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Abstract

Ensuring the security of smart contracts is essential for their successful execution and
reliability. While blockchain technology provides a secure environment, conflicts may
arise between security requirements and blockchain characteristics. This thesis tackles
this challenge by determining the appropriate placement of security elements whether
they should be stored on-chain or off-chain—based on their security requirements and
impact on the blockchain structure. Building upon an existing algorithm, this research
proposes an enhanced approach that utilizes SecBPMN2BC, a programming modeling
language guiding the design of secure business processes for blockchain implementation
using smart contracts. By evaluating the security requirements, the novel algorithm
optimizes security elements’ placement to maximize security while minimizing conflicts.

The thesis focuses on the development of two algorithms that enhance smart contract se-
curity. Both algorithms address the placement of security elements within smart contracts
by using SecBPMN2BC annotations to analyze the security requirements associated with
each element, considering factors such as data integrity, availability, etc. The algorithms
determine whether an element should reside on-chain or in an off-chain environment.

The first is a brute-force algorithm that focuses on exhaustively evaluating the security
requirements of each element within a smart contract at a global level. It systematically
analyzes security annotations related to each element of the smart contract to determine
whether an element should be stored on-chain or off-chain by not excluding any possible
case. While this approach may require more computational resources and time, it explores
all possible combinations of security considerations for each element.

The second algorithm is an optimized algorithm that aims to improve the efficiency and
performance of the element placement process. By leveraging optimization strategies,
the algorithm identifies the most suitable placement for elements, considering both secu-
rity requirements and the impact on the blockchain structure. With this approach, the
computational overhead is reduced while maintaining a high level of security.

This research combines the concepts of security annotations, SecBPMN2BC, and algorith-
mic analysis to provide a practical framework for the secure placement of smart contract
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elements. The developed algorithms provide valuable insights and guidance for developers,
ensuring that security requirements are effectively met while optimizing the performance
and efficiency of smart contract execution.

Keywords: Blockchain, Smart Contract, SecBPMN2BC, Security requirements
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Abstract in lingua italiana

Garantire la sicurezza degli smart contracts è fondamentale per la loro corretta esecuzione
e affidabilità. Sebbene la tecnologia blockchain fornisca un ambiente sicuro, possono
sorgere conflitti tra i requisiti di sicurezza e le caratteristiche della blockchain. Questa
tesi affronta questa sfida determinando il posizionamento appropriato degli elementi di
sicurezza, sia che debbano essere memorizzati sulla blockchain (on-chain) o al di fuori di
essa (off-chain), in base ai loro requisiti di sicurezza e all’impatto sulla struttura della
blockchain. Sulla base di un algoritmo esistente, questa ricerca propone un approccio
migliorato che utilizza SecBPMN2BC, un linguaggio di modellazione di programmazione
che guida la progettazione di processi aziendali sicuri per l’implementazione di blockchain
mediante smart contracts. Valutando i requisiti di sicurezza, il nuovo algoritmo ottimizza
il posizionamento degli elementi di sicurezza al fine di massimizzare la sicurezza e ridurre
al minimo i conflitti.

La tesi si concentra sullo sviluppo di due algoritmi che migliorano la sicurezza degli smart
contracts. Entrambi gli algoritmi affrontano il posizionamento degli elementi di sicurezza
all’interno degli smart contracts utilizzando annotazioni di SecBPMN2BC per analizzare
i requisiti di sicurezza associati a ciascun elemento, considerando fattori come l’integrità
dei dati, la disponibilità, ecc. Gli algoritmi determinano se un elemento deve risiedere
sulla blockchain o in un ambiente esterno.

Il primo è un algoritmo di forza bruta che si concentra sull’esame esaustivo dei requisiti di
sicurezza di ciascun elemento all’interno di un contratto intelligente a livello globale. Anal-
izza sistematicamente le annotazioni di sicurezza relative a ciascun elemento del contratto
intelligente per determinare se un elemento deve essere memorizzato sulla blockchain o
al di fuori di essa, senza escludere alcun possibile caso. Sebbene questo approccio possa
richiedere più risorse computazionali e tempo, esplora tutte le possibili combinazioni di
considerazioni di sicurezza per ciascun elemento.

Il secondo algoritmo è un algoritmo ottimizzato che mira a migliorare l’efficienza e le
prestazioni del processo di posizionamento degli elementi. Sfruttando strategie di ottimiz-
zazione, l’algoritmo individua il posizionamento più adatto per gli elementi, considerando



sia i requisiti di sicurezza che l’impatto sulla struttura della blockchain. Con questo
approccio, si riduce l’onere computazionale pur mantenendo un alto livello di sicurezza.

Questa ricerca combina i concetti di annotazioni di sicurezza, SecBPMN2BC e analisi
algoritmica per fornire un quadro pratico per il posizionamento sicuro degli elementi degli
smart contracts. Gli algoritmi sviluppati forniscono preziose informazioni e orientamenti
per gli sviluppatori, garantendo che i requisiti di sicurezza siano soddisfatti in modo
efficace, ott

imizzando al contempo le prestazioni e l’efficienza dell’esecuzione degli smart contracts.

Parole chiave: Blockchain, Smart Contract, SecBPMN2BC, Security requirements
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1| Introduction

Smart contracts are blockchain-based algorithms that are executed when certain criteria
are met, which has the advantage of eliminating the need for intermediaries and third
parties in transaction processes, reducing costs. Indeed, in order to define how a process
should be structured they provide a set of rules and instructions, enabling the enforcement
of agreements between parties, such as asset ownership transfer, service delivery, or fee
payment[34]. Once deployed, smart contracts are transparent and immutable and it makes
their results tamper-proof and unchangeable.

The automated nature of smart contracts offers a range of advantages over traditional
contracts, including improved efficiency and cost-effectiveness [3]. These features provide
transparency and immutability that traditional contracts cannot match, making them
increasingly popular in various industries. In the supply chain management domain, for
instance, smart contracts can be used to automate product traceability and authenticity
verification from the factory to the end consumer [7][37].

However, smart contracts must adhere to certain security requirements to be effective
[30] These programs are based on algorithms and can pose risks if incorrectly designed
and implemented. Therefore, security is extremely important as security vulnerabilities
may cause significant financial and legal consequences for the parties involved. It has
been reported that a high percentage of informatic attacks in recent years were focused
on smart contracts, resulting in a loss of cryptocurrency. In the world of decentralized
finance (DeFi), there have been notable incidents that highlight the risks and vulnerabil-
ities associated with smart contracts. The bZx hack in 2020, the DAO attack in 2016,
Uniswap exploits, and the Harvest Finance attack all serve as reminders of the importance
of security measures and diligent code auditing. These incidents resulted in significant
financial losses, emphasizing the need for ongoing advancements in DeFi security practices
to safeguard user funds and enhance the overall resilience of the ecosystem [25]

To mitigate these risks, Blockchain technology provides a secure and transparent envi-
ronment for the execution of smart contracts. The decentralized and immutable nature
of the blockchain ensures that once a smart contract is deployed, it becomes part of a
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tamper-proof and transparent ledger that is maintained by a network of nodes [17]. The
transaction is verified by each node, which also updates the blockchain to reflect the mod-
ifications made by the smart contract. As the network must agree on any modifications
to the contract, it is extremely difficult to manipulate or commit fraud with it.

However, although blockchain technology offers a high level of security for smart contracts,
it may not always be able to fully satisfy all security requirements. In truth, there may
be inconsistencies between some security criteria and aspects of blockchain technology.
Therefore, to ensure the utmost security of smart contracts, it is imperative to deter-
mine which data elements should be stored on-chain or off-chain based on their security
requirements and the potential impact on the blockchain structure[11]

While critical data elements should be stored on-chain for maximum transparency and
security, it is crucial to consider the potential conflicts with the blockchain structure and
the increased risk of security breaches that may arise from storing certain data on-chain.
For example, conflicts may arise between confidentiality and availability if a system is
designed to be highly secure but not easily accessible to authorized users. Similar is-
sues might develop between authenticity and integrity if the technology supports anony-
mous transactions. Thus, in order to spot and resolve conflicts and make sure that the
blockchain system is safe and effective at fulfilling the security requirements of smart con-
tracts, it is essential to carefully evaluate the security requirements of each data element
and its potential impact on the blockchain structure. [31]

To this purpose, the primary goal of this thesis is to identify which elements of a given
process can be stored on-chain, rather than off-chain. The goal of the study is to assess
the process’ security needs and identify the best components that can be stored utilizing
blockchain technology. It is presented a novel approach to improve an already existing
algorithm [13] that utilizes SecBPMN2BC, a technique that guides process modelers and
security specialists in designing secure business processes that are suitable for implemen-
tation on a blockchain using smart contracts.

The thesis begins with an introduction that surveys the existing literature on smart con-
tract optimization, providing a solid foundation for security fields. It introduces other al-
gorithms and frameworks that share the same objective but employ distinct approaches,
offering a broader perspective on diverse strategies. The baseline section presents the
original algorithm and SecBPMN2BC’s basic structure, while the running example de-
scription helps provide a clearer vision of the algorithms’ flow. The following chapters
detail two algorithms: the brute-force version and the optimized version. Both chapters
have a similar structure, beginning with functionalities and a running example.



1| Introduction 3

The pseudocodes are detailed, and a validation chapter is introduced to highlight the
differences between the two versions and their benefits. Test cases are meticulously built
to test both versions and ensure they achieve the expected results. The thesis concludes
with a conclusion and future development paragraph.
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2| State of Art

The proliferation of blockchain technology and smart contracts has increased the demand
for secure data processing and storage. One of the critical decisions developers face is
determining whether certain contract components should be stored on-chain or off-chain.
This decision is critical because storing data on-chain can be expensive and slow down the
blockchain’s performance while storing data off-chain can increase the risk of tampering.
Therefore, developers must strike a balance between security and scalability. Ensuring the
security of smart contracts is of utmost importance to prevent attacks such as reentrancy
and overflow attacks, which can result in significant financial losses [6].

2.1. Optimizing Smart Contract Code for Storage

Decisions

In the realm of smart settlement development, making sure the security of code is of
paramount significance. Optimizing clever agreement codes for storage selections per-
forms a crucial position in enhancing the security posture of decentralized packages. A
modern focus of research inside the discipline of smart contracts is indeed the optimization
in their code to determine whether or not sure components have to be saved on-chain or
off-chain. Several techniques have been proposed to deal with this difficulty, which include
machine learning, dynamic evaluation, and static evaluation, as discussed by Deeple et
al. [36]. Dynamic analysis includes tracking smart contracts during use to discover abil-
ity security vulnerabilities and make greater knowledgeable selections about information
garage location. In assessment, static evaluation includes reading clever agreement code
prior to deployment to discover capacity safety weaknesses [30] and make optimal storage
decisions. Machine learning-based techniques, on the other hand, involve training models
beyond smart contracts transactions too expecting the ideal storage vicinity for brand-
new transactions. By using these tactics, researchers aim to broaden secure and stable
smart contracts that could perform on both on-chain and stale-chain storage systems.

In their survey paper, "Enhancing Smart-Contract Security through Machine Learning: A
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Survey of Approaches and Techniques," Jiang et al.[22] explore numerous system getting
to know-based totally methods to decorate the security of smart contracts. The paper
gives a complete evaluation of present research on the usage of gadget mastering to hit
upon vulnerabilities and mitigate dangers associated with smart contracts. The paper
gives a whole assessment of existing research on using system mastering expertise to
discover vulnerabilities and mitigate dangers related to smart contracts. While device
getting to know can help optimize the selection-making technique for on-chain and off-
chain storage, it isn’t a fail-secure solution. Indeed, they can be liable to biases and require
fantastic amounts of statistics to educate efficaciously. Additionally, those methods may
not be capable of discovering all ability safety vulnerabilities, and the models themselves
may be vulnerable to assaults. As such, gadget-studying-based answers need to be used
together with exclusive measures to ensure the safety and integrity of smart contracts.

The field of optimizing smart contract security and storage decisions is a complicated and
hastily evolving area of research. As the call for blockchain technology maintains to grow,
the want for steady processing and storage becomes more and more vital. One sizeable
factor that researchers and developers should bear in mind is interoperability among
distinct blockchain networks. However, at the same time as cross-chain solutions provide
promising opportunities for seamless exchange and information transfer between chains,
they’ll not be sufficient to cope with all of the demanding situations and considerations
associated with smart contract protection and storage choices.

These researches are not only extended to machine learning but technique as Cross-chain
interoperability are taken into consideration. When talking about this field, in literature
numerous research paper talks about the integration of smart contract on the blockchain,
concerning [15] Cross-chain solutions focus on enabling interoperability by facilitating
the transfer of assets and data across different blockchain networks. These solutions in-
clude techniques such as atomic swaps, bridge protocols, and interoperability frameworks.
They aim to create a unified ecosystem that allows smart contracts to interact with mul-
tiple chains, expanding the functionalities and possibilities of decentralized applications.
While cross-chain solutions contribute to enhancing the overall efficiency and connectiv-
ity of blockchain networks, they may fall short in addressing specific security and storage
concerns. It is important to recognize that cross-chain communication introduces addi-
tional complexities and potential vulnerabilities. The security of smart contracts becomes
more intricate when they interact with multiple chains, as each chain may have its own
unique characteristics, consensus mechanisms, and security protocols. As the demand
for blockchain technology continues to grow, the need for secure and efficient data pro-
cessing and storage becomes increasingly crucial. One significant aspect that researchers
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and developers must consider is interoperability between different blockchain networks.
However, while cross-chain solutions offer promising opportunities for seamless commu-
nication and data transfer between chains, they may not be sufficient to address all the
challenges and considerations related to smart contract security and storage decisions.

To cope with the specific approach of figuring out whether an element of a smart contract
must be placed on-chain or off-chain, numerous initiatives and initiatives had been actively
running on developing answers in this domain.

One notable example is Polkadot, a multi-chain platform designed to enable cross-chain
communication and interoperability. Polkadot allows different blockchain networks to
connect and share information through a unified protocol, enabling seamless interaction
between chains[35]. This platform facilitates the decision of whether to put elements on
the chain or off-chain through its parachain infrastructure. Parachains are specialized
chains connected to the Polkadot Relay Chain, which acts as the main network for co-
ordination and consensus[26]. These Parachains can have their own rules, governance
mechanisms, and functionalities, however, are nevertheless interoperable with different
Parachains and the Polkadot community as a whole. Consequently, it is possible to create
and deploy smart contracts on specific Parachains through this platform, this gives devel-
opers the flexibility to determine which elements of the smart contract should be executed
on the chain or off-chain, based on various considerations. Developers can leave elements
on-chain to achieve a high level of transparency, immutability, or decentralized execution,
or execute them off-chain to improve performance and scalability. What is important to
note is that Off-chain workers can execute functions outside the blockchain network, but
are still connected to the parachain and can interact with on-chain data. Thus it is cru-
cially important to remember that developers should not have the entire ability to decide
whether to deploy components on-chain or off-chain, rather, it should be based on an
analysis of the smart contract’s security needs. This evaluation manner makes it positive
that the proper steps are taken to shield the agreement’s integrity and confidentiality and
to make sure they’re steady with the general protection desires. Hence, as opposed to
simply counting on developer judgment, the selection-making technique has to be based
on an intensive grasp of the safety wishes.

This evaluation manner makes it positive that the proper steps are taken to shield the
agreement’s integrity and confidentiality and to make sure they’re steady with the general
protection desires. Hence, as opposed to simply counting on developer judgment, the
selection-making technique has to be based on an intensive grasp of the safety wishes.
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2.2. Enhancing Smart Contract Security

Existing tools and frameworks, such as Remix [19], Solidity [20], and Truffle [21], are
available to optimize smart contract code for decision-making about on-chain and off-
chain storage. However, these technologies may not always provide optimal solutions in
dynamic situations such as changing network congestion and petrol prices.

Further research is needed to improve the decision-making process for on-chain and off-
chain storage of smart contract data, with additional security requirements and optimiza-
tion strategies being explored. Some algorithms have been developed to determine the
security of the smart contract implemented on the blockchain; however, the advantages
and disadvantages of these approaches must be carefully considered. Nevertheless, the
contributions of these developments have been instrumental in advancing the field of smart
contract security and storage optimization.

The Gasper [8] is a framework for trying out the safety of smart contracts. It gives a com-
plete trying-out method that covers a huge range of security vulnerabilities, automates
testing, is open-supply, customizable, and calls for giant computing assets. Nevertheless,
this method may not be fail-secure in identifying all ability safety vulnerabilities in smart
contracts, as it’s far complicated and requires a technical understanding to apply success-
fully, it’s far resource-extensive and is depending on Solidity, that is the programming
language utilized by the Ethereum blockchain. Therefore, it can now not appropriate for
testing smart contracts written in different languages or for different blockchain systems.

Securify [33] Is a valuable safety tool that could considerably enhance the security of
smart contracts. The tool is designed to tackle the venture of figuring out ability secu-
rity vulnerabilities in smart contracts thru complete security evaluation through the use
of static and dynamic analysis techniques. By conducting an intensive analysis of the
contract’s code, Securefy can detect any safety flaws and generate certain reports on the
issues located, supplying recommendations on the way to cope with them. In addition,
Securefy gives non-stop tracking to discover any suspicious interest and provides signals
for ability protection issues, permitting developers to take on-the-spot action. The use
of Securefy can help enhance the security of smart contracts, minimizing the danger of
hacks, exploits, and insects. However, it’s miles important to observe that the use of
Securefy can also come with a cost that can consist of economic prices, together with
licensing costs or subscription fees for accessing the service, which can be an obstacle
for some developers[1]. Furthermore, the tool’s compatibility with certain smart contract
platforms or languages may be limited, which can result in false positives or reduced ef-
fectiveness for certain developers. Despite these potential limitations, Securefy remains
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a valuable tool for enhancing the security of smart contracts and mitigating the risk of
security breaches.

Formal verification instead is a rigorous approach for verifying the correctness of smart
contracts by using mathematically proving properties approximately their behavior. It
entails the usage of formal common sense and automated gear to analyze the contract’s
code and confirm houses along with the absence of vulnerabilities and adherence to favored
specifications. Formal verification techniques were proposed as a manner to beautify the
safety of smart contracts and make informed selections approximately on-chain and off-
chain storage.

Research studies, such as the work by Bhargavan et al. [5], Have explored the software of
formal verification strategies for smart contracts. This research demonstrates the capac-
ity of formal strategies to come across vulnerabilities and make certain the correctness
of contract execution. However, certain limitations prevent formal verification from fully
achieving the scope of ensuring safety solely via on-chain or off-chain storage. First, for-
mal verification strategies often require huge expertise and assets to use efficaciously. The
procedure entails modeling the agreement, specifying houses, and utilizing formal verifica-
tion gear, which may be complicated and time-ingesting with the result of restricting the
accessibility of formal verification to developers with specialized expertise or hindering its
adoption in practical development eventualities. Second, in preference to reading the full
contract code, formal verification procedures are frequently higher applicable for studying
smaller, essential factors of the settlement. Owing to the complexity of smart contracts
and the scalability constraints of formal verification, doing comprehensive analysis on
huge and complex contracts can be impractical. As a result, while formal verification
might provide extensive insights into the safety of positive additives, it may no longer
provide a whole solution for selecting in which all settlement parts need to be stored[2]

The paper "Hawk: The blockchain model of cryptography and privacy-preserving smart
contracts" by Kosba et al.[12] introduces the Hawk framework, which focuses on ensuring
privacy in smart contracts through the use of cryptographic techniques. The frame-
work incorporates various cryptographic protocols such as zero-knowledge proofs, secure
multiparty computation, and encryption to address the crucial issue of privacy in smart
contracts. The Hawk framework hides clever settlement inputs and outputs, permitting
verification of correctness and integrity at the same time as preserving strict confidential-
ity of sensitive records. The integration of cryptographic protocols enhances the safety
and protection of sensitive statistics in smart contracts. However, it’s far more important
to be aware that the paper acknowledges the potential overall performance and compu-
tational trade-offs that can get up from using privacy-retaining techniques. Although the
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paper provides a basis for evaluating the level of privacy safeguards supplied by means
of the Hawk framework, it does not discuss in detail the particular issues and challenges
related to in-chain and out-of-chain storage selections. It additionally lacks a compara-
tive evaluation of alternative privacy procedures or techniques. In addition, the paper no
longer provides empirical reviews or case research to validate the practicality and effec-
tiveness of the Hawk framework in real-global eventualities. While the Hawk framework
helps deal with privacy issues in smart contracts, its barriers in terms of the scope of
storage decisions and lack of comprehensive evaluation are motives for similar research.

Additional studies should encompass a broader range of factors, including scalability [2],
cost [1], performance, and potential risks associated with data tampering or breaches [9],
to provide a more comprehensive understanding of security considerations and informed
storage decisions in smart contracts.

The work "Scalable and Privacy-preserving Design of On/Off-chain Smart Contracts" by
Li et al. [14], which tackles the combined difficulties of scalability and privacy in the
design of on/off-chain smart contracts, highlights another intriguing strategy. It promises
to offer technologies that let smart contracts manage big transactions while safeguarding
the privacy of private information. Given the rising demand for blockchain-based applica-
tions and the requirement to support a large number of transactions, the article explores
the significance of scalability in smart contracts. It investigates methods to increase the
scalability of smart contracts, enabling more effective execution and lower computing
cost, such as off-chain processing and sharding. The research highlights the need for
privacy protection in smart contracts in addition to scalability. In order to safeguard
sensitive information during contract execution, it examines privacy-enhancing strate-
gies like as zero-knowledge proofs, secure multi-party computing, and selective disclosure.
These methods make sure that only pertinent information is shared while protecting the
privacy of other contract-related data. It has to be emphasized that the research no
longer passes into excellent intensity on how the advised scalable and privacy-retaining
approach is sincerely applied. Instead of offering in-depth technical solutions or empir-
ical judgments, it could supply an excessive degree evaluate and conceptual framework.
While the paintings advance information on the issues and potential fixes for scalable
and privateness-preserving smart contracts, extra investigation and actual-international
programs are required to check and enhance the suggested structure.
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The chapter provides a top-level view of the modern-day today’s approach hired to de-
ciding the suitable execution location (on-chain or off-chain) for specific additives inside
a smart contract. This decision is based on the corresponding safety necessities related
to each factor. Additionally, there is an introduction to the SecBPMN2BC modeling
language, which serves as a graphical representation of smart contracts and permits the
specification of their safety requirements.

This chapter is based on an algorithm proposed in the existing literature [18]. This
algorithm aims to identify local optimal solutions for individual elements of a smart
contract, taking into consideration factors such as their security requirements, privity,
and enforceability. However, it is important to note that this algorithm has a limitation,
as it does not guarantee a globally optimal solution for the entire smart contract. Thus,
a novel optimization approach to address this limitation. This approach aims to achieve
a globally optimal solution that encompasses the entire smart contract.

3.1. Securing Smart Contracts with SecBPMN2BC

SecBPMN2BC is an extension of the widely used Business Process Model and Nota-
tion (BPMN) [32] architecture designed to address security concerns in modeling and
implementing blockchain technology business processes[29]. The primary objective of
SecBPMN2BC is to ensure that smart contracts are secure and tamper-proof by defining
security requirements at the process level, including access control, data confidentiality,
and integrity. Furthermore, SecBPMN2BC also considers potential conflicts between data
minimization and security requirements in business process models, providing a way to
detect and resolve such conflicts [28]. Organizations may utilize SecBPMN2BC to cre-
ate more dependable and secure smart contracts, which are essential for maximizing the
promise of blockchain technology.
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3.2. On-chain and Off-chain Elements in Securing Busi-

ness Processes

On-chain elements of a smart contract generally encompass the contract code, contract
state, and transaction statistics. These on-chain actors are handled via the nodes in the
blockchain community and are seen by all individuals in the community [23] [27].

Off-chain elements of a smart contract can consist of any facts or computation that is not
saved on the blockchain. In particular,off-chain transactions are focused on exchanges
that take place outside of the Blockchain and can be finished using a variety of methods.
What is crucial is that all the parties must consent to the transfer, and a third party must
then certify the transaction. Off-chain transactions are quick and instantaneous and don’t
include the extra fees that on-chain transactions do [10].

The choice of which element of the smart contract has to be stored on-chain or off-chain
depends on a variety of factors, along with the complexity of the computation, the quantity
of information that needs to be saved or accessed, and the desired stage of transparency
and safety. In general, the parts of a smart contract that involve sensitive data or require
a high level of security should be kept on-chain, while other parts of the contract that are
less critical can be placed off-chain. For example, sensitive information as it can be private
keys, personal data or critical business logic that determines the behavior of the smart
contract, such as payment or asset transfer functions that require secure processing must
be secured on the blockchain. Instead, any kind of data that does not involve sensitive
information i.e. Non-critical business logic or calculations that do not affect the outcome
of the contract can be stored off-chain [24].

3.3. SecBPMN2BC

SecBPMN2BC (Secure Business Process Modeling Notation 2 Blockchain) focuses on
secure business process modeling and design. To determine which parts of the smart
contract can go on-chain or off-chain,[31] it is important to:

• prioritize the essential security requirements

• examining the security concerns involved

• select components that can off-chain without threatening security

• identify non-critical operations or data that don’t need blockchain security
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• choose which components must be executed on the blockchain

• install suitable security measures for both on-chain and off-chain components.

An improved version of the modeling language SecBPMN2BC addresses this concern
by incorporating security measures. The following sections will provide a more detailed
discussion of this topic.

3.3.1. Security Requirements

As mentioned above, SecBPMN2 is an extension of BPMN 2.0 that includes a compre-
hensive set of security requirements. It was chosen as the baseline for SecBPMN2BC
because of its widespread use and rich security features. It is constructed with security
requirements that are derived from the BPMN elements they are associated with[18].
Annotations are suffixed with specific codes (such as "Act" for activity, "DO" for data
object, and "MF" for message flow) to distinguish their meaning based on the linked
BPMN element. All security annotations are shown in Figure 3.1.

Figure 3.1: Graphical annotations for security anntotations of SecBPMN2BC [18]

• Authenticity. This security requirement refers to the assurance that the identity of
a user or system is valid and verified. Authenticity is established through a process
of authentication that verifies the identity of the user or system.

• Availability. Is a security requirement that ensures that information and systems are
accessible and usable by authorized users when they need it. This includes measures
to prevent and mitigate unauthorized access, system failures, or other disruptions.

• Integrity. Refers to the assurance that information and systems have not been
tampered with, altered, or modified in an unauthorized way. This includes measures
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to protect against unauthorized access or modification, as well as to ensure the
accuracy and completeness of the information.

• Non-repudiation. Is a security requirement that ensures that a user cannot deny
having performed a specific action, such as sending a message or making a trans-
action. This is typically achieved through the use of digital signatures or other
cryptographic techniques.

• Separation of Duties. Is a security requirement that ensures that no single user
or system has complete control over a critical process or system. This is achieved
by dividing responsibilities among multiple users or systems to prevent conflicts of
interest or potential misuse.

• Binding of Duties. Is a security requirement that ensures that users are only autho-
rized to perform specific tasks that are relevant to their roles and responsibilities.
This helps to prevent unauthorized access and misuse of information and systems.

• Non-delegation. Is a security requirement that ensures that users are not authorized
to delegate their access rights or responsibilities to other users. This helps to prevent
unauthorized access and misuse of information and systems.

• Privacy. Is a security requirement that ensures that personal information is pro-
tected and used appropriately. This includes measures to prevent unauthorized
access, use, or disclosure of personal information, as well as to ensure that personal
information is collected and used in compliance with relevant laws and regulations.

3.3.2. Privity

Privity spheres have the ability to statically or dynamically limit read data access. Figure
3.2 presents an overview of the limitations brought about by the privity requirements on
connected data items. Only the public privity sphere is natively supported on public
blockchains using unencrypted on-chain data, and all other privity levels are violated.
Private blockchains are capable of supporting both public and private privity-spheres out
of the box, but they need extra tools like channels to do so. Due to the possibility that
the same data values may need to be written to several separate channels, the strong
dynamic sphere is particularly important for private blockchains with channels.
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Figure 3.2: Graphical annotations for Pivity of SecBPMN2BC-ML [18]

3.3.3. Enforceability

Enforceability refers to the ability of process models to specify requirements that impose
restrictions on data objects accessible by specific activities. By utilizing the Enforceability
annotation, shown in Figure 3.3, in conjunction with appropriate gateways, process models
can define these requirements. Public blockchains, which store input data transparently
on-chain or in a digest form, naturally support public enforceability. Private blockchains
with a significant number of nodes not controlled by process participants can also enable
public enforceability. Emulating cross-channel transactions on the main chain can be
achieved through techniques like voting protocols and zero-knowledge proofs. In certain
cases, the storage of data objects on different channels may be necessary to fulfill privity
requirements, and the strong dynamic sphere can involve multiple instances of the same
data item stored on several channels.

Figure 3.3: Graphical annotations for Enforceability of SecBPMN2BC-ML [18]

3.4. SecBPMN2BC

The decision of which processes should be executed on-chain and which should rely on
off-chain tools and approaches should be carefully considered when creating a blockchain-
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based application. The following process components impact this choice [18]:

• Sequence of activities, pools and lanes, and message flows define the process struc-
ture. If this structure is defined on the blockchain, it can be encoded with a smart
contract that monitors the process execution by emitting events when activities
should be executed and receiving notifications when they start or finish. However,
if the structure is defined off-chain, a traditional Business Process Management
System (BPMS) manages the process execution.

• Activities refer to a single unit of work that needs to be performed and can be
classified into fully automated, semi-automated, and manual activities. When fully
automated activities are executed on the blockchain, the smart contract can include
instructions for their execution, ensuring that the activity is performed exactly as
expected. However, if fully automated activities are executed off-chain, an exter-
nal software, such as a web service, executes them. Semi-automated and manual
activities require real-world resources, such as machines or humans, and cannot be
executed on-chain.

• Data objects or messages represent the data being manipulated by the process. If
stored on the blockchain, smart contracts govern read and write operations, as well
as the validation mechanisms to ensure data correctness. However, if data is stored
off-chain, external applications, such as a Database Management System (DBMS),
must manage both storage and validation. It’s important to note that data objects
may have different security properties depending on their state.

3.4.1. Type of Blockchain

When designing a blockchain-based solution, it is important to consider the type of
blockchain used. Public blockchains are decentralized, allowing anyone to access infor-
mation, while private blockchains are governed by a central authority or a select group
of members. To specify these decisions in the SecBPMN2BC specifications, the following
properties have been introduced:

• OnChainModel. This property specifies whether the execution logic will be handled
on-chain via smart contracts (if set to true) or off-chain (if set to false).

• OnChainExecution. Thise property can be set to true or false for activities. If
set to true, the activity will be executed on-chain via a smart contract, and if set
to false, it will be executed off-chain. However, it is important to note that those
activities that activities require human decision-making or any actions that cannot
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be automated. are typically not suitable for on-chain execution. Therefore, it is
more common to set the property to false for such activities to indicate off-chain
execution.

• OnChainData. This property specifies how data associated with a message or data
object state will be stored and validated. It can be set to unencrypted, encrypted,
hash (which stores only the digest of the data on-chain), or none (which stores the
data entirely off-chain).

• BlockchainType. This property specifies whether the on-chain portion of the process
will be executed on a public or private blockchain.

3.4.2. Rules for Property Combination

According to the security annotations, previously discussed in Section3.3.1, the process
component type, and the kind of blockchain being utilized, it is possible to derive rules
for obtaining the best combination of security requirements. Specifically, when analyzing
each rule, the associated process elements are determined. For each element that meets
the criteria of the rule, various sets of property values are identified. These sets encompass
both the properties of the process element itself, as well as those of its parent or related
elements. Eventually, each set of properties is given a label indicating the degree to which
the blockchain’s security annotation enforces the rule. The labels are "native" when the
blockchain enforces the property natively, "possible" when it enforces it partially, and
"no enforcement" when it provides no help in enforcing the property. In Figure 3.4, a
comprehensive list of all blockchain enforcement rules for SecBPMN2 security annotations
is shown.
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Figure 3.4: Blockchain enforcement rules for SecBPMN2BC security annotations [18]

3.5. Running Example

Throughout the chapter, a running example is utilized to illustrate the concepts discussed.
The example involves a smart contract process that incorporates a Ride-sharing process.
By exploring this scenario, readers gain practical insights into the challenges and consid-
erations involved in determining the suitable execution location (on-chain or off-chain) for
specific smart contract components, based on their corresponding security requirements.

This SecBPMN2BC smart contract is tailored specifically for a ride-sharing platform. It
pursues to streamline the approaches of experience request control, driving force matching,
payment authorization, and remarks series. By employing SECBPMN2BC, a comprehen-
sive and established technique is taken to model the various pools, duties, records gadgets,
and stop activities worried inside the ride-sharing method.

The ride-sharing smart contract includes some operations that assists with the coordi-
nation and execution of journey requests, driver assignment, payment authorization, and
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feedback collection. Simultaneously, the driver, belonging to the "Driver" pool, receives
the ride request and confirms its availability by accepting the assigned ride through the
"Confirm Ride" task. his ensures that the driver is actively involved in the ride under-
taking process.

Upon acceptance, the user and driver continue with the ride, with the driver updating the
ride completion status and their availability for future ride requests using the "Complete
Ride and Update Driver Status" task in the "Driver" pool. This enables better control of
driver resources and availability. The payment procedure is commenced simultaneously
within the "Payment" pool. job validates the ride’s final touch and the accuracy of
payment records, ensuring a safe and dependable transaction. The "Payment Data" object
contains the relevant fee information, which includes the person’s charge information and
transaction facts. The auditability, authenticity, availability, and integrity protection
annotations ensure that price records are effectively recorded, auditable, and keep their
integrity during the transaction.

If the payment permission is successful, the driver is paid using the "Release Payment"
procedure. The availability and integrity of safety annotations guarantee that the charge
release technique is reliable, available, and free of unauthorized alterations.

Moreover, customers may publish remarks on their experience revel in by means of fin-
ishing the "Provide Feedback" assignment in the "Ride Coordinator and Ride Request"
lane. The data item "Feedback" collects consumer input approximately their experience
enjoyable. The auditability and authenticity protection annotations make certain that
feedback statistics are effectively saved, keep their integrity, and may be tracked and
returned to the corresponding consumer.

The "Providing Feedback is Successful" end event is triggered while comments are effica-
ciously submitted. The auditability and authenticity safety annotations ensure that the
feedback submission occasion is reliably documented, authenticates the consumer’s input,
and preserves its integrity.

The " Payment is Declined (Unsuccessful)" end event is prompted if the charge autho-
rization method fails or is denied. The availability and integrity protection annotations
guarantee that the event appropriately records the failing payment authorization and
preserves the occasion data integrity.
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Figure 3.5: Example of SecBPMN2BC diagram for Ride Sharing System
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4| Algorithmic Framework

This chapter introduces a set of rules designed to deal with the demanding situations
springing up from conflicting and unsupported security properties in smart contracts
within a blockchain framework. The structure and protection capabilities of blockchain
necessitate careful consideration of which security properties can be supported on-chain
and which have to be accomplished off-chain. Indeed, failure to address those conflicts
and boundaries can disclose smart contracts to huge safety vulnerabilities, compromising
their integrity and reliability.

Consider the running example of a smart contract process (see Section 3.5)centered on
handling the retrieval and authorization of unique statistics from a Ride Sharing System,
in such eventualities, conflicting and unsupported security properties can also emerge,
especially while multiple protection necessities are assigned to a single element. This state
of affairs gives demanding situations in effectively enforcing security features, certainly,
conflicts can rise up when attempting to fulfill all assigned security necessities for an
element, as sure properties might also contradict or be incompatible with each different.

To tackle this problem, the supplied algorithm aims to discover and optimize the set of
security properties that may be completed on-chain, prioritizing the security requirements
that make contributions to the very high possible level of safety for the smart agreement.
By doing so, the set of rules mitigates the dangers associated with conflicting properties
and complements the trustworthiness and protection of smart contracts in the blockchain
ecosystem.

When considering the decision to place an element on a blockchain, it is important to
observe the advantages it offers, particularly in terms of security [38], as putting an ele-
ment on-chain can make certain transparency and authenticity, and in the end lower the
fee of employing third-party programs to stable the element. These include scalability-
demanding situations because the network needs to handle a huge quantity of statistics
efficaciously, there can be financial charges related to storing and processing informa-
tion, consisting of costs for data storage, transaction processing, and network utilization.
Moreover, persistence issues can occur due to the immutability of information at the
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blockchain, making it hard to modify or delete stored elements [16]. Persistence refers
to the capability of the blockchain network to hold the integrity and availability of data
stored on-chain over time. It can lead to facts loss or statistics corruption i.e. Errors or
inconsistencies in the saved data [4].

Therefore, the algorithms presented in this thesis identify a combination of security prop-
erties of SecBPMN2BC for each node in the smart contract, taking into account a global
enforcement variable, namely Global Enforcement, that measures the level of security
enforcement influenced by its predecessors and ancestors. In doing so, the algorithms
can determine whether an element of a smart contract should be executed on-chain or
off-chain. The decision-making process for storing elements on-chain in a blockchain net-
work involves considering multiple factors that include the properties of the element being
stored, its value, and the desired level of security. By carefully evaluating these aspects,
an optimal solution, that enhances the security of the smart contract process and mit-
igates potential conflicts can be determined. The aim is to find a balance that meets
the necessary security requirements while minimizing the risk of conflicts. To test the
efficiency of the algorithm, two different algorithms are proposed: a brute force version
and an optimized version. The brute force algorithm explores all possible combinations
of security properties, while the optimized reduces the number of combinations to explore
through a heuristic approach. The subsequent sections will provide a detailed description
of the algorithm and its two versions.

4.1. Global Enforcement

It’s worth noting that the set of rules for SecBPMN2BC previously discussed in Section
3.4.2 are primarily focused on optimizing security at a local level. To complement this
local security analysis, an additional parameter has been introduced: Global Enforcement.
This parameter is a numerical value given to each set of properties combinations that aims
to provide an indication of the overall level of security that is enforced by the blockchain’s
security properties. Unlike the set of rules which operate on individual nodes, this new
parameter calculates the security level based on the relationships between nodes. By
considering the security of nodes in relation to one another, this approach is able to
provide a global assessment of BC’s security. Before delving into the specifics of this
variable, it is essential to first explain why it has been implemented.

In more detail, the calculation of global enforcement in the context of combination rules
takes into account the local enforcement value of the specific combination. As explained
in Section 3.4.2, combinations can have three different levels of local enforcement.
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• For native combinations, where the enforcement is inherent and automatic, the
global enforcement value is assigned as 1, indicating full enforcement.

• If a combination has no enforcement, meaning there are no rules or measures in
place to enforce it, the global enforcement value is assigned as 0, indicating no
enforcement.

• In cases where a combination is possible, the global enforcement value is assigned
a value between 0 and 1. This value represents the likelihood or probability of the
combination being enforced, indeed, the specific value within this range reflects the
strength or effectiveness of the enforcement measures associated with that combi-
nation.

4.1.1. "Possible" enforcement level

In scenarios where each local property’s level of enforcement is possible, we discover dis-
tinct outcomes depending on the type of security annotations. It is crucial to recognize
that different requirements can offer varying levels of security, and these priorities can
be influenced by the stakeholders involved. When local enforcement is "possible" for a
particular combination, a value between 0 and 1 can be assigned to represent its level of
global enforcement. By assigning such values, it becomes possible to prioritize and com-
pare different requirements based on their respective enforcement capabilities, allowing
stakeholders to make informed decisions and allocate resources accordingly. Considering
the security requirements described in Section 3.3.1 and the possible rule combinations
obtained in Section 3.4.2, we can derive a range of values for the global enforcement in
each case.

First and foremost, it is essential to analyze all scenarios where different levels of enforce-
ment can be achieved for each security requirement.

Starting from Authenticity, it is possible to achieve possible local enforcement level if
OnChainExecution is set to true and the BlockchainType is public. This signifies that an
external mechanism is necessary to validate the user’s identity.

For Auditability, if OnChainExecution is false, the blockchain monitors the node that
recognized the beginning of the activity, but it does not assure that the node that sent
the notification initiated the activity. In the case of messages, if OnChainData is set to
false, the blockchain cannot prevent instances where messages are falsified, or notifications
of receipt are not delivered. The same problem applies to Availability.
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Concerning Integrity, a possible enforcement level can be attained when OnChainExecu-
tion is set to false. This means that, in addition to external mechanisms to ensure integrity,
all the necessary data for executing the activity must be supplied to the blockchain. If
these mechanisms do not operate correctly, the security level will be no enforcement, and
the possible value will be closer to no enforcement than native. The same issue arises
for Non-repudiation (activity). For MFs, if OnChainData is set to none, security is only
guaranteed for events related to the message, but not for the message’s content.

In the case of NonDelegation, if OnChainExecution is set to false, it implies that the whole
process is conducted outside the blockchain. Therefore, the blockchain can solely prevent
notifications from unauthorized nodes, leading to a low level of security, thus different
values could be allocated to characterize the security level guaranteed for these cases.

When considering the security of elements of a smart contract, whether stored on-chain
or off-chain, it is possible to analyze and determine the relative level of security for dif-
ferent elements in each scenario. Based on the analysis of specific cases, a ranking can
be established, indicating the elements that are less likely to be secure when exposed to
either on-chain or off-chain situations. The ranking ranges from the least secure to the
most secure, providing insights into the vulnerabilities and risks associated with different
elements in each context.

BOD, SOD, and Non-Delegation share the commonality that if their enforcement level is
achievable, the entire activity will be executed off-chain. As a result, the security level
is closer to no enforcement than native, so a low value of global enforcement can be
designated.

Auditability,Availability,Integrity,Non-repudiation(activity) share in common that the el-
ement is partially protected provided that, in addition to external mechanisms, the re-
quired data for executing the element is also made available. Partial security is guar-
anteed only if all these events occur; otherwise, the security requirement will have "no-
enforcement". In contrast to the previous scenarios, the security level, in this case, is
higher, indicating the need for a moderate level of global enforcement.

For the remaining properties, i.e., Authenticityand Non-repudiation(MF), the blockchain
secures only specific portions of the element, while the rest is left to external mechanisms.
A high global enforcement value could be assigned.

Ultimately, the user has the final decision on the value to set for the global enforcement,
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based on their specific needs. When selecting a value for the global enforcement assigned
to each node combination of security annotations, it is crucial for the user to consider
several factors:

• The user should have a clear understanding of the desired level of security and the
potential risks associated with the specific smart contract.

• The user should also take into account the limitations of certain ranges of global
enforcement that can be assigned to certain security annotations.

• The user should consider the dependencies and relationships between nodes in
the smart contract and how the assigned global enforcement values will propagate
through the contract.

By carefully evaluating these factors, the user can make an informed decision when se-
lecting the appropriate global enforcement value for each node in the smart contract.

4.2. Common initial part of the proposed algorithms

In this thesis, two algorithms are proposed: a brute force algorithm and an optimized
algorithm. The brute force algorithm involves an implementation of the algorithm without
any optimizations. On the other hand, the optimized algorithm involves the application of
techniques to make the algorithm more efficient and reduce its computational complexity.
The final aim is to compare the results obtained from the two algorithms of the algorithm,
in order to verify whether the optimized algorithm that performs better in terms of speed
and efficiency produces the same result as the brute force algorithm, which exhaustively
explores all possible combinations of security properties in order to identify the best
configuration for each node in the smart contract. To evaluate the performance of the
two algorithms of the algorithm, I have conducted various experiments and analyzed the
results obtained from them.

Before delving into the nuances of the two algorithms of the algorithm, let’s first examine
the fundamental aspect that they both share: the assignment of security properties to
each node. This crucial step forms the foundation upon which the rest of the algorithm
is built, as it determines the specific attributes and characteristics that each node will
possess. In this initial phase, a set of combinations S(node) is created for each element
within the smart contract, representing individual nodes. Each S(node) set consists of all
possible combinations of properties that are impacted by the associated security require-
ments linked to the node, with the local enforcement obtained from Table 3.4, and the
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respective global enforcement value. In particular, S(node) consists of the combinations
Cj = [{Pk}, le, gle] where:

• Pk = {property, value} denotes a combination of a property with its value, which
can hold for that specific element.

• le = localEnforcement is a categorical variable that can assume one of three possi-
ble values: native, possible or no_enf . This variable determines the level of strict-
ness with which the blockchain enforces rule R, with native representing the highest
level of strictness and no_enf representing the lowest level of strictness.

• gle = globalEnforcement is a numerical value that quantifies the degree to which
a rule impacts the nodes within a branch in a global sense. Specifically, this score
tracks the degree of enforcement of the rule from the leaf to the root of the relevant
branch, across all branches of the tree. A higher value indicates greater efficacy of
the rule in ensuring node security.

Thus, within the set, each combination consists of distinct security combinations repre-
senting various aspects of the node’s security requirements. This approach enables the
tracking of both parent and child constraints, establishing a comprehensive framework for
setting up the entire process. Taking the example of the Confirm Ride task node from
the Running Example in Section 3.5 subjected to the Audiability security requirement,
it acquires a set of property combinations. Each combination comprises three security
requirements: onChainExecution for the local node, onChainModel for its parent, and
blockchainType for its ancestors. Basically, the blockchainType that can be set to public
or private belongs to the definition of the process, that is considered the ancestor of the
current leaf node, while onChainModel is assigned to the Pool in which the leaf node be-
longs, thus considering its directed parents. Lastly, onChainExecution is for the current
node, in this specific case it is referred to as a Task. This combination format enables
the systematic tracking of parent and child constraints, thereby facilitating effective en-
forcement and maintaining the integrity of the security measures within the system. In
other words, this format guarantee to trace all the security requirement assigned to all
the nodes on the same branch of the current one, with the outcome of reducing the risk
of conflicts when propagating the security requirements through the process structure.
Thus, Figure 4.5 illustrates the set SConfirmRide(Authenticity):
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Pk LE GLE

[{blockchainType, private}, native 1

{onChainModel, true},
{onChainExecution, true}]
[{blockchainType, private}, no_enf 0

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, private}, native 1

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, private}, no_enf 0

{onChainModel, false},
{onChainExecution, false}]
[{blockchainType, public}, native 1

{onChainModel, true},
{onChainExecution, true}]
[{blockchainType, public}, native 1

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, public}, no_enf 0

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, public}, no_enf 0

{onChainModel, false},
{onChainExecution, false}]

Table 4.1: SConfirmRide(Audiability)

It is crucial to recognize that a single node within the system can be subjected to multiple
security requirements, each of which generates its own set of constraints. Consequently,
when aiming to establish a coherent and comprehensive set of combinations for a given
node, the merging of all individual security requirement sets becomes necessary. However,
this merging process can introduce conflicts among the requirements, as different security
rules may impose contradictory or incompatible conditions. Conflicts arise when two
combinations, namely C1 = ⟨[Pk]1, le1, gle1⟩ from the rule set SR1(node) ( defined in
Section 4.2 ) associated to a specific security requirement and C2 = ⟨[Pk]2, le2, gle2⟩ from
the rule set SR2(node) associated to a different security requirement for the same node,
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exhibit the same property pair denoted as [Pk]1 and [Pk]2, while their local enforcement
values (le) or global enforcement values (gle) differ (le1 ̸= le2 or gle1 ̸= gle2). This conflict
arises due to divergent enforcement values for the same property pair within different sets
of rules representing distinct security requirements associated with the same node.

The process involves assessing the local enforcement values (le) for each combination
and selecting the combination with the lowest le value, which signifies the least strict
constraints so as to emphasize the set of rules that impose fewer restrictions on the specific
security requirement. This approach is motivated by the goal of achieving a compromise
or resolution when conflicts arise between different security requirements for the same
node. It recognizes that these conflicts can impact the overall functionality of the system,
while still ensuring that the necessary security requirements are met. Essentially, it aims
to address conflicting security requirements by giving precedence to the combination that
imposes fewer limitations. This allows for a more adaptable and balanced approach to
fulfilling multiple requirements.

The global enforcement value (gle) is updated by calculating the average of the cor-
responding values from the two sets. This approach aims to reconcile the conflicting
enforcement values and find a balanced solution. By taking the average of the gle values,
both sets of rules associated with distinct security needs are considered, with the goal of
finding a medium ground. This method guarantees that neither set of rules dominates
the other and yields a global enforcement value that represents a compromise between
the competing ideals. Thus it enables a collaborative approach to dispute resolution and
the development of a balanced enforcement plan for the whole system. When multiple
security requirements conflict with each other, it can be challenging to determine the most
suitable course of action. By selecting the combination with the lowest le value, the ap-
proach emphasizes the set of rules that imposes fewer restrictions on the specific security
requirement. This means that the chosen combination places fewer limitations on the
node’s operations or functionalities, allowing it to maintain a higher level of adaptability.

gle2 =
gle1 + gle2

2
(4.1)

Thus, in the scenario where le1 < le2, the combination C1 is included in the resulting set,
along with the updated global enforcement value. Conversely, if le1 ≥ le2, the combina-
tion C2 is added to the resulting set, also with the updated gle value. For the purpose
of illustrating the concept, let’s consider the Integrity security requirement for the same
Confirm Ride task, denoted as SIntegrity(ConfirmRide). This task is indirectly linked to
the security requirements associated with DataObject Ride completation data. The task
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and the object have a connection, which ultimately influences the final composition of
the task node-set. In this case, for the sake of simplicity, the global enforcement value
is assumed to be equal to 0.5 for the "possible" scenarios, but in a real case it would be
parametrized as defined in Section 4.1.1.

Pk LE GLE

[{blockchainType, private}, native 1

{onChainModel, true},
{onChainExecution, true}]
[{blockchainType, private}, possible 0.5

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, private}, no_enf 0

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, private}, no_enf 0

{onChainModel, false},
{onChainExecution, false}]
[{blockchainType, public}, native 1

{onChainModel, true},
{onChainExecution, true}]
[{blockchainType, public}, possible 0.5

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, public}, no_enf 0

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, public}, no_enf 0

{onChainModel, false},
{onChainExecution, false}]

Table 4.2: SConfirmRide(Integrity)

As it is possible to notice between the SConfirmRide(Audiability) in Table 4.1 and the
SConfirmRide(Integrity) in Table 4.2 there are combinations that run into conflicts.
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Pk LE GLE

[{blockchainType, private}, no_enf 0

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, private}, native 1

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, public}, native 1

{onChainModel, true},
{onChainExecution, false}]

Table 4.3: SConfirmRide(Audiablity)

Pk LE GLE

[{blockchainType, private}, possible 0.5

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, private}, no_enf 0

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, private}, possible 0.5

{onChainModel, false},
{onChainExecution, true}]

Table 4.4: SConfirmRide(Integrity)

These combinations have the same {property, value} but different le and gle values. To
ensure, then, the creation of a unique final set for ConfirmRide, only the combinations
with the lowest local enforcement and global enforcement are selected, following the guide-
lines outlined in Section 4.2. The final set in Tab 4.5, indeed, SConfirmRide(node) can be
obtained accordingly.
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Pk LE GLE

[{blockchainType, private}, native 1

{onChainModel, true},
{onChainExecution, true}]
[{blockchainType, private}, no_enf 0.25

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, private}, no_enf 0.5

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, private}, no_enf 0

{onChainModel, false},
{onChainExecution, false}]
[{blockchainType, public}, native 1

{onChainModel, true},
{onChainExecution, true}]
[{blockchainType, public}, possible 0.75

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, public}, no_enf 0

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, public}, no_enf 0

{onChainModel, false},
{onChainExecution, false}]

Table 4.5: SConfirmRide(node)

Eventually, the local enforcement mechanisms ensure that the individual security require-
ments are met, while the global enforcement mechanisms ensure that the overall security
of the node is maintained. This approach provides a comprehensive and effective way to
manage security requirements for nodes.

4.2.1. Structure of the algorithm

The algorithm consist up of two phases: the bottom − up and top − down phase. In
order to represent the process it is used a tree structure. The root element serves as the
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representation for process definitions, allowing for the configuration of the blockchainType
and onChainModel properties. Pools, which act as intermediate elements, are subjected
to the onChainModel property. Similarly, subprocess activities that are direct children
of Pools are considered intermediate elements, so the property onChainModel can be
set for them. Whereas, as leaf elements, tasks can have onChainExecution set, while
onChainData property can be set for data objects and messages.

More in detail, the objective of the bottom-up phase is to identify every conceivable
combination at each node. One of these is picked as the ideal combination and transmitted
downward in the second phase to get rid of the incompatible ones determined in the first
phase at each node. The optimal combination at each node will ultimately be chosen.
Naturally, the two algorithms previously described differences in the criteria for identifying
all potential combinations and selecting the best one. The brute-force algorithm will be
covered first in the parts that follow, and then a more in-depth discussion of the optimized
method will follow.

To gain a deeper understanding of how these two algorithms work, in Section 3.5 there is
an example smart contract that serves as a testbed for both methods.
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The brute force approach is a technique used to solve optimization problems by exhaus-
tively evaluating all possible combinations of elements. It involves two stages, namely
bottom-up and top-down, ensuring that every potential combination is considered. This
algorithm systematically explores each solution without employing optimization tech-
niques to narrow down the search space. It diligently evaluates each combination to iden-
tify the optimal solution. Nevertheless, the brute force approach guarantees the discovery
of the best solution by exhaustively exploring and evaluating all available combinations.
Despite its effectiveness, it is important to note that this approach can be computationally
expensive due to the extensive evaluation of a vast number of combinations, particularly
for complex problem scenarios.

5.1. Propagate up

The algorithm propagateUp employs a brute-force strategy to propagate all possible com-
binations from leaf nodes to root nodes in a hierarchical process structure. The nodes
in this structure are Generalized Markup Tree (GMT) nodes. The algorithm’s main
goal is to obtain the ultimate set comprising all admissible combinations by iteratively
propagating and constraining combinations only when absolutely required. Through this
approach, the algorithm exhaustively explores and evaluates potential combinations, en-
suring that no viable option is overlooked. In this context, consider a set of combos,
denoted Snode(ConfirmRide), generated from previous calculations in Table 4.2. These
combinations represent different property values assigned for different nodes of the process
model across the property value matrices.
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Pk le gle

[{blockchainType, private}, native 1

{onChainModel, true},
{onChainExecution, true}]
[{blockchainType, private}, no_enf 0.25

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, private}, no_enf 0.5

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, private}, no_enf 0

{onChainModel, false},
{onChainExecution, false}]
[{blockchainType, public}, native 1

{onChainModel, true},
{onChainExecution, true}]
[{blockchainType, public}, possible 0.75

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, public}, no_enf 0

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, public}, no_enf 0

{onChainModel, false},
{onChainExecution, false}]

Table 5.1: Snode(ConfirmRide)

Upon closer examination, in Table 5.1 it is observed that each combination is comprised
of the following properties:

• blockchainType: This property belongs to the ancestor node, specifically the root
node.

• onChainModel: This property belongs to the parent node, either a Process or a
SubProcess (Pool).

• onChainExecution: This represents the local property of a leaf node, indicating
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the execution of tasks on the blockchain.

Figure 5.1: Graphical representation of the Propagate-up phases

It is important to note that the set of the parent node will consist only of combinations
composed of blockchainType and onChainModel, as these properties are automatically
inherited from the parent node, as well as the root node, which will only include the
blockchainType. To ensure the effective propagation of constraints from child to parent,
it becomes necessary to remove the local properties specific to the current node. This pre-
vents conflicts and allows the parent node to be appropriately constrained. A temporary
set denoted Stemp(ConfirmRide), is created to achieve this. It comprises all combinations
of the current node, excluding its local properties.
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Pk le gle

[{blockchainType, private}, native 1

{onChainModel, true},
[{blockchainType, private}, no_enf 0.25

{onChainModel, true},
[{blockchainType, private}, no_enf 0.5

{onChainModel, false},
[{blockchainType, private}, no_enf 0

{onChainModel, false},
[{blockchainType, public}, native 1

{onChainModel, true},
[{blockchainType, public}, possible 0.75

{onChainModel, true},
[{blockchainType, public}, no_enf 0

{onChainModel, false},
[{blockchainType, public}, no_enf 0

{onChainModel, false},

Table 5.2: Stemp(ConfirmRide)

However, during the removal of local properties, a challenge arises. The operation intro-
duces duplicate combinations within the same set, resulting in conflicts in Table 5.2. (for
example the 1st and 4thcombinations). In fact, Pk = property, value are the same but their
local enforcement value differs. (see Section4.2) , namely property = property′ ∧ value ̸=
value′. Please note that in this case combinations of assignments are removed, not single
properties. These rules state that conflicts occur when two combinations have the same
property but differ in their corresponding values.

To address this issue and maintain the integrity of the constraints, it is necessary to
generate subsets that encompass all possible combinations from Stemp(ConfirmRide)

while ensuring that no repetition occurs within the same subset. This process leads
to the creation of the set Sup, which is essentially a list of sets. Each subset within
Sup(ConfirmRide) is derived by considering all possible cases and combinations.

By splitting the set into subsets without repetitions, the algorithm guarantees that each
combination appears only once within Sup(ConfirmRide). This step effectively eliminates
conflicts arising from duplicate combinations, ensuring the accuracy and validity of the
propagated constraints. Due to brevity only four of all possible sets’ combinations are
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reported in Tables( 5.35.55.45.4):

Pk le gle

[{blockchainType, private}, native 1

{onChainModel, true}]
[{blockchainType, private}, no_enf 0.5

{onChainModel, false}]
[{blockchainType, public}, native 1

{onChainModel, true}]
[{blockchainType, public}, no_enf 0

{onChainModel, false}]

Table 5.3: Subsetup(ConfirmRide)

Pk le gle

[{blockchainType, private}, no_enf 0.25

{onChainModel, true}]
[{blockchainType, private}, no_enf 0.5

{onChainModel, false}]
[{blockchainType, public}, native 1

{onChainModel, true}]
[{blockchainType, public}, no_enf 0

{onChainModel, false}]

Table 5.4: Subsetup(ConfirmRide)

Pk le gle

[{blockchainType, private}, native 1

{onChainModel, true}]
[{blockchainType, private}, no_enf 0

{onChainModel, false}]
[{blockchainType, public}, native 1

{onChainModel, true}]
[{blockchainType, public}, no_enf 0

{onChainModel, false}]

Table 5.5: Subsetup(ConfirmRide)

Pk le gle

[{blockchainType, private}, native 1

{onChainModel, true}]
[{blockchainType, private}, no_enf 0.25

{onChainModel, false}]
[{blockchainType, public}, possible 0.75

{onChainModel, true}]
[{blockchainType, public}, no_enf 0

{onChainModel, false}]

Table 5.6: Subsetup(ConfirmRide)

Subsequently, to successfully propagate the constraints from child to parent nodes, the
subsets of Sup(ConfirmRide) need to be merged with the constraint set of the parent
node. This merging process allows the constraints from the child to be incorporated into
the parent while considering all possible combinations.

For example the Snode(Driver) in Table 5.7) subject to BOD security requirement is the
following:
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Pk le gle

[{blockchainType, private}, native 1

{onChainModel, true},
[{blockchainType, private}, possible 0

{onChainModel, false},
[{blockchainType, public}, no_enf 0

{onChainModel, true},
[{blockchainType, public}, no_enf 0

{onChainModel, false},

Table 5.7: Snode(Driver)

To accomplish this, the algorithm invokes the constrainSet function. This function com-
pares each combination of the subsets with the parent constraint set and adds the com-
bination to the final set, denoted as Sfinal(Driver) shown in Table 5.8 only if it does
not create conflicts with the parent’s existing constraints. The constrainSet function
essentially updates the parent constraint set with all the possible combinations obtained
from the subsets of Sup(Children), In this specific case, for illustrative purposes, only the
Sup(ConfirmRide) steps are taken into consideration.

Pk le gle

[{blockchainType, private}, no_enf 0.75

{onChainModel, true},
[{blockchainType, private}, no_enf 0.25

{onChainModel, false},
[{blockchainType, public}, possible 0.62

{onChainModel, true},
[{blockchainType, public}, native 1

{onChainModel, false},
[{blockchainType, private}, no_enf 0.30

{onChainModel, false},
{...},

Table 5.8: Sfinal(Driver)

The process continues through the entire tree process structure until it reaches the
Sroot(node), along with its corresponding relative Sfinal(node).
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5.1.1. Pseudocode Propagate-up Bruteforce

The process involves starting with an input node and initializing an empty set called Stemp

(line 3). The algorithm then proceeds to iterate through each combination, denoted as
Cj, in the set associated with the current node. During this iteration, the local properties
specific to that node are removed (lines 5-10). The modified combinations, which now
consist of only the parent and ancestor properties, are added to the Stemp set (line 9).
This allows us to obtain a constrained set that can be compared with the parent node’s
set, which consists solely of (parent, ancestor) combinations.

If the current node is not a leaf node, indicating the existence of child nodes, the algorithm
enters a loop to process each child node (lines 11-32). Within this loop, it initializes three
empty sets: Sparent to store combinations related to the parent node (line 13), Sup to hold
combinations propagated up from the child nodes (line 14), and Sfinal to store the final
set of admissible combinations (line 15).

For each child node, the algorithm recursively calls the propagateUp function to obtain
combinations, denoted as Sup, which are propagated up from the child nodes (lines 16-17).
Within the loop, for each property, Pup, in the properties of Sup, the algorithm checks if it
is not already present in the properties of the current node (lines 18-22). If the property
is not present, a new combination, Cparent, is created to incorporate this property, and it
is added to the set Sparent (line 20). This step ensures that the combinations propagated
from child nodes are modified to reflect the properties of the current node, eliminating
local combinations that are specific to the child nodes.

If the Sparent set is not empty, the algorithm adds the split combinations from the Sparent

set to the Sup set (line 26). The split combinations ensure that there are no repeated
combinations within each subset, enhancing the integrity of the resulting combinations.

Furthermore, the algorithm checks if the Sup set is not empty. If it is not empty, the
constrainSet function is invoked, taking Sup and the temporary set Stemp as inputs,
and returns the constrained set of combinations (line 28-30). The constrainSet function
applies further constraints to the combinations, eliminating any conflicting combinations
that may arise from the merging process, thereby ensuring a well-defined output.

This iterative process continues as the algorithm progresses from child nodes to parent
nodes until it reaches the root node. At each level, the algorithm updates the Sfinal set with
the constrained combinations, progressively narrowing down the admissible combinations
based on the constraints applied. This comprehensive approach considers all possible
combinations while incorporating constraint functions to remove conflicting combinations,
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ensuring the reliability and integrity of the resulting code output.
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Algorithm 1: propagateUp
Input: SecBPMN2BC node: element
Output: Sfinal : all possible admissible property value combinations for parent

element
1 Stemp = newSet();
2 for Cj in Snode do
3 Ctemp = newCombination();
4 for Pk in Cj.properties do
5 if Pk.name not in node.properties then
6 Ctemp.properties.add(Pk);
7 end

8 end
9 Stemp.add(Ctemp);

10 end
11 if not node.isLeaf then
12 for child in node.children do
13 Sparent = newSet();;
14 Sup = newSet();;
15 Sfinal = newSet();;
16 for Cchild in propagateUp(child) do
17 Cparent = newCombination();
18 for Pchild in Cchild.properties do
19 if Pchild not in node.properties then
20 Cparent.properties.add(Pchild);
21 end

22 end
23 Sparent.add(Cparent);

24 end
25 if Sparent is not Empty then
26 Sup.addAll(splitCombination(Sparent));
27 end
28 if Sup is not Empty() then
29 Sfinal = constrainSet(Sup, Stemp);
30 end

31 end

32 end
33 return Sfinal;
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The splitCombination Function 2 serves the purpose of splitting a given set into all
possible combinations, ensuring that no duplicate combinations exist within the resulting
subsets. This function is particularly useful for propagating subsets to parent nodes
efficiently, avoiding the exclusion of all possible combinations and providing a brute-force
approach to the problem.

To achieve this, it begins by initializing an empty set called Sup (Line 34), which will
store the generated subsets. Additionally, a temporary set named Subset is created to
hold each individual subset during the iteration process (Line 35). Moving forward a loop
that iterates over each combination, denoted as Ctemp, in the input set Sparent (Line 36).
Within this loop, another nested loop is established to iterate over the subsets already
present in Sup. This enables the algorithm to compare Ctemp with the existing subsets
and determine whether it is already included within any of them. If the combination is
not found in the current subset, it is added to the Subset set (Line 37-42). After iterating
through all existing subsets, the algorithm checks whether Subset is empty. If it is not
empty, it implies that a new subset has been created by including Ctemp, and therefore,
Subset is added to Sup (Line 43-45).

Once all iterations are completed, the resulting Sup set, containing all possible subsets
without duplicate combinations, is returned as the output of the function (Line 47).
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Algorithm 2: splitCombination
Input: Sparent = all combinations that exclude the local ones for the child element
Output: Sup = a set that contains all possible subsets of Sparent, with the condition

that no combination occurs more than once within a subset.

1 Sup = newSet<Set>();
2 S_sub = newSet();
3 for Ctemp in Sparent do
4 S_sub = newSet();
5 for subset in Sup do
6 if Ctemp not in subset then
7 Subset.add(Ctemp);
8 end

9 end
10 if Subset is not Empty() then
11 Sup.add(Subset);
12 end

13 end
14 return Sup;

The constrainSet function 3 is designed to constrain a set of combinations by eliminating
incompatible combinations and returning an updated set that satisfies specific criteria. It
achieves this by comparing properties and values between combinations and updating the
global enforcement value when applicable. More in detail, the function takes two input
parameters: the list of subsets (Sup) and the combination of the parent node (Sconstr). It
aims to identify and retain only those combinations from the subset of Sup that meet the
constraints imposed by Sconstr.

The function initializes an empty set called Sret, which will store the constrained property
value combinations (Line 2). It then proceeds with a series of nested loops to iterate
through each subset in Sup and each combination in the subset (Lines 3-19). For each
combination Cj in a subset, the function compares it with combinations in Sconstr (Lines
4-19). It employs nested loops to iterate through each combination Cw in Sconstr and
examines the properties of Cw and Cj (Lines 5-19). Within the innermost loops, the
function checks if a property is Cw and has a corresponding property in Cj with the same
name and value (Lines 9-12). If a matching property is found, the function sets a boolean
variable satisfied to true and updates the global enforcement value (gle) of the property in
Cw by averaging it with the gle of the corresponding property in Cj (Line 12). Conversely,
if no matching property is found, the function sets satisfied to false, indicating that the
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current combination Cw does not satisfy the constraints imposed by Cj (Line 14).

After examining all properties in Cw, the function checks the value of satisfied. If it
remains false, the function determines that at least one property in Cw fails to meet the
constraints of Cj. In this case, the function sets the boolean variable found to false and
breaks out of the innermost loop (Lines 15-16). If found is still true after checking all
combinations in Sconstr, it means that Cj satisfies the constraints imposed by at least one
combination in Sconstr. The function adds Cj to the Sret set and breaks out of the loop
to proceed to the next subset (Lines 16-18).

The process continues until all combinations in all subsets have been examined. Finally,
the function returns the resulting Sret set, which contains the constrained property value
combinations that satisfy the specified constraints (Line 19).

Algorithm 3: constrainSet
input : List Sup: list of subset , Sconstr: combination of parent node
output: Sret: constrained property value combinations

1 Sret=newSet();
2 for S_sub in Sup do
3 for Cj in S_sub do
4 for Cw in Sconstr do
5 found=true;
6 for Pl in Cw.properties do
7 satisfied=false;
8 for Pk in Cj.properties do
9 if Pl.name = Pk.name and Pl.value = Pk.value then

10 satisfied=true;
11 Pl.gle = (Pl.gle + Pk.gle)/2 ;
12 break;

13 if satisfied=false then
14 found=false;
15 break;

16 if found=true then
17 Sret.add(Cj);
18 break;

19 return Sret;
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5.2. Propagate down

In this phase, the objective is to derive a combination from each set that is poten-
tially the most suitable in terms of security. Once the combination, referred to as the
bestcombination, has been selected, it will be propagated from the root to the leaf, and
each set will be constrained based on this combination. Specifically, each Snode will be
updated to eliminate combinations that conflict with the best combination passed by the
parent node.

As the algorithm used in this phase is a brute force version, it iteratively considers one
combination at a time for each set and propagates it down the tree. After evaluating
all possible combinations, the best combination is selected based on a criterion that en-
forces security annotations that are inherently provided by the blockchain itself. Thus,
the algorithm prioritizes combinations with higher local enforcement, and among those
remaining, it selects the one with the highest global enforcement.

Upon the conclusion of the propagate-up phase, the resulting root set is inevitably in-
fluenced by the constraints imposed by its children. Consequently, the root set emerges
as a list comprising combinations of only blockchainType properties that have been in-
herited from its children This can be exemplified through an illustrative output, such as:
Sfinal(root):

Pk le gle

[{blockchainType, private}, no_enf 0.45

[{blockchainType, private}, no_enf 0.25

[{blockchainType, public}, possible 0.75

[{blockchainType, private}, no_enf 0.25

[{blockchainType, public}, native 1

[{blockchainType, private}, possible 0.55

{...} {...} {...}

Table 5.9: Sfinal(root)
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Figure 5.2: Graphical representation of the Propagate-down phases

In Figure 5.2 a simplified root tree is depicted, presenting a graphical representation of
the propagate down phases. For the sake of simplicity, only three nodes are considered,
and the graph illustrates how combinations are propagated downwards.

To optimize security, the system is performing brute-force on sets and propagating each
combination to determine the best fit. The selectBestCombination algorithm is utilized
for this purpose:

• When a node is not a leaf, the algorithm recursively selects each combination of the
previously constrained set Sfinal(node) and designates it as the bestcombination.

4 The system then saves this combination and propagates it down to the children
nodes by updating the Sbest(node) set that at each iteration will include the current
selected bestcombination. This process is repeated until all combinations of the
parent set Sfinal(node) have been propagated down .

Next, The algorithm utilizes the Constraint function to constrain the best com-
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bination of the parent node to its children nodes by imposing the constraint of
Sbest(node) to S(child). This function eliminates any combinations from the set
S(child) that are not compatible with the best combination.

• When a node is a leaf, the set S(child) is unconstrained by any child. Therefore,
a distinct method is used to determine the optimal combination to be selected in
this case. To be specific, the set SBest(child) is derived from S(child) which has
already been constrained by the best combination passed down by the parent node,
by filtering only those combinations Cj = [Pk, value] where value = native. If
SBest(child) is empty, then Sfinal(child) is obtained by filtering only those combi-
nations Cj = [Pk, ] where value = possible from S(child).

• Furthermore, if SBest(child) is still empty, then SBest(child) is formed by adding only
those combinations Cj = [Pk, ] where value = no_enf. from. In this manner, only
the combinations that provide the maximum enforcement are selected. In case the
set is still empty after the aforementioned steps, it indicates a conflict in the security
requirements, and the process designer must resolve it manually. Eventually, the
Cj with the highest value of gle is selected. In the case of a conflict, the designer
decides the preferred selection.

To clarify further, let’s focus on the first Combination from the set of options called
Sroot(node). This combination is selected by the algorithm and placed in its own sepa-
rate set, taking the first combination, denoted as Sbest(node)1, to limit the combination
available to the child nodes during the subsequent steps of the process.

Pk le gle

[{blockchainType, private}, no_enf 0.45

Table 5.10: Sbest(root)1

In order to propagate it down to the child node, that in this case is Snode(Driver), the
algorithm invokes the Constrain Function 3 in order to properly constrain the combina-
tion to the children nodes. As a consequence, the resultant set excludes all combinations
with identical {Pk} values that have different le values. The set under consideration
Snode(Driver) 5.8 becomes:
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Pk le gle

[{blockchainType, private}, no_enf 0.75

{onChainModel, true},
[{blockchainType, private}, no_enf 0.25

{onChainModel, false},
[{blockchainType, public}, possible 0.62

{onChainModel, true},
[{blockchainType, public}, native 1

{onChainModel, false},
{...},

Table 5.11: Snode(Driver)1

It should be noted that combinations 3 and 4 remain intact as the blockchainType is
different from that of the BestCombinations. While they both are public, the other is
private, thereby avoiding any conflict. However, the 5th of the previous set 5.11 combi-
nation had both private blockchains, but the blockchainType of one was native, which
was clearly distinct from no_enf .

Pk le gle

[{blockchainType, private}, no_enf 0.45

Table 5.12: Sbest(root)1

Pk le gle

[{blockchainType, private}, native 1

Table 5.13: first combination of Snode(Driver)5.11

The algorithm systematically evaluates all possible combinations within the set Snode(Driver),
and in an iterative way, selects the optimal combination until the leaf node is reached.

At this point, the primary objective is to select the combination that can deliver the
highest enforcement level, as previously stated. The set Stemp(ConfirmRide) is ini-
tially constrained based on the best combination of the current iteration obtained from
Snode(Driver)5.11, and subsequently further constrained using the function getBestCombination

to select only those combinations labeled with the highest local enforcement values le.
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Suppose, for instance, that the best combination obtained from Snode(Driver) is saved in
the set denoted as SBest(Driver)1, and its contents are as follows:

Pk le gle

[{blockchainType, private}, no_enf 0.75

Table 5.14: SBest(Driver)1

Pk le gle

[{blockchainType, private}, no_enf 0.25

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, private}, no_enf 0.5

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, private}, no_enf 0

{onChainModel, false},
{onChainExecution, false}]
[{blockchainType, public}, native 1

{onChainModel, true},
{onChainExecution, true}]
[{blockchainType, public}, possible 0.75

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, public}, no_enf 0

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, public}, no_enf 0

{onChainModel, false},
{onChainExecution, false}]

Table 5.15: Sbest(ConfirmRide)1

Following the proposed strategy, the set will undergo modifications through a selection
process aimed at identifying the combination with the highest local enforcement le and
global enforcement gle values. Specifically, the selection process will involve identifying
the combination with the highest le value, followed by the one with the highest gle value.
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It is worth noting that, in this case, the selection process will yield a single combination
as the highest le and gle values coincide, therefore the selected combination is uniquely
determined. Consequently, the combination with the highest le and gle values will be the
sole element of the modified set:

Pk le gle

[{blockchainType, public}, native 1

{onChainModel, true},
{onChainExecution, true}]

Table 5.16: Sbest(ConfirmRide)

5.2.1. Pseudocode PropagateDown Bruteforce

The propagateDown algorithm aims to propagate a combination from the current set
down to the leaf nodes in the SecBPMN2BC process tree. It operates in a brute-force
manner, considering each combination of the root set as the best combination and prop-
agating it down. It starts by taking a SecBPMN2BC node as input. If the node has a
parent (line 1), the algorithm constrains the current set by combining the best combina-
tion from the parent set with the current set (line 3). This ensures that the combinations
propagate down consistently. Next, the algorithm iterates through each combination, de-
noted as Cj, in the set associated with the current node (Snode). It selects Cj as the best
combination (Cbest) (line 4). To keep track of the best combination, a new set called Sbest

is created to store it (line 5).

The algorithm then recursively calls itself for each child of the current node (line 7).
This recursive step ensures that the propagation continues down the tree, exploring all
possible combinations. When a leaf node is reached (line 8), it means that the branch in
the tree has come to an end. At this point, the algorithm constrains the current leaf set by
combining it with the parent’s set (line 9). In particular, it constrains the leaf node with
the current best combination of the parent set. This step ensures that the combination
at the leaf node is consistent with the parent combination.

Finally, the algorithm calls the getBestCombination function (line 10) to select the best
combination for the leaf node. This function analyzes the combinations in Snode and
returns the combination providing the maximum enforcement. The algorithm creates a
new set, Snode, containing only the best combination (line 11) and updates the current
leaf set. This process continues until all nodes in the SecBPMN2BC process tree have
been traversed
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Algorithm 4: propagateDown
input : SecBPMN2BC node: node

1 if node.parent then
2 Snode=constrain(Sbest,S[node.parent]);
3 for Cj in Snode do
4 Cbest = Cj;
5 Sbest = newSet(Cbest);

6 for child in node.children do
7 propagateDown(child);

8 if node is leaf then
9 Snode=constrain(Snode,S[node.parent]);

10 Cbest = getBestCombination(node);
11 Snode = newSet(Cbest);

The getBestCombination in Function 4 aims to identify the combination that provides
the maximum enforcement within a SecBPMN2BC node. The algorithm begins by calling
the getMaxgle function with the label native to obtain a set of combinations, Sfinal, that
satisfy the native enforcement criterion (line 1). If the size of the set is zero, indicating
no combinations meet the native local enforcement, the algorithm proceeds to invoke the
getMaxgle function again with the label possible to obtain a new Sfinal (lines 2-4). If
Sfinal is still empty, the algorithm invokes the getMaxgle function once more with the
label no_enf. to obtain the final Sfinal set (lines 6-8). If Sfinal remains empty after these
checks, indicating a conflict, an error is raised (lines 9).

The getMaxgle Function 6, on the other hand, takes a SecBPMN2BC node and a label
representing the desired local enforcement as inputs. It initializes a combination called
maxgle (line 1). The function iterates over each combination, Cj, within the node’s set
of combinations, Sfinal (line 2). For each combination, it checks if the local enforcement,
Cj.le, matches the provided label (line 74). If a match is found, it compares the global
enforcement value of the current combination, Cj.gle, with the global enforcement value
of the current maxgle combination. If maxgle is empty or Cj.gle is greater than max-
gle.gle, maxgle is updated to the current combination (lines 3-5). After processing all
combinations, the function returns the combination with the highest global enforcement
value(line 6).

The collaborative utilization of the getMaxgle and getBestCombination functions facili-
tates the selection of combinations that satisfy the specified local enforcement constraints



52 5| Bruteforce strategy

while prioritizing those with higher global enforcement values. This approach ensures the
identification of combinations that provide strong security measures, emphasizing the im-
portance of selecting combinations that enhance the security of the SecBPMN2BC node
when interacting with the blockchain.

Algorithm 5: getBestCombination
input : SecBPMN2BC node: node
output: Combination Cbest: combination providing maximum enforcement

1 Sfinal=getMaxgle(node,’native’);
2 if Sfinal.size=0 then
3 Sfinal=getMaxgle(node,’possible’);

4 if Sfinal.size=0 then
5 Sfinal=getMaxgle(node,’no_enf.’);

6 if Sfinal.size=0 then
7 err.raise(e_i,’Conflict detected’);

8 else
9 return Sfinal.get(0)

Algorithm 6: getMaxgle
input : SecBPMN2BC node: node, String label: strength
output: Set Sfinal: property value combinations with specified strength

1 maxgle = newCombination();
2 for Cj in Snode do
3 if Cj.le=label then
4 if maxgle is Empty || Cj.gle > maxgle.gle then
5 maxgle = Cj

6 return maxgle;
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The optimized approach solves optimization problems and is a more efficient algorithm
that aims to find the best combination of elements. Instead of exhaustively considering
all potential combinations, this approach carefully consider combinations that meet the
desired criteria while disregarding those that are not optimal. Selectively focusing on
the most promising combinations efficiently eliminates unnecessary computations and
streamlines the search for the best solution. Eventually, this approach leads to faster
convergence, reduced search space, and improved overall efficiency. As mentioned earlier
in Section 4.2, this algorithm consists of two distinct phases: a bottom-up phase and a
top-down phase. The following paragraph provides a detailed description of each phase.

6.1. Propagate up

The propagateUp algorithm is designed to facilitate the propagation of property con-
straints from child nodes to their parent nodes within a tree structure. Given a node rep-
resenting a Generalized Markup Tree (GMT) node, the algorithm aims to determine the
set Sfinal containing all the feasible combinations of property values that can be applied to
the parent node. Unlike a brute-force approach that considers all possible combinations,
this algorithm selectively considers combinations that are compatible within the sets.

By taking into consideration the same set, from Section 3.5, shown in Figure 6.1 :
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Pk le gle

[{blockchainType, private}, native 1

{onChainModel, true},
{onChainExecution, true}]
[{blockchainType, private}, no_enf 0.25

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, private}, no_enf 0.5

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, private}, no_enf 0

{onChainModel, false},
{onChainExecution, false}]
[{blockchainType, public}, native 1

{onChainModel, true},
{onChainExecution, true}]
[{blockchainType, public}, possible 0.75

{onChainModel, true},
{onChainExecution, false}]
[{blockchainType, public}, no_enf 0

{onChainModel, false},
{onChainExecution, true}]
[{blockchainType, public}, no_enf 0

{onChainModel, false},
{onChainExecution, false}]

Table 6.1: Snode(ConfrimRide)

As described in the brute-force algorithm, in order to propagate child constraints to parent
nodes, the set Stemp Figure 6.2 needs to be transformed into a set that eliminates the local
property. Following the previous procedure, the new set obtained is:
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Pk le gle

[{blockchainType, private}, native 1

{onChainModel, true},
[{blockchainType, private}, no_enf 0.25

{onChainModel, true},
[{blockchainType, private}, no_enf 0.5

{onChainModel, false},
[{blockchainType, private}, no_enf 0

{onChainModel, false},
[{blockchainType, public}, native 1

{onChainModel, true},
[{blockchainType, public}, possible 0.75

{onChainModel, true},
[{blockchainType, public}, no_enf 0

{onChainModel, false},
[{blockchainType, public}, no_enf 0

{onChainModel, false},

Table 6.2: Stemp(ConfrimRide)

It is important to note that in this alternative algorithm of the algorithm, the management
of conflicting combinations within the same set is approached differently compared to the
brute force algorithm. In the previous algorithm, all possible sets were derived, and no
occurrences of the same combination were allowed within a single set. However, in the
current algorithm, the constraint is applied only within the Snode(temp) and the parent
node set in this specific case is Snode(parent). Consequently, not all combinations are
considered, but only those that do not create conflicts. The approach for selecting the
appropriate combination follows the guidelines described in Section 4.2. Specifically, the
combination with the same property value as the other combination is chosen, but with
a lower local global enforcement. Subsequently, the global enforcement is updated as the
mathematical average between the global enforcement values of the two combinations from
the two different sets. This process results in a constrained parent set node that satisfies
the security requirements imposed by its child nodes. To clarify this with an example,
considering the same case as the previous algorithm, the parent node set Snode(Driver)

in Figure6.3 is now constrained.
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Pk le gle

[{blockchainType, private}, native 1

{onChainModel, true},
[{blockchainType, private}, possible 0

{onChainModel, false},
[{blockchainType, public}, no_enf 0

{onChainModel, true},
[{blockchainType, public}, no_enf 0

{onChainModel, false},

Table 6.3: Snode(Driver)

As a consequence of constraining both the Stemp(ConfrimRide) and Snode(Driver) node
sets, the resulting set comprises merely four combinations. Upon comparing the first
combination of the Stemp(ConfrimRide) set with the first combination of the Sbod set, it
becomes apparent that they share identical Pk: 〈property, value〉, thereby signifying the
absence of conflicts. Similar circumstances arise when examining the second combination
of the Stemp(ConfrimRide) set and the first combination of the parent node set, further
confirming the absence of conflicts. To determine the optimal combination, a selection
process is employed, wherein the combination with the lowest local enforcement value and
reduced global enforcement is chosen. Consequently, the second combination is retained
in the final set for the parent node in Figure 6.4, resulting in the following configuration:

Pk le gle

[{blockchainType, private}, no_enf 0.62

{onChainModel, true},
[{blockchainType, private}, possible 0.25

{onChainModel, false},
[{blockchainType, public}, no_enf 0.37

{onChainModel, true},
[{blockchainType, public}, no_enf 0

{onChainModel, false},

Table 6.4: Sfinal(Driver)

The described process is repeated until the definition node (Sroot(node)) is reached. This
iterative procedure aims to constrain each child combination according to the child con-



6| Optimized strategy 57

straints within the entire process structure. By deriving the set Stemp(Driver) from the
previous step, the local property is eliminated, ensuring that the child constraints propa-
gate effectively to the parent nodes. This ensures that each child combination adheres to
its corresponding child constraint throughout the entire process structure.

6.1.1. Pseudocode Propagate-up Optimized

To initiate the process, in Algorithm 7 the algorithm creates an empty set called Stemp,
which serves as a temporary storage for combinations of properties (line 1). This set
includes all the combinations from the node’s set and removes the local property, allowing
the remaining properties to be propagated to the parent node.

In order to do what is described, the algorithm iterates over each combination Cj in the
set S(node). Here, S(node) represents the existing combinations of properties for the
current node (lines 2-9). For every Cj, a new empty combination Ctemp is created to
hold the modified properties (line 3). The algorithm proceeds to examine the individual
properties Pk within Cj and checks if the property name is absent in the properties of
the node. If the condition holds true, indicating that the property is not specific to the
node but inherited from its ancestors, Pk is added to the Ctemp combination (lines 6-8).
Finally, the updated Ctemp combination is appended to the Stemp set (line 9). This step
ensures that each combination in Stemp only contains properties that are not specific to the
current node but rather inherited from higher-level nodes. As a result, Stemp represents
the possible property combinations that can be applied to the parent node. Note that the
algorithm does not modify the original S(node) set; it only creates a temporary set Stemp

with modified combinations.

If the current node is not a leaf node, the algorithm propagates constraints from the
child nodes to the parent node (lines 11-28). It initializes an empty set Sparent to store
combinations belonging to the parent node (line 12).

The algorithm continues by iterating over each child node of the current non-leaf node. For
each child node encountered, the algorithm recursively invokes the propagateUp function
on that child node. The result of this recursive call is stored in a set Sup (line 14).
This recursive call to propagateUp on the child node allows the algorithm to propagate
the property constraints from the child node toward its parent node, thus ensuring that
property constraints are effectively propagated upwards through the tree structure. The
algorithm proceeds to iterate over each combination Cchild in the set Sup (lines 15-23). For
each Cchild, a new empty combination Cparent is created to hold the modified properties
(line 27). The algorithm then examines the individual properties Pchild within Cchild and
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checks if the property is not already present in the properties of the current node. If
the condition is satisfied, indicating that the property is not specific to the current node
but rather inherited from its child node, thus, the property Pchild is added to the Cparent

combination (lines 29-33). Finally, the updated Cparent combination is added to the Sparent

set (line 22).

If Sup is not empty, the algorithm constraints Sup with Sfinal using the constrain function,
which applies additional constraints based on the parent’s properties and updates Sfinal

accordingly (lines 24-26). Finally, the algorithm returns Sfinal, representing all possible
admissible combinations of property values for the parent node (line 29).

This algorithm ensures that property constraints are propagated from child nodes to their
parent nodes, allowing for consistent and constrained combinations of property values
throughout the GMT structure.
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Algorithm 7: propagateUp
Input: node: GMTNode
Output: Sfinal = all possible admissible property value combinations for parent

node
1 Stemp = newSet();
2 for Cj in S(node) do
3 Ctemp = newCombination();
4 for Pk in Cj.properties do
5 if Pk.name not in node.properties then
6 Ctemp.properties.add(Pk);
7 end

8 end
9 Stemp.add(Ctemp);

10 end
11 if not node.isLeaf then
12 Sparent = newSet();
13 for child in node.children do
14 Sup = propagateUp(child);
15 for Cchild in Sup do
16 Cparent = newCombination();
17 for Pchild in Cchild.properties do
18 if Pchild not in node.properties then
19 Cparent.properties.add(Pchild);
20 end

21 end
22 Sparent.add(Cparent);

23 end
24 if Sup is not empty then
25 Sfinal = constrain(Sup, Stemp);
26 end

27 end

28 end
29 return Sfinal;

The Constraint Function 8 plays a crucial role in comparing combinations between the
child and parent sets, aiming to handle conflicts and update the parent’s set accordingly.
By carefully evaluating the compatibility of combinations, it ensures that only compliant
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combinations are retained in the parent’s set, preserving an adherence to the specified
constraints outlined in Section 4.2.

To start, the algorithm initializes an empty set called Sret, which will store the satisfying
combinations (line 1). It then iterates through both the input set, S_input, and the
constraint set, Sconstr, to analyze their combinations (lines 2-3).

During this nested iteration, the algorithm sets the found boolean variable to true, sig-
nifying the expectation of finding a satisfying combination (line 33). It then focuses on
the properties of the current constraint combination from the second set, initializing the
satisfied boolean variable as false, indicating that no property has been fulfilled yet (line
6).

By comparing the properties of the input combination with those of the constraint com-
bination, the algorithm seeks matches (lines 7-8). If a match is detected, it proceeds with
additional operations, such as updating the global enforcement value of the input combi-
nation using the average value derived from both combinations (lines 10-12). Eventually,
the function checks the satisfied variable to determine if the input combination meets
the constraints. If false, the gle value is not updated. If true, the combination is updated
and added to Sret (line 20), concluding the loop (lines 21-25).
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Algorithm 8: CONSTRAINT
Input: Sinput: set of input combinations, Sconstr: set of constraint combinations
Output: Sret: set of combinations satisfying the constraints

1 Sret = newSet();
2 foreach Ci in Sinput do
3 foreach Cw in Sconstr do
4 found = true;
5 foreach PI in Cw.properties do
6 satisfied = false;
7 foreach Pk in Ci.properties do
8 if PI .name = Pk.name and PI .value = Pk.value then
9 satisfied = true;

10 PI .gle = (PI .gle + Pk.gle)/2 ;
11 break;

12 end

13 end
14 if satisfied = false then
15 found = false;
16 break;

17 end

18 end
19 if found = true then
20 Sret.add(Ci);
21 break;

22 end

23 end

24 end
25 return Sret;

6.2. Propagate Down

In this optimized algorithm 9, the approach for selecting the best combination differs from
the brute force method. Instead of considering all combinations from the set and saving
them as BestCombination, the focus is on identifying the most suitable combination
based on higher local and global enforcement. This selection process is akin to the step in
the brute force algorithm where the best combination for leaf nodes is chosen. During this
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phase, the objective is to derive a combination from each set that offers optimal security.
Once this BestCombination is determined, it is propagated from the root to the leaf,
and each set is constrained accordingly. This involves updating each S(node) to eliminate
combinations that conflict with the best combination received from the parent node.

Unlike the brute force algorithm, which iteratively considers one combination at a time
for each set, the algorithm now prioritizes combinations based on their inherent security
annotations provided by the blockchain. After evaluating all possible combinations, the
best combination is selected, giving priority to those with higher local enforcement. From
the remaining combinations, the one with the highest global enforcement is chosen.

Following the propagate-up phase, the resulting root set is influenced by the constraints
imposed by its children. Consequently, the root set consists solely of combinations of
blockchainType properties inherited from its children. A possible Sfinal(root):

Pk le gle

[{blockchainType, private}, no_enf 0.62

[{blockchainType, private}, possible 0.85

[{blockchainType, public}, possible 0.75

[{blockchainType, private}, no_enf 0.12

[{blockchainType, public}, native 1

[{blockchainType, private}, possible 0.25

{...} {...} {...}

Table 6.5: Sfinal(root)

The method seeks to find the optimal combination from the collection of obtained possi-
bilities. In order to do so, each combination is evaluated in light of the local enforcement
requirements. Priority is given to combinations with better local enforcement since they
exhibit a stronger adherence to the established security criteria.

Once the local enforcement evaluations are done, the algorithm proceeds to select the
combination with the greatest global enforcement from the remaining alternatives. This
choice assures that the chosen combination not only meets the local enforcement standards
but also delivers the maximum degree of overall enforcement when the larger security
environment is taken into account. Thus, in this case the SBest(root) is
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Pk le gle

[{blockchainType, public}, native 1

Table 6.6: SBest(root)

Once the Best Combination is determined, it can be propagated down to the child node,
constraining it based on the best combination of the parent set. In the given example,
this propagation is illustrated by constraining SBest(root) and Sfinal(Driver) to obtain
SBest(Driver). This constraint is applied while adhering to the conflict rules specified in
4.2. The resulting SBest(Driver) combination set is obtained:

Pk le gle

[{blockchainType, private}, no_enf 0.75

{onChainModel, true},
[{blockchainType, private}, no_enf 0.25

{onChainModel, false},
[{blockchainType, public}, native 1

{onChainModel, false},

Table 6.7: Sbest(Driver)

Upon careful observation, it becomes evident that only three combinations exist in the
set Sbest(Driver). Notably, the third combination was removed due to a conflict with
the best combination passed by the parent node, SBest(root), as they both contained
[blockchainType, public]. Although these combinations differed in their local enforcement
values (with the former being possible and the latter being native) to ensure security, it
is necessary to eliminate the combination with the lowest local enforcement value. This
step is crucial in prioritizing combinations that exhibit stronger adherence to the specified
local enforcement criteria.

Moving forward, the aforementioned process is repeated for the obtained set, selecting the
best combination as previously described. So in this specific case the Best Combination
for Sbest(Driver)
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Pk le gle

[{blockchainType, private}, no_enf 0.25

{onChainModel, false},

Table 6.8: Best Combination for Sbest(Driver)

This iterative process continues until the leaf nodes are reached, ultimately resulting in
the identification of the best combination, speaking in security terms, for each node.

By determining the best combination for each node, security considerations are priori-
tized, ensuring that operations are carried out directly on the blockchain. This approach
minimizes potential vulnerabilities that could arise from off-chain execution or reliance
on external systems. Emphasizing on-chain execution enhances the overall security of
the system by leveraging the inherent security features and decentralized nature of the
blockchain.

6.2.1. Pseudocode PropagateDown Optimized

The PropagateDown Algorithm 9, depicted in lines 1-10, aims to identify the best combi-
nation for each set and propagate it down the tree structure while constraining the child
node sets. The process involves iteratively selecting the best combination from the parent
set, updating the parent set with only this best combination, and subsequently constrain-
ing the child set based on the updated parent set. More in detail, it accepts a current
element, referred to as node, as its input (line 2), and is responsible for disseminating
the associated constraints to its child nodes through the Constrain function, already de-
scribed in Algorithm 8. The algorithm dedicates lines 3 to 9 to process each combination
within the set S(node). During this iteration, it determines the optimal combination by
invoking the getBestCombination function 5 with the current element, node, as an ar-
gument (line 3). The resulting combination is stored in the variable Cbest. The resulting
optimal combination is then utilized to construct the set Sbest (line 5). To enable further
constraint propagation within the tree, the algorithm employs recursion by invoking the
propagateDown function on each child element, denoted as child of the current node (line
7). This process ensures that the best combinations propagate down the tree structure,
satisfying the constraints at each level.
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Algorithm 9: Propagate Down
Input: node - current element
Output: Propagate constraints down the tree

1 if node.parent then
2 S(node) = constraint(Snode, Stemp);
3 for Cj in S(node) do
4 Cbest = getBestCombination(node);
5 Sbest = newSet(Cbest);
6 for each child in node.children do
7 propagateDown(child);
8 end

9 end

10 end

This concluding section resembles the approach employed in the Bruteforce algorithm
discussed in section 11, As both methods share identical pseudocode, it is unnecessary
to reproduce it here. In essence, the getBestCombination Function plays a pivotal role
in determining the optimal enforcement within a SecBPMN2BC node, follows the same
procedure as the previous algorithm of the algorithm, the brute-force algorithm, when
selecting the best combination for the leaf nodes in Section 4.

Similar to the brute-force algorithm, the algorithm starts by calling the getMaxGle func-
tion 4to obtain a set of combinations, Sfinal, that satisfy the desired local enforcement
criterion, initially with the label native . If Sfinal is empty (indicating no combinations
meet the native local enforcement), the algorithm proceeds to invoke the getMaxGle

function again with the label possible to obtain a new Sfinal. If Sfinal is still empty, the
algorithm invokes the getMaxGle function once more with the label no_enf to obtain
the final Sfinal set. If Sfinal remains empty after these checks, indicating a conflict, an
error is raised.

By utilizing the getMaxGle function in a similar manner as the brute-force algorithm,
the getBestCombination function ensures the selection of the best combination for the
leaf nodes while considering the specific local enforcement criteria and prioritizing higher
global enforcement values. This approach enhances the security of the SecBPMN2BC node
by identifying combinations that provide strong security measures during interactions with
the blockchain.
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This section provides the validation and comparison of the two versions of the method
(the brute force algorithm and the optimized version). The focus will be on analyzing
their performance and providing an accurate analysis of the results.

7.1. Experimental Setup

The experimental evaluation was conducted using SecBPMN2BC modeling language,
crafted to support the design of secure business processes to be executed in a blockchain
environment. The evaluation was performed within the Eclipse development environment,
utilizing the SecBPMN2BC software tool. This tool is based on the STS-Tool libraries
and assists in identifying security and privacy conflicts and generating blockchain-related
properties for SecBPMN2 elements.

Both the brute force and the optimized algorithms were built and run in the same en-
vironment (Eclipse IDE) and tested on the same set of smart contracts, allowing for a
direct comparison of their performance. The examinations included were conducted using
representative instances of the SecBPMN2BC process, in a variety of situations, begin-
ning with simple examples and proceeding to more difficult ones. These scenarios were
created to evaluate the algorithms’ performance at various degrees of complexity and to
imitate various phases of the SecBPMN2BC process.

In more detail, in order to validate the two algorithms, they had been tested with realistic
smart contracts, which permits an evaluation of their performance and effectiveness in
real-international conditions. After that, additional exams on both cases were achieved. In
particular, corner cases discuss intense or boundary conditions that won’t be encountered
often but will have a big impact on the conduct and performance of the algorithms. Testing
the algorithms in both cases enables the discovery of any weaknesses or vulnerabilities
that might not have been obvious all through the sensible situation testing. The following
listing represents the scenario analyzed:

• Realistic cases. In order to assess their viability in real-world scenarios, three smart
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contract processes were utilized for this purpose. These include the running example
discussed in Section 3.5, as well as the hospital teleconsultation process and the road
misconstruction process detailed in Paper [18]

• Boundary conditions. These are situations in which the input values or parameters
of a smart contract attain the acute limits described with the aid of the contract.
For example, suppose a process consists of a limit at the most variety of members.
In this case, a nook scenario has been exploited in which the agreement is examined
with the very best permissible wide variety of participants, as this is aimed at
verifying if the contract handles such eventualities appropriately.

• Exceptional scenarios. These are situations in which unexpected activities or errors
occur inside the smart contract execution. For example, a corner case will be trying
out the contract’s reaction while encountering factors that do have not particular
protection necessities assigned.

• Unusual inputs. This entails offering unconventional inputs to the smart contract
that might not be encountered in ordinary usage. This can include, unconventional
go-with-the-flow sequences, or unusual parameter mixtures.

• Security conflict vulnerabilities. Corner cases can also involve testing the contract
for potential security conflict vulnerabilities. One approach is to test the contract
by imposing additional security requirements on the same objects and observing
how the algorithm handles conflicts that may arise

7.2. Evaluated Properties

When comparing two algorithms, it is necessary to consider several criteria to determine
which algorithm performs better across different scenarios. To assess the performance of
both the optimized and brute-force versions, the following properties have been considered:

• Execution Time. It calculates the time the algorithm needs to complete a task and
shows how effective it is at processing data quickly.

• Memory Usage. Measures the amount of memory an algorithm uses in running time.
It represents a crucial factor to take into account because it has an impact on the
algorithm’s scalability and resource needs.

• Accuracy. Shows how close the algorithm’s output of the optimized algorithm is to
the correct or expected output of the brute force approach.

• Robustness. It measures the capacity to effectively manage unexpected or incorrect
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inputs, and in handling corner cases, edge cases, and exceptional scenarios without
crashing or producing incorrect results.

• Scalability. Measures how well an algorithm can handle larger input sizes while
maintaining acceptable performance and assesses despite the size increment of the
algorithm

7.3. Results Analysis

Realistic scenarios

The brute-force model, via exploration of all possible combos, ensures an increase in the
likelihood of finding an optimal solution. However, this exhaustive seek strategy isn’t
optimal in phrases of time and reminiscence consumption, as it examines every single
aggregate inside the process tree. The optimized model, in comparison, is quicker and
consumes less reminiscence, permitting it to gain the preferred final results the answer
obtained aligns with the one deemed the quality in the brute-pressure approach. In
phrases of accuracy, it remains constant, while in phrases of scalability, it surpasses the
brute-force technique. Through the implementation of optimization techniques, results
are achieved more effectively and with reduced computational overhead.

Boundary conditions

To push the limits and evaluate the algorithm’s performance, I conducted experiments
by exponentially growing the wide variety of elements concerned. For instance, I tested
the algorithm’s conduct by assigning a sizable wide variety of tasks and records gadgets
to an unconnected pool, without necessarily incorporating new safety requirements. By
subjecting the algorithm to such extreme situations, I aimed to assess its robustness
and scalability. These experiments allowed me to look at how the algorithm treated the
increasing workload and the way it tailored to the growing quantity of factors involved
As expected, the exponential increase in the range of factors may additionally have made
the brute-force technique much less powerful as the dimensions of the issue will increase
due to its exhaustive nature, the brute force approach turns into extra computationally
in depth. As a result, its performance may additionally degrade appreciably, making it
less suitable for dealing with larger-scale instances. On the opposite hand, the optimized
version of the set of rules probably demonstrated better in keeping with performance
under those situations. By using optimization techniques this targeted method reduces
the computational complexity and makes the set of rules more scalable. Consequently, the
optimized model is lighter in terms of computational requirements and offers advanced



70 7| Validation

scalability as compared to the brute-pressure approach.

Unusual inputs

I deliberately added elements in the smart contract process testbed that would reason
mistakes inside the code of the algorithms. These factors were designed to test the agree-
ment’s resilience and its potential to address uncommon inputs, along with incorrect flows
or inconsistent elements. Both brute-pressure and optimized algorithms have been not
able to process the smart contract correctly whilst confronted with those wrong factors.
However, this means that both algorithms have been capable of apprehending the errors
gift within the process and that the integrated blunders detection mechanisms designed
paintings as anticipated as they’re capable of figuring out inconsistencies or invalid struc-
tures in the smart process, which facilitates making certain the integrity and correctness
of the processing.

Security requirements

I introduced multiple security requirements to each element and tested whether the al-
gorithms may want to deal with those complexities. Both the brute-force and optimized
versions finished properly, nonetheless, the previous skills increased time and memory
utilization because of producing all viable combinations as the computational sources re-
quired to method the improved number of security necessities became greater stressful.
On the opposite hand, the latter efficaciously controlled the increased time and memory
requirements. Using optimized mechanisms, it efficiently recognized and processed only
the combinations that no longer create conflicts, thereby decreasing the computational
burden.

Table 7.1 presents the measurements of the execution time and the reminiscence utilization
of the algorithm. Note that those metrics represent the common values acquired from
accomplishing more than one run of every take a look at the case.

Test Case Execution Time (ms) Memory Usage (% of 2024 MB)

Realistic Case 44 ms (Opt) / 138 ms (Brute) 24.06 MB(Opt) / 38.07 MB (Brute)
Boundary Conditions 82 ms (Opt) / 194 ms (Brute) 27.16 MB (Opt) / 42.05 MB (Brute)
Unusual Inputs 24 ms (Opt) / 11 5ms (Brute) 10.04 MB (Opt) / 18.07 MB (Brute)
Security Conflict Vulnerabilities 112 ms (Opt) / 302 ms (Brute) 29.46 MB (Opt) / 52.85 MB (Brute)

Table 7.1: Execution Time and Memory Usage Comparison

With a specific focus on real-life scenarios, I employed three realistic cases as a testbed
for my research. These cases include the one utilized as a running example in Section 3.5,
which involves a smart-contract process for a road misconstruction claim [18]. Addition-
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ally, I examined a smart-contract process for hospital teleconsultation [13]. These cases
were selected to provide practical illustrations and insights into the application of smart
contracts in various domains. In Table 7.2 are reported the results

Test Case Execution Time (ms) Memory Usage (MB)

Realistic Case (Ride-Sharing) 32 ms (Opt) / 115 ms (Brute) 15.46 MB (Opt) / 28.06 MB (Brute)
Realistic Case (Road-misconstruction) 50 ms (Opt) / 140 ms (Brute) 20.43 MB (Opt) / 35.46 MB (Brute)
Realistic Case (Hospital teleconsultation) 92 ms (Opt) / 172 ms (Brute) 29.89 MB (Opt) / 46.08 MB (Brute)

Table 7.2: Realistic Case Comparison

In this revised table, each realistic case represents a specific scenario, namely "Ride-
Sharing," "Road-misconstruction," and "Hospital teleconsultation." The execution time
and memory usage are provided for both optimized (Opt) and brute-force (Brute) ap-
proaches. Please note that the execution time and memory usage values are based on
the average results obtained during testing. To obtain these results, the code was tested
an average of five times, and the following results were obtained. It is important to note
that the third case exhibits higher security requirements and a larger number of tasks
compared to the others, resulting in increased execution time.

To ensure a rigorous and unbiased evaluation, the final experiment encompasses two
distinct cases. Firstly, the activities of a smart contract process (secBPMN2BC) were
extended, enabling a comprehensive assessment of the algorithm’s performance in terms of
memory utilization and execution time. Secondly, a real-world scenario was meticulously
crafted, encompassing additional security requirements for each object. Notably, these
augmented security measures were designed to prevent any conflicts among the objects.

By meticulously executing these planned experiments, a wealth of invaluable insights
and findings were obtained. These results significantly contribute to the advancement of
knowledge in the field and reinforce the validity of the research conducted
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Figure 7.2: Comparison of Execution Time with Increasing Security Requirement
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Figure 7.4: Comparison of Memory Usage with Increasing Security Requirement

The provided results, depicted in Figures 7.1, 7.2, 7.3, and 7.4, offer significant insights into
the performance of the algorithms under different conditions. Several key considerations
can be drawn from the data:

• Execution Time with Increasing Number of Tasks

The optimized algorithm consistently outperforms the brute force algorithm in terms
of execution time as the number of tasks increases Figures 7.1 This advantage stems
from the optimized algorithm’s ability to handle the growing workload more effi-
ciently. As the number of tasks increases, the optimized algorithm exhibits a gradual
rise in execution time, indicating a scalable and well-optimized approach. On the
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other hand, the brute force algorithm experiences a steeper increase in execution
time, highlighting its exponential growth in complexity as it exhaustively explores
all possible combinations. The significant time disparity between the two algorithms
becomes more evident with larger numbers of tasks, emphasizing the superiority of
the optimized algorithm’s efficiency and computational effectiveness.

• Execution Time with Increasing Security Requirement

Similar to the findings related to the number of tasks, the optimized algorithm con-
sistently outperforms the brute force algorithm as the security requirement becomes
more stringent Figure 7.2. As the security requirement increases, both algorithms
face additional computations and evaluations. However, the optimized algorithm
showcases superior efficiency by managing the increased workload more effectively.
It demonstrates a steady and controlled increase in execution time, indicating its
ability to handle heightened security requirements without significant performance
degradation. In contrast, the brute force algorithm experiences a more pronounced
rise in execution time, reflecting the exponential growth in computational complex-
ity as it exhaustively examines all possible combinations. The widening gap between
the execution times of the two algorithms with increasing security requirements un-
derscores the optimized algorithm’s advantage in efficiently handling demanding
security scenarios.

• Memory Usage with Increasing Number of Tasks

Examining the memory usage trend in Figure 7.3, the optimized algorithm proves to
be more resource-efficient compared to the brute force algorithm as the number of
tasks increases. The optimized algorithm’s superior memory management is evident
from its lower memory consumption, even as the workload grows. It demonstrates
an ability to effectively handle and process the increasing number of tasks while
optimizing memory usage. Conversely, the brute force algorithm exhibits higher
memory usage due to its exhaustive approach, which requires storing and processing
a significantly larger number of combinations. As the number of tasks expands, the
brute force algorithm’s memory usage rises substantially, indicating its reliance on
substantial computational resources.

• Memory Usage with Increasing Security Requirement

The optimized algorithm continues to showcase its efficiency in memory utilization
compared to the brute force algorithm as the security requirement becomes more
stringent in Figure 7.4. The optimized algorithm’s effective memory management
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is evident from its lower memory consumption, even with heightened security re-
quirements. It efficiently handles the additional data and computations required
for stringent security scenarios while maintaining a controlled memory footprint.
In contrast, the brute force algorithm exhibits a substantial increase in memory
usage as the security requirement becomes more demanding. Its exhaustive search
approach necessitates storing and processing an exponentially growing number of
combinations, resulting in significantly higher memory consumption.

7.4. Discussion of Findings

Based on the result in Table 7.1, we can make a clear distinction between the optimized
and brute-force versions of the algorithm in terms of execution time, memory usage,
accuracy, and scalability.

As a long way as execution time is concerned, the optimized model consistently outper-
formed the brute force version in all take a look at instances, showing appreciably faster
processing times. This improvement is particularly glaring in the realistic case, boundary
situations, and security conflict vulnerabilities, where the optimized version showed a sig-
nificant reduction in execution time relative to the brute force version. Inside the instances
of uncommon inputs, the execution time gap between the two versions has been especially
shorter when you consider that both algorithms, as predicted, run into conflict in com-
paring all of the feasible combinations. Thus, the effects show that the optimized version
outperforms the brute-force model. Regarding memory usage, the optimized set of rules
constantly confirmed lower memory utilization as compared to the brute force model in
all tests. This demonstrates that this version utilizes gadget resources greater correctly,
as seen by means of the reduced reminiscence wishes. The distinction in reminiscence
utilization is greater pronounced in boundary conditions and protection security vulner-
abilities, where brute pressure versions show better reminiscence usage. Consequently, in
terms of scaling, optimized variations display extra scalability potential because of reduced
reminiscence utilization and faster execution. The updated model has decreased reminis-
cence requirements and faster processing times, which makes it simpler to control large
eventualities. The more reminiscence intake and execution time are used, the optimized
and the brute force algorithm could have trouble successfully scaling, especially in these
particularly useful resource-intensive eventualities. Validation and evaluation analyses
finish that advanced versions of the approach supply full-size enhancements in computing
performance and memory utilization at the same time as keeping solution quality. In
conclusion, the optimized version of the approach now not only outperforms the brute
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pressure variant in phrases of execution time and reminiscence usage but additionally con-
tains a wide array of additional advantages. Its robustness, versatility, security features,
ease of renovation, and potential for destiny advancements make it a clear preference
for sensible utility in various domain names. The validation of this research endeavor
substantiates the achievement through a meticulous analysis of the algorithm’s conduct
under numerous test conditions. The research specializes in two essential components:
the effect of increasing the number of tasks and the incensement of safety requirements.

These precise concerns enhance the clear advantage of the optimized algorithm over the
brute force one. The former continuously demonstrates higher scalability, and perfor-
mance, allowing it to address expanded tasks and stringent security requirements more
correctly. These findings align with the anticipated conduct of the algorithms based to-
tally on their respective procedures and computational complexities, highlighting the real
superiority of the optimized algorithm in actual-international scenarios. The optimized
version of SecBPMN2BC offers distinct benefits for enforcing the global enforcement calcu-
lation. With quicker execution time, decrease memory utilization and stronger scalability,
it outperforms the brute force algorithm. This performance interprets into a faster compu-
tation of the worldwide enforcement parameter, empowering stakeholders with well-timed
records for choice-making and warfare avoidance. By harnessing the optimized version,
SecBPMN2BC allows more efficient security analysis making sure of strong and effective
enforcement of blockchain security requirements.
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developments

This thesis addresses the important goal of finding out which elements of a process can
be stored on-chain or off-chain using blockchain technology. By conducting a thorough
assessment of the security requirements of the process, evaluating the potential impact
on the blockchain structure, and using the implemented algorithms, the study presents a
novel approach to improving an existing algorithm for designing smart contracts processes
suitable for implementation on a blockchain with smart contracts in SecBPMN2BC.

The algorithms introduced are specifically designed to tackle the challenges arising from
conflicting and unsupported security properties in smart contracts within a blockchain
framework, by providing a systematic approach to identifying and evaluating the security
requirements of each data element in a process.

Specifically, a brute-force algorithm and an optimized one were designed. The former
model explores an exhaustive assessment of all viable combinations of security features,
taking into consideration a comprehensive analysis of capacity safety situations. Although
computationally expensive, this algorithm gives intensive expertise of the alternate-offs
concerned in security configurations. The latter algorithm instead incorporates various
strategies for improving algorithm performance and efficiency, such as reducing redundant
computation and using parallel processing capabilities. This algorithm aims to strike a
balance between accuracy and computation between objects, for faster and more efficient
security analysis.

An important aspect of this thesis is the achievement of a global enforcement solution
for validating the security of smart contracts. This breakthrough was made possible by
introducing a new variable, global enforcement within the combination of each element
that is subjected to a security requirement. The two algorithms employed in this study
played a crucial role in accomplishing this objective, with the optimized algorithm serving
as the primary method and the brute-force algorithm acting as a validation layer.

The optimized algorithm demonstrated its effectiveness by providing a coherent and ef-
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ficient solution to address conflicting and unsupported security properties in smart con-
tracts within a blockchain framework. By incorporating various strategies to enhance
performance and efficiency, this algorithm strikes a balance between accuracy and com-
putation speed. Its successful implementation validated the security solution achieved
as compared to the brute-force algorithm, which provided a comprehensive analysis of
security configurations but at a higher computational cost.

The significance of this thesis lies in its contribution to the field of designing and eval-
uating smart contract processes on the blockchain. By presenting insights into security
requirements and considering both computational performance and exhaustive evaluation.

Looking ahead, the potential applications and impact of this research are expanding. The
findings presented in this thesis lay the groundwork for the development of intelligent and
adaptable algorithms capable of dynamically adjusting security configurations based on
value variables and evolving threats.

Furthermore, the knowledge gained from this study opens doors to exploring other areas
where blockchain technology can be leveraged to enhance security and considerations in
the smart contract process. The algorithms proposed here can serve as a foundation for
further investigations into the integration of emerging technologies such as artificial in-
telligence and machine learning, leading to even more robust and sophisticated security
solutions. A possible future research project could be the introduction of cost variables
for each combination of security requirements for elements. Incorporating cost consider-
ations allows for an evaluation of the trade-offs between security measures and financial
implications, enabling a more comprehensive analysis of the overall system. This addition
ensures that the design and implementation of smart contract processes on the blockchain
are not only robust and efficient but also economically viable. By combining comprehen-
sive safety analysis, computational efficiency, and the integration of cost variables, we
unlock the true potential of blockchain technology in ensuring the integrity and reliabil-
ity of smart contracts. Through continuous research and innovation, we are paving the
way for a more secure and trusted virtual landscape that benefits both organizations and
individuals alike.
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