it is possible that at
least part of the subjects’ response was modified by its presence in the VR method. Aware
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of this bias, the researchers considered two alternatives: adding sound in the FS section,
or removing it from the VR part. The first option was rejected because of the limited
data in literature on emotion elicitation using images and sounds simultaneously. After
evaluation, the second possibility was also rejected, as a soundless virtual environment
could have reduced the desired feeling of presence, thereby limiting the full potential of
the chosen stimulation medium. A possible area of future studies could be introducing
sound stimulation in the Flat screen elicitation portion of the protocol, to better assess
the effect of sound in addition to the visual stimuli. Also a new comparison between a
real life scenario and a VR immersive environment replicating it could be studied.

Another limitation of this study stands in the number of subjects the protocol was exper-
imented on. The statistical analysis, feature extraction and classification modeling were
based on data derived from 44 subjects only. More experiments and data are needed in
order to quantitatively assess the capabilities, applications and limitations of the proposed
protocol. Accordingly, more acquisition phases and comprehensive studies have already
been planned.

4.4. Conclusions

This study aimed to develop new VR-based methods for affective computing to elicit,
identify, and distinguish various emotional states compared to the traditional Flat Screen
elicitation method that uses validated pictures as stimuli. The entire protocol was devel-
oped using Unity.

To conduct both qualitative and quantitative analyses, self-report data from post-elicitation
questionnaires and physiological signals were collected. Physiological signals, including
ECG, PPG, GSR, and Respiration, were acquired using a ProComp device. Different fea-
tures were extracted from the signals, and in-depth analyses were performed. Statistical
analysis was carried out to evaluate the effects of emotions on physiological indexes cal-
culated from the signals. Machine learning algorithms were employed to classify emotions
based on their level of arousal, valence, and position in the four quadrants of the CMA
plane.

Although further studies are needed to confirm and expand on the obtained insights, this
thesis demonstrates the efficacy of Virtual Reality as an emotional elicitation tool and
its potential in enhancing the field of Affective Computing. This claim is justified by the
more pronounced amplitudes and higher variability of the VR-extracted features, that
better explain the changes in the arousal of the subjects and, on a smaller scale, also in
in their valence. In conclusion, this work proposes a novel Virtual Reality experimental
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framework for targeted emotion elicitation; this innovative approach proved its ability to
better elicit specific emotional responses in the subjects, compared with a traditional Flat
Screen picture-based method. VR provides a more immersive and realistic experience for
the subjects that is sure to enhance the field of Affective Computing, opening up exciting
new opportunities.
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