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1 Introduction

In predictive modeling, we typically assume that
the relationship between input and output data
remains static. However, in real-world scenarios,
data patterns change over time, rendering pre-
dictive models obsolete. Concept Drift Detection
addresses this issue by identifying these changes,
known as concept drifts. Concept drifts represent
unforeseen alterations in the statistical properties
of the target variable, making it crucial to contin-
uously monitor inference data and detect depar-
tures from conditions seen in training data.

One notable challenge is dealing with high-
dimensional multivariate data streams. Such data
streams are prevalent in fields like IoT and text
analysis. Due to the curse of dimensionality,
it’s challenging to determine what constitutes a
meaningful change and where it occurs within an
huge feature space; feature reduction techniques,
such as Principal Component Analysis (PCA), can
be employed to map high-dimensional data to
lower-dimensional representations while preserv-
ing distance relationships; however, not only they
may have important computational costs, but also
might ruin the behavior of concept drift detection
algorithms, thus should be chosen carefully. One
important property that might be lost after di-
mensionality reduction (DR) is the control of the
False Positive Rate (FPR). Ensuring that alarms
are only triggered when there are genuine devi-
ations, and having a clear understanding of the
expected number of false alarms for appropriately
sizing the monitoring system, is crucial; partic-
ularly in applications like manufacturing quality
control and healthcare diagnostics, where a high
FPR can lead to unnecessary resource allocation
and costs, if not to the erroneous prescription of
unnecessary medications and their associated side
effects.

Our greatest challenge was to study the per-
formances of QuantTree (QT) algorithm in high
dimensional spaces with only a small number of
training points provided. More specifically, we in-
vestigate different dimensionality reduction tech-
niques, and extend the study to QT’s generalized

version, Kernel-QT (KQT), and its online version,
QT-EWMA. Finally, we propose an online version
of KQT algorithm (KQT-EWMA).

Our main contributions include:

1. Development of a benchmark designed for
studying concept drift detection, specifically
addressing challenges associated with high
dimensionality and limited availability of
training data, thus the use of conventional
data processing methods such as PCA.

2. Utilization of distances derived from I,
quasi-norms, where p < 1, to adapt KQT
to sparse environments.

3. Proposal of an online version of KQT, KQT-
EWMA. We demonstrate that its theoreti-
cal properties are upheld and, under various
conditions, it outperforms the current state-
of-the-art methods.

2 Problem Formulation

A change detection algorithm has usually three
main ingredients: a model (50 of the initial distri-
bution, a statistic based on it, and a decision rule
to report changes. We make the assumption that
both ¢g and ¢1 # ¢¢ are unknown. To estimate
00, a training set T'R, which consists of N station-
ary realizations from ¢, is provided. In our case,
we employ a QuantTree-like histogram (;ASO fitted
on the distribution ¢g given TR. A histogram is
defined as:

h={(Sk, &) th=1,... K

where the K subsets Sj, form a partition of R?,
ie. Uszl S, =R and S;NS;=0 for j#i,
and each 7y € [0, 1] corresponds to the probabil-
ity for data generated from ¢g to fall inside Sj.
Online and batch-wise are two modes for drift de-
tection. In batch-wise drift detection (also referred
to as two-sample test), the idea is to infer whether
two sample sets have been selected from the same
population. A batch represent a discrete chunk
of data collected over a specific time interval or



event. In contrast, online drift detection continu-
ously monitors data - sometimes, real-time - and
some model is updated as each new point/vector
arrives. The choices between these approaches de-
pends on the nature of the data and the specific
requirements of the application.

To evaluate the performance of concept drift
detection algorithms, online or offline, both quan-
titative and qualitative criteria need to be consid-
ered. Quantitative criteria include metrics such as
TPR and FPR, but also the execution time, and
the memory usage. Qualitative criteria, such as
robustness to roto-translations of the dataframe
and to the presence of outliers, also play a signifi-
cant role in evaluating algorithm performance.

2.1 Batch-wise monitoring

We process the incoming data in batches W =
{z1,...,x,}, where v represents the number of
samples in each batch. Our goal is to detect
changes using a hypothesis test (HT) that assesses
whether the data in W aligns with the reference
histogram h learned from the training set TR. We
formulate the hypothesis test HT as:

Hy: W ~¢g vs H1¢WN¢175¢0

(1)
where Hy represents the null hypothesis: “W fol-
lows the distribution ¢y”; and H; is the alterna-
tive hypothesis: “W follows a different distribu-
tion ¢1 # ¢o”. These tests are based on a test
statistic T, defined over the histogram h. Thus,
Tn solely depends on yr -1, . k), where y; de-
notes the number of samples in W falling in Sj.
We detect a change in the incoming W when:

777,(VV) :n(yla“ayk) > T, (2)
where 7 is the threshold that controls the FPR,
namely the proportion of type I errors. For each
given test statistic 75 and reference FPR value «,
we define a threshold 7 such that:

Poo(Te(W) > 7) < a, 3)
where o is the reference FPR value, when Py, de-
notes the probability under Hy that W contains
samples generated from ¢q.

2.2 Online monitoring

We consider a virtually unlimited multivariate
datastream z1, s, ... in R4 We assume that, in
the absence of changes, all the data samples are
i.i.d. realizations of a random variable with an un-
known distribution ¢g, which support is X C R
We define the changepoint 7 as the unknown time

instant when a change ¢g — ¢1 # ¢ takes place.
The data z; follows the distribution:

¢g, ift<Tt
Tt ¢1, lftZT

Here, z; represents the random variable that fol-
lows the distribution ¢y before the changepoint T
(in the so called in control state), and then follows
the distribution ¢, for ¢t greater than or equal to
7 (out of control state).

Ideally, the target Average Run Length ARLg,
i.e. the average number of samples arrived from
the stationary distribution before a false alarm is
given, is set a priori, as for the type I error proba-
bility in hypothesis testing. The goal is to detect a
distribution change as soon as possible, minimiz-
ing the detection delay t* — 7, while controlling
ARLj by the means of a target value established
before monitoring. It is worth noting that con-
trolling ARLg also provides an upper bound on
the expected detection delay.

3 Related Work

3.1 QuantTree

The QuantTree (QT) algorithm was first proposed
in 2018 [1] to handle concept drift detection in
multivariate dataframes. We refer to the algo-
rithms presented in the paper. QT is a recursive
binary splitting scheme designed to dynamically
adapt histogram bins for effective change detec-
tion. Its greatest advantage is that the distribu-
tion of any statistic defined over the resulting his-
togram does not depend on ¢g, i.e. that decision
rules to be used do not depend on the data and
can be numerically computed from synthetically
generated univariate sequences, even in multivari-
ate change detection problems. The fact that QT
can have a pre-assigned number of bins and can
be represented as a tree, enables a very efficient
computation of test statistics.

Histogram computation: We denote by
X, C X the subset of the input space that still has
to be partitioned. The subset Si is then defined
by splitting X along a component ¢ € {1,...,d}
that is randomly chosen with uniform probability.
S contains L points among the N in X, thus
the estimated probability of Sy is 7 = Lg/N.
This procedure is iterated until K subsets are ex-
tracted. QuantTree divides & in a given number of
subsets, where each Sy has an estimated probabil-
ity 7, &~ 7 (equality holds when 7, NV is integer).
Since the probabilities m; are set a priori, in what
follows we use 7y, in place of 7. Indexes i and pa-
rameter y are randomly chosen to add variability
to the histogram construction.



3.2 QT-EWMA

QT-EWMA algorithm was introduced in [2] to-
gether with the procedure to define its thresh-
olds controlling the ARLg. It leverages an online
statistic T; defined over a QuantTree histogram,
which monitors the proportion of samples in the
datastream that fall in each bin S;. We evaluate
the EWMA statistic Z,,, j € {1, ..., K}, to mon-
itor the proportion of data that falls in each bin
Sj:

Zjy = (1- A)Zj,t—l + Ay, Zio=T;

Since, under ¢g, the expected value E[Z;,] = 7,
for j =1, ..., K, we define the QT-EWMA change-
detection statistic as follows:
K A N2
=% (Zjt = 75)

Ty

()

j=1

The statistic is computed at each incoming sam-
ple and then compared against the corresponding
threshold h; to detect changes. QT-EWMA al-
gorithm inherits from QuantTree the fundamen-
tal property that the distribution of the statistics
(4) and (5) - like any other statistic entirely de-
fined over QuantTree bins - does not depend on ¢y,
so the thresholds {h;}: can be defined a priori to
guarantee the ARLg on any datastream. The se-
quence of thresholds has to be properly defined to
guarantee the given ARLy = E[t*], where the ex-
pected value is computed assuming that the whole
datastream is drawn from ¢g.

3.3 Kernel QuantTree

A fundamental limitation of QT is that splits are
defined along the axis, resulting in a partitioning
that does not always adhere to the input distribu-
tion. A preprocessing stage is typically introduced
to align the split directions to the principal com-
ponents of the training set. While this solution
is in practice beneficial, still many bins have non-
finite volumes, which can lead to poor estimation
of bin probabilities. In [3] is thus introduced Ker-
nel QuantTree (KQT), a non-parametric and mul-
tivariate CD algorithm that partitions the space
in K — 1 compact bins defined by kernel func-
tions evaluated on the training data. An addi-
tional “residual” bin is non-compact and gathers
all the remaining points. The distribution of the
test statistic 7, computed from a KQT histogram
h does not depend on the stationary distribution
¢o and the detection thresholds 7 can be set a pri-
ori via Monte Carlo simulations. Moreover, the
monitoring performed by KQT using specific ker-
nel functions is not influenced by preprocessing

based on roto-translations, including alignment to
principal components. KQT was studied with the
Euclidean, the Mahalanobis, and the Weighted
Mahalanobis distances [3]. We examine the behav-
ior of I, norms, and propose as alternative kernel
functions for KQT these distances derived from [,
(quasi-) norms with p < 1, knowing that fractional
distances may be suitable to preserve the meaning-
fullness of proximity measures in high dimensional
spaces. It is worth noting that these distances are
not invariant to rotations (in Euclidean spaces).

4 KQT-EWMA

We propose Kernel-QuantTree FExponentially
Weighted Moving Average (KQT-EWMA), a
novel online nonparametric change-detection algo-
rithm for multivariate datastreams. It combines a
KQT histogram [3], used as a model b0, and a
statistic T3 based on EWMA, which turns KQT
into a truly sequential monitoring scheme, i.e. a
testing process conducted in an adaptive man-
ner, continuously evaluating incoming data and
making decisions based on cumulative information
rather than fixed sample sizes.

The theoretical properties of Kernel-
QuantTree guarantee that KQT-EWMA is com-
pletely nonparametric since the distribution of
our statistic does not depend on ¢y, hence its
thresholds {h;}; controlling the ARL( can be set
a priori. Moreover, these thresholds guarantee
by design a constant false alarm probability over
time and, consequently, a fixed false alarm rate at
any time instant during monitoring. Thus, KQT-
EWMA controls both ARLj and false alarm (FA)
rate. This property is also exploited to compute
detection thresholds by Monte Carlo simulations,
such that the empirical ARLqy matches any target.

The statistic 73 monitors the proportion of
samples in the datastream that fall in each bin
S;. In particular, for each x; we define K binary
statistics {y;+}; as the indicator functions of each
bin S;. We compute the EWMA statistic Zj,
j € {1,..., K}, to monitor the proportion of data
that falls in each bin S;. Since, under ¢g, the
expected value E[Z;,] ~ 7; for j = 1,..., K, we
define the KQT-EWMA change-detection statis-
tic as it is in QT-EWMA (Eq. 5).

Theoretical results are based on the following
theorem, derived from previous works ([2], [3]) and
proved in the thesis work.

Theorem 1. Let T; be defined as in (5) over the
histogram h computed by KQT. When x; ~ ¢o,
the distribution of Ty does not depend on ¢y nor
on data dimension d.
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5 Experiments

5.1 QT in High Dimensional spaces

Obtaining real-world high dimensional datasets
with fixed characteristics is challenging, thus ex-
periments are typically conducted on either syn-
thetically generated data or real-world datasets
modified to introduce changes at known loca-
tions. Here, “Controlling Change Magnitude”
framework (CCM) is used. It applies a rototrans-
lation directly to the data to ensure precise control
over change magnitudes measured by symmetric
Kullback-Leibler (sKL). Datasets are mostly - al-
ways, for what concerns this summary - generated
from a null-mean Gaussian distribution with a
random covariance matrix before the CCM frame-
work is applied. The sKL distance between pre-
and post-change distribution is always fixed as the
dimensionality of the space grows.

The study explores how dimensionality affects
QT performances in terms of TPR and FPR, with
and without a PCA-like preprocessing. In partic-
ular we focus on FPR control, which can be lost
when the N/d ratio is small. Our first experiments
were done with PCA and its randomized version -
based on applying random projections before SVD
decomposition - which requires less memory and
allows a more computationally efficient DR from
high-dimensional feature spaces. Dataframes are
generated from monomodal Gaussians in R<.

Even if PCA preprocessed comes with no di-
mensionality reduction (DR), FPR control is lost
when an insufficient number of training points is
provided (see Fig. 1). Is PCA genuinely failing,
or are the limitations a byproduct of the (limited)

60 80 100

test batches.

training data?. This is a central question in our
study, and nearly the entirety of our experiments
were dedicated to answer it. To know if the prob-
lem is given by the presence of outliers in too small
training sets, we tried RobustPCA preprocess-
ing, and a theoretical version of PCA which is
not computed from TR but rather from the known
distribution which data is sampled from - since the
covariance matrix is known, we can derive the true
principal components as its eigenvectors. Even
though this approach cannot be used in practice,
we adopt it to discern the root causes of PCA’s
issues with FPR control. Indeed, while a PCA
rotation prevents QT to control the FPR, this co-
variance matrix-based projections increases TPR
while not increasing FPR above the set threshold.

We tried several experiments using convex
combinations of PCA matrices, namely: 1)
Combinations are represented by the equation
AxMpca+(1—X\)x1, where A € [0,1], Mpc 4 rep-
resents the matrix transformation associated with
PCA, and 1 is the identity matrix. 2) Combina-
tions are represented by the equation A« Mpcoa +
(1 — X) % My, where My, is the matrix associated
with theoretical-PCA.

One hypothesis trying to explain the effects
of PCA over the control of the FPR, even with
no DR, revolves around the alignment of QT’s
bins with the PCs, especially in scenarios where
data points collapse onto particular low-variance
components. We also tried to compute the PCs,
project the data onto them, and then apply d-
dimensional rotations, generating stochastic
rotation matrices around all axes in the space, in-
tentionally introducing increasing misalignments



with the PCs before building the histogram. Re-
grettably, it seems that the rotation after PCA
does not preserve the control of the FPR - indeed,
there is no obvious trend of the results with the
rotation angle.

Choosing components for DR: If we use
PCA on our data sampled from d-dimensional dis-
tributions and keep a number d’ < d of princi-
pal components, what should be the choice? This
is already discussed in literature: concept drifts
may manifest in the “low variance components”
which in stationary conditions we expect to ex-
hibit low variance. However, sample-based com-
putation might fail to “explain” a small amount of
variance. The effectiveness of low-variance compo-
nents in detecting concept drift is tightly bound to
the robustness of their computation, emphasizing
the importance of an adequately sized and repre-
sentative training set.

Random projections (RPs) serve as a re-
markably efficient and straightforward approach
to DR. Leveraging the Johnson-Lindenstrauss
lemma, RPs stand out for their speed and sim-
plicity, aligning seamlessly with the demands of di-
verse algorithms. In the case of the QT algorithm,
RPs enable effective control over the FPR, empha-
sizing the method’s practicality and reliability in
managing the intricacies of high-dimensional data
while maintaining theoretical bounds.

In Fig. 1 we show the results of QT analysis of
batches drawn from monomodal Gaussians with
increasing dimension d, given N training points
to build the histogram. We can see the effects of
detectability loss as dots of greater radius are as-
sociated with lower TPR; still, QT achieves FPR
control independently of d and N. This is also
true after rotating data with random matrices
(RPs) and with theoretical PCA matrices. When
directions for the bins computation are learned
from the training set through PCA, FPR con-
trol is lost and the scattered points shifts toward
to the upper right corner of the graph, where
TPR = FPR = 100%. A greater N (green/blue
dots) is sufficient to keep FPR below the threshold.
In Fig. 1 data is preprocessed with no dimension-
ality reduction (DR). In Fig. 2, we illustrate the
impact of DR while addressing the parallel prob-
lem in an online fashion.

5.2 Kernel QT and [/, norms as f,

The Euclidean distances computation is O(d)-
complex, way less than for Mahalanobis (M) and
Weighted Mahalanobis (WM) distances (O(d?)
and O(d?) respectively). Between distances in
[3], only the Euclidean provides FPR control
when dimensionality increases. We propose to

TPR & FPR

TPR & FPR

use (quasi-)distances derived from I, norms, with
p < 0.1, which are effective in preserving the
meaningfullness of proximity measures in high-
dimensional spaces. We remark that they are not
invariant to (Euclidean) rotations.

We show the effects of reducing d with PCA
in Fig. 2. Even with a sufficient number N of
training points, KQT performances using [, norms
do not consistently surpass those of QT, which
is more stable when keeping low variance compo-
nents. Mahalanobis and Weighted Mahalanobis
(“weighted’) distances achieved higher TPR in
small spaces but cannot in general control FPR
when N/d is small, relying on the estimated co-
variance matrix of the distributions. Instead, [,
norms achieve FPR control when no DR is per-
formed. QT here is the only model able to keep
FPR stable and achieving a considerable detection
power A(TPR — FPR) when projecting data on
low variance components.
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Figure 2: 128-dimensional dataset preprocessed with
PCA and analyzed by QT and KQT with the three
metrics lo.1, 1 and l; and Weighted Mahalanobis
(‘weighted’) distance. We keep x dimensions, con-
fronting high- (top) and low-variance (bottom) compo-
nents. KQT achieves higher TPR in small spaces, but
has no FPR control here. QT maintains stable FPR
and achieves significant detection power A(TPR —
FPR) when projecting data onto low-variance com-
ponents if N/d is great enough. Experiments were
repeated 100 times over (512+512) test batches.

5.3 Online: KQT-EWMA

Our aim is to show that the algorithm controls the
false alarms comparably than competing meth-
ods, while achieving lower detection delays. We

T
128

# (low variance) components retained

lo.1 distance
weighted



Detection delay

Detection delay

Figure 3: Experimental results over

Gaussian datastreams with d €
{2,8,32} and N € {1024,4096}
show that KQT-EWMA can outper-
forms the state of the art. While
QT-EWMA and Euclidean KQT-
EWMA can control the false alarm
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(SPLL delay is comparable here when
d = 8, but FA rate is 2-3 times bigger.
As dimensionality grows, only QT-
EWMA and Euclidean KQT-EWMA
can control the false alarms. Values
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compare KQT-EWMA implemented with differ-
ent distances, QT-EWMA and an online version of
SPLL, which relies on a Gaussian Mixture Model
(GMM), together with the effect of PCA-like ro-
tations. Again, we increase data dimensionality d
controlling sKL, and decrease the number of train-
ing points N to study the algorithms’ performance
in when in trouble. While QT-EWMA and Eu-
clidean KQT-EWMA can control the ARLg and
SPLL cannot, KQT-EWMA with Mahalanobis
and Weighted Mahalanobis distances loses this
property with increasing dimensionality, IV fixed
(same discussion as for the FPR control batch-
wise). When there is control over the false pos-
itives, i.e. with a sufficient number of training
points, Mahalanobis and Weighted Mahalanobis
KQT-EWMA achieves the lowest (best) detection
delays. Some of the results are shown in Fig. 3.

6 Conclusions

Concept Drift Detection frameworks give a com-
prehensive view of the challenges and strategies
inherent in monitoring predictive models under
dynamic data conditions. The thesis work con-
fronted the complexity of high-dimensional multi-
variate data streams, studying the performances of
the QT algorithm, its generalized version Kernel-
QT (KQT), and its online variant, QT-EWMA.
This exploration finally included the proposal of
a novel online algorithm, KQT-EWMA, which
combines a generalized QT histogram with an
exponentially weighted moving average statistic
and outshines both QT-EWMA and the “oracle”
SPLL, both in terms of controlling ARLy and in
achieving impressively low detection delays when
N/d ratio is large.

We considered the interplay between dimen-

were averaged over 1000 experiments.

sionality, training data availability, and the choice
of distance metrics, together with conventional
data processing methods such as PCA; in particu-
lar we considered the significance of the choice of
components for building the projected space, al-
ways keeping in mind the importance of FPR (or
ARLy, online) control.

The conclusions of this study show paths for
future explorations and real-world applications:
we tried to set a controlled but comprehensive
framework for establishing the limits of these al-
gorithms, but in doing so, we just discovered new
questions, and the music is just starting.
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