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Abstract

IN a near-future society, robots will no longer be confined to industrial
environments but are bound to enter the service sector, where they
will interact with a wide variety of people with very different needs.

Efficiency-related factors drive existing software development techniques,
but this will no longer suit everyday interactions. Incorporating factors re-
lated to the human behavioral and physiological state into the development
process will become essential.

This research addresses these issues by proposing a model-driven ap-
proach to design, formally verify, and adjust scenarios where human-robot
interaction is a primary element. Target users of the approach are pro-
fessionals in charge of designing the robotic application but lacking solid
technical background, which motivates the high degree of automation of
the whole development toolchain.

The entry point to the approach is a user-friendly Domain-Specific Lan-
guage to specify the scenario and the robotic mission under analysis. A for-
mal model of the scenario based on Stochastic Hybrid Automata is then au-
tomatically generated. The approach captures a set of physiological traits—
including physical fatigue—and behavioral traits capturing the possibility
of the human making haphazard decisions. The formal model is subject to
Statistical Model Checking to estimate the most likely mission’s outcome.

Subsequently, the approach features a deployment framework to deploy
the scenario in a real setting or simulate it in a virtual environment for
further investigation. The configured model of the interactive scenario is
transformed into an executable version to ensure that properties formally
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verified at design time also hold at runtime.
Data collected during deployment are exploited to infer an updated model

of human behavior and adjust the robotic mission accordingly. To this end,
we introduce an automata learning algorithm called L∗SHA specifically tar-
geting Stochastic Hybrid Automata. The learned model of human behavior
is plugged into the Stochastic Hybrid Automata network to perform a new
round of verification and revise the mission’s design, if necessary.

All phases of the model-driven approach—the design-time analysis, de-
ployment, and automata learning—have been empirically validated on re-
alistic case studies inspired by healthcare scenarios. The formal foundation
is a key component in guaranteeing the dependability of the resulting soft-
ware components. At the same time, the high-level abstraction level and
the presence of a learning procedure promote the framework’s flexibility.

Keywords: Service Robotics, Human-Robot Interaction, Formal Meth-
ods for Robotics, Statistical Model Checking, Model-driven Engineering,
Domain-specific Languages for Robotics, Stochastic Hybrid Automata, Mod-
els of Human Behavior, Software Engineering for Robotics, Automata Learn-
ing
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Sommario

IN un futuro prossimo, i robot non saranno piú confinati all’ambito in-
dustriale ma verranno largamente impiegati nel settore dei servizi, dove
interagiranno con un’ampia varietá di persone con diverse esigenze.

Fattori legati all’efficienza sono alla base di tecniche di ingegneria del soft-
ware giá esistenti, ma ció non sará piú sufficiente per le interazioni tra uomo
e robot nella vita di tutti i giorni. Diventerá, infatti, essenziale incorporare
fattori legati allo stato comportamentale e fisiologico umano nel processo
di sviluppo del software.

Questo progetto di ricerca affronta quest’esigenza emergente proponendo
un framework model-driven per progettare, verificare formalmente e ri-
configurare scenari in cui l’interazione uomo-robot é un elemento primario.
Gli utenti a cui é destinato l’approccio sono figure professionali respons-
abili per la progettazione dell’applicazione robotica ma privi di un solido
background tecnico, il che motiva l’elevato grado di automazione del pro-
cesso di sviluppo.

Il punto di ingresso al framework é un domain-specific language acces-
sibile per specificare le caratteristiche dello scenario e la missione robot-
ica soggetti ad analisi. Successivamente, viene generato automaticamente
un modello formale dello scenario basato su Stochastic Hybrid Automata.
L’approccio include una serie di tratti fisiologici dei soggetti umani, inclusa
la fatica fisica, e tratti comportamentali, quali la possibilitá che l’essere
umano prenda decisioni inaspettate. Il modello formale é soggetto a Sta-
tistical Model Checking per stimare l’esito piú probabile della missione
robotica.
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In una fase successiva, il framework prevede un approccio per il deploy-
ment dello scenario in un ambiente reale o la simulazione in un ambiente
virtuale per ulteriori indagini. Il modello formale dello scenario interattivo
viene trasformato in una versione eseguibile per garantire che le proprietá
verificate formalmente in fase di progettazione valgano anche in fase di
esecuzione.

I dati raccolti sul campo durante l’esecuzione della missione vengono
sfruttati per apprendere un modello aggiornato del comportamento umano
e adattare di conseguenza la missione robotica. A tal fine, introduciamo
un algoritmo di automata learning chiamato L∗SHA specifico per Stochastic
Hybrid Automata. Il modello appreso del comportamento umano viene
inserito nella rete di Stochastic Hybrid Automata per eseguire un nuovo
ciclo di verifica e modificare la missione, se necessario.

Tutte le fasi del framework—l’analisi in fase di progettazione, l’imple-
mentazione e l’apprendimento degli automi—sono state convalidate em-
piricamente su casi di studio realistici ispirati a scenari dall’ambito medico-
sanitario. La base formale é una componente chiave per garantire l’affidabi-
litá dei componenti software risultanti. Allo stesso tempo, l’alto livello di
astrazione e la presenza di una procedura di apprendimento favoriscono la
flessibilitá del framework.

Parole Chiave: Robotica di Servizio, Interazione Uomo-Robot, Metodi
Formali per la Robotica, Statistical Model Checking, Metodi Model-Driven,
Domain-Specific Language per la Robotica, Stochastic Hybrid Automata,
Modelli del Comportamento Umano, Ingegneria del Software per la Robot-
ica, Automata Learning
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CHAPTER1
Introduction

This chapter introduces the technological and societal drivers for this
research and its relevance to the service robotics and software engi-
neering fields. A general overview of the presented framework for the
development of interactive service robotic applications is provided,
showcasing each contribution and its role within the bigger picture
through an illustrative example. Finally, the chapter lists the publica-
tions resulted from this research project and summarizes the structure
of the thesis.

1.1 Context and Motivations

Breakthrough technological advancements are shaping the future of the ser-
vice sector. Innovations brought by the phenomenon known as Industry 4.0,
such as IoT, pervasive sensorization, Cloud Computing, and Collaborative
Robotics, are now spreading to non-industrial settings with significant pro-
jected impacts on our everyday lives. Most importantly, highly sophisti-
cated robotic systems under development today are bound to transform the
job market once they become commercially available.
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The uptake of such solutions poses several problems ranging from tech-
nological challenges to ethical and societal implications. A recent study on
the future of employment indeed estimates that specific jobs, such as recep-
tionists, information clerks, healthcare support workers, and personal care
aides, will be taken over by robots with probabilities ranging from 60% to
90% [71].

In addition, the presence of robots in healthcare has increased in recent
years and shows an accelerating trend [160]. The use and penetration of
robotics for human care and aid are evidenced by the presence of European
calls and projects1, technology companies2, and market analysis reports
[64, 83].

All these initiatives and companies agree that using robots in care can
increase service quality. However, robots are not a substitute for humans
but a tool to improve their actions. For instance, a study by the American
Nurses Association [13] showed that robots could support and augment
nursing care delivery, improve nurse productivity, increase patient time,
and encourage positive emotional responses.

Despite this evidence, ongoing research investigates the extent of such a
technological and societal shift. This work attempts to answer the question
of the feasibility of such a step by addressing the analysis from the software
engineering standpoint. In particular, it sheds light on the development of
collaborative service robot applications in healthcare.

State-of-the-art technologies dealing with sensing, manipulation, and
reasoning capabilities make it feasible for robots to perform complex jobs.
Nowadays, a robot may be adequately equipped to sense multiple aspects of
its surroundings, efficiently detect obstacles, grasp and manipulate fragile
objects, perform surgery, and make decisions in delicate situations. How-
ever, these skills usually constitute silos of software, whose integration and
reuse are challenging tasks. The EFFIROB project [69], which analyzed
the profitability of developing a new service robot application, has esti-
mated that up to 80% of the total cost comes from software development
and maintenance.

More generally, software engineering techniques for robotics are not
mature yet to handle the complexity and changeability of service settings
[77]. Service robots operate in unconstrained environments where humans,
who they frequently interact with, constitute a significant source of uncer-
tainty. Decisions made at an early design stage of the application deter-

1Examples are the Harmony (https://harmony-eu.org) and the EnrichME
(https://cordis.europa.eu/project/id/643691) projects.

2Examples are Kompai Robotics (https://kompairobotics.com) and Labrador Systems
(https://labradorsystems.com).
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1.2. Model-Driven Framework’s Overview
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Figure 1.1: Diagram representing the workflow of the model-driven framework, as seen
in [129]. The approach has a cyclical structure, starting with configuring the interac-
tive scenario and evaluating its outcome. The scenario is deployed, and the collected
deployment traces are used to learn a model of human actions. The updated model is
used to reconfigure the robot mission, if necessary.

mine up to 90% of the overall life-cycle costs [57], and numerous sources
of uncertainty can hinder their validity. Therefore, it is of paramount im-
portance to provide designers with frameworks to develop applications that
are simultaneously reliable and flexible concerning the variability of the
environment [30]. Frameworks should also limit the gap between the de-
veloper’s knowledge and the prerequisites needed to access them, removing
the barriers due to the developers’ lack of specialized skills.

1.2 Model-Driven Framework’s Overview

Designing robotic applications to be deployed in delicate environments
where robots will closely interact with humans is challenging, requiring
a solid technical background in robotics and software design. This thesis
contributes to this line of research by proposing a model-driven frame-
work to develop interactive service robot applications.

Target users of the framework, called hereafter robotic application de-
signers (or application designers), are professional figures managing the
logistics of service facilities where robotic applications will be deployed,
such as clinical workflow analysts [171].

The framework targets robotic applications set in known layouts, fea-
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turing a wheeled mobile robot and one (or multiple) humans requesting a
service that requires interaction or coordination with the robot. Robot fleets
are supported under the constraint that only one is active at a time (i.e., the
other robots are available in case a replacement is necessary). The service
sequence is also assumed to be fixed; specifically, the framework does not
capture situations in which humans make new requests or change the re-
quested service while the mission is being executed.

While the geometry of the layout is known, humans are a source of
uncertainty as they may make unpredictable choices and stray from the
plan while interacting with the robot. Applications eligible for analysis
come, though not exclusively, from the healthcare and assisted living set-
tings, where people might be in pain or discomfort. Therefore, the develop-
ment process encompasses features of human physiological (i.e., physical
fatigue) and behavioral aspects, such as the unpredictability of the human
decision-making process. To this end, for the framework to be applicable,
agents must be equipped with sensors detecting their position within the
layout (e.g., Indoor Positioning Systems), biometric factors (for humans),
and level of charge (for robots).

Within the framework’s scope, interactions between humans and robots
conform to high-level “patterns” identifying recurring contingencies in as-
sistive applications. Throughout the thesis, we use the term “action” to
indicate an “atomic behavior that any actor executes in a scene” [104].
The framework approximates both the human body and robots’ threedi-
mensional envelopes as points (i.e., corresponding to their center of mass).
Therefore, we consider an atomic action either a displacement of such point
(e.g., the human walking) or the anticipation of a synchronization with an-
other agent (e.g., the robot waiting for another robot in the fleet to replace
them). Each interaction pattern is a sequence of actions (e.g., move until a
specific event occurs, stop, wait for the human to be close).

Although there is no standard definition of robotic “mission”, with this
term, we refer to a sequence of interaction patterns identifying the desired
behavior of the robot [76] performed in a specific layout. The mission
ends in “success” if all services in the sequence are brought to comple-
tion. On the other hand, the mission ends in “failure” if the active robot
gets fully discharged (thus, it can no longer move autonomously) and no
other robot is available to replace it or one of the human reaches an ex-
cessive level of physical effort that does not allow them to continue with
the operations safely. A sequence of missions constitutes a Human-Robot
Interaction (HRI) “scenario”. Hence, in the scope of this work, we under-
stand a robotic application as the realization of a scenario through real or
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(b) Layout for the running example, highlighting the two areas, their dimensions ([m]),
and the intersection point.

Figure 1.2: Graphical representation of the example scenario configuration.

virtual agents.
The framework exploits formal analysis to provide the robotic applica-

tion designer with reliable insights into the outcome of each mission (each
analyzed individually) constituting the scenario. Given the initial configu-
ration of a scenario (e.g., positions of the agents, battery charge), the appli-
cation designer receives an estimation of how likely the associated missions
are to end in success (dually, in failure) and the physical effort each mission
imposes on human subjects.

In the following, we present an illustrative scenario analysable through
the framework, whose initial setup is shown in Fig. 1.2. The layout is a
T-shaped corridor made up of two rectangular areas (see Fig. 1.2b): a hori-
zontal one and a perpendicular vertical one, whose intersection is centered
in point (45.0, 12.5). The corridor features four POIs (i.e., elements the
agents can interact with, represented in Fig. 1.2a): the robot’s recharge sta-
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tion, two cupboards containing medical kits (referred to as KIT1 and KIT2),
and the door leading to the waiting room. There are four agents in the sce-
nario: two humans (HUM1 and HUM2) and two robots (ROB1 and ROB2).
We assume that ROB1 is a Tiago3 with C0 = 40% and ROB2 is a Turtle-
bot3 WafflePi4 with C0 = 90% (where C0 is the initial charge). HUM1 is a
patient exhibiting a Young/Sick fatigue profile with average walking speed
v = 80cm/s while HUM2 is an Elderly/Healthy doctor with v = 100cm/s.
The designer wants to model and assess two alternative missions: the first
one features ROB1 leading the patient to the waiting room, then deliver-
ing KIT2 to the doctor. The second mission features ROB2 following the
doctor to fetch KIT1 and then leading the patient to the waiting room.

The framework’s workflow (shown in Fig. 1.1) is structured into three
macro-phases:

(1) design-time analysis: the application designer configures the sce-
nario through a specification language. Starting from the configura-
tion, a formal scenario model is automatically generated together with
a set of path formulae and state formulae (referred to as “properties”).
Properties are subject to verification. The probability of a property
holding quantifies a “quality measure” (or a key performance indica-
tor) of the scenario (for example, its probability of success);

(2) deployment: when the design-time results are deemed acceptable, the
application designer deploys the scenario either in a physical environ-
ment or simulated environment; to enable the deployment, the formal
model is converted into executable software components. The latter
communicate with agents within the deployment environment through
a middleware layer;

(3) model adjustment: field data collected through deployment are fed
to a learning technique to infer a refined model of human behavior
and iterate the formal analysis. The application designer examines
the refined quality metrics of the scenario and applies reconfiguration
measures, if necessary.

1.3 Contributions

Specifically, the contributions presented in this thesis are:

3Technical specifications available at: https://pal-robotics.com/robots/tiago/.
4Technical specifications available at: https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/.
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1.4. Dissemination

1. A custom Domain-Specific Language (DSL) to specify the scenario
under analysis in an accessible, user-friendly manner [131]. The DSL
is a lightweight textual notation expressing the features of the formal
model that may vary between different scenarios.

2. A formal modeling approach exploiting Stochastic Hybrid Automata
to model the entities involved in the scenario (i.e., the layout, the
robots, and the humans), which incorporates a stochastic characteri-
zation of human physiological and behavioral aspects [125–127,130].

3. A deployment framework to run the scenario in a physical, simu-
lated, or hybrid (partially physical and partially simulated) environ-
ment [128]. A model-to-code mapping function converts the formally
modeled entities into executable software components to ensure that
the deployed system behaves correspondingly to the verified model.

4. An active automata learning algorithm targeting Stochastic Hybrid
Automata. The algorithm exploits signal processing and statistical
techniques to infer a formal model from field data. The algorithm
is domain-agnostic and has been tested against different case studies
capturing different Cyber-Physical Systems, mainly to learn a refined
model of human behavior as part of the development framework [129].

5. Extensive experimental validation assessing the coverage, accuracy,
and effectiveness of all the framework phases on illustrative realistic
scenarios inspired to the healthcare setting [129].

1.4 Dissemination

The research presented in this thesis resulted in the following publications:

• [127] Livia Lestingi, Mehrnoosh Askarpour, Marcello M Bersani, and
Matteo Rossi. Statistical model checking of human-robot interaction
scenarios. In First Workshop on Agents and Robots for reliable Engi-
neered Autonomy, pages 9–17, 2020

• [125] Livia Lestingi, Mehrnoosh Askarpour, Marcello M Bersani,
and Matteo Rossi. Formal verification of human-robot interaction in
healthcare scenarios. In SEFM, pages 303–324. Springer, 2020

• [126] Livia Lestingi, Mehrnoosh Askarpour, Marcello M Bersani, and
Matteo Rossi. A model-driven approach for the formal analysis of
human-robot interaction scenarios. In IEEE SMC, pages 1907–1914,
2020
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• [128] Livia Lestingi, Mehrnoosh Askarpour, Marcello M. Bersani,
and Matteo Rossi. A deployment framework for formally verified
human-robot interactions. IEEE Access, 9:136616–136635, 2021

• [130] Livia Lestingi, Cristian Sbrolli, Pasquale Scarmozzino, Giorgio
Romeo, Marcello M Bersani, and Matteo Rossi. Formal modeling and
verification of multi-robot interactive scenarios in service settings. In
Intl. Conf. on Formal Methods in Software Engineering, pages 80–90,
2022

• [129] Livia Lestingi, Marcello M Bersani, and Matteo Rossi. Model-
driven development of service robot applications dealing with uncer-
tain human behavior. IEEE Intelligent Systems, 2022

• [131] Livia Lestingi, Davide Zerla, Marcello M Bersani, and Matteo
Rossi. Specification, stochastic modeling and analysis of interactive
service robotic applications. Robotics and Autonomous Systems, page
104387, 2023

• [21] Marcello M. Bersani, Matteo Camilli, Livia Lestingi, Raffaela
Mirandola, Matteo Rossi, and Patrizia Scandurra. Towards better trust
in human-machine teaming through explainable dependability. In Intl.
Conf. on Software Architecture Companion, pages 86–90, 2023

• [20] Marcello M Bersani, Matteo Camilli, Livia Lestingi, Raffaela
Mirandola, and Matteo Rossi. Explainable human-machine teaming
using model checking and interpretable machine learning. In Accepted
for presentation at Intl. Conf. on Formal Methods in Software Engi-
neering, 2023

1.5 Structure of the Thesis

The thesis structure is described in the following.
The introductory part contains chapters:

• Chapter 2 surveying state-of-the-art related works, highlighting the
gaps addressed by this research;

• Chapter 3 illustrating the preliminary theoretical concepts underlying
the work and overviews pre-existing software tools that have been em-
ployed;

• Chapter 4 introducing in detail the model-driven framework’s work-
flow;
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1.5. Structure of the Thesis

Part I, focusing on the design-time analysis phase, contains:

• Chapter 5 presenting the scenario configuration task and the DSL;

• Chapter 6 presenting the developed formal models, whose experimen-
tal validation is presented in Chapter 7;

• Chapter 8 focusing on the developed erroneous human behavior for-
mal model, with dedicated experiments presented in Chapter 9.

Part II, focusing on the deployment phase, contains:

• Chapter 10 introducing the deployment approach, with dedicated val-
idation in Chapter 11;

Part III, focusing on the model adjustment phase, contains:

• Chapter 12 introducing the L∗SHA algorithm for automata learning;

• Chapter 13 presenting the experimental validation of L∗SHA on case
studies independent of the human-robot interaction domain, highlight-
ing the system-agnostic nature of the algorithm;

• Chapter 14 introducing how learned automata modeling human be-
havior are extended to be compatible with the formal model;

• Chapter 15 presenting the experimental validation of L∗SHA focusing
on human behavior learning;

Part IV contains:

• Chapter 16 presenting the experimental validation of the overall frame-
work on illustrative scenarios from the healthcare setting.

Finally:

• Chapter 17 concludes and illustrates future research direction building
upon the hereby presented foundation.
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CHAPTER2
Related Work

This chapter surveys existing works on software development for robotics,
mainly focusing on applications where human-robot interaction is pre-
dominant or that exploit formal methods throughout the pipeline.

To further aid the reader through the survey, sections focus on the
different framework’s phases following the workflow drafted in Chap-
ter 1: scenario configuration and formal modeling, followed by a fo-
cus on erroneous human behavior modeling, scenario deployment, au-
tomata learning, and human behavior learning. For each phase, we
highlight the identified gap and how the contributions of this thesis
address it.

2.1 HRI Formal Modeling and Verification

Developing software for the robotic domain is an elaborate process given
the complexity, and the unstructured nature of the system itself [77]. There-
fore, it usually requires a combination of different software development
techniques to achieve a satisfactory result. Several works focus on tasks
such as testing and simulation [1], or implementation [4], which are sub-
stantial to the development process but out of the scope of this review. In
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the following, we focus on the early design phase and report on works ex-
ploiting formal methods.

Existing works can be classified based on the formalism used to model
the environment and the agents’ behavior and the verification technique
applied to check properties.

2.1.1 Temporal Logic-based Robotic Applications Modeling

As for the first criterion, temporal logic notations are often adopted to
model the robotic task.

Gainer et al. [74] present the CRutoN tool to analyze a personal robot’s
behavior in a domestic setting. The work models the robot’s behavior as a
set of logic constraints, automatically parsed and converted into a NuSMV
model [43]. The generated model is put through model checking to verify
relevant properties about the system, e.g., that the robot never fails to alert
the user about an event that requires their attention.

Webster et al. [215] had previously exploited the BrahmsToPromela
tool [203] for the same case study. The human users and the robot are
modeled using Brahms as agents. Brahms models are then automatically
translated into Promela and verified through the SPIN model checker. Both
works treat human behavior as a black box whose actions are selected non-
deterministically from a pre-determined set.

Vicentini et al. [213] introduce an innovative risk assessment procedure
for collaborative industrial tasks based on the TRIO temporal logic lan-
guage [72]. Similarly to previous examples, the authors model the agents
and the task through a set of logic formulae to find safety hazards and assess
their severity.

As previously mentioned, human-robot interaction introduces uncertain-
ties into the model; thus, the work has been subsequently extended to in-
clude manifestations of erroneous human behavior [10].

2.1.2 State-based Robotic Applications Modeling

State-based formalisms are also a popular choice to model the behavior of
robotic systems. Most works pair the state-based model of the system with
a set of logic properties to perform verification.

Ding et al. [52] exploit Finite State Machines to model collaborative
industrial tasks, later extended to cover multi-robot multi-human tasks [53],
where unexpected events due to the presence of humans are modeled as
exceptions and paired with a recovery strategy.
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Porfirio et al. [175] explore how formal verification can ensure that
robots adhere to social norms while interacting with humans. Norms ex-
pressed as LTL formulae constitute the properties to be verified, whereas
interaction sequences are modeled as a composition of Labelled Transition
Systems (LTSs).

The work by Adam et al. [2] also targets the social robotics field, as the
authors propose the CAIO framework. The authors exploit the Belief De-
sire Intention (BDI) architecture and models of human cognition to develop
a perception and deliberation process that drives the robot towards making
decisions in a human-like fashion and making human-robot interaction feel
more natural.

Quottrup et al. [178] model multi-robot systems as a network of Timed
Automata and verify whether collisions potentially occur or some robots
are not able to complete their goal, which is all expressed as CTL properties
and verified through Uppaal.

Zhou et al. [228] propose a similar approach based on Timed Automata
and MITL properties focused on motion planning to synthesize optimal
trajectories based on verification results.

Some works have also exploited Hybrid Automata to incorporate phys-
ical laws into the verification process. Molnar et al. [159] introduce the
concept of Model Composition Agents (MCA), which encapsulate a Hy-
brid Automaton modeling either an agent or the environment and its inter-
action with other automata in the system. The resulting network of MCA is
abstracted as an LTS, and model checked to diagnose faults in the original
system.

2.1.3 Formalizations of Human Behavior

As human-robot interaction becomes a critical element of modern robotic
systems, particular attention has been given to how unpredictability due to
the presence of humans can be formally modeled. In this aspect, two main
research directions emerge from the literature: game-based approaches and
probabilistic models.

The possibility to model the interaction between a robotic agent and the
environment as a game to synthesize a robot controller strategy (if it exists)
is investigated in [119]. Kress et al. emphasize the challenge of finding
a proper abstraction of the environment model that allows for significant
verification results without leading to state space explosion.

Chen et al. [38] apply the approach based on Timed Game Automata
(TGA) and LTL to surveillance, monitoring, and delivery tasks in partially
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unknown environments. The work by Bersani et al. [22] addresses applica-
tions involving robots and humans working in a shared environment, mod-
eled as TGA networks. Humans are modeled as uncontrollable agents to
capture the uncertainty of their behavior. A robot controller that accounts
for unpredictable human moves is then automatically synthesized through
the Uppaal-TIGA tool.

On the other hand, probabilistic models of human behavior and decision-
making (e.g., the Boltzmann policy [16]) are well-established in the litera-
ture and have been successfully applied to the robotic domain.

Mason et al. [151] exploit Markov Decision Processes (MDPs) to model
an assistive-living scenario and verify probabilistic properties (expressed in
PCTL logic) through the PRISM model checker [121].

The work by Junges et al. [108] combines the two approaches since
it models the robot as a stochastic controllable agent and the human as
stochastic and uncontrollable, which, when combined, produce a stochastic
two-player game. In this case, optimal robot policies are also synthesized
through PRISM-Games [37].

Vibekananda et al. [55] exploit Probabilistic State Machines to perform
human pose estimation and predict their intention while interacting with a
robot.

Galin et al. [75] build upon a previous study on how Cellular Automata
with probabilistic transitions can be used to model human motion in par-
tially unknown environments [28]. The authors exploit these theoretical re-
sults to develop the model of a shared workspace where humans and robots
work simultaneously to compute the area where their trajectories are more
likely to overlap.

2.1.4 Verification Techniques and Tools

Since state-based formalisms and temporal logics are the most popular
choices when it comes to modeling the robotic system, it follows that model
checking is the natural choice in terms of verification technique [143],
given the availability of powerful model checkers such as Uppaal [123]
and SPIN [95].

Models based on MDPs, such as the one developed by Ye et al. [220],
can be verified through Probabilistic Model Checking, which is most often
performed through PRISM [121].

Statistical Model Checking (SMC), the verification technique used in
our framework, has also gained momentum over the last few years. The
most common motivation pertains to the reduced verification times, which
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Table 2.1: HRI formal modeling survey summary. Works are categorized based on the
underlying formalism, the employed verification technique, the approach adopted to
model human behavior (if any), and the specific application domain within the robotics
area (if any). The framework presented in this thesis is listed first for comparison.

Ref. Formalism Employed Verification
Technique

Human Modeling
Approach Application Domain

*
Stochastic

Hybrid Automata
Statistical

Model Checking Probabilistic Service Robotics

[74] Linear Temporal Logic Model Checking None Domestic Assistance
[215] Linear Temporal Logic Model Checking Non-deterministic Domestic Assistance

[10, 213] TRIO Logic Satisfiability Checking Non-deterministic Manufacturing
[52, 53] Finite State Automata Simulation None Manufacturing

[175]
Labelled Transition

Systems Model Checking Non-deterministic Social Robotics

[2]
Belief Desire

Intention Agents Simulation Non-deterministic Social Robotics

[178] Timed Automata Model Checking None Multi-robot Systems
[228] Timed Automata Model Checking None General-purpose
[159] Hybrid Automata Model Checking None General-purpose
[119] Kripke Structure Controller Synthesis Non-deterministic General-purpose
[38] Timed Game Automata Controller Synthesis Non-deterministic General-purpose
[22] Timed Game Automata Model Checking Non-deterministic Service Robotics

[151]
Markov Decision

Processes
Probabilistic

Model Checking Probabilistic Domestic Assistance

[108]
Markov Decision

Processes
Probabilistic

Model Checking Probabilistic General-purpose

[55]
Probabilistic

State Machines Simulation Probabilistic General-purpose

[75] Cellular Automata Simulation Probabilistic General-purpose

lead to more practical approaches.
Paigwar et al. [168] exploit SMC to estimate the probability of collisions

in automated driving systems.
Foughali et al. [67] apply SMC to formally verify robotic software’s

real-time properties, like schedulability and readiness.
Herd et al. [88] focus on multi-agent systems and swarm robotics in par-

ticular. In this case, SMC dampens issues related to the size of the problem,
which cannot be handled by traditional model checking techniques.

Discussion

This survey (summarized in Table 2.1) shows that numerous approaches ex-
ploit formal methods to analyze robotic applications. Specifically, several
attempts have been made at formalizing the aspects of human behavior that
are significant while interacting with a robot and should, thus, impact the
results of the formal analysis. Most of these works present either determin-
istic, game-based, or probabilistic approaches, such as the hereby presented
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framework.
Deterministic approaches—such as architectures based on BDI agents—

potentially result in less complex models and more favorable verification
times. However, assuming complete rationality and absence of fuzziness is
reasonable for robotic agents (the orchestrator SHA indeed inherits most of
its substructures from the BDI architecture) or for human agents perform-
ing small repetitive tasks in controlled environments [2, 8]. Human-robot
interactions in the service sector feature virtually no constraint on human
behavior, thus deterministic models are overly restrictive. Furthermore, ser-
vice robot applications involve people from various age groups with differ-
ent characteristics and performing a broad range of tasks. Therefore, while
estimating a scenario’s outcome, exploring the state space of all possible
behaviors should be guided by such features.

Game-based approaches, although effective when exploited for controller
synthesis [22], imply an exhaustive exploration of human actions (i.e., the
opponent’s move) irrespective of their likelihood given the specific scenario
configuration.

For these reasons, probabilistic approaches are particularly suited for the
purpose of this framework. Specifically, to the best of the authors’ knowl-
edge, this is the first attempt at combining probabilistic weights on human
actions with a hybrid and stochastic characterization of physiological pro-
cesses. Due to its complexity, the resulting model is more practically man-
ageable through SMC rather than probabilistic model checking. Indeed,
works exploiting exhaustive techniques such as [216] focus on smaller se-
tups targeting a specific task (e.g., the handover of an item). Despite the
loss in reliability introduced by SMC that only relies on a finite set of runs
of the systems, the proposed framework is applicable to a broad range of
scenarios (as shown by the coverage analysis results) while still providing
results at design time that accurately reflect runtime observations.

2.2 Robotic Domain-Specific Languages

In 2014, Nordmann et al. [163] surveyed 137 papers presenting robotic
DSLs. At the time of writing, Scopus indexes approximately 70 papers
published since 2014 with keywords robot* and dsl. These numbers show
that DSL development is a cornerstone of the robotic software engineering
process since it automates the generation of code or complex models and
makes development frameworks accessible to a broader audience. Refer-
ring to the classification in [163], in the following, we report on the subset
of works on this topic dealing with the scenario building phase, i.e., DSLs
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to specify high-level environment features and the robot’s task, as these are
the closest to our work.

2.2.1 DSLs for Scenario Building.

Noreils and Chatila [164] present a high-level notation to specify reac-
tive robotic mission plans. The language envisages the specification of
modules, which are further structured into three architectural layers: the
functional layer to specify the lower-level robot’s capabilities, the planning
layer to specify task sequences, and the control layer that translates plans
into requests to the functional modules.

Knoop et al. [117] present an approach to automatically generate robotic
tasks starting from representations of tasks in the human operational space,
adhering to the Programming by Demonstration paradigm.

Finucane et al. [63] present the LTLMoP framework to automatically
synthesize and deploy robot controllers. The framework converts Struc-
tured English specifications describing the robotic task into equivalent LTL
formulae, which are then synthesized into an automaton (the discrete con-
troller). The work has been subsequently extended by Raman et al. [180]
with implicit memory strategies to model robotic tasks depending on events
that occurred in the past (e.g., “every time you sense order, visit the kitchen”).

Kunze et al. [120] present SRDL, a framework extending the KnowRob
knowledge base [209] with notions about robots, hardware components,
actions, and capabilities (of performing a certain action).

Miyazawa et al. [158] introduce RoboChart, a DSL to model and verify
real-time concurrent robotic tasks with budgets and deadlines (i.e., cost and
time constraints). RoboChart semantics, based on Timed Automata and
Timed Communicating Sequential Processes (CSP) [193], make the nota-
tion amenable to formal verification, specifically model checking.

Ciccozzi et al. [42] propose a family of three languages to specify mis-
sions for multi-robot systems: the Monitoring Mission Language to specify
task sequences, the Robot Language to configure the individual robots, and
the Behavior Language to specify the atomic movements of robots.

2.2.2 DSLs for Human-Robot Interaction

Over the last few years, the advent of human-robot interaction and collab-
orative robotics has shifted the focus of DSL development. Recent works
introduce semantic entities to describe human actions and robots’ reactions
to human-related events.
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Table 2.2: Robotic Domain-Specific Languages survey summary. Works are categorized
based on the targeted architectural level [144], whether DSL models can be subject
to verification through an automated procedure, whether the language supports inter-
active applications, and the specific application domain within the robotics area. The
framework presented in this thesis is listed first for comparison.

Ref. Architectural Level Automated
Verification

Human-Robot
Interaction Support Application Domain

* Task Plot ✓ ✓ Service Robotics

[164] Function/Hardware × × Mobile Robots
[117] Service × × General-purpose

[63, 180] Skill ✓ × Domestic Assistance
[120] Hardware/Service × × General-purpose
[158] Skill ✓ × General-purpose
[42] Mission/Service/Hardware × × Multi-Robot Systems
[8] Service × ✓ Human-Robot Interaction
[50] Service × ✓ Warehouse Logistics
[65] Service × ✓ Rehabilitation Robotics

Araiza-Illan et al. [8] exploit the AgentSpeak language [181] to im-
plement BDI agents and automatically generate test cases for interactive
robotic applications. The framework is tested on a cooperative table as-
sembly case study. The robot’s BDI agent infers the human’s state based on
three sensors and reacts accordingly as encoded by the AgentSpeak model.

Detzner et al. [50] present LoTLan, a domain-specific language to de-
scribe warehouse material flow processes. The work consists of a procedure
to map human vocal requests (e.g., “I need an item”) to common semantics,
identifying who has to perform which action, and finally, LoTLan primi-
tives, which are then converted into plans for AGVs.

Forbig et al. [65] exploit their language CoTaL [66] to model interac-
tive tasks between a humanoid robot and a stroke patient performing arm
mobility recovery exercises. The resulting specification captures all phases
needed for the exercise session, how the humanoid robot can detect whether
the patient has completed an exercise, and how to react accordingly.

Discussion

This section shows that the literature is rich with DSLs for the robotic do-
main, but proposals targeting interactive applications are lacking (as shown
in Table 2.2). Specifically, existing works target the manufacturing sec-
tor [50, 79] or very specific tasks from the healthcare setting [65]. In con-
trast, the service sector calls for more general-purpose primitives to define
how robots and humans interact. Other works propose a high-level spec-
ification of mission patterns for multi-robot teams in environments (pos-
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sibly) populated by humans [76, 155], but this has not been attempted for
applications where humans are actively involved as in the domain of this
framework.

2.3 Erroneous Human Behavior Modeling

Modeling human behavior is a long-standing issue in human-automation
interaction analysis. With the advent of collaborative robotics, the problem
has recently started to attract attention in its declination to human-robot
interaction.

Unforeseen human actions, especially those originating from errors, hugely
impact the design of general human-machine interaction, especially with
robots [10, 49]. In the field of human-robot interaction, most works inves-
tigate human errors as sources of safety hazard (e.g., leading to a collision
with the robot), which is the core issue tackled by Human Reliability Anal-
ysis [54, 96] and probabilistic risk assessment techniques [93, 217].

Given the complexity of the human mind and the human decision-making
process, a perfectly accurate, all-encompassing model of human behavior
is not feasible. However, existing works, mostly from research on human
cognition, propose mathematical models of human behavior within spe-
cific boundaries, for example, limited to decision-making in the workplace.
These models fall into three main categories [9]:

1) cognitive models investigate the mental process leading to a certain
decision;

2) task-analytic models capture human behavior as a hierarchy of ac-
tions;

3) probabilistic models refine the non-determinism of human behavior
through probability distributions over actions.

Well-established cognitive models are Soar [122] and Adaptive Char-
acter of Thought (ACT-R) [6]. However, cognitive sources behind human
behavior are out of the scope of our model-driven framework; therefore,
mental models are not further investigated.

Task-analytic models such as ConcurTaskTrees (CTT) [170], although
recently expanded with a taxonomy of human errors [26], suffer from the
drawback of being intrinsically case study-specific, thus hardly reusable.

Probabilistic models are considered highly beneficial in designing cyber-
physical systems where human factors are critical [48]. Some examples of
probabilistic models are Boltzmann rationality [16], the LESS model [24],
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and Markovian models such as Partially Observable Markov Decision Pro-
cesses (POMDPs) [192], and Bayesian Networks [210].

The main issue of probabilistic models is the lack of extensive and
reusable datasets to train reliable probability distributions [51]. However,
although our work does employ a probabilistic model of human behavior
(i.e., SHA), it partially works around this issue by performing design-time
analysis as a function of probabilistic parameters. Nevertheless, collecting
actual observations of human behavior while participating in the analyzed
scenarios would still be necessary to provide compelling evidence of the
formal model’s accuracy.

Previous works propose a formalization of erroneous human behavior
models for formal verification. Cerone et al. [36] propose a taxonomy
of operator errors in human-computer interaction formalized through the
CSP process algebra and temporal logic. Shin et al. [197] present a formal
model of human material handlers in manufacturing systems, depending
on human tasks and errors modeled through part-state graphs. Rukšėnas et
al. [190] present a verification framework for interactive systems with cog-
nitive models of human errors under timing constraints based on the Goals,
Operators, Methods, and Selection (GOMS) methodology [107]. Askar-
pour et al. [10] present an automated risk assessment technique for collab-
orative robotic applications. The eight phenotypes identified by Hollnagel
are expressed through logic formulae and verified through the Zot formal
verification tool.

Discussion

The mentioned works are summarized in Table 2.3. The service sector
has different demands than the industrial settings, especially in healthcare,
since it is characterized by a higher degree of human task diversity and
more significant sources of uncertainty [145, 204]. Therefore, given the
different target domains and underlying formalisms, the results obtained
in [10] cannot be directly embedded into our framework. However, the ob-
servations in [10] about the efficacy of Hollnagel’s phenotypes constitute
the foundation for the work presented in this thesis, which adapts pheno-
types to behaviors observed in service settings and integrates them with a
stochastic characterization.

2.4 Robotic Applications Deployment

One of the contributions of this thesis is a model-to-code mapping tech-
nique to translate a Stochastic Hybrid Automata network into a robotic de-
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Table 2.3: Erroneous Human Behavior Modeling survey summary. Works are categorized
based on the modeling approach category (i.e., either cognitive, task-analytic, or prob-
abilistic) and the underlying formalism (if any). The framework presented in this thesis
is listed first for comparison.

Ref. Cognitive Task-analytic Probabilistic Formalism

* × × ✓ Stochastic Hybrid Automata

[122] ✓ × × None
[6] ✓ × × None

[26, 170] × ✓ × ConcurTaskTrees
[48] × × ✓ None
[16] × × ✓ None
[24] × × ✓ None

[192] × × ✓ Markov Decision Processes
[210] × × ✓ Bayesian Networks
[36] × ✓ × CSP Process Algebra

[197] × ✓ × Deterministic Finite Automata
[190] ✓ × × SAL Language
[10] × ✓ × TRIO Logic

ployment framework.
Several works in literature have a similar goal, though often targeting a

different formalism or a different phase of the software development pro-
cess. In some cases, testing rather than deployment is the primary purpose,
as TA can be exploited to automatically generate offline and online test
cases (e.g., for ROS packages [58]).

Previous attempts are also at porting a formal model to a simulation
environment. One example is the TestIt framework, which generates a
simulator-agnostic simulation environment for multi-agent robotic appli-
cations starting from Timed Automata [111].

Other works focus on code analysis and explore the possibility of high-
lighting potential flaws in a ROS-based infrastructure through model check-
ing [86]. Another notable example is the work by Wang et al. [214], pre-
senting a model-driven framework to convert a TA network into C++ code,
which is tested on a robot grasping task.

This survey suggests that developing code generation techniques starting
from formal models is valuable to the robotic field. The approach allows
for the testing and deployment of robotic applications whose properties (for
example, concerning safety or efficiency) have been formally verified.

On the other hand, the assistive robotics domain, to which this work is
tailored, calls for a sound mathematical formulation of human physiologi-
cal and behavioral properties to be involved in the formal verification pro-

41



Chapter 2. Related Work

Table 2.4: Robotic Application Deployment survey summary. Works are categorized based
on whether they include a code generation mechanism, the starting formalism (if any),
the target programming language (if any), the employed 3D simulator (if any), and
whether the approach supports interactive applications. The framework presented in
this thesis is listed first for comparison.

Ref. Code
Generation Starting Formalism Target Programming

Language 3D Simulator Human-Robot
Interaction Support

* ✓
Stochastic

Hybrid Automata Python / LUA CoppeliaSim ✓

[58] ✓ Timed Automata Python Morse ✓

[111] ✓ Timed Automata C++ / Python
Any (if compatible

with ROS) ×
[86] ✓ Timed Automata C++ None ×
[214] ✓ Timed Automata C++ Gazebo ×
[147] ✓

Synchronous
Emulation Automata C Piha ×

[56] ✓ Hybrid Automata C Modelica ×
[15] ✓ Hybrid Automata Simulink/Stateflow Simulink ×
[227] × - - - ✓
[116] ✓ None Custom Scripts Custom ✓
[177] × - - - ✓

cess. More complex time-dynamics mean that Timed Automata—including
the non-deterministic or probabilistic extensions—or temporal logic-based
notations [213] no longer suffice as they require a hybrid formalism.

Pre-existing works that introduce translation principles of Hybrid Au-
tomata into executable code do not suit robotic applications. In some cases,
modular architectures with parallel components are the target [147], whereas
interactive robotic applications require a hierarchical deployment structure
with an intermediary middleware layer.

As previously noted, some works target testing and code coverage rather
than deployment [56] or model-to-model transformations, such as HA to
Simulink/Stateflow (SLSF) diagrams [15]. To the best of the authors’ knowl-
edge, the hereby presented deployment approach is the first to introduce a
mapping principle between a HA network and a software architecture com-
patible with a ROS-based robotic system.

The research line on verification and simulation techniques for analyz-
ing human-robot interaction is also worthy of discussion. Simulation can
be used to estimate the final level of satisfaction of the human customer
after short-term human-robot interactions [227].

Some works focus on the planning phase of the robotic mission, for
example, analyzing alternative workflows for the task driven by human in-
put [116].

Quintas et al. [177] investigate how an agent’s performance is affected
by interaction workflows in its decision-making process. The framework
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processes a high-level description of the scenario and the human interacting
with the robot to generate a mission plan graph.

The inclusion of a human operator model is also of paramount impor-
tance in the Virtual Commissioning (VC) of collaborative manufacturing
tasks, whose purpose is to test in advance the system’s reaction to malfunc-
tions [189]. Webster et al. [216] also argue that different verification and
validation (V&V) techniques are not fully exhaustive when they are used
alone but should be combined into a corroborative approach to consider-
ably increase their effectiveness.

Discussion

The survey on deployment approaches and code generation techniques for
robotic applications is summarized in Table 2.4. The survey shows how
an approach based on formal methods like the one presented in this the-
sis can significantly benefit the software development lifecycle regarding
dependability. The vast majority of industry professionals who have em-
ployed formal verification techniques report a quality boost for the final
product [218], and demand for this approach is rapidly growing [82].

This approach can prove especially beneficial to cyber-physical systems,
where robots interact with the environment and humans [78]. Therefore,
software running on robots in charge of decision-making must result from
a trustworthy verification process. The deployment approach presented in
this thesis paves the way for a dependable code generation technique re-
taining the features verified while designing the robotic application.

2.5 Automata Learning

Throughout the chapter, we surveyed several valid modeling techniques for
human-robot interaction that are amenable to formal verification. Never-
theless, whenever a complex Cyber-Physical System (CPS) such as HRI
scenarios is involved, a permanent CPS model may not be efficient or rea-
sonable. Unexpected behaviors may arise once software components are
deployed, or known behaviors may evolve in time (e.g., due to the decay
of physical elements). Data-driven learning techniques are necessary to
have the model evolve based on field observations. Specifically, since the
formalism underlying this work is automata-based, we focus on automata
learning techniques.

The research line on automata learning has been active for the past four
decades as it is an essential tool to tackle the analysis of complex systems
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Figure 2.1: Schematic representation from [97] of the interaction between the learner and
the teacher in L∗, where ⊗ indicates the symmetric difference operator.

subject to uncertainty [97]. Automata learning algorithms are mainly clas-
sified according to two criteria [146]:

1. active or passive: active algorithms can request new observations of
the system under learning whenever this is found necessary and usu-
ally rely on a teacher/learner pattern; passive algorithms solely rely on
a collected set of samples;

2. online or offline: online algorithms can process a collected observation
only once, while offline algorithms store observations, thus allowing
for repeated processing.

In the following survey, we focus on active online algorithms as they best
suit real-time critical CPSs.

The earliest works introduce algorithms to learn Deterministic Finite-
state Automata (DFA). Most notably, given a finite alphabet Σ, the active
online learning algorithm L∗ infers a DFA for a specific language L [7]
through the interaction between a learner and a teacher, also represented
in Fig. 2.1. The learner stores the conjecture DFA as an observation table
and refines it by submitting queries to the teacher, which possesses exhaus-
tive knowledge about the language under learning. In L∗, there are two
types of queries: membership queries and equivalence queries. The learner
submits membership queries to inquire whether a specific word w is ac-
cepted by the language under learning known by the teacher. The learner
then submits an equivalence query when a conjecture DFA (i.e., accepting
conjecture language LH) is ready. If the teacher approves the conjecture
(i.e., if equivalence LH = L holds), L∗ terminates; otherwise, the teacher
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returns a counterexample word ce ∈ (L⊗LH), i.e., a word that the conjec-
ture should accept but it does not or vice-versa.

L∗ has been subsequently extended to cover Mealy machines [150],
Timed Automata [87], and Petri Nets [59]. The TTT algorithm adopts a
similar framework introducing redundancy-free data structures [102].

A wide range of automata learning algorithms (including L∗ and TTT)
targeting DFA, Mealy machines, and Visibly Pushdown Automata (VPDA)
are implemented in the open-source framework LearnLib [179]. LearnLib
is a C++ library for automata learning developed to—among other goals—
experiment with and compare different learning techniques for finite-state
models of real-world systems. It is constituted of three modules:

• the algorithm, for which a range of both active (e.g., L∗, TTT [102],
and DHC [157]) and passive algorithms (e.g., RPNI [166]) is imple-
mented;

• the filter, i.e., a strategy to reduce the number of queries;

• the approximative equivalence queries module, exploiting the genera-
tion of test suites for the submitted conjectures.

However, deterministic formalisms do not adequately capture the sys-
tem’s behavior when the CPS under analysis exhibits unpredictable behav-
ior (especially with humans involved). To this end, learning algorithms for
probabilistic automata have also received a great deal of attention.

Carrasco and Oncina introduced the ALERGIA algorithm for Stochastic
Finite-state Automata learning [34], later extended by Mao et al. [148].

Some works adopt a frequentist approach, such as the work by Ghezzi
et al., where probability weights on transitions are Bayesian estimators ex-
trapolated from traces [80].

Tappler et al. developed an extension of L∗ to Markov Decision Pro-
cesses [207] called L∗MDP. The authors develop two versions of L∗MDP, one
assuming the existence of an omniscient teacher like in L∗ and, most no-
tably, a sampling-based version. The latter lifts the assumption on the avail-
ability of an omniscient teacher (which is impractical with real systems),
replacing it with a sampling-based interface between the learner and the
teacher. The teacher’s answer to queries is based on the available samples,
and, when necessary, a specific query actively requests new observations
(thus L∗MDP is an active algorithm) to improve the accuracy of estimations
for rarely observed samples.

Several works target HA for systems with complex time dynamics. Med-
hat et al. present a framework to infer HA from input/output traces based
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Table 2.5: Active Automata Learning survey summary. Works are categorized based on
the target learned formalism and whether they imply the existence of an omniscient
oracle. The framework presented in this thesis is listed first for comparison.

Ref. Algorithm Target Formalism Omniscient Oracle

* L∗SHA

Stochastic Hybrid
Automata ×

[7] L∗
Deterministic

Finite-state Automata ✓

[150] L∗Mealy Mealy Machines ✓
[87] - Timed Automata ✓
[59] - Petri Nets ✓

[102] TTT
Deterministic

Finite-state Automata ✓

[157] DHC Mealy Machines ✓

[34, 148] ALERGIA
Stochastic

Finite-state Automata ✓

[80] BEAR
Stochastic

Finite-state Automata ×
[207] L∗MDP Markov Decision Processes ✓ / × (sampling-based version)
[154] - Hybrid Automata ×
[191] POSEHAD Hybrid Automata ×
[200] - Hybrid Automata ×
[219] - Hybrid Automata ×

on sampled signal clustering techniques [154].
Saberi et al. present a similar algorithm exploiting Dynamic Time Warp-

ing to cluster comparable signal segments [191].
The work by Soto et al. [200] introduces an online learning algorithm

for Linear HA based on membership queries that verify whether a data
set is a plausible realization of a hypothesis automaton within a tolerance
threshold.

Yang et al. [219] present a framework to infer HA, including linear in-
equalities guard conditions, exploiting Linear Matrix Inequality to clus-
ter signals with comparable dynamics and Prefix Tree Acceptor to merge
modes.

Discussion

Although the selected works (summarized in Table 2.5) show promising re-
sults when validated against selected case studies, they are limited to deter-
ministic models. However, assuming that complex CPSs such as interactive
robotic scenarios behave fully deterministically is not always feasible.

Modeling complex CPSs with a non-deterministic behavior requires both
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hybrid components to capture continuous-time dynamics and stochastic
features to capture uncertainty, as argued in Section 2.1. However, SHA,
which captures some non-deterministic behaviors, are not covered by exist-
ing learning algorithms. The presented research addresses this gap by ex-
tending the L∗ framework, whose soundness and robustness to extensions
have been repeatedly proven [97].

2.6 Human Behavior Prediction

Predicting human behavior is essential when assessing or deploying sys-
tems that require human-machine interaction. Numerous solutions have
been presented over the years. For example, Brown et al. [29], and Rudenko
et al. [188] surveyed more than 200 prediction algorithms for human driver
behavior and human motion, respectively.

Given the complexity of the problem, we bound the analysis to the as-
pects most relevant to the specific application. Our scenarios involve hu-
mans coordinating with mobile robots for tasks that require moving inside
a building (e.g., walking and running).

The entry point of our framework subsumes that humans and robots
have already established the task to carry out jointly: therefore, the social
aspect of the interaction (i.e., dialogues or gestures) is out of scope for
this work. Finally, given the high-level perspective of the work, human
modeling focuses on the decision-making process rather than lower-level
aspects such as motion planning: the latter are still relevant for the selected
scenarios, but they are also out of scope.

Given these premises, existing works that fall within the stated bound-
aries can be classified into two categories based on the underlying tech-
niques: expert-driven and data-driven [187] (also summarized in Table
2.6).

Expert-driven approaches require an explicit mathematical formulation
of the system under scrutiny. Within this category falls the expected util-
ity maximization paradigm [109], assuming that agents behave to maxi-
mize the utility obtained from a specific action. However, it is found to be
hardly applicable in reality. Further examples of expert-driven approaches
are quantal response [153], assuming that humans maximize the expected
utility although with a noisily estimated strategy, and level-k [202], assum-
ing that humans perform k bounded iterations of reasoning.

As for approaches based on human cognition, there exists a dichotomy
between heuristic-based and knowledge-based models [94]. Heuristic mod-
els have a more straightforward structure but lack accuracy, though there
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are some successful examples [149, 167].
On the other hand, knowledge-based models can be very complex and

are mostly limited to application fields where task-specific prior knowledge
is available [27, 226].

Markov Decision Processes (MDPs) are particularly suitable for mod-
eling uncertainty as a probabilistic phenomenon and are closely related to
this work’s formalism. Adomi et al. [3] exploit Hidden Markov Models
to predict the actions of subjects exploring a maze-like environment. Sim-
ilarly, Carr et al. [33] use MDPs to predict movements inside a grid-like
world, whereas McGhan et al. [152] employ MDPs to predict human intent
in a Space Station.

Data-driven approaches aim at converting field data into a decision-
maker to approximate the outcome of decision-making rather than reverse-
engineering the process. Reinforcement learning is adopted in several ap-
plication fields, including interaction with medical robots [137], simulated
driving [101], and pedestrian navigation [61].

Various works propose a human behavior prediction technique based on
deep learning. Phan et al. focus on the health domain and data collected
through mobile devices [173], whereas Lu et al. [142] and Jaouedi et al.
[105] both exploit visual data to predict human actions in sports-related
activities.

The model of human behavior in our framework is tied, at its core, to
physical fatigue. Several works exploit existing fatigue models to assess
the ergonomics of tasks that require collaboration between human operators
and robotic arms. The purpose is to plan tasks that preserve human health
in the long run by minimizing fatigue.

Zhang and Li [225] propose a model for auction-based task allocation
in human-robot teams that accounts for human fatigue and predicts human
performance at run-time. Peternel et al. [172] present a method for the
robot to adapt its behavior in real-time as a function of human fatigue. The
approach is validated on collaborative tasks involving an industrial manip-
ulator and a human worker.

The impact of human physical strain on collaborative manipulation tasks
has also been explored by Zanchettin et al. [223]. The authors present a mo-
tion control strategy so that the robot adapts to the most ergonomic posture
for the human operator to minimize fatigue. Li et al. [136] also focus on
industrial collaborative tasks, specifically how human efficiency decreases
due to fatigue during disassembly tasks. Heydaryan et al. [89] include hu-
man fatigue in the set of criteria agreed upon by a team of experts neces-
sary to evaluate the efficiency of their proposed decision-making process
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Table 2.6: Human Behavior Prediction techniques survey summary. Works are catego-
rized based on whether they are expert-driven or data-driven, the employed prediction
technique, the employed formalism (if any), and the specific application domain (if
any). The framework presented in this thesis is listed first for comparison.

Ref. Expert
Driven

Data
Driven

Prediction
Technique

Modeling
Formalism Application Domain

* ✓ × Statistical
Model Checking

Stochastic
Hybrid Automata Service Robotics

[109] ✓ × Numerical Solution Analytical Model Behavioral Economics
[153] ✓ × Numerical Solution Normal Form Games Game Theory
[202] ✓ × Numerical Solution Normal Form Games Game Theory
[149] ✓ × Numerical Solution Heuristic Model General-purpose
[167] ✓ × Simulation ACT-R General-purpose
[226] ✓ × Simulation Ontology Model Service Robotics

[3] ✓ × Bayesian Estimation
Markov Decision

Processes Exploration Tasks

[33] ✓ × Probabilistic
Model Checking

Markov Decision
Processes Motion Planning

[152] ✓ × Optimization
Markov Decision

Processes Human-Robot Interaction

[137] × ✓
Reinforcement

Learning
Markov Decision

Processes Medical Robotics

[101] × ✓
Reinforcement

Learning
Markov Decision

Processes Driving Simulation

[61] × ✓
Reinforcement

Learning Deep Neural Network Navigation Tasks

[173] × ✓ Deep Learning
Restricted

Boltzmann Machine Social Networks

[142] × ✓ Deep Learning
Convolutional

Neural Network Motion Tracking

[105] × ✓ Deep Learning
Gated Recurrent
Neural Network Motion Tracking

for human-robot teams.
There are also works that incorporate human fatigue into discrete-event

system models. Hu and Chen [98] propose a modeling framework based on
Petri nets for manufacturing processes, including a continuous-time Markov
Decision Process modeling human fatigue.

Discussion

Formal verification intrinsically requires a rigorous mathematical model,
which makes a purely data-driven approach impracticable for this work.
Therefore, although the learning process relies on field-collected data, the
L∗SHA output can be classified as expert-driven and plugged into the formal
model, although it exploits field-collected data to infer critical features of
automata modeling the human behavior.

The importance of fatigue modeling and sensing while developing robotic
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applications has already been acknowledged. Nevertheless, existing works
investigate the role of fatigue during task planning or as a driver for adap-
tation during motion planning. In contrast, this work focuses on the early
design stage. Furthermore, to the best of the authors’ knowledge, no exist-
ing work in the robotics area examines the fatigue phenomenon’s stochastic
features [100]. Fatigue rates exhibit significant variations based on the spe-
cific subject’s characteristics, the muscle group involved, and the task per-
formed. Therefore, this work also learns different fatigue profiles depend-
ing on individual variability, which may be critical to healthcare scenarios.

50



CHAPTER3
Background

This chapter presents the theoretical concepts and pre-existing tools
underlying the work. Firstly, a formal definition of Stochastic Hybrid
Automata (i.e., the formalism employed for this work) is provided, fol-
lowed by a recap of their semantics. The main features of Statistical
Model Checking (i.e., the employed verification technique) are then
recapped. Finally, the main tool exploited for this framework (specifi-
cally, Uppaal SMC for the formal verification phase, ROS for the mid-
dleware layer at deployment time, and CoppeliaSim for simulation)
are briefly presented.

3.1 Theoretical Preliminaries

In this section, we define Stochastic Hybrid Automata (i.e., the chosen for-
malism), illustrate the behavior, and overview Statistical Model Checking
(i.e., the chosen verification technique).
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Chapter 3. Background

3.1.1 Stochastic Hybrid Automata

In the following, we provide a formal definition of Stochastic Hybrid Au-
tomata (SHA) and illustrate their features through a running example in-
spired by [46, Section 4].

Example 3.1.1. The example captures a system composed of a room with
a heating system, whose model is shown in Fig. 3.1a, and the thermostat
controlling its temperature, shown in Fig. 3.1b. The room temperature is
the main physical phenomenon of the system, which is modeled by real
variable T in the automaton in Fig. 3.1a.

The thermostat is modeled through operating states on (which makes
the room warmer) and off (thus, letting the room temperature decrease nat-
urally). When the thermostat is off , as soon as temperature T decreases
below a threshold Tth1 , hence the condition T ≥ Tth1 labeling location off
does not hold (resp., exceeds a threshold Tth2 , hence the condition T ≤ Tth2

labeling location on does not hold), the thermostat switches the heating on
(resp., off). The triggering of the event, indicated with symbol on!, makes
the thermostat modify its operating state, hence moving to on (resp., switch
off the heating, hence moving to off ).

Room temperature is modeled in three situations, also represented in
Fig. 3.1a: the one for which the temperature decreases due to the absence
of heating, i.e., cool , and two situations for which the temperature increases
at different rates, i.e., high and low , when the heating is on.

The temperature grows according to differential equation Ṫ = θ − T
R

when the thermostat is on and decreases according to Ṫ = −T
R

when it is
off, where R is a constant and θ is a randomly distributed parameter, i.e.,
whose value depends on a probability distribution.

At the onset of the system, the thermostat is off, hence the room is cool-
ing down with the temperature conventionally initialized to Tth1 . This value
allows the thermostat to spend a non-null amount of time in location cool ,
where constraint T ≥ Tth1 limits the temperature inferiorly. The update on
the edge entering location cool initializes T .

When event on! (resp., off!) is fired by the thermostat, the room reacts
immediately, i.e., thermostat and room synchronize. Reacting to the event,
indicated with symbol on? (resp., off?), causes the room temperature to
rise and the automaton to switch to either high or low (resp., the room
temperature to decrease and the automaton to move to cool ).

The room can be heated at a high or low rate (e.g., if a window is closed
or open, respectively): the choice is made probabilistically when the au-
tomaton synchronizes with event on!. Probability weights are known and
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indicated as pH and pL, respectively. Parameter θ in Fig. 3.1a is a real-
ization of a Normal distribution with mean µH and standard deviation σH
(indicated as N(µH, σ

2
H)) when the room is heating quickly because the

window is closed (the subscript “H” stands for “high” rate of heating).
Conversely, when the room is heating slowly because the window is

open, the probability distribution is N(µL, σ
2
L) (subscript “L” stands for

“low” rate of heating). Throughout the thesis, we express that a random
parameter θ is a realization of random variable Θ governed by distribution
N (µ, σ) through notation θ ∼ N (µ, σ).

The definition of SHA is given in the following [5, 47, 62]. Let W
be a set of symbols; we indicate with Γ(W ) the set of conjunctions of
constraints of the form γ1 ∼ γ2, where ∼ is a relation in {<,=} and γi
(i ∈ {1, 2}}) is an arithmetical term defined by the sum elements in W and
N (e.g., w1 +w2 +3, with w1, w2 ∈ W ). We indicate with Ξ(W ) the set of
updates on elements of W . An update in Ξ(W ) (for example, w′ = w+2)
is a constraint where free variables are elements of W (e.g., w ∈W ) and of
its primed version W ′ (e.g., w′ ∈W ′). We indicate the set of non-negative
real numbers with R+ and, with RW , the set of assignments to variables of
W (i.e., valuations).

Definition 1. A Stochastic Hybrid Automaton is a tuple ⟨L,W ,F ,D, I,C ,
E , µ,P , lini⟩, where:

1. L is the set of locations and lini ∈ L is the initial location;

2. W is the set of real-valued variables of which clocks X ⊆W , dense-
counter variables Vdc ⊆W , and constants K ⊆W are subsets;

3. F : L→ {(R+ ∪ (R+ × R))→ RW} is the function assigning a set
of flow conditions to each location, where flow conditions are (con-
tinuous) functions with one or two parameters, which assign a valua-
tion to every time instant in R+ or to every pair constituted by a time
instant in R+ and a constant value in R, depending on the location;

4. D : L ⇀ {R → [0, 1]} is the partial function assigning a proba-
bility distribution from {R→ [0, 1]} to locations which feature flow
conditions with two parameters;

5. I : L→ Γ(W ) is the function assigning a (possibly empty) set of in-
variants to each location;

6. C is the set of channels, including the internal action ϵ;
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7. E ⊂ L×C!?×Γ(W )×℘(Ξ(W ))×L is the set of edges, where C!? =
{c! | c ∈ C}∪ {c? | c ∈ C} is the set of events involving channels in
C . Given an edge (l, c, γ, ξ, l′) ∈ E , l (resp. l′) is the outgoing (resp.
ingoing) location, c is the edge event, γ is the edge condition and ξ is
the edge update. For each l ∈ L, E(l) ⊆ C!?×Γ(W )×℘(Ξ(W ))×L
is the set of edges outgoing from l (for each (c, γ, ξ, l′) ∈ E(l) then
(l, c, γ, ξ, l′) ∈ E and vice-versa);

8. µ : (L×RW )→ {R+ → [0, 1]} is the function assigning a probability
distribution from {R+ → [0, 1]} to each configuration of the SHA,
where configurations are (l, vvar) pairs constituted by a location l ∈ L
and a valuation vvar ∈ RW ;

9. P : L ⇀ {(C!? × Γ(W ) × ℘(Ξ(W )) × L) ⇀ [0, 1]} is the partial
function assigning a discrete probability distribution from {(C!? ×
Γ(W ) × ℘(Ξ(W )) × L) ⇀ [0, 1]} to locations such that, for each
l ∈ L, P(l) is defined if, and only if, E(l) is non-empty; also, the
domain of the distribution is E(l) (hence,

∑
α=(c!,γ,ξ,l′)∈E(l)

c∈C
P(l)(α) =

1 holds).

In SHA, real-valued variables (i.e., a generalization of clocks) evolve
in time according to generic expressions called flow conditions [5]. Flow
conditions constraining the evolution over time of variables in W are de-
fined through sets of Ordinary Differential Equations (ODEs). This feature
makes SHA a suitable formalism to model systems with complex dynam-
ics, as it is possible to model through flow conditions, for example, laws
of physics or biochemical processes. ODEs constraining clocks (for which
ẋ = 1 holds for all x ∈ X), dense-counter variables, and constants (where
v̇ = 0 holds for all v ∈ Vdc ∪K) are special cases of flow conditions.

If variable θ ∈ Vdc is an independent term for flow f ∈ F(l) on location
l ∈ L, i.e., f = f(t, θ), and θ is interpreted as a randomly distributed pa-
rameter, then f is a stochastic process [85]. We limit the analysis to flow
conditions depending on at most one random parameter, as per Definition
1, which is enough to model human-robot interaction within the scope of
our work. For example, in the SHA shown in Fig. 3.1a the room tem-
perature is modeled by real-valued variable T ∈W . When the tempera-
ture is decreasing, it is constrained by the flow condition Ṫ (t) = −T (t)/R,
where function Ṫ (t) ∈ F(cool) depends on time only and has solutions in
R. When the temperature increases, it evolves according to flow condition
Ṫ (t, θ) = θ − T (t, θ)/R, depending both on time and random parameter θ.
The domain of Ṫ (t, θ) is, thus, R+ × R and its solutions belong to R.
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<latexit sha1_base64="fszk62U6aMYfg4FaZuUqtLPCuoQ="></latexit>

Ṫ = ✓ � T

R
,

<latexit sha1_base64="htHE/KuFPJVk9divj/3bcOvtbrk=">AAACG3icdVC7SgNBFJ31bXxFLW0Gg2ihYVeMj0IQbSxVjApJCHcnN3HI7IOZu4Is+wl+gl9hq5Wd2FpY+C9O1igqeqrDOfd5/FhJQ6776gwMDg2PjI6NFyYmp6ZnirNzZyZKtMCqiFSkL3wwqGSIVZKk8CLWCIGv8NzvHvT88yvURkbhKV3H2AigE8q2FEBWahaX6wHQpaS03oooPc121+ptDcKyNHdMOz3Jsmy1WSy55Yrr7Wx63C27OfiX4vWVEuvjqFl8sxNFEmBIQoExNc+NqZGCJikUZoV6YjAG0YUO1iwNIUDTSPOHMr6UGKCIx6i5VDwX8XtHCoEx14FvK/Mjf3s98S+vllB7u5HKME4IQ9FbRFJhvsgILW1SyFtSIxH0LkcuQy5AAxFqyUEIKyY2uoLN4/Np/j85Wy97lbJ7vFHa2+8nM8YW2CJbYR7bYnvskB2xKhPsht2xe/bg3DqPzpPz/FE64PR75tkPOC/vzF6iqw==</latexit>

Ṫ = �T

R
,

<latexit sha1_base64="fszk62U6aMYfg4FaZuUqtLPCuoQ="></latexit>

Ṫ = ✓ � T

R
,

<latexit sha1_base64="ZxyYc0iG+WE/Kz9cgt3oUfBwmFk=">AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwVZISbXcW3bisYB/QhDKZ3tahk0mYuRFKKPgVbnXlTtz6Ky78F5NaQUXP6nDOvdxzTxBLYdC236zC0vLK6lpxvbSxubW9U97d65go0RzaPJKR7gXMgBQK2ihQQi/WwMJAQjeYXOR+9xa0EZG6xmkMfsjGSowEZ5hJnhcyvEFMIzU7G5QrdvXUbdQaDrWr9hw5cZ2661JnoVTIAq1B+d0bRjwJQSGXzJi+Y8fop0yj4BJmJS8xEDM+YWPoZ1SxEIyfzjPP6FFiGEY0Bk2FpHMRvm+kLDRmGgbZZJ7R/PZy8S+vn+Co4adCxQmC4vkhFBLmhwzXIisD6FBoQGR5cqBCUc40QwQtKOM8E5OsnVLWx9fT9H/SqVWdk6p95Vaa54tmiuSAHJJj4pA6aZJL0iJtwklM7skDebTurCfr2Xr5HC1Yi5198gPW6weXI5au</latexit>

on?
<latexit sha1_base64="ZxyYc0iG+WE/Kz9cgt3oUfBwmFk=">AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwVZISbXcW3bisYB/QhDKZ3tahk0mYuRFKKPgVbnXlTtz6Ky78F5NaQUXP6nDOvdxzTxBLYdC236zC0vLK6lpxvbSxubW9U97d65go0RzaPJKR7gXMgBQK2ihQQi/WwMJAQjeYXOR+9xa0EZG6xmkMfsjGSowEZ5hJnhcyvEFMIzU7G5QrdvXUbdQaDrWr9hw5cZ2661JnoVTIAq1B+d0bRjwJQSGXzJi+Y8fop0yj4BJmJS8xEDM+YWPoZ1SxEIyfzjPP6FFiGEY0Bk2FpHMRvm+kLDRmGgbZZJ7R/PZy8S+vn+Co4adCxQmC4vkhFBLmhwzXIisD6FBoQGR5cqBCUc40QwQtKOM8E5OsnVLWx9fT9H/SqVWdk6p95Vaa54tmiuSAHJJj4pA6aZJL0iJtwklM7skDebTurCfr2Xr5HC1Yi5198gPW6weXI5au</latexit>

on?

<latexit sha1_base64="j97uETJUk1OuwxkyKisgoLGgzlg=">AAAB/3icdVC7TsNAEDzzDOEVoKQ5ESFRWXZkSDoiaCiDRB5SYkXnyyaccn5wt0aKrBR8BS1UdIiWT6HgX7CNkQDBVKOZXe3seJEUGi3rzVhYXFpeWS2tldc3Nre2Kzu7HR3GikObhzJUPY9pkCKANgqU0IsUMN+T0PWm55nfvQWlRRhc4SwC12eTQIwFZ5hK7sBneI2YhOPx/HRYqVrmidOoNWxqmVaOjDh23XGoXShVUqA1rLwPRiGPfQiQS6Z137YidBOmUHAJ8/Ig1hAxPmUT6Kc0YD5oN8lDz+lhrBmGNAJFhaS5CN83EuZrPfO9dDILqX97mfiX149x3HATEUQxQsCzQygk5Ic0VyJtA+hIKEBkWXKgIqCcKYYISlDGeSrGaT3ltI+vp+n/pFMz7WPTunSqzbOimRLZJwfkiNikTprkgrRIm3ByQ+7JA3k07own49l4+RxdMIqdPfIDxusHU7OXFg==</latexit>

off?
<latexit sha1_base64="j97uETJUk1OuwxkyKisgoLGgzlg=">AAAB/3icdVC7TsNAEDzzDOEVoKQ5ESFRWXZkSDoiaCiDRB5SYkXnyyaccn5wt0aKrBR8BS1UdIiWT6HgX7CNkQDBVKOZXe3seJEUGi3rzVhYXFpeWS2tldc3Nre2Kzu7HR3GikObhzJUPY9pkCKANgqU0IsUMN+T0PWm55nfvQWlRRhc4SwC12eTQIwFZ5hK7sBneI2YhOPx/HRYqVrmidOoNWxqmVaOjDh23XGoXShVUqA1rLwPRiGPfQiQS6Z137YidBOmUHAJ8/Ig1hAxPmUT6Kc0YD5oN8lDz+lhrBmGNAJFhaS5CN83EuZrPfO9dDILqX97mfiX149x3HATEUQxQsCzQygk5Ic0VyJtA+hIKEBkWXKgIqCcKYYISlDGeSrGaT3ltI+vp+n/pFMz7WPTunSqzbOimRLZJwfkiNikTprkgrRIm3ByQ+7JA3k07own49l4+RxdMIqdPfIDxusHU7OXFg==</latexit>

off?

<latexit sha1_base64="irWFWDq+YvJyZb3JKQRLL64Fn3I=">AAACAHicbVC7TsNAEDyHVwivACXNiQiJKrIRCEQVQUMZEHlIiYnOl0045c5n3a2RIisNX0ELFR2i5U8o+BdskwISphrN7GpnJ4iksOi6n05hYXFpeaW4Wlpb39jcKm/vNK2ODYcG11KbdsAsSBFCAwVKaEcGmAoktILRZea3HsBYocNbHEfgKzYMxUBwhql011UM7wUmN1qr80mvXHGrbg46T7wpqZAp6r3yV7eveawgRC6ZtR3PjdBPmEHBJUxK3dhCxPiIDaGT0pApsH6Sp57Qg9gy1DQCQ4WkuQi/NxKmrB2rIJ3MUtpZLxP/8zoxDs78RIRRjBDy7BAKCfkhy41I6wDaFwYQWZYcqAgpZ4YhghGUcZ6KcdpPKe3Dm/1+njSPqt5J1b0+rtQups0UyR7ZJ4fEI6ekRq5InTQIJ4Y8kWfy4jw6r86b8/4zWnCmO7vkD5yPb7PGl0E=</latexit>

Room :

<latexit sha1_base64="LePJQu4H/E7HuHDnaGZ8a+1OLio=">AAAB/nicdVDLSsNAFJ34rPVVdelmsAiuQhLT167opssKVoW2lMl4q4OTZJi5EUoo+BVudeVO3PorLvwXk1hBRc/qcM693HNPoKQw6Dhv1tz8wuLScmmlvLq2vrFZ2do+M3GiOfR4LGN9ETADUkTQQ4ESLpQGFgYSzoOb49w/vwVtRByd4kTBMGRXkRgLzjCTBoOQ4bUZp2rUmY4qVcf2663mYYM6tlf3aod+Trxay/epazsFqmSG7qjyPriMeRJChFwyY/quo3CYMo2CS5iWB4kBxfgNu4J+RiMWghmmReYp3U8Mw5gq0FRIWojwfSNloTGTMMgmi4y/vVz8y+snOG4OUxGpBCHi+SEUEopDhmuRlQH0UmhAZHlyoCKinGmGCFpQxnkmJlk75ayPr6fp/+TMs92a7Zz41fbRrJkS2SV75IC4pEHapEO6pEc4UeSePJBH6856sp6tl8/ROWu2s0N+wHr9AK0Ilr4=</latexit>pH
<latexit sha1_base64="rThnCHVqZi4RSezX4rqJD0Yo4t0=">AAAB/nicdVDLSsNAFJ3Ud31VXboZLIKrkMT04U5048KFgrVCW8pkelsHJ8kwcyOUUPAr3OrKnbj1V1z4Lyaxgoqe1eGce7nnnkBJYdBx3qzSzOzc/MLiUnl5ZXVtvbKxeWniRHNo8VjG+ipgBqSIoIUCJVwpDSwMJLSDm+Pcb9+CNiKOLnCsoBeyUSSGgjPMpG43ZHhthqnqn076lapj+/WD5n6DOrZX92r7fk682oHvU9d2ClTJFGf9ynt3EPMkhAi5ZMZ0XEdhL2UaBZcwKXcTA4rxGzaCTkYjFoLppUXmCd1NDMOYKtBUSFqI8H0jZaEx4zDIJouMv71c/MvrJDhs9lIRqQQh4vkhFBKKQ4ZrkZUBdCA0ILI8OVARUc40QwQtKOM8E5OsnXLWx9fT9H9y6dluzXbO/erh0bSZRbJNdsgecUmDHJITckZahBNF7skDebTurCfr2Xr5HC1Z050t8gPW6wezSJbC</latexit>pL

<latexit sha1_base64="jROegc95KDd8hM73e6nCpcxeFXk=">AAACBnicdVC7SgNBFJ31GeNr1dJmMAhWYSaoiYUQtLFUSFRIQpid3CSDsw9m7oqypPcrbLWyE1t/w8J/cTZGUNFTHc65l3vuCRKtLDL25k1Nz8zOzRcWiotLyyur/tr6uY1TI6EpYx2by0BY0CqCJirUcJkYEGGg4SK4Os79i2swVsVRA28T6IRiEKm+kgKd1PXXG4ftUODQ9rNGN8MhH426fomVGWOcc5oTXt1njhwc1Cq8RnluOZTIBKdd/73di2UaQoRSC2tbnCXYyYRBJTWMiu3UQiLklRhAy9FIhGA72Tj7iG6nVmBMEzBUaToW4ftGJkJrb8PATY5z/vZy8S+vlWK/1slUlKQIkcwPodIwPmSlUa4UoD1lAFHkyYGqiEphBCIYRYWUTkxdS0XXx9fT9H9yXinzvTI72y3VjybNFMgm2SI7hJMqqZMTckqaRJIbck8eyKN35z15z97L5+iUN9nZID/gvX4AYHaZPg==</latexit>

T = Tth1

<latexit sha1_base64="AF4gX20SydLbkq6KG7BlQ4tUtSA="></latexit>

✓ ⇠ N (µH, �2
H)

<latexit sha1_base64="cuo3Q4ovZX7jCmhy1osyIiTKmWY=">AAACLnicdZDNSsNAEMc3flu/qh69LBZBQUoi1q+T6MWDiIJVoallso516W4SdieChL6Lj+BTeNWT4EG8+hgmsYqKzmnm959hZv5BrKQl1312+voHBoeGR0ZLY+MTk1Pl6ZkTGyVGYF1EKjJnAVhUMsQ6SVJ4FhsEHSg8DTq7uX56jcbKKDymmxibGtqhvJQCKEOt8pZPV0jgW6l9DXQlQKUH3UVfJ62iNjrd7y7zTG9rOF/5Bpda5Ypbrbne5prH3apbBP8iXo9UWC8OW+UX/yISicaQhAJrG54bUzMFQ1Io7Jb8xGIMogNtbGRpCBptMy1+7PKFxAJFPEbDpeIFxO8TKWhrb3SQdeYn2t9aDv/SGgldbjRTGcYJYSjyRSQVFousMDIzD/mFNEgE+eXIZcgFGCBCIzkIkcEkc7OU+fH5NP8/OVmperWqe7Ra2d7pOTPC5tg8W2QeW2fbbI8dsjoT7Jbdswf26Nw5T86L8/rR2uf0ZmbZj3De3gFqlqof</latexit>

✓ ⇠ N (µL, �2
L)

<latexit sha1_base64="0yo15lA0KUH+KC+TYO9VqRzz/EE=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sgmnnO/M3RopslLwFbRQ0SFaPoWCf8E2LiBhqtHMrnZ2gkgKi6776ZSWlldW18rrlY3Nre2d6u5e2+rYcGhxLbXpBsyCFApaKFBCNzLAwkBCJ5hcZX7nAYwVWt3iNAI/ZGMlRoIzTCW/HzK8E5hwreVsUK25dTcHXSReQWqkQHNQ/eoPNY9DUMgls7bnuRH6CTMouIRZpR9biBifsDH0UqpYCNZP8tAzehRbhppGYKiQNBfh90bCQmunYZBOZiHtvJeJ/3m9GEcXfiJUFCMonh1CISE/ZLkRaRtAh8IAIsuSAxWKcmYYIhhBGeepGKf1VNI+vPnvF0n7pO6d1d2b01rjsmimTA7IITkmHjknDXJNmqRFOLknT+SZvDiPzqvz5rz/jJacYmef/IHz8Q1IV5cN</latexit>

cool
<latexit sha1_base64="dt/IMsMXnfGuNlC5FYXBYsr6y7I=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pASKzpfNskq5wd3a6TISsFX0EJFh2j5FAr+Bdu4gISpRjO72tnxIoWGbPvTWlpeWV1bL22UN7e2d3Yre/stE8ZaQlOGKtQdTxhQGECTkBR0Ig3C9xS0vcl15rcfQBsMgzuaRuD6YhTgEKWgVHJ7vqAxUjLG0XjWr1Ttmp2DLxKnIFVWoNGvfPUGoYx9CEgqYUzXsSNyE6EJpYJZuRcbiISciBF0UxoIH4yb5KFn/Dg2gkIegeaoeC7C741E+MZMfS+dzEKaeS8T//O6MQ0v3QSDKCYIZHaIUEF+yEiNaRvAB6iBSGTJgWPApdCCCDRyIWUqxmk95bQPZ/77RdI6rTnnNfv2rFq/KpopsUN2xE6Ywy5Ynd2wBmsyye7ZE3tmL9aj9Wq9We8/o0tWsXPA/sD6+AY0ApcA</latexit>

high
<latexit sha1_base64="DVzxBFGLxf+uEhQ0hf/h/mphNMM=">AAAB/nicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sgmnnM+nuzUosiLxFbRQ0SFafoWCf8E2LiBhqtHMrnZ2Ai2FRdf9dEpLyyura+X1ysbm1vZOdXevbaPYcGjxSEamGzALUihooUAJXW2AhYGETjC5yvzOPRgrInWLUw1+yMZKjARnmEr9fsjwTmAio4fZoFpz624Ouki8gtRIgeag+tUfRjwOQSGXzNqe52r0E2ZQcAmzSj+2oBmfsDH0UqpYCNZP8swzehRbhhHVYKiQNBfh90bCQmunYZBOZhntvJeJ/3m9GEcXfiKUjhEUzw6hkJAfstyItAygQ2EAkWXJgQpFOTMMEYygjPNUjNN2Kmkf3vz3i6R9UvfO6u7Naa1xWTRTJgfkkBwTj5yTBrkmTdIinGjyRJ7Ji/PovDpvzvvPaMkpdvbJHzgf35CGlqg=</latexit>

low

(a) Room SHA model. The SHA receives events from the thermostat to start heating at different rates (locations
high and low ) or cooling naturally (location cool).

<latexit sha1_base64="99t5bGjcLgRpNfkuAS7SxZJH8A4=">AAACCHicbVC7TsNAEDyHVwiv8OhoTkRIVJGNQCCqCBrKIOUlJVG0vmySU84P3a2RgpUf4CtooaJDtPwFBf+CbVJAwlSjmV3t7LihkoZs+9PKLS2vrK7l1wsbm1vbO8XdvYYJIi2wLgIV6JYLBpX0sU6SFLZCjeC5Cpvu+Cb1m/eojQz8Gk1C7How9OVACqBE6hUPOh7QSFJcG6H2AkNAV9NesWSX7Qx8kTgzUmIzVHvFr04/EJGHPgkFxrQdO6RuDJqkUDgtdCKDIYgxDLGdUB88NN04Sz/lx5EBCniImkvFMxF/b8TgGTPx3GQyzWrmvVT8z2tHNLjsxtIPI0JfpIdIKswOGaFlUgvyvtRIBGly5NLnAjQQoZYchEjEKOmpkPThzH+/SBqnZee8bN+dlSrXs2by7JAdsRPmsAtWYbesyupMsAf2xJ7Zi/VovVpv1vvPaM6a7eyzP7A+vgEwmpo8</latexit>

Thermostat :

<latexit sha1_base64="B3MUqkXgIVvg6tBLNZcYURfatEY=">AAAB/nicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pBiKzpfNuGU8/l0t0aKrEh8BS1UdIiWX6HgX7CNC0iYajSzq52dUEth0XU/naXlldW19cpGdXNre2e3trffsXFiOLR5LGPTC5kFKRS0UaCEnjbAolBCN5xc5373AYwVsbrDqYYgYmMlRoIzzCTfjxjeC0zj0Wg2qNXdhluALhKvJHVSojWoffnDmCcRKOSSWdv3XI1BygwKLmFW9RMLmvEJG0M/o4pFYIO0yDyjx4llGFMNhgpJCxF+b6QssnYahdlkntHOe7n4n9dPcHQZpELpBEHx/BAKCcUhy43IygA6FAYQWZ4cqFCUM8MQwQjKOM/EJGunmvXhzX+/SDqnDe+84d6e1ZtXZTMVckiOyAnxyAVpkhvSIm3CiSZP5Jm8OI/Oq/PmvP+MLjnlzgH5A+fjG2yTlpE=</latexit>

o↵ <latexit sha1_base64="JjLX8X6gq9W0FRe1r5xmDbPcqKA=">AAAB/XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pAcKzpfNuGU8511t0aKrIivoIWKDtHyLRT8C7ZxAQlTjWZ2tbMTxlJYdN1PZ2l5ZXVtvbJR3dza3tmt7e13rE4MhzbXUpteyCxIoaCNAiX0YgMsCiV0w8l17ncfwFih1R1OYwgiNlZiJDjDTPL7EcN7galWs0Gt7jbcAnSReCWpkxKtQe2rP9Q8iUAhl8xa33NjDFJmUHAJs2o/sRAzPmFj8DOqWAQ2SIvIM3qcWIaaxmCokLQQ4fdGyiJrp1GYTeYR7byXi/95foKjyyAVKk4QFM8PoZBQHLLciKwLoENhAJHlyYEKRTkzDBGMoIzzTEyycqpZH97894ukc9rwzhvu7Vm9eVU2UyGH5IicEI9ckCa5IS3SJpxo8kSeyYvz6Lw6b877z+iSU+4ckD9wPr4BsG6WKQ==</latexit>on

<latexit sha1_base64="aJx8jeAig9IcH63oCq2hTdqUMJA=">AAAB/nicdVDLSsNAFJ3UV62vqks3o0VwVZISbZdFNy4r2Ac0oUymt3XoZBJmboQSCn6FW125E7f+igv/xaRWUNGzOpxzL/fcE8RSGLTtN6uwtLyyulZcL21sbm3vlHf3OiZKNIc2j2SkewEzIIWCNgqU0Is1sDCQ0A0mF7nfvQVtRKSucRqDH7KxEiPBGWaS54UMbxDTSM0OB+WKXT1zG7WGQ+2qPUdOXKfuutRZKBWyQGtQfveGEU9CUMglM6bv2DH6KdMouIRZyUsMxIxP2Bj6GVUsBOOn88wzepwYhhGNQVMh6VyE7xspC42ZhkE2mWc0v71c/MvrJzhq+KlQcYKgeH4IhYT5IcO1yMoAOhQaEFmeHKhQlDPNEEELyjjPxCRrp5T18fU0/Z90alXntGpfuZXm+aKZIjkgR+SEOKROmuSStEibcBKTe/JAHq0768l6tl4+RwvWYmef/ID1+gFoYZaQ</latexit>

on!

<latexit sha1_base64="wz8MdEUYa7U3Vgd8UGSuAmbkCAM=">AAAB/3icdVC7TsNAEDzzDOEVoKQ5iJCoIjsyJGUEDWWQyENKrOh8WYdTzg/u1kiRlYKvoIWKDtHyKRT8C7YxEiCYajSzq50dN5JCo2m+GQuLS8srq6W18vrG5tZ2ZWe3q8NYcejwUIaq7zINUgTQQYES+pEC5rsSeu70PPN7t6C0CIMrnEXg+GwSCE9whqnkDH2G14hJ6Hnzg1GlatZO7Wa9aVGzZubIiG01bJtahVIlBdqjyvtwHPLYhwC5ZFoPLDNCJ2EKBZcwLw9jDRHjUzaBQUoD5oN2kjz0nB7FmmFII1BUSJqL8H0jYb7WM99NJ7OQ+reXiX95gxi9ppOIIIoRAp4dQiEhP6S5EmkbQMdCASLLkgMVAeVMMURQgjLOUzFO6ymnfXw9Tf8n3XrNOqmZl3a1dVY0UyL75JAcE4s0SItckDbpEE5uyD15II/GnfFkPBsvn6MLRrGzR37AeP0AJPGW+A==</latexit>

off!

<latexit sha1_base64="CaVO8fd4kTwu7rK3x7VUeKo/9Cg="></latexit>

T  Tth1

<latexit sha1_base64="RhG4yRS8ukUQXhG7uIJ9yQnOM6U=">AAACC3icdVC7SgNBFJ2N7/iKWljYDAbBKswmRk0n2lgqJBpIwjI73sTB2YczdwVZ9hP8Clut7MTWj7DwX5xdI6joqQ7n3Ms99/ixkgYZe3NKE5NT0zOzc+X5hcWl5crK6pmJEi2gIyIV6a7PDSgZQgclKujGGnjgKzj3r45y//wGtJFR2MbbGAYBH4VyKAVHK3mV9XZ/BNe0H3C8NMO07aV46dWzzKtUWY3tNlsNRlmtydy9VssSxnb3G3XqWpKjSsY48Srv/YtIJAGEKBQ3pueyGAcp1yiFgqzcTwzEXFzxEfQsDXkAZpAWD2R0KzEcIxqDplLRQoTvGykPjLkNfDtZBP3t5eJfXi/B4f4glWGcIIQiP4RSQXHICC1tM0AvpAZEnicHKkMquOaIoCXlQlgxsVWVbR9fT9P/yVm95jZr7HSnenA4bmaWbJBNsk1cskcOyDE5IR0iSEbuyQN5dO6cJ+fZefkcLTnjnTXyA87rB0Odm18=</latexit>

T � Tth2

<latexit sha1_base64="y4fg3E8w9sMlo2FZv942UPeJCZM=">AAACC3icdZC5TsNAEIbX4QrhClBQ0KyIkKgiGxGOLoKGMki5pDiy1ptJssr6YHeMFFl+BJ6CFio6RMtDUPAuOMYgQPBXo++f0cz8biiFRtN8NQpz8wuLS8Xl0srq2vpGeXOrrYNIcWjxQAaq6zINUvjQQoESuqEC5rkSOu7kYuZ3bkBpEfhNnIbQ99jIF0PBGabIKe807RFcU9tjONbDuOnEOHasJHHKFbNaM62zY4uaVTMT/SJWTiokV8Mpv9mDgEce+Mgl07pnmSH2Y6ZQcAlJyY40hIxP2Ah6aekzD3Q/zh5I6H6kGQY0BEWFpBmE7xMx87Seem7amR3625vBv7xehMPTfiz8MELw+WwRCgnZIs2VSJMBOhAKENnscqDCp5wphghKUMZ5CqM0qlKax+fT9P+ifVi1alXz6qhSP8+TKZJdskcOiEVOSJ1ckgZpEU4SckfuyYNxazwaT8bzR2vByGe2yQ8ZL+8WzZtB</latexit>

T � Tth1

<latexit sha1_base64="UJVle268cv6ezMiYd9rrNPuAVZc=">AAACC3icdZC5TsNAEIbXnCFcAQoKmhURElVkR4Sji6ChDFIuKY6s9WaSrLI+2B0jRZYfgaeghYoO0fIQFLwLtgkIEPzV6PtnNDO/G0qh0TRfjbn5hcWl5cJKcXVtfWOztLXd1kGkOLR4IAPVdZkGKXxooUAJ3VAB81wJHXdykfmdG1BaBH4TpyH0PTbyxVBwhilySrtNW8I1tT2GYz2Mm06MY6eaJE6pbFZqpnV2bFGzYuaiX8SakTKZqeGU3uxBwCMPfOSSad2zzBD7MVMouISkaEcaQsYnbAS9tPSZB7of5w8k9CDSDAMagqJC0hzC94mYeVpPPTftzA/97WXwL68X4fC0Hws/jBB8ni1CISFfpLkSaTJAB0IBIssuByp8ypliiKAEZZynMEqjKqZ5fD5N/y/a1YpVq5hXR+X6+SyZAtkj++SQWOSE1MklaZAW4SQhd+SePBi3xqPxZDx/tM4Zs5kd8kPGyzsgjZtH</latexit>

T  Tth2

(b) Thermostat SHA model. The SHA is in charge of trig-
gering the events that cause the room to start (event
on) or stop heating (off).

Figure 3.1: Example of SHA network. Dashed arrows model probabilistic transitions with
weights (in brown) pH and pL and solid arrows represent transitions with weight 1.
Flow conditions, probability distributions, and exponential rates are in purple, chan-
nels in red, and guard conditions in green, respectively.
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Chapter 3. Background

In the following, we outline the semantics of SHA. In support of the
overview, Fig. 3.2 shows an equivalent representation of the automaton of
Fig. 3.1a that is fully compliant with the introduced syntax and semantics
of SHA. The automaton of Fig. 3.1a must be understood as an equivalent
simplified representation of the automaton of Fig. 3.2, where the latter dif-
fers from the former in the way the edge exiting location cool is connected
to locations high and low .

Complex systems constituted by multiple entities can be modeled as a
combination of SHA, which form a network. To make n automata A1, . . . ,
An (each one defined as in Definition 1) form a network, the following
properties must be satisfied [47]. Every automaton Ai must be determin-
istic, i.e., there are no two (or more) edges, outgoing from a location of
Ai, defined by the same event and whose edge conditions can be satis-
fied by the same valuation. Moreover, they must guarantee the following
two semantic properties, called input-enabledness and time divergence. Let
v′var : Wi → R be a valuation for variables in Wi, li ∈ Li be a location of
automaton Ai and let pair (li, vvar) be a configuration of Ai. For every au-
tomaton Ai, and for all configurations (li, vvar) and channel c ∈ C, there
exists an edge c? that can be taken, i.e., the edge is enabled as the associ-
ated edge condition in Γ(W ) is satisfied by vvar. Intuitively, this assumption
ensures that every automaton can fire a transition in every possible configu-
ration. Second, every automaton Ai always allows for executions such that
if Ai is equipped with an extra clock that is never reset then, in all execu-
tions of Ai, this clock cannot be bounded by any arbitrary integer constant
(i.e., no Zeno executions are feasible).

Finally, every automaton Ai is defined by considering the same set of
channels (Ci = Cj when i ̸= j) and no pair of transitions, each one be-

<latexit sha1_base64="fszk62U6aMYfg4FaZuUqtLPCuoQ="></latexit>

Ṫ = ✓ � T

R
,

<latexit sha1_base64="htHE/KuFPJVk9divj/3bcOvtbrk=">AAACG3icdVC7SgNBFJ31bXxFLW0Gg2ihYVeMj0IQbSxVjApJCHcnN3HI7IOZu4Is+wl+gl9hq5Wd2FpY+C9O1igqeqrDOfd5/FhJQ6776gwMDg2PjI6NFyYmp6ZnirNzZyZKtMCqiFSkL3wwqGSIVZKk8CLWCIGv8NzvHvT88yvURkbhKV3H2AigE8q2FEBWahaX6wHQpaS03oooPc121+ptDcKyNHdMOz3Jsmy1WSy55Yrr7Wx63C27OfiX4vWVEuvjqFl8sxNFEmBIQoExNc+NqZGCJikUZoV6YjAG0YUO1iwNIUDTSPOHMr6UGKCIx6i5VDwX8XtHCoEx14FvK/Mjf3s98S+vllB7u5HKME4IQ9FbRFJhvsgILW1SyFtSIxH0LkcuQy5AAxFqyUEIKyY2uoLN4/Np/j85Wy97lbJ7vFHa2+8nM8YW2CJbYR7bYnvskB2xKhPsht2xe/bg3DqPzpPz/FE64PR75tkPOC/vzF6iqw==</latexit>

Ṫ = �T

R
,

<latexit sha1_base64="fszk62U6aMYfg4FaZuUqtLPCuoQ="></latexit>

Ṫ = ✓ � T

R
,

<latexit sha1_base64="ZxyYc0iG+WE/Kz9cgt3oUfBwmFk=">AAAB/nicdVDLSsNAFJ3UV62vqks3g0VwVZISbXcW3bisYB/QhDKZ3tahk0mYuRFKKPgVbnXlTtz6Ky78F5NaQUXP6nDOvdxzTxBLYdC236zC0vLK6lpxvbSxubW9U97d65go0RzaPJKR7gXMgBQK2ihQQi/WwMJAQjeYXOR+9xa0EZG6xmkMfsjGSowEZ5hJnhcyvEFMIzU7G5QrdvXUbdQaDrWr9hw5cZ2661JnoVTIAq1B+d0bRjwJQSGXzJi+Y8fop0yj4BJmJS8xEDM+YWPoZ1SxEIyfzjPP6FFiGEY0Bk2FpHMRvm+kLDRmGgbZZJ7R/PZy8S+vn+Co4adCxQmC4vkhFBLmhwzXIisD6FBoQGR5cqBCUc40QwQtKOM8E5OsnVLWx9fT9H/SqVWdk6p95Vaa54tmiuSAHJJj4pA6aZJL0iJtwklM7skDebTurCfr2Xr5HC1Yi5198gPW6weXI5au</latexit>

on?

<latexit sha1_base64="j97uETJUk1OuwxkyKisgoLGgzlg=">AAAB/3icdVC7TsNAEDzzDOEVoKQ5ESFRWXZkSDoiaCiDRB5SYkXnyyaccn5wt0aKrBR8BS1UdIiWT6HgX7CNkQDBVKOZXe3seJEUGi3rzVhYXFpeWS2tldc3Nre2Kzu7HR3GikObhzJUPY9pkCKANgqU0IsUMN+T0PWm55nfvQWlRRhc4SwC12eTQIwFZ5hK7sBneI2YhOPx/HRYqVrmidOoNWxqmVaOjDh23XGoXShVUqA1rLwPRiGPfQiQS6Z137YidBOmUHAJ8/Ig1hAxPmUT6Kc0YD5oN8lDz+lhrBmGNAJFhaS5CN83EuZrPfO9dDILqX97mfiX149x3HATEUQxQsCzQygk5Ic0VyJtA+hIKEBkWXKgIqCcKYYISlDGeSrGaT3ltI+vp+n/pFMz7WPTunSqzbOimRLZJwfkiNikTprkgrRIm3ByQ+7JA3k07own49l4+RxdMIqdPfIDxusHU7OXFg==</latexit>

off?
<latexit sha1_base64="j97uETJUk1OuwxkyKisgoLGgzlg=">AAAB/3icdVC7TsNAEDzzDOEVoKQ5ESFRWXZkSDoiaCiDRB5SYkXnyyaccn5wt0aKrBR8BS1UdIiWT6HgX7CNkQDBVKOZXe3seJEUGi3rzVhYXFpeWS2tldc3Nre2Kzu7HR3GikObhzJUPY9pkCKANgqU0IsUMN+T0PWm55nfvQWlRRhc4SwC12eTQIwFZ5hK7sBneI2YhOPx/HRYqVrmidOoNWxqmVaOjDh23XGoXShVUqA1rLwPRiGPfQiQS6Z137YidBOmUHAJ8/Ig1hAxPmUT6Kc0YD5oN8lDz+lhrBmGNAJFhaS5CN83EuZrPfO9dDILqX97mfiX149x3HATEUQxQsCzQygk5Ic0VyJtA+hIKEBkWXKgIqCcKYYISlDGeSrGaT3ltI+vp+n/pFMz7WPTunSqzbOimRLZJwfkiNikTprkgrRIm3ByQ+7JA3k07own49l4+RxdMIqdPfIDxusHU7OXFg==</latexit>

off?

<latexit sha1_base64="irWFWDq+YvJyZb3JKQRLL64Fn3I=">AAACAHicbVC7TsNAEDyHVwivACXNiQiJKrIRCEQVQUMZEHlIiYnOl0045c5n3a2RIisNX0ELFR2i5U8o+BdskwISphrN7GpnJ4iksOi6n05hYXFpeaW4Wlpb39jcKm/vNK2ODYcG11KbdsAsSBFCAwVKaEcGmAoktILRZea3HsBYocNbHEfgKzYMxUBwhql011UM7wUmN1qr80mvXHGrbg46T7wpqZAp6r3yV7eveawgRC6ZtR3PjdBPmEHBJUxK3dhCxPiIDaGT0pApsH6Sp57Qg9gy1DQCQ4WkuQi/NxKmrB2rIJ3MUtpZLxP/8zoxDs78RIRRjBDy7BAKCfkhy41I6wDaFwYQWZYcqAgpZ4YhghGUcZ6KcdpPKe3Dm/1+njSPqt5J1b0+rtQups0UyR7ZJ4fEI6ekRq5InTQIJ4Y8kWfy4jw6r86b8/4zWnCmO7vkD5yPb7PGl0E=</latexit>

Room :
<latexit sha1_base64="LePJQu4H/E7HuHDnaGZ8a+1OLio=">AAAB/nicdVDLSsNAFJ34rPVVdelmsAiuQhLT167opssKVoW2lMl4q4OTZJi5EUoo+BVudeVO3PorLvwXk1hBRc/qcM693HNPoKQw6Dhv1tz8wuLScmmlvLq2vrFZ2do+M3GiOfR4LGN9ETADUkTQQ4ESLpQGFgYSzoOb49w/vwVtRByd4kTBMGRXkRgLzjCTBoOQ4bUZp2rUmY4qVcf2663mYYM6tlf3aod+Trxay/epazsFqmSG7qjyPriMeRJChFwyY/quo3CYMo2CS5iWB4kBxfgNu4J+RiMWghmmReYp3U8Mw5gq0FRIWojwfSNloTGTMMgmi4y/vVz8y+snOG4OUxGpBCHi+SEUEopDhmuRlQH0UmhAZHlyoCKinGmGCFpQxnkmJlk75ayPr6fp/+TMs92a7Zz41fbRrJkS2SV75IC4pEHapEO6pEc4UeSePJBH6856sp6tl8/ROWu2s0N+wHr9AK0Ilr4=</latexit>pH

<latexit sha1_base64="rThnCHVqZi4RSezX4rqJD0Yo4t0=">AAAB/nicdVDLSsNAFJ3Ud31VXboZLIKrkMT04U5048KFgrVCW8pkelsHJ8kwcyOUUPAr3OrKnbj1V1z4Lyaxgoqe1eGce7nnnkBJYdBx3qzSzOzc/MLiUnl5ZXVtvbKxeWniRHNo8VjG+ipgBqSIoIUCJVwpDSwMJLSDm+Pcb9+CNiKOLnCsoBeyUSSGgjPMpG43ZHhthqnqn076lapj+/WD5n6DOrZX92r7fk682oHvU9d2ClTJFGf9ynt3EPMkhAi5ZMZ0XEdhL2UaBZcwKXcTA4rxGzaCTkYjFoLppUXmCd1NDMOYKtBUSFqI8H0jZaEx4zDIJouMv71c/MvrJDhs9lIRqQQh4vkhFBKKQ4ZrkZUBdCA0ILI8OVARUc40QwQtKOM8E5OsnXLWx9fT9H9y6dluzXbO/erh0bSZRbJNdsgecUmDHJITckZahBNF7skDebTurCfr2Xr5HC1Z050t8gPW6wezSJbC</latexit>pL

<latexit sha1_base64="jROegc95KDd8hM73e6nCpcxeFXk=">AAACBnicdVC7SgNBFJ31GeNr1dJmMAhWYSaoiYUQtLFUSFRIQpid3CSDsw9m7oqypPcrbLWyE1t/w8J/cTZGUNFTHc65l3vuCRKtLDL25k1Nz8zOzRcWiotLyyur/tr6uY1TI6EpYx2by0BY0CqCJirUcJkYEGGg4SK4Os79i2swVsVRA28T6IRiEKm+kgKd1PXXG4ftUODQ9rNGN8MhH426fomVGWOcc5oTXt1njhwc1Cq8RnluOZTIBKdd/73di2UaQoRSC2tbnCXYyYRBJTWMiu3UQiLklRhAy9FIhGA72Tj7iG6nVmBMEzBUaToW4ftGJkJrb8PATY5z/vZy8S+vlWK/1slUlKQIkcwPodIwPmSlUa4UoD1lAFHkyYGqiEphBCIYRYWUTkxdS0XXx9fT9H9yXinzvTI72y3VjybNFMgm2SI7hJMqqZMTckqaRJIbck8eyKN35z15z97L5+iUN9nZID/gvX4AYHaZPg==</latexit>

T = Tth1

<latexit sha1_base64="Rolxlih8OBR2ySwWwBz9bnOet5o="></latexit>

N (µH, �2
H)

<latexit sha1_base64="DgX8cclBaZ3TuGv+BAaNIogKbHE="></latexit>

N (µL, �2
L)

<latexit sha1_base64="0yo15lA0KUH+KC+TYO9VqRzz/EE=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sgmnnO/M3RopslLwFbRQ0SFaPoWCf8E2LiBhqtHMrnZ2gkgKi6776ZSWlldW18rrlY3Nre2d6u5e2+rYcGhxLbXpBsyCFApaKFBCNzLAwkBCJ5hcZX7nAYwVWt3iNAI/ZGMlRoIzTCW/HzK8E5hwreVsUK25dTcHXSReQWqkQHNQ/eoPNY9DUMgls7bnuRH6CTMouIRZpR9biBifsDH0UqpYCNZP8tAzehRbhppGYKiQNBfh90bCQmunYZBOZiHtvJeJ/3m9GEcXfiJUFCMonh1CISE/ZLkRaRtAh8IAIsuSAxWKcmYYIhhBGeepGKf1VNI+vPnvF0n7pO6d1d2b01rjsmimTA7IITkmHjknDXJNmqRFOLknT+SZvDiPzqvz5rz/jJacYmef/IHz8Q1IV5cN</latexit>

cool
<latexit sha1_base64="dt/IMsMXnfGuNlC5FYXBYsr6y7I=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pASKzpfNskq5wd3a6TISsFX0EJFh2j5FAr+Bdu4gISpRjO72tnxIoWGbPvTWlpeWV1bL22UN7e2d3Yre/stE8ZaQlOGKtQdTxhQGECTkBR0Ig3C9xS0vcl15rcfQBsMgzuaRuD6YhTgEKWgVHJ7vqAxUjLG0XjWr1Ttmp2DLxKnIFVWoNGvfPUGoYx9CEgqYUzXsSNyE6EJpYJZuRcbiISciBF0UxoIH4yb5KFn/Dg2gkIegeaoeC7C741E+MZMfS+dzEKaeS8T//O6MQ0v3QSDKCYIZHaIUEF+yEiNaRvAB6iBSGTJgWPApdCCCDRyIWUqxmk95bQPZ/77RdI6rTnnNfv2rFq/KpopsUN2xE6Ywy5Ynd2wBmsyye7ZE3tmL9aj9Wq9We8/o0tWsXPA/sD6+AY0ApcA</latexit>
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Figure 3.2: SHA modeling the room from the running example with a detailed represen-
tation of how probability weights on receiving edges are handled.
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longing to two different automata in the network, are built by referring to
the same event c!. These properties are with no loss of generality. For ex-
ample, the disjointedness of channels can always be achieved by choosing
properly defined symbol sets Ci. In addition, for simplicity, for the net-
work A1, . . . , An to be composable, the sets of real-valued variables must
be pairwise disjoint (Wi ∩Wj = ∅ when i ̸= j). However, this constraint
can be relaxed through a suitable extension of the semantics.

The semantics of a composable network A1, . . . , An is defined based
on the configurations (of the network), where a configuration is a tuple
of the form (s1, . . . , sn) and a state si is a configuration of automaton Ai.
Configuration changes are realized either through discrete transitions or
time transitions.

A discrete transition occurs when one or more automata take an edge.
In the latter case, at least two automata synchronize with each other. Syn-
chronization among different automata inside a network occurs through the
channels of set C [123]. Given a channel c ∈ C and two edges of two
distinct automata, whose events are c! (the sender) and c? (the receiver),
triggering an event through channel c causes both edges to fire simultane-
ously. Synchronization always requires at most one sender and possibly
many receivers (even none).

In Fig. 3.1b, the thermostat can trigger an event through channels on!
and off! to start or stop heating the room. The triggered event is then
received by the room automaton through labels on? and off?, which makes
the corresponding edges fire. Taking an edge (l, c, γ, ξ, l′) of automaton Ai

with configuration (l, vvar) implies that the edge is enabled—i.e., all the
conditions in Γ(W ) associated with the edge are satisfied by the values
defined by vvar. Upon taking the edge, the location of Ai changes from
l to l′, and the associated update ξ is executed, resulting in configuration
(l′, v′var). Since several automata may be involved in the synchronization
and many updates can be executed simultaneously, specific rules are needed
to regulate their execution. The value of a variable w in v′var is determined
based on the interpretation of w, i.e., whether w is a stochastic parameter
or not. In the former case, upon entering a location l′ ∈ Li such that Di(l

′)
is defined, a realization of distribution Di(l

′) (e.g., N(µH, σ
2
H) in Fig. 3.2)

defines the value of w in v′var (e.g., θ in Fig. 3.2); otherwise, when Di(l
′)

is not defined, the value of w in v′var and in vvar is the same [46]. In the
latter case, w is not interpreted as a randomly distributed parameter, and
its value in v′var is the value of the assignment associated with w′ in ξ, that
is obtained by evaluating every non-primed variable of the constraint with
values from vvar. The configuration (l′, v′var) is such that the valuation v′var
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satisfies the invariant Ii(l′).
In SHA, besides randomly distributed variables, probability measures

can be associated with delays to model the elapsing of time in the network,
hence the wait between the occurrence of two discrete transitions. Accord-
ing to [47], the adopted probabilistic semantics is based on the “principle
of independence” among automata in the network. Upon the firing of an
edge, for every automaton Ai in the network, a delay di models the time Ai

waits before taking an edge for the event c!, for some c ∈ C. If no edges
for event c! originate from l′, then di is∞. Otherwise, let dmin(l

′, v′var) be
the minimum delay that automaton Ai should wait before an edge whose
event is c!, and departing from l′, is enabled; and let dmax(l

′, v′var) be the
maximum delay that automaton Ai can wait before all edges, for events
c!, with c ∈ C, exiting l′ are disabled (note that both values are a func-
tion of the invariant Ii(l′), of the edge conditions and the current valuation
v′var). If dmin(l

′, v′var) is not defined, then di is∞; otherwise, if dmin(l
′, v′var)

is defined, di is a realization of the probability distribution µi(l
′, v′var). If

dmax(l
′, v′var) is finite, then µi(l

′, v′var) is a uniform distribution over the in-
terval [dmin(l

′, v′var), dmax(l
′, v′var)]; otherwise, µi(l

′, v′var) is an exponential
distribution over [dmin(l

′, v′var),∞). If di is∞, by input-enabledness, then
Ai can take an edge, whose event is c?, for some c ∈ C. Otherwise, by
definition of di, after di time units from the current discrete transition, au-
tomaton Ai can surely take an edge, whose event is possibly c!, for some
c ∈ C. Since the network consists of n automata, the minimum allowed
progress dm is selected among the n delays d1, . . . , dn. If dm is finite, then
dm is the time the network waits before an automaton performs a new dis-
crete transition.

The wait between the execution of two discrete transitions, lasting a
generic δ > 0 time units, is a time transition, i.e., a configuration change
such that no location of the automata in the network is modified. Still,
values of the variables evolve because of the elapsing of time.

The configuration of the i-th automaton at the end of this wait is (l′′, v′′var),
with l′′ = l′, where (l′, v′var) is the configuration whence the timed transi-
tion starts. All the variables of the set Wi evolve according to the flow
conditions Fi(l

′). In the case of clocks x ∈ Xi, for instance, they are incre-
mented by the value δ, hence, v′′var(x) = v′var(x)+ δ holds. The value of the
other variables is determined based on the differential equation specified
by Fi(l

′). With the adopted semantics, δ is the value dm calculated at the
occurrence of the last discrete transition.

After dm units of time, the automaton Ai such that di = dm holds per-
forms a discrete transition for some event c!, with c ∈ C. If several edges
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are enabled in (l′, v′var), probability distribution P(l′)(c!, γ′, ξ′, l′′) ∈ [0, 1]
with l′′ ∈ Li, γ′ ∈ Γi(Wi), and ξ′ ∈ ℘(Ξi(Wi)) determines how likely the
system is to evolve in one direction rather than the other. In Fig. 3.2, pL
and pH are the probability of the switching of the heating when the window
is open or closed, respectively, which takes place after the synchronization
between the two automata has been achieved through channel on. Channels
onH and onL in Fig. 3.2 model a probabilistic choice and are not intended
for synchronizing the two automata.

Some of the models presented in this work do not conform with the dis-
jointness of the set of real-valued variables since two or more automata can
use the same variable. This, however, is with no loss of generality as it is al-
ways possible to introduce suitable transitions and local copies of the shared
variables and build a network such that all sets of real-valued variables are
pairwise disjoint. An automaton A1 can always make an automaton A2

change a variable v in W2 by means of two synchronizing edges with a
dedicated event, possibly representing the operation to be carried out on v.

3.1.2 Statistical Model Checking

Unlike exhaustive model-checking, SMC does not explore the state space.
The technique consists of applying statistical techniques to a set of runs of
the formal model to estimate the probability of a desired property holding.
Specifically, we compute the value of expression PM(ψ) to estimate the
probability of ψ holding for M [46]. Property ψ, in our framework, is of
the form ⋄≤τap, where ⋄ is the metric “eventually" operator and ap ∈ AP.
Formula ⋄≤τap is true if ap holds within τ times units from the onset.

The value of PM(ψ) can be compared against a threshold ϑ ∈ [0, 1], i.e.,
formula PM(ψ) ∼ ϑ is evaluated, where∼∈ {≤,≥}. In this case, the SMC
experiment yields a Boolean value indicating whether the probability of ψ
holding for M is ∼ than ϑ (thus, true) or not (yielding false), which is
calculated through hypothesis testing.

Otherwise, the SMC experiment returns confidence interval [pmin, pmax]
of property ψ holding for M , calculated according to the Clopper-Pearson
method [44]. In this case, to determine when the generated set of runs is
sufficient to conclude the experiment, Uppaal checks the length of interval
ϵ = (pmax − pmin)/2. Uppaal stops generating new traces when ϵ ≤ ϵth
holds, where ϵth is an experimental parameter indicating the maximum de-
sired estimation error. The smaller ϵth, the more accurate the estimation
must be and, thus, more traces are required.

It is worth noting that SMC, although it partially bypasses the state
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space explosion problem, it also provides weaker guarantees than exhaus-
tive probabilistic model checking [121]. As a matter of fact, the latter pro-
vides an exact calculation of the probability of a property holding, whereas
SMC only guarantees that said probability falls within a certain range [195].
One of the drawbacks of a simulation-based technique such as SMC is
that obtaining an accurate result for rare properties may require a signif-
icant number of runs or longer traces. Agha and Palmskog survey sev-
eral techniques addressing this issue, mostly based on the importance sam-
pling technique [201] which is also integrated in an extension of Uppaal
SMC [106].

Through Monte Carlo-based simulation, it is also possible to calcu-
late the expected value of distributions defined by means of functions max
(maximum) and min (minimum) when they are applied to stochastic pro-
cesses, such as expressions of variables in W . Given an upper bound τ ,
formulae EM,τ [max(v)] and EM,τ [min(v)], with v ∈ W , indicate respec-
tively the expected value of the maximum and minimum value of variable
v along executions that last at most τ time units.

For example, with the model of Fig. 3.1, we can compute the probability
of getting to operational state high within 10 seconds since the onset of
the system by evaluating the formula PM(⋄≤τhigh) with τ = 10 and the
expected value of the maximum and minimum temperature in the room by
computing EM,τ [max(T )] and EM,τ [min(T )].

SHA network M modeling an interactive scenario is put through SMC
without specifying a probability bound ϑ. Specifically, we estimate the
probability of success corresponding to expression PM(⋄≤τ scs), where
Boolean variable scs ∈ Vdc becomes true when all services constituting
the mission are complete (thus, the mission has ended in success). More-
over, we estimate the expected maximum value of human agents’ fatigue
(corresponding to formula EM,τ [max(F )], where F ∈ W models the hu-
man fatigue) and of the minimum battery charge of robots (corresponding
to formula EM,τ [max(Q)], where Q ∈W models the battery charge).

3.2 Pre-Existing Tools

This section recaps the main features of pre-existing tools integrated into
the toolchain for the formal verification and deployment phase.
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3.2.1 Uppaal

Uppaal is a tool for the definition, simulation, and formal verification of
real-time systems through networks of Timed Automata (or extensions of
such formalism) [123]. The Uppsala and Aalborg Universities have jointly
developed the tool since 1995.

The main components of Uppaal exploited by this work are the descrip-
tion language and the model-checker. The former is a custom notation to
define the network of automata and their behavior with a C-like syntax.
Although a graphical interface is provided, this work mainly exploits the
XML format compatible with the model checker to generate the automata
network programmatically rather than manually.

With purely Timed Automata networks, the model-checker explores the
state space exhaustively to check reachability or safety properties. How-
ever, with the extension introduced in 2015, the tool supports the mod-
eling and verification of automata with stochastic and hybrid features, to
which end the support of SMC has been introduced [46]. Specifically, the
model-checker engine has been extended to support the techniques under-
lying SMC and compute expressions of the form described in Section 3.1.2,
which are widely exploited by this work.

It is noteworthy that, unlike other tools for SMC [25,112,196,222], Up-
paal allows for the verification of timed systems with fully general hybrid
variables, i.e., fundamental requirements for the presented framework.

3.2.2 Robot Operating System

ROS (Robot Operating System) is an open-source framework providing
operating system functionalities [176], of which this work mainly exploits
message-passing between processes.

At its core, ROS relies on the concepts of processes, called nodes, com-
municating over topics to exchange messages, i.e., structured typed data.
In ROS, communication between nodes may conform to different archi-
tectural patterns, such as client-server and peer-to-peer. In any case, the
framework supports the distribution of nodes across different machines.

ROS comes into play within the framework’s workflow during deploy-
ment, which requires the different agents involved in the interactive sce-
nario to communicate and exchange data. Such exchanges occur over ROS
topics, while involved entities (i.e., robotic devices and sensors worn by
human agents or present in the environment) constitute the decentralized
network of ROS nodes.
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3.2.3 CoppeliaSim

CoppeliaSim (previously known as V-Rep) is a 3D robotic simulator [185].
Among other robot simulation tools, some of CoppeliaSim’s features make
it especially suitable for the presented framework’s purposes, specifically
to be integrated into the deployment infrastructure.

Firstly, the tool is fully compatible with ROS and provides rich remote
API functionalities. Consequently, agents in the simulation scene are fully
controllable by external scripts (e.g., virtual human agents) or physical de-
vices deployed in the physical setting (e.g., virtual robotic agents mimick-
ing the behavior of physical robotic platforms). Similarly, through such API
functions, the simulation scene can be programmatically generated starting
from high-level user-defined configuration parameters to spare manual ef-
fort on the practitioner’s side.

Secondly, unlike other simulators [11], within CoppeliaSim, it is possi-
ble to simulate the kinematics and dynamics of human agents (e.g., while
sitting, walking, and running at different speeds) through the realistic physics
engine. Furthermore, as previously mentioned, the behavior of virtual hu-
man agents (i.e., their choice to perform or not perform a particular action)
is fully controllable and monitorable remotely.
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Model-Driven Framework

This chapter showcases the main features and the operational work-
flow of the developed model-driven framework for interactive robotic
applications in service settings.

The development toolchain, whose workflow is shown in Fig. 4.1,
is structured into four phases:

(1) design-time analysis: the designer configures the Human-Robot
Interaction (HRI) scenario through the dedicated DSL. The for-
mal model and the set of properties are automatically generated,
and SMC is performed;

(2) reconfiguration: the analyst examines the estimated quality met-
rics of the scenario and, if necessary, applies reconfiguration
measures;

(3) deployment: when design-time results are deemed acceptable,
the analyst either deploys the scenario in a physical environment
or simulates it in a hybrid/fully virtual environment;

(4) model adjustment: traces collected during deployment serve as
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the training dataset for the automata learning algorithm, which
infers a refined model of human behavior. The updated model
is plugged back into the SHA network to obtain refined formal
analysis results.

4.1 Design-Time Analysis

The development framework helps designers develop robotic applications
by providing an estimate of the success probability and the level of comfort
of involved humans. Target users (i.e., the designers) are domain experts
such as healthcare logistics specialists or clinical engineers.

4.1.1 Scenario Configuration

As represented in Fig. 4.1, design-time analysis begins by configuring the
scenario through a custom DSL (task “Scenario Configuration” in Fig. 4.1).

The DSL file is automatically processed to generate the SHA network
and set of properties according to the user’s specifications. The designer
specifies the characteristics of the robots, the involved humans, the geomet-
rical representation of the environment layout, and the robotic missions.

Our framework features a predefined (yet extensible) set of high-level
patterns identifying recurring interaction contingencies in assistive appli-
cations (e.g., a robot following a human). A service corresponds to an
interaction pattern; therefore, for each service, the robot must perform the
actions implied by the associated pattern (e.g., retrieve an object and deliver
it back to the human). For each mission, the robot must provide services
requested by the human in the order specified by the designer.

Since the framework is not tied to a specific robot manufacturer or model,
robotic platforms available in the fleet may not be pre-programmed to per-
form all required tasks. Therefore, the framework envisages an ad-hoc
robot controller, hereinafter referred to as “orchestrator”, in charge of mon-
itoring the state of the system and sending commands to the robotic agent
and suggestions to human subjects in conformity with the interaction pat-
terns.

Moreover, it is paramount to take into account the robot’s level of charge
and charge/discharge cycles (whose parameters vary among different bat-
tery models), which may impact the duration of the mission (thus, its prob-
ability of success within a certain time range).
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4.1.2 Robotic Mission Verification

Under these premises, each mission is modeled by a SHA network featuring
the following automata:

A. Ahi with i ∈ [0,Nh − 1] modeling the Nh humans involved in the sce-
nario;

B. Ari with i ∈ [0,Nr − 1] modeling the Nr mobile robots;

C. Abi with i ∈ [0,Nr − 1] modeling the Nr batteries (one for each robot);

D. Aoi with i ∈ [0,Nr − 1] modeling the Nr orchestrators (one for each
robot).

The tool then automatically verifies through Uppaal the specified proper-
ties.

4.2 Scenario Reconfiguration

At the end of the design-time analysis phase, the designer manually exam-
ines the verification results and assesses whether they satisfy their quality
criteria, for example, if the probability of success is sufficiently high or the
expected value of fatigue is not excessive for any human.

If the results are not acceptable, the designer modifies the scenario (e.g.,
missions, environment layout, fatigue profiles) and repeats the analysis.

Possible reconfiguration measures include:

RM1. Assigning a different robot to the task if the facility has more than
one available device. It may not be feasible for a human subject par-
ticipating in a service to change their starting position due to facility
policies (e.g., patients necessarily start in the waiting room). On the
other hand, two robotic devices in a fleet may differ either because
of their starting position or initial battery charge. In both cases, this
reconfiguration measure can cut down the overall duration of the mis-
sion. In the first case, the robot may require less time to reach the first
human to serve. In the second case, the robot may take less time to
recharge or skip recharging entirely while carrying out the mission.

RM2. Changing the order in which humans are to be served. Note that this is
only possible if there are no logical dependencies between the services
being swapped. This measure can reduce the overall duration of the
mission if the robot has to cover a smaller distance between services
and the maximum level of fatigue reached by human subjects (thus,
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impacting their well-being); for example, if a patient has more time to
rest between two services.

RM3. Changing the target of a pattern, if feasible and compliant with the
facility policies. An example is a patient following the robot directly
to the doctor’s office without going through the waiting room first.
This reconfiguration measure can reduce both the mission’s duration
and the fatigue level reached by human subjects. Reducing the active
time leads to a decrease in the fatigue endured since, during a fatigue
cycle, time is the only variable in Eq.6.5.

RM4. Modifying the orchestrator’s thresholds. For example, reducing the
charge threshold at which the robot is instructed to move to the recharge
station or the fatigue level at which the orchestrator suggests the hu-
man stop walking is possible. The designer must handle the trade-off
between the decrease in mission duration and the increased probabil-
ity of failure (for example, due to battery degradation).

The configuration space resulting from the described measures is, in-
deed, potentially dense. Therefore, making optimal choices may not al-
ways be feasible for a human operator without further support. To this end,
the framework should be further extended to minimize the operator’s ef-
fort in exploring the configuration space. Optimal task allocation [114],
scheduling [212], and online adaptation [162, 172] in human-robot inter-
active systems is a long-standing research field. As a matter of fact, the
modeling framework implies an intrinsic non-deterministic nature of the
system under modeling that is not cleared through verification since the
selected technique, SMC, is also not exhaustive. However, as already men-
tioned, clearing the non-determinism manually entirely is unreasonably
time-consuming. A possible direction, also described in Section 17.2, is to
apply optimization techniques offline and identify a limited number of alter-
native plans of actions (each possibly optimizing different quality measures
of the robotic missions) for the operator to choose from.

Once the preferred plan of action is selected and design-time results are
acceptable, the application can move forward to deployment or simulation.

4.3 Scenario Deployment

The goal of the deployment phase is to run the robotic application in a real
environment or simulate it with a realistic physics engine. Also, deploy-
ment helps the application designer extract valuable information about the
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missions and, possibly, drive a reconfiguration of the scenario, since real
executions are available from the scene. In both cases, executable software
is built to run the application.

The approach allows for a hybrid deployment environment adhering to
the digital-twin paradigm [182] with an actual robotic device in the physical
environment interacting with human avatars in the virtual environment.

When a simulation is performed, the virtual agents can be controlled
by employing specific software components that the simulator executes to
manifest the agents’ behavior in the virtual scene.

Advanced simulator environments, as in the case of CoppeliaSim, also
offer rich control dashboards that render the virtual 3D scene graphically
and allow the simulator user to interact with it through input devices while
the scene develops.

Within the framework, to ensure that the deployed orchestrator enforces
the same policies as in the formal model and that, in the case of simula-
tion, the virtual agents behave correspondingly to their respective SHA, a
model-to-code mapping principle converts every SHA into an executable
deployment unit. The latter consists of the executable orchestrator script
or the scripts governing the agents’ behavior—either the humans or the
robot—within the virtual scene.

As the presence of humans is not always guaranteed and, when human
agents are patients in distress, even discouraged, the application designer
performing the simulation directly controls human avatars within the virtual
scene to make them act like real humans in real-world scenarios.

The framework allows the designer to issue commands to the avatars
through input devices, such as the keyboard, through the scripts that con-
trol them. The human actions modeled with the automata are mapped to
keys; keystrokes performed by the application designer are interpreted by
the scripts and then rendered in the scene.

To replicate physical fatigue sensors in the simulated environment and
the stochastic behavior of fatigue rates, scripts extract a random sample
from a pool of publicly available electromyography signals and estimate
fatigue curves using the technique described in [139, 156].

The deployed orchestrator and the agents communicate over a network
of ROS publisher and subscriber nodes [176] (the “Middleware Layer” in
Fig. 4.1). Each automaton corresponds to a deployment unit (e.g.,AO maps
to the executable orchestrator and AR to the robot). The firing of an event
through channels in set C in the formal model (of which Fig. 6.14 shows
an overview) corresponds to the publication of a message on a ROS topic.
More specifically, the deployment unit corresponding to the “sender” SHA
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(i.e., the one with the edge labeled with c! with c ∈ C) is the publisher
node, whereas the “receiver” SHA (i.e., with the edge labeled with c?) is
the subscriber node.

The designer will examine each run or simulation of the application for
the reconfiguration phase. Specifically, all data that sensors (either real or
simulated) publish through ROS nodes (i.e., the robot’s battery and posi-
tion values and all humans’ fatigue and position values) are stored to be
examined.

The robot carries out the mission by providing services in sequence. The
orchestrator logs relevant events concerning the advancement of each ser-
vice: when it begins, when it is completed, when it has to be interrupted
and why (either the human is too tired or the battery is too low), whether
the entire mission fails and the source of the failure. Data logged by the or-
chestrator are necessary to assess whether the deployed mission has ended
with success.

4.4 Model Adjustment

The model adjustment phase begins by processing data collected during the
deployment to assess whether unexpected contingencies emerged at run-
time. Data analysis from deployment and reconfiguration may be neces-
sary as SHA modeling human behavior have stochastic features that are
necessarily an approximation of the behavior observable in reality.

On the other hand, the framework targets the service level of robotic
systems’ architectures [144], as it focuses on the workflow of the mission
rather than on aspects related to hardware or structural components: au-
tomata modeling the robot, its battery, and the orchestrator do not thus have
stochastic features (i.e., inAri ,Abi , andAoi , function D(l) is undefined for
all l ∈ L and all edges have probability weight 1).

Potential hazards due to sensor faults are supposed to be managed at
deployment level. Specifically, fault estimation and compensation tech-
niques [135] must be applied at runtime so that the executable orchestrator
(i.e., the “executable code” component in Fig. 4.1) reasons on measure-
ments as accurate as possible. Similarly, the probability of hardware mal-
functions (i.e., one of the mobile robot’s engines breaking during the exe-
cution of the mission) is also assumed negligible given the ratio between
the estimated lifespan of a hardware component (in the order of magnitude
of years) compared to the duration of a mission (in the order of magnitude
of minutes). Under these premises, human behavior represents the primary
source of uncertainty within the domain of the framework. Rounds of for-
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mal analysis before deployment (multiple ones if offline reconfiguration is
performed) are carried out with default versions of SHA modeling human
behavior for each interaction pattern. However, different contingencies im-
pacting the human’s physiological state (and thus the mission’s outcome)
may be observed while deploying the application on the field.

To this end, the framework envisages a model adjustment phase that
exploits field data to learn a refined model of human behavior. Collected
data are processed and fed to an active automata learning algorithm called
L∗SHA, representing one of the main contributions of this research.

L∗SHA learns a SHA modeling human behavior, identifying the graph
(i.e., locations, edges, and channel labels) of the SHA, its flow conditions,
and probability distributions from mined traces. Each trace consists of the
sequence of events that occurred during an individual execution of the mis-
sion, where events represent actions performed by the human subject that
impact their physical fatigue.

The learned SHA is extended with features that are standard across
all SHA (and thus not learned by L∗SHA) and plugged back into the SHA
network replacing the original automaton approximating human behavior.
Such features are necessary to make the learned SHA fully compliant with
the SHA network, as they include fixed modeling patterns representing the
periodic update of sensor readings or the synchronization with the orches-
trator to conform to an interaction pattern. As this set of features can be
programmatically added to the learned automaton, it is not accounted for
by the learning algorithm. By doing so, L∗SHA’s computational load is fully
allocated to features that can only be inferred from data.

Design-time analysis (and eventually reconfiguration) can then be iter-
ated with the refined model of human subjects to obtain updated quality
metrics of the scenario that exploit the knowledge accumulated by deploy-
ing the mission on the field.

The cyclical nature of the framework allows the analyst to modify the
scenario and perform multiple iterations of the analysis until verification
results are deemed acceptable. The framework also supports the designer
in terms of which and how many scenario parameters require manual spec-
ification. The framework provides parameters concerning the robot (i.e.,
speed and acceleration) and battery behavior (i.e., charge and discharge
rates) to decrease the manual effort required on the designer’s side.

Designers manually specify parameters concerning the specific robotic
mission (i.e., how many humans are involved and the service they request)
whose value cannot be known a priori by the framework. As discussed in
Section 4.2, as the scenario under analysis grows in complexity, so does the
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manual labor required to identify and tune its parameter. A possible way
to approach this issue is to split the mission into smaller sequences to be
individually analyzed. However, in this case, the framework should also be
further extended to identify the dependencies of each task on previous ones.
Consequently, the framework would allow for the automated definition of
the input parameters of a sub-sequence that derive from the system’s state
at the end of the previous sub-sequence.
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CHAPTER5
Human-Robot Interactive Scenario

Configuration

This chapter presents in detail the scenario configuration task (see Fig.
4.1). Firstly, the conceptual model underlying the framework is pre-
sented as a Class Diagram containing the configurable entities of a
HRI scenario analyzable through the framework. The custom DSL de-
veloped to specify interactive scenarios is then introduced in detail,
exemplifying the different primitives through the illustrative scenario
in Section 1.2.

5.1 Conceptual Model

The framework covers human-robot interaction scenarios with specific char-
acteristics: scenarios take place in a known layout (robotic missions carried
out in unknown environments do not fall within the scope of this work), and
the service sequence does not change when the application is already run-
ning.

Fig. 5.1 shows the conceptual model (represented as a Class Diagram)
capturing the main entities of the scenarios and their relations. The dia-
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gram, described in detail in the following, constitutes the conceptual foun-
dation of the DSL and the working assumptions that underlie the formal
model. Configuring a specific scenario through the DSL to be formally
verified is equivalent to defining an instance (i.e., an Object Diagram) of
the conceptual model.

A Scenario comprises at least one robotic mission. Each Mission is
set in a known Layout, which we represent as a composition of one or
multiple two-dimensional rectangular areas. Each Area is a composition of
four corner Points, each characterized by a pair of Cartesian coordinates x
and y. A Layout also includes a relevant subset of points, called Points Of
Interest (POI), that can be the target of an action, such as room entrances,
cupboards, and the robot’s recharge station. Missions, areas, and POIs are
identified through attribute name.

A mission is a sequence of services requested by a human and provided
by a robot (specifically, humans are served according to their id). Each
Service conforms to an interaction pattern (attribute ptrn) and has a target
POI. Patterns (i.e., the items of enumeration InteractionPattern) group
typical interaction contingencies and are listed in the following:

P1. HumanFollower: the human follows the robot to a specific destina-
tion (attribute target in Service) of which they do not know the pre-
cise location. For example, a patient looking for the waiting room or a
doctor’s office conforms to this pattern. The human follows the robot,
but if they decide to stop walking, the robot also stops and waits for
the human to get closer again. The robot signals that the service has
been completed when both the robot and the human are close to the
destination.

P2. HumanLeader: the human has to lead the robot to a specific destina-
tion of which they know the precise location (attribute target in Ser-
vice), for example, a nurse requiring the robot to escort them while
carrying tools or medications. The human can decide when to start or
stop walking, and the robot follows. The human is in charge of signal-
ing when the service has been completed, i.e., when both the human
and the robot have reached the destination.

P3. HumanRecipient: the human waits for the robot to fetch an item
from a specific location (attribute target in Service) and bring it back
to the human, for example, a doctor requiring the robot to fetch a
tool or a medication from a colleague and bring it back to their of-
fice. While the robot fetches and delivers the object, the human is
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Chapter 5. Human-Robot Interactive Scenario Configuration

free to move around (and the robot adjusts the delivery destination
accordingly). The human is responsible for determining whether the
service has been provided when they have successfully collected the
item from the robot.

P4. HumanCompetitor: the human and the robot compete to fetch a crit-
ical resource [68] (for example, a medical kit during an emergency).
Both agents move to the location of the resource (captured by attribute
target) to reach it as quickly as possible. The competition ends when
either of the agents reaches the target location (effectively winning the
competition). The human may autonomously decide to stop walking
at any time.

P5. HumanRescuer: the pattern captures the robot requiring human in-
tervention to complete a task, such as pressing a button to call the ele-
vator or opening a closed door. In this case, the robot will emit audible
or visible signals to notify its need for human support. The human au-
tonomously decides to support the robot, move to the robot’s current
location (captured by attribute target), perform the required action,
and conclude the interaction.

P6. HumanApplicant: the pattern captures the human requiring the robot’s
support in performing a specific task that implies timely or close-
contact interaction, such as feeding a patient or administering medica-
tion. In this case, as soon as the service starts, the human waits for the
robot to approach their current location (attribute target). When the
robot is sufficiently close, the action requiring synchronization starts.
The human may autonomously interrupt the activity and resume at any
time.

Agents enact the mission. Abstract class Agent has a name, id, and
starting position start within the layout. In the case of human agents, the
id attribute determines the order in which humans are served. In the case
of robotic agents, the id attribute determines the order in which missions
are assigned to robots in the fleet in the case of multi-robot missions [130].
Agents are endowed with sensors that share a new reading every Tpoll in-
stants. There are two possible specializations of an Agent : humans and
robots.

For each robot, attribute type from enumeration RobotType defines
its commercial model (e.g., “TurtleBot3” or “Tiago”). We assume that a
Robot moves with a trapezoidal velocity profile, whose maximum accel-
eration amax, linear velocity vmax, and angular velocity ωr are derived from
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attribute type. Each Robot is powered by a lithium Battery with initial
charge C0. Class Battery’s attribute Cfail corresponds to the lowest voltage
under which the device must not move to prevent the battery pack from
being damaged.

SHA modeling human behavior include a model of physical fatigue.
Each Human has a pf attribute determining their fatigue profile (see the
FatigueProfile enumeration in Fig. 5.1), which determines their proneness
to fatigue and recovery based on physiological factors. We distinguish sub-
jects by age (Young/Elderly) and state of health (Healthy/Sick) or whether
they are affected by a severe respiratory syndrome that hinders their mo-
bility (SARSPatient), obtaining five possible fatigue profiles. Attribute v
specifies the average walking speed.

Since human behavior is unpredictable in a real setting, our model in-
cludes a probabilistic approximation of haphazard human behavior (e.g.,
the possibility of ignoring a robot’s instruction or starting and stopping
freely during the interaction). Therefore, a Human also features attribute
pfw from which attributes obey, FWmax, and FWth determining the probabil-
ity with which such behavior manifests itself are derived. The pfw attribute
has four possible values (corresponding to the elements of the FreeWill-
Profile enumeration): Normal, High, Low, or Disabled. The latter causes
the human free will to be entirely ignored at design time, used for a prelim-
inary test of the scenario setup.

Agents and batteries are equipped with sensors that, during deployment,
share data with the orchestrator over topics handled by the middleware layer
based on ROS (see Fig. 4.1) [176]. The SHA network features a model of
ROS publisher nodes (i.e., instances of class ROSPubNode in Fig. 5.1),
mimicking the delay with which messages are processed and published.
Delays are normally distributed with mean lmean and variance lvar [208].

The Orchestrator monitors the state of the system by subscribing to
sensor readings’ topics of the human’s position, fatigue, robot’s position,
and battery charge. The Orchestrator periodically checks the state of the
system against its policies every Tint time units and processes data for Tproc

time units. While processing, it checks sensor data against specific thresh-
olds: Dstop and Drestart determine the human-robot distance that causes the
robot to stop and wait or restart, respectively; Crech and Crestart correspond
to the battery charge levels that cause the robot to start or stop recharg-
ing, respectively; Fstop and Frestart correspond to the human fatigue levels
inducing the human to stop and rest or resume the action, respectively.

Finally, for each scenario, the analyst specifies the quality metrics to
be computed through “queries”. The framework currently supports three

79



Chapter 5. Human-Robot Interactive Scenario Configuration

query types (i.e., probability calculation, expected value calculation, and
generation of traces) supported by Uppaal. For each Query, it is necessary
to specify its type, time-bound τ and—optionally—the number of runs gen-
erated to verify the property, i.e., attribute R. We remark that R should only
be specified to limit performance issues during preliminary testing. Oth-
erwise, it is advisable to let the verification tool compute the number of
runs necessary to perform verification with the required confidence level.
The different query types (modeled by enumeration QueryType) allow the
designer to estimate:

Q1. the probability of the mission ending with success (item P_SCS) within
the time-bound. Success occurs when all services have been com-
pleted;

Q2. the probability of the mission ending in failure (item P_FAIL) within
the time-bound. Failure occurs either when the robot is fully dis-
charged and cannot move autonomously, or the human is fully fa-
tigued (note that the mission not ending in success due to an insuf-
ficient time bound does not constitute a failure; thus the results of a
P_FAIL and P_SCS query do not necessarily sum to 1);

Q3. the expected maximum value of fatigue (item E_FTG) for all humans
within the time bound;

Q4. the expected minimum battery charge (item E_CHG) value within the
time bound;

Q5. one or multiple (i.e., specified as parameter R) runs to have a more
detailed overview of how the system behaves during the execution of
the mission (item SIM).

5.2 Domain-Specific Language

As represented in Fig. 5.2, configuring a scenario through the DSL is
semantically equivalent to defining an Object Diagram of the conceptual
model in Fig. 5.1. Therefore, the developed DSL features primitives al-
lowing for the creation of scenarios that reflect the conceptual model. Each
primitive is presented in the upcoming subsections through an example sce-
nario.

Fig. 5.2 shows how DSL files are converted into SMC experiment in-
stances. Each DSL file defines a single scenario, which includes the layout
geometry, the points of interest, the agents, and the mission, and represents
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Figure 5.2: Diagram representing the process that translates a DSL file into Uppaal mod-
els. Solid arrows represent operational tasks while dashed arrows represent concep-
tual equivalences. Solid arrows are marked to distinguish the actions performed by the
user from those performed automatically. Boxes are numbered to identify the relations
between defined missions and the output files of each phase.

a well-formed DSL model if specific properties are met (e.g., rooms have
non-null area, agents are located within the boundaries of the environment,
etc.). Well-formedness properties are automatically verified by the transla-
tor every time a DSL file undergoes the conversion process.

Each mission in the DSL model is subject to formal verification sepa-
rately, requiring, thus, a separate formal model. The conversion process
features an intermediate phase: a JSON file containing the mission’s char-
acteristics is generated for each mission. Each JSON file is then converted
into two files, one with the Uppaal model and one with the queries to per-
form the SMC experiment. The intermediate JSON notation, which is a
lightweight and well-established standard, decouples the DSL from the spe-
cific verification tool and makes the framework flexible to the introduction
of different verification tools or different DSLs. JSON files are also ex-
ploited to automatically set up the deployment environment.

The automated model generation tool (i.e., driving the conversion from
JSON to Uppaal notation in Fig. 5.2) exploits Uppaal templates modeling
the behavior of the agents in the workspace whose correctness is (prob-
abilistically) verified before they are plugged into the model generation
component. The DSL (and equivalent JSON file) determines which and
how many instances of these templates must be generated and their starting
configuration (i.e., the value of input parameters, such as agents’ starting
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positions). Above-mentioned well-formedness rules ensure that the JSON
file cannot be generated (thus, the model generation process cannot start)
unless such parameters are properly specified, thus ensuring that the result-
ing SHA Network is also well-formed and ready for verification.

The DSL does not have a specific statement for objects of class Sce-
nario because each file inherently instantiates a single scenario, possibly
including several missions. Every mission in a scenario consists of four
independent sections, each one identified by the keyword define, concern-
ing: layout definition, list of agents in the scene, list of services, and list
of queries to be computed. Orchestrator and ROS nodes are instantiated
automatically when the specification is translated into the model to be used
for verification.

In the upcoming sections, the DSL primitives are illustrated through the
illustrative scenario from Section 1.2.

5.2.1 Layout, Areas, and POIs

While modeling the HRI scenario, the user must specify the layout where
the agents will operate. The DSL allows users to model different layouts
(such as different building floors or different sections of the same floor)
through the statement:

define layout

which includes a non-empty list of areas and POIs.
The DSL captures all layouts made up of adjacent rectangular areas (i.e.,

it does not capture curved or diagonal walls), each defined as:

area id in (x1, y1) (x2, y2)

where coordinate pairs (x1, y1) and (x2, y2) define one of the area’s diago-
nal segments from which the other two corner points are automatically in-
ferred upon generating the SHA network to save manual effort on the user’s
side. Areas’ corners are validated to ensure that they correctly identify a di-
agonal, i.e., that x1 ̸= x2 and y1 ̸= y2 hold. Layout-related declarations are
validated to check whether there are disconnected areas (i.e., all areas must
be reachable from any point in the layout) and that no pair of areas overlap
entirely.

POIs with their coordinates are declared through the following state-
ment:

poi id in (x, y)
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Listing 5.1 Example DSL section defining layout areas and POIs.
1 param m e a s u r e m e n t _ u n i t m
2 d e f i n e l a y o u t :
3 area A1 in ( 0 . 0 , 1 7 . 5 ) ( 4 0 . 0 , 7 . 5 )
4 area A2 in ( 4 0 . 0 , 2 5 . 0 ) ( 5 0 . 0 , 0 . 0 )
5 poi RC in ( 2 5 . 0 , 1 7 . 5 )
6 poi WR in ( 4 9 . 5 , 1 2 . 5 )
7 poi KIT1 in ( 4 0 . 5 , 2 1 . 2 5 )
8 poi KIT2 in ( 4 0 . 5 , 3 . 7 5 )
9

Although verification tools only handle adimensional variables, the DSL
requires the specification of the length measurement units to ensure that the
layout size is consistent with the robot’s speed. The measurement unit is
specified through the following statement, where mu ∈ {km,m, cm}:

param measurement_unit mu

The specification of the layout in Fig. 1.2 is given in Listing 5.1: the
layout features two areas (a1 and a2) and three POIs corresponding to the
recharge station (RC), the waiting room entrance (WR), KIT1, and KIT2.
All coordinates are expressed in meters (m), consistently with Fig. 1.2b.

5.2.2 Agents

Each mission must feature a mobile robot and at least one human requiring
assistance, specified in two independent sections that are identified through
keywords define robots and define humans, respectively.

The DSL allows designers to declare each available robot through the
statement:

robot name in (x, y) id id type type charge C0

where parameters name and id univocally identify the robot, C0 defines its
initial level of charge, and coordinates (x, y) define its starting position.
As per Section 5.1, while generating the formal model, the robot’s type
determines the translational and rotational speeds, and the acceleration (at-
tributes vmax, ωr, and amax) in Fig. 5.1) based on the model’s technical
specifications. This feature of the DSL saves non-technical users the effort
of retrieving these data when they might be more familiar with the type of
robot available in the facility.
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Listing 5.2 Example DSL section defining the agents and their features.
1 d e f i n e r obo t s :
2 robot ROB1 in ( 1 0 . 0 , 1 2 . 5 ) id 1 type t i a g o charge 40
3 robot ROB2 in ( 4 5 . 0 , 3 . 5 ) id 2 type t u r t l e b o t 3 _ w a f f l e p i charge

90
4

5 d e f i n e humans :
6 human HUM1 in ( 5 . 0 , 1 2 . 5 ) id 1 speed 80 i s y o u n g _ s i c k f r e e w i l l

low
7 human HUM2 in ( 3 5 . 0 , 9 . 0 ) id 2 speed 100 i s e l d e r l y _ h e a l t h y

f r e e w i l l normal
8

Each human is declared through the following statement:

human name in (x, y) id id speed v is pf freewill pfw (5.1)

where the name univocally identifies the human and the id determines the
serving order (thus, it is also required to be unique). Coordinates (x, y)
determine each human’s starting location. Parameters v, pf , and pfw define
the walking speed, fatigue and free will profiles as described in Section
5.1. The user chooses the values of pf and pfw out of a pre-determined list,
corresponding to the enumerations in Fig. 5.1.

Both the robot and human declaration blocks are validated to ensure
that no pair of agents share the same id (within the same Agent general-
ization) nor the same name (also across different Agent generalizations).
The DSL is developed under the simplifying hypothesis that agents oc-
cupy a single point in space (corresponding to their center of gravity). This
modeling choice is dictated by the need to keep the DSL (and, thus, the for-
mal model) as simple as feasible and spare the designer from defining the
three-dimensional envelope of the agents’ bodies. The framework assumes
that refined collision avoidance routines are already implemented at a lower
level within the robotic platform and the DSL validator only checks that no
pair of agents have the same center of gravity (i.e., coordinates (x, y)).

The agents from the running example are defined as per Listing 5.2.
There are two robots available (ROB1 and ROB2) of different types (thus,
they will have different speeds), and two humans (HUM1 and HUM2), of
which one has a Young/Sick fatigue profile and low free will, whereas the
second one is Elderly/Healthy and has normal free will profile.
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5.2.3 Missions

Designers can declare multiple missions and associate them with a layout
and a set of agents. Each mission is assigned to a single robot and verifi-
cation experiments resulting from each mission declaration (see Fig. 5.2)
are performed separately. A mission is declared as in the following, where
parameter m is the name of the mission and r is the name of the robot it is
assigned to (association provides in Fig. 5.1).

define mission m for r

As described in Section 5.1, each mission consists of a sequence of ser-
vices and each service adheres to one of the interaction patterns described in
Section 5.1. As per Statement (5.1) and the conceptual model presented in
Section 5.1, humans are declared independently of the interaction pattern,
which is specified when declaring the service as in the following:

do ptrn for h with target poi

where ptrn can be either robot_leader, robot_follower, robot_transporter,
robot_competitor, robot_applicant, or robot_rescuer (corresponding to the
HumanFollower, HumanLeader, HumanRecipient, HumanCompeti-
tor, HumanRescuer, and HumanApplicant patterns, respectively), h is
the name of the human requesting the service (association requests in Fig.
5.1), and poi instantiates attribute target in Fig. 5.1. Each service declara-
tion is validated to ensure that h and poi refer to existing human agents and
POIs.

The two missions associated with the running example are declared as
in Listing 5.3. In mission m1, ROB2 has to lead HUM1 to POI WR and
then deliver KIT2 to HUM2. In m2, ROB2 has to follow HUM2 to KIT1,
then lead HUM1 to WR.

5.2.4 Queries

Finally, the designer specifies which experiments to perform for each
mission. The DSL captures the set of queries shown in Fig. 5.1 and de-
scribed in Section 5.1. A query is declared through the following state-
ment:

compute query with duration τ runs R

where query can be either probability_of_success, probability_of_failure,
expected_charge, expected_fatigue, or simulation. Parameter τ corresponds
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Listing 5.3 Example DSL section defining the mission (i.e., the sequence of services).
1 d e f i n e mis s ion m1 f o r ROB1 :
2 do r o b o t _ l e a d e r f o r HUM1 with t a r g e t WR
3 do r o b o t _ t r a n s p o r t e r f o r HUM2 with t a r g e t KIT2
4

5 d e f i n e mis s ion m2 f o r ROB2 :
6 do r o b o t _ f o l l o w e r f o r HUM2 with t a r g e t KIT1
7 do r o b o t _ l e a d e r f o r HUM1 with t a r g e t WR
8

Listing 5.4 Example DSL section defining the set of queries.
1 d e f i n e q u e r i e s o f mis s ion m1 :
2 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 120 runs 300
3 compute e x p e c t e d _ f a t i g u e with durat ion 120 runs 50
4

5 d e f i n e q u e r i e s o f mis s ion m2 :
6 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 100 runs a u t o
7 compute p r o b a b i l i t y _ o f _ f a i l u r e with durat ion 100 runs a u t o
8

to the time-bound. At the same time, R is the bound on the number of traces
generated for the SMC experiment, whose value must be set to auto if the
user wants the verification tool to compute the required number of runs.

A possible set of queries for missions 1 and 2 from the running example
is given in Listing 5.4: the SMC experiments will estimate the probability
of success and maximum fatigue value for all humans for m1, and proba-
bilities of failure and success (with no bound on runs) for m2.
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CHAPTER6
Formal Modeling Human-Robot

Interactions

In this chapter, we present the automata constituting the SHA network,
i.e., the humans, robots and their batteries, and the orchestrators.

Human behavior is modeled through patterns Human Follower,
Human Leader, Human Recipient, Human Applicant, Human Res-
cuer, and Human Competitor; it features a stochastic characteriza-
tion of fatigue and free will and a factorization of the common model-
ing pattern capturing the periodic sensor reading update.

The model of the robot and the robot’s battery has been fitted to the
real platform used for the experimental validation.

Finally, we describe the structure of the orchestrator and each of its
components in detail.a

aThe content presented in this chapter also partially appears in [130] and [128]. The author of this the-
sis declares to have also authored the reproduced text, figures, and data and to have the right to reproduce
such content in a dissertation according to the license under which both articles are published.
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6.1 Formal Modeling Approach

This section illustrates the modeling approach we have adopted to map as-
pects of the real system to SHA features also summed up in Table 6.1.

The high-level goal of the SHA network is to capture the agents’ be-
havior based on their current operating state (e.g., the human resting or
walking). For every agent in the scenario and automaton A modeling its
behavior, defined as in Definition 1, every operating state of the agent cor-
responds to a location in L.

SHA capture the evolution of relevant quantitative attributes of the real
system, such as human fatigue and battery level of charge. Each physi-
cal attribute, characterizing a human or a component, corresponds to a re-
al-valued variable in set W \ {X ∪ Vdc ∪K} of their modeling automata
and flow conditions F(l), associated with a location l, reproduce the set
of ODEs constraining the evolution of real-valued variables in that specific
operating state.

The switch between two operating states consists of an edge between
the two corresponding locations. Recurrent features of the specific systems
that our modeling approach targets identify two types of switches, which
we refer to as controllable or uncontrollable. We remark that we use these
two terms in a manner that is specific to our framework, and they are not
part of the standard terminology of the formalism (for example, they are
unrelated to the notion of controllable and uncontrollable edges in Timed
Game Automata [19]); instead, they are merely aliases for specific edges
recurring in our SHA (i.e., subsets of E from Definition 1).

A controllable switch occurs if, and only if, a specific event fires and
synchronization among two or more automata occurs: for example, the
robot starts accelerating when the orchestrator issues the command to start
moving. For this reason, all the edges modeling a controllable switch are
defined with a channel in C \ {ϵ}.

Conversely, uncontrollable switches occur “naturally” in the original
system due to the evolution of the physical variables at play: for example,
the human unavoidably stops moving when their fatigue level reaches the
maximum endurable threshold. Therefore, they are defined through event
ϵ!, i.e., by means of the internal action. A location l with an outgoing edge
modeling an uncontrollable switch is endowed with a set of invariants of
the form w ≤ k2, where w ∈W is the real-valued variable subject to the
constraint and k2 ∈ K is its maximum allowable value (e.g., F ≤ 1, with
w = F and k2 = 1, constrains the value of the human fatigue to be less
or equal than 1). The outgoing edge then has condition w ≥ k1, such that
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k1 ∈ K and k2 ≥ k1 hold. If k2 > k1 holds, the edge fires with probability
distributed uniformly over interval [k1, k2], as explained in Section 3.1.1.
If k1 = k2 holds, the edge fires with probability 1 when w = k1 = k2 holds
(e.g., the edge from on to off in Fig. 3.1 wherew = T and k1 = k2 = Tth2).

Since the orchestrator controls the robots by using the digital observa-
tions made by sensors on humans and robots, the SHA modeling physical
dynamics (i.e., humans and robots) feature dense-counter variables (set Vdc)
as the discrete (i.e., digital) equivalents of real-valued variables. Dense
counters are periodically updated every Tpoll ∈ K time units (where Tpoll

corresponds to the refresh period of the specific sensor) through updates in
Ξ(W ) that are compatible with the ODEs modeling the dynamics of the
physical attributes in each location.

To this end, every SHA in the network uses a clock tupd ∈ X to mea-
sure the time elapsed between two consecutive measurements and to trigger
an update. Therefore, when tupd = Tpoll holds for an automaton A, hence
when time Tpoll has elapsed since the last measurement, then A uncontrol-
lably switches to a committed location. A committed location is equivalent
to an ordinary location with invariant t ≤ 0 and all incoming edges with
update t = 0 for some t ∈ X: therefore, time cannot elapse while in these
locations [123]. In that location, the dense counters modeling the latest sen-
sor readings are immediately notified to the orchestrator by firing an event
over a dedicated channel that triggers the publishing routine.

Controllable switches realize the interactions among the automata and
are obtained through synchronization channels. Since the orchestrator im-
plements the control logic that governs the agents, the issuing of a com-
mand by the orchestrator is modeled through synchronization between the
orchestrator and the automaton modeling the agent that reacts to the com-
mand. Hence, all the channels in (the automaton modeling) the orchestrator
are labeled with !, whereas (the automata modeling) the humans and the
battery are defined with edges having the channels marked with ?.

The modeling has been realized by considering one robot serving one
individual at a time, even if several agents (i.e., humans and robots) can
participate in the scenario. Each pattern models the interaction between
one pair of agents, a robot and a human, and missions are finite interactions.
Since there is always only one active robot and a single served human at a
time, channels representing synchronizing events between the orchestrator
and the agents are not specific to a single instance of a human or a robot. A
dense counter in the orchestrator, with a finite domain, identifies the human
currently interacting with the robot. It is evaluated by every automaton
modeling the humans to allow or deny the firing of the synchronization
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events with the orchestrator.
In particular, all the edges in the automaton modeling a human agent

include a condition that evaluates to true when the dense counter indicating
the currently served human is equal to the value id uniquely identifying it
(see Section 5.1) and, hence, the automaton. Moreover, even if modeling
multiple robots serving multiple humans simultaneously is possible in the-
ory, adding this feature would cause the models to increase in complexity.

The information flow that the orchestrator realizes by issuing commands
to agents through events via channels is as follows. The orchestrator

• informs the human to start or stop walking via channels cmd_hstart and
cmd_hstop;

• makes the robot move or stop via channels cmd_rstart and cmd_rstop.
Moreover, it starts the battery charging through channel cmd_bstart and
interrupts the charging with channel cmd_bstop, restoring the robot to
the mission-defined interaction.

6.2 Robotic System Model

In the following, we describe the SHA modeling the robotic platform and
the robot’s battery. Both exploit modeling pattern ⟨op⟩_pub⟨id⟩ (see Fig.
6.1), which captures the periodical publishing of sensor readings.

The ⟨op⟩_pub⟨id⟩ pattern is applied to agents’ operating states. Location
x⟨op⟩ in Fig. 6.1 corresponds to a generic operating condition of agent x.
Ports start, stop, and hold mark the transitions that enter and leave x⟨op⟩,

Table 6.1: Mapping between SHA elements and real agent’s features.

Agent Feature −→ Automaton Feature

State −→ Location: l ∈ L

Physical Variable −→ Real-valued Variable: w ∈W \ (X ∪ Vdc ∪K)

Sensor Output −→ Dense-Counter Variable: v ∈ Vdc

Design Parameter −→ Numerical Constant: k ∈ K

Time-Dynamics −→ Flow Condition: f ∈ F(l), l ∈ L

Uncontrollable Switch −→ Invariant-Edge pair (i ∈ I(l), e ∈ E)
s.t. e = (l, ϵ, γ, ξ, l′), γ ∈ Γ(W ), ξ ∈ Ξ(W )

Controllable Switch −→ Edge e ∈ E s.t. e = (l, c,⊤, ξ, l′) and c ∈ C \ {ϵ}
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Figure 6.1: ⟨op⟩_pub⟨id⟩ pattern, applied to all x⟨op⟩ locations in the network to model
the message publishing mechanism on queue ⟨id⟩, as seen in [128].

Figure 6.2: SHA modeling the robotic platform, as seen in [128].

whose characteristics change from case to case. Ports are not officially part
of the SHA formalism but merely a visual expedient to represent edges
entering and leaving the component.

While in x⟨op⟩, the dynamics of the system are constrained by differen-
tial equations marked by the generic symbol δ⟨op⟩ ∈ F(x⟨op⟩). The symbol
i⟨op⟩ ∈ I(x⟨op⟩) corresponds to the set of location-dependent invariants, in
addition to constraint tupd ≤ Tpoll, which is common to all instances of
⟨op⟩_pub⟨id⟩. The dense counter representing the sensor reading is updated
by instruction ξ⟨op⟩ ∈ Ξ(W ). It is possible for one ⟨op⟩_pub⟨id⟩ instance to
be in charge of publishing multiple sensor readings (e.g., the human shares
data about fatigue and position). Thus, multiple dense-counter variables are
simultaneously updated by ξ⟨op⟩.

6.2.1 Robotic Platform Model

As for the robot, there are three operating states corresponding to as many
locations: rstart, rmov, and rstop. These are enclosed in as many ⟨op⟩_pub⟨id⟩
instances and represented as dashed boxes in Fig. 6.2 for ease of visualiza-
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tion. Constraints within the dashed boxes in Fig. 6.2 represent flow condi-
tion and invariant associated with the corresponding x⟨op⟩ location. On the
other hand, locations ridle and rrec capturing the robotic platform being still
or busy recharging, respectively, do not entail sensor data sharing and, as
such, are not part of a ⟨op⟩_pub⟨id⟩ instance.

Real-valued variables V and Θ model the robot’s velocity and orienta-
tion, respectively. As per the framework’s assumption, velocity V evolves
according to a trapezoidal profile [39], and it is, thus, constrained by the
three flow conditions in Eq.6.1. Each flow condition in Eq.6.1 models a
phase of the velocity profile: acceleration, travel, and deceleration.

V̇ =





amax if x⟨op⟩ = rstart
0 if x⟨op⟩ = rmov

−amax if x⟨op⟩ = rstop

(6.1)

Real-valued variable Θ models the orientation of the robot with respect
to the x-axis, and the two locations rturnl and rturnr model the case in which
the robot is rotating left or right with constant speed ωr ∈ K. Variable Θ
varies according to flow conditions Θ̇ = ωr (in rturnl) or Θ̇ = −ωr (in rturnr)
until the desired orientation is reached. Parameters vmax, amax, and ωr are
as introduced in Section 5.1.

Update instructions ξ⟨start⟩, ξ⟨mov⟩, and ξ⟨stop⟩ ∈ Ξ(W ) (also in Fig. 6.2)
specific to the robot are made explicit in Eq.6.2. The Cartesian coordi-
nates of the robot inside the building are measured and periodically updated
through the dense-counter variables rposx and rposy .

ξ⟨start⟩,⟨mov⟩,⟨stop⟩ :

{
r ′posx = rposx + V Tpollcos(Θ)

r ′posy = rposy + V Tpollsin(Θ)
(6.2)

While in rmov (within ⟨mov⟩_pub⟨1⟩), every Tpoll seconds the automaton
updates dense-counter variable θ ∈ Vdc, which represents the new set-point
for orientation Θ. To make the path as smooth as possible, the robot starts
turning only if the set-point θ is greater than a threshold θth ∈ K. As in
Fig. 6.2, if |θ| > θth holds, the robot switches from r⟨mov⟩ to rturnl or rturnr
depending on whether Θ ⋚ θ holds. Finally, the robot switches back to
rmov and publishes the updated position values by sending an event through
channel p1 (label p1! in Fig. 6.2).

The robot starts or stops moving through controllable switches, labeled
by channels cmd_rstart ∈ C and cmd_rstop ∈ C (see Fig. 6.2).

Switch from rstart to rmov and from rstop to ridle are uncontrollable as
they capture the end of the acceleration and deceleration phases, respec-
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<latexit sha1_base64="usZ+j1ZV+oi17s3kQfj40DoQHwg=">AAACAHicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUmOh82YRT7s7W3RopstLwFbRQ0SFa/oSCf8E2LiBhqtHMrnZ2gkgKi6776ZSWlldW18rrlY3Nre2d6u5e24ax4dDioQxNN2AWpNDQQoESupEBpgIJnWBylfmdBzBWhPoWpxH4io21GAnOMJXugkFfMbw3KhkKOxtUa27dzUEXiVeQGinQHFS/+sOQxwo0csms7XluhH7CDAouYVbpxxYixidsDL2UaqbA+kmeekaPYsswpBEYKiTNRfi9kTBl7VQF6WSW0c57mfif14txdOEnQkcxgubZIRQS8kOWG5HWAXQoDCCyLDlQoSlnhiGCEZRxnopx2k8l7cOb/36RtE/q3lndvTmtNS6LZsrkgBySY+KRc9Ig16RJWoQTQ57IM3lxHp1X5815/xktOcXOPvkD5+Mb99mXbQ==</latexit>

bdis

<latexit sha1_base64="PMstRQmKnNlo0ItSifnt4ieT+jA=">AAACBHicbVC7TsNAEDyHVwgvAyXNiQiJKrIRCMoIGsogkYeUWNb5sgmnnO3T3TpSZKXlK2ihokO0/AcF/4JtXEDCVKOZXe3sBEoKg47zaVVWVtfWN6qbta3tnd09e/+gY+JEc2jzWMa6FzADUkTQRoESekoDCwMJ3WByk/vdKWgj4ugeZwq8kI0jMRKcYSb5th34g5Dhgw5TlQT+cO7bdafhFKDLxC1JnZRo+fbXYBjzJIQIuWTG9F1HoZcyjYJLmNcGiQHF+ISNoZ/RiIVgvLRIPqcniWEYUwWaCkkLEX5vpCw0ZhYG2WSe0ix6ufif109wdOWlIlIJQsTzQygkFIcM1yKrBOhQaEBkeXKgIqKcaYYIWlDGeSYmWUe1rA938ftl0jlruBcN5+683rwum6mSI3JMTolLLkmT3JIWaRNOpuSJPJMX69F6td6s95/RilXuHJI/sD6+AQI2mHw=</latexit>

bpubd

<latexit sha1_base64="9nwW3xNFB27I17F+7Q+LSEBs2HU=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJGNQFBG0FAGiTykxIrWl0045fzQ3RopslLyFbRQ0SFaPoSCf8E2LiBhqtHMrnZ2vEhJQ7b9aZVWVtfWN8qbla3tnd1qbW+/Y8JYC2yLUIW654FBJQNskySFvUgj+J7Crje9zvzuA2ojw+COZhG6PkwCOZYCKJWGtao3HPhA99pPRgij+bBWtxt2Dr5MnILUWYHWsPY1GIUi9jEgocCYvmNH5CagSQqF88ogNhiBmMIE+ykNwEfjJnnwOT+ODVDII9RcKp6L+HsjAd+Yme+lk1lIs+hl4n9eP6bxpZvIIIoJA5EdIqkwP2SElmkjyEdSIxFkyZHLgAvQQIRachAiFeO0okrah7P4/TLpnDac84Z9e1ZvXhXNlNkhO2InzGEXrMluWIu1mWAxe2LP7MV6tF6tN+v9Z7RkFTsH7A+sj28VMZf2</latexit>

bdead

<latexit sha1_base64="Qo0C+tRQPA/vu8dRAOV+STU0hzs=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJGNQFBG0FAGiYRIiWWdL5vklPPZulsjRVZKvoIWKjpEy4dQ8C/YxgUkTDWa2dXOThBLYdBxPq3Kyura+kZ1s7a1vbNbt/f2uyZKNIcOj2SkewEzIIWCDgqU0Is1sDCQcB9Mr3P//gG0EZG6w1kMXsjGSowEZ5hJvl0P/EHIcKLDVAOfzH274TSdAnSZuCVpkBJt3/4aDCOehKCQS2ZM33Vi9FKmUXAJ89ogMRAzPmVj6GdUsRCMlxbB5/Q4MQwjGoOmQtJChN8bKQuNmYVBNpmHNIteLv7n9RMcXXqpUHGCoHh+CIWE4pDhWmSNAB0KDYgsTw5UKMqZZoigBWWcZ2KSVVTL+nAXv18m3dOme950bs8arauymSo5JEfkhLjkgrTIDWmTDuEkIU/kmbxYj9ar9Wa9/4xWrHLngPyB9fENNJ2YCg==</latexit>

brech

<latexit sha1_base64="Q/8u9q/M6fvTtsxvqW28lqyE3Ew=">AAACBHicbVC7TsNAEDyHVwgvAyXNiQiJKrIRCMoIGsogkYeUWNb5sgmnnO3T3TpSZKXlK2ihokO0/AcF/4JtXEDCVKOZXe3sBEoKg47zaVVWVtfWN6qbta3tnd09e/+gY+JEc2jzWMa6FzADUkTQRoESekoDCwMJ3WByk/vdKWgj4ugeZwq8kI0jMRKcYSb5th34g5Dhgw5TlQS+nvt23Wk4BegycUtSJyVavv01GMY8CSFCLpkxfddR6KVMo+AS5rVBYkAxPmFj6Gc0YiEYLy2Sz+lJYhjGVIGmQtJChN8bKQuNmYVBNpmnNIteLv7n9RMcXXmpiFSCEPH8EAoJxSHDtcgqAToUGhBZnhyoiChnmiGCFpRxnolJ1lEt68Nd/H6ZdM4a7kXDuTuvN6/LZqrkiByTU+KSS9Ikt6RF2oSTKXkiz+TFerRerTfr/We0YpU7h+QPrI9vGBaYig==</latexit>

bpubr

<latexit sha1_base64="7f+rNWc/pqMLpueJjDUVAZAlx9c=">AAACE3icdVC7TsNAEDyHVwivACUFJyIkqshGhqQjgoYySOQhJZF1vmzCiTvbulsjRVZKPoGvoIWKDtHyART8C7YJEiCYam5m93Z3/EgKg7b9ZhXm5hcWl4rLpZXVtfWN8uZW24Sx5tDioQx112cGpAighQIldCMNTPkSOv71WeZ3bkAbEQaXOIlgoNg4ECPBGaaSV97tK4ZXiAlXw77ne/lTq8Qg0zidnnjlil09duuHdYfaVTtHRlyn5rrUmSkVMkPTK7/3hyGPFQTIJTOm59gRDpL0N8ElTEv92EDE+DUbQy+lAVNgBkl+yJTux4ZhSCPQVEiai/C9I2HKmIny08psT/Pby8S/vF6Mo/ogEUEUIwQ8G4RCQj7IcC3ShIAOhQZElm0OVASUM80QQQvKOE/FOI2slObxdTT9n7QPq85R1b5wK43TWTJFskP2yAFxSI00yDlpkhbh5JbckwfyaN1ZT9az9fJZWrBmPdvkB6zXD7rNn3s=</latexit>

cmd bstart?

<latexit sha1_base64="oj7x4E0zV/EUf3HyNbj+JsBKLFY=">AAACEnicdVBNS8NAEN3Ur1q/qh4FWSyCp5JItL1Z9OKxgv2AtoTNdloXd5OwOxFK6M2f4K/wqidv4tU/4MH/YhIrqOg7vXlvhpl5fiSFQdt+swpz8wuLS8Xl0srq2vpGeXOrbcJYc2jxUIa66zMDUgTQQoESupEGpnwJHf/6LPM7N6CNCINLnEQwUGwciJHgDFPJK+/2FcMrxISrYd/zvbzUKjEYRtPpiVeu2NVjt35Yd6hdtXNkxHVqrkudmVIhMzS98nt/GPJYQYBcMmN6jh3hIGEaBZcwLfVjAxHj12wMvZQGTIEZJPkfU7ofG4YhjUBTIWkuwveJhCljJspPO7MzzW8vE//yejGO6oNEBFGMEPBsEQoJ+SLDtUgDAjoUGhBZdjlQEVDONEMELSjjPBXjNLFSmsfX0/R/0j6sOkdV+8KtNE5nyRTJDtkjB8QhNdIg56RJWoSTW3JPHsijdWc9Wc/Wy2drwZrNbJMfsF4/AOcBnwk=</latexit>

cmd bstop? <latexit sha1_base64="QXQLwF3DzhgDip2XBukGlJrTQwY=">AAACEXicdZC7SgNBFIZnvcZ4i1qKMBiE2IRdMV4KIWhjmYC5QBKW2clJMmT2wsxZISypfASfwlYrO7H1CSx8F2djFBU91eH7z/X3Iik02varNTM7N7+wmFnKLq+srq3nNjbrOowVhxoPZaiaHtMgRQA1FCihGSlgvieh4Q0vUr1xDUqLMLjCUQQdn/UD0ROcoUFubqfdDTGpjs96riqg2/YZDpSfRAMzc7zv5vJ2sWQ7p0cOtYv2JOgXcaYkT6ZRcXNvZh6PfQiQS6Z1y7Ej7CRMoeASxtl2rCFifMj60DJpwHzQnWTyxpjuxZphSCNQVEg6gfC9I2G+1iPfM5Xpmfq3lsK/tFaMvZNOIoIoRgh4ugiFhMkizZUw/gDtCgWILL0cqAgoZ4ohghKUcW5gbAzLGj8+n6b/J/WDolMq2tXDfPl86kyGbJNdUiAOOSZlckkqpEY4uSF35J48WLfWo/VkPX+UzljTni3yI6yXdw48nfQ=</latexit>

Q̇ = fr(tphase)
<latexit sha1_base64="86bMzmMB/Fzwt4I5JVyYo1uvN8U=">AAACEXicdZC7SgNBFIZnvcZ4i1qKMBiE2IRdMV4KIWhjmYC5QBKW2clJMmT2wsxZISypfASfwlYrO7H1CSx8F2djFBU91eH7z/X3Iik02varNTM7N7+wmFnKLq+srq3nNjbrOowVhxoPZaiaHtMgRQA1FCihGSlgvieh4Q0vUr1xDUqLMLjCUQQdn/UD0ROcoUFubqfdDTGpjs96breAbttnOFB+Eg3MzPG+m8vbxZLtnB451C7ak6BfxJmSPJlGxc29mXk89iFALpnWLceOsJMwhYJLGGfbsYaI8SHrQ8ukAfNBd5LJG2O6F2uGIY1AUSHpBML3joT5Wo98z1SmZ+rfWgr/0lox9k46iQiiGCHg6SIUEiaLNFfC+AO0KxQgsvRyoCKgnCmGCEpQxrmBsTEsa/z4fJr+n9QPik6paFcP8+XzqTMZsk12SYE45JiUySWpkBrh5IbckXvyYN1aj9aT9fxROmNNe7bIj7Be3gH3X53m</latexit>

Q̇ = fd(tphase)
<latexit sha1_base64="sOSJGPX/yCkm8Km5ySUtS5l1q9Q="></latexit>^ tupd  Tpoll

<latexit sha1_base64="sOSJGPX/yCkm8Km5ySUtS5l1q9Q=">AAACHnicdZDBTttAEIbXFEoIpXXbI5cVERLqIbJRU+gtoheOqZRApDiyxptJWLFeb3fHSJHld+AReAqucOoN9doe+i44JiBatXOa+f4ZzcyfGCUdBcEvb+XF6trL9cZGc/PV1us3/tt3Jy7LrcCByFRmhwk4VFLjgCQpHBqLkCYKT5PzLwv99AKtk5nu09zgOIWZllMpgCoU+x8iBXoScYqjFOjMpkVuJmWk8Ftdu2nRjwuTKVWWsd8K2p0g/Pwp5EE7qIM/kXBJWmwZvdj/HU0ykaeoSShwbhQGhsYFWJJCYdmMcocGxDnMcFSlGlJ046L+qeS7uQPKuEHLpeI1xOcTBaTOzdOk6qwP/VtbwH9po5ymh+NCapMTarFYRFJhvcgJKyuzkE+kRSJYXI5cai7AAhFayUGICuaVe83Kj8en+f+Tk/122GkHXz+2ukdLZxpsm+2wPRayA9Zlx6zHBkywS3bNbtitd+V99+68Hw+tK95y5j37I7yf98KbpEs=</latexit>^ tupd  Tpoll

<latexit sha1_base64="l21uukgf1ZqgesXNG0RVdg6mWKU="></latexit>

tupd � Tpoll
<latexit sha1_base64="l21uukgf1ZqgesXNG0RVdg6mWKU="></latexit>

tupd � Tpoll

<latexit sha1_base64="e7CShY+LzQADomKGe/NrTzkF5us=">AAACEXicdZDLSgNBEEV7fBtfUZciNAbBVZgR42MnunGpYB6QCaGmU4lNenrG7hpBhqz8BL/Cra7ciVu/wIX/4mSMoqJ3VZxbRVXdIFbSkuu+OmPjE5NT0zOzhbn5hcWl4vJKzUaJEVgVkYpMIwCLSmqskiSFjdgghIHCetA/Hvr1KzRWRvqcrmNshdDTsisFUIbaxXVfge74/Mzv4aUfAl3YbnrcTrsg1WDQLpbccsX1DnY97pbdXPyLeCNSYiOdtotvficSSYiahAJrm54bUysFQ1IoHBT8xGIMog89bGalhhBtK83fGPDNxAJFPEbDpeI5xO8TKYTWXodB1pkf+tsbwr+8ZkLd/VYqdZwQajFcRFJhvsgKI7N8kHekQSIYXo5cai7AABEayUGIDCZZYIUsj8+n+f9FbbvsVcru2U7p8GiUzAxbYxtsi3lsjx2yE3bKqkywG3bH7tmDc+s8Ok/O80frmDOaWWU/5Ly8AwGdnfA=</latexit>^ Q � Cfail
<latexit sha1_base64="R9XDxBRi+ZMRG95Qd7Rulpy14VQ=">AAACCnicdVDLSgNBEJz1bXxFBS9eBoPgKcwao8lN9OJRwaiQhNA7dnRw9uFMrxDW/IFf4VVP3sSrP+HBf3E2RlDROhVV3XR1BYlWloR480ZGx8YnJqemCzOzc/MLxcWlExunRmJDxjo2ZwFY1CrCBinSeJYYhDDQeBpc7ef+6Q0aq+LomHoJtkO4iFRXSSAndYorRy2N160Q6NJ2s/1O1gWl+/1OsSTKYrtarwguylXh79TrjgixXatsct+RHCU2xGGn+N46j2UaYkRSg7VNXyTUzsCQkhr7hVZqMQF5BRfYdDSCEG07G+Tv8/XUAsU8QcOV5gMRv29kEFrbCwM3OQj628vFv7xmSt1aO1NRkhJGMj9ESuPgkJVGuWKQnyuDRJAnR64iLsEAERrFQUonpq6pguvj62n+PznZLPvVsjjaKu3uDZuZYqtsjW0wn+2wXXbADlmDSXbL7tkDe/TuvCfv2Xv5HB3xhjvL7Ae81w8aIJtV</latexit>

Q  Cfail

<latexit sha1_base64="90BYxdgfqy9L0FQ9CZwfzbrfk1M=">AAACB3icdVDLSgNBEJz1bXxFPXoZDIKnMKtGzUVELx4NmAckIfSOHR2cfTDTK4QlH+BXeNWTN/HqZ3jwX5yNEVS0TkVVN11dQaKVJSHevInJqemZ2bn5wsLi0vJKcXWtYePUSKzLWMemFYBFrSKskyKNrcQghIHGZnBzmvvNWzRWxdEFDRLshnAVqb6SQE7qFddrR50Q6Nr2s9Ne1gelh8NesSTKYr9S3RVclCvCP6hWHRFi/3B3h/uO5CixMc57xffOZSzTECOSGqxt+yKhbgaGlNQ4LHRSiwnIG7jCtqMRhGi72Sj8kG+lFijmCRquNB+J+H0jg9DaQRi4yVHQ314u/uW1U+ofdjMVJSlhJPNDpDSODllplGsF+aUySAR5cuQq4hIMEKFRHKR0YupqKrg+vp7m/5PGTtmvlEVtr3R8Mm5mjm2wTbbNfHbAjtkZO2d1JtmA3bMH9ujdeU/es/fyOTrhjXfW2Q94rx9rE5nX</latexit>

Q > Cfail

<latexit sha1_base64="McgZ9xu7QXTrX8WWei0/zGJ0uYE=">AAACCXicdVDLSsNAFJ3UV62vqrhyM1oEVyUp0XZZdOOygn1AW8JketsOnTyYuRFK6Bf4FW515U7c+hUu/BeTGEFFz+pwzr3cc48bSqHRNN+MwtLyyupacb20sbm1vVPe3evoIFIc2jyQgeq5TIMUPrRRoIReqIB5roSuO7tM/e4tKC0C/wbnIQw9NvHFWHCGieSUDwYewyliHEbuwHGdmE8XiyOnXDGr53aj1rCoWTUzpMS26rZNrVypkBwtp/w+GAU88sBHLpnWfcsMcRgzhYJLWJQGkYaQ8RmbQD+hPvNAD+Ms/oKeRJphQENQVEiaifB9I2ae1nPPTSbTsPq3l4p/ef0Ix41hLPwwQvB5egiFhOyQ5kokvQAdCQWILE0OVPiUM8UQQQnKOE/EKCmqlPTx9TT9n3RqVeusal7bleZF3kyRHJJjckosUidNckVapE04ick9eSCPxp3xZDwbL5+jBSPf2Sc/YLx+ACBdmsQ=</latexit>

pub bch!
<latexit sha1_base64="McgZ9xu7QXTrX8WWei0/zGJ0uYE=">AAACCXicdVDLSsNAFJ3UV62vqrhyM1oEVyUp0XZZdOOygn1AW8JketsOnTyYuRFK6Bf4FW515U7c+hUu/BeTGEFFz+pwzr3cc48bSqHRNN+MwtLyyupacb20sbm1vVPe3evoIFIc2jyQgeq5TIMUPrRRoIReqIB5roSuO7tM/e4tKC0C/wbnIQw9NvHFWHCGieSUDwYewyliHEbuwHGdmE8XiyOnXDGr53aj1rCoWTUzpMS26rZNrVypkBwtp/w+GAU88sBHLpnWfcsMcRgzhYJLWJQGkYaQ8RmbQD+hPvNAD+Ms/oKeRJphQENQVEiaifB9I2ae1nPPTSbTsPq3l4p/ef0Ix41hLPwwQvB5egiFhOyQ5kokvQAdCQWILE0OVPiUM8UQQQnKOE/EKCmqlPTx9TT9n3RqVeusal7bleZF3kyRHJJjckosUidNckVapE04ick9eSCPxp3xZDwbL5+jBSPf2Sc/YLx+ACBdmsQ=</latexit>

pub bch!

<latexit sha1_base64="UO2IFzV6NkyKvMAhBtwZ0KkgSxc="></latexit>{tupd}, ⇠dis

<latexit sha1_base64="DZppEoKK3tojJKgo0+JFBc0S+PM="></latexit>{tupd}, ⇠rec

<latexit sha1_base64="FCfsbk8ujvGeKBtu5tcaOK3x26o=">AAACA3icdVC7SgNBFJ31GeMjq5Y2g0GwkDAjapJCCKaxjGBUSEKYHW90cPbBzF0hLCn9Clut7MTWD7HwX5yNEVT0VIdz7uWee4JEK4uMvXlT0zOzc/OFheLi0vJKyV9dO7NxaiS0ZaxjcxEIC1pF0EaFGi4SAyIMNJwHN83cP78FY1UcneIwgV4oriI1UFKgk/p+6eSwGwq8toOs2Wejnb5fZhXGGOec5oRXD5gj9Xptl9cozy2HMpmg1fffu5exTEOIUGphbYezBHuZMKikhlGxm1pIhLwRV9BxNBIh2F42Dj6iW6kVGNMEDFWajkX4vpGJ0NphGLjJccjfXi7+5XVSHNR6mYqSFCGS+SFUGsaHrDTKNQL0UhlAFHlyoCqiUhiBCEZRIaUTU1dR0fXx9TT9n5ztVvh+hZ3slRtHk2YKZINskm3CSZU0yDFpkTaRJCX35IE8enfek/fsvXyOTnmTnXXyA97rByd5l2M=</latexit>

Q = C0,

<latexit sha1_base64="17yM6mLvu3a2L2l7fBwNJx47M4Q="></latexit>

r0 = Q, {tphase}

<latexit sha1_base64="k72UfNYSFIQ1U3XQvStgxaYINPg="></latexit>

d0 = Q, {tphase}

<latexit sha1_base64="k72UfNYSFIQ1U3XQvStgxaYINPg="></latexit>

d0 = Q, {tphase}

Figure 6.3: SHA modeling the robot’s battery.

tively. Invariant V ≤ vmax on rstart (visible within ⟨start⟩_pub⟨1⟩) and the
guard condition V ≥ vmax on the edge to rmov ensure that the switch occurs
exactly when velocity V equals vmax. Similar observations can be made
about invariant V ≥ 0 on rstop and guard V ≤ 0 on the edge to ridle.

6.2.2 Battery Model

Mobile robots are typically powered by a lithium battery, which undergoes
charging and discharging cycles. Therefore, the SHA Ab modeling the
robot’s battery features two ordinary non-committed locations bdis and brech
corresponding to the discharge and recharge phases, respectively, plus a
deadlock location bdead capturing the battery being fully discharged.

The main physical attribute of a battery is its voltage (representing the
charge level), which is modeled by the real-valued variable Q. Variable
Q is initialized with the initial voltage value C0, i.e., the attribute of class
Battery introduced in Section 5.1. The temporal dynamics of Q is deter-
mined by flow conditions in F(bdis) and F(brech), whose integral is shown
in Eq.6.3 and Eq.6.4, respectively.

Flow conditions match the behavior of lithium batteries for real robotic
devices. As a matter of fact, the entire discharge cycle (from 100% of
the voltage capacity to 0%) can be approximated by an exponential curve
[211]. Nevertheless, the real device is not operational when the voltage
drops below a certain threshold (which can vary depending on the specific
battery type and the device it is powering), i.e., when the level of charge is
not sufficient to power the wheel motors.

Letting the battery pack discharge to very low levels (close to 0%) may
permanently damage it [41]. Therefore, we identify equations governing
the evolution of variable Q (shown in Eq.6.3 and Eq.6.4) by fitting the dis-
charge/charge curve when the robotic device is operative and can carry out
the assigned mission. A cubic function showed a high fit to the real dynam-
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ics. Parameters d0,1,2,3, r0,1,2,3 ∈ K determining the discharge and recharge
curves are fitted based on sensor measurements collected during charge/dis-
charge cycles of the same robotic device. Parameter d0 is always set to C0

at the beginning of the scenario.

Q(t) = −d3t3 − 2d2t
2 − d1t+ d0 (6.3)

Q(t) = r3t
3 + 2r2t

2 + r1t+ r0 (6.4)

Edges between bdis and brech model controllable switches, triggered when
the orchestrator fires an event through channels cmd_bstart and cmd_bstop in-
structing the robot to start or stop recharging. On the other hand, the switch
from bdis to bdead is uncontrollable as it occurs when Q = Cfail, due to in-
variant Q ≥ Cfail on bdis and guard Q ≤ Cfail on the edge to bdead. The edge
from bdis to brech is also guarded by Q > Cfail since the automaton must en-
ter deadlock location bdead whenQ = Cfail holds. The switches between bdis
and brech are equipped with updates that initialize the terms d0 and r0 of the
equations Eq.6.3 with the residual charge values from the phase just ended
that is bchg and reset clock tphase.

The battery model features dense counter bchg, representing the digital
counterpart of Q, and a modeling pattern to periodically publish the latest
charge measurement governed by clock tupd. In Ab, this occurs while in
bdis and brech by switching to committed locations bpubd and bpubr , respec-
tively, when tupd = Tpoll holds. Upon these switches, clock tupd is reset, to
begin a new sensor refresh phase, and dense counter bchg is updated through
updates ξdis and ξrec. The new value of the battery charge depends on how
many phases lasting Tpoll time units have been executed so far, hence how
many measurements have been collected.

For this reason, automaton Ab features a dense counter k ∈ Vdc that
keeps track of the number of readings that have been done since the begin-
ning of the scenario. Updates ξdis and ξrech compute the battery charge at
the k-th refresh cycle Q(kTpoll). They are obtained by expanding Eq.6.3
and Eq.6.4 when t is equal to (k− 1)Tpoll + Tpoll.

Unlike the updates in automata modeling humans, dependency on index
k cannot be removed in the equations defining b′

chg. At every sensor refresh,
dense counter k at every sensor refresh is incremented. Updates are shown
in Table 6.2 (where b′

chg is the new value of bchg after the update). The
updated value of bchg is then published by firing an event through channel
pub_bch.
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Table 6.2: Updates for the Ab SHA modeling the robot’s battery.

Symbol Updates Description
ξdis b′chg = bchg − Tpoll((d3 + 6d3k)Tpoll

2 + (d2+
2d2k)Tpoll + d1); k = k + 1;

Discharge
phase

ξrec b′chg = bchg + Tpoll((r3 + 6r3k)Tpoll
2 + (r2+

2r2k)Tpoll + r1); k = k + 1;
Recharge
phase

6.3 Human Behavior Modeling Approach

In all interaction patterns, the SHA modeling humans differentiate between
operating states based on how fatigue evolves (i.e., whether individuals are
recovering or not) and how humans are interacting with the robot (e.g.,
they are leading the action or waiting for a robot’s action). Hence, all SHA
modeling humans feature real-valued variable F ∈ W , capturing physical
fatigue, and a dense counter f ∈ Vdc capturing the digital counterpart of F .
Besides physical fatigue, for each human, suitable sensors also periodically
refresh their position within the building. The position is modeled by dense
counters hposx and hposy capturing a pair of Cartesian coordinates. There-
fore, the portion of SHA modeling the update of periodic sensor readings is
present in all the operating states of the human, generically indicated as op,
and is hereinafter referred to as ⟨op⟩_pub. In the following sections, for a
clock t ∈ X , we use notation {t} to represent update t = 0 (e.g., we write
{tupd} instead of tupd = 0).

<latexit sha1_base64="9dnuJq1H+mvUKs1FP9ARQeyIZ34=">AAACG3icbZC7TsNAEEXXvAmvACXNighBFdmIVxlBQwkSCUhxFI03k7BivV7tjpEiK5/AJ/AVtFDRIVoKCv4Fx0kBgamuzp3RzNzIKOnI9z+9qemZ2bn5hcXS0vLK6lp5faPhktQKrItEJfYmAodKaqyTJIU3xiLEkcLr6O5s6F/fo3Uy0VfUN9iKoadlVwqgHLXLu6EC3VMYxkC3rpslZhDaEWkXzMaZSaNBu1zxq35R/K8IxqLCxnXRLn+FnUSkMWoSCpxrBr6hVgaWpFA4KIWpQwPiDnrYzKWGGF0rKx4a8J3UASXcoOVS8QLiz4kMYuf6cZR3FndPekP4n9dMqXvSyqQ2KaEWw0UkFRaLnLAyTwp5R1okguHlyKXmAiwQoZUchMhhmkdXyvMIJr//Kxr71eCoenh5UKmdjpNZYFtsm+2xgB2zGjtnF6zOBHtgT+yZvXiP3qv35r2PWqe88cwm+1XexzdGv6L5</latexit>hopi pub

<latexit sha1_base64="wtUZjNut2gHPHOGt+3avtcs/Iw8=">AAACEXicbVDLSsNAFJ3Ud31FXYowWARXJRFFl6IblxVsKzSl3Iy3dXAyCTM3Qgld+Ql+hVtduRO3foEL/8UkZuHrrA7n3OcJEyUted67U5uanpmdm1+oLy4tr6y6a+sdG6dGYFvEKjaXIVhUUmObJCm8TAxCFCrshjenhd+9RWNlrC9onGA/gpGWQymAcmngbl0PskCBHikMIqBrO8ziZBKYUpkM3IbX9Erwv8SvSINVaA3cj+AqFmmEmoQCa3u+l1A/A0NS5PPqQWoxAXEDI+zlVEOEtp+Vb0z4TmqBYp6g4VLxUsTvHRlE1o6jMK8sT/3tFeJ/Xi+l4VE/kzpJCbUoFpFUWC6ywsg8H+RX0iARFJcjl5oLMECERnIQIhfTPLB6nof/+/u/pLPX9A+a3vl+4/ikSmaebbJttst8dsiO2RlrsTYT7I49sEf25Nw7z86L8/pVWnOqng32A87bJ9gZnm8=</latexit>

hhopi

<latexit sha1_base64="YMJeTQMijgmAFg1kqy8NbuwV2Yg=">AAACBnicbVC7TsNAEDyHVwgvE0qaExESVWQjEJQRNJRBIg8psazzZZOccn7obo2ILPd8BS1UdIiW36DgX7CNC0iYajSzq50dL5JCo2V9GpWV1bX1jepmbWt7Z3fP3K93dRgrDh0eylD1PaZBigA6KFBCP1LAfE9Cz5td537vHpQWYXCH8wgcn00CMRacYSa5Zn3qJkOf4VT5SRR7rp2mrtmwmlYBukzskjRIibZrfg1HIY99CJBLpvXAtiJ0EqZQcAlpbRhriBifsQkMMhowH7STFNlTehxrhiGNQFEhaSHC742E+VrPfS+bzGPqRS8X//MGMY4vnUQEUYwQ8PwQCgnFIc2VyEoBOhIKEFmeHKgIKGeKIYISlHGeiXHWUi3rw178fpl0T5v2edO6PWu0rspmquSQHJETYpML0iI3pE06hJMH8kSeyYvxaLwab8b7z2jFKHcOyB8YH9+Xoplb</latexit>

hpub1

<latexit sha1_base64="n1z6H8BORiu8ONGXnH+/tzmDmKM="></latexit>I(hhopi) ^
<latexit sha1_base64="eRg6bUKBTJfF/Xpc5uQ0KAeqW5s="></latexit>F(hhopi) ^

<latexit sha1_base64="CN0CeD5LFPsWGQ3AgBFJasN6Ryk="></latexit>D(hhopi)

<latexit sha1_base64="l21uukgf1ZqgesXNG0RVdg6mWKU="></latexit>

tupd � Tpoll
<latexit sha1_base64="b1jCySTT1U7RkTE6jBTULMSc6ac="></latexit>

⇠hopi, {tupd}
<latexit sha1_base64="rrulhC4zF+sig5vft2Td71UmcdU="></latexit>

⇠rand,hopi

<latexit sha1_base64="B1EfrHg8BzOHmF3DZnpEfqaVezE=">AAACDHicdVDLSsNAFJ3UV62vqhvBzWgRXJWkRNtl0Y3LCvYBbQiT6W0dOnkwcyOUUD/Br3CrK3fi1n9w4b+YxAoqelaHc+7lnnu8SAqNpvlmFBYWl5ZXiqultfWNza3y9k5Hh7Hi0OahDFXPYxqkCKCNAiX0IgXM9yR0vcl55ndvQGkRBlc4jcDx2TgQI8EZppJb3hv4DK8Rk2jm5lT5yQjHswO3XDGrp3aj1rCoWTVzZMS26rZNrblSIXO03PL7YBjy2IcAuWRa9y0zQidhCgWXMCsNYg0R4xM2hn5KA+aDdpL8gxk9ijXDkEagqJA0F+H7RsJ8rae+l05mIfVvLxP/8voxjhpOIoIoRgh4dgiFhPyQ5kqk1QAdCgWILEsOVASUM8UQQQnKOE/FOO2qlPbx9TT9n3RqVeukal7alebZvJki2SeH5JhYpE6a5IK0SJtwckvuyQN5NO6MJ+PZePkcLRjznV3yA8brB9y2nEk=</latexit>

pftg!
<latexit sha1_base64="ueeGbzrgyZZkpWwawj03awylkwQ=">AAACDHicdVDLSsNAFJ3UV62vqhvBzWgRXJWkRNtl0Y3LCvYBbSmT6W0dOkmGmRuhhPoJfoVbXbkTt/6DC//FJFZQ0bM6nHMv99zjKSkM2vablVtYXFpeya8W1tY3NreK2zstE0aaQ5OHMtQdjxmQIoAmCpTQURqY70loe5Pz1G/fgDYiDK5wqqDvs3EgRoIzTKRBca/nM7xGjNVskFHtxyo0s4NBsWSXT91apeZQu2xnSInrVF2XOnOlROZoDIrvvWHIIx8C5JIZ03Vshf2YaRRcwqzQiwwoxidsDN2EBswH04+zD2b0KDIMQ6pAUyFpJsL3jZj5xkx9L5lMQ5rfXir+5XUjHNX6sQhUhBDw9BAKCdkhw7VIqgE6FBoQWZocqAgoZ5ohghaUcZ6IUdJVIenj62n6P2lVys5J2b50S/WzeTN5sk8OyTFxSJXUyQVpkCbh5JbckwfyaN1ZT9az9fI5mrPmO7vkB6zXD/dmnFo=</latexit>

ppos!

<latexit sha1_base64="El9/CV/FEqhPcJZSvVaysiEdHjs=">AAACBHicbVC7TsNAEDyHVwgvAyXNiQiJKrIjEJQRNJRBIg8piazzZZOccrZPd+tIkZWWr6CFig7R8h8U/Au2cQEJU41mdrWz4yspDDrOp1VaW9/Y3CpvV3Z29/YP7MOjtolizaHFIxnprs8MSBFCCwVK6CoNLPAldPzpbeZ3ZqCNiMIHnCsYBGwcipHgDFPJs+2J1w8YTnSQqNj36gvPrjo1JwddJW5BqqRA07O/+sOIxwGEyCUzpuc6CgcJ0yi4hEWlHxtQjE/ZGHopDVkAZpDkyRf0LDYMI6pAUyFpLsLvjYQFxswDP53MUpplLxP/83oxjq4HiQhVjBDy7BAKCfkhw7VIKwE6FBoQWZYcqAgpZ5ohghaUcZ6KcdpRJe3DXf5+lbTrNfey5txfVBs3RTNlckJOyTlxyRVpkDvSJC3CyYw8kWfyYj1ar9ab9f4zWrKKnWPyB9bHN727mFA=</latexit>

hpub2

Figure 6.4: SHA modeling the ⟨op⟩_pub pattern, color-coded as in Fig. 3.1. Ports are
marked by symbols “▶”, “■”, and “×”.
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The ⟨op⟩_pub pattern (i.e., a version of ⟨op⟩_pub⟨id⟩ extended with fea-
tures specifically tailored to modeling human behavior) is shown in Fig.
6.4. In the following, we use label op when describing the high-level struc-
ture of the pattern, while it is replaced by descriptive labels when referring
to a specific instance of the pattern (e.g., ⟨stand⟩_pub and ⟨walk⟩_pub).
The automaton features three locations: an ordinary location h⟨op⟩ and two
committed locations hpub1 and hpub2 . Location h⟨op⟩ captures the human’s
behavior while in a specific state (e.g., h⟨stand⟩ and h⟨walk⟩). To this end,
h⟨op⟩ is endowed with invariants I(h⟨op⟩), flow conditions F(h⟨op⟩), and
probability distributions D(h⟨op⟩).

For all instances of ⟨op⟩_pub, (tupd ≤ Tpoll) ∈ I(h⟨op⟩) holds. The
combination of this invariant with condition tupd ≥ Tpoll on the edge to
hpub1 forces the SHA to switch to the committed location when tupd = Tpoll

holds. Upon switching, the set of updates ξ⟨op⟩ ⊂ Ξ(W ) (e.g., ξ⟨stand⟩ and
ξ⟨walk⟩) updates dense counters f, hposx , and hposy . The effect of ξ⟨op⟩ varies
depending on the specific state of the human. Since hpub1 and hpub2 are
committed, the new values are immediately shared with the orchestrator by
firing an event through channels pftg first and ppos right after.

Edges entering and leaving the ⟨op⟩_pub pattern are represented through
ports (coherently with [128, 130]). SHA enter a submachine through the
port marked by the symbol “▶” (i.e., start) and leave a submachine through
ports marked by symbols “■” (i.e., end) and “×” (i.e., fail), indicating
whether the operating state op ended (or stopped momentarily) or the en-
tire mission ended with failure (e.g., because the human is too fatigued),
respectively.

Edge conditions, channels, and updates characterizing edges through
ports vary depending on the specific ⟨op⟩_pub instance. The only exception
is update ξrand,⟨op⟩ on the edge through the start port. Update ξrand,⟨op⟩ is
featured by all instances of ⟨op⟩_pub since it determines the stochastic
properties of human fatigue of the human while in a specific operating state
⟨op⟩ and the way these properties are determined is the same for every
instance of ⟨op⟩_pub.

Human fatigue is a complex phenomenon driven by a wide range of
factors: our approach focuses on muscular fatigue due to physical strain.
As discussed by Liu et al. [141], a muscle can be seen as a reservoir of
motor units. When physical exertion is required, motor units progressively
activate and eventually cause fatigue due to biochemical processes. The
muscle can, then, recover from fatigue if it is put to rest [118, 141].

Our approach exploits the model proposed by Konz [81,118], described
by Eq.6.5, for which human action undergoes alternate fatigue and recovery
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cycles, each one modeled by an exponential function. Fatigue and recovery
are expressed by means of function parameters, called fatigue rates, which
depend on several factors such as the age of the subject that the model
represents, their health condition, etc.

Each cycle is associated with an index i uniquely identified, given time t,
by function j : R+ → N (thus, i = j(t) holds). We indicate the timestamp
at which cycle i ends by ti. During both fatigue and recovery, fatigue F (t)
for cycle i depends on the residual value F (ti−1) from the previous cycle
ended at time ti−1. Parameters λi and ρi are the fatigue and recovery rates
for cycle i.

F (t) =

{
1− (1− F (ti−1)) · e−λi(t−ti−1) (fatigue)

F (ti−1) · e−ρi(t−ti−1) (recovery)
(6.5)

Complete recovery occurs when F (t) = 0 holds, whereas condition F (t) =
1 models the case in which the muscle has reached the maximum level of
endurance. Liu et al. [141] argue that the fatigue F (t) can be seen as ratio
MF (t)/M0, where M0 is the total amount of motor units, and MF (t) is
the number of fatigued units at time t. Therefore, F (t) =MF (t)/M0 = 1
holds when every unit composing a muscle is fatigued.

Running experiments on a pool of subjects has shown how a Normal
distribution is a good fit to capture the variability of rates λi and ρi in the
fatigue model [140]. Furthermore, the variability of the fatigue rates for an
individual subject between different exertion cycles has been observed in
[184]. The SHA modeling the human in a scenario embeds this variability
by means of probability distributions, as the automaton is not representative
of a single specific individual. Still, it represents a set of subjects with
similar physical characteristics. Therefore, we approximate the complexity
of the fatigue phenomenon by considering each λi (resp., ρi) as a sample of
distributionN(µλ, σ

2
λ) (resp.,N(µρ, σ

2
ρ)), whose mean and variance depend

on the fatigue profile that characterizes the class of humans under analysis.
By construction, every operating state of a human agent is associated

with a specific fatigue profile, i.e., it is either a fatigue state or a recovery
state. Hence, for every instance of ⟨op⟩_pub function D(h⟨op⟩) is defined.

Upon entering an ⟨op⟩_pub, update ξrand,⟨op⟩ computes the fatigue/re-
covery rate to be considered while the automaton is in location h⟨op⟩. To
this end, every automaton modeling a human features two dense counters
λ, ρ ∈ Vdc, which store the current fatigue/recovery rates. Every time up-
date ξrand,⟨op⟩ is executed, it generates a new sample ofD(h⟨op⟩) and assigns
it to ρ, if h⟨op⟩ is a recovery state, otherwise to λ. The sample is generated
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through the Box-Müller algorithm [46]. Update ξrand,⟨op⟩ is given in Eq.6.6,
where rate equals λ if h⟨op⟩ is a fatigue state and ρ otherwise; µ⟨op⟩ and σ⟨op⟩
are the mean and standard deviation ofD(h⟨op⟩); u1 and u2 are independent
realizations of uniform distribution U(0, 1).

ξrand,⟨op⟩ : rate = µ⟨op⟩ + σ⟨op⟩
√
−2 ln(u2) cos(2πu1) (6.6)

The values of ρ and λ determine the temporal evolution of the real-
valued variable F and its digital counterpart f while the automaton is in
h⟨op⟩.

In a given operating state ⟨op⟩, if fatigue increases, flow conditionF(h⟨op⟩)
corresponds to the derivative of Eq.6.5(fatigue), indicated as fftg in Eq.6.7;
otherwise, fatigue decreases andF(h⟨op⟩) is equal to the derivative of Eq.6.5
(recovery), indicated as frec in Eq.6.8.

Both equations depend on two terms other than ρ and λ, i.e., clock
tphase ∈ X and dense counter Fp ∈ Vdc. Clock tphase ∈ X measures
the total amount of time the automaton spends in location h⟨op⟩ and dense
counter Fp ∈ Vdc is the residual value of fatigue at the end of the previous
fatigue/recovery cycle, realized by a different ⟨op⟩_pub instance. Both are
updated when a new fatigue/recovery cycle begins, i.e., every time the SHA
modeling the human enters an instance of ⟨op⟩_pub and ξrand,⟨op⟩ is carried
out: clock tphase is reset and variable Fp is updated with F .

Ḟ = fftg(tphase, λ) = Fpλe
−λtphase (6.7)

Ḟ = frec(tphase, ρ) = −Fpρe
−ρtphase (6.8)

On the other hand, dense counter f is not associated with a flow in loca-
tion h⟨op⟩ because it models the digital equivalent of the physical attribute
F . For this reason, the temporal evolution of f is calculated explicitly via
the update ξ⟨op⟩, which computes a new value for f by applying the update
in Eq.6.9, every Tpoll time units. The primed version f ′ indicates the new
value of f after the computation of the expression, which depends on the
operating state ⟨op⟩.

Unlike Eq.6.5, the equations in Eq.6.9 model fatigue in a single cycle
and are expressed in terms of the amount of time elapsed from the begin-
ning of the current fatigue/recovery cycle. Conversely, Eq.6.5 depends on
the absolute time t and instant ti−1, the latter indicating the end of the cy-
cle that precedes the current one. Hence, if τ is the amount of time elapsed
from the beginning of a cycle, Eq.6.5 can be rewritten in terms of τ by ap-
plying the identity t − ti−1 = τ , and fatigue after τ time units from the
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beginning of the current fatigue/recovery cycle is F̄ (τ) = F (ti−1+ τ). For
τ = 0, fatigue F̄ (0) is equal to the residual value F (ti−1), which is Fp.

At the end of the (k + 1)-th sensor refresh, lasting Tpoll time units each,
the fatigue is F (kTpoll + Tpoll). The final expressions are obtained by con-
sidering that, before computing ξ⟨op⟩, f amounts to Fpe

−ρkTpoll , in case of
recovery, and to 1 − (1 − Fp)e

−λkTpoll otherwise (i.e., the fatigue after k
refresh cycles).

f ′ = F̄ (kTpoll + Tpoll) =





1− (1− Fp)e
−λ(kTpoll+Tpoll) =

1− (1− Fp)e
−λkTpolle−λTpoll =

1− (1− f)e−λTpoll (fatigue)

Fpe
−ρ(kTpoll+Tpoll) =

Fpe
−ρkTpolle−ρTpoll =

fe−ρTpoll (recovery)

(6.9)
The introduction of distributionD(h⟨op⟩), ξ⟨op⟩, and ξrand,⟨op⟩ in all ⟨op⟩_pub

instances strengthens the results obtained with SMC as they account not
only for the uncertainty due to human autonomy but also for the natural
variability of the fatigue phenomenon. The extension, therefore, leads to
more reliable estimations of the fatigue levels reached by subjects involved
in the scenario, including an estimation of their variability ranges.

In the following, we present the individual SHA modeling the three in-
teraction patterns, all featuring multiple instances of the hereby presented
⟨op⟩_pub pattern.

6.3.1 Human Follower

An instance of the SHA modeling the human follower pattern is generated
for each service specified through the DSL with ptrn = HumanFollower.
The SHA, hereinafter referred to as Ahf and shown in Fig. 6.5, features
two instances of the ⟨op⟩_pub pattern: one capturing the recovery phase
while standing (⟨stand⟩_pub) and one for the fatigue phase while walking
(⟨walk⟩_pub).

Fatigue decreases while resting (in ⟨stand⟩_pub) and increases while
walking (while in ⟨walk⟩_pub). Therefore, F(h⟨stand⟩) equals frec(t, ρ) (see
Eq.6.8) and F(h⟨walk⟩) equals fftg(t, λ) (see Eq.6.7). Values ρ and λ are
realizations of N(µstand, σ

2
stand) and N(µwalk, σ

2
walk), respectively. Table 6.3

shows the internal updates, ξstand and ξwalk, respectively, later described in
detail. Ahf also features a deadlock location hfaint capturing the case in
which the human reaches complete exhaustion causing the failure of the
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<latexit sha1_base64="M7qVetxTYEEC7G0BsNqi3d1F12w=">AAACBHicbVA9TwJBEN3DL8SvU0ubjcTEitwZjZZEG0tMBEmAkLllgA17e5fdORJyofVX2GplZ2z9Hxb+F++QQsFXvbw3k3nzglhJS5736RRWVtfWN4qbpa3tnd09d/+gYaPECKyLSEWmGYBFJTXWSZLCZmwQwkDhQzC6yf2HMRorI31Pkxg7IQy07EsBlEld1x122yHQ0IRpH6SmadctexVvBr5M/DkpszlqXfer3YtEEqImocDalu/F1EnBkBQKp6V2YjEGMYIBtjKqIUTbSWfJp/wksUARj9FwqfhMxN8bKYTWTsIgm8xT2kUvF//zWgn1rzqp1HFCqEV+iKTC2SErjMwqQd6TBokgT45cai7AABEayUGITEyyjkpZH/7i98ukcVbxLyre3Xm5ej1vpsiO2DE7ZT67ZFV2y2qszgQbsyf2zF6cR+fVeXPef0YLznznkP2B8/ENGCOYig==</latexit>

hfaint
<latexit sha1_base64="oxUeGSAXOCDeOIVzpDSGFmVKcIY="></latexit>

Ḟ = frec(tphase, ⇢),

<latexit sha1_base64="sFTA1X3skfOhTrmcuacJT6CiNQk=">AAAB+3icdZDLSgNBEEV74ivGV9Slm8YguBp6xPhYCEFBXEYwD0lC6OlUYpOenqG7RghDvsKtrtyJWz/Ghf/iJI6iondVnFtFVV0/UtIiY69ObmZ2bn4hv1hYWl5ZXSuub9RtGBsBNRGq0DR9bkFJDTWUqKAZGeCBr6DhD88mfuMWjJWhvsJRBJ2AD7TsS8ExRdftXojJ+fiEdYsl5paZd3zgUeayqegX8TJSIpmq3eJbOiviADQKxa1teSzCTsINSqFgXGjHFiIuhnwArbTUPADbSaYHj+lObDmGNAJDpaJTCN8nEh5YOwr8tDPgeGN/exP4l9eKsX/USaSOYgQtJotQKpgussLINAmgPWkAkU8uByo1FdxwRDCSciFSGKfRFNI8Pp+m/xf1Pdcru+xyv1Q5zZLJky2yTXaJRw5JhVyQKqkRQQJyR+7JgzN2Hp0n5/mjNedkM5vkh5yXd2tqlNc=</latexit>

Ḟ = 0

<latexit sha1_base64="U+WsiTjDWv21greykm8yErByeD4=">AAACDHicdVDLSsNAFJ34rPVVdSO4GSyCq5KUaLuz6MZlBfuAtoTJ9LYdOnkwcyOUUD/Br3CrK3fi1n9w4b+YxAgqelaHc+7zuKEUGk3zzVhYXFpeWS2sFdc3Nre2Szu7bR1EikOLBzJQXZdpkMKHFgqU0A0VMM+V0HGnF6nfuQGlReBf4yyEgcfGvhgJzjCRnNJ+32M4QYy5N+w7EyfWyBTO52dOqWxWTu16tW5Rs2JmSIlt1WybWrlSJjmaTum9Pwx45IGPXDKte5YZ4iBOpgkuYV7sRxpCxqdsDL2E+swDPYizD+b0KNIMAxqCokLSTITvHTHztJ55blKZ3qt/e6n4l9eLcFQfxMIPIwSfp4tQSMgWaa5EEg3QoVCAyNLLgQqfcqYYIihBGeeJGCVZFZM8vp6m/5N2tWKdVMwru9w4z5MpkANySI6JRWqkQS5Jk7QIJ7fknjyQR+POeDKejZfP0gUj79kjP2C8fgDvKZxW</latexit>

cmd hstart?

<latexit sha1_base64="ZN0GOz5niAyPeeGii/L8wV0IH5A=">AAACC3icdVC7TsNAEDyHVwivAAUFzYkIiSqyI0PSEUFDGSTykJLIOl82ySnnh+7WSJHlT+AraKGiQ7R8BAX/gm2CBAimGs3samfHDaXQaJpvRmFpeWV1rbhe2tjc2t4p7+51dBApDm0eyED1XKZBCh/aKFBCL1TAPFdC151dZn73FpQWgX+D8xCGHpv4Yiw4w1RyygcDj+EUMebeaOBMnVhjECbJuVOumNUzu1FrWNSsmjkyYlt126bWQqmQBVpO+X0wCnjkgY9cMq37lhniMGYKBZeQlAaRhpDxGZtAP6U+80AP4/yBhB5HmmFAQ1BUSJqL8H0jZp7Wc89NJ7O4+reXiX95/QjHjWEs/DBC8Hl2CIWE/JDmSqTNAB0JBYgsSw5U+JQzxRBBCco4T8UoraqU9vH1NP2fdGpV67RqXtuV5sWimSI5JEfkhFikTprkirRIm3CSkHvyQB6NO+PJeDZePkcLxmJnn/yA8foBHlmb5A==</latexit>

cmd hstop?

<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA="></latexit>

Fp = F, {tphase}

<latexit sha1_base64="H6kp2CNusqudf+4oDkme0SZZsXs=">AAAB+HicdVDLTgJBEJz1ifhCPXqZSEw8kVmU141oYjxiImAChMwODY7MPpzpNUHCP3jVkzfj1b/x4L84i5io0TpVqrrT1eVFShpk7M2Zm19YXFpOraRX19Y3NjNb2w0TxlpAXYQq1JceN6BkAHWUqOAy0sB9T0HTG54kfvMWtJFhcIGjCDo+HwSyLwVHKzVO2wO4cbuZLMuxYqFyyCjLFZhbqlQsYaxYPsxT15IEWTJDrZt5b/dCEfsQoFDcmJbLIuyMuUYpFEzS7dhAxMWQD6BlacB9MJ3xNO2E7seGY0gj0FQqOhXh+8aY+8aMfM9O+hyvzG8vEf/yWjH2y52xDKIYIRDJIZQKpoeM0NLWALQnNSDyJDlQGVDBNUcELSkXwoqx7SVt+/h6mv5PGvmcW8ix86Ns9XjWTIrskj1yQFxSIlVyRmqkTgS5JvfkgTw6d86T8+y8fI7OObOdHfIDzusHLseTmA==</latexit>

F � 1

<latexit sha1_base64="oZ7p07+ccLhlc62PjNeByu0QXTA=">AAACHnicbZC7TsNAEEXXPEN4BShpVkRIiCKyEa8ygoYSJPKQ4igabyZhxXpt7Y6RIsv/wCfwFbRQ0SFaKPgXHJMCAlNdnTujmblBrKQl1/1wZmbn5hcWS0vl5ZXVtfXKxmbTRokR2BCRikw7AItKamyQJIXt2CCEgcJWcHs+9lt3aKyM9DWNYuyGMNRyIAVQjnqVfV+BHir0Q6AbO0gtge5nvvmGvQITpXESZL1K1a25RfG/wpuIKpvUZa/y6fcjkYSoSSiwtuO5MXVTMCSFwqzsJxZjELcwxE4uNYRou2nxU8Z3EwsU8RgNl4oXEH9OpBBaOwqDvLM4fdobw/+8TkKD024qdZwQajFeRFJhscgKI/OwkPelQSIYX45cai7AABEayUGIHCZ5euU8D2/6+7+ieVDzjmtHV4fV+tkkmRLbZjtsj3nshNXZBbtkDSbYPXtkT+zZeXBenFfn7bt1xpnMbLFf5bx/AeGSpFs=</latexit>hstandi pub

<latexit sha1_base64="lvF+axCwcf+B3H7L3zqPNldOcrA="></latexit>

⇢ ⇠ N (µstand, �
2
stand)

<latexit sha1_base64="GAzJN5A7Mu18NWl8rkug2YnOm5w="></latexit>

� ⇠ N (µwalk, �
2
walk)

<latexit sha1_base64="TF+IMu7W4bhmE/4ErjHGDCL0InU="></latexit>

Ḟ = fftg(tphase, �),

<latexit sha1_base64="RQon5mrFcN2t3JyfXEx7bPr8T8Y=">AAACAHicdZA9SwNBEIb3/IzxK2ppsxgEq3Anxo8uKIhlBPMBuRjmNpO4ZG/v3J0TQkjjr7DVyk5s/ScW/hcvMYqKvtXwvDPMzBvESlpy3Vdnanpmdm4+s5BdXFpeWc2trVdtlBiBFRGpyNQDsKikxgpJUliPDUIYKKwFvZORX7tBY2WkL6gfYzOErpYdKYBSdHnqK7zmns99BbrdyuXdQtH1jvY97hbcsfgX8SYkzyYqt3JvfjsSSYiahAJrG54bU3MAhqRQOMz6icUYRA+62EhLDSHa5mB89ZBvJxYo4jEaLhUfQ/w+MYDQ2n4YpJ0h0JX97Y3gX14joc5hcyB1nBBqMVpEUuF4kRVGpnEgb0uDRDC6HLnUXIABIjSSgxApTNJ8smken0/z/4vqbsErFtzzvXzpeJJMhm2yLbbDPHbASuyMlVmFCWbYHbtnD86t8+g8Oc8frVPOZGaD/ZDz8g5VKZZn</latexit>

F  1 ^

<latexit sha1_base64="XHknCxhs9BdlA8bViZ5uSKQsRYk=">AAACHXicbZC7TsNAEEXXPEN4BShpVkRI0EQ24lUiaCiDRAJSbEXjZRJWWa+t3TEIWf4GPoGvoIWKDtEiCv4Fx0nBa6qrc2c0MzdMlLTkuh/OxOTU9MxsZa46v7C4tFxbWW3bODUCWyJWsbkMwaKSGlskSeFlYhCiUOFFODgZ+hc3aKyM9TndJRhE0NeyJwVQgbq1bV+B7iv0I6Br28tuQQ1y34xYt6REWZKGebdWdxtuWfyv8MaizsbV7NY+/atYpBFqEgqs7XhuQkEGhqRQmFf91GICYgB97BRSQ4Q2yMqXcr6ZWqCYJ2i4VLyE+H0ig8jauygsOsvLf3tD+J/XSal3GGRSJymhFsNFJBWWi6wwssgK+ZU0SATDy5FLzQUYIEIjOQhRwLQIr1rk4f3+/q9o7zS8/cbe2W796HicTIWtsw22xTx2wI7YKWuyFhPsnj2yJ/bsPDgvzqvzNmqdcMYza+xHOe9fBE+j5g==</latexit>hwalki pub

<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA="></latexit>

Fp = F, {tphase}

Figure 6.5: SHA modeling human behavior when adhering to the HumanFollower pat-
tern

mission. If the mission fails because the human has reached location hfaint,
modeling the evolution of fatigue is no longer relevant. Therefore, location
hfaint is endowed with flow condition Ḟ = 0.

While walking (thus, while in location hwalk), the SHA periodically up-
dates variables hposx and hposy . As described in Section 5.1, we assume that
humans walk at constant speed v. Dense counter hγ captures the human’s
orientation with respect to the x-axis. We assume that humans can rotate
instantly while following their trajectory; thus, no location is necessary to
capture the delay caused by rotation.

Variable hγ is updated while walking through function upd_orientation,
which computes the new orientation required (primed dense counter h′

γ) to
head towards the following point of the trajectory. Therefore, every Tpoll

time instants, the x-y coordinates increase by vTpoll cos(hγ) along the x-
axis and vTpoll sin(hγ) along the y-axis. While standing (in hstand), as per
Table 6.3, the human does not move, thus the values of hposx and hposy do
not change. The periodic sensor refresh mechanism does not apply to lo-
cation hfaint (which is not, thus, part of an ⟨op⟩_pub instance) since, once
the mission has failed, the orchestrator no longer requires up-to-date sensor
measurements.

The switch between hstand and hwalk (and vice versa) is controllable and
triggered by events through channels cmd_hstart and cmd_hstop. The orches-
trator sends to the SHA modeling the human events through these channels
when it detects that the interaction between the human and the robot must
start (cmd_hstart) or stop (cmd_hstop). Upon switching between hstand and
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6.3. Human Behavior Modeling Approach

Table 6.3: Updates for the SHA modeling the HumanFollower and HumanLeader pat-
terns.

Symbol Updates Description

ξstand
f ′ = feρTpoll ;
fw′ = roll_dice(); Resting phase

ξwalk

f ′ = 1− (1− f)e−λTpoll ;
h′γ = upd_orientation();
h′posx = hposx + vTpoll cos(hγ);
h′posy = hposy + vTpoll sin(hγ);
fw′ = roll_dice();

Walking phase

, ,

(a) SHA modeling the non-erroneous behavior, with the solid line representing a de-
terministic edge.

, ,

, ,

(b) Disobey/Obey SHA add-on: as in Fig. 3.1, dashed lines represent probabilistic
edges, with weights highlighted in orange.

Figure 6.6: SHA showing the standard behavior, and the Disobey/Obey add-on.

hwalk, the SHA updates the value of variable Fp (see the updates on entering
⟨op⟩_pub instances).

To capture the unpredictability of human behavior, the edges between
hstand and hwalk and back are extended with features modeling human free
will whose formal model is presented in the following and further detailed
in Chapter 8.
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Chapter 6. Formal Modeling Human-Robot Interactions

Disobey/Obey Add-On

The Disobey/Obey SHA add-on formally models the situation in which
the orchestrator issues an instruction for the human, and the human ignores
it (thus, “disobeys”) and protracts the action they were previously perform-
ing. We do not further investigate or formally model whether ignoring the
instruction is intentional since, as previously discussed, the formal model
captures the manifestation of the erroneous behavior and not its cognitive
source.

The standard behavior is captured by the SHA in Fig. 6.6a. Subautoma-
ton ⟨op⟩_pub represents the current state of the human (e.g., standing or
walking), while ⟨op′⟩_pub represents the following state in the sequence.
The switch from ⟨op⟩_pub to ⟨op′⟩_pub occurs through an edge, which
fires when an instruction is sent through channel c ∈ C (thus, the edge
is labeled with c?). Optionally, the edge may also be labeled with guard
condition γ and update ξ.

Consider, for instance, the running example of the action sequence en-
visaged by the HumanFollower pattern, where the orchestrator fires an in-
struction through channel cmd_hstart to instruct the human to start walking
and follow the robot. In this case, the human acts erroneously as they do not
abide by the instruction, which is captured by the SHA add-on in Fig. 6.6b.
The deterministic edge from ⟨op⟩_pub to ⟨op′⟩_pub in Fig. 6.6a is changed
into two probabilistic edges with weights obey, disobey ∈ K, and the same
labels γ, c?, and ξ as the original edge. The edge with weight obey reaches
⟨op′⟩_pub, thus capturing the human following the instruction and chang-
ing their state when c? fires. The edge with weight disobey is a self-loop on
⟨op⟩_pub, capturing the human ignoring the instruction and staying in the
state modeled by ⟨op⟩_pub when c? fires. The observed behavior when in-
troducing this add-on is that the human performs the required action when
instructed by the orchestrator with probability p = obey/(obey + disobey)
and does not perform the required action with probability 1− p.

We remark that even if the SHA modeling the human takes the disobey
edge, an event is still received through channel c due to label c?. Never-
theless, the behavior of the SHA network that is effectively observed is that
the SHA modeling the human does not initiate the action semantically as-
sociated with channel c. When reporting examples of erroneous action se-
quences (also for upcoming add-ons), we recall that the orchestrator checks
the state of the system and issues one or multiple instructions, if necessary,
every Tint ∈ K time units.
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6.3. Human Behavior Modeling Approach

, ,

(a) Free Will SHA add-on corresponding to the standard behavior in Fig. 6.6a, when
the action is initiated by the robot.

,
(b) SHA modeling the non-erroneous behavior, when the action is initiated by the

human.

(c) Free Will SHA add-on when the action is initiated by the human.

Figure 6.7: Free Will SHA add-on.

Free Will Add-On

The Free Will SHA add-on, shown in Fig. 6.7, captures the situation in
which the human performs an action independently of the orchestrator’s in-
structions (if the action is initiated by the robot) or when the system does
not meet the pre-conditions for the actions (if the action is initiated by the
human). In both cases, the manifestation of this erroneous behavior de-
pends on dense counter fw that approximates the free will phenomenon
through a random distribution [31] and whose underlying mechanism is
explained below.

If the action is initiated by the robot, the planned behavior is shown in
Fig. 6.6a: the orchestrator instructs the human to perform the next required
action through channel c, triggering them to switch to ⟨op⟩_pub. The SHA
add-on modeling the erroneous behavior (shown in Fig. 6.7a) features an
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Chapter 6. Formal Modeling Human-Robot Interactions

additional edge between ⟨op⟩_pub and ⟨op′⟩_pub with update ξ, no chan-
nel label, and whose guard is a conjunction between the original guard γ
and condition fw ≥ FWth (explained in detail below). The purpose of the
self-loop ⟨op⟩_pub, for both cases, is also explained below contextually to
the update of variable fw. The firing of this edge represents the human er-
roneously starting the action represented by channel c when no instruction
has been issued by the orchestrator.

In the second case (i.e., the action initiated by the human), the standard
behavior is shown in Fig. 6.7b. Subautomata ⟨op⟩_pub and ⟨op′⟩_pub
represent the current and the next operational states. The switch between
the two subautomata does not depend on robot instructions (there is no
channel label on the edge) but is entirely up to the human to perform the
action when a certain condition γ holds. The modeling approach assumes
that no SHA other than the orchestrator fire an event through a channel
(thus, with label c!) representing the start of an action. The reason is that, in
the real system, the human cannot actively signal the start of each action for
the sake of practicality. When the human initiates an action, the orchestrator
infers from sensor measurements that such an event occurred (e.g., that
the human started moving because their position changed). The erroneous
behavior, shown in Fig. 6.7c, captures the human potentially performing
the action even if the required pre-conditions (represented by γ) do not
hold, due to guard fw ≥ FWth ∨ γ.

The mechanism determining free will, i.e., how new values are assigned
to dense counter fw, is stochastic. Let x ∈ X be a clock of the SHA the
add-on is applied to, subautomaton ⟨op⟩_pub is then endowed with invari-
ant x ≤ T, where T ∈ K is a constant. Both in the Disobey/Obey and
Free Will add-ons, subautomata ⟨op⟩_pub and ⟨op′⟩_pub may be endowed
with further flow conditions, probability distributions, and invariants—i.e.,
F(h⟨op⟩),D(h⟨op⟩), I(h⟨op⟩), F(h⟨op⟩′),D(h⟨op⟩′), and I(h⟨op⟩′) can be non-
empty. Nevertheless, since they do not directly impact the erroneous be-
havior like invariant x ≤ T, these labels are not shown in Fig. 6.6 nor Fig.
6.7 to ease the visualization of the add-ons’ essential elements.

Subautomaton ⟨op⟩_pub features a self-loop with guard x ≤ T and
update ξfw. The joint presence of the invariant and the guard condition
enforces update ξfw to be executed every T time units. Simultaneously,
clock x is reset (indicated as {x}) to ensure that the invariant holds af-
ter the self-loop fires. Update ξfw assigns a new value to dense counter
fw ∈ Vdc. Specifically, the update yields a new sample of Uniform dis-
tribution U[0,FWmax), where FWmax ∈ K is a numerical constant. Guard
fw ≥ FWth on the Free Will edge (in conjunction or disjunction with γ
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<latexit sha1_base64="M7qVetxTYEEC7G0BsNqi3d1F12w=">AAACBHicbVA9TwJBEN3DL8SvU0ubjcTEitwZjZZEG0tMBEmAkLllgA17e5fdORJyofVX2GplZ2z9Hxb+F++QQsFXvbw3k3nzglhJS5736RRWVtfWN4qbpa3tnd09d/+gYaPECKyLSEWmGYBFJTXWSZLCZmwQwkDhQzC6yf2HMRorI31Pkxg7IQy07EsBlEld1x122yHQ0IRpH6SmadctexVvBr5M/DkpszlqXfer3YtEEqImocDalu/F1EnBkBQKp6V2YjEGMYIBtjKqIUTbSWfJp/wksUARj9FwqfhMxN8bKYTWTsIgm8xT2kUvF//zWgn1rzqp1HFCqEV+iKTC2SErjMwqQd6TBokgT45cai7AABEayUGITEyyjkpZH/7i98ukcVbxLyre3Xm5ej1vpsiO2DE7ZT67ZFV2y2qszgQbsyf2zF6cR+fVeXPef0YLznznkP2B8/ENGCOYig==</latexit>

hfaint
<latexit sha1_base64="oxUeGSAXOCDeOIVzpDSGFmVKcIY="></latexit>

Ḟ = frec(tphase, ⇢),

<latexit sha1_base64="sFTA1X3skfOhTrmcuacJT6CiNQk=">AAAB+3icdZDLSgNBEEV74ivGV9Slm8YguBp6xPhYCEFBXEYwD0lC6OlUYpOenqG7RghDvsKtrtyJWz/Ghf/iJI6iondVnFtFVV0/UtIiY69ObmZ2bn4hv1hYWl5ZXSuub9RtGBsBNRGq0DR9bkFJDTWUqKAZGeCBr6DhD88mfuMWjJWhvsJRBJ2AD7TsS8ExRdftXojJ+fiEdYsl5paZd3zgUeayqegX8TJSIpmq3eJbOiviADQKxa1teSzCTsINSqFgXGjHFiIuhnwArbTUPADbSaYHj+lObDmGNAJDpaJTCN8nEh5YOwr8tDPgeGN/exP4l9eKsX/USaSOYgQtJotQKpgussLINAmgPWkAkU8uByo1FdxwRDCSciFSGKfRFNI8Pp+m/xf1Pdcru+xyv1Q5zZLJky2yTXaJRw5JhVyQKqkRQQJyR+7JgzN2Hp0n5/mjNedkM5vkh5yXd2tqlNc=</latexit>

Ḟ = 0

<latexit sha1_base64="g5qV27DnOH6rBsMlcmje5XakTbk=">AAAB/3icdVC7SgNBFJ31GeMramkzGASrZTZu0HRBG8sI5gHJEmYnN3HI7MOZu0JYUvgVtlrZia2fYuG/uFkjqOipDufcyz33+LGSBhl7sxYWl5ZXVgtrxfWNza3t0s5uy0SJFtAUkYp0x+cGlAyhiRIVdGINPPAVtP3x+cxv34I2MgqvcBKDF/BRKIdScMwkrxdwvDbDNPJhMu2XysyuMqdWrVFmV6qs5roZYQ5jxy51bJajTOZo9EvvvUEkkgBCFIob03VYjF7KNUqhYFrsJQZiLsZ8BN2MhjwA46V56Ck9TAzHiMagqVQ0F+H7RsoDYyaBn03mIX97M/Evr5vg8NRLZRgnCKGYHUKpID9khJZZG0AHUgMinyUHKkMquOaIoCXlQmRiktVTzPr4epr+T1oV26na7NIt18/mzRTIPjkgR8QhJ6ROLkiDNIkgN+SePJBH6856sp6tl8/RBWu+s0d+wHr9AKCnl0g=</latexit>

obey

<latexit sha1_base64="g5qV27DnOH6rBsMlcmje5XakTbk=">AAAB/3icdVC7SgNBFJ31GeMramkzGASrZTZu0HRBG8sI5gHJEmYnN3HI7MOZu0JYUvgVtlrZia2fYuG/uFkjqOipDufcyz33+LGSBhl7sxYWl5ZXVgtrxfWNza3t0s5uy0SJFtAUkYp0x+cGlAyhiRIVdGINPPAVtP3x+cxv34I2MgqvcBKDF/BRKIdScMwkrxdwvDbDNPJhMu2XysyuMqdWrVFmV6qs5roZYQ5jxy51bJajTOZo9EvvvUEkkgBCFIob03VYjF7KNUqhYFrsJQZiLsZ8BN2MhjwA46V56Ck9TAzHiMagqVQ0F+H7RsoDYyaBn03mIX97M/Evr5vg8NRLZRgnCKGYHUKpID9khJZZG0AHUgMinyUHKkMquOaIoCXlQmRiktVTzPr4epr+T1oV26na7NIt18/mzRTIPjkgR8QhJ6ROLkiDNIkgN+SePJBH6856sp6tl8/RBWu+s0d+wHr9AKCnl0g=</latexit>

obey

<latexit sha1_base64="a5vRhUe8LVZUjsUJrVtanp/BT+M=">AAACBHicdVC7SgNBFJ31GeNr1dJmMAhWy2zcoOmCNpYRzAOSEGYnN3HI7IOZu4GwpPUrbLWyE1v/w8J/cbNGUNFTHc65l3vu8WMlDTL2Zi0tr6yurRc2iptb2zu79t5+00SJFtAQkYp02+cGlAyhgRIVtGMNPPAVtPzx5dxvTUAbGYU3OI2hF/BRKIdScMykvm13A463ZpgOpIl8mM76dok5FeZWK1XKnHKFVT0vI8xl7NSjrsNylMgC9b793h1EIgkgRKG4MR2XxdhLuUYpFMyK3cRAzMWYj6CT0ZAHYHppnnxGjxPDMaIxaCoVzUX4vpHywJhp4GeTec7f3lz8y+skODzvpTKME4RQzA+hVJAfMkLLrBKgA6kBkc+TA5UhFVxzRNCSciEyMck6KmZ9fD1N/yfNsuNWHHbtlWoXi2YK5JAckRPikjNSI1ekThpEkAm5Jw/k0bqznqxn6+VzdMla7ByQH7BePwCNV5jX</latexit>

disobey

<latexit sha1_base64="a5vRhUe8LVZUjsUJrVtanp/BT+M=">AAACBHicdVC7SgNBFJ31GeNr1dJmMAhWy2zcoOmCNpYRzAOSEGYnN3HI7IOZu4GwpPUrbLWyE1v/w8J/cbNGUNFTHc65l3vu8WMlDTL2Zi0tr6yurRc2iptb2zu79t5+00SJFtAQkYp02+cGlAyhgRIVtGMNPPAVtPzx5dxvTUAbGYU3OI2hF/BRKIdScMykvm13A463ZpgOpIl8mM76dok5FeZWK1XKnHKFVT0vI8xl7NSjrsNylMgC9b793h1EIgkgRKG4MR2XxdhLuUYpFMyK3cRAzMWYj6CT0ZAHYHppnnxGjxPDMaIxaCoVzUX4vpHywJhp4GeTec7f3lz8y+skODzvpTKME4RQzA+hVJAfMkLLrBKgA6kBkc+TA5UhFVxzRNCSciEyMck6KmZ9fD1N/yfNsuNWHHbtlWoXi2YK5JAckRPikjNSI1ekThpEkAm5Jw/k0bqznqxn6+VzdMla7ByQH7BePwCNV5jX</latexit>

disobey

<latexit sha1_base64="U+WsiTjDWv21greykm8yErByeD4=">AAACDHicdVDLSsNAFJ34rPVVdSO4GSyCq5KUaLuz6MZlBfuAtoTJ9LYdOnkwcyOUUD/Br3CrK3fi1n9w4b+YxAgqelaHc+7zuKEUGk3zzVhYXFpeWS2sFdc3Nre2Szu7bR1EikOLBzJQXZdpkMKHFgqU0A0VMM+V0HGnF6nfuQGlReBf4yyEgcfGvhgJzjCRnNJ+32M4QYy5N+w7EyfWyBTO52dOqWxWTu16tW5Rs2JmSIlt1WybWrlSJjmaTum9Pwx45IGPXDKte5YZ4iBOpgkuYV7sRxpCxqdsDL2E+swDPYizD+b0KNIMAxqCokLSTITvHTHztJ55blKZ3qt/e6n4l9eLcFQfxMIPIwSfp4tQSMgWaa5EEg3QoVCAyNLLgQqfcqYYIihBGeeJGCVZFZM8vp6m/5N2tWKdVMwru9w4z5MpkANySI6JRWqkQS5Jk7QIJ7fknjyQR+POeDKejZfP0gUj79kjP2C8fgDvKZxW</latexit>

cmd hstart?

<latexit sha1_base64="ZN0GOz5niAyPeeGii/L8wV0IH5A=">AAACC3icdVC7TsNAEDyHVwivAAUFzYkIiSqyI0PSEUFDGSTykJLIOl82ySnnh+7WSJHlT+AraKGiQ7R8BAX/gm2CBAimGs3samfHDaXQaJpvRmFpeWV1rbhe2tjc2t4p7+51dBApDm0eyED1XKZBCh/aKFBCL1TAPFdC151dZn73FpQWgX+D8xCGHpv4Yiw4w1RyygcDj+EUMebeaOBMnVhjECbJuVOumNUzu1FrWNSsmjkyYlt126bWQqmQBVpO+X0wCnjkgY9cMq37lhniMGYKBZeQlAaRhpDxGZtAP6U+80AP4/yBhB5HmmFAQ1BUSJqL8H0jZp7Wc89NJ7O4+reXiX95/QjHjWEs/DBC8Hl2CIWE/JDmSqTNAB0JBYgsSw5U+JQzxRBBCco4T8UoraqU9vH1NP2fdGpV67RqXtuV5sWimSI5JEfkhFikTprkirRIm3CSkHvyQB6NO+PJeDZePkcLxmJnn/yA8foBHlmb5A==</latexit>

cmd hstop?

<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA="></latexit>

Fp = F, {tphase}

<latexit sha1_base64="U+WsiTjDWv21greykm8yErByeD4=">AAACDHicdVDLSsNAFJ34rPVVdSO4GSyCq5KUaLuz6MZlBfuAtoTJ9LYdOnkwcyOUUD/Br3CrK3fi1n9w4b+YxAgqelaHc+7zuKEUGk3zzVhYXFpeWS2sFdc3Nre2Szu7bR1EikOLBzJQXZdpkMKHFgqU0A0VMM+V0HGnF6nfuQGlReBf4yyEgcfGvhgJzjCRnNJ+32M4QYy5N+w7EyfWyBTO52dOqWxWTu16tW5Rs2JmSIlt1WybWrlSJjmaTum9Pwx45IGPXDKte5YZ4iBOpgkuYV7sRxpCxqdsDL2E+swDPYizD+b0KNIMAxqCokLSTITvHTHztJ55blKZ3qt/e6n4l9eLcFQfxMIPIwSfp4tQSMgWaa5EEg3QoVCAyNLLgQqfcqYYIihBGeeJGCVZFZM8vp6m/5N2tWKdVMwru9w4z5MpkANySI6JRWqkQS5Jk7QIJ7fknjyQR+POeDKejZfP0gUj79kjP2C8fgDvKZxW</latexit>

cmd hstart?

<latexit sha1_base64="ZN0GOz5niAyPeeGii/L8wV0IH5A=">AAACC3icdVC7TsNAEDyHVwivAAUFzYkIiSqyI0PSEUFDGSTykJLIOl82ySnnh+7WSJHlT+AraKGiQ7R8BAX/gm2CBAimGs3samfHDaXQaJpvRmFpeWV1rbhe2tjc2t4p7+51dBApDm0eyED1XKZBCh/aKFBCL1TAPFdC151dZn73FpQWgX+D8xCGHpv4Yiw4w1RyygcDj+EUMebeaOBMnVhjECbJuVOumNUzu1FrWNSsmjkyYlt126bWQqmQBVpO+X0wCnjkgY9cMq37lhniMGYKBZeQlAaRhpDxGZtAP6U+80AP4/yBhB5HmmFAQ1BUSJqL8H0jZp7Wc89NJ7O4+reXiX95/QjHjWEs/DBC8Hl2CIWE/JDmSqTNAB0JBYgsSw5U+JQzxRBBCco4T8UoraqU9vH1NP2fdGpV67RqXtuV5sWimSI5JEfkhFikTprkirRIm3CSkHvyQB6NO+PJeDZePkcLxmJnn/yA8foBHlmb5A==</latexit>

cmd hstop?

<latexit sha1_base64="H6kp2CNusqudf+4oDkme0SZZsXs=">AAAB+HicdVDLTgJBEJz1ifhCPXqZSEw8kVmU141oYjxiImAChMwODY7MPpzpNUHCP3jVkzfj1b/x4L84i5io0TpVqrrT1eVFShpk7M2Zm19YXFpOraRX19Y3NjNb2w0TxlpAXYQq1JceN6BkAHWUqOAy0sB9T0HTG54kfvMWtJFhcIGjCDo+HwSyLwVHKzVO2wO4cbuZLMuxYqFyyCjLFZhbqlQsYaxYPsxT15IEWTJDrZt5b/dCEfsQoFDcmJbLIuyMuUYpFEzS7dhAxMWQD6BlacB9MJ3xNO2E7seGY0gj0FQqOhXh+8aY+8aMfM9O+hyvzG8vEf/yWjH2y52xDKIYIRDJIZQKpoeM0NLWALQnNSDyJDlQGVDBNUcELSkXwoqx7SVt+/h6mv5PGvmcW8ix86Ns9XjWTIrskj1yQFxSIlVyRmqkTgS5JvfkgTw6d86T8+y8fI7OObOdHfIDzusHLseTmA==</latexit>

F � 1

<latexit sha1_base64="qRM3ti7LRJ3YQayou/HUUiZ3fpE="></latexit>

fw � FWth
<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA="></latexit>

Fp = F, {tphase}

<latexit sha1_base64="qRM3ti7LRJ3YQayou/HUUiZ3fpE=">AAACE3icdVDLSgNBEJz1bXxFPXpwMAiewqwak9xEQTwqGCMkIcyOnThk9uFMryLLHv0Ev8KrnryJVz/Ag//i7BpBRetUXdVNd5cXKWmQsTdnZHRsfGJyarowMzs3v1BcXDo1YawFNESoQn3mcQNKBtBAiQrOIg3c9xQ0vcF+5jevQBsZBid4E0HH5/1A9qTgaKVucbXtc7zQftK7Ttt9uMxL00sOmt0EL9K0WyyxMtup1LcYZeUKc6v1uiWM7dS2NqlrSYYSGeKoW3xvn4ci9iFAobgxLZdF2Em4RikUpIV2bCDiYsD70LI04D6YTpI/ktL12HAMaQSaSkVzEb5PJNw35sb3bGd+528vE//yWjH2ap1EBlGMEIhsEUoF+SIjtLQJAT2XGhB5djlQGVDBNUcELSkXwoqxjaxg8/h6mv5PTjfLbqXMjrdLu3vDZKbIClkjG8QlVbJLDskRaRBBbsk9eSCPzp3z5Dw7L5+tI85wZpn8gPP6AQi9n60=</latexit>

fw � FWth
<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA="></latexit>

Fp = F, {tphase}

<latexit sha1_base64="oZ7p07+ccLhlc62PjNeByu0QXTA=">AAACHnicbZC7TsNAEEXXPEN4BShpVkRIiCKyEa8ygoYSJPKQ4igabyZhxXpt7Y6RIsv/wCfwFbRQ0SFaKPgXHJMCAlNdnTujmblBrKQl1/1wZmbn5hcWS0vl5ZXVtfXKxmbTRokR2BCRikw7AItKamyQJIXt2CCEgcJWcHs+9lt3aKyM9DWNYuyGMNRyIAVQjnqVfV+BHir0Q6AbO0gtge5nvvmGvQITpXESZL1K1a25RfG/wpuIKpvUZa/y6fcjkYSoSSiwtuO5MXVTMCSFwqzsJxZjELcwxE4uNYRou2nxU8Z3EwsU8RgNl4oXEH9OpBBaOwqDvLM4fdobw/+8TkKD024qdZwQajFeRFJhscgKI/OwkPelQSIYX45cai7AABEayUGIHCZ5euU8D2/6+7+ieVDzjmtHV4fV+tkkmRLbZjtsj3nshNXZBbtkDSbYPXtkT+zZeXBenFfn7bt1xpnMbLFf5bx/AeGSpFs=</latexit>hstandi pub

<latexit sha1_base64="lvF+axCwcf+B3H7L3zqPNldOcrA="></latexit>

⇢ ⇠ N (µstand, �
2
stand)

<latexit sha1_base64="GAzJN5A7Mu18NWl8rkug2YnOm5w="></latexit>

� ⇠ N (µwalk, �
2
walk)

<latexit sha1_base64="TF+IMu7W4bhmE/4ErjHGDCL0InU=">AAACJ3icdVDJSgNBEO1xN25Rj14ag6AgYUaNy0EQBfGoYFRIQqjpVGJjz0J3jRCG+RA/wa/wqidvogcP/ok9MYqK1qnqvap6Vc+PlTTkui/OwODQ8Mjo2HhhYnJqeqY4O3dmokQLrIpIRfrCB4NKhlglSQovYo0Q+ArP/auDnD+/Rm1kFJ5SN8ZGAJ1QtqUAslCzuF5vRZQeZrvtZj0AutRB2qZOtkxfZXxp12ervK7s1hasrPJmseSWK663s+lxt+z2gn8hXh8psX4cN4uvVkUkAYYkFBhT89yYGilokkJhVqgnBmMQV9DBmk1DCNA00t5zGV9KDFDEY9RcKt4D8ftECoEx3cC3nfnF5jeXg39xtYTa241UhnFCGIpciKTCnpARWlrXkLekRiLIL0cuQy5AAxFqyUEICybWxoL14/Np/n9ytlb2KmX3ZKO0t993ZowtsEW2zDy2xfbYETtmVSbYDbtj9+zBuXUenSfn+aN1wOnPzLMf4by9AwnCpsY=</latexit>

Ḟ = fftg(tphase, �),

<latexit sha1_base64="RQon5mrFcN2t3JyfXEx7bPr8T8Y=">AAACAHicdZA9SwNBEIb3/IzxK2ppsxgEq3Anxo8uKIhlBPMBuRjmNpO4ZG/v3J0TQkjjr7DVyk5s/ScW/hcvMYqKvtXwvDPMzBvESlpy3Vdnanpmdm4+s5BdXFpeWc2trVdtlBiBFRGpyNQDsKikxgpJUliPDUIYKKwFvZORX7tBY2WkL6gfYzOErpYdKYBSdHnqK7zmns99BbrdyuXdQtH1jvY97hbcsfgX8SYkzyYqt3JvfjsSSYiahAJrG54bU3MAhqRQOMz6icUYRA+62EhLDSHa5mB89ZBvJxYo4jEaLhUfQ/w+MYDQ2n4YpJ0h0JX97Y3gX14joc5hcyB1nBBqMVpEUuF4kRVGpnEgb0uDRDC6HLnUXIABIjSSgxApTNJ8smken0/z/4vqbsErFtzzvXzpeJJMhm2yLbbDPHbASuyMlVmFCWbYHbtnD86t8+g8Oc8frVPOZGaD/ZDz8g5VKZZn</latexit>

F  1 ^

<latexit sha1_base64="XHknCxhs9BdlA8bViZ5uSKQsRYk=">AAACHXicbZC7TsNAEEXXPEN4BShpVkRI0EQ24lUiaCiDRAJSbEXjZRJWWa+t3TEIWf4GPoGvoIWKDtEiCv4Fx0nBa6qrc2c0MzdMlLTkuh/OxOTU9MxsZa46v7C4tFxbWW3bODUCWyJWsbkMwaKSGlskSeFlYhCiUOFFODgZ+hc3aKyM9TndJRhE0NeyJwVQgbq1bV+B7iv0I6Br28tuQQ1y34xYt6REWZKGebdWdxtuWfyv8MaizsbV7NY+/atYpBFqEgqs7XhuQkEGhqRQmFf91GICYgB97BRSQ4Q2yMqXcr6ZWqCYJ2i4VLyE+H0ig8jauygsOsvLf3tD+J/XSal3GGRSJymhFsNFJBWWi6wwssgK+ZU0SATDy5FLzQUYIEIjOQhRwLQIr1rk4f3+/q9o7zS8/cbe2W796HicTIWtsw22xTx2wI7YKWuyFhPsnj2yJ/bsPDgvzqvzNmqdcMYza+xHOe9fBE+j5g==</latexit>hwalki pub

<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA="></latexit>

Fp = F, {tphase}

Figure 6.8: SHA modeling human behavior when adhering to the HumanFollower pat-
tern extended with the Disobey/Obey and FreeWill add-ons.

in Fig. 6.7a and Fig. 6.7c, respectively) ensures that the erroneous be-
havior occurs only if the last value drawn for variable fw belongs to range
[FWth,FWmax) where FWth ∈ K is a constant such that FWth ≤ FWmax

holds.
The HumanFollower extended with Disobey/Obey and FreeWill add-

ons is shown in Fig. 6.8. In the following sections, the other interaction
patterns are also presented directly in their extended version.

6.3.2 Human Leader

The SHA modeling the leader pattern, shown in Fig. 6.9, shares most fea-
tures with the model described in Section 6.3.1. Locations hstand and hwalk
(within ⟨stand⟩_pub and ⟨walk⟩_pub) capture the human resting and walk-
ing constraining real-valued variable F through flow conditions in Eq.6.8
and Eq.6.7. While in these locations, sensor readings are periodically mod-
ified by updates ξstand and ξwalk in Table 6.3. When fatigue exceeds the
maximum threshold, the SHA switches to deadlock location hfaint.

The distinguishing feature of this pattern is that the switch from hstand
to hwalk is purely based on the free will mechanism and not on the orches-
trator’s instructions. The leader autonomously decides when to start the
action. Therefore, the edge to hwalk is not tied to any event fired through
any channel. Variable fw appearing in the guard condition is periodically
randomly updated as described in Section 6.3.1. On the other hand, while
the leader is free also to stop walking at any time irrespective of the robot’s
decisions (through the solid edge from hwalk to hstand), the orchestrator may

105



Chapter 6. Formal Modeling Human-Robot Interactions

<latexit sha1_base64="M7qVetxTYEEC7G0BsNqi3d1F12w=">AAACBHicbVA9TwJBEN3DL8SvU0ubjcTEitwZjZZEG0tMBEmAkLllgA17e5fdORJyofVX2GplZ2z9Hxb+F++QQsFXvbw3k3nzglhJS5736RRWVtfWN4qbpa3tnd09d/+gYaPECKyLSEWmGYBFJTXWSZLCZmwQwkDhQzC6yf2HMRorI31Pkxg7IQy07EsBlEld1x122yHQ0IRpH6SmadctexVvBr5M/DkpszlqXfer3YtEEqImocDalu/F1EnBkBQKp6V2YjEGMYIBtjKqIUTbSWfJp/wksUARj9FwqfhMxN8bKYTWTsIgm8xT2kUvF//zWgn1rzqp1HFCqEV+iKTC2SErjMwqQd6TBokgT45cai7AABEayUGITEyyjkpZH/7i98ukcVbxLyre3Xm5ej1vpsiO2DE7ZT67ZFV2y2qszgQbsyf2zF6cR+fVeXPef0YLznznkP2B8/ENGCOYig==</latexit>

hfaint

<latexit sha1_base64="oxUeGSAXOCDeOIVzpDSGFmVKcIY="></latexit>

Ḟ = frec(tphase, ⇢),
<latexit sha1_base64="TF+IMu7W4bhmE/4ErjHGDCL0InU="></latexit>

Ḟ = fftg(tphase, �),

<latexit sha1_base64="RQon5mrFcN2t3JyfXEx7bPr8T8Y=">AAACAHicdZA9SwNBEIb3/IzxK2ppsxgEq3Anxo8uKIhlBPMBuRjmNpO4ZG/v3J0TQkjjr7DVyk5s/ScW/hcvMYqKvtXwvDPMzBvESlpy3Vdnanpmdm4+s5BdXFpeWc2trVdtlBiBFRGpyNQDsKikxgpJUliPDUIYKKwFvZORX7tBY2WkL6gfYzOErpYdKYBSdHnqK7zmns99BbrdyuXdQtH1jvY97hbcsfgX8SYkzyYqt3JvfjsSSYiahAJrG54bU3MAhqRQOMz6icUYRA+62EhLDSHa5mB89ZBvJxYo4jEaLhUfQ/w+MYDQ2n4YpJ0h0JX97Y3gX14joc5hcyB1nBBqMVpEUuF4kRVGpnEgb0uDRDC6HLnUXIABIjSSgxApTNJ8smken0/z/4vqbsErFtzzvXzpeJJMhm2yLbbDPHbASuyMlVmFCWbYHbtnD86t8+g8Oc8frVPOZGaD/ZDz8g5VKZZn</latexit>

F  1 ^
<latexit sha1_base64="sFTA1X3skfOhTrmcuacJT6CiNQk=">AAAB+3icdZDLSgNBEEV74ivGV9Slm8YguBp6xPhYCEFBXEYwD0lC6OlUYpOenqG7RghDvsKtrtyJWz/Ghf/iJI6iondVnFtFVV0/UtIiY69ObmZ2bn4hv1hYWl5ZXSuub9RtGBsBNRGq0DR9bkFJDTWUqKAZGeCBr6DhD88mfuMWjJWhvsJRBJ2AD7TsS8ExRdftXojJ+fiEdYsl5paZd3zgUeayqegX8TJSIpmq3eJbOiviADQKxa1teSzCTsINSqFgXGjHFiIuhnwArbTUPADbSaYHj+lObDmGNAJDpaJTCN8nEh5YOwr8tDPgeGN/exP4l9eKsX/USaSOYgQtJotQKpgussLINAmgPWkAkU8uByo1FdxwRDCSciFSGKfRFNI8Pp+m/xf1Pdcru+xyv1Q5zZLJky2yTXaJRw5JhVyQKqkRQQJyR+7JgzN2Hp0n5/mjNedkM5vkh5yXd2tqlNc=</latexit>

Ḟ = 0

<latexit sha1_base64="g5qV27DnOH6rBsMlcmje5XakTbk=">AAAB/3icdVC7SgNBFJ31GeMramkzGASrZTZu0HRBG8sI5gHJEmYnN3HI7MOZu0JYUvgVtlrZia2fYuG/uFkjqOipDufcyz33+LGSBhl7sxYWl5ZXVgtrxfWNza3t0s5uy0SJFtAUkYp0x+cGlAyhiRIVdGINPPAVtP3x+cxv34I2MgqvcBKDF/BRKIdScMwkrxdwvDbDNPJhMu2XysyuMqdWrVFmV6qs5roZYQ5jxy51bJajTOZo9EvvvUEkkgBCFIob03VYjF7KNUqhYFrsJQZiLsZ8BN2MhjwA46V56Ck9TAzHiMagqVQ0F+H7RsoDYyaBn03mIX97M/Evr5vg8NRLZRgnCKGYHUKpID9khJZZG0AHUgMinyUHKkMquOaIoCXlQmRiktVTzPr4epr+T1oV26na7NIt18/mzRTIPjkgR8QhJ6ROLkiDNIkgN+SePJBH6856sp6tl8/RBWu+s0d+wHr9AKCnl0g=</latexit>

obey

<latexit sha1_base64="a5vRhUe8LVZUjsUJrVtanp/BT+M=">AAACBHicdVC7SgNBFJ31GeNr1dJmMAhWy2zcoOmCNpYRzAOSEGYnN3HI7IOZu4GwpPUrbLWyE1v/w8J/cbNGUNFTHc65l3vu8WMlDTL2Zi0tr6yurRc2iptb2zu79t5+00SJFtAQkYp02+cGlAyhgRIVtGMNPPAVtPzx5dxvTUAbGYU3OI2hF/BRKIdScMykvm13A463ZpgOpIl8mM76dok5FeZWK1XKnHKFVT0vI8xl7NSjrsNylMgC9b793h1EIgkgRKG4MR2XxdhLuUYpFMyK3cRAzMWYj6CT0ZAHYHppnnxGjxPDMaIxaCoVzUX4vpHywJhp4GeTec7f3lz8y+skODzvpTKME4RQzA+hVJAfMkLLrBKgA6kBkc+TA5UhFVxzRNCSciEyMck6KmZ9fD1N/yfNsuNWHHbtlWoXi2YK5JAckRPikjNSI1ekThpEkAm5Jw/k0bqznqxn6+VzdMla7ByQH7BePwCNV5jX</latexit>

disobey

<latexit sha1_base64="ZN0GOz5niAyPeeGii/L8wV0IH5A=">AAACC3icdVC7TsNAEDyHVwivAAUFzYkIiSqyI0PSEUFDGSTykJLIOl82ySnnh+7WSJHlT+AraKGiQ7R8BAX/gm2CBAimGs3samfHDaXQaJpvRmFpeWV1rbhe2tjc2t4p7+51dBApDm0eyED1XKZBCh/aKFBCL1TAPFdC151dZn73FpQWgX+D8xCGHpv4Yiw4w1RyygcDj+EUMebeaOBMnVhjECbJuVOumNUzu1FrWNSsmjkyYlt126bWQqmQBVpO+X0wCnjkgY9cMq37lhniMGYKBZeQlAaRhpDxGZtAP6U+80AP4/yBhB5HmmFAQ1BUSJqL8H0jZp7Wc89NJ7O4+reXiX95/QjHjWEs/DBC8Hl2CIWE/JDmSqTNAB0JBYgsSw5U+JQzxRBBCco4T8UoraqU9vH1NP2fdGpV67RqXtuV5sWimSI5JEfkhFikTprkirRIm3CSkHvyQB6NO+PJeDZePkcLxmJnn/yA8foBHlmb5A==</latexit>

cmd hstop?

<latexit sha1_base64="ZN0GOz5niAyPeeGii/L8wV0IH5A=">AAACC3icdVC7TsNAEDyHVwivAAUFzYkIiSqyI0PSEUFDGSTykJLIOl82ySnnh+7WSJHlT+AraKGiQ7R8BAX/gm2CBAimGs3samfHDaXQaJpvRmFpeWV1rbhe2tjc2t4p7+51dBApDm0eyED1XKZBCh/aKFBCL1TAPFdC151dZn73FpQWgX+D8xCGHpv4Yiw4w1RyygcDj+EUMebeaOBMnVhjECbJuVOumNUzu1FrWNSsmjkyYlt126bWQqmQBVpO+X0wCnjkgY9cMq37lhniMGYKBZeQlAaRhpDxGZtAP6U+80AP4/yBhB5HmmFAQ1BUSJqL8H0jZp7Wc89NJ7O4+reXiX95/QjHjWEs/DBC8Hl2CIWE/JDmSqTNAB0JBYgsSw5U+JQzxRBBCco4T8UoraqU9vH1NP2fdGpV67RqXtuV5sWimSI5JEfkhFikTprkirRIm3CSkHvyQB6NO+PJeDZePkcLxmJnn/yA8foBHlmb5A==</latexit>

cmd hstop?

<latexit sha1_base64="H6kp2CNusqudf+4oDkme0SZZsXs=">AAAB+HicdVDLTgJBEJz1ifhCPXqZSEw8kVmU141oYjxiImAChMwODY7MPpzpNUHCP3jVkzfj1b/x4L84i5io0TpVqrrT1eVFShpk7M2Zm19YXFpOraRX19Y3NjNb2w0TxlpAXYQq1JceN6BkAHWUqOAy0sB9T0HTG54kfvMWtJFhcIGjCDo+HwSyLwVHKzVO2wO4cbuZLMuxYqFyyCjLFZhbqlQsYaxYPsxT15IEWTJDrZt5b/dCEfsQoFDcmJbLIuyMuUYpFEzS7dhAxMWQD6BlacB9MJ3xNO2E7seGY0gj0FQqOhXh+8aY+8aMfM9O+hyvzG8vEf/yWjH2y52xDKIYIRDJIZQKpoeM0NLWALQnNSDyJDlQGVDBNUcELSkXwoqx7SVt+/h6mv5PGvmcW8ix86Ns9XjWTIrskj1yQFxSIlVyRmqkTgS5JvfkgTw6d86T8+y8fI7OObOdHfIDzusHLseTmA==</latexit>

F � 1

<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA="></latexit>

Fp = F, {tphase}

<latexit sha1_base64="qRM3ti7LRJ3YQayou/HUUiZ3fpE=">AAACE3icdVDLSgNBEJz1bXxFPXpwMAiewqwak9xEQTwqGCMkIcyOnThk9uFMryLLHv0Ev8KrnryJVz/Ag//i7BpBRetUXdVNd5cXKWmQsTdnZHRsfGJyarowMzs3v1BcXDo1YawFNESoQn3mcQNKBtBAiQrOIg3c9xQ0vcF+5jevQBsZBid4E0HH5/1A9qTgaKVucbXtc7zQftK7Ttt9uMxL00sOmt0EL9K0WyyxMtup1LcYZeUKc6v1uiWM7dS2NqlrSYYSGeKoW3xvn4ci9iFAobgxLZdF2Em4RikUpIV2bCDiYsD70LI04D6YTpI/ktL12HAMaQSaSkVzEb5PJNw35sb3bGd+528vE//yWjH2ap1EBlGMEIhsEUoF+SIjtLQJAT2XGhB5djlQGVDBNUcELSkXwoqxjaxg8/h6mv5PTjfLbqXMjrdLu3vDZKbIClkjG8QlVbJLDskRaRBBbsk9eSCPzp3z5Dw7L5+tI85wZpn8gPP6AQi9n60=</latexit>

fw � FWth

<latexit sha1_base64="P7h2ON44+IAd5Sbu09FRVcT/rkw="></latexit>

� ⇠ N (µwalk, �
2
walk)

<latexit sha1_base64="TxqY2dfDG4l/8ICjLWpJS81x7Lg=">AAACNHicdZDNSiNBEMd71F01+2HUo5fGsODCEmaCn7egF0+iYFTIZENNp5I06e4ZumsEGfI6PoJP4VVB0JN49RmcjFF2g9ap6vevoqr+UaKkI9+/86amZ758nZ2bL337/uPnQnlx6cTFqRXYELGK7VkEDpU02CBJCs8Si6AjhafRYG+kn56jdTI2x3SRYEtDz8iuFEA5apfroe3HoZM61EB9ASo7GK6FOm0XtetmjsB0hn943tPTMIH/1n63yxW/uuEHO5sB96t+EfydBGNSYeM4bJcfwk4sUo2GhALnmoGfUCsDS1IoHJbC1GECYgA9bOapAY2ulRWfDvmv1AHFPEHLpeIFxH8nMtDOXego7ywOndRG8COtmVJ3u5VJk6SERowWkVRYLHLCytxC5B1pkQhGlyOXhguwQIRWchAih2nuaSn34+1p/nlyUqsGG1X/aL1S3x07M8dW2CpbYwHbYnW2zw5Zgwl2ya7ZDbv1rrx779F7em2d8sYzy+y/8J5fADODrR4=</latexit>

⇢ ⇠ N (µstand, �
2
stand)

<latexit sha1_base64="oZ7p07+ccLhlc62PjNeByu0QXTA=">AAACHnicbZC7TsNAEEXXPEN4BShpVkRIiCKyEa8ygoYSJPKQ4igabyZhxXpt7Y6RIsv/wCfwFbRQ0SFaKPgXHJMCAlNdnTujmblBrKQl1/1wZmbn5hcWS0vl5ZXVtfXKxmbTRokR2BCRikw7AItKamyQJIXt2CCEgcJWcHs+9lt3aKyM9DWNYuyGMNRyIAVQjnqVfV+BHir0Q6AbO0gtge5nvvmGvQITpXESZL1K1a25RfG/wpuIKpvUZa/y6fcjkYSoSSiwtuO5MXVTMCSFwqzsJxZjELcwxE4uNYRou2nxU8Z3EwsU8RgNl4oXEH9OpBBaOwqDvLM4fdobw/+8TkKD024qdZwQajFeRFJhscgKI/OwkPelQSIYX45cai7AABEayUGIHCZ5euU8D2/6+7+ieVDzjmtHV4fV+tkkmRLbZjtsj3nshNXZBbtkDSbYPXtkT+zZeXBenFfn7bt1xpnMbLFf5bx/AeGSpFs=</latexit>hstandi pub
<latexit sha1_base64="XHknCxhs9BdlA8bViZ5uSKQsRYk=">AAACHXicbZC7TsNAEEXXPEN4BShpVkRI0EQ24lUiaCiDRAJSbEXjZRJWWa+t3TEIWf4GPoGvoIWKDtEiCv4Fx0nBa6qrc2c0MzdMlLTkuh/OxOTU9MxsZa46v7C4tFxbWW3bODUCWyJWsbkMwaKSGlskSeFlYhCiUOFFODgZ+hc3aKyM9TndJRhE0NeyJwVQgbq1bV+B7iv0I6Br28tuQQ1y34xYt6REWZKGebdWdxtuWfyv8MaizsbV7NY+/atYpBFqEgqs7XhuQkEGhqRQmFf91GICYgB97BRSQ4Q2yMqXcr6ZWqCYJ2i4VLyE+H0ig8jauygsOsvLf3tD+J/XSal3GGRSJymhFsNFJBWWi6wwssgK+ZU0SATDy5FLzQUYIEIjOQhRwLQIr1rk4f3+/q9o7zS8/cbe2W796HicTIWtsw22xTx2wI7YKWuyFhPsnj2yJ/bsPDgvzqvzNmqdcMYza+xHOe9fBE+j5g==</latexit>hwalki pub

<latexit sha1_base64="Zo/XVfNTIhk84+2mTv2LbeUR0Bk="></latexit>

fw � FWth _
<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA="></latexit>

Fp = F, {tphase}

<latexit sha1_base64="aeyXIP1MEDPRR3G8666HVyJIDrY=">AAACB3icdVDLSgNBEJz1bXxFPXoZDIKnMKtGzU304lHBqJCE0Dtp4+DM7jLTK4QlH+BXeNWTN/HqZ3jwX5yNEVS0TkVVN11dUaqVIyHegrHxicmp6ZnZ0tz8wuJSeXnl3CWZldiQiU7sZQQOtYqxQYo0XqYWwUQaL6Kbo8K/uEXrVBKfUT/FtoFerK6UBPJSp7za6oEx0GkZoGtrcnfbHXTKFVEVu7X6tuCiWhPhXr3uiRC7+9tbPPSkQIWNcNIpv7e6icwMxiQ1ONcMRUrtHCwpqXFQamUOU5A30MOmpzEYdO18GH7ANzIHlPAULVeaD0X8vpGDca5vIj9ZZHS/vUL8y2tmdLXfzlWcZoSxLA6R0jg85KRVvhXkXWWRCIrkyFXMJVggQqs4SOnFzNdU8n18Pc3/J+db1bBWFac7lYPDUTMzbI2ts00Wsj12wI7ZCWswyfrsnj2wx+AueAqeg5fP0bFgtLPKfiB4/QDlL5oj</latexit>�svd
<latexit sha1_base64="+H6GZxY2Y/TxTktP4O64qhQjoZg="></latexit>

, h0
id,svd = �svd

<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA="></latexit>

Fp = F, {tphase}

Figure 6.9: SHA modeling the HumanLeader pattern.

exceptionally instruct the human to stop walking through channel cmd_hstop
when their fatigue reaches an alarming value. As with all other orchestrator
commands, the edges triggered by such events are probabilistic and labeled
with weights obey and disobey (see Fig. 6.9) governing whether the human
abides by the instruction or ignores it and stays in the same location.

Finally, unlike in the follower pattern, the leader is in charge of declar-
ing when the service is complete (thus, the robot may move on to serve the
following human or stop if the mission is complete). The condition that
determines whether the service is complete is indicated as γsvd and cor-
responds to Formula 6.10 (see also Fig. 6.9). The service is considered
complete if both the human and the robot are within a specific range of the
destination, corresponding to attribute target of the class Service in Fig.
5.1. Dense counters rposx and rposy represent the Cartesian coordinates of
the robot within the layout [128].

√
(hposx − target.x)2 + (hposy − target.y)2 ≤ vTpoll ∧ (6.10)

√
(hposx − rposx)

2 + (hposy − rposy)
2 ≤ vTpoll

As per Fig. 6.9, when condition γsvd holds, dense counter hid,svd is up-
dated to mark that the service is complete.

6.3.3 Human Recipient

The recipient pattern captures a human needing the robot to fetch an ob-
ject and deliver it back to their current location. While the robot moves
to the object’s physical location (i.e., attribute target of the corresponding
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<latexit sha1_base64="M7qVetxTYEEC7G0BsNqi3d1F12w=">AAACBHicbVA9TwJBEN3DL8SvU0ubjcTEitwZjZZEG0tMBEmAkLllgA17e5fdORJyofVX2GplZ2z9Hxb+F++QQsFXvbw3k3nzglhJS5736RRWVtfWN4qbpa3tnd09d/+gYaPECKyLSEWmGYBFJTXWSZLCZmwQwkDhQzC6yf2HMRorI31Pkxg7IQy07EsBlEld1x122yHQ0IRpH6SmadctexVvBr5M/DkpszlqXfer3YtEEqImocDalu/F1EnBkBQKp6V2YjEGMYIBtjKqIUTbSWfJp/wksUARj9FwqfhMxN8bKYTWTsIgm8xT2kUvF//zWgn1rzqp1HFCqEV+iKTC2SErjMwqQd6TBokgT45cai7AABEayUGITEyyjkpZH/7i98ukcVbxLyre3Xm5ej1vpsiO2DE7ZT67ZFV2y2qszgQbsyf2zF6cR+fVeXPef0YLznznkP2B8/ENGCOYig==</latexit>

hfaint

<latexit sha1_base64="oZ7p07+ccLhlc62PjNeByu0QXTA=">AAACHnicbZC7TsNAEEXXPEN4BShpVkRIiCKyEa8ygoYSJPKQ4igabyZhxXpt7Y6RIsv/wCfwFbRQ0SFaKPgXHJMCAlNdnTujmblBrKQl1/1wZmbn5hcWS0vl5ZXVtfXKxmbTRokR2BCRikw7AItKamyQJIXt2CCEgcJWcHs+9lt3aKyM9DWNYuyGMNRyIAVQjnqVfV+BHir0Q6AbO0gtge5nvvmGvQITpXESZL1K1a25RfG/wpuIKpvUZa/y6fcjkYSoSSiwtuO5MXVTMCSFwqzsJxZjELcwxE4uNYRou2nxU8Z3EwsU8RgNl4oXEH9OpBBaOwqDvLM4fdobw/+8TkKD024qdZwQajFeRFJhscgKI/OwkPelQSIYX45cai7AABEayUGIHCZ5euU8D2/6+7+ieVDzjmtHV4fV+tkkmRLbZjtsj3nshNXZBbtkDSbYPXtkT+zZeXBenFfn7bt1xpnMbLFf5bx/AeGSpFs=</latexit>hstandi pub
<latexit sha1_base64="XHknCxhs9BdlA8bViZ5uSKQsRYk=">AAACHXicbZC7TsNAEEXXPEN4BShpVkRI0EQ24lUiaCiDRAJSbEXjZRJWWa+t3TEIWf4GPoGvoIWKDtEiCv4Fx0nBa6qrc2c0MzdMlLTkuh/OxOTU9MxsZa46v7C4tFxbWW3bODUCWyJWsbkMwaKSGlskSeFlYhCiUOFFODgZ+hc3aKyM9TndJRhE0NeyJwVQgbq1bV+B7iv0I6Br28tuQQ1y34xYt6REWZKGebdWdxtuWfyv8MaizsbV7NY+/atYpBFqEgqs7XhuQkEGhqRQmFf91GICYgB97BRSQ4Q2yMqXcr6ZWqCYJ2i4VLyE+H0ig8jauygsOsvLf3tD+J/XSal3GGRSJymhFsNFJBWWi6wwssgK+ZU0SATDy5FLzQUYIEIjOQhRwLQIr1rk4f3+/q9o7zS8/cbe2W796HicTIWtsw22xTx2wI7YKWuyFhPsnj2yJ/bsPDgvzqvzNmqdcMYza+xHOe9fBE+j5g==</latexit>hwalki pub

<latexit sha1_base64="RbYkXg9Am8SaV6T3Lm9Y2L7yi3o=">AAACHHicbZC7TsNAEEXXvAmvACXNigiJKrIRrzKChhIkEpDiKBpvJmHFem3tjhGRlV/gE/gKWqjoEC0SBf+C7biAwFRX585oZm4QK2nJdT+dqemZ2bn5hcXK0vLK6lp1faNlo8QIbIpIReY6AItKamySJIXXsUEIA4VXwe1p7l/dobEy0pc0jLETwkDLvhRAGepWd30FeqDQD4FubD/Fexz5Zoy6BSRK4yQYdas1t+4Wxf8KrxQ1VtZ5t/rl9yKRhKhJKLC27bkxdVIwJIXCUcVPLMYgbmGA7UxqCNF20uKjEd9JLFDEYzRcKl5A/DmRQmjtMAyyzuLwSS+H/3nthPrHnVTqOCHUIl9EUmGxyAojs6iQ96RBIsgvRy41F2CACI3kIEQGkyy7SpaHN/n9X9Haq3uH9YOL/VrjpExmgW2xbbbLPHbEGuyMnbMmE+yBPbFn9uI8Oq/Om/M+bp1yyplN9qucj28kKaNv</latexit>hexei pub

<latexit sha1_base64="oxUeGSAXOCDeOIVzpDSGFmVKcIY=">AAACI3icdVDLSgNBEJyNrxhfUY9eBoOgEOKuGB8HQRTEYwSTCEkIs5NOMmT2wUyvEJb9DD/Br/CqJ2/ixYP/4myMQUXr1FPVPdVdbiiFRtt+szJT0zOzc9n53MLi0vJKfnWtpoNIcajyQAbqxmUapPChigIl3IQKmOdKqLuD81Sv34LSIvCvcRhCy2M9X3QFZ2iodn632QkwvkhOuu2mx7CvvFgBT7Zx8gz75vukSJuqH+wU2/mCXSrbzvGBQ+2SPQKdMM6YKZAxKu38u3HgkQc+csm0bjh2iK2YKRRcQpJrRhpCxgesBw1T+swD3YpHhyV0K9IMAxqCokLSEQnfJ2LmaT30XNOZbqt/ayn5l9aIsHvUioUfRgg+T41QSBgZaa6ESQxoRyhAZOnmQIVPOVMMEZSgjHNDRibCnMnj62j6f1HbKznlkn21Xzg9GyeTJRtkk2wThxySU3JJKqRKOLkjD+SRPFn31rP1Yr1+tmas8cw6+QHr/QM2EqVf</latexit>

Ḟ = frec(tphase, ⇢), <latexit sha1_base64="TF+IMu7W4bhmE/4ErjHGDCL0InU="></latexit>

Ḟ = fftg(tphase, �),

<latexit sha1_base64="RQon5mrFcN2t3JyfXEx7bPr8T8Y=">AAACAHicdZA9SwNBEIb3/IzxK2ppsxgEq3Anxo8uKIhlBPMBuRjmNpO4ZG/v3J0TQkjjr7DVyk5s/ScW/hcvMYqKvtXwvDPMzBvESlpy3Vdnanpmdm4+s5BdXFpeWc2trVdtlBiBFRGpyNQDsKikxgpJUliPDUIYKKwFvZORX7tBY2WkL6gfYzOErpYdKYBSdHnqK7zmns99BbrdyuXdQtH1jvY97hbcsfgX8SYkzyYqt3JvfjsSSYiahAJrG54bU3MAhqRQOMz6icUYRA+62EhLDSHa5mB89ZBvJxYo4jEaLhUfQ/w+MYDQ2n4YpJ0h0JX97Y3gX14joc5hcyB1nBBqMVpEUuF4kRVGpnEgb0uDRDC6HLnUXIABIjSSgxApTNJ8smken0/z/4vqbsErFtzzvXzpeJJMhm2yLbbDPHbASuyMlVmFCWbYHbtnD86t8+g8Oc8frVPOZGaD/ZDz8g5VKZZn</latexit>

F  1 ^
<latexit sha1_base64="sFTA1X3skfOhTrmcuacJT6CiNQk=">AAAB+3icdZDLSgNBEEV74ivGV9Slm8YguBp6xPhYCEFBXEYwD0lC6OlUYpOenqG7RghDvsKtrtyJWz/Ghf/iJI6iondVnFtFVV0/UtIiY69ObmZ2bn4hv1hYWl5ZXSuub9RtGBsBNRGq0DR9bkFJDTWUqKAZGeCBr6DhD88mfuMWjJWhvsJRBJ2AD7TsS8ExRdftXojJ+fiEdYsl5paZd3zgUeayqegX8TJSIpmq3eJbOiviADQKxa1teSzCTsINSqFgXGjHFiIuhnwArbTUPADbSaYHj+lObDmGNAJDpaJTCN8nEh5YOwr8tDPgeGN/exP4l9eKsX/USaSOYgQtJotQKpgussLINAmgPWkAkU8uByo1FdxwRDCSciFSGKfRFNI8Pp+m/xf1Pdcru+xyv1Q5zZLJky2yTXaJRw5JhVyQKqkRQQJyR+7JgzN2Hp0n5/mjNedkM5vkh5yXd2tqlNc=</latexit>

Ḟ = 0
<latexit sha1_base64="H6kp2CNusqudf+4oDkme0SZZsXs=">AAAB+HicdVDLTgJBEJz1ifhCPXqZSEw8kVmU141oYjxiImAChMwODY7MPpzpNUHCP3jVkzfj1b/x4L84i5io0TpVqrrT1eVFShpk7M2Zm19YXFpOraRX19Y3NjNb2w0TxlpAXYQq1JceN6BkAHWUqOAy0sB9T0HTG54kfvMWtJFhcIGjCDo+HwSyLwVHKzVO2wO4cbuZLMuxYqFyyCjLFZhbqlQsYaxYPsxT15IEWTJDrZt5b/dCEfsQoFDcmJbLIuyMuUYpFEzS7dhAxMWQD6BlacB9MJ3xNO2E7seGY0gj0FQqOhXh+8aY+8aMfM9O+hyvzG8vEf/yWjH2y52xDKIYIRDJIZQKpoeM0NLWALQnNSDyJDlQGVDBNUcELSkXwoqx7SVt+/h6mv5PGvmcW8ix86Ns9XjWTIrskj1yQFxSIlVyRmqkTgS5JvfkgTw6d86T8+y8fI7OObOdHfIDzusHLseTmA==</latexit>

F � 1

<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA="></latexit>

Fp = F, {tphase}

<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA="></latexit>

Fp = F, {tphase}

<latexit sha1_base64="qRM3ti7LRJ3YQayou/HUUiZ3fpE="></latexit>

fw � FWth

<latexit sha1_base64="qRM3ti7LRJ3YQayou/HUUiZ3fpE="></latexit>

fw � FWth

<latexit sha1_base64="re8U7CVW7wAkTexyjQuviFsIiB8=">AAACE3icdVC7TsNAEDzzDOFloKTgRIREFdmRIelA0FAGiQBSbFnnywKn3NnW3RoJWSn5BL6CFio6RMsHUPAv2CZIgGCquZnd292JUikMOs6bNTE5NT0zW5urzy8sLi3bK6unJsk0hx5PZKLPI2ZAihh6KFDCeaqBqUjCWTQ8LP2za9BGJPEJ3qQQKHYZiwvBGRZSaG/4iuEVYs7VwA+vRmH11io3yDSO9kK74TR3vU6r41Kn6VQoiee2PY+6Y6VBxuiG9rs/SHimIEYumTF910kxyIvPBJcwqvuZgZTxIbuEfkFjpsAEeXXIiG5lhmFCU9BUSFqJ8L0jZ8qYGxUVleWa5rdXin95/QwvOkEu4jRDiHk5CIWEapDhWhQJAR0IDYis3ByoiClnmiGCFpRxXohZEVm9yOPraPo/OW013Z2mc+w19g/GydTIOtkk28QlbbJPjkiX9Agnt+SePJBH6856sp6tl8/SCWvcs0Z+wHr9AMV2n4E=</latexit>

cmd hstart?

<latexit sha1_base64="g5qV27DnOH6rBsMlcmje5XakTbk=">AAAB/3icdVC7SgNBFJ31GeMramkzGASrZTZu0HRBG8sI5gHJEmYnN3HI7MOZu0JYUvgVtlrZia2fYuG/uFkjqOipDufcyz33+LGSBhl7sxYWl5ZXVgtrxfWNza3t0s5uy0SJFtAUkYp0x+cGlAyhiRIVdGINPPAVtP3x+cxv34I2MgqvcBKDF/BRKIdScMwkrxdwvDbDNPJhMu2XysyuMqdWrVFmV6qs5roZYQ5jxy51bJajTOZo9EvvvUEkkgBCFIob03VYjF7KNUqhYFrsJQZiLsZ8BN2MhjwA46V56Ck9TAzHiMagqVQ0F+H7RsoDYyaBn03mIX97M/Evr5vg8NRLZRgnCKGYHUKpID9khJZZG0AHUgMinyUHKkMquOaIoCXlQmRiktVTzPr4epr+T1oV26na7NIt18/mzRTIPjkgR8QhJ6ROLkiDNIkgN+SePJBH6856sp6tl8/RBWu+s0d+wHr9AKCnl0g=</latexit>

obey

<latexit sha1_base64="a5vRhUe8LVZUjsUJrVtanp/BT+M=">AAACBHicdVC7SgNBFJ31GeNr1dJmMAhWy2zcoOmCNpYRzAOSEGYnN3HI7IOZu4GwpPUrbLWyE1v/w8J/cbNGUNFTHc65l3vu8WMlDTL2Zi0tr6yurRc2iptb2zu79t5+00SJFtAQkYp02+cGlAyhgRIVtGMNPPAVtPzx5dxvTUAbGYU3OI2hF/BRKIdScMykvm13A463ZpgOpIl8mM76dok5FeZWK1XKnHKFVT0vI8xl7NSjrsNylMgC9b793h1EIgkgRKG4MR2XxdhLuUYpFMyK3cRAzMWYj6CT0ZAHYHppnnxGjxPDMaIxaCoVzUX4vpHywJhp4GeTec7f3lz8y+skODzvpTKME4RQzA+hVJAfMkLLrBKgA6kBkc+TA5UhFVxzRNCSciEyMck6KmZ9fD1N/yfNsuNWHHbtlWoXi2YK5JAckRPikjNSI1ekThpEkAm5Jw/k0bqznqxn6+VzdMla7ByQH7BePwCNV5jX</latexit>

disobey

<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA="></latexit>

Fp = F, {tphase}

<latexit sha1_base64="re8U7CVW7wAkTexyjQuviFsIiB8=">AAACE3icdVC7TsNAEDzzDOFloKTgRIREFdmRIelA0FAGiQBSbFnnywKn3NnW3RoJWSn5BL6CFio6RMsHUPAv2CZIgGCquZnd292JUikMOs6bNTE5NT0zW5urzy8sLi3bK6unJsk0hx5PZKLPI2ZAihh6KFDCeaqBqUjCWTQ8LP2za9BGJPEJ3qQQKHYZiwvBGRZSaG/4iuEVYs7VwA+vRmH11io3yDSO9kK74TR3vU6r41Kn6VQoiee2PY+6Y6VBxuiG9rs/SHimIEYumTF910kxyIvPBJcwqvuZgZTxIbuEfkFjpsAEeXXIiG5lhmFCU9BUSFqJ8L0jZ8qYGxUVleWa5rdXin95/QwvOkEu4jRDiHk5CIWEapDhWhQJAR0IDYis3ByoiClnmiGCFpRxXohZEVm9yOPraPo/OW013Z2mc+w19g/GydTIOtkk28QlbbJPjkiX9Agnt+SePJBH6856sp6tl8/SCWvcs0Z+wHr9AMV2n4E=</latexit>

cmd hstart?

<latexit sha1_base64="g5qV27DnOH6rBsMlcmje5XakTbk=">AAAB/3icdVC7SgNBFJ31GeMramkzGASrZTZu0HRBG8sI5gHJEmYnN3HI7MOZu0JYUvgVtlrZia2fYuG/uFkjqOipDufcyz33+LGSBhl7sxYWl5ZXVgtrxfWNza3t0s5uy0SJFtAUkYp0x+cGlAyhiRIVdGINPPAVtP3x+cxv34I2MgqvcBKDF/BRKIdScMwkrxdwvDbDNPJhMu2XysyuMqdWrVFmV6qs5roZYQ5jxy51bJajTOZo9EvvvUEkkgBCFIob03VYjF7KNUqhYFrsJQZiLsZ8BN2MhjwA46V56Ck9TAzHiMagqVQ0F+H7RsoDYyaBn03mIX97M/Evr5vg8NRLZRgnCKGYHUKpID9khJZZG0AHUgMinyUHKkMquOaIoCXlQmRiktVTzPr4epr+T1oV26na7NIt18/mzRTIPjkgR8QhJ6ROLkiDNIkgN+SePJBH6856sp6tl8/RBWu+s0d+wHr9AKCnl0g=</latexit>

obey

<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA=">AAACIXicdVBNaxsxENU6bZO4H3GSYy+iptBDaySTxM4hEFooPbpQf4DXLFp5bItod4U0GwjL/or8hPyKXNNTbiW3EPpfqnXt0pZ2Tm/em+HNvNho5ZCx+6C28ejxk82t7frTZ89f7DR29wYuy62Evsx0ZkexcKBVCn1UqGFkLIgk1jCMzz5U+vAcrFNZ+gUvDEwSMU/VTEmBnooa78JE4MImxcfIlCe/mvItDQuM1r1ZeIsyLKNGk7UYY5xzWgHeOWIeHB9327xLeSX5apJV9aLG93CayTyBFKUWzo05MzgphEUlNZT1MHdghDwTcxh7mIoE3KRYvlXS17kTmFEDlipNlyT8vlGIxLmLJPaT1Z3ub60i/6WNc5x1J4VKTY6QysoIlYalkZNW+byATpUFRFFdDlSlVAorEMEqKqT0ZO4DrPs81k/T/4NBu8UPW+zzQfP0/SqZLfKSvCJvCCcdcko+kR7pE0kuyTW5IV+Dq+A2+Bbc/RytBaudffJHBQ8/AKj2pTs=</latexit>

Fp = F, {tphase}

<latexit sha1_base64="re8U7CVW7wAkTexyjQuviFsIiB8=">AAACE3icdVC7TsNAEDzzDOFloKTgRIREFdmRIelA0FAGiQBSbFnnywKn3NnW3RoJWSn5BL6CFio6RMsHUPAv2CZIgGCquZnd292JUikMOs6bNTE5NT0zW5urzy8sLi3bK6unJsk0hx5PZKLPI2ZAihh6KFDCeaqBqUjCWTQ8LP2za9BGJPEJ3qQQKHYZiwvBGRZSaG/4iuEVYs7VwA+vRmH11io3yDSO9kK74TR3vU6r41Kn6VQoiee2PY+6Y6VBxuiG9rs/SHimIEYumTF910kxyIvPBJcwqvuZgZTxIbuEfkFjpsAEeXXIiG5lhmFCU9BUSFqJ8L0jZ8qYGxUVleWa5rdXin95/QwvOkEu4jRDiHk5CIWEapDhWhQJAR0IDYis3ByoiClnmiGCFpRxXohZEVm9yOPraPo/OW013Z2mc+w19g/GydTIOtkk28QlbbJPjkiX9Agnt+SePJBH6856sp6tl8/SCWvcs0Z+wHr9AMV2n4E=</latexit>

cmd hstart?

<latexit sha1_base64="a5vRhUe8LVZUjsUJrVtanp/BT+M=">AAACBHicdVC7SgNBFJ31GeNr1dJmMAhWy2zcoOmCNpYRzAOSEGYnN3HI7IOZu4GwpPUrbLWyE1v/w8J/cbNGUNFTHc65l3vu8WMlDTL2Zi0tr6yurRc2iptb2zu79t5+00SJFtAQkYp02+cGlAyhgRIVtGMNPPAVtPzx5dxvTUAbGYU3OI2hF/BRKIdScMykvm13A463ZpgOpIl8mM76dok5FeZWK1XKnHKFVT0vI8xl7NSjrsNylMgC9b793h1EIgkgRKG4MR2XxdhLuUYpFMyK3cRAzMWYj6CT0ZAHYHppnnxGjxPDMaIxaCoVzUX4vpHywJhp4GeTec7f3lz8y+skODzvpTKME4RQzA+hVJAfMkLLrBKgA6kBkc+TA5UhFVxzRNCSciEyMck6KmZ9fD1N/yfNsuNWHHbtlWoXi2YK5JAckRPikjNSI1ekThpEkAm5Jw/k0bqznqxn6+VzdMla7ByQH7BePwCNV5jX</latexit>

disobey
<latexit sha1_base64="re8U7CVW7wAkTexyjQuviFsIiB8=">AAACE3icdVC7TsNAEDzzDOFloKTgRIREFdmRIelA0FAGiQBSbFnnywKn3NnW3RoJWSn5BL6CFio6RMsHUPAv2CZIgGCquZnd292JUikMOs6bNTE5NT0zW5urzy8sLi3bK6unJsk0hx5PZKLPI2ZAihh6KFDCeaqBqUjCWTQ8LP2za9BGJPEJ3qQQKHYZiwvBGRZSaG/4iuEVYs7VwA+vRmH11io3yDSO9kK74TR3vU6r41Kn6VQoiee2PY+6Y6VBxuiG9rs/SHimIEYumTF910kxyIvPBJcwqvuZgZTxIbuEfkFjpsAEeXXIiG5lhmFCU9BUSFqJ8L0jZ8qYGxUVleWa5rdXin95/QwvOkEu4jRDiHk5CIWEapDhWhQJAR0IDYis3ByoiClnmiGCFpRxXohZEVm9yOPraPo/OW013Z2mc+w19g/GydTIOtkk28QlbbJPjkiX9Agnt+SePJBH6856sp6tl8/SCWvcs0Z+wHr9AMV2n4E=</latexit>

cmd hstart?

<latexit sha1_base64="g5qV27DnOH6rBsMlcmje5XakTbk=">AAAB/3icdVC7SgNBFJ31GeMramkzGASrZTZu0HRBG8sI5gHJEmYnN3HI7MOZu0JYUvgVtlrZia2fYuG/uFkjqOipDufcyz33+LGSBhl7sxYWl5ZXVgtrxfWNza3t0s5uy0SJFtAUkYp0x+cGlAyhiRIVdGINPPAVtP3x+cxv34I2MgqvcBKDF/BRKIdScMwkrxdwvDbDNPJhMu2XysyuMqdWrVFmV6qs5roZYQ5jxy51bJajTOZo9EvvvUEkkgBCFIob03VYjF7KNUqhYFrsJQZiLsZ8BN2MhjwA46V56Ck9TAzHiMagqVQ0F+H7RsoDYyaBn03mIX97M/Evr5vg8NRLZRgnCKGYHUKpID9khJZZG0AHUgMinyUHKkMquOaIoCXlQmRiktVTzPr4epr+T1oV26na7NIt18/mzRTIPjkgR8QhJ6ROLkiDNIkgN+SePJBH6856sp6tl8/RBWu+s0d+wHr9AKCnl0g=</latexit>

obey

<latexit sha1_base64="u2IcHA0JaE3t6uiWdkKXxUgABMA="></latexit>

Fp = F, {tphase}

<latexit sha1_base64="MIIocknN0JR56B4yBhlx7DRMYu0=">AAACEnicdVBNS8NAEN34WetX1aMgi0XwVBKJtjeLXjxWsB/QlrDZTtvF3STsToQSevMn+Cu86smbePUPePC/mMQKKvpOb96bYWaeH0lh0LbfrLn5hcWl5cJKcXVtfWOztLXdMmGsOTR5KEPd8ZkBKQJookAJnUgDU76Etn99nvntG9BGhMEVTiLoKzYKxFBwhqnklfZ6iuEYMeFq0PPGUy+vtUoMhtH01CuV7cqJWzuqOdSu2Dky4jpV16XOTCmTGRpe6b03CHmsIEAumTFdx46wnzCNgkuYFnuxgYjxazaCbkoDpsD0k/yPKT2IDcOQRqCpkDQX4ftEwpQxE+WnndmV5reXiX953RiHtX4igihGCHi2CIWEfJHhWqQBAR0IDYgsuxyoCChnmiGCFpRxnopxmlgxzePrafo/aR1VnOOKfemW62ezZApkl+yTQ+KQKqmTC9IgTcLJLbknD+TRurOerGfr5bN1zprN7JAfsF4/APGPnw8=</latexit>

cmd hstop?

<latexit sha1_base64="MIIocknN0JR56B4yBhlx7DRMYu0=">AAACEnicdVBNS8NAEN34WetX1aMgi0XwVBKJtjeLXjxWsB/QlrDZTtvF3STsToQSevMn+Cu86smbePUPePC/mMQKKvpOb96bYWaeH0lh0LbfrLn5hcWl5cJKcXVtfWOztLXdMmGsOTR5KEPd8ZkBKQJookAJnUgDU76Etn99nvntG9BGhMEVTiLoKzYKxFBwhqnklfZ6iuEYMeFq0PPGUy+vtUoMhtH01CuV7cqJWzuqOdSu2Dky4jpV16XOTCmTGRpe6b03CHmsIEAumTFdx46wnzCNgkuYFnuxgYjxazaCbkoDpsD0k/yPKT2IDcOQRqCpkDQX4ftEwpQxE+WnndmV5reXiX953RiHtX4igihGCHi2CIWEfJHhWqQBAR0IDYgsuxyoCChnmiGCFpRxnopxmlgxzePrafo/aR1VnOOKfemW62ezZApkl+yTQ+KQKqmTC9IgTcLJLbknD+TRurOerGfr5bN1zprN7JAfsF4/APGPnw8=</latexit>

cmd hstop?

<latexit sha1_base64="a5vRhUe8LVZUjsUJrVtanp/BT+M=">AAACBHicdVC7SgNBFJ31GeNr1dJmMAhWy2zcoOmCNpYRzAOSEGYnN3HI7IOZu4GwpPUrbLWyE1v/w8J/cbNGUNFTHc65l3vu8WMlDTL2Zi0tr6yurRc2iptb2zu79t5+00SJFtAQkYp02+cGlAyhgRIVtGMNPPAVtPzx5dxvTUAbGYU3OI2hF/BRKIdScMykvm13A463ZpgOpIl8mM76dok5FeZWK1XKnHKFVT0vI8xl7NSjrsNylMgC9b793h1EIgkgRKG4MR2XxdhLuUYpFMyK3cRAzMWYj6CT0ZAHYHppnnxGjxPDMaIxaCoVzUX4vpHywJhp4GeTec7f3lz8y+skODzvpTKME4RQzA+hVJAfMkLLrBKgA6kBkc+TA5UhFVxzRNCSciEyMck6KmZ9fD1N/yfNsuNWHHbtlWoXi2YK5JAckRPikjNSI1ekThpEkAm5Jw/k0bqznqxn6+VzdMla7ByQH7BePwCNV5jX</latexit>

disobey

<latexit sha1_base64="oxUeGSAXOCDeOIVzpDSGFmVKcIY="></latexit>

Ḟ = frec(tphase, ⇢),

<latexit sha1_base64="TxqY2dfDG4l/8ICjLWpJS81x7Lg="></latexit>

⇢ ⇠ N (µstand, �
2
stand)

<latexit sha1_base64="1CaXpBL8Rl8DHy1nxpnG9s8ANPc=">AAACMHicdZDNSsNAEMc3flu/qh69LBZBQUoifoKHohdPUsGq0NQyWad1cTcJuxNRQl/GR/ApvOpJDyJefQrTWEVF5zTz+88wM/8gVtKS6z45ff0Dg0PDI6OFsfGJyani9MyRjRIjsCYiFZmTACwqGWKNJCk8iQ2CDhQeBxe7Xf34Eo2VUXhI1zE2NLRD2ZICKEPN4rZvziPfSu1roHMBKt3vLPo6aea1baV4hZ1lnnW0NfyApytLzWLJLa+53ta6x92ymwf/Il6PlFgvqs3is38WiURjSEKBtXXPjamRgiEpFHYKfmIxBnEBbaxnaQgabSPNv+zwhcQCRTxGw6XiOcTvEyloa691kHXmZ/7WuvAvrZ5Qa7ORyjBOCEPRXURSYb7ICiMz+5CfSYNE0L0cuQy5AANEaCQHITKYZH4WMj8+n+b/J0crZW+t7B6slio7PWdG2BybZ4vMYxuswvZYldWYYDfsjt2zB+fWeXRenNeP1j6nNzPLfoTz9g6XkatG</latexit>

⇢ ⇠ N (µexe, �
2
exe)

<latexit sha1_base64="P7h2ON44+IAd5Sbu09FRVcT/rkw="></latexit>

� ⇠ N (µwalk, �
2
walk)

Figure 6.10: SHA modeling the HumanRecipient pattern.

Service) and travels back, the human is free to move around. Therefore,
the SHA modeling human behavior for this pattern (shown in Fig. 6.10)
features three operational states, corresponding to as many instances of the
⟨op⟩_pub pattern. Instance ⟨stand⟩_pub captures the human standing still,
as described in Section 6.3.1 and Section 6.3.2.

Similarly, ⟨walk⟩_pub captures the human walking out of free will while
waiting for the robot. Additionally, the recipient pattern features location
hexe (within pattern ⟨exe⟩_pub), representing that the robot has reached the
human while carrying the object, and the human has to collect it. Dur-
ing the synchronization phase, neither the robot nor the human can move;
thus F(h⟨exe⟩) equals frec(t, ρ). Ordinary location hfaint captures the human
having reached the maximum fatigue level and, as in previously presented
patterns, it is endowed with flow condition Ḟ = 0.

While the robot is busy fetching the object, the human can autonomously
decide to move at any time. Therefore, the edges from hstand to hwalk and
back depend on variable fw, which is periodically updated as described in
Section 6.3.1. The robot triggers the synchronization with the human when
it is ready to deliver the object by firing an event through channel cmd_hstart.

In this case, whether the human is walking (thus, in ⟨walk⟩_pub) or idle
(in ⟨stand⟩_pub), they receive the instruction through channel cmd_hstart
to switch to ⟨exe⟩_pub for the synchronization phase. As with other SHA
modeling human behavior, there is a certain probability that the human ig-
nores the orchestrator’s commands as dictated by weights obey and disobey.

The orchestrator gives the human time to pick up the object and then
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Figure 6.11: SHA modeling the HumanCompetitor pattern, as seen in [130].

fires an event through cmd_hstop to conclude the service, which the human
may follow or ignore. On the other hand, no edge governed by variable
fw enters or leaves ⟨exe⟩_pub since it would not capture “rational” behav-
iors. Such edge entering ⟨exe⟩_pub would capture the human collecting
the object before the robot is sufficiently close. Similarly, a free-will edge
leaving ⟨exe⟩_pub would capture the human deliberately suspending the
synchronization phase, possibly dropping the item.

The possibility that the human still needs time to complete the synchro-
nization after command cmd_hstop is issued by the robot (for example, if
the item is particularly delicate or bulky) is modeled by the self-loop (i.e.,
the robot instructs the human to conclude the phase, but they ignore it and
prolong the action).

6.3.4 Human Competitor

The pattern (shown in Fig. 6.11) captures a competitive type of interaction.
Specifically, the human and the robot must fetch a resource from a spe-
cific physical location as quickly as possible. The location of the resource
is captured by parameter dest and corresponds to attribute target of class
Service presented in Section 5.1.

The human and the robot both move to the destination, and the winner
returns to their initial physical location, captured by variables starth and
startr representing pairs of Cartesian coordinates. Like the other SHAmod-
eling human behavior, this pattern also features the possibility that the hu-
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man may autonomously decide to interrupt their current action.
The human starts in ⟨idle⟩_pub. It switches to ⟨walk⟩_pub when the or-

chestrator sends the instruction to start moving through channel cmd_hstart.
As shown in Fig. 6.11, this edge is probabilistic: the human follows the
orchestrator’s instruction with probability p = obey/(obey + disobey) and
ignores it with probability 1− p.

Submachine ⟨walk⟩_pub captures the situation in which the human is
moving towards POI dest. Therefore, in this phase, fatigue increases and
may reach the maximum threshold, resulting in the human being fully ex-
hausted, which is modeled by deadlock location hfaint.

Human free will is also modeled through variable fw ∈ Vdc, which is
updated with a random value every Tpoll time instants. When fw ≥ FWth

holds, where FWth is a constant, the human autonomously decides to stop
walking and switch back to ⟨idle⟩_pub.

Guards γh_win (formalized by Formula (6.11)) and γr_win (Formula (6.12))
capture the “victory" conditions for the human and the robot, respectively.
The human wins the competition if they reach destination dest before the
robot and vice versa. If the agents arrive simultaneously, priority is given
to the human since Formula (6.12) does not hold, but Formula (6.11) does.

dist(h, dest) = 0 (6.11)
dist(r, dest) = 0 ∧ dist(h, dest) > 0 (6.12)

If the robot arrives first, the human switches to submachine ⟨wait⟩_pub
while they wait for the robot to return to its initial position (dist(r, startr) =
0 holds) and complete the interaction. Otherwise, the human switches to
⟨return⟩_pub capturing them walking back to their initial physical location
starth. In this case, the human may reach complete exhaustion or haphaz-
ardly decide to stop walking.

When the human returns to its initial physical location (dist(h, starth) =
0 holds), the SHA switches back to submachine ⟨idle⟩_pub if there are other
humans to serve, or to oscs if all humans in the scenario have been served
and the mission has been completed.

6.3.5 Human Rescuer

The human rescuer pattern, shown in Fig. 6.12, captures the case in which
the robot requires human support to perform an action, such as entering
an elevator or crossing a closed door. Therefore, the human has to notice
that the robot is requesting their assistance (e.g., through sound or visual
signals), move to the robot’s location, and perform the requested action.
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Figure 6.12: SHA modeling the HumanRescuer pattern, as seen in [130].

The human starts in the ⟨idle⟩_pub submachine, where it waits for the
robot’s request. Once the request signal is active (γreq holds), the human au-
tonomously decides when to start moving, which is captured by previously
explained variable fw and explains why the outgoing edge from ⟨idle⟩_pub
is not labeled with any channel.

When the human starts walking, the SHA switches to ⟨walk⟩_pub, cap-
turing the phase in which they are approaching the robot. While walking,
fatigue increases, thus, also, in this case, the SHA switches to deadlock
location hfaint if F ≥ 1 holds, causing the failure of the mission.

When the human is sufficiently close to the robot, the orchestrator sends
an instruction through channel cmd_hstart, which the human may follow or
not with the same probabilities described for the competitor pattern. At any
time, humans may stop walking out of free will.

If the human abides by the orchestrator’s instruction, they switch to sub-
machine ⟨exe⟩_pub to perform the required task.

The duration of the task, modeled by constant Ttask, determines how
long the SHA stays in ⟨exe⟩_pub. When configuring the scenario, the de-
signer can specify constant parameter dext for the human that models their
ability to perform the task and determines the time required to complete it.
Dense-counter ttask measures the progress since the start of the action.
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Figure 6.13: SHA modeling the HumanApplicant pattern, as seen in [130].

To capture the unpredictability of the human progressing through the
action, every Tpoll instants, ttask increases with probability (100−Tth)/100
as per update instruction ξ⟨exe⟩ (see Formula (6.13)), where Tth ≤ 100 is a
constant.

ttask = ttask + dext ∗ (rand(0, 100) ≥ Tth) (6.13)

Condition ttask ≥ Ttask holds when the action is complete. Guard γstop
(see Formula (6.14)) holds if either the action is done or the human has
stopped executing it out of free will (i.e., system-wide variable hexe ∈ Vdc

evaluates to false).
ttask ≥ Ttask ∨ ¬hexe (6.14)

When γstop holds, the orchestrator instructs both the human and the
robot to stop through the respective channels. If the human follows the
instruction, the corresponding SHA enters ⟨idle⟩_pub.

6.3.6 Human Applicant

The applicant pattern captures the case in which the human requires the
robot’s support in performing an action. This covers applications such as a
patient needing to be fed by the robot or a doctor needing the robot’s help
performing a medical test. In this case, the human waits for the robot to
reach them, and then they start working on the task simultaneously.
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The SHAmodeling the human, shown in Fig. 6.13, starts in submachine
⟨idle⟩_pub. The orchestrator instructs the robot to start moving by firing an
event through channel cmd_rstart, thus the human switches to subautomaton
⟨wait⟩_pub, as they wait for the robot to reach their current location.

Once the robot reaches the human location, the pair begins the task;
thus the human switches to submachine ⟨exe⟩_pub. The instruction to start
is sent through channel cmd_hstart, which the human can follow or ignore
probabilistically. In reality, this could capture the potential additional delay
due to the human requiring further preparation before they can start.

The task is modeled like in the rescuer pattern: its duration corresponds
to constant Ttask, and its current progress is measured by dense counter
ttask, which is updated with a certain probability according to update in-
struction ξ⟨exe⟩ of Formula (6.13). At any time, the human may autonomously
decide to pause the action, which is approximated by the mechanism in-
volving variable fw.

Like in the rescuer pattern, since actions captured by this pattern im-
ply physical involvement on the human’s side, fatigue increases while in
⟨exe⟩_pub. Therefore, it features an outgoing edge to deadlock location
hfaint. When γstop (see Formula (6.14)) holds, the orchestrator sends the
instruction to stop, and the human concludes the interaction by switching
back to submachine ⟨idle⟩_pub.

6.4 Orchestrator Model

The orchestrator controls the robot’s behavior based on the current state of
the system to drive the mission to success. As described in previous sec-
tions, the humans, the robot, and its battery share sensor readings with the
orchestrator, which checks these values against given policies to determine
whether a particular event has to be fired. Specifically, the orchestrator
is entirely in control of the mobile robot’s behavior (i.e., it issues every in-
struction to start or stop moving), while it issues suggestions for the human,
e.g., to stop moving when they reach an alarming value of fatigue, which
might be dismissed due to human free will.

An abstract representation of the orchestrator SHA is shown in Fig.
6.14. The orchestrator operational states (the dashed boxes in Fig. 6.14)
are modeled as submachines. All the edges connecting them are labeled
with events of the form c! with c ∈ C as the orchestrator proactively trig-
gers suitable actions to govern the evolution of the entire scenario.

The orchestrator’s operational states, i.e., the submachines in it, are:
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C C

C

C

Figure 6.14: High-Level representation of the SHA modeling the orchestrator, as seen
in [130]. Submachines are represented as dashed boxes, with ports marked by symbols
“▶”, “■”, “✓”, and “×”.

1. ridle: given the system’s state, no action can start, and thus, the robot
is waiting;

2. rrech: the robot is moving to the recharge station or recharging;

3. rlead: based on the interaction pattern characterizing the service under-
way, the robot leads the action;

4. hlead: action is initiated by the human;

5. hrint: the robot is providing a service that requires precise or close-
distance synchronization with the human;

6. rsync: the robot synchronizes with another robot in the fleet to hand
over its current task.

The orchestrator relies on a recurring modeling pattern denominated as
⟨op⟩_chk and shown in Fig. 6.15. The ⟨op⟩_chk automaton portion is
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Figure 6.15: SHA portion modeling the ⟨op⟩_chk pattern.

necessary to periodically check the latest set of sensor readings against the
orchestrator’s policies and issue a command for the agents, if necessary.

Instances of ⟨op⟩_chk in Fig. 6.14 are endowed with ports, intended as
in the ⟨op⟩_pub pattern. The orchestrator enters a submachine through the
start port (marked by the symbol “▶”), and exits through the stop, fail, and
scs ports (marked by symbols “■”, “×”, and “✓”, respectively), indicating
whether the action has ended (or is momentarily suspended), the mission
has ended with failure or with success. Ports highlight the transitions enter-
ing and leaving each submachine, guarded by conditions γstart, γstop, γfail,
and γscs, each associated with a component-specific formula. The orches-
trator enters a submachine when the corresponding γstart condition is true.
If either of γstop, γfail, or γscs holds, the orchestrator exits the submachine.

Location o⟨op⟩ models the current operational state of the system, where
⟨op⟩ is a generic identifier. Committed location ochk captures the orchestra-
tor on the verge of either issuing a command (thus, exiting the submachine
through one of the ports) or returning to o⟨op⟩ if no instruction is required.

The orchestrator periodically switches from o⟨op⟩ to ochk every Tint time
instants, with the delay measured through clock tact. Upon entering ochk,
the orchestrator checks the sensor readings against the component-specific
policies through update instruction ξO. If either one of γstop, γfail, or γscs
holds, the orchestrator exits the submachine; otherwise, it switches back to
o⟨op⟩.

Locations ofail and oscs of Fig. 6.14 correspond to the end of the mission
with failure or success, respectively, and are reached when either γfail (see
Formula 6.15) or γscs (see Formula 6.16) holds. Failure occurs if, for at
least one of the subjects, human fatigue exceeds 1 (i.e., fi ≥ 1 holds for
some i) or one of the robots’ charge drops to a neighborhood of Cfail (i.e.,
|bj,chg−Cfail| ≤ ϵ holds for some j). The latter condition accounts for small
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fluctuations in the estimated discharge curve.

( Nh∨

i=1

fi ≥ 1

)
∨
( Nr∨

j=1

|bj,chg − Cfail| ≤ ϵ

)
(6.15)

Nh∧

i=1

hi,svd (6.16)

Location oscs is reached when the mission has been successfully completed—
i.e., when all humans in the scenario have been served: when a human in the
scenario with id = i is served, boolean hi,svd is set to true. We recall that the
primary expression whose value we calculate through SMC is PM(⋄≤τ scs),
where dense Boolean counter scs is set to true upon entering location oscs
(thus when the condition in 6.16 holds). As per Fig. 6.14, failure is possi-
ble for all submachines. On the other hand, only rlead, hlead, rsync, and hrint
have outgoing transitions towards oscs, since recharging the robot does not
impact service provision (thus, progress towards mission completion).

Table 6.4 contains the formulae for the start (γstart) and stop (γstop) con-
ditions of the submachines. Fig. 6.14 highlights the channels through
which the orchestrator fires instructions when entering or leaving a sub-
machine. For the sake of clarity, if a is a submachine, e.g., rlead, and g is
the guard associated with the edge through a port, e.g., γstart, then we refer
to g by writing a.g.

6.4.1 ridle Submachine

The first instance of the pattern is idle_chk in Fig. 6.16a, which models
the situation in which the system is idle and periodically checks whether an
action can start.

The system enters this component first when the execution starts and re-
turns to it whenever an action stops (and the corresponding sub-component
is left). Similarly, as per Table 6.4, the orchestrator exits this component if
one of the γstart conditions for the other sub-machines holds.

6.4.2 rrech Submachine

The recharging routine in Fig. 6.16d starts when battery charge c is below
a threshold Crech.

Submachine rrech models two operating conditions: the robot’s move-
ment towards the charging station (move_chk), and the robot recharging its
battery (rech_chk).
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(a) ridle submachine

(b) rlead submachine.

(c) hlead submachine.

(d) rrech submachine.

Figure 6.16: Submachines of the orchestrator SHA.

Upon entering rrech, the orchestrator fires cmd_rstart to instruct the robot
to reach the charging station, then cmd_rstop when the dock has been reached.
The robot can, thus, start recharging, and the orchestrator fires cmd_bstart.
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The robot stops recharging (cmd_bstop is fired) when bchg is above thresh-
old Crestart. In this case, the orchestrator switches back to ridle.

6.4.3 rlead Submachine

The orchestrator enters submachine rlead (see Fig. 6.16b) to initiate the
robot movement when the robot leading the action. As per Table 6.4, the
start condition holds for the follower, recipient, and competitor patterns.
The robot begins assisting the currently served human (indicated with index
curr ∈ [1,Nh]) if they are sufficiently close and the service has yet to be
completed. For safety purposes, the action can start only if human fatigue
is sufficiently low and the robot has sufficient charge.

Upon entering rlead, the orchestrator fires cmd_rstart and cmd_hstart for
the robot to start moving and the human to follow. The only operating con-
dition modeled by this sub-component is the robot movement (component
lead_chk in Fig. 6.16b). The robot stops moving (events cmd_rstop and
cmd_hstop fire) if either one of the following conditions holds:

1. human fatigue f exceeds a maximum tolerable value Fstop;

2. battery charge drops below a value Crech that calls for recharging;

3. the human has been served, but they were not the last one (if they were
the last one, the mission would be complete);

4. the distance between the robot and the human is too larger (greater
than Dstop), indicating that the human has stayed behind and needs to
get closer to the robot to proceed with the service.

6.4.4 hlead Submachine

The hlead submachine controls the robot’s behavior when the human is lead-
ing the action (i.e., with the leader interaction pattern). As per Table 6.4,
the orchestrator enters hlead (Fig. 6.16c) if:

1. the currently assisted human conforms to the HumanLeader pattern;

2. the service has not been completed;

3. the robot is sufficiently charged;

4. the human is moving (their current position h′
curr,pos is different from

the previous sensor reading hcurr,pos).
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Figure 6.17: hrint submachine, as seen in [130].

Upon entering hlead, cmd_rstart is triggered, and the robot starts moving
to follow the human (submachine flw_chk). The orchestrator exits hlead
when:

1. the human has reached an excessive fatigue level;

2. the robot’s battery charge has dropped below the recharge threshold;

3. the human has set themselves as served, but there are other humans to
serve in the scenario;

4. the human has stopped moving (their current position h′
curr,pos is the

same as the previous sensor reading).

As shown in Fig. 6.16c, when γstop holds, the orchestrator stops the
robot through channel cmd_rstop and instructs the human to stop walking
only if they are excessively fatigued. As explained in Section 6.3.2, the
human may ignore the orchestrator’s instruction due to free will.

6.4.5 hrint Submachine

The orchestrator handles the rescuer and applicant patterns through the hrint
submachine, shown in Fig. 6.17. These two patterns require the robot
and human to perform an action simultaneously and in close proximity;
therefore, this submachine captures the following three phases modeled by
as many ⟨op⟩_chk instances:

1. the robot approaching the location where the action has to be per-
formed (parameter dest);

2. the robot waiting until also the human reaches the destination;
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3. the human-robot pair performing the required action.

The robot’s approaching phase is captured by submachine ⟨move⟩_chk.
The service starts (see hrint.γstart in Table 6.4) if the interaction pattern as-
sociated with the service is rescuer or applicant, the human is sufficiently
rested and the active robot has sufficient charge. If these conditions hold,
the orchestrator instructs the robot to start moving through channel cmd_rstart
upon entering such submachine and to stop moving through cmd_rstop when
dist(r, dest ≤ Dth) holds.

Subsequently, the orchestrator stays in submachine ⟨wait⟩_chk until the
human reaches the destination as well (dist(h, dest ≤ Dth) holds).

Once both the human and the robot are in the right location, the ac-
tion starts as instructed by the orchestrator through channels cmd_hstart and
cmd_rstart. The orchestrator then switches to submachine ⟨exe⟩_chk.

If no condition for failure is met, the orchestrator exits hrint if:

1. the action needs to be put on hold or is complete, but there are still
services to provide (γstop holds); or

2. the action is complete and all services have been provided; thus, the
mission has ended with success (γscs holds).

As per Fig. 6.17, all submachines have an outgoing edge to the fail port
with guard condition γfail (see Formula (6.15)) since the mission may fail
during all the three phases.

6.4.6 rsync Submachine

The rsync submachine, shown in Fig. 6.18, handles the interaction between
two robots. The orchestrator enters this submachine when, while executing
an action, it becomes necessary to hand over the task to another robot
(e.g., if the active robot needs recharging). Upon interrupting the action,
the active orchestrator synchronizes with the orchestrator controlling the
closest free robot to hand over the current task. This robot-robot interaction
pattern reduces the mission duration when a robot needs recharging, but
other robots can replace it.

The entry condition γstart for this submachine is given in Formula (6.17).
Constant Nr represents the number of robots in the fleet. Index i ∈ Vdc
indicates the active robot requesting the task handover, while index j ∈ Vdc
indicates the robot selected to replace it. The value of index j is chosen
based on: which robots are currently available (i.e., dense counter busyj
evaluates to false), which robots have a sufficient charge (i.e., bj,chg ≥ Crech

holds), which robot is the closest to robot i.
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Figure 6.18: rsync submachine, as seen in [130].

Condition γhandover represents the condition triggering the task handover:
a possible example is bi,chg ≤ Crech, i.e., if robot i needs recharging. Never-
theless, the pattern is open to more complex conditions to be plugged into
Formula (6.17) related to the system’s efficiency.

γhandover ∧
( ∨

j∈[1,Nr]

j ̸= i ∧ ¬busyj ∧ bj,chg ≥ Crech

)
∧

¬
( ∨

k∈[1,Nr]

(k ̸= j ̸= i ∧ dist(ri, rk) < dist(ri, rj)

) (6.17)

For each orchestrator instance, id ∈ [1,Nr] (see Fig. 6.18) is a constant
value identifying such instance and the associated robot. The task handover
pattern only involves orchestrators i (the one requesting the swap) and j
(the one selected for the swap).

Before proceeding with the actual handover, robot j might have to move
to get sufficiently close to robot i. More specifically, orchestrator i enters
submachine ⟨wait⟩_chk (i.e., an instance of pattern ⟨op⟩_chk), where it
waits for robot j. Orchestrator j instead enters submachine ⟨move⟩_chk
(also an instance of ⟨op⟩_chk), which captures robot j moving to robot i’s
location to take over the task.

Since motion is required, upon entering ⟨move⟩_chk, orchestrator j
instructs robot j to start moving by sending a message through channel
cmd_rstart. Orchestrator j enters ⟨move⟩_chk even if robot j is already suf-
ficiently close to i, and, therefore, γstop will already hold after Tint time
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instants (see Fig. 6.15). Despite the back-to-back start and stop commands,
lower-level functions in the robot model prevent jolting and unnecessary
movements if they are already close to the destination.

Guard condition γstop in Formula (6.18) determines when both orches-
trators can exit their submachines.

dist(ri, rj) ≤ Drestart (6.18)

Once the distance between the two robots is smaller than threshold Drestart,
both orchestrators switch to location osync (see Fig. 6.18), capturing the
actual task handover phase. Upon leaving submachine move_chk, orches-
trator j instructs its robot to stop moving (through channel cmd_rstop) as it
has reached its destination.

The ⟨op⟩_chk pattern ensures that both orchestrators enter submachine
rsync and switch to location osync synchronously. Condition γstop in Formula
(6.18) holds simultaneously for both orchestrators, and they are forced to
leave their submachines (i.e., ⟨wait⟩_chk and ⟨move⟩_chk) as soon as γstop
holds because location ochk is committed. For the same reason, both or-
chestrators leave ridle (see Fig. 6.14) and enter rsync simultaneously as soon
as the condition in Formula (6.17) holds.

At any time during the approaching phase, mission failure can occur: in
this case, both orchestrators exit their current submachines through the fail
port, switching to location ofail.

The orchestrators stay in location osync for Tsync time units, where Tsync

models the delay due to robot i handing over the task to robot j. The value
of Tsync, hence the duration of the delay, depends on the nature of the task.
For example, if no physical interaction is required (e.g., robot j has to fol-
low or lead the human), the swap occurs instantly (Tsync = 0 holds). Oth-
erwise, if the ongoing task requires handing over a physical object (e.g., if
robot j has to deliver an object), the swap lasts Tsync > 0 time units. After
time Tsync, the swap is finalized by having robot j becoming the new active
robot (instruction i := j in Fig. 6.18), which concludes the task handover.

Once the swap is complete, both orchestrators switch back to ridle (see
Fig. 6.14). The previously active orchestrator detects that the associated
robot meets the condition for recharging. Thus it switches to submachine
rrech after time Tint (see Fig. 6.15). The active orchestrator resumes the pre-
viously interrupted service by switching to the corresponding submachine
(i.e., either hrint, rlead, or hlead depending on the interaction pattern).
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<latexit sha1_base64="vHvYxZ5VB5L/y0Ou6JhbIEnUlAU=">AAACDHicbVC7SgNBFJ31GeNr1UawGQyCVdgVRcugjWUE84BkWWYnN3HI7IOZu0JY4if4FbZa2Ymt/2Dhvzi7bqGJpzqcc58nSKTQ6Dif1sLi0vLKamWtur6xubVt7+y2dZwqDi0ey1h1A6ZBighaKFBCN1HAwkBCJxhf5X7nHpQWcXSLkwS8kI0iMRScoZF8e78fMrwTmCVTv6AqzMRAwtS3a07dKUDniVuSGinR9O2v/iDmaQgRcsm07rlOgl7GFApu5lX7qYaE8TEbQc/QiIWgvaz4YEqPUs0wpgkoKiQtRPjdkbFQ60kYmMr8SD3r5eJ/Xi/F4YWXiShJESKeL0IhoVikuRImGqADoQCR5ZcDFRHlTDFEUIIyzo2YmqyqJg939vt50j6pu2d15+a01rgsk6mQA3JIjolLzkmDXJMmaRFOHsgTeSYv1qP1ar1Z7z+lC1bZs0f+wPr4Bt7KnEk=</latexit>pidle
<latexit sha1_base64="gq9fayLFfApNhZ+SCBFW5Weii0k=">AAACDHicbVC7TsNAEDzzDOFloEGiOREhUUU2AkEZQUMZJPKQEis6XzbhlPNDd3tIkWU+ga+ghYoO0fIPFPwLtnEBCVONZna1s+PHUmh0nE9rYXFpeWW1slZd39jc2rZ3dts6MopDi0cyUl2faZAihBYKlNCNFbDAl9DxJ1e537kHpUUU3uI0Bi9g41CMBGeYSQN7vx8wvBOYxOmgoCpIfKOn6cCuOXWnAJ0nbklqpERzYH/1hxE3AYTIJdO65zoxeglTKLiEtNo3GmLGJ2wMvYyGLADtJcUHKT0ymmFEY1BUSFqI8HsjYYHW08DPJvOQetbLxf+8nsHRhZeIMDYIIc8PoZBQHNJciawaoEOhAJHlyYGKkHKmGCIoQRnnmWiyrqpZH+7s9/OkfVJ3z+rOzWmtcVk2UyEH5JAcE5eckwa5Jk3SIpw8kCfyTF6sR+vVerPef0YXrHJnj/yB9fENGL2cbg==</latexit>pbusy

<latexit sha1_base64="9zh9EPiP4M68ym19iMykTGIcn5s="></latexit>

phidi?

<latexit sha1_base64="UCR4mzf+Kv0weiV5WMK6iLqdxDg=">AAACKHicdVA9TxtBEN0zJAHn60hKmhVWJCprz9jY7qzQpEgBUgxIPsuaWw/Oir29Y3cOyTr5j+Qn5FfQQkUXUaTJL2HPOBKg5FVP773RzLwk18qREHdBbW39xctXG5v112/evnsfbn04dllhJQ5lpjN7moBDrQwOSZHG09wipInGk+T8oPJPLtE6lZlvNM9xnMLMqDMlgbw0CdvxVx+eQjzDi1g/UA1mGqdA3xWVyWKypDYt88wtYo0XPJqEDdEU+53+nuCi2RFRt9/3RIj93l6LR55UaLAVDifh73iaySJFQ1KDc6NI5DQuwZKSGhf1uHCYgzyHGY48NZCiG5fL7xb8U+GAMp6j5UrzpYiPJ0pInZuniU9Wl7rnXiX+yxsVdNYbl8rkBaGR1SJSGpeLnLTK14Z8qiwSQXU5cmW4BAtEaBUHKb1Y+B7rvo+/T/P/k+NWM+o0xVG7Mfi8amaDbbMdtssi1mUD9oUdsiGT7Ae7YtfsJvgZ3Aa/gruHaC1YzXxkTxD8uQdecKgt</latexit>

⇤ � � ^ bpos  1

<latexit sha1_base64="1OKp6ii1bMO1dTfyaZERnyTYKlE="></latexit>

⇤ � � ^ bpos > 1

<latexit sha1_base64="9zh9EPiP4M68ym19iMykTGIcn5s="></latexit>

phidi?

<latexit sha1_base64="+rlAN4iMWSp7QnRChkwlSWf+4wU=">AAACBnicdVC7TgJBFJ3FF+ILsbSZSEysyK4RHx3RxsICE3kkLCF3hwtOmH04c9dICL1fYauVnbH1Nyz8F5cVjRo91ck55+bee7xISUO2/WplZmbn5heyi7ml5ZXVtfx6oW7CWAusiVCFuumBQSUDrJEkhc1II/iewoY3OJn4jWvURobBBQ0jbPvQD2RPCqBE6uQL7lkS7oKr8MpVKe3ki3apbDtH+w63S3YK/qU4U6XIpqh28m9uNxSxjwEJBca0HDui9gg0SaFwnHNjgxGIAfSxldAAfDTtUXr7mG/HBijkEWouFU9F/D4xAt+Yoe8lSR/o0vz2JuJfXium3mF7JIMoJgzEZBFJhekiI7RMSkHelRqJYHI5chlwARqIUEsOQiRinLSUS/r4fJr/T+q7Jadcss/3ipXjaTNZtsm22A5z2AGrsFNWZTUm2A27Y/fswbq1Hq0n6/kjmrGmMxvsB6yXdxQ/mQw=</latexit>

⇤  �

<latexit sha1_base64="86JDRqjPlnfNZo8mnGsgybkJDiI=">AAACE3icdVDLSlxBEO1rfI6JTszShU0GQUGGbtE47kQ3LlwoOCrMHYa6PaVp7Puwu1qQyyzzCfmKbM3Knbj1A1z4L/YdR0gkOavDOaeoqpMURjsS4ika+zA+MTk1PVOb/fhpbr7+eeHE5d4qbKvc5PYsAYdGZ9gmTQbPCouQJgZPk8u9yj+9Rut0nh3TTYHdFC4yfa4VUJB69aW4jA9CvA/xYI3HKdB3orKPVx49rqwOevWGaAohpJS8InLrmwhke7u1LltcVlZAg41w2Ks/x/1c+RQzUgac60hRULcES1oZHNRi77AAdQkX2Ak0gxRdtxw+MuDL3gHlvEDLteFDEf+cKCF17iZNQrK61L33KvFfXsfTeatb6qzwhJmqFpE2OFzklNWhIeR9bZEIqsuR64wrsECEVnNQKog+VFYLfbw9zf9PTtabcrMpjjYaO7ujZqbZIvvKVphkW2yH7bND1maK/WC/2C37Hf2M7qL76OE1OhaNZr6wvxA9vgDtA55e</latexit>{⇤}, dequeue()

<latexit sha1_base64="86JDRqjPlnfNZo8mnGsgybkJDiI="></latexit>{⇤}, dequeue()

<latexit sha1_base64="p66cj9FNV2RfyErUPV7nKPymQog="></latexit>

⇠�, enqueue(msg)

<latexit sha1_base64="CiaeZ9liPOiAMoWXJu/oqKhKKtY="></latexit>{⇤}, ⇠�, enqueue(msg)

Figure 6.19: SHA modeling the ROS publisher queue, also referred to as ros_pub⟨id⟩, as
seen in [128].

6.5 ROS Publisher Queue Model

For the design time and deployment results to be comparable, the SHA
network includes a model of ROS publisher queues (i.e., instances of class
ROSPubNode described in Section 5.1).

For each sensor, a ROS node periodically shares the latest readings with
the orchestrator. Agents are responsible for publishing new data, whereas
the orchestrator subscribes to such data. ROS handles all messages received
by subscribers and shared by publishers through independent queues. The
rate at which subscriber queues are emptied is easier to control and an-
ticipate than publisher queues. As a matter of fact, the first one depends
either on the time it takes to execute a single iteration of the callback func-
tion, or on the rate explicitly set for the execution of callbacks through the
ros :: spinOnce() function. On the other hand, the time necessary to pro-
cess a publisher queue depends on how quickly the message can reach the
subscribers, which is not fully controllable [165].

As argued by Halder et al. [86], a formal model of this mechanism
should include the following parameters: the publisher’s publishing rate
(Tpub), the subscriber’s spin rate (Tsub), the time required to transmit mes-
sages over channels (Tmin and Tmax) and the time required to process call-
backs (CBmin and CBmax). Sensor readings are shared with frequency 1/Tpoll

with Tpoll ∈ K, therefore Tpub = Tpoll holds.
Subscriber nodes, within this framework, perform no other action be-

sides data subscription, thus we assume Tsub = 0 holds, and the only delay
attributable to the subscriber is the callback execution time. Given that
callbacks consist of update instruction sets (see, for example, Eq.6.2), we
assume that CBmin and CBmax are negligible compared to the timeline of a
mission (usually in the order of minutes).

The ros_pub⟨id⟩ SHA, shown in Fig. 6.19, models independent pub-
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Figure 6.20: Diagram of the synchronization contingencies between an ⟨op⟩_pub⟨id⟩ pat-
tern and the corresponding ros_pub⟨id⟩ automaton, as seen in [128].

lisher queues. This element of the SHA network captures the delays to
transmit messages stored in queues over ROS topics.

The time required to publish a message is not fully predictable and con-
stitutes a source of uncertainty. Therefore, a probability distribution ap-
proximates this delay. Instead of having a defined interval Tmin and Tmax,
we model the delay through variable λ ∈ Vdc, whose values are randomly
generated from a Normal distribution N (λmean, λvar) as shown in previous
studies [208]. This feature incorporates the impact of delays due to ROS
latency into the formal analysis.

As in Fig. 6.19, a publisher queue is empty (location pidle) until an agent
requests the publication of a message through channel p⟨id⟩ ∈ C. Parameter
⟨id⟩ identifies the selected queue and semantically corresponds to a ROS
topic. The publication request is captured by edge label p⟨id⟩!, either in the
component in Fig. 6.1) or as seen in Fig. 6.2 (label p1!).

Queues are modeled as fixed-length arrays, and variable bpos ∈ Vdc keeps
track of the first available position’s index inside the queue. As the publi-
cation request is issued, the message is added to the buffer through update
enqueue(msg), a new value of λ is generated through update ξλ, and the
automaton switches to location pbusy.

The automaton stays in pbusy as long as Λ ≤ λ holds, where clock
Λ ∈ X models the message publication latency. When time λ elapses, the
first element of the queue is published to the orchestrator through instruc-
tion dequeue() (see Fig. 6.19). The latter subsumes the subscriber (e.g.,
the orchestrator) behavior, which, as already argued, is not explicitly mod-
eled to limit complexity.

Fig. 6.20 displays possible contingencies (cases (a) and (b)) result-
ing from the combination of a ⟨op⟩_pub⟨id⟩ pattern with the corresponding
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ros_pub⟨id⟩ automaton. Case (a) occurs when ∀i, λi ≤ Tpoll holds, there-
fore a message is always successfully published before the new reading
and the queue never holds more than one element. If, on the other hand,
∃i, s.t.λi > Tpoll holds, which corresponds to case (b) in Fig. 6.20, more
than one position in the queue will be simultaneously occupied and two
messages will be published back-to-back without switching back to pidle.
Case (b) is enabled by the two self-loops on pbusy (Fig. 6.19) and guard
conditions on variable bpos.
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CHAPTER7
Formal Modeling Approach Validation

In this chapter, we present two case studies from the healthcare do-
main to test the formal modeling and analysis approach presented in
Chapter 6.a

The first case study highlights how different fatigue profiles for the
human subjects involved in the scenario impact the formal verification
results (thus, on the outcome of the scenario).

The second case study showcases how the framework can be ex-
ploited to analyze scenarios with multiple humans, multiple robots in
the fleet, and alternative mission plans depending on the outcome of a
specific service.

Finally, the results of a scalability analysis are reported to discuss
how verification times increase approximately linearly with the size of
the SHA network under analysis.

aThe content presented in this chapter also appears in [125] and [130]. The author of this thesis
declares to have also authored the reproduced text, figures, and data and to have the right to reproduce
such content in a dissertation according to the license under which both articles are published.
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(a) Floor layout for case study 1, with initial positions and destination marked by a ×
symbol, and intermediate points by • symbols.

(b) Fatigue curves for all the profiles tested in the first case study (colors
as in the legend). Location markers indicate the time each human has
reached the corresponding point of the trajectory.

Figure 7.1: Experimental Setup and Results for Case Study 1, as seen in [125].

7.1 Case Study 1: Fatigue Profile Impact Analysis

The first scenario involves a human patient who needs to reach a doctor’s
office. The mobile robot is aware of the floor plan and the patient’s charac-
teristics and can guide the human toward the destination. When the service
is successfully provided, the robot successfully completes its mission.

This case study aims to assess the impact of different fatigue profiles
on the mission’s outcome. The experimental setting features a mobile
robot with vmax = 20cm/s, amax = 5cm/s2, with a fully charged battery
(C0 = 100%) (corresponding to approximately 2.5h to full discharge).
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The layout used for this experiment, depicted in Fig. 7.1a, reproduces
a T-shaped hospital hallway, with doors leading to different offices. The
entrance and starting point for both agents is on the left-end side (POI
(200, 300)) close to the charging station (POI (250, 375)).

The robot’s mission is to lead the human subject to their destination in
(1300, 500). Therefore, the interaction pattern is HumanFollower. To test
the effectiveness of the fatigue-related policies of the orchestrator, we repli-
cate formal analysis with different parameters for the human, i.e., different
fatigue profiles and walking speed.

For the first configuration, the human is young and in fine health (pf =
Young/Healthy). Their Maximum Endurance Time (MET)—i.e., how long
they can walk non-stop before F = 1—is on average 23 minutes (with
reference to Eq.6.5, it leads to mean λ = ρ = 0.005) and their walking
speed is v = 18cm/s. In the second configuration, the human is an elder
in good health (pf = Elderly/Healthy), with MET = 14min (λ = 0.008,
ρ = 0.0035) and v = 8cm/s. In the third and final case, the human is
affected by a severe respiratory disease (pf = SARSPatient), v = 5cm/s)
with MET = 4.6min (λ = 0.025, ρ = 0.001).

For these experiments, we use Uppaal version 4.1.24 to implement the
automata and run SMC experiments. Experiments are performed on a ma-
chine with 128 cores, 515GB of RAM, and Debian Linux version 10 with
the default set of statistical parameters.

Each experiment yields the probability for mission success with time
bound τ (the value of expression PM(⋄≤τ scs)).

For the first configuration, we estimate that PM(⋄≤τ scs) = [0.717, 0.817]
with τ = 300s. The second configuration leads to a success probability es-
timate of PM(⋄≤τ scs) = [0.8, 0.9] with τ = 300s. In the last case, we
obtain that PM(⋄≤τ scs) = [0, 0.098] with τ = 1000s. These results show
that in the first two cases, the destination can be reached in approximately
5min with a high degree of confidence. In the last case, instead, the mission
cannot be completed even in 16min.

The motivation behind this result is highlighted by the simulations in
Fig. 7.1: Fig. 7.1a shows the trajectories of the two agents, whereas Fig.
7.1b shows the fatigue curves for the three test cases and the time instants
in which the destination or intermediate points of the trajectory have been
reached within the simulation.

The orchestrator instructs every agent to stop walking if human fatigue
exceeds a certain threshold, set to Fstop = 0.9. In the last test case, motion
stops at t = 200s, it resumes at t = 1200s when fatigue drops to an accept-
able value (Frestart = 0.3) and stops again at t = 1400swhen the destination
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Table 7.1: Verification performance data for the first case study.

Exp. States Time [min] Virtual Memory [KiB] Resident Memory [KiB]

pf =Young/Healthy 212570 ≈ 1 166488 120800
pf =Elderly/Healthy 391311 ≈ 1.5 166484 122376
pf =SARS Patient 2927009 ≈ 11.5 166484 123068

is yet to be reached. This behavior is caused by the orchestrator trying to
prevent human exhaustion, which inevitably slows down the entire mission.
In the other two cases, thanks to the different pf parameter values, when the
human reaches the destination the fatigue level is still acceptable, thus they
are not stopped by the orchestrator.

Performance data for each experiment can be found in Table 7.1.
This case study constitutes a preliminary step towards assessing the

soundness of the models presented in Chapter 6, specifically the ability
of the orchestrator to enable corrective actions if required by the state of
the system.

7.2 Case Study 2: Multi-Human Multi-Robot Scenario

The second case study showcases the formal modeling approach versatility
through a broader range of human-robot interaction patterns. The scenario
envisages the availability of a fleet of mobile robots to provide the services.
The scalability of the approach with increasing fleet size is then assessed.

The second case study is also set in a T-shaped hospital corridor with
cupboards containing medical equipment (CUP1 and CUP2), doors lead-
ing to offices, and a waiting room. The scenario features a patient (HUM1)
in need of medical treatment and a doctor (HUM2) to administer it.

When the scenario begins, the robot accompanies the patient to the wait-
ing room. The robot should then fetch the equipment required for the treat-
ment from CUP1: we assume that a second doctor (HUM3) simultaneously
requires the same item, thus they compete to grab it. If the robot wins, it
requires HUM2’s assistance to open the office door, and then it delivers
them the object. If HUM3 wins, the robot follows HUM2 to the second
cupboard (CUP2) and carries the item back to the office.

Since the outcome of the competitor pattern is not known beforehand,
there are two possible paths if the robot or the third human wins the compe-
tition, represented in Fig. 7.2b as blue and green arrows, respectively. For
testing purposes, HUM3 starts from a random location in the corridor to
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Figure 7.2: Floor layout and workflow for the second case study, as seen in [130].

keep the outcome of the competition unpredictable (hence, their location in
Fig. 7.2a is purely indicative). Once the doctor has the required equipment,
the robot returns to the waiting room and accompanies the patient to the
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office, where it supports the doctor in administering the treatment.
Doctors belong to different age groups (young and elderly) and are in

a good state of health, while the patient exhibits a more critical fatigue
profile. By default, the robot with id = 1 (ROB1) starts providing the first
service of the sequence; therefore, the outcome of the scenario varies based
on the robot’s initial state of charge (i.e., parameter C0).

We run the SMC experiments through Uppaal v.4.1.24 on a machine
with 4 cores and 8GB of RAM.

Table 7.2 reports the SMC results for the design-time analysis of the sce-
nario, split by competition outcome (whether the robot or the doctor wins,
i.e., parameter PLAN), level of charge (C0), time-bound (τ ), and the num-
ber of robots (Nr). We perform experiments with τ = 400s or τ = 1200s,
and C0 = 90% or C0 = 30%.

The robot’s discharge curve is parameterized to match the battery life
of commercially available mobile robotic devices (approximately 2.5h).
When ROB1 starts with Cstart = 30%, it has approximately 5m of bat-
tery life left due to the non-linearity of charge time-dynamics. The robots’
maximum linear speed is also set to match devices available on the mar-
ket (1m/s), whereas humans’ walking speeds range from 0.8m/s (for the
patient) to 1m/s (for the doctors).

If only one robot is available (Nr = 1 holds) and C0 = 90% holds, the
estimated probability of success within 400s is greater than 90% indepen-
dently of the competition outcome.

When C0 = 30% holds, in all cases, the robot reaches the recharge
threshold Crech = 10% when the mission is still executing. If there is no
other robot to replace it (Nr = 1 holds), the mission cannot resume until
the robot recharges, thus the probability of success within τ = 400s is
null (≤ 0.098). With τ = 1200s, we obtain a higher success probability
(approximately 50%) with both plans since the robot has time to recharge
and complete the mission at least in some of the cases.

On the other hand, if Nr = 2 holds, the first robot’s orchestrator trig-
gers the task handover routine to synchronize with the second robot. Since
robot 2 resumes the service as soon as it reaches robot 1’s location, it is not
necessary to wait until robot 1 recharges to proceed and the probability of
completing the mission within 400s is greater than 90% with both plans.

The estimated maximum fatigue levels of HUM1 (reported in Table 7.2)
indicate that plan 2 puts more strain on the patient’s side. Indeed, it takes
less for the robot to move from CUP1 to the office than for HUM2 to
wait for the robot, walk to CUP2 and back to the office: thus, on average,
plan 2 lasts longer than plan 1. Results in Table 7.2 confirm this since the
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Table 7.2: SMC results split by competition outcome (PLAN), ROB1’s initial charge
(C0), time bound (τ ), and fleet size (Nr). The table contains the success probability
(PM(⋄≤τ scs)) and HUM1’s maximum fatigue (E≤τ [max(f1)]) estimations.

Scenario Parameters SMC Results

PLAN C0 τ Nrobs PM(⋄≤τ scs) E≤τ [max(f1)]

1

90% 400s 1 [0.902, 1] 0.120± 0.058
30% 400s 1 [0, 0.0981] 0.103± 0.053
30% 1200s 1 [0.491, 0.591] 0.557± 0.043
30% 400s 2 [0.902, 1] 0.148± 0.019

2

90% 400s 1 [0.902, 1] 0.156± 0.042
30% 400s 1 [0, 0.0981] 0.102± 0.052
30% 1200s 1 [0.412, 0.512] 0.667± 0.052
30% 400s 2 [0.902, 1] 0.197± 0.092

estimated probability of success within 1200s when the robot has time to
recharge is higher for plan 1 than plan 2 (the mean value of the probability
interval is 54% compared to 46%). A longer mission duration implies a
higher chance that humans make haphazard decisions (hence, their fatigue
increases) out of free will, leading to higher fatigue levels for plan 2 than
plan 1, all other parameters being equal.

Similarly, when C0 = 30%, the estimated fatigue level for HUM1 is
higher with τ = 1200s and Nr = 1 than τ = 400s and Nr = 2 since, in
the first case, the patient is free to move in the waiting room for a long time
accumulating more fatigue. The same phenomenon, although on a smaller
scale, explains the difference between the fatigue estimations obtained with
C0 = 90% and those obtained with C0 = 30% and Nr = 2. In this case, the
mission lasts longer since the two robots require 1m to swap.

In conclusion, these results indicate that plan 1 is slightly preferable in
terms of success probability and patients’ physical effort. Therefore, the
analysis may lead to a retuning of the facility’s policies, if possible, to give
the robot priority when accessing CUP1 when a patient is waiting. Further-
more, the formal verification results corroborate the intuition that at least a
second robot is necessary to treat the patient as quickly as possible when it
is not feasible for a single robot to complete all tasks without recharging.

7.2.1 Scalability Analysis Results

Development approaches based on model checking often become imprac-
tical as the size of the problem grows due to excessive verification times.
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Table 7.3: Performance data of SMC experiments with C0 = 30%, τ = 400s, and in-
creasing robot fleet size (Nr). The table reports on explored states ([×106]), duration
of the experiment ([min]), virtual and resident memory used ([MB]).

Nrobs States Time Virtual
Memory

Resident
Memory

1 1.112M 2m 28s 4, 424 MB 88.508 MB
2 1.117M 3m 46s 4, 424 MB 92.560 MB
3 1.149M 3m 47s 4, 432 MB 96.716 MB
5 1.404M 4m 11s 4, 442 MB 106.416 MB
10 5.395M 12m 55s 4, 460 MB 127.352 MB
20 6.725M 18m 28s 4, 499 MB 171.080 MB

SMC partially eliminates this issue at the cost of approximate results and
high dependency on the application designer’s choices (see Section 3.1.2
and Section 4.2 for a more detailed discussion of these issues). Neverthe-
less, given that the technique relies on simulation, in some cases, converg-
ing to a confidence interval that is small enough may still require a large
number of runs, thus significant computational load and verification times.

Given that the development approach is meant to be accessible and con-
venient, assessing whether it is still applicable to more significant prob-
lems is a relevant issue. Although the second case study features more and
a broader range of interaction patterns, besides the management of alter-
native mission plans, performance data reported in Table 7.3 suggest an
adequate degree of applicability of the approach as verification times with
1 or 2 robots do not exceed 4m.

Data in Table 7.3 refer to a single SMC experiment (i.e., for a single
configuration). Thus, it takes approximately 30m to test all configurations
described in Table 7.2.

We performed additional SMC experiments with the same scenario but
increasing values of Nr. These experiments are all performed with C0 = 30%
to trigger the task handover, τ = 400s, and Nr up to 20. For testing pur-
poses, we simulate the possibility that some robots may be busy and ran-
domize their starting physical location to make the replacement robot se-
lection (i.e., robot j in Section 6.4.6) unpredictable.

Per Table 7.3, verification time and memory usage grow approximately
linearly with the robot fleet size.

Although performance data show that the approach applies to increas-
ingly complex scenarios, it is worth pointing out some limitations of this
scalability assessment. Even if the model features larger robot fleets, they
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are not all actively involved in the scenario. As described in Section 6.4.6,
only the first robot and the one that takes over (even if its selection is not
predictable) contribute to the mission.

More generally, the model does not support parallel execution of mul-
tiple tasks (e.g., multiple robots serving multiple humans simultaneously)
due to limitations of the modeling tool. Therefore, design-time analysis
results do not consider issues due to robots carrying out conflicting tasks,
for example, causing their trajectories to overlap, as we assume these are
handled by lower-level safety measures embedded into the robot devices.
In the future, this limitation could be dampened by extending the deploy-
ment approach presented in Chapter 10 and incorporating parallel mission
execution into the runtime analysis.
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CHAPTER8
Erroneous Human Behaviors Model

This chapter presents the formal model of human behavior extended
with manifestations of erroneous behaviors. Firstly, we present the
set of phenotypes of erroneous human behavior, how we have mapped
the phenotypes to the service setting, and how we have modeled the
mapped phenotypes as SHA add-ons. Secondly, we introduce the ex-
tensions of the SHA modeling human-robot interaction patterns pre-
sented in Chapter 6 with the erroneous behavior models.

8.1 Phenotypes of Erroneous Human Behavior

The issue of defining and categorizing manifestations of human erroneous
behavior has been largely investigated in the field of human-computer inter-
action. Hollnagel’s human error taxonomy [92] is among the best-established
works in the field addressing how unexpected human behavior can cause the
interaction with a machine to fail.

Specifically, [92] focuses on the cases in which, although the interaction
plan is adequate, the performed actions stray from the plan: such actions
are referred to as “human errors”. Although the form and frequency of
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8.1. Phenotypes of Erroneous Human Behavior

human errors cannot be fully predicted, they are bound to take place in a
complex interactive system and tend to occur in patterns.

Error patterns consist of a phenotype, i.e., the manifestation of the erro-
neous action (e.g., a user failing to press a button in time), and a genotype,
i.e., the cognitive process that causes the erroneous action (e.g., forgetting
the intention of pressing the button). As our work does not capture the
cognitive sources of human actions but their observations, throughout the
thesis, we focus on phenotypes, while genotypes are investigated in [91].

The taxonomy proposed by Hollnagel features four macro-categories of
human errors, referred to as “error modes” in Table 8.1: actions in the
wrong place (i.e., the position of the action within the sequence is not cor-
rect), at the wrong time (i.e., the timing of the action is not as planned),
of the wrong type (i.e., the action is not planned but does not disrupt the
plan), not included in the current plan (i.e., the action is not in the planned
sequence).

An error mode groups one or multiple phenotypes, each capturing a de-
viation (i.e., the “error”) with respect to a plan, where a plan is intended as
“a representation of both a goal [...] and the possible actions required to
achieve it” [183].

For each phenotype, Table 8.1 reports action sequences displaying the
corresponding erroneous behavior with respect to a planned sequence of
generic actions indicated with symbols [A,B,C,D,E]. When timing is nec-
essary to characterize the phenotype, timestamps of the form ti indicating
the expected time of occurrence of an action are also reported. The nota-
tion (ti,⊥) indicates that no action takes place at time ti contrary to what the
plan envisages. In contrast, symbol ↓ indicates an unexpected termination
of the sequence of actions.

The formal model in our framework captures human behavior while in-
teracting with a robot, and the possible interactions are referred to as pat-
terns. Since each pattern represents the service requested by the human to
the robot, the goal of a pattern is to provide the service and conclude the
interaction successfully. The condition determining whether a service is
completed successfully is specific to the pattern and indicated in the fol-
lowing as γi,scs ∈ Γ(W ), where i ∈ [1,Nh] identifies a specific human
(equivalently, a specific pattern, as each SHA modeling a human is an in-
stance of a single pattern) and Nh ∈ K is the total number of humans
involved in the scenario. The goal of a pattern i is then expressed through
formula ⋄≤τ (γi,scs), where τ is the time-bound of the SMC experiment, as
explained in Section 3.1.2.

As described in Section 6.3, SHA modeling human behavior feature
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multiple instances of the ⟨op⟩_pub subautomaton, each capturing an op-
erational state, such as walking or standing. Similarly, the SHA modeling
the robot features multiple instances of the ⟨op⟩_pub⟨id⟩ subautomaton pre-
sented in Section 6.2 modeling the operational state of the robot.

To achieve the goal of a service, the human and the robot perform a
sequence of actions, i.e., the “plan” in our framework. The occurrence
of an action in our modeling approach is captured through a change in
the operational state (i.e., ⟨op⟩_pub instance) of the SHA modeling the
human or a change of location in the SHA modeling the robot. Given a
SHA involved in a plan and indicating its location at a given time t as l,
an atomic element (ti, l′) of the plan such that ti > t holds indicates that
the SHA should switch from l to l′ at time ti. On the other hand, element
(ti,⊥) indicates that the change of operational state planned at time ti does
not take place due to a human error, thus, the SHA modeling the human
remains in its current state.

For example, let us consider the HumanFollower pattern. The goal (ex-
pressed in informal terms) is that the human follows the robot to a certain
location (not known a priori by the human). To this end, the plan in in-
formal terms is the following: robot starts moving, human starts walking,
robot stops moving, human stops walking. The corresponding plan report-
ing the operational state changes is shown in sequence (8.1) (the human’s
initial operational state is ⟨stand⟩_pub, while the robot starts in ridle). Note
that, to ease the distinction between changes related to the robot and to the
human when presenting sequences, we report the full ⟨op⟩_pub label for
humans and only the label of the ordinary location within the ⟨op⟩_pub⟨id⟩
subautomaton for the robot (i.e., rstart and rstop).

[(t1, rstart), (t2, ⟨walk⟩_pubh), (t3, rstop), (t4, ⟨stand⟩_pubh)] (8.1)

In reality, human behavior in a service setting is barely constrained, and
the decision-making process is highly susceptible to free will; therefore,
numerous deviations from the plan are possible. In our framework, SHA
modeling human behavior capture this aspect by embedding a formalization
of human haphazard behavior.

In the following, we present the developed SHA add-ons modeling the
phenotypes as summarized by Table 8.2, providing examples of the corre-
sponding erroneous behaviors within the domain of our framework. For
each add-on, we present its features and show the corresponding SHA por-
tion modeling the “standard” (i.e., non-erroneous) behavior.

We remark that we indicate as “add-ons” portions of SHA (thus, sub-
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Table 8.2: Mapping between the developed add-ons and the phenotypes identified by Holl-
nagel [92].

Add-On Phenotype(s)

Disobey/Obey Delay,→Intrusion
Free Will Premature Action, Reversal, Insertion

Timer Expired Omission
Safety Violation Insertion, Intrusion, Premature Action
Critical Status Intrusion

tuples of the one defined in Definition 1) that can be flexibly incorporated
into other SHA. This feature increases the extensibility of the modeling
approach for two reasons: if new add-ons are developed in the future, these
can be easily plugged into existing human-robot interaction patterns; if new
human-robot interaction patterns are developed in the future, these can be
easily extended with the developed add-ons.

Note that, given the stochastic nature of the employed formalism, it is
not possible for the developed add-ons to be purely non-deterministic like
the original phenotypes. A probabilistic formalization is necessary and de-
scribed in more detail when introducing the various add-ons in the next
sections. Indeed, quantifying the probability of human errors’ manifesta-
tions is a long-standing approach in probabilistic Human Reliability Anal-
ysis techniques such as CREAM [93], HEART [217], THERP [206], and
THEA [174].

As per Table 8.2, developed add-ons cover 6 out of 8 phenotypes from
Hollnagel’s taxonomy. The reason why Repetition and Replacement are
not supported is due to the range of human actions currently covered by the
modeling approach. In the first case, supported actions cannot physically or
logically be repeated: for instance, the human cannot “start” walking twice
in a row since they either stop and restart (counting as two separate actions)
or simply keep walking. Concerning Replacement, the approach does
not include sets of functionally equivalent actions (e.g., a human subject
picking up the wrong object). Therefore, performing a substitute for the
correct action is not supported. Introducing functionally equivalent action
sets will be investigated in future work with an extension of the available
set of add-ons to model the Replacement error.
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8.1.1 Disobey/Obey Add-On

In the following, we describe how the Disobey/Obey add-on described
in Section 6.3.1 is mapped to Hollnagel’s phenotypes. Specifically, refer-
ring to the HumanFollower running example, if the human erroneously
behaves according to the Disobey/Obey add-on and no other error occurs
throughout the pattern, the observed action sequence is shown in sequence
(8.2), where k ∈ N is the number of times the self-loop on ⟨op⟩_pubh is
taken in favor of the edge to ⟨op⟩′_pubh.

[(t1, rstart), (t2,⊥), (t2 + Tint,⊥), . . . ,
(t2 + kTint,⊥), (t2 + (k+ 1)Tint, ⟨walk⟩_pubh),

(t3, rstop), (t4, ⟨stand⟩_pubh)]

(8.2)

With k = 1, we obtain a Delay phenotype (see Table 8.1). All sequences
observed with k > 1 are an iteration of said phenotype, resulting in a longer
delay. The probability of choosing the disobey edge k times is (1 − p)k. It
is possible—in theory—that the obey edge is never chosen in favor of the
disobey self-loop: the probability of this happening (i.e., (1 − p)k with
k → ∞) tends to 0 if p < 1 holds—i.e., if disobey is greater than 0. The
action sequence observed in this corner case (marked by symbol→ in Table
8.2) is given in sequence (8.3).

[(t1, rstart), (t2,⊥), . . .] (8.3)

Since the goal is never reached, this constitutes a special case of Intrusion
with Y = ⊥ (see Table 8.1).

8.1.2 Free Will Add-On

In the following, we describe which phenotypes are realized through the
Free Will add-on introduced in Section 6.3.1. The HumanFollower pattern
is eligible for the add-on in Fig. 6.7a since actions are initiated by the robot.
While the intended plan is reported in sequence (8.1), if the Free Will edge
fires (thus, the erroneous behavior occurs) at time t′2 < t2, the observed
actions are those shown in sequence (8.4).

[(t1, rstart), (t
′
2, ⟨walk⟩_pubh),

(t2,⊥), (t3, rstop), (t4, ⟨stand⟩_pubh)]
(8.4)
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In this case, sequence (8.4) reports the switch to ⟨walk⟩_pubh (i.e., the
human starting to walk) at time t′2 out of free will even if no event is fired
through channel cmd_hstart. Therefore, in our framework, the Free Will
add-on realizes the Premature Action phenotype if it involves the correct
action according to the sequence (like starting to walk, in this example), but
is not performed at the expected time. For example, the human may start
walking during the Tint time range in which the orchestrator is processing
data.

A possible corner case of this erroneous behavior is obtained by decreas-
ing t′2 to the point that t′2 < t1 holds. In this case, the observed actions are
given in sequence (8.5), whose timestamps are not shown as they are not
necessary to identify the error.

[⟨walk⟩_pubh, rstart, rstop, ⟨stand⟩_pubh] (8.5)

Therefore, in this case, the realized phenotype is a Reversal. We remark
that sequence (8.5) is feasible in our framework since the orchestrator still
issues instruction cmd_hstart after cmd_rstart, but, since the human is al-
ready walking, no response to such instruction is observed on the human’s
side.

The third and final manifestation of the Free Will add-on is the human
erroneously performing an action that is not envisaged by sequence (8.1),
irrespectively of the time at which it is performed. For example, the human
may abruptly stop walking while following the robot, resulting in sequence
(8.6) (timestamps are not reported).

[rstart, ⟨walk⟩_pubh, ⟨stand⟩_pubh,

⟨walk⟩_pubh, rstop, ⟨stand⟩_pubh]
(8.6)

This case realizes an Insertion phenotype since the human stopping is not
expected but still allows the agents to reach the goal. In this situation, the
orchestrator has to instruct the human to start walking again after the error
occurs. Therefore, the additional cmd_hstart action is not expected, but it
constitutes a response of the system to the error (thus, it is highlighted in
blue and not in red).

The add-on in Fig. 6.7c, which captures actions initiated by the human,
realizes the same phenotypes, with the difference that the point of reference
is not the firing of channel c but condition γ being verified based on the
system’s state.
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,

(a) SHA representing the standard behavior.

,
,

(b) SHA representing the Timer Expired add-on, color-coded as in Fig. 3.1.

Figure 8.1: SHA representing a standard behavior and its version with the Timer Expired
add-on representing the erroneous behavior, both color-coded as in Fig. 3.1.

8.1.3 Timer Expired Add-On

The Timer Expired SHA add-on captures the human extremely delaying
the completion of a task whose progress they are in charge of, to the point
of being considered non-responsive. An example is the HumanLeader
pattern, which is the dual case of the HumanFollower, in that the human
is in charge of leading the robot to a certain destination. Similarly, the
HumanApplicant pattern (described in detail in Section 8.2.1) features the
human performing an action with the support of the robot, such as admin-
istering a treatment. In such cases, if the human performs impeccably, the
action (i.e., walking or treating the patient) ends within a reasonable amount
of time. However, unexpected time losses or the incumbency of an emer-
gency may prevent the human from completing the task, leading the robot
to consider them non-responsive and the service failed.

The standard behavior is shown in Fig. 8.1a. The SHA features two
subautomata ⟨op⟩_pubh and ⟨op⟩′_pubh representing (as in Section 6.3.1
and Section 6.3.1) the current and the next operational state envisaged by
the plan. Real-valued variable φ ∈ W models the progress of the task the
human performs while in ⟨op⟩_pubh. The evolution of φ with time (e.g.,
the distance to the destination decreasing) is constrained by flow condition
fnorm(t). The switch from ⟨op⟩_pubh to ⟨op⟩′_pubh is realized through a
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solid edge with guard γ(φ), update ξ, and channel c: if the human initiates
the switch, the channel is replaced by the internal action. Guard γ(φ) is a
condition on the value of φ evaluating to true when the task is complete.

The erroneous behavior modeled by the Timer Expired add-on, shown
in Fig. 8.1b, captures the situation in which the progress of the task per-
formed by the human is excessively delayed. The evolution of variable φ
is, therefore, constrained by a different flow condition (ferr(t) in Fig. 8.1b).
While function fnorm(t) models the human behaving normally, the function
ferr(t) is such that condition γ(φ) (capturing the completion of the task)
may not be verified within a maximum time bound, corresponding to con-
stant TE ∈ K. A concrete example of how ferr(t) is implemented is given
in Section 8.2.1 when describing in detail the HumanApplicant pattern.
Subautomaton ⟨op⟩_pubh is further endowed with invariant texp ≤ TE,
where texp ∈ X is a clock that is reset upon entering ⟨op⟩_pubh. If time
bound TE is exceeded, the SHA switches to subautomaton ⟨fail⟩_pubh.
The edge from ⟨op⟩_pubh to ⟨fail⟩_pubh is labeled with guard condition
texp ≥ TE, which, in conjunction with the invariant on ⟨op⟩_pubh, ensures
that the transition occurs if and only if texp = TE holds.

For each pattern eligible for this add-on, time-bound TE is estimated
based on the characteristics of the human and the requested service. Eq.8.7
shows an example of how the value of TE is calculated in patterns requir-
ing the human to move to a certain destination when initiating the move-
ment is up to the human. In this case, variable φ corresponds to the dis-
tance between the human and the destination, and the completion of the
task (i.e., condition γ(φ)) captures the distance being equal to 0. Function
dist computes the distance between two points accounting for fixed obsta-
cles (e.g., walls), hpos ∈ W is the Cartesian coordinate pair representing
the human’s position within the layout, target ∈ K is the Cartesian coordi-
nates pair representing the destination of the service, v ∈ K is the human’s
walking speed, and δ ∈ K is the allowance factor.

TE =
dist(hpos(0), target)

v
· (1 + δ) (8.7)

The ratio between the distance to be covered (thus, the distance between
the human’s starting position hpos(0) and the destination) and the walking
speed represents the expected duration of the service in ordinary conditions,
whereas δ determines how much the expected duration can be exceeded for
the human to be considered non-responsive. Therefore, the higher the value
of δ, the lower the likelihood of this erroneous behavior.

Let us refer to a [HumanLeader, HumanFollower] service sequence
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to illustrate the manifestation of this erroneous behavior. The expected plan
for the two services is shown in sequence (8.8), where the first 4 elements
constitute the HumanLeader plan, while the last 4 constitute the Human-
Follower plan.

[(t1, ⟨walk⟩_pubh), (t2, rstart), (t3, ⟨stand⟩_pubh),

(t4, rstop), (t5, rstart), (t6, ⟨walk⟩_pubh),

(t7, rstop), (t8, ⟨stand⟩_pubh)]

(8.8)

The erroneous behavior modeled by the Timer Expired add-on may occur
while the human is leading the robot to the destination (captured by param-
eter target, as in Section 8.1.3) and they fail to reach it within time TE. In
this case, the system behaves as in sequence (8.9).

[(t1, ⟨walk⟩_pubh), (t2, rstart), (t3,⊥), . . . ,
(t3 + TE,⊥), (t′4, rstop), (t5, rstart), . . . ]

(8.9)

We remark that, in sequence (8.9), t3 is the expected duration of the task,
and t′4 ≥ t3 + TE holds since the robot stops serving the HumanLeader
and starts serving the HumanFollower after the extra time allowed to com-
plete the task has elapsed. Therefore, as per Table 8.1, this add-on realizes
an Omission error phenotype. Note that, since the robot waits for the hu-
man to perform their task until time TE elapses, the switch to rstop occurs
at time t′4 > t4. However, this is not an error by itself but the system’s
response to the error made by the human (thus, it is highlighted in blue and
not in red).

8.1.4 Safety Violation Add-On

The Safety Violation add-on captures the human entering a critical situ-
ation (e.g., moving too close to the robot), possibly causing a safety haz-
ard [213]. Unlike operators in industrial settings, people in service settings
do not wear protective devices nor receive systematic and thorough training
in working alongside robots. Enforcing safety measures may be necessary
throughout the interaction to prevent undesirable events, such as collisions.
This add-on introduces a formalization of the human and the robot operat-
ing under a safety measure and the human violating such measure out of
error.

The standard behavior, shown in Fig. 8.2a, models the situation in which
the human is required to switch to a “safe mode” under specific circum-
stances while performing an action. As in previous cases, the current state
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(a) SHA add-on capturing the non-erroneous behavior.

, ,
, ,

,

(b) SHA add-on capturing the erroneous behavior: exponential rate λsafe is color-
coded like an invariant.

Figure 8.2: SHA depicting the standard behavior and the erroneous behavior captured by
the Safety Violation add-on, color-coded as in Fig. 3.1.

is modeled by subautomaton ⟨op⟩_pubh, whereas the subsequent state in
the plan is subautomaton ⟨op⟩′_pubh. The orchestrator enforces the switch
to ⟨op⟩′_pubh by firing an event through channel c′ when condition γ′ holds
and, upon firing such event, update ξ′ is executed. The condition determin-
ing whether the human should switch to the safety mode depends on the
specific interaction pattern.

For example, referring to the HumanFollower pattern, the condition
raising safety concerns is the human getting too close to the robot, ex-
pressed as dist(hpos, rpos) ≤ dcrit, where function dist and variable hpos are
as described in Section 8.1.3, rpos ∈ W is the Cartesian coordinate pair
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representing the robot’s position, and dcrit ∈ K is a system-wide constant
representing the maximum distance allowed before a safety measure is en-
forced. Therefore, the human should stay in ⟨op⟩_pubh only while the
distance from the robot is greater than dcrit.

As soon as the safety-critical condition holds, the human receives an
orchestrator instruction over channel csafe to switch to the safe mode, i.e.,
subautomaton ⟨op_safe⟩_pubh, which captures the same operational state
as ⟨op⟩_pubh but with the safety measure enforced. Realistic examples
of this contingency would be the human being instructed to take a few
steps to avoid the moving robot or walking at a slower pace to avoid col-
liding with the robot. Upon switching to ⟨op_safe⟩_pubh, SHA variables
are updated through ξcrit to reflect the safety measure being enforced (e.g.,
setting a lower value of the human’s walking speed). If the safety criti-
cal condition eventually holds, the human is instructed to switch back to
⟨op⟩_pubh through channel c. Note that the operational state modeled by
⟨op_safe⟩_pubh represents the same state as ⟨op⟩_pubh with different pa-
rameters (e.g., walking at a lower pace) and not a different functionally
equivalent action (thus, it is not eligible for a Replacement phenotype).

The corresponding add-on modeling the erroneous behavior is shown
in Fig. 8.2b. In this case, the modeled human error consists of arbitrar-
ily leaving ⟨op_crit⟩_pubh even if the safety-critical condition is still in
place (e.g., the human resuming walking at a full pace even if they are
still too close to the robot). The human arbitrarily leaving ⟨op_safe⟩_pubh

is captured by an additional edge back to ⟨op⟩_pubh without any chan-
nel, whose firing depends on exponential rate λsafe added to subautoma-
ton ⟨op_safe⟩_pubh. The mechanism determining whether the SHA takes
the new erroneous edge is stochastic rather than deterministic as in Fig.
8.2a. Specifically, the probability of leaving ⟨op_safe⟩_pubh t time units
after entering it is 1− e−λsafet. Therefore, the probability of switching back
to ⟨op_safe⟩_pubh irrespective of the orchestrator’s instructions increases
with time. Note that, the longer the human stays in ⟨op_crit⟩_pubh, which
models the safe mode, the safer it is for the system. However, the higher
λsafe is, the more likely the human is to leave ⟨op_safe⟩_pubh shortly after
entering it, when the safety-critical condition still holds.

The human erroneously not entering ⟨op_safe⟩_pubh upon receiving a
message through csafe would be covered by applying the Disobey/Obey
add-on to the edge from ⟨op⟩_pubh to ⟨op_crit⟩_pubh.

This add-on gives rise to several phenotypes of erroneous behavior, thus
different erroneous action sequences are illustrated in the following. Exam-
ples are provided taking as reference the HumanFollower pattern, specifi-
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cally the sequence that envisages the orchestrator enforcing the safety mea-
sure, shown in sequence (8.10). Although the switch to ⟨walk_safe⟩_pubh

is not envisaged by default by the HumanFollower pattern (see sequence
(8.1)), it is not considered an error but a desired effect of the orchestrator’s
policies and the realization of the standard behavior in Fig. 8.2a. Therefore,
the corresponding elements in sequence (8.10) are highlighted in blue and
not in red.

[rstart,
(
⟨walk⟩_pubh, ⟨walk_safe⟩_pubh

)m

,

(⟨walk⟩_pubh)
n, rstop, ⟨stand⟩_pubh]

(8.10)

Sequence (8.10) captures all the possible realizations of the standard behav-
ior in Fig. 8.2a with m ≥ 1 and n ∈ {0, 1}. In more detail, the human is in-
structed to enter the safe mode (i.e., walking at a slower pace) at least once.
Afterwards, the human may be instructed to switch between ⟨walk⟩_pubh

and ⟨walk_safe⟩_pubh m− 1 times. Finally, in any case, the task can ei-
ther terminate with the human in ⟨walk_safe⟩_pubh (if n = 0 holds) or in
⟨walk⟩_pubh (if n = 1 holds).

When applied to sequence (8.10), the Safety Violation add-on realizes
different phenotypes based on the value of n. If n = 0 holds (thus, the
human should conclude the task in ⟨walk_safe⟩_pubh) and the erroneous
behavior in Fig. 8.2b occurs, sequence (8.11) is observed, which captures
the human unexpectedly resuming walking at full speed.

[rstart, ⟨walk⟩_pubh, ⟨walk_safe⟩_pubh,

⟨walk⟩_pubh, rstop, ⟨stand⟩_pubh]
(8.11)

Sequence (8.11) realizes two phenotypes from the same error mode (i.e.,
action “not included in current plan”): if the safety measure (even if ac-
tive for a reduced amount of time) was successful in avoiding a hazard,
the service can be completed successfully, resulting in an Insertion pheno-
type; otherwise (i.e., lifting the safety measure too early causes a hazard),
the mission fails, effectively realizing an Intrusion phenotype. The same
phenotypes are realized whether m = 1 or m > 1 hold.

If n = 1 holds, it is sufficient to enforce the safety measure for a limited
amount of time before all actions can resume in their normal mode (the
human concludes the action in ⟨walk⟩_pubh). In this case, the possible
erroneous behavior is the human resuming the normal mode too early, as
shown in sequence (8.12), which realizes a Premature Action phenotype
with m = 1.
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, ,

Figure 8.3: SHA representing the Critical Status add-on, color-coded as in Fig. 3.1.

[(t1, cmd_rstart), (t2, cmd_hstart), (t3, cmd_hsafe_start),

(t′4, cmd_hstart), (t4,⊥), (t5, cmd_rstop), . . . ]
(8.12)

If m > 1 holds, the Premature Action phenotype can either refer to the
last switch to ⟨walk⟩_pubh (like in sequence (8.12)) or any intermediate
one.

8.1.5 Critical Status Add-On

Although our modeling framework is applicable to generic service set-
tings, some of its features specifically target healthcare environments. In
such cases, where people are often in pain or discomfort, robotic applica-
tions must safeguard humans’ well-being and take into account unexpected
(rather than purely erroneous) health-related accidents. This contingency
is captured by the Critical Status add-on, capturing human subjects facing
a sudden unexpected health issue (e.g., fainting) that requires immediate
medical attention.

The standard behavior, in this case, may be captured by both Fig. 6.6a
and Fig. 6.7b: in the following, we present the add-on as a variation of Fig.
6.6a. However, the same conclusions can be drawn on the SHA in Fig. 6.7b
by replacing c with the internal action. The standard behavior envisages the
human whose current state is modeled by subautomaton ⟨op⟩_pubh and
upcoming state by ⟨op⟩′_pubh. The switch from ⟨op⟩_pubh to ⟨op⟩′_pubh

either depends on the orchestrator’s instructions sent through channel c or
the human’s own initiative. The edge is enabled when guard γ holds and,
upon firing, causes update ξ to execute.

As per Section 6.3, our modeling approach features a model of physi-
cal fatigue that increases when the human is actively performing an action
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and decreases when they are resting. Human fatigue can only increase up
to a maximum threshold (1 in our case, representing that 100% of muscle
reservoir units have been activated) before the human can no longer move
autonomously. The Critical Status add-on captures the possibility that the
human faints or a similarly impairing accident occurs even if their current
fatigue level is still below the maximum threshold. The SHA add-on rep-
resenting this contingency is shown in Fig. 8.3: the additional location
⟨fail⟩_pubh represents the deadlock reached by the SHA if the accident oc-
curs, causing the failure of the mission.

As shown in Fig. 8.3, location ⟨op⟩_pubh features invariant x ≤ T as in
Fig. 6.7, where x ∈ X is a clock and T ∈ K is a constant. Compared to the
standard behavior, the add-on has two additional edges leaving ⟨op⟩_pubh,
a self-loop and the edge to ⟨fail⟩_pubh, both labeled with guard x ≥ T.
Every T time units, there is a certain probability that the accident occurs,
and the mission fails (the SHA switches to ⟨fail⟩_pubh), or that the human
remains in the same state (the self-loop on ⟨op⟩_pubh fires). Unlike in
the Disobey/Obey add-on, probability weights are not constant, but their
value changes with time (thus, they are real-valued variables). We indicate
as pd ∈ W the real-valued variable in question, whose derivative is con-
strained through a flow condition on ⟨op⟩_pubh. In our specific case, the
add-on envisages that the higher the level of fatigue, the higher the proba-
bility of an accident occurring. Therefore, the flow condition constraining
pd is indicated as fcrit(t) in Fig. 8.3 for the sake of generality, but in our spe-
cific case, it is a customizable function of fatigue, modeled by real-valued
variable F ∈ W . An example, featured by the SHA presented later in this
section, is fcrit(t) = hs · Ḟ (t), where hs ∈ K is a customizable parameter
determining how rapidly the probability of an accident increases with fa-
tigue. In general, the probability weight for the self-loop on ⟨op⟩_pubh

should evolve in time inversely with respect to fatigue (the higher the fa-
tigue level, the lower the probability that the human does not have an ac-
cident and stay in the same state). A trivial example of expression deter-
mining the probability weight on the self-loop, also depicted in Fig. 8.3, is
FS− pd, where FS ∈ K is a constant such that FS ≥ sup(pd) holds.

The action sequence observed if the behavior captured by this add-on
occurs features, irrespective of the specific pattern, an unexpected action
corresponding to the accident, this is clearly not part of the original plan and
prevents the human-robot pair from achieving the goal, effectively realizing
an Intrusion phenotype.

151



Chapter 8. Erroneous Human Behaviors Model

8.2 Human-Robot Interaction Patterns

Each SHA modeling an interaction pattern captures how the human behaves—
either autonomously or in response to a robot’s action—to achieve the goal
of the specific service. In the following, we describe how the six SHA mod-
eling human agents are extended through the presented erroneous behavior
add-ons.

Not all add-ons apply to all patterns since we rule out unfeasible or unre-
alistic behaviors. In the following, we present the extended SHA modeling
the HumanApplicant pattern in detail as an example of how add-ons are
applied to HRI patterns. We then outline how a similar procedure has en-
riched the other five patterns.

8.2.1 HumanApplicant Pattern

The HumanApplicant interaction pattern captures contingencies in which
the human requests the robot’s support to complete a task that requires
working in a very close distance or sharp timely synchronization [130].
Example applications are robotic companions supporting a patient while
feeding or healthcare professionals receiving the support of a service robot
while administering medication. In the following, firstly, we recap the stan-
dard behavior of this pattern, shown in Fig. 8.4a; secondly, we describe the
SHA (shown in Fig. 8.4b) extended with add-ons to incorporate erroneous
behaviors.

The SHA modeling the HumanApplicant pattern features four instances
of ⟨op⟩_pubh corresponding to the three phases of the service plus the oper-
ational state under critical conditions (⟨op_safe⟩_pubh in Fig. 8.2b). When
the service starts, the human is idle and resting, captured by subautoma-
ton ⟨idle⟩_pubh. The robot starts moving to approach the human when
the orchestrator fires an event through channel cmd_rstart, causing the hu-
man to switch to ⟨wait⟩_pubh, also a recovery state. The flow condition
constraining F is, therefore, f(t, ρ) (see Eq.6.5) both in ⟨idle⟩_pubh and
⟨wait⟩_pubh. Normal distributionsN (µ1, σ

2
1) andN (µ2, σ

2
2) determine the

values of rate ρ in ⟨idle⟩_pubh and ⟨wait⟩_pubh, respectively.
When the robot has reached the human’s position, the orchestrator in-

structs the human to start performing the required task by firing an event
through cmd_hstart, causing the human to switch to subautomaton ⟨exe⟩_pubh.
The standard duration of the task is modeled by a parameter Ttask ∈ K,
while dext ∈ K represents the human’s dexterity, i.e., the rate at which they
perform the specific task. The real-valued variable capturing the progress
of the task is ttask ∈ W (φ in Fig. 8.1a), which evolves in time according
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(a) SHA representing the standard behavior of the HumanApplicant pattern.

(b) SHA representing the HumanApplicant enriched with erroneous behavior add-ons. Color-coding is as in Fig.
3.1 except for edges capturing human errors, highlighted in red for visualization purposes.

Figure 8.4: SHA modeling the HumanApplicant pattern.
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to flow condition fnorm(t) = dext · t. In the ordinary case, the orchestra-
tor instructs the human to stop by means of cmd_hstop and switch back
to ⟨idle⟩_pubh when the human has spent Ttask

dext
time units working on the

task [130].
If, while performing the task, the orchestrator determines that the human

and the robot are in a critical situation (i.e., their distance is below a certain
threshold or human fatigue is above a critical level), it instructs the human
to proceed cautiously. The human receives this instruction through chan-
nel cmd_hsafe_start and switches to subautomaton ⟨exe_safe⟩_pubh. Both
⟨exe⟩_pubh and ⟨exe_safe⟩_pubh subautomata are fatigue states, thus en-
dowed with flow condition g(t, λ) (see Eq.6.5). Distributions N (µ3, σ

2
3)

andN (µ4, σ
2
4) determine the values of fatigue rate λ. Since ⟨exe_safe⟩_pubh

captures the human working at a slower pace to avoid exhaustion or bump-
ing against the robot (enforced through update ξcrit, which reduces the value
of parameter dext), µ4 < µ3 holds. If the safety measure is successful,
the orchestrator instructs the human to switch back to ⟨exe⟩_pubh through
channel cmd_hstart, and update ξnon_crit restores the normal value of dext.
Otherwise, if the task is completed while the human is in ⟨exe_safe⟩_pubh,
the orchestrator instructs it to switch back to ⟨idle⟩_pubh through channel
cmd_hstop.

Finally, deadlock location hfail is reachable by the two fatigue states
upon reaching the maximum endurable level of fatigue (guardF ≥ 1 holds).

The edges modeling erroneous behaviors are highlighted in red in Fig.
8.4b, and the applied add-ons are individually described in the following.

Disobey/Obey Add-On Initially, the human may delay the start of the ac-
tion and not respond to the cmd_hstart command. Therefore, the edge from
⟨wait⟩_pubh to ⟨exe⟩_pubh is expanded into a Disobey/Obey add-on.

Similarly, both edges from ⟨exe⟩_pubh and ⟨exe_safe⟩_pubh to ⟨idle⟩_pubh,
marking the end of the action through channel cmd_hstop, might be erro-
neously ignored by the human, and are thus expanded into a Disobey/Obey
add-on.

Free Wil Add-On While in ⟨exe⟩_pubh, the human may erroneously pause
the task before it is complete (thus, before cmd_hstop fires).

Subautomata ⟨exe⟩_pubh and ⟨idle⟩_pubh are connected by an addi-
tional edge implementing the Free Will add-on, which fires when fw ≥ FWth

holds. Dense counter fw is updated every Tpoll time instants by ξ⟨exe⟩ (an
instance of ξ⟨op⟩ in Fig. 6.4, embedded into the ⟨exe⟩_pubh subautomaton)
as described in Section 6.3.1.
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Timer Expired Add-On While performing the task, the human might er-
roneously waste time and delay the completion of the action to the point
that the robot considers them no longer responsive, as envisaged by the
Timer Expired add-on. Therefore, variable ttask, capturing the progress of
the task, is constrained by a different flow condition, i.e., ferr(t) shown in
Eq.8.13.

ferr(t) = (dext · (rand(0,Tmax) ≥ Tth)) · t (8.13)

The progress of the task is governed by a stochastic mechanism as, for
each time instant, the function rand draws a new sample from Uniform
distribution U[0,Tmax) and increases the value of ttask if the sample is greater
than a customizable threshold Tth [130]. Therefore, the randomized evolu-
tion of variable ttask may lead to an unacceptable delay in the completion
of the task.

Since, in this case, the human is not walking towards a target but per-
forming a task for a certain amount of time, time-bound TE to deem the
human non-responsive depends on the expected duration of the task (pa-
rameter Ttask) and the rate at which the human performs it (dext) as per
Eq.8.14, where δ is the allowance factor as illustrated in Section 8.1.3.

TE =
Ttask

dext
· (1 + δ) (8.14)

Subautomaton ⟨exe⟩_pubh is endowed with invariant texp ≤ TE, where
texp ∈ X is a clock (as in Fig. 8.1b). As in Fig. 8.1b, the edge connecting
subautomaton ⟨exe⟩_pubh to deadlock location hfail with guard condition
texp ≥ TE fires as soon as time TE elapses.

On the other hand, although the evolution of ttask is constrained by
Eq.8.13 also while in ⟨exe_safe⟩_pubh, this operational state is not ex-
tended through the Timer Expired add-on since working at a slower pace
is implied by the safety measure. Therefore, the time the human spends in
⟨exe_safe⟩_pubh does not count towards upper bound TE (⟨exe_safe⟩_pubh

is endowed with flow condition ṫexp = 0).

Safety Violation Add-On If the orchestrator finds that the human and the
robot are in a safety-critical situation, it will instruct the human to switch
to ⟨exe_safe⟩_pubh, corresponding to ⟨op_safe⟩_pubh in Fig. 8.2a.

As envisaged by the Safety Violation add-on, the human may erro-
neously resume working at a normal pace, potentially causing a safety
hazard. Therefore, while the orchestrator instructs the human to resume
normal operations through channel cmd_hstart, an additional edge without
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labels except update ξnon_crit restoring the standard value of dext connects
⟨exe_safe⟩_pubh to ⟨exe⟩_pubh.

Subautomaton ⟨exe_safe⟩_pubh is endowed with parameter λsafe repre-
senting the rate at which the probability of erroneously switching back to
⟨exe⟩_pubh increases with time.

Critical Status Add-On Since this pattern applies to patients and healthcare
professionals who may find themselves in stressful situations or undiag-
nosed conditions, the modeled human subject is susceptible to accidents.

Therefore, both ⟨exe⟩_pubh and ⟨exe_safe⟩_pubh are extended through
the Critical Status add-on. Specifically, at time t, where t is a multiple of
Tpoll (T in Fig. 8.3), the probability of an accident occurring is pd, where
pd ∈ W is a real-valued variable. If this occurs, the SHA switches to hfail.
Otherwise, the probability of the SHA remaining in the same operational
state depends on weight FS− pd, where FS ∈ K is a constant such that
FS ≥ sup(pd) holds.

The probability of an accident occurring increases with the level of fa-
tigue, as implied by flow condition ṗd = hs · ˙F (t), where hs ∈ K is a nu-
merical constant.

8.2.2 HumanFollower Pattern

The HumanFollower pattern envisages the human following the robot to a
certain destination. Operational states (corresponding to as many ⟨op⟩_pubh

instances) capture the human standing (thus, recovering) and walking.
Upon receiving the instruction from the robot to start or stop walking

(thus, either in the standing and walking states), the Disobey/Obey add-on
introduces the possibility that the human ignores it. Similarly, the human
may decide to start or stop walking irrespective of the robot’s instructions
through the Free Will add-on.

Since the Follower pattern does not envisage any motion initiated by the
human, the Timer Expired add-on does not apply.

On the other hand, it is feasible for the human to walk too close to the
robot, leading to the enforcement of a safety measure (i.e., the human walk-
ing slower). Moving in critical conditions is captured by a third ⟨op⟩_pubh

instance, which is subject to the Safety Violation add-on.
Finally, to capture the possibility of unexpected accidents, all three oper-

ational states are extended through the Critical Status add-on: while walk-
ing (either normally or at a slower pace), probability pd increases, while it
decreases when the human is resting.
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8.2.3 HumanLeader Pattern

The HumanLeader pattern captures the mirrored situation compared to the
Follower, featuring the human leading the robot to a certain destination.

This SHA features the same ⟨op⟩_pubh instances as the Follower (walk-
ing and standing), although the actions of starting to walk and stopping are
initiated by the human rather than the robot. Therefore, all edges between
the two subautomata are extended through the Free Will add-on.

The robot only sends an instruction when the human’s fatigue level rises
to a critical threshold, advising them to stop and recover. This edge is ex-
tended through the Disobey/Obey add-on, as the human may erroneously
ignore or miss the robot’s suggestion.

Since this pattern captures a human freely operating on the floor, it is
possible for them to get caught up in alternative tasks causing them to ex-
cessively delay the walking phase, which is captured by the Timer Expired
add-on.

As with the Follower pattern, the Safety Violation add-on captures the
situation in which the human erroneously starts walking at full pace while
in a critical situation.

Finally, the Critical Status add-on captures the possibility of unex-
pected accidents.

8.2.4 HumanRecipient Pattern

The HumanRecipient pattern captures fetch-and-delivery tasks where the
robot retrieves a required object and delivers it back to the human.

The standard behavior, in this case, features two operational states, i.e.,
the human waiting for the robot to retrieve the object and interacting with
the robot to collect the item. The latter action is performed upon the robot’s
instruction and is thus extended through the Disobey/Obey add-on.

To capture the possibility that the human might move while waiting for
the robot, the SHA features an additional operational state capturing the hu-
man walking. The switch from the idle operational state, which is entirely
up to the human, occurs through the Free Will add-on.

Since the pick-up action is supposedly almost instantaneous, the Hu-
manRecipient pattern is not eligible for the Timer Expired add-on.

Finally, the Critical Status captures the possibility of unexpected ac-
cidents, while the Safety Violation add-on the possibility that the human
might ignore a safety measure. However, the limited duration of the interac-
tive phase leads to a reduced impact of this error on the HumanRecipient
pattern.
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8.2.5 HumanCompetitor Pattern

The HumanCompetitor pattern captures the human and the robot racing
towards a certain location and is, thus, the only non-cooperative pattern.

The standard operational states are the human moving to the requested
location, then either waiting for the robot to return to its original position (if
the robot wins the competition) or return to their initial position themselves
(if the human wins the competition).

Starting to walk and stopping are actions initiated by the human, both
extended through the Free Will add-on, capturing the possibility that the
human may get distracted or waste time while trying to reach the item’s
location.

Erroneous add-ons applied to the HumanCompetitor pattern do not di-
rectly impact the outcome of the mission. Still, they result in a higher
chance of the robot winning the competition. Therefore, errors that oc-
cur amidst a HumanCompetitor service increase the impact on the overall
mission outcome of errors that may occur amidst services provided by the
robot if it wins the competition.

8.2.6 HumanRescuer Pattern

The HumanRescuer pattern captures the mirrored situation compared to
the HumanApplicant, i.e., the robot requiring the human’s support in per-
forming a task (such as opening a door or placing an item on the robot’s
tray).

The standard behavior features three phases, modeled by as many ⟨op⟩_pubh

instances: the human in idle state, the human walking towards the robot af-
ter noticing the signal requesting support, and the human performing the
task requested by the robot.

Given the similar structure, this SHA is extended through the same add-
ons as the HumanApplicant pattern described in Section 8.2.1.

Deciding to help the robot and move to its location is an action initiated
by the human, extended through the Free Will add-on. It is the robot,
instead, that instructs the human to begin the task when they are sufficiently
close: the walking operational state is, thus, eligible for the Disobey/Obey
add-on.

It is possible that the human is distracted by concurrent tasks before
they are able to assist the robot; thus, the Timer Expired add-on imposes
an upper bound on the time they take to reach the robot from their initial
location.

As in the Applicant pattern, a critical situation may occur that requires
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safety measures to be enforced while the human is performing the required
task, which is captured by an additional ⟨op⟩_pubh instance, subject to the
Safety Violation add-on.

Finally, as in previous patterns, the Critical Status add-on captures the
possibility of unexpected accidents while the human supports the robot.
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CHAPTER9
Experimental Analysis of Human Errors’

Impact

This chapter reports the experimental validation performed to assess
the added value of the erroneous behavior add-ons to the model-driven
development framework.

Three scenarios, inspired by the healthcare setting and featuring
three different robotic missions (i.e., sequences of services), have been
developed through the model-driven framework presented in Chapter
4.

We perform design-time analysis with the formal model devoid of
erroneous behavior add-ons and, subsequently, with the extended SHA
modeling human behavior presented in Section 8.2. The compara-
tive analysis allows us to observe how different human errors impact
different robotic missions and how introducing this aspect into the
mission’s design process can guide the practitioner toward forward-
looking management choices.
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Figure 9.1: Floor layout used for scenarios DP1 and DP2. Agents (P1, P3, D1, D4, and
Tbot are represented in their starting positions). Location symbols mark the position of
Points of Interest (POIs): entrance and robot’s recharge station are shown in orange,
waiting room and emergency room doors are in red, cupboards in green, and doctors’
offices are in blue. Wall lengths (in meters) are also reported.
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WAITING
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Figure 9.2: Floor layout for scenario DP3, color-coded as Fig. 9.1. Since D7’s starting
position is randomized, the displayed location is purely representative.

9.1 Experimental Setting

The developed experimental scenarios capture a service robot assisting Doc-
tor/Patient pairs (one or multiple) and are hereinafter referred to as DP1,
DP2, and DP3. Scenarios are designed to capture realistic robotic mis-
sions featuring the complete set of services, highlight the flexibility of the
overall framework, and test the impact of erroneous behavior models in a
wide range of situations.

Scenarios DP1 and DP2 are set in the floor layout in Fig. 9.1. Fig.
9.1 shows the planimetry of the third floor of Building 22 of Politecnico
di Milano, whose areas are featured in the two scenarios as three doctors’
offices, a waiting room, and an emergency room. Fig. 9.2 depicts the lay-
out for DP3, as presented in [130], featuring a T-shaped corridor with a
waiting room, a doctor’s office, and two rooms with cupboards containing
medical kits. Table 9.1 summarizes the missions captured by each scenario.
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Table 9.1: Scenarios used for the validation phase (abbreviation, detailed description,
and sequence of services constituting the mission).

SCENARIO DESCRIPTION MISSION

DP1
The robot (Tbot) serves a patient-doctor pair
(P1/D2, respectively). The robot meets the pa-
tient by the entrance (ENTR) and leads them to
the waiting room (R1b) to wait for the doctor to
visit them. The robot follows the doctor to CUP1
where they fetch required tools, and follows them
back (carrying the tools) to the examination room
(R2) where the patient will receive the treatment.
Finally, the robot returns to R1b and escorts the
patient to R2, where the doctor is waiting.

P1 Follower,
D2 Leader,
D2 Leader,
P1 Follower

DP2

The robot (Tbot) serves two patient-doctor pairs
(P1/D2 and P3/D4). The robot meets P1 by the
entrance (ENTR) and leads them to the waiting
room (R1a), then it performs the same task for P3
leading them from the entrance to R1b. The robot
fetches the first required medical kit from CUP1
and delivers it to D2 at OFF1. The robot then
serves D4 by following them to CUP2 and back to
their office (OFF3) while carrying the kit. Finally,
the robot leads P1 to OFF1 and P3 to OFF3 as
both doctors are ready to visit them.

P1 Follower,
P3 Follower,
D2 Recipient,
D4 Leader,
D4 Leader,
P1 Follower,
P3 Follower

DP3

The robot (Tbot) serves a doctor patient pair
(P5/D6) while a second doctor (D7) is active on
the same floor. The robot escorts P5 to the waiting
room. Then it competes with D6 for a resource in
CUP1. If the robot wins the competition (referred
to as PLAN a), it requires D6’s help in opening the
office door and then delivers them the fetched item
in OFFICE. If D7 wins (referred to as PLAN b),
D6 leads the robot to CUP2 to fetch the required
item and has the robot carry it back to the office.
Irrespective of the competition outcome, when D6
is ready to treat the patient, the robot escorts P5
from the waiting room to the office and then assists
D6 in administering the medication.

P5 Follower,
D7 Competitor,

PLAN a:
D6 Rescuer
D6 Recipient
PLAN b:
D6 Leader
D6 Leader

P5 Follower
D6 Applicant

Although our framework supports multi-robot teams [130], the three sce-
narios feature only one robot, indicated as Tbot, since this chapter focuses
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Table 9.2: Developed erroneous behavior profiles. Each profile has an identifier and the
associated likelihood of occurring for each add-on.

Dis./
Ob. Fr.W. T.Exp. S.Viol. Cr.St.

Normal O O O O O
Inattentive CR O O O O
Focused NS O O O O
Busy O CR CR O O
Available O NS NS O O
Inexperienced O O O CR O
Experienced O O O NS O
Critical O O O O CR
Stable O O O O NS

*O = Ordinary, *NS = Not Significant, *CR = Critical

on human behavior modeling. In all three scenarios, the employed service
robot is a TurtleBot 3 WafflePi,1 with an initial charge of 90% to ensure that
it is sufficiently charged to complete each mission. Patients are identified
as P1, P3 in DP1 and DP2, and P5 in DP3, and exhibit critical fatigue
profiles, specifically Young/Sick for P1 and P5 and Elderly/Sick for P3.
Doctors are identified as D2, D4 in DP1 and DP2, and D6, D7 in DP3,
and all exhibit less critical fatigue profiles than the patients, specifically El-
derly/Healthy for D2, and Young/Healthy for D4, D6, and D7. We recall
that fatigue profiles impact the rate at which humans fatigue and recover,
i.e., the values of parameters λ and ρ in Eq.6.5.

As per Fig. 4.1, scenarios are configured through the custom DSL [224],
which is then automatically translated into the SHA network through the
tool available at [124]. The generated formal model and set of queries are
subject to SMC, performed through Uppaal v.4.1.26 on a machine with 4
cores and 16GB of memory. Performance data are reported and discussed
at the end of this section.

9.2 Experimental Results

The experimental validation aims to illustrate—through the three example
scenarios in Table 9.1—how the framework’s design-time analysis is en-
riched by the introduction of erroneous behaviors. Each add-on features
one or multiple parameters that can be tuned to calibrate the likelihood of

1Technical specification available at https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/.
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the corresponding erroneous behavior. Such parameters are recapped in the
following:

(a) probability weights disobey and obey for the Disobey/Obey add-on;

(b) thresholds FWth and FWmax for the Free Will add-on (T equals con-
stant Tpoll in our modeling approach);

(c) allowance factor δ for the Timer Expired add-on, which determines
the value of upper bound TE;

(d) exponential rate λsafe for the Safety Violation add-on;

(e) rate hs and constant FS for the Critical Status add-on.

To exhaustively investigate the impact of each error on a specific sce-
nario, it would be necessary to compute the probability of success for all
possible values of such parameters within their respective domain. How-
ever, to keep the duration of a design-time analysis round within an ac-
ceptable range, we group possible values for each add-on into three macro-
categories, similarly to control modes classification in the CREAM tech-
nique [115]. The identified levels are: ordinary (O), critical (CR), and not
significant (NS) error likelihood.

As with fatigue profiles, we have identified 9 profiles of erroneous be-
havior, each elevating (or dampening) the likelihood of one or multiple spe-
cific errors. Erroneous behavior profiles are summarized in Table 9.2. We
remark that, given the acknowledged lack of empirical data for techniques
analyzing human behavior such as Human Reliability Analysis (HRA) [51],
the specific parameter values are not extracted from real datasets but arbi-
trarily chosen for this batch of experiments. However, the purpose of this
validation is not to assess the accuracy of SMC results against real empirical
data but to illustrate how the introduction of erroneous behaviors impacts
design-time results and supports the mission design process. Therefore, the
lack of real data has limited consequences on the results’ significance.

For the impact analysis of the three scenarios, we calculate the proba-
bility of success of the mission with different erroneous behavior profiles
applied to each human subject. The estimated success probabilities are re-
ported in Fig. 9.3.

For each scenario, as explained in Section 3.1.2, we calculate the prob-
ability of success within a time bound τ through expression PM(⋄≤τ scs).
Verification is iterated by changing the erroneous behavior profile for one
human subject at a time while the value of τ remains unchanged. For the
first iteration, all humans are assigned the Normal profile (see Table 9.2),
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(a) Estimated probability of success for DP1.
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Figure 9.3: Bar plots reporting the estimated probability of success ([0− 1]) for the three
scenarios. Each bar represents the estimation with a different erroneous behavior
profile grouped by the human subject. Dashed lines represent the success probability
estimated with all human subjects’ profiles set to Normal (see Table 9.2).

representing the “standard” probability of success (the dashed horizontal
lines in Fig. 9.3), also referred to as the “baseline”. We recall that, as
explained in Section 3.1.2, SMC results are of the form [p− ϵ, p + ϵ], rep-
resenting the confidence interval to which the real success probability be-
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longs.
All experiments have been performed with Uppaal’s default statistical

parameters, specifically, the width of the estimated confidence interval is
set to ϵ = 0.05. In Fig. 9.3, the height of each bar equals the value of p
obtained for the corresponding experiment, while black lines represent the
2ϵ-wide confidence interval. Note that none of the baseline success proba-
bility estimations is exactly 100%. The first reason behind this result is that
the Normal behavioral profile features an average likelihood for all errors
(while these are made more or less prominent by the other profiles); there-
fore, errors have a non-null impact on the success probability also when
calculating the baseline.

Secondly, time bounds (parameter τ in each scenario) are chosen so
that, should the success probability be calculated with an error-free model
(i.e., without any add-on), it would equal the maximum value allowed by
Uppaal with this set of parameters, which is [0.95, 1]. Even in this case, the
SMC experiment does not yield exactly 100% for the probability of success
because the result must be a confidence interval in any case (thus, it yields
the feasible half of the confidence interval with p = 1).

Since human subjects have different roles (i.e., either professionals or
patients), not all profiles realistically apply to every subject. Specifically,
verification is performed with patients (subjects P1, P3, and P5) cycling
between Critical, Stable, Inattentive and Focused profiles. This set of
profiles represents the fact that patients are more susceptible than profes-
sionals to accidents (captured by the Critical Status add-on) and prone to
ignore the robot’s instructions either due to lack of familiarity with the tech-
nology or to inattention due to their condition and surrounding environment
(captured by the Disobey/Obey add-on).

On the other hand, professionals (subjects D2, D4, D6, and D7) rotate
between Busy, Available, Inexperienced, and Experienced profiles. In
this case, healthcare professionals are more likely to act in a hectic environ-
ment, effectively pushing them to either rush through a task (i.e., one of the
phenotypes captured by the Free Will add-on) or start working on different
tasks than the one involving interaction with the robot, thus exceeding the
maximum allowed time-bound (captured by the Timer Expired add-on).

Moreover, professionals with little experience in working alongside a
robot are more likely to erroneously step out of a safe operational state
when a critical situation is still in place (captured by the Safety Violation
add-on). Note that the described pairings between subjects and behavioral
profiles are only conceived for the purposes of this experimental validation
and do not reflect actual limitations of the approach (all profiles, including
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combinations of them, are applicable to any human agent, irrespective of
their role).

Fig. 9.3a displays the results for scenario DP1. With τ = 700s, in 5
cases out of 8, the probability of success is essentially unchanged (if not
higher) compared to the one calculated in standard conditions, which is
approximately 80%. Concerning human P1, these results are due to the
nature of the profiles themselves: both Stable and Focused are “positive”
profiles, as they feature lower likelihood of erroneous behaviors than the
Normal profile. The same conclusion can be drawn about the Available
and Experienced profiles for D2.

On the other hand, the probability of success is also unaffected by the
Inexperienced profile. As a matter of fact, D2 leads the robot in DP1
and, since their walking speed is higher than the robot’s (a healthy human
walks at about 1.4m/s, whereas the robot moves at a maximum speed of
0.26m/s) it is unlikely for the human to walk too closely to the robot and
trigger the enforcement (and subsequent erroneous violation) of the safety
measure.

As shown in Fig. 9.3a, scenario DP1 is most affected by the Critical
and Inattentive profiles for P1, and Busy for D2. As explained in Sec-
tion 8.2.2, the HumanFollower interaction pattern, which P1 adheres to, is
susceptible to both the Critical Status and Disobey/Obey add-ons (influ-
enced by the Critical and Inattentive profiles), which cause the probability
of success to drop to approximately 25% and 55%, respectively.

To address this issue, the practitioner designing the mission may decide
to adopt additional monitoring measures regarding the patient’s health sta-
tus or have them walk a shorter distance to reduce the impact of unexpected
accidents. Additionally, it is possible to make the robot’s capability to com-
municate instructions more efficient to improve the patient’s attention level.
Concerning D2, the Busy profiles cause a 50% drop in the success proba-
bility: to address this issue, a possible design choice is to assign the mission
to a different employee with a clearer schedule.

Similar conclusions can be drawn about P1 and D4 in scenario DP2,
whose results are reported in Fig. 9.3b. The estimated success probability
with τ = 1500s in standard conditions is approximately 80%. In this case,
the Critical Status add-on is more impactful for patient P3 compared to
P1 due to the more critical fatigue profile, causing a steeper growth of
probability weight pd. The resulting success probability is slightly above
10% (compared to 25% for P1).

These results can guide the practitioner in modifying the plan of the
mission to reduce the physical burden on the two patients, especially P3:
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for example, by having the robot lead them, whenever possible, straight
to the emergency room rather than to the waiting room first. On the other
hand, since the Disobey/Obey add-on has no correlation with the evolution
of fatigue, the Inattentive profile has a comparable impact on the mission’s
outcome when applied to P1 and P3. In this case, the same reconfiguration
measures discussed for subject P1 in scenario DP1 may be applied.

In scenario DP2, although the same set of behavioral profiles are applied
to D2 and D4, the different interaction patterns they participate in (i.e.,
HumanRecipient and HumanLeader) are differently influenced by error
phenotypes.

More specifically, the Busy profile has a significantly larger impact
when applied to D4 rather than D2. As described in Section 8.2.4, the
HumanRecipient does not feature any instance of the Timer Expired add-
on, whereas the Free Will add-on, which, like the Timer Expired add-on
is made more prominent by the Busy profile, allows the subject to move
while the robot is fetching the required object. Therefore, the human erro-
neously moving causes the robot to adjust the target of the delivery task to
the new human’s position, which does not necessarily result in a delay of
the completion of the service nor lowers the success probability within time
bound τ . Indeed, given the starting position of D2 (also shown in Fig. 9.1),
it is more likely for them to move closer to CUP1 (the required object’s
location) than farther, leading to only a slight decline of the success prob-
ability (approximately 75% compared to 80% in standard conditions). For
subject D4, instead, since they also participate in a HumanLeader pattern
like subject D2 in scenario DP1, the Busy profile has a very significant im-
pact leading to a 70% drop in the success probability compared to ordinary
conditions.

The Inexperienced profile (which increases the likelihood of the Safety
Violation add-on) has a comparably limited impact when applied both on
D2 and D4. Concerning D4, the same conclusions drawn about the Hu-
manLeader pattern for scenario DP1 also apply in this case. As for the
HumanRecipient pattern, D2 can enter the critical interacting operating
state at most for the amount of time required to pick up the item from
the robot. Consequently, the likelihood of erroneously ignoring the safety
measure leading to a collision during the interaction is also limited. In con-
clusion, the practitioner does not need to consider specific design choices
concerning D2, while D4 is affected by the same guidelines discussed for
scenario DP1.

Estimated success probabilities for scenario DP3 are shown in Fig. 9.3c,
all calculated with τ = 600s. In standard conditions, the mission ends suc-
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cessfully with a 90% probability. Patient P5 exhibits a similar trend to
that observed for P1 and P3 in scenarios DP1 and DP2, as the Critical
and Inattentive profiles cause a drop of the success probability of approxi-
mately 65% and 55%, respectively.

On the other hand, given the same set of behavioral profiles, the trend
is different for D6 and D7 compared to subjects covering the role of pro-
fessionals in previous scenarios. We recall that, given the presence of a
HumanCompetitor pattern, in this case, the robotic mission features two
alternative plans depending on whether the human or the robot wins the
competition [130], both summarized in Table 9.1. If the robot loses, D6 is
involved in two HumanLeader interaction patterns, whose dependency on
different behavioral profiles have already been discussed for subjects D2 in
DP1 and D4 in DP2. Otherwise, D6 participates in a HumanRecipient,
HumanRescuer sequence. The initial position of D7 is randomized to
make the outcome of the competition unpredictable.

As observed in scenario DP2, the HumanRecipient pattern (involving
subject D2) is only slightly affected by both “negative” profiles. In con-
trast, the outcome of the HumanRescuer pattern (see Section 8.2.6) is
impacted by the Free Will, Timer Expired, and Safety Violation add-ons.
The impact of the Busy profile, which makes the first two add-ons more
prominent, on D6, is an average between the drop it causes on PLAN a
(the impact of profile Busy is low for the HumanRecipient and high for
the HumanRescuer patterns) and PLAN b (the impact of profile Busy
is low for both instances of the HumanLeader pattern), resulting in an
overall approximate 45% drop compared to the baseline.

Concerning the Inexperienced profile, both the HumanRescuer (fea-
tured by PLAN a) and HumanApplicant patterns (featured by both plans)
are highly susceptible to the Safety Violation add-on, which can occur
throughout the entire duration of the task they perform jointly and in close
distance with the robot. Therefore, unlike in scenarios DP1 and DP2, the
Inexperienced profile leads to a larger success probability drop (more than
70%) than the Busy profile. After examining these results, the practitioner
designing the robotic mission may either assign the mission to a more expe-
rienced employee or invest in thorough training of the personnel in charge
of performing tasks alongside the robot.

Finally, confirming the modeling choices discussed in Section 8.2.5, the
HumanCompetitor pattern, in which subject D7 participates, is the least
influenced by erroneous behaviors. This trait of the pattern is reflected by
the results in Fig. 9.3c, showing that the success probability does not sig-
nificantly change with respect to the baseline, irrespective of the erroneous
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behavior profile assigned to D7. As a matter of fact, should D7 perform
any erroneous action, this does not result in a failure of the service nor a
delay of the overall mission, but rather it favors the “victory” of the robot
in the competition. Therefore, the erroneous actions of D7 indirectly influ-
ence the outcome of the mission as they result in PLAN a being enacted
more often than PLAN b, so erroneous behaviors with a more considerable
impact on PLAN a also have a larger impact on the mission in its entirety.

As previously mentioned, we have selected a subset of behavioral pro-
files for each human subject to perform this impact analysis for the three
scenarios, representing the most realistic contingencies. Consequently, we
have performed four verification experiments (resulting in different success
probability estimations) for each human subject plus the baseline, so 9 ex-
periments for DP1, 17 for DP2, and 13 for DP3. With the described param-
eter set, verification ends in 66.72min for DP1, 133.95min for DP2, and
104.64min DP3 (these durations refer to the cumulative time required to
complete all experiments—thus the complete analysis of errors’ impact—
for each scenario).

Given the user-friendliness and flexibility of the scenario configuration
phase, the practitioner can easily modulate the number of experiments to
be performed (thus, the duration of the design-time analysis round). Mod-
ulation is performed by selecting the combinations of behavioral profiles
found to be more critical or more likely to be observed in their specific
application.
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CHAPTER10
Deployment Approach

This chapter focuses on the deployment phase of the framework.a

Firstly, the architecture of the deployment approach (summarized
by Fig. 10.1) is presented in detail with the correspondence between
deployment components and formal model entities.

The mechanism to convert formal model elements into executable
code is then introduced, followed by a detailed presentation of the re-
sulting deployable code patterns corresponding to recurring formal
modeling patterns.

aThe content presented in this chapter also appears in [128]. The author of this thesis declares to have
also authored the reproduced text, figures, and data and to have the right to reproduce such content in a
dissertation according to the license under which both articles are published.

10.1 Deployment Framework Architecture

Once the results at design-time are deemed adequate, the scenario can be ei-
ther deployed in a real environment or simulated, as per Fig. 4.1. The main
elements of the deployment framework are the executable units replicating
agents’ behavior, the executable orchestrator, the middleware layer, and the
environment. The high-level role they play in the framework is explained

175



Chapter 10. Deployment Approach

Figure 10.1: Mapping between the formal model and the deployment infrastructure, as
seen in [132]. The SHA for robots, batteries, and humans are mapped to deploy-
ment units. The orchestrator is mapped to a standalone script communicating with
the agents through ROS nodes. Sensor readings are shared with the orchestrator by a
publisher node for each agent. The orchestrator sends its commands through a fourth
publisher to all agents but the human, which is directly controlled by the human user.

in Chapter 4. In the following, we explain in detail how each formal model
feature is mapped to an equivalent deployable form so that the deployed
system and the formal model behave correspondingly.

The high-level mapping between the formal model and the deployment
framework is depicted in Fig. 10.1. Each automaton of the SHA network,
excluding instances of ros_pub⟨id⟩, corresponds to an atomic entity of the
deployment model. All ros_pub⟨id⟩ instances correspond to a real ROS
publisher node (and queue). Nodes internal to the simulator are imple-
mented using the ROS interface provided by the CoppeliaSim API frame-
work [185], while the nodes related to the orchestrator are implemented
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10.2. Model-to-Code Mapping

using the rospy library.1

This architecture allows the analyst to choose between deploying the
application in a real, virtual, or hybrid environment without changing the
code. In the case of a virtual environment, robots, batteries, and humans
are actuated through scripts internal to the simulator. If the application
is deployed in a real environment, they correspond to the real entities en-
dowed with suitable sensors. The orchestrator is implemented through a
standalone script in both cases.

Although the framework focuses on assistive robotics applications, the
model-to-code mapping principle is not exclusive to this domain. A cyber-
physical system is eligible for this technique if it consists of distributed
agents that periodically share sensor readings through a publish-subscribe
middleware technology and a centralized controller that monitors the sys-
tem’s state and sends instructions accordingly.

10.2 Model-to-Code Mapping

We exploit the stochastic features of SHA presented in Chapter 6 to capture
specific sources of uncertainty existing in reality, i.e., human behavior and
unpredictable network delays. Other elements of the SHA network repre-
sent either electronic devices or software modules whose behavior is fully
deterministic. Therefore, although all automata in the network are defined
as SHA, only those modeling humans and the ros_pub⟨id⟩ instances show a
stochastic behavior. For all other SHA in the network, the following prop-
erties hold:

1. there are no edges that may fire with unbounded delay, thus described
by an exponential distribution;

2. for all states (l, ν), with l ∈ L and ν ∈ RW , there is only one delay
d ∈ R+ such that µ(l, ν)(d) = 1 holds, whereas, for all other d′ ∈ R+

such that d′ ̸= d, µ(l, ν)(d′) equals 0. This means that, for each state,
there is always only one delay which allows an uncontrollable switch
to fire: thus, it is necessarily assigned probability 1;

3. all edges have probability weight 1.

The aspects modeled by the stochastic features are naturally present in
the deployment environment and do not require explicit modeling in the
deployment infrastructure.

1rospy documentation available at: http://wiki.ros.org/rospy
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To guarantee that the deployed system is a sound transposition of the
original network of automata, we define mapping function ∆ that maps an
SHA A to D, a generic atomic entity of the deployment framework.

An atomic deployment unit D = (Σ,Υ,Φ, S, T,B, σini) consists of the
following artefacts:

1. the set Σ of agent states, including the initial one σini ;

2. the set Υ of variables, including sensor readings (Υs ⊂ Υ), constant
parameters (K ⊂ Υ), clocks (X ⊂ Υ), and physical variables (real or
simulated) (Υ \ (X ∪Υs ∪K));

3. the set Φ, which contains physical laws in case of deployment in the
real world, or the implementation of such laws in the case of simula-
tion;

4. the set S(Υ) of conditional expressions on variables in Υ;

5. the set T of ROS topics over which messages (or commands) that
trigger a change of state are published, with subsets Tr, Tb, and Th
related respectively to the robot, the battery, and the human;

6. the set B ⊂ Σ × T × S(Υ) × A(Υ) × Σ of conditional statements
governing the control flow, where A(Υ) is the set of assignment in-
structions executed on variables in Υ.

The definition of D is to be strictly followed while developing the or-
chestrator script (both in simulated and real environments) and the agents’
scripts for the simulator. As for the agents’ deployment units in a real
environment, since this involves actual robotic systems and humans, this
definition must be intended as a high-level guideline to identify the corre-
spondence between the formal and real systems.

Two reasons underlie this discrepancy in the interpretation. Firstly, the
robotic system’s code might vary significantly depending on the specific
manufacturer and model and might not be fully accessible to the public.
Secondly, artifacts composing the human deployment unit should not be in-
terpreted in a software engineering-specific sense but as abstract elements
constituting the human decision-making process. An explanatory exam-
ple is the set S that cannot contain classic Boolean expressions for the hu-
man but notionally corresponds to the set of questions that someone (con-
sciously or not) ponders to make a decision [205].

Table 10.1 displays how function ∆ maps each element of a SHA A to
a deployment unit in D and is presented in detail in the following.
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Each non-committed location in L corresponds to a state in Σ, that is
to say, a block of code that defines the behavior of an agent under certain
circumstances (e.g., the human walking or standing still).

Dense-counter variables in Vdc ⊂ W have an equivalent variable in set
Υs ⊂ Υ. In particular, variables representing sensor readings are period-
ically updated with frequency 1/Tpoll like dense-counter variables in the
formal model.

Constants in K ⊂ W are mapped to constant parameters in K ⊂ Υ,
which match the design parameters of the physical equipment.

Each real-valued variable in W \ (X ∪ Vdc ∪K) matches a physical
variable in Υ \ (X ∪Υs ∪K), whereas flow conditions in F correspond
to physical laws (or their implementations) in Φ.

Each clock in X ⊂ W is mapped to a particular case of variable in
X ⊂ Υ that evolves uniformly with time. As for the orchestrator, staying in
a specific location until clock tx ∈ X ⊂ W reaches threshold k ∈ K ⊂ W
is implemented as a sleep(κ) instruction, where κ ∈ K ⊂ Υ is expressed
in seconds. This binds the behavior of the orchestrator deployment unit to
the system time, which can be considered an element of set X ⊂ Υ.

Time in the simulated environment is discrete with a time-step ∆t that
has a minimum value of 10ms . Given the system’s time variables sizing
(e.g., Tpoll equals 1s , which is two orders of magnitude greater than ∆t),
the error caused by the discretization interval has a negligible impact on the
system’s behavior and, therefore, on the results of the analysis.

Let us consider, for example, the model of fatigue F while the human is
walking in Eq.6.5. To prevent the human from reaching complete exhaus-
tion, the orchestrator instructs them to stop when it detects that F = 0.7
holds. If the reaching of this threshold is detected at time tstop with a
continuous-time model, in simulation it is detected at time tstop +∆t at
the latest. With a critical fatigue profile, e.g., with a mean λ = 0.025,
the value of F when the reaching of the threshold is detected converges to
F (tstop +∆t) ≈ 0.700075, which approximately corresponds to a 0.11o/oo

error. Similar conclusions can be drawn about the other physical variables.
Considering that the nature of the system does not require a sharp real-

time synchronization among the various components, we can reasonably
conclude that the order of magnitude of the errors does not critically threaten
the model-to-code transposition soundness.

As for commands issued by the orchestrator, it is necessary to make a
distinction between the ones destined for the robot or the battery and the
ones destined for humans.

In the first case, triggering an event through channel c ∈ (Cr ∪ Cb) ⊂ C
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corresponds to publishing a message over a ROS topic t ∈ (Tr ∪ Tb) ⊂ T .
The format of these messages is fixed and defined a priori.

Within the SHA network, the orchestrator shares its commands with the
human through channels identically to what it does with the robot. The un-
predictability of human behavior is embedded in the formal model in terms
of stochastic features. At deployment time, these stochastic approximations
are lifted by having an actual human either provide keyboard input (in sim-
ulation) or directly operate in the environment. In the latter case, human
“inputs” are not explicit (e.g., when a human stops walking) and need to be
inferred from sensors data. Therefore, human-related channels in Ch ⊂ C
match user inputs t ∈ Th ⊂ T .

Edges in E are translated to scripts’ conditional statements and callback
functions in B, representing the switch of an agent from state σ ∈ Σ to a
new state σ′ ∈ Σ.

As discussed in Chapter 6, edges can model controllable and uncontrol-
lable switches. Controllable switches are triggered by ROS messages, i.e.,
commands sent by the orchestrator.

Uncontrollable switches occur in correspondence with the intersection
between values that satisfy i ∈ I(l) and values that satisfy condition γ ∈
Γ(W ) on the outgoing edge. An edge e = (l, ϵ, γ, ξ, l′) modeling an un-
controllable switch is mapped to conditional statement (i.e., if-then con-
struct) β = (σ,⊥, s, a, σ′), where states σ and σ′ map locations l and l′, re-
spectively. Condition γ is mapped to the conditional expression s ∈ S(Υ)
guarding β. Update instructions ξ are mapped to a ∈ A(Υ), representing
the (set of) assignment instruction(s) performed as soon as β is executed
and s evaluates to true.

10.3 Deployable Code Patterns

Applying function ∆ to recurrent modeling patterns in the SHA model
leads to recurrent code patterns, presented in the following. Lines in Table
10.2, 10.3, 10.4, and 10.5 are color-coded to highlight differences between
deployment in an actual and simulated environment.

Hereinafter, while presenting code patterns, we use the notation a (→
b ∈ B) to indicate how a formal model element a is mapped to a deploy-
ment unit element b ∈ B: for example, the fact that guard condition γj is
mapped to conditional expression sj is expressed as γj (→ sj ∈ S(Υ)).

Automata modeling the robot, the battery, and the humans are generi-
cally labeled as x, whereas the location capturing a generic operating con-
dition ⟨op⟩ of agent x is labeled as x⟨op⟩. The pattern featuring locations
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Table 10.2: Controllable Switch pattern model (on the left) to code (on the right) trans-
formation, as seen in [128]. Color-coding for the automaton is the same as in Fig. 6.2,
except for channel labels which, for visualization purposes, are black instead of red.
The code pattern highlights mutually exclusive lines that are present if the application
is simulated (in dark blue) or deployed in a real environment (in red).

Automaton Pattern Code Pattern (*simulated/*real/*both)
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cn?
<latexit sha1_base64="mt5LNg0rbec5h3k4YFrrGyISn4s="></latexit>

⇠hop,op1i
<latexit sha1_base64="mKxGoDpBV1WR6/pzEIqvDVKw4GQ="></latexit>

⇠hop,opni

…

for tj ∈ T do
ros.subscribe(tj , t_cbj)

end

function t_cbj(m):
x.l← x⟨opj(m)⟩
Υ′

s ← a⟨op,opj(m)⟩(Υs)

/* low-level proprietary functions */

end

labeled as o is instead a subcomponent of the orchestrator automaton and
is, thus, realized by a standalone script.

As for the patterns for simulation scripts (described in Section 10.3.1,
Section 10.3.2, and Section 10.3.3), a further remark is necessary about
their apparently non-cyclical nature. The scripts implement a standard in-
terface provided by the simulator. All the code blocks shown in Table
10.2, 10.3, and 10.4 belong to a function of the interface that deals with
agents’ actuation in the scene and is, by default, re-run at each time step
(∆t = 10ms) throughout the whole simulation.

10.3.1 Controllable Switch Pattern

The first pattern, shown in Table 10.2, is the controllable switch. The re-
sulting code pattern consists of:

• a for loop so that, during initialization, agent x subscribes to ROS
topics tj ∈ T ;

• a callback function t_cbj (one for each subscribed topic) which is
invoked every time a new message m is received through topic tj:
within the function, operating condition x.l is updated, then assign-
ment instructions a⟨op,opj(m)⟩ are executed.

A controllable switch occurs when a change of operating condition from
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⟨op⟩ to ⟨opj⟩ is appropriate according to the orchestrator policies. In the for-
mal model, this causes the related channel cj to fire; the orchestrator trig-
gers an event (cj!) and an agent reacts to it (cj?). In the deployment model,
commands are shared via ROS. Therefore, the orchestrator script publishes
the command through a dedicated ROS publisher node. The script internal
to the simulator corresponding to the destination agent, having subscribed
to ROS topic cj (→ tj ∈ T ) at the beginning of the simulation/execution,
receives such command over the same topic.

While in the corresponding status ⟨op⟩, the agent is constantly listening
on topic cj (→ tj ∈ T ). As soon as a new message is published, the script
executes the callback function, generically called t_cbj .

In the real script, the whole ROS message m is passed as an input param-
eter to the callback function. The target operating condition is a function of
message m and is, thus, with a slight abuse of notation, referred to in Table
10.2 as ⟨opj(m)⟩.

The content of function t_cbj replicates the corresponding edge of the
automaton: firstly the variable x .l ∈ Υs ⊂ Υ that keeps track of agent x’s
current location is updated to x⟨opj(m)⟩. Subsequently, the actions performed
(or simulated) by agent x in reaction to the command are captured by up-
date instructions ξ⟨op,opj(m)⟩ (→ a⟨op,opj(m)⟩ ∈ A(Υ)). As per Table 10.2, in
case of deployment in a real setting, this would correspond to the execu-
tion of proprietary functions dealing with lower-level tasks (e.g., trajectory
planning).

10.3.2 Uncontrollable Switch Pattern

The uncontrollable switch pattern, shown in Table 10.3, consists of:

• n if-then-else statements βj ∈ B guarded by as many conditional ex-
pressions sj ∧ x.l = x⟨op⟩, where sj ∈ S(Υ) holds for all j ∈ [1, n]:
when one of conditions sj evaluates to true, assignment instructions
a⟨op,opj⟩ are executed.

Combining the modeling patterns that formally model the scenario in
our framework leads to uncontrollable switches which are guaranteed to be
well-formed, that is, that have the following features:

1. given the invariant i and guard γ associated with the switch:

a) |Ni ∩Nγ| > 0 holds for all uncontrollable switches, where Ni ⊂
RW and Nγ ⊂ RW are the sets of valuations that satisfy i and γ
respectively;
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Table 10.3: Uncontrollable Switch pattern model-to-code transformation, as seen in
[128]. Color-coding is the same as in Table 10.2 for both columns.

Automaton Pattern Code Pattern (*simulated/*real/*both)
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<latexit sha1_base64="iUjMhxbKNkERb+Iw8itUzCa9DBM=">AAACHHicbVC7TsNAEDzzJrwClDQnIiSqyEYgKCNoKINEAlIcWetjE06cz9bdGoGs/AKfwFfQQkWHaJEo+BfOJgWvreZmdm93Js6UtOT7797E5NT0zOzcfG1hcWl5pb661rVpbgR2RKpScx6DRSU1dkiSwvPMICSxwrP46qjUz67RWJnqU7rNsJ/AUMuBFECOiurbYQJ0Kam4GUUVtIMiVKCHCnmaRQEPTfUYRfWG3/Sr4n9BMAYNNq52VP8IL1KRJ6hJKLC2F/gZ9QswJIX7rxbmFjMQVzDEnoMaErT9onI04lu5BUp5hoZLxSsSv08UkFh7m8Suszr6t1aS/2m9nAYH/ULqLCfUolxE0lktF1lhpIsK+YU0SATl5cil5gIMEKGRHIRwZO6yq7k8gt/u/4LuTjPYa/onu43W4TiZObbBNtk2C9g+a7Fj1mYdJtgde2CP7Mm79569F+/1q3XCG8+ssx/lvX0C5l+ioA==</latexit>xhop1i
<latexit sha1_base64="/T54HW+qALmd5s67q4exU+CHMhU=">AAACHHicbVC7TsNAEDzzJrwClDQnIiSqyEYgKCNoKINEAlIcWetjE06cz9bdGoGs/AKfwFfQQkWHaJEo+BfOJgWvreZmdm93Js6UtOT7797E5NT0zOzcfG1hcWl5pb661rVpbgR2RKpScx6DRSU1dkiSwvPMICSxwrP46qjUz67RWJnqU7rNsJ/AUMuBFECOiurbYQJ0Kam4GUUVtIMiVKCHCnmaRZqHpnqMonrDb/pV8b8gGIMGG1c7qn+EF6nIE9QkFFjbC/yM+gUYksL9VwtzixmIKxhiz0ENCdp+UTka8a3cAqU8Q8Ol4hWJ3ycKSKy9TWLXWR39WyvJ/7ReToODfiF1lhNqUS4i6ayWi6ww0kWF/EIaJILycuRScwEGiNBIDkI4MnfZ1VwewW/3f0F3pxnsNf2T3UbrcJzMHNtgm2ybBWyftdgxa7MOE+yOPbBH9uTde8/ei/f61TrhjWfW2Y/y3j4BR6ai3Q==</latexit>xhopni

<latexit sha1_base64="mt5LNg0rbec5h3k4YFrrGyISn4s="></latexit>

⇠hop,op1i
<latexit sha1_base64="mKxGoDpBV1WR6/pzEIqvDVKw4GQ=">AAACGXicdVBNbxMxEPW2fISU0qU9crGIKvWAIjtqm/QWlQvHVCJtpWy0mnUnqRWvd2XPIqpVfgE/gV/RK5y4oV45ceh/wRuCBAieZOnpvRnPzMtKoz0J8T3a2Hzw8NHj1pP21tPtZzvx891zX1RO4VgVpnCXGXg02uKYNBm8LB1Cnhm8yBavG//iHTqvC/uWbkqc5jC3eqYVUJDSeD95r9MkB7r2szoxYOcGeVG+Ci+1PHErYZnGHdEVQkgpeUNk/1gEcnIy6MkBl40V0GFrjNL4PrkqVJWjJWXA+4kUJU1rcKRV+K+dVB5LUAuY4yRQCzn6ab06Z8n3Kw9U8BId14avRPy9o4bc+5s8C5Wrxf/2GvFf3qSi2WBaa1tWhFY1g0iHc5tBXjkdckJ+pR0SQbM5cm25AgdE6DQHpYJYheDaIY9fR/P/k/NeVx51xdlhZ3i6TqbFXrCX7IBJ1mdD9oaN2Jgp9oHdsk/sc/Qx+hJ9je5+lm5E65499geibz8A7KShCg==</latexit>

⇠hop,opni

…

<latexit sha1_base64="ETy0maAV3s10oZSY9AVCz8avLyc="></latexit> n̂

j=1

ihopji

<latexit sha1_base64="Ptkt6V0eJrERGPTxYwAamqodjHc=">AAAB+nicdVDLSgNBEJz1bXxFPXoZDIKnMKtGk5voxaOCeUASQu/YxsGZ3WWmVwjRn/CqJ2/i1Z/x4L84GyOoaJ2Kqm66uqJUK0dCvAUTk1PTM7Nz84WFxaXlleLqWsMlmZVYl4lObCsCh1rFWCdFGlupRTCRxmZ0fZz7zRu0TiXxOQ1S7Brox+pSSSAvtTp9MAZ6Ya9YEmWxX6ntCi7KFREe1GqeCLFf3d3hoSc5SmyM017xvXORyMxgTFKDc+1QpNQdgiUlNd4VOpnDFOQ19LHtaQwGXXc4ynvHtzIHlPAULVeaj0T8vjEE49zARH7SAF25314u/uW1M7qsdocqTjPCWOaHSGkcHXLSKl8E8gtlkQjy5MhVzCVYIEKrOEjpxcw3U/B9fD3N/yeNnXJYKYuzvdLh0biZObbBNtk2C9kBO2Qn7JTVmWSa3bMH9hjcBk/Bc/DyOToRjHfW2Q8Erx/aDJSL</latexit>�1
<latexit sha1_base64="xKG2jPzqHZoowQbJvci1Prnrfvk=">AAAB+nicdVBNL0NBFJ3nW30VS5uJRmLVzEPRnbCxJFGatE1z37hqYmbey8x9Eil/wpaVndj6Mxb+i3lVCcJZnZxzb+65J8m08iTEWzQyOjY+MTk1XZqZnZtfKC8unfo0dxIbMtWpaybgUSuLDVKksZk5BJNoPEuuDgr/7BqdV6k9oZsMOwZ6Vl0oCRSkZrsHxkDXdssVURXbtfqm4KJaE/FOvR6IENu7mxs8DqRAhQ1x1C2/t89TmRu0JDV434pFRp0+OFJS412pnXvMQF5BD1uBWjDoO/1B3ju+lnuglGfouNJ8IOL3jT4Y729MEiYN0KX/7RXiX14rp4vdTl/ZLCe0sjhESuPgkJdOhSKQnyuHRFAkR64sl+CACJ3iIGUQ89BMKfTx9TT/n5xuVONaVRxvVfb2h81MsRW2ytZZzHbYHjtkR6zBJNPsnj2wx+g2eoqeo5fP0ZFouLPMfiB6/QA5LpTI</latexit>�n

if s1 ∧ x .l = x⟨op⟩ then
Υ′

s ← a⟨op,op1⟩(Υs)
/* low-level proprietary functions */

x .l ← x⟨op1⟩
...
else if sn ∧ x .l = x⟨op⟩ then
Υ′

s ← a⟨op,opn⟩(Υs)
/* low-level proprietary functions */

x .l ← x⟨opn⟩
end

b) there exists at least one real-valued variable or clock v ∈ W \
Vdc ∪K such that νi,var(v) = νj,var(v) = v holds for some v ∈ R
for all νi,var ∈ Ni and all νj,var ∈ Nj;

2. given n uncontrollable edges outgoing from the same location and
guarded by as many γj conditions, such conditions must be disjoint:⋂n

j=1Nγj = ∅ holds, where Nγj is the set of valuations satisfying γj .

In case of an uncontrollable switch, as in Table 10.3, the edge from
location x⟨op⟩ to x⟨opj⟩ is guarded by condition γj and i⟨opj⟩(→ sj ∈ S(Υ))
is a member of the invariant of x⟨op⟩. The way in which invariants i⟨opj⟩(→
sj ∈ S(Υ)) are enforced in scripts is explained in Section 10.3.3, here we
focus only on how outgoing edges are translated into code.

As explained in Chapter 6, the automaton is forced to switch to x⟨opj⟩
when variable and clock values simultaneously satisfy both i⟨opj⟩ and γj .
Note that, as previously mentioned, in our model guard conditions on un-
controllable edges are guaranteed to be disjoint. For this reason, in the
corresponding code pattern reported in Table 10.3, it is correct that, when
one of the γj ∧ x .l = x⟨op⟩ conditions is verified, no other if branch is
visited. Constraint x .l = x⟨op⟩ is necessary because the location might
also be updated by a callback function, as explained in Section 10.3.1.
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Table 10.4: Sensor Reading pattern (⟨op⟩_pub⟨id⟩) model-to-code transformation, as seen
in [128]. Color-coding is the same as in Table 10.2 for both columns.

Automaton Pattern Code Pattern (*simulated/*real/*both)

<latexit sha1_base64="LezNICQTQ0LS/Fze8d3XF9fK2Bk=">AAACG3icbVC7TsNAEDzzJrwMlDQnIgRVZCMQlAgaSpAIiRRH0frYhBPns3W3RkRWPoFP4CtooaJDtBQU/Au2cQGErUYz+5oJEyUted6HMzE5NT0zOzdfW1hcWl5xV9cubZwagU0Rq9i0Q7CopMYmSVLYTgxCFCpshTcnhd66RWNlrC9omGA3goGWfSmAcqrnbgcR0LWk7G7UK6HtZ4ECPVDI44QHpoSjWs+tew2vLD4O/ArUWVVnPfczuIpFGqEmocDaju8l1M3AkBTFwiC1mIC4gQF2cqghQtvNSkMjvpVaoJgnaLhUvCTx50QGkbXDKMw7y5//agX5n9ZJqX/YzaROUkItikMkc6fFISuMzJNCfiUNEkHxOXKpuQADRGgkByFyMs2jK/Lw/7ofB5e7DX+/4Z3v1Y+Oq2Tm2AbbZDvMZwfsiJ2yM9Zkgt2zR/bEnp0H58V5dd6+Wyecamad/Srn/QviRaIQ</latexit>xhopi

<latexit sha1_base64="aUx6lr/Epx31tONP/2bKObkIQC8="></latexit>{tupd}, ⇠hopi

<latexit sha1_base64="d51lMHY0nAAp2cM4kIGOdDbcwuM=">AAACG3icbVC7TsNAEDzzJrwClDQHEYIqshEISgQNZZBIQIqjaH3ZhBPns3W3RoqsfAKfwFfQQkWHaCko+BfOJgWvrUYz+5qJUiUt+f67NzE5NT0zOzdfWVhcWl6prq61bJIZgU2RqMRcRWBRSY1NkqTwKjUIcaTwMro5LfTLWzRWJvqChil2Yhho2ZcCyFHd6k4YA10T5emoW0Lbz0MFeqCQyx4PTQlHm91qza/7ZfG/IBiDGhtXo1v9CHuJyGLUJBRY2w78lDo5GJLCLayEmcUUxA0MsO2ghhhtJy8Njfh2ZoESnqLhUvGSxO8TOcTWDuPIdZY//9YK8j+tnVH/qJNLnWaEWhSHSDqnxSErjHRJIe9Jg0RQfO4y0FyAASI0koMQjsxcdBWXR/Db/V/Q2qsHB3X/fL92fDJOZo5tsC22ywJ2yI7ZGWuwJhPsjj2wR/bk3XvP3ov3+tU64Y1n1tmP8t4+Ae5+ohg=</latexit>

phidi!

<latexit sha1_base64="pKKgGz/3v+a0R3b785GfgQAQGVw="></latexit>

tupd � Tpoll

<latexit sha1_base64="PMemlUI6YDeQEnIEamgjyI/8XGI=">AAACDXicbVC7TsNAEDyHVwgvAxWiOREhUUU2AkEZQUMZJPKQEss6XzbhlPNDd2tEZFl8Al9BCxUdouUbKPgXbOMCEqYazexqZ8eLpNBoWZ9GZWFxaXmlulpbW9/Y3DK3dzo6jBWHNg9lqHoe0yBFAG0UKKEXKWC+J6HrTS5zv3sHSoswuMFpBI7PxoEYCc4wk1xzb+AzvBWY3KduQZWfRLHnitQ161bDKkDniV2SOinRcs2vwTDksQ8Bcsm07ttWhE7CFAouIa0NYg0R4xM2hn5GA+aDdpLihZQexpphSCNQVEhaiPB7I2G+1lPfyybzlHrWy8X/vH6Mo3MnEUEUIwQ8P4RCQnFIcyWyboAOhQJElicHKgLKmWKIoARlnGdinJVVy/qwZ7+fJ53jhn3asK5P6s2Lspkq2ScH5IjY5Iw0yRVpkTbh5IE8kWfyYjwar8ab8f4zWjHKnV3yB8bHN8t6nMw=</latexit>xpubi

<latexit sha1_base64="P9evS10+46Y0jKWBX5388egF51U="></latexit> n̂

j=1

ihopji^

tupd  Tpoll ^ �hopi

t← getSysTime()

if x.l = x⟨op⟩∧∧n
j=1 s⟨opj⟩ ∧

t− tlast ≤ Tpoll then
Υ← ϕ⟨op⟩(t,K)
/* real physical evolution */

end

if x.l = x⟨op⟩∧
t− tlast ≥ Tpoll then
tlast← t
Υ′

s ← a⟨op⟩(Υs)
/* sensor reading */

for υ ∈ Υs do
ros.publish(t⟨id⟩, υ)

end
end

As soon as a γj (→ sj ∈ S(Υ)) condition becomes true, update ξ⟨op,opj⟩
(→ a⟨op,opj⟩ ∈ A(Υ)) is executed (or proprietary functions are invoked). Fi-
nally, x .l is updated to x⟨opj⟩.

10.3.3 Sensor Reading Pattern

The third pattern is the one presented as ⟨op⟩_pub⟨id⟩ in Chapter 6, which
consists of:

• an update of variable t ∈ Υ through function getSysTime() that
is specific to the employed simulator;

• an if-then statement β1 ∈ B which is executed if: agent x is in operat-
ing condition x⟨op⟩, expression s⟨opj⟩ ∈ S(Υ) is true for all j ∈ [1, n],
and t− tlast ≤ Tpoll holds. If all of these conditions hold, physical
variables evolve according to laws ϕ⟨op⟩;

• an if-then statement β2 ∈ B which is executed if: agent x is in oper-
ating condition x⟨op⟩, and t− tlast ≥ Tpoll holds. Assignment instruc-
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tions a⟨op⟩ are subsequently executed and each sensor reading υ ∈ Υs

is published on topic t⟨id⟩ ∈ T through a for loop.

As per Table 10.4, every time this block of code is reached, variable
t ∈ X ⊂ Υ storing time is updated using proprietary functions provided
by the system [185]. In the automaton, the value of clock tupd is compared
against Tpoll to check whether a new sensor reading is available. As for the
code, variable tlast ∈ Υs ⊂ Υ keeps track of the time at which the previous
sensor measurement was published. It follows that the expression t− tlast
is uniform to clock tupd.

If all invariants i⟨opj⟩(→ s⟨opj⟩ ∈ S(Υ)) hold, the simulated physical vari-
ables are then updated according to laws δ⟨op⟩ (→ ϕ⟨op⟩ ∈ Φ). If the condi-
tion guarding the end of a sensor’s refresh period (i.e., t− tlast ≥ Tpoll) is
satisfied, tlast is updated and variables in Υs ⊂ Υ corresponding to sensor
readings are updated as required by ξ⟨op⟩ (→ a⟨op⟩ ∈ A(Υ)).

Since the committed location prescribes that no time elapses before the
following instruction is executed (i.e., triggering channel p⟨id⟩), the script
immediately instructs a dedicated ROS node to publish the updated sensor
readings on topic ⟨id⟩ through the ROS interface provided by the simulator.
At this point, message publication occurs asynchronously with respect to
the agent’s script. As a matter of fact, ROS handles the publisher’s queue
independently of the script, which in the formal model is captured by a
specific instance of template ros_pub⟨id⟩ presented in Chapter 6.

10.3.4 System Monitoring Pattern

The final pattern in Table 10.5 is the subcomponent ⟨op⟩_chk [125], which
is applied to all ⟨op⟩ locations of the orchestrator. The purpose of this pat-
tern is to periodically check the state of the system every Tint time instants
against a set of policies and, if necessary, send commands to the agents
(e.g., stop the robot if it has reached the destination). Note that the pattern
is also applicable to other systems with a likewise behavior (i.e., sampling-
based system monitoring with custom policy enforcement). While Table
10.5 displays the generic pattern in the left column, in the following, to
explain how the pattern works, we exploit the specific instance from our
framework, which is shown on the right in Table 10.5.

We recall that the orchestrator controls the execution from a high ab-
straction level. Using as reference the abstraction levels proposed by Lutz
et al. [144], the orchestrator in our framework operates at the task level,
meaning that it manages when and how the robot does something, irrespec-
tive of the underlying implementation. All the lower-level details (e.g., the
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Table 10.5: System Monitoring pattern model-to-code transformation, as seen in [128].
The generic automaton and code patterns are shown on the left, whereas the right
column features the specific instance of this pattern in our framework. Color-coding is
the same as in Table 10.2 for both columns.

Generic Automaton/Code Pattern Instantiated Automaton/Code Pattern

<latexit sha1_base64="Q+Mbk0Hs3F9xLgIjQPNUdhY0UmA=">AAACGnicbVC7TsNAEDzzJrwClDQnIhBVZCMQlAgaSpAIiRRH0frYhBPns3W3Roqs/AGfwFfQQkWHaGko+BfOJgUkbDWa2ddMlCppyfc/vanpmdm5+YXFytLyyupadX3j2iaZEdgQiUpMKwKLSmpskCSFrdQgxJHCZnR3VujNezRWJvqKBil2Yuhr2ZMCyFHd6m4YA91KypNht4S2l4cKdF8hT1IemhIOu9WaX/fL4pMgGIEaG9VFt/oV3iQii1GTUGBtO/BT6uRgSAq3rxJmFlMQd9DHtoMaYrSdvPQz5DuZBUp4ioZLxUsSf0/kEFs7iCPXWb48rhXkf1o7o95xJ5c6zQi1KA6RdEaLQ1YY6YJCfiMNEkHxOXKpuQADRGgkByEcmbnkKi6PYNz9JLjerweHdf/yoHZyOkpmgW2xbbbHAnbETtg5u2ANJtgDe2LP7MV79F69N+/9p3XKG81ssj/lfXwDjv+h8w==</latexit>ohopi

<latexit sha1_base64="H36ZL8rJRzyWfRTEhKjfb+/tn4E=">AAACJ3icbVC7TutAEF3zuEAuXAKUNCuiK1FF9r0gKBE0lEEiASmOrPEyCaus19buGIEsfwifwFfQQkWHoKDgT1ibFLymOnvOzM6cE2dKWvL9Z29qemb219z8QuP34tKf5ebKas+muRHYFalKzWkMFpXU2CVJCk8zg5DECk/i8UGln1ygsTLVx3SV4SCBkZZDKYAcFTX/hwnQuaQiLaOixiYpxPm4jOqHHRahAj1SyC9DU4OyjJotv+3Xxb+DYAJabFKdqPkSnqUiT1CTUGBtP/AzGhRgSAr3YSPMLWYgxjDCvoMaErSDojZX8r+5BUp5hoZLxWsSP04UkFh7lcSus774q1aRP2n9nIa7g0LqLCfUolpE0vmsFllhpEsN+Zk0SATV5cil5gIMEKGRHIRwZO5ibLg8gq/uv4Pev3aw3faPtlp7+5Nk5tk622CbLGA7bI8dsg7rMsGu2S27Y/fejffgPXpP761T3mRmjX0q7/UNl7yoWA==</latexit>ochkhxi

<latexit sha1_base64="zwrtFSWxNPYRSmVyy3XsXfwcWmo=">AAACH3icdVDLSgNBEJyNrxhfUY9eBoMgCGFXjI9b0IvHCCYGkrD0jh0dMvtwplcIy36En+BXeNWTN/Gag//iZo2ion2qruqmu8qLlDRk2yOrMDU9MztXnC8tLC4tr5RX11omjLXApghVqNseGFQywCZJUtiONILvKbzwBidj/eIWtZFhcE7DCHs+XAWyLwVQRrnlna4PdC0podTNofYTEJR2Fd7kvekn524iA0pTt1yxqzXbOdp3uF218+JfjDNhKmxSDbf81r0MRexjQEKBMR3HjqiXgCYpFKalbmwwAjGAK+xkMAAfTS/JTaV8KzZAIY9Qc6l4TuL3jQR8Y4a+l03mf/7WxuRfWiem/mEvcxTFhIEYHyKpMD9khJZZWsgvpUYiGH+OXAZcgAYi1JKDEBkZZ/GVsjw+TfP/QWu36tSq9tlepX48SabINtgm22YOO2B1dsoarMkEu2MP7JE9WffWs/VivX6MFqzJzjr7UdboHXNspTw=</latexit>

tact  Tint

<latexit sha1_base64="QF4yJGqhRQhKAxpmZtPzicvjSaU=">AAACIHicdVDLSsNQEL3xbX1FXbq5WAQXUhKxPnZFNy4VrAptCJPbab148/DeiVBCfsJP8Cvc6sqduFTwX0xjFRU9qzPnzDAzJ0iUNOQ4L9bI6Nj4xOTUdGVmdm5+wV5cOjVxqgU2RaxifR6AQSUjbJIkheeJRggDhWfB5cHAP7tGbWQcnVA/QS+EXiS7UgAVkm9vtEOgC0kZ5X5JdZiBoLyt8KqsTTc78bNExyLPfbvq1OqOu7ftcqfmlOBfijtUqmyII99+a3dikYYYkVBgTMt1EvIy0CSFwrzSTg0mIC6hh62CRhCi8bLyq5yvpQYo5glqLhUvRfw+kUFoTD8Mis7y0N/eQPzLa6XU3fUyGSUpYSQGi0gqLBcZoWURF/KO1EgEg8uRy4gL0ECEWnIQohDTIr9Kkcfn0/x/crpZc+s153ir2tgfJjPFVtgqW2cu22ENdsiOWJMJdsPu2D17sG6tR+vJev5oHbGGM8vsB6zXd06ipa8=</latexit>

tact  Tproc

<latexit sha1_base64="/fpJOE2wI/l8F4hpCTMB4rMcbhM=">AAACGHicdVC7ThxBEJzF2BznB4sJnYw4W3JgnWYQcEeGcOLMh8QB0u1p1Ts0eMTsQzO9iNNqf4BP8Fc4xRGZRUpG4H/x7HKWsGVXVKrqVldXUhjtSIj7YOHJ4tNnS53l7vMXL1+thKuvD11eWoVjlZvcHifg0OgMx6TJ4HFhEdLE4FFy/rHxjy7QOp1nBzQrcJrCWaZPtQLyUhy+jS51XH2uP/CoilKgL5oqquOW2rQCRXVUx2FP9IUQUkreEDnYFp7s7Aw35JDLxvLosTlGcfgzOslVmWJGyoBzEykKmlZgSSuDdTcqHRagzuEMJ55mkKKbVu03NX9XOqCcF2i5NrwV8fFGBalzszTxk01K97fXiP/yJiWdDqeVzoqSMFPNIdIG20NOWe1rQn6iLRJBkxy5zrgCC0RoNQelvFj63rq+j99P8/+Tw42+3OqL/c3e7t68mQ57w9bZeybZgO2yT2zExkyxK/aNXbPvwdfgJvgR3D6MLgTznTX2B4K7X3D3oXQ=</latexit>

⇠O, {tact}
<latexit sha1_base64="HeLPXtZUmS++5Ghq2z/d2avNKWw=">AAACD3icdVC7SgRBEJz17fk6NTQZPASjY0Z8nJloYqjgqXB7HL1jq4OzD2Z6BVk28BP8ClONzMTUTzDwX5w9T1DRioqqbrq6osxoR0K8BUPDI6Nj4xOTtanpmdm5+vzCsUtzq7CtUpPa0wgcGp1gmzQZPM0sQhwZPImu9ir/5Bqt02lyRDcZdmO4SPS5VkBe6tWXwiKMgS41FVT2+tTGBSgqw7JXb4imEEJKySsitzaFJ9vbrTXZ4rKyPBpsgINe/T08S1UeY0LKgHMdKTLqFmBJK4NlLcwdZqCu4AI7niYQo+sW/SdKvpI7oJRnaLk2vC/i940CYudu4shPVindb68S//I6OZ23uoVOspwwUdUh0gb7h5yy2reD/ExbJIIqOXKdcAUWiNBqDkp5Mfd11XwfX0/z/8nxWlNuNMXhemNnd9DMBFtiy2yVSbbFdtg+O2Btptgtu2cP7DG4C56C5+Dlc3QoGOwssh8IXj8Axkad6w==</latexit>{tact}

<latexit sha1_base64="cUFnbReYcJYDkVXo8mO14KELYGw="></latexit>

tact � Tint

…
<latexit sha1_base64="6ZLdGYVEZxhq84+WyNdKfy/dgBg=">AAAB/nicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pBiKzpfNuGU8/l0t0aKrEh8BS1UdIiWX6HgX7CNC0iYajSzq52dUEth0XU/naXlldW19cpGdXNre2e3trffsXFiOLR5LGPTC5kFKRS0UaCEnjbAolBCN5xc5373AYwVsbrDqYYgYmMlRoIzzCTfjxje21GqB95sUKu7DbcAXSReSeqkRGtQ+/KHMU8iUMgls7bvuRqDlBkUXMKs6icWNOMTNoZ+RhWLwAZpkXlGjxPLMKYaDBWSFiL83khZZO00CrPJIuO8l4v/ef0ER5dBKpROEBTPD6GQUByy3IisDKBDYQCR5cmBCkU5MwwRjKCM80xMsnaqWR/e/PeLpHPa8M4b7u1ZvXlVNlMhh+SInBCPXJAmuSEt0iacaPJEnsmL8+i8Om/O+8/oklPuHJA/cD6+AQoYllI=</latexit>p1

<latexit sha1_base64="6pODoEFiTnpXzWYqWOMUX/rMkck=">AAAB/nicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pBiKzpfNuGU8/l0t0aKrEh8BS1UdIiWX6HgX7CNC0iYajSzq52dUEth0XU/naXlldW19cpGdXNre2e3trffsXFiOLR5LGPTC5kFKRS0UaCEnjbAolBCN5xc5373AYwVsbrDqYYgYmMlRoIzzCTfjxje21GqB2o2qNXdhluALhKvJHVSojWoffnDmCcRKOSSWdv3XI1BygwKLmFW9RMLmvEJG0M/o4pFYIO0yDyjx4llGFMNhgpJCxF+b6QssnYahdlkkXHey8X/vH6Co8sgFUonCIrnh1BIKA5ZbkRWBtChMIDI8uRAhaKcGYYIRlDGeSYmWTvVrA9v/vtF0jlteOcN9/as3rwqm6mQQ3JETohHLkiT3JAWaRNONHkiz+TFeXRenTfn/Wd0ySl3DsgfOB/faWiWjw==</latexit>pn

<latexit sha1_base64="yPX9H8cCwm+1nIgh8LyGzCxgMo0="></latexit>

�1 ^ �proc
<latexit sha1_base64="NQ4Xm1MwOyohMEqLgpWJHAA/4OI="></latexit>

�n ^ �proc

<latexit sha1_base64="vVusk9JkpAd4H+dap7jYZ23l1Mg="></latexit> n̂

j=1

¬�j ^ �proc

<latexit sha1_base64="5N4AWSEJ0Gz1JFY3pXILO1UrdV0=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sgmnnM/H3RopslLwFbRQ0SFaPoWCf8E2LiBhqtHMrnZ2Ai2FRdf9dEpLyyura+X1ysbm1vZOdXevbaPYcGjxSEamGzALUihooUAJXW2AhYGETjC5yvzOAxgrInWLUw1+yMZKjARnmEp+P2R4Z0eJxUjPBtWaW3dz0EXiFaRGCjQH1a/+MOJxCAq5ZNb2PFejnzCDgkuYVfqxBc34hI2hl1LFQrB+koee0aPYMoyoBkOFpLkIvzcSFlo7DYN0Mg8572Xif14vxtGFnwilYwTFs0MoJOSHLDcibQPoUBhAZFlyoEJRzgxDBCMo4zwV47SeStqHN//9Immf1L2zuntzWmtcFs2UyQE5JMfEI+ekQa5Jk7QIJ/fkiTyTF+fReXXenPef0ZJT7OyTP3A+vgFpV5ci</latexit>

stop

<latexit sha1_base64="Rlcv0ZSibMhDB5aV+Osn+jB2iB0=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH6sgmnnB/crZEiKwVfQQsVHaLlUyj4F2zjAhKmGs3samfHi5Q0ZNufVmlpeWV1rbxe2djc2t6p7u61TRhrgS0RqlB3PTCoZIAtkqSwG2kE31PY8SZXmd95QG1kGNzSNELXh3EgR1IApZLb94HuzCgZgVSzQbVm1+0cfJE4BamxAs1B9as/DEXsY0BCgTE9x47ITUCTFApnlX5sMAIxgTH2UhqAj8ZN8tAzfhQboJBHqLlUPBfx90YCvjFT30sn85DzXib+5/ViGl24iQyimDAQ2SGSCvNDRmiZtoF8KDUSQZYcuQy4AA1EqCUHIVIxTuuppH04898vkvZJ3Tmr2zentcZl0UyZHbBDdswcds4a7Jo1WYsJds+e2DN7sR6tV+vNev8ZLVnFzj77A+vjGydklvg=</latexit>

fail

<latexit sha1_base64="Q+Mbk0Hs3F9xLgIjQPNUdhY0UmA=">AAACGnicbVC7TsNAEDzzJrwClDQnIhBVZCMQlAgaSpAIiRRH0frYhBPns3W3Roqs/AGfwFfQQkWHaGko+BfOJgUkbDWa2ddMlCppyfc/vanpmdm5+YXFytLyyupadX3j2iaZEdgQiUpMKwKLSmpskCSFrdQgxJHCZnR3VujNezRWJvqKBil2Yuhr2ZMCyFHd6m4YA91KypNht4S2l4cKdF8hT1IemhIOu9WaX/fL4pMgGIEaG9VFt/oV3iQii1GTUGBtO/BT6uRgSAq3rxJmFlMQd9DHtoMaYrSdvPQz5DuZBUp4ioZLxUsSf0/kEFs7iCPXWb48rhXkf1o7o95xJ5c6zQi1KA6RdEaLQ1YY6YJCfiMNEkHxOXKpuQADRGgkByEcmbnkKi6PYNz9JLjerweHdf/yoHZyOkpmgW2xbbbHAnbETtg5u2ANJtgDe2LP7MV79F69N+/9p3XKG81ssj/lfXwDjv+h8w==</latexit>ohopi

<latexit sha1_base64="H36ZL8rJRzyWfRTEhKjfb+/tn4E=">AAACJ3icbVC7TutAEF3zuEAuXAKUNCuiK1FF9r0gKBE0lEEiASmOrPEyCaus19buGIEsfwifwFfQQkWHoKDgT1ibFLymOnvOzM6cE2dKWvL9Z29qemb219z8QuP34tKf5ebKas+muRHYFalKzWkMFpXU2CVJCk8zg5DECk/i8UGln1ygsTLVx3SV4SCBkZZDKYAcFTX/hwnQuaQiLaOixiYpxPm4jOqHHRahAj1SyC9DU4OyjJotv+3Xxb+DYAJabFKdqPkSnqUiT1CTUGBtP/AzGhRgSAr3YSPMLWYgxjDCvoMaErSDojZX8r+5BUp5hoZLxWsSP04UkFh7lcSus774q1aRP2n9nIa7g0LqLCfUolpE0vmsFllhpEsN+Zk0SATV5cil5gIMEKGRHIRwZO5ibLg8gq/uv4Pev3aw3faPtlp7+5Nk5tk622CbLGA7bI8dsg7rMsGu2S27Y/fejffgPXpP761T3mRmjX0q7/UNl7yoWA==</latexit>ochkhxi

<latexit sha1_base64="zwrtFSWxNPYRSmVyy3XsXfwcWmo=">AAACH3icdVDLSgNBEJyNrxhfUY9eBoMgCGFXjI9b0IvHCCYGkrD0jh0dMvtwplcIy36En+BXeNWTN/Gag//iZo2ion2qruqmu8qLlDRk2yOrMDU9MztXnC8tLC4tr5RX11omjLXApghVqNseGFQywCZJUtiONILvKbzwBidj/eIWtZFhcE7DCHs+XAWyLwVQRrnlna4PdC0podTNofYTEJR2Fd7kvekn524iA0pTt1yxqzXbOdp3uF218+JfjDNhKmxSDbf81r0MRexjQEKBMR3HjqiXgCYpFKalbmwwAjGAK+xkMAAfTS/JTaV8KzZAIY9Qc6l4TuL3jQR8Y4a+l03mf/7WxuRfWiem/mEvcxTFhIEYHyKpMD9khJZZWsgvpUYiGH+OXAZcgAYi1JKDEBkZZ/GVsjw+TfP/QWu36tSq9tlepX48SabINtgm22YOO2B1dsoarMkEu2MP7JE9WffWs/VivX6MFqzJzjr7UdboHXNspTw=</latexit>

tact  Tint

<latexit sha1_base64="QF4yJGqhRQhKAxpmZtPzicvjSaU=">AAACIHicdVDLSsNQEL3xbX1FXbq5WAQXUhKxPnZFNy4VrAptCJPbab148/DeiVBCfsJP8Cvc6sqduFTwX0xjFRU9qzPnzDAzJ0iUNOQ4L9bI6Nj4xOTUdGVmdm5+wV5cOjVxqgU2RaxifR6AQSUjbJIkheeJRggDhWfB5cHAP7tGbWQcnVA/QS+EXiS7UgAVkm9vtEOgC0kZ5X5JdZiBoLyt8KqsTTc78bNExyLPfbvq1OqOu7ftcqfmlOBfijtUqmyII99+a3dikYYYkVBgTMt1EvIy0CSFwrzSTg0mIC6hh62CRhCi8bLyq5yvpQYo5glqLhUvRfw+kUFoTD8Mis7y0N/eQPzLa6XU3fUyGSUpYSQGi0gqLBcZoWURF/KO1EgEg8uRy4gL0ECEWnIQohDTIr9Kkcfn0/x/crpZc+s153ir2tgfJjPFVtgqW2cu22ENdsiOWJMJdsPu2D17sG6tR+vJev5oHbGGM8vsB6zXd06ipa8=</latexit>

tact  Tproc

<latexit sha1_base64="tbJUzjwPwqVyTpHVvaH0dNW2J4s="></latexit>

�scs ^ �proc
<latexit sha1_base64="dYctAHOpTsIKeE9FZiwod1jVPyQ="></latexit>

�stop^
�proc

<latexit sha1_base64="iAy1hn9CFVz4RJO7gvTxy49Ord4="></latexit>

�fail ^ �proc

<latexit sha1_base64="/fpJOE2wI/l8F4hpCTMB4rMcbhM="></latexit>

⇠O, {tact}<latexit sha1_base64="HeLPXtZUmS++5Ghq2z/d2avNKWw=">AAACD3icdVC7SgRBEJz17fk6NTQZPASjY0Z8nJloYqjgqXB7HL1jq4OzD2Z6BVk28BP8ClONzMTUTzDwX5w9T1DRioqqbrq6osxoR0K8BUPDI6Nj4xOTtanpmdm5+vzCsUtzq7CtUpPa0wgcGp1gmzQZPM0sQhwZPImu9ir/5Bqt02lyRDcZdmO4SPS5VkBe6tWXwiKMgS41FVT2+tTGBSgqw7JXb4imEEJKySsitzaFJ9vbrTXZ4rKyPBpsgINe/T08S1UeY0LKgHMdKTLqFmBJK4NlLcwdZqCu4AI7niYQo+sW/SdKvpI7oJRnaLk2vC/i940CYudu4shPVindb68S//I6OZ23uoVOspwwUdUh0gb7h5yy2reD/ExbJIIqOXKdcAUWiNBqDkp5Mfd11XwfX0/z/8nxWlNuNMXhemNnd9DMBFtiy2yVSbbFdtg+O2Btptgtu2cP7DG4C56C5+Dlc3QoGOwssh8IXj8Axkad6w==</latexit>{tact}

<latexit sha1_base64="cUFnbReYcJYDkVXo8mO14KELYGw="></latexit>

tact � Tint

<latexit sha1_base64="TEr4Kz4yiMvW+Ue6bc+GcNLWKWA="></latexit>¬�stop ^ ¬�fail

^¬�scs ^ �proc

<latexit sha1_base64="49vL86XRxo9ZgpqHtCf73EYial8=">AAAB/nicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pBiKzpfNuGU8/l0t0aKrEh8BS1UdIiWX6HgX7CNC0iYajSzq52dUEth0XU/naXlldW19cpGdXNre2e3trffsXFiOLR5LGPTC5kFKRS0UaCEnjbAolBCN5xc5373AYwVsbrDqYYgYmMlRoIzzCTfjxje21FquZ0NanW34Ragi8QrSZ2UaA1qX/4w5kkECrlk1vY9V2OQMoOCS5hV/cSCZnzCxtDPqGIR2CAtMs/ocWIZxlSDoULSQoTfGymLrJ1GYTZZZJz3cvE/r5/g6DJIhdIJguL5IRQSikOWG5GVAXQoDCCyPDlQoShnhiGCEZRxnolJ1k4168Ob/36RdE4b3nnDvT2rN6/KZirkkByRE+KRC9IkN6RF2oQTTZ7IM3lxHp1X5815/xldcsqdA/IHzsc3fDKWmw==</latexit>scs

while
∧n

j=1!sj do
o.l ← o⟨op⟩
sleep(Tint)
Υs ← aO(Υs)
o.l ← ochk⟨x⟩
sleep(Tproc)

end

while !sstop ∧ !sscs ∧ !sfail do
o.l ← o⟨op⟩
sleep(Tint)
Υs ← aO(Υs)
o.l ← ochk⟨x⟩
sleep(Tproc)

end

trajectory-planning algorithm) should be proprietary to the robot manufac-
turer and dependent on the specific robot model involved in the application.
An implementation of these low-level algorithms has been provided to test
the model-driven framework, though we do not claim it is the optimal one,
since, for the reasons listed above, it is not the core of this research.

The resulting code pattern consists of:

• a while loop that runs as long as all expressions sj ∈ S(Υ) that map
the automaton’s γj conditions, with j ∈ [1, n], are false: in our specific
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instance, these are sscs, sfail, and sstop. Within the loop, the script:
updates the state to o⟨op⟩ ∈ Σ; pauses for time Tint ∈ K (sleep(Tint));
executes assignments aO ∈ A(Υ); switches to ochk⟨x⟩ ∈ Σ; and pauses
for Tproc ∈ K seconds (sleep(Tproc)).

Upon switching to checking location ochk⟨x⟩ , the automaton applies the
orchestrator’s set of policies, referred to as ξO (→ aO ∈ A(Υ)), to the agents.
After executing all the instructions in ξO, one of the following guard condi-
tions might become true:

1. the condition that determines whether the mission has ended with suc-
cess γscs (→ sscs ∈ S(Υ));

2. the condition that determines whether the mission has failed γfail (→
sfail ∈ S(Υ));

3. the condition that determines, for every controlled agent in the system,
whether the current agent’s action has to stop γstop (→ sstop ∈ S(Υ)).

In the formal model, the time required by the orchestrator to make a
decision based on the current system state is modeled by parameter Tproc ∈
K ⊂ W . When time Tproc elapses (γproc = tact ≥ Tproc holds) if one of
the outgoing edges is enabled (γscs ∨ γstop ∨ γfail holds), the subcomponent
⟨op⟩_chk is left, otherwise the orchestrator switches back to o⟨op⟩.

The corresponding code block, shown in Table 10.5, captures the cycli-
cal succession of o⟨op⟩ and ochk⟨x⟩ . The orchestrator script is put on hold for
Tint seconds, while the system evolves, through the programmatic instruc-
tion sleep (the same happens afterward for Tproc seconds in ochk⟨x⟩). A set
of policies equivalent to ξO(→ aO ∈ A(Υ)) is enforced afterwards.

Variable o.l ∈ Υs ⊂ Υ that keeps track of the location is updated to
ochk⟨x⟩ and a second sleep instruction is issued to pause the execution for
Tproc seconds (thus, γproc is not part of the condition for the while cycle).
Identically to the ⟨op⟩_chk pattern, at this point the loop condition is re-
evaluated and, if γscs ∨ γstop ∨ γfail holds, the loop ends along with the
execution of this pattern.

As per Table 10.5, for the last pattern, the cycle is explicitly defined
since it is part of an ordinary script external to the simulator or the real
agent, whose execution flow requires explicit programming.
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CHAPTER11
Deployment Framework Validation

This chapter presents the results of an experimental campaign aimed at
assessing the deployment framework presented in Chapter 10, specifi-
cally the model-to-code mapping’s accuracy.

The validation is carried out on two sample simulated scenarios:
one with a configuration leading to critical values of physical strain
imposed on human subjects, while the second is configured to show
higher criticality in terms of the robot’s battery consumption.

A comparison of the simulation logs with runs of the formal model
shows that errors are on average 5.35% for human fatigue and 0.13%
for the robot’s charge level.

11.1 Validation Goals

As discussed in Section 3.1.2, Statistical Model-Checking is a valuable tool
to analyze cyber-physical systems’ settings at an early design stage. How-
ever, it cannot provide all-inclusive results on its own [138].

The deployment module presented in Chapter 10 strengthens the model-
driven framework by providing users with additional tools to test and val-
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idate interactive scenarios. These features are enabled by the fact that the
deployment framework elements are a rigorous transposition of the SHA
network. Therefore, the approach ensures that the system will display cor-
responding behavior at design time and at deployment time.

In the following, we discuss the deployment module’s validation process
and present relevant case studies that serve the following two purposes:

P1: providing evidence that the formally modeled and the deployed agents
behave correspondingly;

P2: showcasing the relevance of the deployment module to the develop-
ment pipeline.

Through simulation, analysts can test applications in physically accu-
rate environments. Moreover, they can focus their assessment on manually
induced situations theoretically unlikely to occur but are critical for the
mission’s outcome.

To test the effectiveness of the approach in all its possible use cases, our
experiments have focused on charge-critical or fatigue-critical configura-
tions that are fitting sources of stress to the system.1

11.2 Experimental Setting

The chosen experimental setting is represented in Fig. 11.1 and replicates
the layout used for validation purposes in Chapter 7. The scenario is set in a
T-shaped hospital corridor with doors leading to offices and two cupboards
with medical equipment. A mobile platform is deployed in this environ-
ment to assist patients and employees.

In this specific example, two humans are requesting the robot’s assis-
tance. The first person needs to fetch an item whose location is unknown to
them but known to the robot. Therefore, the robot has to lead the human to
their destination (DEST 1 in Fig. 11.1), and the suitable interaction pattern
is HumanFollower. The second human is a doctor who needs the robot
to carry some tools. The doctor has to lead the robot to the tools’ location
(point DEST 2 in Fig. 11.1), conforming to the HumanLeader interaction
pattern.

Results obtained by applying our model-driven approach to this scenario
significantly vary depending on parameter values. As already discussed, the
two critical factors are the robot battery charge (C0) and the fatigue profiles

1The content presented in this chapter also appears in [128]. The author of this thesis declares to have also
authored the reproduced text, figures, and data and to have the right to reproduce such content in a dissertation
according to the license under which both articles are published.
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Figure 11.1: Experimental setting used for both experiments, as seen in [128]. The layout
from the simulator replicates the layout from the formal model. The two humans and
the robot are represented in their starting positions. The picture also highlights the two
destination points and the location of the recharge station.

of the two humans (pf1, pf2), presented in Section 5.1. The MET is an indi-
cator of how critical a fatigue profile is. The YoungHealthy fatigue profile
corresponds—on average—to a MET of 5991.5s [221]. With an Elder-
ly/Healthy profile, the MET equals 374.5s, whereas with the Young/Sick
profile the MET equals 299.6s (see Table 11.1).

We present two variations of the described scenario. The first experi-
ment presents a charge-critical configuration and consists of two iterations
of the approach (labeled as experiment 1a and 1b). The second experiment
starts with a fatigue-critical configuration. Table 11.1 summarizes the pa-
rameters for each experimental configuration.

As explained in Chapter 10, the listed design parameters and the low-
level algorithms are specified for a generic mobile platform fit for testing
purposes. However, they would need to be tuned (or come pre-packaged
with the simulation model) based on the specific robot model to be de-
ployed in a real environment.

11.3 Experimental Validation Process

The validation process we followed to assess if the deployment framework
is an accurate translation of the formal model (i.e., goal P1) consists of the
following steps (also conforming to the framework presented in Chapter 4):
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Table 11.1: Summary of experimental parameters set, as seen in [128]. Parameters that
make the configuration critical are marked in red, whereas the ones the decrease the
degree of criticality are in green.

Exp.1a Exp.1b Exp.2

vmax 100cm/s 100cm/s 100cm/s

amax 50cm/s2 50cm/s2 50cm/s2

C0 30% 90% 50%

Tpoll 1s 1s 1s

µλ 0.5s 0.5s 0.5s

σλ 0.1s 0.1s 0.1s

Pattern 1 Human-Follower Human-Follower Human-Follower
v1 100cm/s 100cm/s 80cm/s

Ftg.Prof. 1 Young-Healthy Young-Healthy Elderly-Healthy
MET1 9210.34s 9210.34s 575.65s

dest1 (2300.0, 500.0) (2300.0, 500.0) (2300.0, 500.0)

Pattern 2 Human-Leader Human-Leader Human-Leader
v2 100cm/s 100cm/s 80cm/s

Ftg.Prof. 2 Young-Healthy Young-Healthy Young-Sick
MET2 9210.34s 9210.34s 460.51s

dest2 (2300.0, 100.0) (2300.0, 100.0) (2300.0, 100.0)

1. automatically generate the formal model configured according to pa-
rameters in Table 11.1;

2. run the SMC experiment to estimate PM(⋄≤τ scs). The upper part of
Table 11.2 displays the chosen time-bound values and performance
data (duration of the experiment and number of states explored);

3. deploy the application in the simulated environment, with a real hu-
man user giving instructions to the human avatar in the scene;

4. collect the simulations’ log files and compute metrics to compare the
system’s behavior at design time and at runtime and draw conclusions
about the soundness of the deployment approach. The bottom part
of Table 11.2 displays the resulting values of such metrics for each
experiment, which will be analyzed in more detail later in this section.

Further remarks are necessary about the data shown in Table 11.2 and
how we have calculated it. Firstly we empirically analyzed single traces for
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Table 11.2: Correspondence between the formal model (FM) and the simulated system
behavior at deployment time (SIM), as seen in [128]. The upper part of the table
reports performance data about the Statistical Model-Checking experiments and the
number of runs for each experiment. In the bottom part, the above-mentioned metrics
are listed. These metrics concern the average mission duration in simulation and the
time-bound (τ ) for the verification, the resulting probability of success within the spec-
ified time-bound, and the expected values for the most critical physical variables: the
two humans’ fatigue (Fh1 and Fh2, respectively) and robot battery charge (C).

Experiment 1a Experiment 1b Experiment 2
FM SIM FM SIM FM SIM

Runs 389 102 389 109 389 100
States 260961 − 520962 − 651867 −
Verification Time [min] 1.05 − 2.38 − 2.63 −
Avg. Completion Time [s] − 65.32 − 66.10 − 70.95
Time-bound (τ ) [s] 70 − 70 − 80 −
PM(⋄≤τ scs) [%] ≥ 90.186 96.1 ≥ 90.186 94.5 ≥ 90.186 100
E≤τ [max(Fh1)] [%] 1.37± 0.3 1.36 1.39± 0.2 1.43 25.54± 4.9 25.57
E≤τ [max(Fh2)] [%] 0.92± 0.3 0.96 0.93± 0.4 1.06 23.83± 3.7 21.43
E≤τ [min(C)] [%] 24.82 24.82 89.36 89.26 54.25 54.10

all experiments to estimate the average duration of the mission and choose
the time-bound τ accordingly. Hence, we reasonably rule out the possibility
of obtaining a low probability of success due to insufficient time-bound.

In the second place, it is necessary to explain why the number of runs
differs between design time and runtime. Uppaal generates as many runs
of the SHA as necessary to compute a confidence interval with the required
confidence level. In this case, this amounts to 389 runs of the system for
all experiments. For the deployment phase, as it does not involve the same
statistical techniques, we produce a number of meaningful simulation runs
for practical reasons. If about 40 people are served by the robot every day
for 5 workdays a week and 2 humans are served in each run, simulating the
mission about 100 times realistically corresponds to testing the deployment
framework over the span of a week.

To fulfill goal P2, the following step is performed:

5. while simulating the application, force situations that can lead to fail-
ure but are not covered by the formal model. Some examples and pos-
sible countermeasures for each experiment are presented in the corre-
sponding subsections.

The deployment framework used for the experiments is available at [132].

193



Chapter 11. Deployment Framework Validation

The formal model is created with Uppaal v.4.1.24 [46].2 The virtual en-
vironment is created using CoppeliaSim v.3.6.2. The deployment units’
scripts are implemented in Python v.3.6.9 and the LUA scripting language.3

Finally, the middleware layer is built using the ROS Melodic distribution
v.1.14.7.

11.4 Experiment 1: Charge-Critical Configuration

Experiment 1a involves two young, healthy humans and a robot with a
low charge value (C0 = 30%). With this configuration, when the mission
starts, the robot has approximately 350s of battery life. If both humans start
walking as soon as it is their turn to be served and perform flawlessly, 350s
are sufficient to complete the mission.

As Table 11.2 shows, the average mission completion time observed in
the simulations is 65.32s. This result is compatible with the time-bound
empirically chosen for the formal verification (70s), which leads to a suc-
cess probability interval—estimated with SMC—of [0.90186, 1]. This suc-
cess rate is confirmed while deploying the application since processing the
collected log files reveals that in 96.1% of the simulations, the mission was
indeed successfully completed within 70s.

Note that, with a slight abuse of notation, both in Table 11.2 and below,
the success rate of the deployed application is still indicated as PM(⋄≤τ scs),
as in the formal model; however, it is not calculated through SMC, but as
the ratio between how many runs feature the mission successfully ending
within τ and the total number of runs, as per Eq.11.1.

PM(⋄≤τ scs) =
# successful runs within τ

# runs
(11.1)

Besides the success rate, it is crucial also to verify that physical variables
are accurately simulated. To this end, we have calculated through Uppaal
the expected value for the maximum value of fatigue reached by the two
humans and the residual battery charge at the end of the mission (thus, the
minimum value since, in these scenarios, the robot never recharges). The
same three metrics are extracted from the simulation logs.

By comparing these indicators, we can conclude that both fatigue and
charge evolutions in time are consistent with the results obtained with the
formal model. In both phases, the two humans reach a negligible value of

2SMC experiments are performed on a Linux machine with 128 cores, 515GB of RAM, and Debian Linux
version 10.

3Simulations are executed on a Ubuntu 18.04 virtual machine with two cores and 4GB of RAM.
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Figure 11.2: Plot of the unsuccessful simulation run from Experiment 1a, as seen in [128].
Green lines correspond to human fatigue ([0−100]), while the orange line corresponds
to the battery charge ([0− 10]). Human 2 starts walking at t ≃ 320s, about 270s after
the first human has been served, causing mission failure (Q ≃ 0).

fatigue (∼ 1%) as they both conform to the “best” fatigue profile and only
walk for about 30s each. In contrast, the residual level of charge approxi-
mately equals 24%.

After an evaluation of the system’s behavior in “regular” circumstances,
the analyst can forcedly induce the situation in which the second human
does not start as soon as it is their turn, and the whole execution of the
mission is delayed (see Fig. 11.2). The cause of the delay in a real setting
could be the doctor being unexpectedly held up or failing to react immedi-
ately, which is a common human mistake [10]. The consequently extended
duration of the mission leads to the robot being fully discharged before its
completion,4 which is one of the two possible causes of failure.

The analyst is now able to assess the unsuccessful simulation run. They
might decide that this manifestation of human free will is plausible in real
life and critical enough to motivate a scenario refinement and an additional
iteration of the design-time analysis. Since humans cannot be program-
matically instructed to perform actions in a machine-like manner (neither
in the formal model nor in real life), the most sensible refinement action
would be selecting a higher value of C0. If multiple mobile platforms are
available, this can be realized by choosing a different robot from the fleet
or recharging the robot before starting the mission.

4Although the robot can recharge itself both in the formal model and during simulation, it is effectively busy
serving a leader human when it reaches the recharge threshold (C = 20%). Under these circumstances, the
robot cannot halt service delivery even if the human is delaying their action.
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Figure 11.3: Plot of the unsuccessful simulation run for Experiment 2, as seen in [128].
Green lines correspond to human fatigue ([0−100]), while the orange line corresponds
to the battery charge ([0 − 100]). The plot shows that the first human is successfully
served in about 50s as expected, whereas the second one keeps moving until they reach
full exhaustion leading to mission failure (Fh2 ≃ 100%).

The new configuration is shown in Table 11.1 as Experiment 1b, with
the updated value of C0 = 90%. The second iteration of SMC experiments,
with τ = 70s, yields success rate [0.90186, 1] (see Table 11.2).

Re-running the batch of simulations leads to similar results as for Ex-
periment 1a: the average completion time is approximately 66s and the
success rate within 70s is 94.5%.

Note that metrics concerning fatigue are almost unchanged with respect
to Experiment 1a and are still comparable to the ones estimated with the
formal model. As expected, the residual battery charge is higher than for
Experiment 1a (about 89%) coherently with the different value of C0.

11.5 Experiment 2: Fatigue-Critical Configuration

The setup for the second experiment is more critical in terms of human
endurance to physical strain. Specifically, criticality arises from the dif-
ferent fatigue profiles Elderly/Healthy and Young/Sick, as in Table 11.1.
In practice, the second subject could be an employee with an undiagnosed
condition affecting their respiratory capacity and physical endurance.

For this experiment, we have calculated the same metrics described in
Section 11.4, whose resulting values are also shown in Table 11.2. In this
case, the chosen value for τ is 80s, which is slightly higher than for Experi-
ment 1 since humans walk at a slower pace due to critical health conditions.
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11.6. Discussion

The SMC experiment yields a success probability range of [0.90186, 1].
Therefore, as in the first experiment, the analyst would have sufficient evi-
dence to consider the mission fit for deployment.

Also, in this case, the results obtained at design time are corroborated
by the application’s deployment. The average mission completion time
is 70.95s, which, as expected, is slightly higher than for the first exper-
iment and compliant with the chosen time-bound. More specifically, all
the performed simulations were completed within τ = 80s (PM(⋄≤τ scs) =
100%).

The expected values for the fatigue peaks are significantly higher than in
the previous experiment (∼ 20%≫∼ 1%) due to the different fatigue pro-
files. However, they still comply with the values calculated through Uppaal
at design time. The same stands for the robot battery charge. Therefore,
also in this second experiment, the deployed system’s behavior shows evi-
dence of accurate transposition of the formal model.

Nevertheless, suppose now that the second subject- with a more criti-
cal fatigue profile- follows an erratic trajectory, not the shortest one. This
situation can be simulated in the virtual environment. Fig. 11.3 shows
a specific simulation run in which the second human exhibits this behav-
ior and keeps walking until complete exhaustion. The first human reaches
their destination in approximately 50s (as in Fig. 11.3, they stop walking
and start resting). The second human starts walking at around t = 20s
and keeps moving for about 450s. As in Table 11.1, a subject with the
Young/Sick fatigue profile can walk non-stop at most for approximately
7.5min (MET2 = 460.51s). Therefore, the mission fails after about 500s
because the second human reaches the maximum endurable value of fa-
tigue.

This manifestation of human autonomy is not covered by the formal
model in its current development stage. SMC experiments do not account
for this possibility and yield a very high value for the chances of success.
Indeed, as explained in Chapter 10, the formal model accounts for human
autonomy only to some extent. Precisely, it currently does not capture the
possibility of the human freely straying from the planned trajectory, as in
the simulation in Fig. 11.3.

11.6 Discussion

Firstly, the experiments in Section 11.4 and Section 11.5 provide evidence
that the formally modeled and the virtually simulated agents behave cor-
respondingly. Comparing the average completion times and success rates
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allows us to conclude that the deployed robot controller issues the same
commands as the corresponding automaton and with the same timing, lead-
ing to mission success in a comparable amount of time.

As for human fatigue and battery charge metrics, it is not surprising that
fatigue is—apparently—less accurately simulated than charge: the aver-
age formal model-to-deployment error for fatigue is 5.35% while it is only
0.13% for the battery charge. This discrepancy is due to the higher degree
of variability of fatigue ascribable to the unpredictability of human behav-
ior. On the other hand, battery charge evolution in time is less subject to
uncertainty (mostly unexpected trajectory variations due to obstacles), thus
leading to a smaller error.

Furthermore, assessing these experimental results makes it possible to
identify two types of model-to-reality discrepancies that can be detected
through deployment.

In the first case, as in the first experiment, even if the deployment high-
lights a failure due to a gap in the formal model, it is still feasible to coun-
teract it by tuning the parameters of the scenario, e.g., the initial battery
charge Cstart. In the second case, of which the second experiment is an
example, the failure caused by the gap in the formal model can only be
tackled at design time by refining the formal model itself.

The fundamental difference is that the first case can be directly handled
by the analyst, whereas the second requires expertise in formal modeling
that they are unlikely to possess. The following phase of the development of
the approach, i.e., the data-driven refinement of the SHA network, makes
it possible to counteract the second category of failures through multiple
iterations of the design-time analysis.
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Model Adjustment
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CHAPTER12
L∗SHA for Stochastic Hybrid Automata

Learning

This chapter focuses on the automata learning phase of the framework.
Firstly, given the domain-agnostic nature of the procedure, part of

the framework is generalized to a software development toolchain of
complex Cyber-Physical Systems (CPSs) incorporating the automata
learning task.

The L∗SHA algorithm developed within this research project and ex-
tending L∗ to SHA is then introduced in detail.

12.1 System Under Learning Configuration

The application framework of L∗SHA targets CPSs whose physical compo-
nent includes entities with predictable temporal behavior (e.g., programmable
machines) and entities whose behavior is uncertain. The latter is the case
of entities whose behavior is the combination of physical processes overly
complex to be manually drafted and subject to uncertainties (e.g., human
decision-making) [32]. Specifically, L∗SHA, which yields SHA modeling the
uncertain entities, is tailored to:
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12.1. System Under Learning Configuration

1. sources of uncertainty whose non-determinism is refined through stochas-
tic processes;

2. entities with a finite number of feasible behaviors.

The model-driven software design framework is made up of four phases
(labeled accordingly in Fig. 12.1):

DC: during the data collection phase, observations of the system’s behavior
are gathered in preparation to the learning;

ML: the CPS model learning phase exploits collected observations to learn
a SHA of uncertain CPS components;

SD: the CPS design phase combines the learned formal model of uncertain
entities with the model of deterministic components provided by the
CPS designer;

MA: the CPS model analysis phase applies statistical techniques to the de-
veloped model to assess the CPS’s performance: results support the
developer during software design.

Collecting data is necessary to accumulate knowledge of the system’s
behavior in response to specific events. Physical entities, such as machin-
ery or involved human subjects, need to be endowed with suitable sensors,
while cyber entities log relevant information. L∗SHA infers from available
data a model of the uncertain/predictable components capturing the evo-
lution of physical processes. To this end, the learning procedure can only
consider measurable physical variables and observable events.

Every physical variable whose dynamics are captured by the learned
model must be measured through a suitable sensor: for instance, it is im-
possible to know how a room’s temperature or human fatigue evolves in
response to specific events if no sensor readings are available.

Similarly, for the learning to be feasible, the occurrence of a specific
event (e.g., a window opening or a human starting to walk) must be de-
ducible from available data: it is not possible to learn how the system re-
sponds to a specific event if the occurrence of such event is never recorded.
Depending on the specific event, its occurrence might have to be inferred
from data (e.g., a human starting to walk may be inferred from a change in
their position) or explicitly logged (e.g., the robot’s controller instructing
the robot to stop moving may log this information directly). The concepts
of measurability and observability are detailed in Section 12.2.1.
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The outcome of DC is the set of collected data, which are likely het-
erogeneous (i.e., originating from different sources) and whose nature may
vary significantly between different CPSs instances.

The cornerstone of the model learning phase (ML) is L∗SHA. Similarly to
L∗, in L∗SHA, learning occurs through the interaction between a teacher and
a learner. The teacher stores the accumulated knowledge about the CPS’s
uncertain component—referred to as the System Under Learning (SUL)—
while the learner maintains the hypothesis SHA. The learner progressively
refines the hypothesis SHA by querying the teacher about the system’s be-
havior in response to specific event sequences.

While L∗SHA is agnostic with respect to the specific SUL, some of its fea-
tures require manual configuration (indicated as “SUL Configuration” in
Fig. 12.1). It is necessary to specify which events can occur in the system.
Note that observable events that do not impact the behavior of the compo-
nent under learning should not be specified. Each event is identified by a
label and a condition (expressed as a set of logic formulae) that, if evalu-
ated against data, determines whether the event occurred. Collected data
then requires pre-processing to become accessible by the L∗SHA teacher (as
per Fig. 12.1). Specifically, all sensor logs need to be parsed into sampled
signals through signal processing techniques.

L∗SHA infers the SUL’s behavior in response to specific sequences of
events, referred to as “traces”. Therefore, for each available batch of sig-
nals, it is necessary to identify the events (assumed to be observable) that
led to the specific recorded behavior. This task is referred to as trace identi-
fication. For example, a variation in the room temperature’s derivative (i.e.,
the recorded behavior) indicates that the heating system has been switched
on (i.e., the identified event). How to parse signals and identify events must
also be specified upon configuring the SUL. A set of candidate models un-
derlying continuous-time physical processes (i.e., systems of ODEs) gov-
erning the SUL must also be specified beforehand. For each signal, L∗SHA

identifies the equation that best describes it out of the specified candidates.
When L∗SHA terminates, it returns the learned SHA modeling the con-

figured uncertain entity. Upon entering the CPS design (SD) phase, the
learned SHA is plugged into a larger network of SHA representing the en-
tire CPS, where the model of predictable components (either physical such
as programmable robotic platforms, or cyber such as robot controllers) is
known a priori and provided by the CPS designer rather than learned.

Finally, the purpose of CPS analysis (phase MA) is to formally ver-
ify whether the CPS model meets specific requirements. Requirements
and associated performance indicators of the CPS are expressed as prop-
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12.2. L∗SHA Algorithm

erties within the verification tool. Given the stochastic nature of the formal
model, the chosen formal verification technique is SMC rather than exhaus-
tive model-checking, which is not feasible. SMC results quantify either the
probability that a certain property holds or the expected value of relevant
indicators. These results provide developers with insights into the system’s
behavior, such as safety hazards and sources of inefficiency, to be factored
in when developing (or re-configuring) cyber components that control and
monitor the CPS.

12.2 L∗SHA Algorithm

This section introduces the L∗SHA algorithm for SHA learning. The core
of L∗SHA is the interaction between the learner, which iteratively builds the
hypothesis SHA, and the teacher, which possesses knowledge about the
SUL and can thus answer the learner’s queries. The algorithm relies on
collected sample traces to gain knowledge about the SUL as, given the
application domain (i.e., CPSs with a highly variable and unpredictable
behavior), the existence of a teacher with exact knowledge is possible in
theory but holds limited significance in practice. The learning procedure
is active since the teacher can request new system traces if it finds that
knowledge of a specific contingency (i.e., an event sequence) is insufficient:
practical implications of this feature are discussed later in this section.

Fig. 12.2 shows a high-level overview of the algorithm’s workflow: the
fundamental infrastructure (i.e., the tasks and how they are split between
learner and teacher) directly takes after L∗. With each round of learning, the
learner progressively refines the SHA conjecture Ahyp based on currently
accumulated knowledge about the SUL. To check whether the current con-
jecture automaton is up-to-date with the available pool of traces, during
each round, the learner asks the teacher for a counterexample, shortened as
c.ex. in Fig. 12.2. A counterexample is a sequence of events that has al-
ready been observed, hence it is part of the teacher’s knowledge (similarly
to L∗) but not compliant with the current SHA conjecture. If no coun-
terexample exists, the conjecture is up-to-date with the current knowledge,
otherwise, a counterexample is identified.

At the start of each round, as per Fig. 12.2, the teacher performs a ref
query to examine recorded sequences of events (and all their prefixes) that
the hypothesis automaton must capture. If the pool of data for one (or mul-
tiple) event sequences is insufficiently informative to perform the learning,
the teacher asks the SUL for new runs. For each Ahyp location, the learner
then modifies the Ahyp graph to account for the latest counterexample, and
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Figure 12.2: High-level representation of L∗SHA workflow. The left lane contains the op-
erations performed by the learner, the right lane shows the queries performed by the
teacher. Rectangles represent instructions, whereas diamonds are decision points with
two outgoing branches labeled as yes/no (Y/N). Solid arrows represent tasks exe-
cuted sequentially. Dashed arrows represent function invocations, labeled to indicate
what the invoked function returns.

it asks the teacher to determine flow conditions and probability distributions
(by performing mi and ht queries depicted in Fig. 12.2). At this point, the
learner checks whether Ahyp is well defined or not, that is, whether all lo-
cations are properly defined, and transitions are deterministic (the specific
properties are formalized in Section 12.2.2). In the latter case, the learner
modifies the conjecture graph and resubmits mi, and ht queries. WhenAhyp

is well defined, the learner asks for a new counterexample through a cex
query. If a counterexample exists, a new round of learning is necessary. If
the teacher does not find any counterexample, L∗SHA terminates and returns
Ahyp as the automaton modeling the SUL given the collected set of traces.
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The notation introduced in Chapter 3 and the pseudo-code presented in
the following apply to systems with one physical variable whose flow con-
ditions characterize each location. Nevertheless, the algorithm is general
and can be extended to SULs with multiple physical variables whose be-
havior is not fully predictable and can thus be learned through L∗SHA based
on collected traces.

12.2.1 Signals and Traces

Physical variables of the SUL captured by the SHA must be measurable
through sensors and have their values recorded for each run. Each log of a
variable’s recording is hereinafter referred to as “sampled signal”.

Definition 2. A sampled signal is a finite sequence of pairs (τ0, v0)(τ1, v1) . . .
(τn−1, vn−1), such that the following properties hold:

1. ∀i ∈ [0, n− 1] : τi ∈ R+;

2. ∀i ∈ [0, n− 2] : τi < τi+1;

3. ∀i ∈ [0, n− 1] : vi ∈ RVdc .

The set of all sampled signals is indicated as Σ. Value vi of a sampled
signal σ ∈ Σ is also indicated as σi. The length of a sampled signal σ ∈ Σ
is the number of pairs in the sequence and is indicated as |σ|.
Definition 3. Given a sampled signal σ ∈ Σ of length n, its change-point
vector, denoted by πσ, is a finite ordered sequence of timestamps τ ′0 . . . τ

′
m−1

of length m < n such that the following properties hold:

1. ∀j ∈ [0,m− 1],∃i ∈ [1, n− 1] : τ ′j = τi;

2. ∀j ∈ [0,m− 1], i ∈ [1, n− 1] : τi = τ ′j ⇒ vi ̸= vi−1.

Every element of πσ is called change-point.

L∗SHA is applicable to systems where any change of behavior of the
SUL—corresponding to a location switch in the SHA—is triggered by an
observable event. An event with timestamp τe is observable if it is associ-
ated with a change point. The change-point vector is necessarily smaller
than the sampled signal it derives from (m < n holds) since the first times-
tamp τ0 can never be a change-point. We assume that sampled signals fea-
ture measurable physical variables and their derivatives (e.g., position and
speed). A change-point vector contains change points related to all vari-
ables, though not all of them correspond to significant events. For example,
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in the case of human-robot interaction, human fatigue changes value at all
times. Still, only change-points of its derivative point out an event (e.g., the
human starting to walk ).

In the SHA, an event is a pair (γ, c) of a guard condition γ ∈ Γ(W )
and a channel c ∈ C that causes an edge to fire. We indicate with A the
set of possible events, where A ⊆ Γ(W)× C is a fixed and finite alphabet.
L∗SHA relies on a system-specific “labeling function” Lπσ : R+ → A ∪ {⊥}
(implementing the trace identification task in Fig. 12.1). Given a change-
point vector πσ, Lπσ assigns a pair (γ, c) to a change-point τj in πσ if τj
corresponds to an event, ⊥ otherwise. The function Lπσ identifies at most
one event for each timestamp since an event corresponds to firing an edge,
and a single SHA (i.e., the one being learned) does not allow multiple edges
to fire at the same time.

Definition 4. Given a sampled signal σ ∈ Σ, its corresponding timed trace
ttrσ is a finite sequence of pairs (τ0, (γ0, c0)) . . . (τp−1, (γp−1, cp−1)) of length
p, where p = |πσ| holds, such that the following properties hold:

1. ∀k ∈ [0, p− 1],∃τj ∈ πσ : Lπσ(τj) = (γk, ck) ∧ τk = τj;

2. ∀τj ∈ πσ,∃k ∈ [0, p− 1] : (γk, ck) = Lπσ(τj) ∧ τk = τj;

3. ∀k1, k2 ∈ [0, p− 1] : τk1 < τk2 ⇐⇒ k1 < k2.

The set of all timed traces derived from signals in Σ is indicated as
T T R. A timed trace without timestamps constitutes a “trace” tr ∈ T R
and is obtained from the original timed trace ttr through operation untime(ttr).
We use the term “string” to indicate a trace or a trace prefix; notation
tr′ ≪ tr (resp., tr′ ≫ tr) is used to state that string tr′ is a prefix (resp.,
a suffix) of tr. A string of which there exists a record in the collected pool
of SUL runs is referred to as “observed”. Since signals and traces are part of
the teacher’s knowledge, the set of observed sampled signals is hereinafter
indicated as TEACHER.Σobs, the set of timed traces and untimed traces de-
rived from signals in Σobs as TEACHER.T T Robs and TEACHER.T Robs,
respectively.

12.2.2 Observation Tables

The L∗SHA learner interacts with a teacher capable of answering a set of
queries and returns the learned SHA. During each learning round, the learner
refines Ahyp, representing the most recent SHA hypothesis. The learner
loop stops when, based on the currently accumulated knowledge about the
SUL, Ahyp can no longer be refined; thus, no further round of learning is
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needed. The version of Ahyp resulting from the last learning loop is the
final learned automaton (returned by L∗SHA).

The L∗SHA learner, as in the original L∗ algorithm, stores information in
an “observation table” [7]. Rows and columns of the table are labeled with
traces (ϵ is the symbol for “no event"). Let · be the string concatenation
operator. A table cell T (r · c) for a trace tr = r · c, where r and c are
the corresponding row and column labels, describes the behavior (i.e., flow
condition and probability distribution pair) of Ahyp after the occurrence of
events in tr from the initial state. With a slight misuse of notation, we use
r · c to indicate the location l ∈ Lwhere the automaton lands if the events in
string r · c occur. This is possible because, as explained later in the section,
all edges of the hypothesis SHA built by L∗SHA have a deterministic desti-
nation. A table cell is undefined (indicated as ⊥) if it is yet to be analyzed
or the pool of data corresponding to the associated trace is insufficiently
informative.

The table can be seen as split into two sections (also highlighted in Fig.
12.3): the upper one contains rows labeled by strings in a set S ⊆ T R,
whereas the bottom one contains rows labeled by strings in S extended by
all possible events in A, thus identified by set S · A (operator · also applies
to sets of strings). The two sets of strings are referred to as short traces and
long traces, respectively. As in L∗, each unique row identified by a short
trace represents a candidate SHA location.

Definition 5. An observation table is a tuple ⟨S , E , Z , T ⟩, where:

Figure 12.3: Portion of observation table of the SHA in Fig. 3.1a. Rows, columns, and
cells are marked to visualize tuple ⟨S , E , Z , T ⟩ and long traces in set S ·A.
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1. S ⊆ T R is a set of strings such that, given tr ∈ S, all tr′ such that
tr′ ≪ tr holds also belong to S (i.e., S is “prefix-closed");

2. E ⊆ T R is a set of strings such that, given tr ∈ E, all tr′ such that
tr′ ≫ tr holds also belong to E (i.e., E is “suffix-closed");

3. Z ⊆ ℘(R) are the sample sets from which empirical distributions for
the stochastic parameter derive;

4. T : ((S ∪ S · A) · E )→ (M ′ ×Z) ∪ {⊥} is such that T (tr) ̸= ⊥
holds if, and only if, tr corresponds to an observed string of the sys-
tem, where M ′ ⊆ {R+ ∪ (R+ × R) → RW} is a given set of flow
conditions.

We define function row : (S ∪ S · A) → (E → M ′ × Z) such that
row(r)(c) = T (r · c) holds.

With reference to Fig. 12.3, displaying part of an observation table,
row((open, on))(ϵ) equals T ((open, on) · ϵ).

As mentioned above, both in L∗ and L∗SHA, function T can be represented
as a table. In L∗, function T yields a Boolean value indicating whether
string r · c is accepted by the DFA under learning or not. In L∗SHA, the out-
put of function T captures how physical variables evolve if the sequence
of events identified by string r · c occurs from the initial state. In L∗SHA,
T (r · c) yields a ⟨F(r · c),D(r · c)⟩ pair composed by a flow condition
F(r · c) ∈ M ′ and an empirical distribution D(r · c) ∈ Z (F and D are in-
troduced in Definition 1). Since the observation table represents conjecture
automatonAhyp, filling its cells is necessary to infer from available data the
nature of learned locations. Filling observation table ⟨S , E , Z , T ⟩ amounts
to the learner submitting queries to the teacher for each row r and column
c such that the corresponding cell is undefined (i.e., T (r · c) = ⊥ holds).
F(r · c) and D(r · c) are provided by the teacher as answers to mi and ht
queries, respectively. Algorithm 1 shows the full function to fill an obser-
vation table ⟨S , E , Z , T ⟩. We remark that T (r · c) = ⊥ holds if at least
one among F(r · c) and D(r · c) is undefined. Note that T (r · c) may still
be undefined after submitting the queries since the teacher may not have
enough observations of the requested trace to answer queries conclusively.

For instance, if L∗SHA is fed with signals originating from the SUL mod-
eled in Fig. 3.1a, it would produce the observation table partially shown
in Fig. 12.3. The initial location (i.e., the row corresponding to the empty
trace ϵ) is characterized by flow condition fde (see Section 3.1.1) and sam-
ple set ΘC ∈ Z , which should be drawn from N(µC, σ

2
C). In the case
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Algorithm 1 Learner function to fill empty cells in ⟨S , E , Z , T ⟩ with TEACHER replies
to mi and ht queries.

1: procedure fill(⟨S , E , Z , T ⟩)
2: for r ∈ S ∪ S ·A do
3: for c ∈ E do
4: tr ← r · c
5: if T (tr)= ⊥ then
6: T (tr)← ⟨TEACHER.mi(tr), TEACHER.ht(tr)⟩

that event (open, on) occurs (thus, an event fires through channel on with
guard open enabled), the table identifies a different location with flow
condition fin and samples ΘL ∈ Z (drawn from distribution N(µL, σ

2
L)).

In the portion shown in Fig. 12.3, traces ϵ and (open, on) are elements
of set S (i.e., the short traces). Long traces (i.e., set S · A) result from
the concatenation of short traces with any event observable in the SUL:
Fig. 12.3 shows the long traces derived from (open, on). If the thermo-
stat has been switched on (hence, (open, on) fires) and then it is switched
off (i.e., (⊤, off) fires, whose guard condition is always enabled), the
table captures the system switching to the initial location (i.e., T (ϵ · ϵ)
equals T ((open, on) · (⊤, off) · ϵ))). On the other hand, since in the
SUL it is not feasible for the thermostat to switch on two times consec-
utively, no runs are found featuring long traces (open, on) · (¬open, on)
and (open, on) · (open, on). Therefore, the corresponding table cells are
labeled with ⊥.

The following presents the algorithms computing the answers to mi and
ht queries.

Model Identification Query mi(tr)

Algorithm 3 reports the implementation in pseudo-code of a mi query for a
generic string tr. This query aims to identify the flow condition that most
accurately describes the system’s evolution while in the location reached
after the events in string tr have occurred. For example, in the room tem-
perature control case study, if string tr terminates with an event imply-
ing that the thermostat is on, query mi(tr) identifies the equation for the
exponentially increasing temperature. Currently, mi queries can identify
the best-fitting model out of a pre-determined set of candidate functions
M ⊆ (R+ → RW ), provided as input to the algorithm as part of the SUL
Configuration task in Fig. 12.1. Set M ′ contains the derivatives of func-
tions in M (the flow conditions).

When performing a mi query, firstly, it is necessary to isolate the sam-
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Algorithm 2 Teacher function that, given string tr, returns all segments of sampled signals
in Σobs that follow tr.

1: function get_segments(tr)
2: Σ̃← ∅
3: for σ ∈ TEACHER.Σobs do
4: ttrσ ← {(τi, (γi, ci)) : ∃τj ∈ πσ s.t. τj = τi ∧ Lπσ

(τj) = (γi, ci)}
5: trσ ← untime(ttrσ)
6: if tr ≪ trσ then
7: σ̃ ← {(τj , vj) : (τj , vj) ∈ σ ∧ τi < τj ≤ τk ∧ L(τi) = last(tr) ∧ trσ =

tr · tr′ ∧ Lπσ (τk) = first(tr′)}
8: Σ̃← Σ̃ ∪ {σ̃}
9: return Σ̃

Algorithm 3 Teacher function computing the answer to a mi query for a specific trace tr.

1: function mi(tr)
2: Σ̃← get_segments(tr)
3: if |Σ̃|=0 then
4: return ⊥
5: M̂ ← ∅
6: for σ̃ ∈ Σ̃ do
7: d̂← +∞; ∆̂← +∞; m̂← ⊥
8: for m ∈M do
9: ϕ← {m(τi) | i ∈ [0, |σ̃| − 1] ∧ (τi, σ̃i) ∈ σ̃}

10: if DDTW(σ̃, ϕ) < ∆̂ then
11: ∆̂← DDTW(σ̃, ϕ)
12: m̂← m
13: else if DDTW(σ̃, ϕ) = ∆̂ ∧DTW(σ̃, ϕ) < d̂ then
14: d̂← DTW(σ̃, ϕ)
15: m̂← m
16: M̂ ← M̂ ∪ {m̂}
17: if |M̂ | > 1 then
18: raise ERROR

19: return m̂ ∈ M̂

pled signals in TEACHER.Σobs ⊆ Σ that, intuitively, “follow” a specific
event sequence tr (see Algorithm 2 for the pseudo-code of the function
get_segments). Specifically, we identify set Σ̃ ⊆ Teacher.Σobs containing
signals σ̃ such that:

1. there exists a sampled signal σ ∈ Teacher.Σobs of which σ̃ is a “fac-
tor” (i.e., σ = σ′ · σ̃ · σ′′ holds for some σ′, σ′′ ∈ Σ);

2. no events occur during σ̃ (i.e., trσ̃ equals ϵ);

3. trace tr under analysis is such that tr = trσ′ and trσ = trσ′ · trσ′′ hold.
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Fig. 12.4 plots a sampled room temperature signal σ for the SHA in Fig.
3.1a whose timed trace is ttrσ = (60, off) · (270, (open, on)) · (380, off) ·
(530, (¬open, on)) (each timestamp corresponds to a change-point in πσ).
Signal σ̃, also highlighted in Fig. 12.4, following trace tr = off ·(open, on)·
off (note that tr ≪ trσ holds) contains all timestamps between 380s and
530s with trσ′′ = (¬open, on).

Given trace tr, for each element in the corresponding set Σ̃ (line 6), Al-
gorithm 3 identifies function m ∈M that best fits signal σ̃ or returns ⊥ if
Σ̃ is empty (no observations of tr are available). To this end, we adopt
the Derivative Dynamic Time Warping (DDTW) approach [113], which,
unlike ordinary Dynamic Time Warping (DTW), assesses the similarity be-
tween the time derivatives (i.e., the flow condition the query has to iden-
tify). In addition to DDTW, we rely on DTW in some (later explained)
specific cases. Specifically, for each σ̃ ∈ Σ̃ and each function in m ∈M ,
Algorithm 3 calculates a new signal ϕ by applying m to the timestamps in
σ̃ and considering as initial value m(0) = σ̃0 (line 9). The index of simi-
larity between signals σ̃ and ϕ is indicated in Algorithm 3 as DDTW(σ̃, ϕ)
(line 10, where ∆̃ stores the current minimum value). The steps required to
calculate such an index are presented in detail in [113].

Algorithm 3 identifies m̂ ∈M resulting in the minimum DDTW(σ̃, ϕ)

value and adds it to set M̂ (line 16). If two models lead to the same
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Figure 12.4: Example of sampled signal factorization. The dashed line plots the room
temperature sampled for 600s. Labeled vertical lines mark the events identified by
the function L. Timestamps marking the start and the end of σ̃ are in blue and red,
respectively: the solid line is the corresponding σ̃.
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Algorithm 4 Function within the TEACHER returning the answer to a ht query.

1: function ht(tr)
2: Σ̃← get_segments(tr)
3: if |Σ̃| ≤ nmin then
4: return ⊥
5: Θ← {est_param(σ̃) | σ̃ ∈ Σ̃}
6: Dmin ← +∞; m← |Σ̃|; Θ̂← ⊥
7: for Θ′ ∈ Z do
8: n← |Θ′|
9: Dm,n , p-value ← K-S_2sample_test(Θ,Θ′)

10: if p-value > α ∧Dm,n < Dmin then
11: Dmin = Dm,n ;
12: Θ̂← Θ′

13: if Θ̂ = ⊥ then
14: Z ← Z ∪ {Θ}
15: return Θ
16: else
17: Θ̂← Θ̂ ∪Θ
18: return Θ̂

DDTW(σ̃, ϕ) value, Algorithm 3 resorts to DTW to pick the one with the
minimum distance from σ̃ (line 13). Note that, since the algorithm is lim-
ited to systems with deterministic edges, the SUL should display the same
physical behavior every time the same sequence of events tr takes place. If
this is not the case, after analyzing all segments in Σ̃, set M̂ contains more
than one element (|M̂ | > 1 holds at line 17). The algorithm, then, raises
an error (line 18) indicating that the system is showing inconsistent physi-
cal behavior (likely due to sensor errors) and the learning procedure cannot
continue.

Hypothesis Testing Query ht(tr)

While the mi query deals with the hybrid part of the automaton, ht queries
characterize the stochastic component. Given string tr, query ht(tr), whose
implementation is shown in Algorithm 4, performs a series of hypothesis
tests to identify whether an empirical distribution describing a sample set
in Z fits a set of (newly) collected samples under analysis. To this end, set
Σ̃ of signals following tr is isolated through function get_segments iden-
tically to mi queries. If Σ̃ does not contain enough elements (less than a
threshold nmin), Algorithm 4 returns ⊥ indicating that the teacher does not
have sufficient observations of tr to answer the query conclusively (lines 3
and 4).
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Algorithm 5 Learner function to make an observation table closed (multiple iterations
might be necessary).

1: function AddRow(⟨S , E , Z , T ⟩)
2: for r ∈ S, a ∈ A, c ∈ E do
3: if T (r · a · c) ̸= ⊥ and
4: ∀r′ ∈ S : row(r · a) ̸≃ row(r ′) then
5: S ← S ∪ {r · a}
6: return ⟨S , E , Z , T ⟩

This query only applies to signals that behave stochastically, that is,
whose model includes a randomly distributed parameter. The calculation
of the parameter value, given a specific signal, through function est_param
varies depending on the specific physical variable under analysis, as differ-
ent types of sampled signals may require different processing. For example,
to extract the value of human fatigue rates in the human-robot interaction
CPS exemplar, previous approaches rely on processing electromyography
signals [139, 156].

After calculating the random parameter sample set Θ from signals in
Σ̃ (line 5), we verify whether it is plausible that Θ and any Θ′ ∈ Z are
samples of the same probability distribution. For each identified sample set
Θ′ (line 7), Algorithm 4 performs a two-sided two-sample Kolmogorov-
Smirnov (K-S) test (line 9). The test returns a p-value and a statistic Dm,n

corresponding to the maximum distance between the two empirical distri-
bution functions, wherem is the size of the sample set Θ whose distribution
needs identification and n is the size of the candidate set Θ′. If the p-value
is greater than a significance level α (fed as an input parameter to L∗SHA),
the null hypothesis that Θ and Θ′ are two samples of the same distribution
cannot be rejected [90]. Algorithm 4 repeats the procedure for all sets in Z
and stores the one leading to the smaller value of Dm,n provided the cor-
responding test ended with a sufficient significance level (lines 10-12). If
the null hypothesis is rejected for all Θ′ ∈ Z (hence, Θ̂ = ⊥ holds at line
13), set Θ represents a new empirical distribution and is added to Z (line
14). Otherwise, samples in Θ are added to Θ̂ (line 17), i.e., the population
identified as the best fit.

Closedness and Consistency

As in L∗, an observation table is well-defined if it is closed and consistent.
Well-defined tables can be examined by the teacher to identify a counterex-
ample and employed by the learner for a learning round. Referring to the
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Algorithm 6 Learner function to make an observation table consistent (multiple iterations
might be necessary).

1: function AddCol(⟨S , E , Z , T ⟩)
2: for r1, r2 ∈ S, a ∈ A, c1, c2 ∈ E do
3: if T (r1 · c1) ̸= ⊥ and T (r2 · c2) ̸= ⊥ and
4: row(r1) ≃ row(r2) and row(r1 · a) ̸≃ row(r2 · a) then
5: c3 ← c ∈ E : T (r1 · a · c) ̸= ⊥ ∧ T (r2 · a · c) ̸= ⊥
∧ T (r1 · a · c) ̸= T (r2 · a · c)

6: E ← E ∪ {a · c3}
7: return ⟨S , E , Z , T ⟩

table-like representation of tuple ⟨S , E , Z , T ⟩ exemplified in Fig. 12.3, an
observation table is closed if all unique rows corresponding to long traces
“equal" at least one row corresponding to a short trace; it is consistent if,
for every pair of “equal" rows corresponding to short traces, the pair of
rows corresponding to such traces concatenated to one more event are still
“equal". An intuitive explanation of why these two properties are relevant
is that L∗ (thus, by inheritance, L∗SHA) requires closedness to guarantee that
all edges in the hypothesis SHA reach existing locations and consistency
to build an SHA with deterministic edges. The notion of rows equality
specific to L∗SHA is clarified in the following.

Given the stochastic nature of the SUL, some sequences of events may
never be observed, although theoretically feasible. Therefore, L∗SHA uses
the same notions of closedness and consistency as L∗, although based on a
different criterion for row equality called “weak equality” and newly intro-
duced for L∗SHA. Since L∗SHA relies on sampled signals, two rows row(r1)
and row(r2) are still considered (weakly) equal even if their content differs
for some string c ∈ E as long as at least one sequence of events among r1 · c
and r2 · c has not been observed yet (i.e., T (r1 · c) = ⊥ ∨ T (r2 · c) = ⊥
holds). Weak equality among two rows is checked through an eq query
returning a Boolean value that indicates whether weak equality holds or
not.

Definition 6. Given ⟨S , E , Z , T ⟩ and two strings r1 , r2 , row(r1 ) weakly
equals row(r2 ) (row(r1 ) ≃ row(r2 ) holds) if, for all c ∈ E such that T (r1 ·
c) ̸= ⊥ ∧ T (r2 · c) ̸= ⊥ holds, T (r1 · c) = T (r2 · c) also holds.

Closedness and consistency are defined in the following.

Definition 7. An observation table is closed if, for all r1 ∈ (S · A), there
exists r2 ∈ S such that row(r1)≃row(r2).
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An observation table is closed if, for each long trace, the corresponding
row weakly equals at least one row corresponding to a short trace. If this
property is not verified, the observation table is modified through function
AddRow(⟨S , E , Z , T ⟩) (see Algorithm 5) as follows: for each row r ∈ S
and event a ∈ A, if the row corresponding to long trace r ·a is missing from
the upper part of the table (there is no r′ ∈ S such that row(r · a) ≃ row(r′)
holds), string r · a is added to set S.

Definition 8. An observation table is consistent if, for all r1, r2 ∈ S such
that row(r1)≃row(r2) holds, then for all a ∈ A, row(r1 · a)≃row(r2 · a)
holds.

An observation table is consistent if, for each pair of short traces with
weakly equal rows, rows corresponding to long trace extensions (with the
same symbol a ∈ A) are still weakly equal. If this is not the case, the
observation table is modified through function AddCol(⟨S , E , Z , T ⟩) (see
Algorithm 6) as described in the following. We first identify event sequence
c ∈ E such that, given rows r1, r2 ∈ S and symbol a ∈ A, row(r1) ≃ row(r2)
holds but T (r1 · a · c) differs from T (r2 · a · c) (and both T (r1 · a · c) and
T (r2 · a · c) differ from ⊥). Intuitively, strings r1 and r2 lead to the same
location because row(r1) ≃ row(r2) holds but suffix a · c induces different
system behaviors (i.e., leading to different locations) that require investiga-
tion. String a · c is, therefore, added to set E (a new column is added to
the observation table) since it discriminates between prefixes r1 and r2 and
thus locations reachable with r1 ·a ·c and r2 ·a ·c. The conditions to identify
string c and expand E are implemented in function AddCol(⟨S , E , Z , T ⟩).

Referring to the diagram in Fig. 12.2, the learner modifies the obser-
vation table by adding new rows and columns. The so-created new cells
are filled with answers to mi, and ht queries provided by the teacher. The
learner keeps modifying the table until it is closed and consistent.

12.2.3 Knowledge Refinement

Since L∗SHA relies only on samples to acquire knowledge about the SUL,
some traces in T Robs may have been observed. Still, the number of ob-
servations is not sufficient for mi, and ht queries to produce significant
results (hence, their corresponding rows are weakly informative). As in the
sampling-based adaptation of L∗ to Markov Decision Processes learning
developed by Tappler et al. [207], in our algorithm, the learner carries out
knowledge refinement by asking the teacher to resample specific sequences
through the ref query. The full implementation of the ref query is shown in
Algorithm 7.
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Algorithm 7 Function within the TEACHER to run ref queries.

1: procedure ref(⟨S , E , Z , T ⟩)
2: ND ← ∅
3: for s ∈ S ∪ S ·A do
4: Σ̃← get_segments(s)
5: if |Σ̃| < nmin then
6: ND ← ND ∪ {s}
7: else
8: EQ ← {s ′ | s ′ ∈ S ∪ S ·A ∧ s ′ ̸= s ∧ row(s) ≃ row(s ′)}
9: if ∃s1 , s2 ∈ EQ : row(s1 ) ̸≃ row(s2 ) then

10: ND ← ND ∪ {s}
11: for s ∈ ND do
12: TEACHER.Σobs ← TEACHER.Σobs ∪ resample(s, nmin)

Only well-defined tables are eligible for knowledge refinement, which
is carried out through resampling at the beginning of a learning round (see
Fig. 12.2). Resampling is required if a row has scarce observations or if
it is ambiguous. The first case occurs when a trace in S ∪ S · A has been
recorded a number of times smaller than a user-defined critical threshold;
the second refers to a row that simultaneously weakly equals two rows that
differ from each other, indicating that there is a source of ambiguity to be
cleared out. This second case occurs because L∗SHA is sampling-based, and
some traces may be feasible but rare, and thus they may never be observed.
The lack of observations associated with a trace is the reason why the no-
tion of weak equality in Definition 6 is not transitive; hence it is not an
equivalence relation. For example, there may exist r1, r2, r3 ∈ (S ∪ S ·
A) such that row(r1) = ⟨⟨f1,Θ1⟩,⊥⟩, row(r2) = ⟨⟨f1,Θ1⟩, ⟨f2,Θ2⟩⟩, and
row(r3) = ⟨⟨f1,Θ1⟩, ⟨f3,Θ3⟩⟩ hold. In this case, no traces are available to
clear the ⊥, hence, it is known that r2 captures a different behavior than r3
and that r1 might be equivalent to r2 and r3, but it is not known whether r1
equals r2 or r3 (to this end, the ⊥ must be cleared). In fact, both row(r2)
and row(r3) weakly equal row(r1) but row(r2) ̸≃ row(r3) holds.

The value of parameter nmin (line 5)—provided as an input to L∗SHA—is
the minimum acceptable number of observations to determine the behavior
corresponding to the associated trace. To properly size nmin, the L∗SHA user
has to balance the effort to obtain new traces from the real physical sys-
tem and the minimum sample size required to run queries with significant
results. Previous studies have shown how the Kolmogorov-Smirnov test
provides good results with small sample sizes (e.g., n = 10) [73] and, for
our experiments presented in Chapter 13, we set nmin = 20.
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To identify rows with scarce observations, the Teacher scans all row
labels (line 3) and, for each string s ∈ (S ∪ S · A), it isolates the collected
corresponding signal segments (set Σ̃ in line 4). If there are less than nmin

samples for string s, s is added to a set ND (line 6). Otherwise, there are
enough observations (|Σ̃| ≥ nmin holds), thus, for any string s ∈ S ∪ S ·
A, the teacher identifies all strings s′, such that s ̸= s′ holds and row(s′)
weakly equals row(s), and collects them in set EQ (line 8). According
to Definition 6, it is possible that two distinct rows row(s1), row(s2) ∈
EQ are such that row(s1) ≃ row(s), row(s2) ≃ row(s), and row(s1) ̸≃
row(s2) hold, thus giving rise to ambiguity. This situation occurs if there
exists e ∈ E such that T (s · e) is undefined while T (s1 · e) and T (s2 · e) are
both defined and different from each other. Hence, the ambiguous string s
is added to set ND (line 10).

As a matter of fact, when the learning terminates, the observation ta-
ble is converted into a SHA, and each set of weakly equal rows (i.e., ev-
ery set EQ identified in line 8) is mapped to a different location. Since
row(s1) ̸≃ row(s2) holds because of symbol e, row(s1) and row(s2)
would be converted into distinct locations l1, l2 ∈ L. However, since
row(s) ≃ row(s1) and row(s) ≃ row(s2) hold simultaneously, row(s)
would be associated with both l1 and l2, meaning that events in trace s
would non-deterministically lead to either l1 or l2. Therefore, the result-
ing SHA would not be deterministic with respect to transition outputs, and
resampling is required to prevent this situation.

All strings in set ND require resampling. For each sequence in ND,
set TEACHER.Σobs of collected sampled signals is enriched with the addi-
tional signals returned by a system-specific function resample. Specifically,
function call resample(s, nmin) requests the SUL for nmin new sampled sig-
nals such that, for each new signal, s is a prefix of the corresponding trace.
The implementation of resample depends on how traces are collected in the
specific CPS instance under learning (i.e., phase DC in Fig. 12.1).

If the SUL is such that events can be programmatically triggered, the
function resample can force events in s to collect new observations. Oth-
erwise, if—as in a typical realistic CPS deployment setting—the CPS op-
erates independently of L∗SHA and traces are collected as a consequence,
resample examines the available pool of traces to find new observations
of s. The resampling strategies implemented for the specific case studies
presented in the thesis are presented in Chapter 13 and Chapter 15.
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Algorithm 8 Function within the TEACHER that returns a counterexample to ⟨S , E , Z ,
T ⟩ if it finds one, ⊥ otherwise.

1: function cex(⟨S , E , Z , T ⟩)
2: T R′

obs ←{tr′ | tr ∈ TEACHER.T Robs ∧ tr′ ≪ tr ∧ tr′ /∈ S ∪ S ·A}
3: for tr′ ∈ T R′

obs do
4: if ∃e ∈ E : T (tr ′ · e) ̸= ⊥ then
5: if ∄s ∈ S : row(s) ≃ row(tr ′) then
6: return tr′ ▷ non-closedness
7: else if ∃s ∈ S , a ∈ A : row(s) ≃ row(tr′) ∧ row(s · a) ̸≃ row(tr ′ · a)

then
8: return tr′ ▷ non-consistency
9: return ⊥ ▷ no counterexample

12.2.4 Counterexamples

Like L∗, L∗SHA relies on the concept of counterexample to determine whether
a new round of learning (lines 3 to 17 of Algorithm 9, described in detail in
Section 12.2.5) is necessary. Nevertheless, the notion of counterexample in
L∗SHA is different than L∗. L∗ assumes the existence of a teacher with exact
knowledge of the language recognized by the DFA under learning (i.e., an
“omniscient” teacher). An omniscient teacher always answers membership
queries (i.e., whether a string is accepted or not by the DFA) correctly and
identifies a counterexample with certainty, if at least one exists. In L∗, a
counterexample is either: 1. a string accepted by the DFA conjecture but
not by the real DFA, or 2. a string accepted by the real DFA but not by the
DFA conjecture, and both are identifiable by the omniscient teacher. An
omniscient teacher is not feasible in L∗SHA, which relies on samples of the
real physical system. If a sequence of events can be observed in reality, then
it is necessarily “accepted”. On the other hand, the sampling-based teacher
cannot identify the first type of counterexample, that is, event sequences
captured by Ahyp but technically unfeasible.

A counterexample in L∗SHA is an event sequence of which observations
are available but is not compatible with the current version of Ahyp. More
specifically, a counterexample is a string that highlights a source of non-
closedness or non-consistency which is not present in the observation table.
In the first case, the counterexample highlights the absence of a location
(we recall that each row of the observation table corresponds to a location
modeling a specific behavioral state of the SUL) in the observation table.
However, sufficient observations of it have been collected. Therefore, a
row will be added to the table in the following round. In the second case, if
the counterexample highlights non-consistency, it means that a location in

220



12.2. L∗SHA Algorithm

Algorithm 9 Main L∗SHA algorithm.

Input: A TEACHER capable of answering mi, ht, eq, ref, and cex queries.
Output: Final SHA conjecture Ahyp.

1: S ← {ϵ}; E ← {ϵ}
2: T (ϵ · ϵ)← ⟨TEACHER.mi(ϵ · ϵ), TEACHER.ht(ϵ · ϵ)⟩
3: do
4: TEACHER.ref(⟨S , E , Z , T ⟩)
5: fill(⟨S , E , Z , T ⟩)
6: while ⟨S , E , Z , T ⟩ is not closed or not consistent do
7: if ⟨S , E , Z , T ⟩ is not closed then
8: ⟨S , E , Z , T ⟩ ← AddRow(⟨S , E , Z , T ⟩)
9: fill(⟨S , E , Z , T ⟩)

10: if ⟨S , E , Z , T ⟩ is not consistent then
11: ⟨S , E , Z , T ⟩ ← AddCol(⟨S , E , Z , T ⟩)
12: fill(⟨S , E , Z , T ⟩)
13: tr ← TEACHER.cex(⟨S , E , Z , T ⟩)
14: if tr ̸= ⊥ then
15: T ′ ← {tr ′ | tr ′ ≪ tr}
16: S ← S ∪ {tr} ∪ T ′

17: while tr ̸= ⊥
18: Ahyp ← hyp(⟨S , E , Z , T ⟩)
19: return Ahyp

the observation table should actually be split into two separate ones (thus,
a column will be added to the table in the following round) to make Ahyp

deterministic with respect to transitions.

To find a counterexample, the teacher performs a cex query, shown in Al-
gorithm 8. The teacher scans all collected traces tr ∈ TEACHER.T Robs ⊆
T R and trace prefixes tr′ ≪ tr (including tr) which are not already in the
observation table (line 2). If there exists e ∈ E such that T (tr′ · e) ̸= ⊥
holds (i.e., there are enough observations for string tr′, as per line 4), the
teacher first checks for non-closedness. If there is no string s ∈ S such that
row(s) weakly equals row(tr′), then tr′ is a counterexample (lines 5-6).
Secondly, the teacher checks for non-consistency: if there is a string s ∈ S
such that row(s) weakly equals row(tr′), but there is also an event a ∈ A
such that row(s · a) differs from row(tr′ · a), tr′ is a counterexample (lines
7-8). If none of the two conditions apply to any trace or trace prefix that
has already been collected, the teacher cannot identify any counterexample
and L∗SHA terminates.
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12.2.5 Complete L∗SHA Algorithm

Algorithm 9 shows the main L∗SHA learner algorithm, which combines all
the functions described in the previous sections. As previously explained,
L∗SHA requires a teacher capable of answering a set of queries and returns
SHA hypothesis Ahyp.

Firstly, the learner initializes the observation table with only one row
and one column (sets S and E) labeled by the empty string ϵ (lines 1− 2).
L∗SHA performs at least one learning loop, which starts with a ref query to
refine the sample set (line 4), if necessary, and filling the observation table
with answers to mi and ht queries as described in Section 12.2.2 through
function fill (invoked on line 5 and shown in Algorithm 1). The so-obtained
first version of the observation table is checked for closedness and con-
sistency and progressively adjusted until it meets both requirements for
well-formedness (lines 6− 12). Finally, the learner asks the teacher for
a counterexample through query cex (line 13): if the teacher finds a coun-
terexample, the latter and all its prefixes are added to set S (lines 14− 16).
The learning loop stops when the observation table is well-formed, and the
teacher cannot find new counterexamples. The algorithm returns automa-
ton Ahyp obtained from the observation table through function hyp. The
implementation of function hyp is analogous to L∗ and is not presented in
detail for the sake of conciseness.

According to the criteria defined in the literature [191], L∗SHA can be
classified as an active and offline algorithm for automata learning since:
a) the Teacher can actively request new traces to proceed with the learning
procedure; b) each collected trace is always available for processing—even
multiple times—as long as the algorithm is running.

12.2.6 Correctness, Termination, and Complexity

In the following, we sketch an argument on L∗SHA’s correctness and termi-
nation guarantees. Empirical results obtained by applying L∗SHA to the case
studies are discussed in Chapter 13 and Chapter 15.

Given that the knowledge of the SUL’s behavior is limited by samples,
the learned SHA cannot fully capture the system’s behavior if available
traces only provide a partial insight. Whether L∗SHA correctly learns a SHA
limitedly to the set of available traces depends on the teacher’s accuracy
in answering mi and ht queries (thus, determining the right value of T (tr)
for any tr ∈ TEACHER.T Robs). Therefore, the teacher fails to identify the
correct T (tr) ∈ (M ′×Z) element when the techniques underlying the two
queries are at fault.
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Keogh and Pazzani assess DDTW’s accuracy in terms of misalignment,
i.e., a measure of error. On benchmark experiments, DDTW has shown
an adequate degree of accuracy with a mean misalignment ranging from
0.0034 to 0.0053 performing better than ordinary DTW, which results in
a mean misalignment ranging from 0.0043 to 0.1278 on the same bench-
marks. Since mi queries identify the closest model within finite pre-determined
set M the biggest threats to their accuracy are:

1. Set M not being properly configured, which relies on the designer’s
knowledge of the SUL’s physical behavior. Expressly, set M may
contain candidate functions that are never identified by mi queries as
the best fit (thus, they do not feature in the learned SHA), or it may
not contain candidates that would be the best fit. The first case im-
pacts the learning time because each mi query cycles through more
candidates than necessary, but not on the learned SHA’s correctness.
The second case (i.e., missing candidates) compromises correctness
since, if the best fitting function for specific signals is not listed as a
candidate, the final SHA will feature a less accurate flow condition in
the corresponding locations.

2. The SUL’s physical behavior being naturally ambiguous; thus, there
exists a possibility that the mi query assigns a batch of segments to
the wrong cluster. However, if this is the case, set M features two (or
multiple) highly similar elements. Therefore, even if mi provides the
“wrong” answer, the final SHA error in describing the SUL’s behavior
is limited. Otherwise, as per Section 12.2.2, if the physical behavior
is so fluctuating that different segments following the same trace are
clustered into different groups (i.e., |M̂ | > 1 holds at the end of Al-
gorithm 3), an error is raised since the learning procedure cannot be
completed.

Concerning the ht query, although larger sample sizes are preferable,
studies have shown that the K-S test is accurate with small samples [73]. In
hypothesis testing, two types of errors are possible, given that, with the two-
sample K-S test, the null hypothesis assumes that the two samples come
from the same distribution:

1. Rejecting the null hypothesis when it is true (i.e., Type I error [17]):
the ht(tr) query erroneously excludes that samples following tr in ob-
served signals (i.e., set Θ in Algorithm 4) belong to a previously iden-
tified population in Z . The impact of this error on the correctness of
Ahyp is limited since it results in the SHA having a redundant location
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rather than missing information: its likelihood can still be minimized
by minimizing the significance level α.

2. Accepting the null hypothesis when it is false (i.e., Type II error [17]):
the ht(tr) query erroneously concludes that samples observed after tr
belong to a previously identified population inZ . This is the most crit-
ical error for the ht query since the final SHA lacks information about
the SUL (specifically, the distribution it failed to identify). This error
grows less likely with large sample sizes. Thus its impact can be min-
imized by increasing nmin, if possible, or performing new iterations of
L∗SHA whenever new traces are available.

Unlike in L∗, the L∗SHA teacher is not omniscient but relies on collected
samples. Therefore, it cannot distinguish impossible traces (i.e., sequences
of events whose probability of being observed in the real system is 0) from
rare traces because T (tr) = ⊥ holds in both cases. Assume, instead, that
an omniscient teacher is available for L∗SHA. In this case, having sufficient
observations to answer mi and ht queries is no longer an issue since an
omniscient teacher provides the correct value of T (tr) ∈ (M ′ ×Z) for any
possible trace tr—hence T (tr) = ⊥ (capturing the situation in which not
enough observations of tr have been collected to answer queries conclu-
sively) never holds. If one introduces a different symbol ⊗ to capture the
case in which tr is impossible (hence, T (tr) = ⊗ holds), L∗SHA behaves as
L∗, whose correctness and termination are proven in [7].

Nevertheless, an omniscient teacher is not implementable when a real
SUL is involved since the source of information on its behavior is a finite
set of traces. The sampling-based version of L∗SHA (presented in this sec-
tion) terminates when the teacher cannot find a new counterexample within
the available traces. Were set of traces TEACHER.Σobs to remain unvaried
throughout the execution of L∗SHA, in the worst case in which all collected
traces constitute a counterexample (thus, a round of learning is performed
for each collected trace) L∗SHA terminates because the number of traces is
finite. However, as per Section 12.2.3, the learner can request new traces
at the beginning of each learning round through the ref query, meaning that
the number of traces, although finite, grows during the execution of L∗SHA.
As discussed in Section 12.2.4, identifying a counterexample always leads
to creating a new location of Ahyp, either because a completely new be-
havioral state has been identified or because an existing location should be
split into two. Therefore, even if the set of traces grows at the beginning of
each round, termination is still guaranteed provided that counterexamples
are identified correctly, and the original SUL has finite behavioral states
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(thus, only a finite number of counterexamples can be identified).
The temporal complexity of L∗, of which L∗SHA inherits the core infras-

tructure, is proven to be polynomial in the size of the observation table and
maximum length of a counterexample [7]. L∗SHA differs from L∗ because of
mi, ht, ref, and cex queries, whose complexity is estimated in the following.

Each mi query applies DDTW to every signal portion in set Σ̃ and every
candidate function in M . Therefore, the cost of performing a mi query
is polynomial in the number of available traces (from each trace, a signal
portion may be isolated), the number of candidate functions, and the cost
of performing DDTW, which is shown to be polynomial in the number of
points in the two signal portions under analysis [113].

Each ht query, for each element of set Z , performs a Kolmogorov-
Smirnov test, of which a possible implementation is proven to be linear
in the number of sample points [84]. However, the size of Z may grow
after the execution of a ht query if a new distribution is identified. Suppose
a new distribution is identified for every ht query. In that case, its cost is
polynomial in the number of cells of the observation table, thus the number
of traces and the maximum length of a trace.

Each ref query searches for ambiguous rows and requests new observa-
tions. Therefore, its running time is polynomial in the number of available
traces and the maximum length of a trace (there may be a row for each trace
and trace prefix). The cost of one execution of function resample(s, nmin),
although its implementation is SUL-specific, is assumed to be constant and
proportional to parameter nmin. It is executed once for each ambiguous
trace (thus, at most, as many times as the number of available traces).

Each cex query searches for a counterexample among the available traces:
therefore, its running time is also polynomial in the number of available
traces, the number of rows, and the number of columns (both depending on
the number of traces and the maximum length of a trace).

In conclusion, the overall running time of L∗SHA remains polynomial in
the metrics mentioned above concerning the volume of input data (number
and length of traces) and the number of candidate flow conditions. Per-
formance metrics of L∗SHA for the validation experiments are reported in
Chapter 13 and Chapter 15.
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CHAPTER13
L∗SHA Empirical Validation

This chapter reports on the experiments carried out to empirically val-
idate L∗SHA.

The validation is carried out with two approaches. In the first one,
the original SHA is exploited as a reference to assess the learned SHA’s
accuracy. In the second one, the learned SHA’s accuracy is assessed
in comparison to a validation dataset.

To this end, two case studies are exploited to showcase the general-
purpose nature of L∗SHA. The first one consists of a room heating sys-
tem. The second one involves energy consumption models of machin-
ing centers.

13.1 Validation Process

Validation is carried out with two approaches that differ based on how
traces are generated and how L∗SHA accuracy is measured:

A. Model-Driven: reference models of the CPS component subject to
uncertainty (thus, whose model requires learning) are manually set
up in a formal modeling and verification tool (specifically, Uppaal).
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Traces capturing CPS behavior are generated by Uppaal through the
simulate operator [46] and fed to L∗SHA. L∗SHA’s accuracy is assessed
through manual inspection by comparing the learned SHA with the
reference SHA, which, with this approach, is known. When knowl-
edge refinement is required, the teacher also exploits Uppaal to request
new traces. Experiments are reported in Section 13.2.

B. Simulation-Driven: real sensor readings are grouped into longer se-
quences of sampled signals to create realistic simulated field data.
Simulation traces are stored in a pool and then fed to L∗SHA to learn
a SHA modeling the CPS component subject to uncertainty. The ac-
curacy of the learned SHA is assessed through system-specific quality
metrics of the CPS. Such indicators are calculated through Uppaal for
the learned SHA and extracted from simulation traces for the reference
system. The teacher extracts new traces from the available pool when
knowledge refinement is required. Simulation-driven experiments are
reported in Section 13.3.

Validation exploits two case studies. The first CPS instance (indicated
as CPS1) is a room subject to temperature control through a thermostat,
also serving as a running example in Chapter 3. While the thermostat is
a programmable component, the room’s temperature dynamics are subject
to uncertainty due to structural variations (e.g., a window can be opened
or closed by people in the room). L∗SHA is validated on CPS1 through the
model-driven approach.

The second CPS instance (indicated as CPS2) focuses on the smart man-
ufacturing domain, specifically on modeling the energy consumption of
machining centers. In such applications, the sequence of tasks performed
on the workpiece is fixed, while the power request of the machine is a
source of uncertainty given the broad spectrum of parameters at play. CPS2
is exploited to validate L∗SHA through the simulation-driven approach.

The implementation of L∗SHA used to run the experiments is found at
[133]. Experimental results are reported in [133]. Learning experiments
with L∗SHA have been performed on an OSX machine with 2 cores and 8GB
of RAM. Formal models are implemented in Uppaal v.4.1.24 using the ex-
tension for SMC [46, 123]. SMC experiments are performed on a Linux
machine with 128 cores, 515GB of RAM, and Debian Linux version 10.

In the following, we report on each validation phase in detail and present
the obtained results.
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13.2 CPS1: Room Temperature Control System

In the first case study, the CPS component subject to uncertainty is the
room (equipped with the heating system), of which we learn the temporal
behavior of the temperature in different operational states due to windows
being open/closed and the heating system being on or off.

More specifically, differential equations governing the temperature are
known, and distributions governing random parameters θ and R are known
to be Normal. Still, the mean and variance of such distributions may vary
based on the room’s structural properties (i.e., whether any window is open).
Set Z contains sample sets of parameter R associated with locations cap-
turing the room’s temperature dynamics when the thermostat is off, and
samples θ otherwise (see Fig. 3.1a).

Each location of Ahyp is associated with an element in M ′ × Z . For
this specific case study, M ′ is the set of flow conditions constraining the
room’s temperature in different situations. Therefore, values of real-valued
variable T constitute the first sampled signal in TEACHER.Σobs. Featured
flow conditions (constituting set M ′) are of two types: i) those reported in
Fig. 3.1a, modeling exponential dynamics; ii) T (t) = θt and T (t) = − 1

R
t,

modeling the temperature varying linearly with time (introduced to enrich
the running example model).

Observable events (whose number for each experiment is reported in Ta-
ble 13.1) that can occur in the system and that constitute the traces used for
learning concern the heating system being switched on or off with guard
conditions on how many windows are open, thus decreasing the room’s
capability to retain heat and impacting the distributions of R and θ. The
actual opening or closing of a window does not constitute an event to re-
duce the complexity of the reference model. Specifically, events are of the
form ⟨open = x, c⟩ with x ∈ [0, 2] and c ∈ {on, off}. Discrete variable
open ∈ Vdc marks the number of open windows in the room, and its values
constitute the second sampled signal.

As previously mentioned, CPS1 is subject to the model-driven valida-
tion approach. To test the efficacy of L∗SHA against known models, we have
manually created through Uppaal 10 increasingly complex SHA modeling
the room, of which Fig. 3.1a shows an example. Each manually-created
SHA constitutes the reference model for a standalone experiment and is the
source of traces fed to L∗SHA. When performing the ref query, the teacher
asks Uppaal for new runs to be added to TEACHER.Σobs whenever a spe-
cific event sequence has less than nmin = 20 observations. The thermostat
is fully programmable, and thus its SHA (shown in Fig. 3.1b) remains
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Table 13.1: Metrics comparing the original SHA for CPS1 modeled in Uppaal (labeled as
SUL) and the learned SHA (labeled as L∗SHA) for the 10 experiments. The two SHA are
compared based on the number of locations (|L|), edges (|E|), flow conditions (|M ′|)
and distributions (|Z|).

Exp. Events |L| |E| |M ′| |Z|
1 SUL/L∗SHA 2 2 2 2 2

2 SUL/L∗SHA 4 4 8 2 4

3 SUL/L∗SHA 3 6 18 2 6

4 SUL/L∗SHA 4 5 10 2 5

5 SUL/L∗SHA 4 5 10 2 5

6 SUL
4

5 11 2 5
L∗SHA 7 14 2 5

7 SUL
4

6 14 2 6
L∗SHA 7 14 2 6

8 SUL/L∗SHA 6 6 18 4 6

9 SUL
6

7 21 3 8
L∗SHA 11 33 3 8

10 SUL
6

7 21 3 7
L∗SHA 11 33 3 7

unchanged throughout all experiments. Updates of variable open are ran-
domly triggered through Uppaal. We remark that L∗SHA does not learn what
causes a specific event to fire (which is random) but how the room behaves
once it has fired.

Experimental results are reported in Table 13.1, which compares the
reference manually-drafted SHA (labeled as SUL) with the SHA learned by
L∗SHA. The comparison takes into account the main SHA features involved
in the learning process: locations (set L), edges (set E), flow conditions (the
outcome of the function F) and probability distributions (the outcome of
the function D) assigned to each location. Learned SHA are fully viewable
in [133] and Appendix A.

Manual inspection and data reported in Table 13.1 show that L∗SHA accu-
rately learns the SHA in all experiments. Experiments 6, 7, 9, and 10 report
apparent discrepancies between the SUL and the learned SHA, for which
two distinct rows are shown, unlike for the other experiments. The origin
of such discrepancies is explained in the following. In these experiments,
reference SHA feature one (or multiple) edges whose guards include con-
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(a) Traces requested by L∗SHA to complete the learning for all CPS1 experiments.
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(b) Time (s) requested by L∗SHA to complete the learning for all CPS1 experiments.

Figure 13.1: Plots reporting on L∗SHA performance with increasing SUL complexity, mea-
sured through the learned SHA size (|A|).

straints on a discrete variable in Vdc that is not observable. For example,
consider a location l ∈ L with two outgoing edges with the same channel
label and guards “open ∧ w = 0” and “open ∧ w = 1”, where w ∈ Vdc is
not observable. As per Chapter 12, the L∗SHA labeling function cannot ac-
count for non-observable features. In this case, not considering variable w
makes the two edges identical since they have the same channel label and
the same guard (condition “open”), causing Ahyp to be nondeterministic
(i.e., not consistent according to Definition 8). L∗SHA resolves the inconsis-
tency through locations l1, l2 ∈ L (each with one outgoing edge) represent-
ing l with w = 0 and l with w = 1, respectively. Manual inspection shows
learned SHA in experiments 6, 9, and 10 behave correspondingly with the
original SHA albeit featuring more locations and edges.

Data on L∗SHA performance for CPS1 experiments are reported in Fig.
13.1 as a function of the complexity of the SHA under learning. The latter
is measured in terms of SHA size, which is indicated as |A| and calculated
as the sum of |L|, |E|, |M ′|, and |Z|. As per Section 12.2.4, L∗SHA termi-
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Chapter 13. L∗SHA Empirical Validation

<latexit sha1_base64="nk8LcudoVoAMMswbMKy8wGlyVAc=">AAAB9nicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH6sklOOT90t0ZEVn6BFio6RMvvUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpADKJDlUOKjW7Lqdgy8TpyA1VqA5qH71h6GIfQxIKDCm59gRuQlokkLhvNKPDUYgpjDGXkoD8NG4SZ51zk9iAxTyCDWXiuci/t5IwDdm5nvppA80MYteJv7n9WIaXbmJDKKYMBDZIZIK80NGaJmWgHwoNRJBlhy5DLgADUSoJQchUjFOW6mkfTiL3y+T9lnduajbd+e1xnXRTJkdsWN2yhx2yRrsljVZiwk2YU/smb1Yj9ar9Wa9/4yWrGLnkP2B9fENw3WSyQ==</latexit>

idle
<latexit sha1_base64="94NGVNn1vvziE5sojAySjOPvUpM=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sglHzmfrbg8pWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOztBLIVB1/10SkvLK6tr5fXKxubW9k51d69tIqs5tHgkI90NmAEpFLRQoIRurIGFgYROMLnK/M4DaCMidYvTGPyQjZUYCc4wldqBNdOBN6jW3Lqbgy4SryA1UqA5qH71hxG3ISjkkhnT89wY/YRpFFzCrNK3BmLGJ2wMvZQqFoLxkzztjB5ZwzCiMWgqJM1F+L2RsNCYaRikkyHDOzPvZeJ/Xs/i6MJPhIotguLZIRQS8kOGa5HWAHQoNCCyLDlQoShnmiGCFpRxnoo27aWS9uHNf79I2id176zu3pzWGpdFM2VyQA7JMfHIOWmQa9IkLcLJPXkiz+TFeXRenTfn/We05BQ7++QPnI9vK5OTkg==</latexit>

busy1
<latexit sha1_base64="uS7inUxA3DQJITLlOvpfEXvty/0=">AAAB+HicbVC7TsNAEDzzDOEVoKQ5ESFRRXYEgjKChjJI5CElVnS+bMKR89m620MKVv6BFio6RMvfUPAv2MYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982kdUcWjySke4GzIAUClooUEI31sDCQEInmFxlfucBtBGRusVpDH7IxkqMBGeYSu3AmumgPqhU3Zqbgy4SryBVUqA5qHz1hxG3ISjkkhnT89wY/YRpFFzCrNy3BmLGJ2wMvZQqFoLxkzztjB5bwzCiMWgqJM1F+L2RsNCYaRikkyHDOzPvZeJ/Xs/i6MJPhIotguLZIRQS8kOGa5HWAHQoNCCyLDlQoShnmiGCFpRxnoo27aWc9uHNf79I2vWad1Zzb06rjcuimRI5JEfkhHjknDTINWmSFuHknjyRZ/LiPDqvzpvz/jO65BQ7B+QPnI9vLSKTkw==</latexit>

busy2

<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?
<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?

<latexit sha1_base64="DpckEd3ywPq8LlKUyDgJzCtMsMo=">AAACBXicdVC7TsNAEDyHVwivBEqaExESVWRHhqQjgoYySOQhJZZ1vmzCKeeH7tagyErNV9BCRYdo+Q4K/gXbBAkQTDWa2b2dGy+SQqNpvhmFpeWV1bXiemljc2t7p1zZ7eowVhw6PJSh6ntMgxQBdFCghH6kgPmehJ43Pc/83g0oLcLgCmcROD6bBGIsOMNUcsuVoc/wGjHRyBTO3fqpW66atRO7WW9a1KyZOTJiWw3bptZCqZIF2m75fTgKeexDgFwyrQeWGaGTpM8JLmFeGsYaIsanbAKDlAbMB+0kefQ5PYw1w5BGoKiQNBfh+0bCfK1nvpdOZkH1by8T//IGMY6bTiKCKEYIeHYIhYT8kOZKpJ0AHQkFiCxLDlQElDPFEEEJyjhPxTgtqZT28fVp+j/p1mvWcc28tKuts0UzRbJPDsgRsUiDtMgFaZMO4eSW3JMH8mjcGU/Gs/HyOVowFjt75AeM1w/W9Jjz</latexit>

start2?

<latexit sha1_base64="UAd5/oYKI3LxsgUrVGDgkHSfn0Y=">AAACBXicdVC7TsNAEDyHVwgvB0qaExESVWRHhqQjgoYySOQhJZZ1vmzCKeeH7tagyErNV9BCRYdo+Q4K/gU7BAkQTDWa2b2dGz+WQqNlvRmFpeWV1bXiemljc2t7xyzvdnSUKA5tHslI9XymQYoQ2ihQQi9WwAJfQtefnOd+9waUFlF4hdMY3ICNQzESnGEmeWZ5EDC8Rkw1MoUzzz71zIpVPXEatYZNrao1R04cu+441F4oFbJAyzPfB8OIJwGEyCXTum9bMbpp9pzgEmalQaIhZnzCxtDPaMgC0G46jz6jh4lmGNEYFBWSzkX4vpGyQOtp4GeTeVD928vFv7x+gqOGm4owThBCnh9CIWF+SHMlsk6ADoUCRJYnBypCypliiKAEZZxnYpKVVMr6+Po0/Z90alX7uGpdOpXm2aKZItknB+SI2KROmuSCtEibcHJL7skDeTTujCfj2Xj5HC0Yi5098gPG6wfVZJjy</latexit>

start1?
<latexit sha1_base64="UAd5/oYKI3LxsgUrVGDgkHSfn0Y=">AAACBXicdVC7TsNAEDyHVwgvB0qaExESVWRHhqQjgoYySOQhJZZ1vmzCKeeH7tagyErNV9BCRYdo+Q4K/gU7BAkQTDWa2b2dGz+WQqNlvRmFpeWV1bXiemljc2t7xyzvdnSUKA5tHslI9XymQYoQ2ihQQi9WwAJfQtefnOd+9waUFlF4hdMY3ICNQzESnGEmeWZ5EDC8Rkw1MoUzzz71zIpVPXEatYZNrao1R04cu+441F4oFbJAyzPfB8OIJwGEyCXTum9bMbpp9pzgEmalQaIhZnzCxtDPaMgC0G46jz6jh4lmGNEYFBWSzkX4vpGyQOtp4GeTeVD928vFv7x+gqOGm4owThBCnh9CIWF+SHMlsk6ADoUCRJYnBypCypliiKAEZZxnYpKVVMr6+Po0/Z90alX7uGpdOpXm2aKZItknB+SI2KROmuSCtEibcHJL7skDeTTujCfj2Xj5HC0Yi5098gPG6wfVZJjy</latexit>

start1?

<latexit sha1_base64="ockzCwT1aIfv0txO/sHomSEhdCs=">AAACBXicdVC7TgMxEPTxJrwClDQWERJVZEdAkg5BQxkkEpCS08nnbMCK7yF7j4dO1HwFLVR0iJbvoOBf8IUgAYKpRjO73vGEqVYWGXvzJianpmdm5+ZLC4tLyyvl1bWOTTIjoS0TnZizUFjQKoY2KtRwlhoQUajhNBweFv7pJRirkvgEb1LwI3Eeq4GSAp0UlFd71yroRQIv7CBXfQ23QbnCqowxzjktCK/vMUeazUaNNygvLIcKGaMVlN97/URmEcQotbC2y1mKfi4MKuneK/UyC6mQQ3EOXUdjEYH181H0W7qVWYEJTcFQpelIhO8buYisvYlCNzkK+dsrxL+8boaDhp+rOM0QYlkcQqVhdMhKo1wnQPvKAKIokgNVMZXCCEQwigopnZi5kkquj69P0/9Jp1blu1V2vFPZPxg3M0c2yCbZJpzUyT45Ii3SJpJckXvyQB69O+/Je/ZePkcnvPHOOvkB7/UDIQeZJQ==</latexit>

⇠idle

<latexit sha1_base64="bK6Za79sy3+yFyhdpQKjfH6bjdA=">AAACB3icdVDLSgNBEJyN7/iKevQyGARPYSb4iDfRi0cF84AkLLOTThwy+2CmVwxLPsCv8Konb+LVz/DgvzgbI6honYqqbrq6gkQri4y9eYWZ2bn5hcWl4vLK6tp6aWOzYePUSKjLWMemFQgLWkVQR4UaWokBEQYamsHwLPebN2CsiqMrHCXQDcUgUn0lBTrJL211bpXfCQVe234WpHbk87FfKrMKY4xzTnPCjw6ZI8fHtSqvUZ5bDmUyxYVfeu/0YpmGEKHUwto2Zwl2M2FQSQ3jYie1kAg5FANoOxqJEGw3m4Qf093UCoxpAoYqTScifN/IRGjtKAzc5CTmby8X//LaKfZr3UxFSYoQyfwQKg2TQ1Ya5VoB2lMGEEWeHKiKqBRGIIJRVEjpxNTVVHR9fD1N/yeNaoUfVNjlfvnkdNrMItkmO2SPcHJETsg5uSB1IsmI3JMH8ujdeU/es/fyOVrwpjtb5Ae81w+UKZnu</latexit>

⇠busy1

<latexit sha1_base64="M2J1QLGTqn/F1iPHadSJSLOKEPE=">AAACB3icdVDLSgNBEJyNrxhf0Ry9DAbBU5gJapJb0ItHBaNCEpbZsaNDZh/M9IphyQf4FV715E28+hke/BdnYwQVrVNR1U1XV5BoZZGxN68wMzs3v1BcLC0tr6yuldc3zmycGgkdGevYXATCglYRdFChhovEgAgDDefB8DD3z2/AWBVHpzhKoB+Kq0gNlBToJL9c6d0qvxcKvLaDLEjtyK+P/XKV1RhjnHOaE97YZ460Ws06b1KeWw5VMsWxX37vXcYyDSFCqYW1Xc4S7GfCoJIaxqVeaiERciiuoOtoJEKw/WwSfky3UyswpgkYqjSdiPB9IxOhtaMwcJOTmL+9XPzL66Y4aPYzFSUpQiTzQ6g0TA5ZaZRrBeilMoAo8uRAVUSlMAIRjKJCSiemrqaS6+Prafo/OavX+F6NnexW2wfTZopkk2yRHcJJg7TJETkmHSLJiNyTB/Lo3XlP3rP38jla8KY7FfID3usHlbmZ7w==</latexit>

⇠busy2

<latexit sha1_base64="ockzCwT1aIfv0txO/sHomSEhdCs=">AAACBXicdVC7TgMxEPTxJrwClDQWERJVZEdAkg5BQxkkEpCS08nnbMCK7yF7j4dO1HwFLVR0iJbvoOBf8IUgAYKpRjO73vGEqVYWGXvzJianpmdm5+ZLC4tLyyvl1bWOTTIjoS0TnZizUFjQKoY2KtRwlhoQUajhNBweFv7pJRirkvgEb1LwI3Eeq4GSAp0UlFd71yroRQIv7CBXfQ23QbnCqowxzjktCK/vMUeazUaNNygvLIcKGaMVlN97/URmEcQotbC2y1mKfi4MKuneK/UyC6mQQ3EOXUdjEYH181H0W7qVWYEJTcFQpelIhO8buYisvYlCNzkK+dsrxL+8boaDhp+rOM0QYlkcQqVhdMhKo1wnQPvKAKIokgNVMZXCCEQwigopnZi5kkquj69P0/9Jp1blu1V2vFPZPxg3M0c2yCbZJpzUyT45Ii3SJpJckXvyQB69O+/Je/ZePkcnvPHOOvkB7/UDIQeZJQ==</latexit>

⇠idle

<latexit sha1_base64="bK6Za79sy3+yFyhdpQKjfH6bjdA=">AAACB3icdVDLSgNBEJyN7/iKevQyGARPYSb4iDfRi0cF84AkLLOTThwy+2CmVwxLPsCv8Konb+LVz/DgvzgbI6honYqqbrq6gkQri4y9eYWZ2bn5hcWl4vLK6tp6aWOzYePUSKjLWMemFQgLWkVQR4UaWokBEQYamsHwLPebN2CsiqMrHCXQDcUgUn0lBTrJL211bpXfCQVe234WpHbk87FfKrMKY4xzTnPCjw6ZI8fHtSqvUZ5bDmUyxYVfeu/0YpmGEKHUwto2Zwl2M2FQSQ3jYie1kAg5FANoOxqJEGw3m4Qf093UCoxpAoYqTScifN/IRGjtKAzc5CTmby8X//LaKfZr3UxFSYoQyfwQKg2TQ1Ya5VoB2lMGEEWeHKiKqBRGIIJRVEjpxNTVVHR9fD1N/yeNaoUfVNjlfvnkdNrMItkmO2SPcHJETsg5uSB1IsmI3JMH8ujdeU/es/fyOVrwpjtb5Ae81w+UKZnu</latexit>

⇠busy1

<latexit sha1_base64="gHgbzU9TERqo5W0kYldq+4Ezgxw=">AAACB3icbVDLSgNBEJyNrxhf0Ry9DAbBg4RdUfQSCIrgMYJ5QLKE2UknDpl9MNMrhGU/wK/wqidv4tXP8OC/OLvmoIl1Kqqr6O7yIik02vanVVhaXlldK66XNja3tnfKu3ttHcaKQ4uHMlRdj2mQIoAWCpTQjRQw35PQ8SZX2bzzAEqLMLjDaQSuz8aBGAnO0EiDcqU/DDFppnX7OGfXab05KFftmp2DLhJnRqpkBuP/Mlke+xAgl0zrnmNH6CZMoeAS0lI/1hAxPmFj6BkaMB+0m+THp/Qw1gxDGoGiQtJchN+JhPlaT33POH2G93p+lon/zXoxji7cRARRjBDwbBEKCfkizZUwrQAdCgWILLscqAgoZ4ohghKUcW7E2NRUMn04898vkvZJzTmr2ben1cblrJki2ScH5Ig45Jw0yA1pkhbhZEqeyDN5sR6tV+vNev+xFqxZpkL+wPr4BvKwmOM=</latexit>

Ṗ = 0, Ė = P
<latexit sha1_base64="gHgbzU9TERqo5W0kYldq+4Ezgxw=">AAACB3icbVDLSgNBEJyNrxhf0Ry9DAbBg4RdUfQSCIrgMYJ5QLKE2UknDpl9MNMrhGU/wK/wqidv4tXP8OC/OLvmoIl1Kqqr6O7yIik02vanVVhaXlldK66XNja3tnfKu3ttHcaKQ4uHMlRdj2mQIoAWCpTQjRQw35PQ8SZX2bzzAEqLMLjDaQSuz8aBGAnO0EiDcqU/DDFppnX7OGfXab05KFftmp2DLhJnRqpkBuP/Mlke+xAgl0zrnmNH6CZMoeAS0lI/1hAxPmFj6BkaMB+0m+THp/Qw1gxDGoGiQtJchN+JhPlaT33POH2G93p+lon/zXoxji7cRARRjBDwbBEKCfkizZUwrQAdCgWILLscqAgoZ4ohghKUcW7E2NRUMn04898vkvZJzTmr2ben1cblrJki2ScH5Ig45Jw0yA1pkhbhZEqeyDN5sR6tV+vNev+xFqxZpkL+wPr4BvKwmOM=</latexit>

Ṗ = 0, Ė = P
<latexit sha1_base64="gHgbzU9TERqo5W0kYldq+4Ezgxw=">AAACB3icbVDLSgNBEJyNrxhf0Ry9DAbBg4RdUfQSCIrgMYJ5QLKE2UknDpl9MNMrhGU/wK/wqidv4tXP8OC/OLvmoIl1Kqqr6O7yIik02vanVVhaXlldK66XNja3tnfKu3ttHcaKQ4uHMlRdj2mQIoAWCpTQjRQw35PQ8SZX2bzzAEqLMLjDaQSuz8aBGAnO0EiDcqU/DDFppnX7OGfXab05KFftmp2DLhJnRqpkBuP/Mlke+xAgl0zrnmNH6CZMoeAS0lI/1hAxPmFj6BkaMB+0m+THp/Qw1gxDGoGiQtJchN+JhPlaT33POH2G93p+lon/zXoxji7cRARRjBDwbBEKCfkizZUwrQAdCgWILLscqAgoZ4ohghKUcW7E2NRUMn04898vkvZJzTmr2ben1cblrJki2ScH5Ig45Jw0yA1pkhbhZEqeyDN5sR6tV+vNev+xFqxZpkL+wPr4BvKwmOM=</latexit>

Ṗ = 0, Ė = P
<latexit sha1_base64="gHgbzU9TERqo5W0kYldq+4Ezgxw=">AAACB3icbVDLSgNBEJyNrxhf0Ry9DAbBg4RdUfQSCIrgMYJ5QLKE2UknDpl9MNMrhGU/wK/wqidv4tXP8OC/OLvmoIl1Kqqr6O7yIik02vanVVhaXlldK66XNja3tnfKu3ttHcaKQ4uHMlRdj2mQIoAWCpTQjRQw35PQ8SZX2bzzAEqLMLjDaQSuz8aBGAnO0EiDcqU/DDFppnX7OGfXab05KFftmp2DLhJnRqpkBuP/Mlke+xAgl0zrnmNH6CZMoeAS0lI/1hAxPmFj6BkaMB+0m+THp/Qw1gxDGoGiQtJchN+JhPlaT33POH2G93p+lon/zXoxji7cRARRjBDwbBEKCfkizZUwrQAdCgWILLscqAgoZ4ohghKUcW7E2NRUMn04898vkvZJzTmr2ben1cblrJki2ScH5Ig45Jw0yA1pkhbhZEqeyDN5sR6tV+vNev+xFqxZpkL+wPr4BvKwmOM=</latexit>

Ṗ = 0, Ė = P

<latexit sha1_base64="21gPCeJFyA5vJJK40WXJeGf/9hA=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sgmnnM/mbo0UWSn4Clqo6BAtn0LBv3A2LiBhqtHMrnZ2glgKg6776ZSWlldW18rrlY3Nre2d6u5e20SJ5tDikYx0N2AGpFDQQoESurEGFgYSOsHkKvM7D6CNiNQtTmPwQzZWYiQ4Qyv5/ZDhncBUKIGzQbXm1t0cdJF4BamRAs1B9as/jHgSgkIumTE9z43RT5lGwSXMKv3EQMz4hI2hZ6liIRg/zUPP6FFiGEY0Bk2FpLkIvzdSFhozDQM7mYU0814m/uf1Ehxd+PajOEFQPDuEQkJ+yHAtbBtAh0IDIsuSAxWKcqYZImhBGedWTGw9FduHN//9Immf1L2zuntzWmtcFs2UyQE5JMfEI+ekQa5Jk7QIJ/fkiTyTF+fReXXenPef0ZJT7OyTP3A+vgFTUZcU</latexit>

init<latexit sha1_base64="vPXPTEsCG8ZiorMO5qibo/fSitA=">AAAB93icdVDLSgNBEJyN7/iKevQyGARPYSaoSQ5C0IvHCEaFZAmzk04cMvtgplcIS77Bq568iVc/x4P/4myMoKJ1Kqq66eoKEq0sMvbmFebmFxaXlleKq2vrG5ulre0rG6dGQlvGOjY3gbCgVQRtVKjhJjEgwkDDdTA6y/3rOzBWxdEljhPwQzGM1EBJgU5qZ63JCeuVyqzCGOOc05zw2jFzpNGoV3md8txyKJMZWr3Se7cfyzSECKUW1nY4S9DPhEElNUyK3dRCIuRIDKHjaCRCsH42DTuh+6kVGNMEDFWaTkX4vpGJ0NpxGLjJUOCt/e3l4l9eJ8VB3c9UlKQIkcwPodIwPWSlUa4FoH1lAFHkyYGqiEphBCIYRYWUTkxdLUXXx9fT9H9yVa3wowq7OCw3T2fNLJNdskcOCCc10iTnpEXaRBJF7skDefTG3pP37L18jha82c4O+QHv9QNdPpMg</latexit>

P = 0
<latexit sha1_base64="QqUM8ozpZ5wVmBWAW1Mb3Q2docI=">AAACAHicdVDLSgNBEJyNrxhfUY9eBoPgKeyG1eRm0IvHCOYBSQy9k04cnH0w0yuEJRe/wquevIlX/8SD/+JujKCidSqquunq8iIlDdn2m5VbWFxaXsmvFtbWNza3its7LRPGWmBThCrUHQ8MKhlgkyQp7EQawfcUtr2bs8xv36I2MgwuaRJh34dxIEdSAKXSVc8HuiZKVAjD6cmgWLLLx26tUnO4XbZnyIjrVF2XO3OlxOZoDIrvvWEoYh8DEgqM6Tp2RP0ENEmhcFroxQYjEDcwxm5KA/DR9JNZ6ik/iA1QyCPUXCo+E/H7RgK+MRPfSyezlOa3l4l/ed2YRrV+IoMoJgxEdoikwtkhI7RM60A+lBqJIEuOXAZcgAYi1JKDEKkYp/0U0j6+nub/k1al7ByV7Qu3VD+dN5Nne2yfHTKHVVmdnbMGazLBNLtnD+zRurOerGfr5XM0Z813dtkPWK8fG6aXhQ==</latexit>

load?
<latexit sha1_base64="ockzCwT1aIfv0txO/sHomSEhdCs=">AAACBXicdVC7TgMxEPTxJrwClDQWERJVZEdAkg5BQxkkEpCS08nnbMCK7yF7j4dO1HwFLVR0iJbvoOBf8IUgAYKpRjO73vGEqVYWGXvzJianpmdm5+ZLC4tLyyvl1bWOTTIjoS0TnZizUFjQKoY2KtRwlhoQUajhNBweFv7pJRirkvgEb1LwI3Eeq4GSAp0UlFd71yroRQIv7CBXfQ23QbnCqowxzjktCK/vMUeazUaNNygvLIcKGaMVlN97/URmEcQotbC2y1mKfi4MKuneK/UyC6mQQ3EOXUdjEYH181H0W7qVWYEJTcFQpelIhO8buYisvYlCNzkK+dsrxL+8boaDhp+rOM0QYlkcQqVhdMhKo1wnQPvKAKIokgNVMZXCCEQwigopnZi5kkquj69P0/9Jp1blu1V2vFPZPxg3M0c2yCbZJpzUyT45Ii3SJpJckXvyQB69O+/Je/ZePkcnvPHOOvkB7/UDIQeZJQ==</latexit>

⇠idle

<latexit sha1_base64="juCCVDLUc009XFoWr9OiqW/pHSM=">AAACBHicdVA9SwNBEN3zM8avU0ubxSBYhbtwmnQGbSwVjAkkIcxtRl2yt3fszglypPVX2GplJ7b+Dwv/i3cxgoq+6vHeDPPmhYmSljzvzZmZnZtfWCwtlZdXVtfW3Y3NCxunRmBLxCo2nRAsKqmxRZIUdhKDEIUK2+HouPDbN2isjPU53SbYj+BKy0spgHJp4Lq9COiaKEu1imF4OB64Fa96EDRqDZ97VW+CggR+PQi4P1UqbIrTgfveG8YijVCTUGBt1/cS6mdgSAqF43IvtZiAGMEVdnOqIULbzybJx3w3tUAxT9BwqfhExO8bGUTW3kZhPlnktL+9QvzL66Z02ehnUicpoRbFIZIKJ4esMDKvBPlQGiSCIjlyqbkAA0RoJAchcjHNOyrnfXw9zf8nF7Wqv1/1zoJK82jaTIltsx22x3xWZ012wk5Ziwl2w+7ZA3t07pwn59l5+RydcaY7W+wHnNcPTSmYrQ==</latexit>

unload?
<latexit sha1_base64="ockzCwT1aIfv0txO/sHomSEhdCs=">AAACBXicdVC7TgMxEPTxJrwClDQWERJVZEdAkg5BQxkkEpCS08nnbMCK7yF7j4dO1HwFLVR0iJbvoOBf8IUgAYKpRjO73vGEqVYWGXvzJianpmdm5+ZLC4tLyyvl1bWOTTIjoS0TnZizUFjQKoY2KtRwlhoQUajhNBweFv7pJRirkvgEb1LwI3Eeq4GSAp0UlFd71yroRQIv7CBXfQ23QbnCqowxzjktCK/vMUeazUaNNygvLIcKGaMVlN97/URmEcQotbC2y1mKfi4MKuneK/UyC6mQQ3EOXUdjEYH181H0W7qVWYEJTcFQpelIhO8buYisvYlCNzkK+dsrxL+8boaDhp+rOM0QYlkcQqVhdMhKo1wnQPvKAKIokgNVMZXCCEQwigopnZi5kkquj69P0/9Jp1blu1V2vFPZPxg3M0c2yCbZJpzUyT45Ii3SJpJckXvyQB69O+/Je/ZePkcnvPHOOvkB7/UDIQeZJQ==</latexit>

⇠idle

<latexit sha1_base64="izAAidmJdcUhPbgNZLKQatO6XjM=">AAACDHicbVDLSgNBEJyNrxhfq14EL4NBiJewGxQ9BvXgMYJ5QBJC76QTh8w+mOkVwhI/wa/wqidv4tV/8OC/uBtz0Gidiqpuurq8SElDjvNh5RYWl5ZX8quFtfWNzS17e6dhwlgLrItQhbrlgUElA6yTJIWtSCP4nsKmN7rI/OYdaiPD4IbGEXZ9GAZyIAVQKvXsvVrHSL/jA90KUMnlpOTFZtyrHPXsolN2puB/iTsjRTZDrWd/dvqhiH0MSCgwpu06EXUT0CSFwkmhExuMQIxgiO2UBuCj6SbTDyb8MDZAIY9Qc6n4VMSfGwn4xox9L53Mopp5LxP/89oxDc66iQyimDAQ2SGSCqeHjNAyrQZ5X2okgiw5chlwARqIUEsOQqRinHZVSPtw57//SxqVsntSdq6Pi9XzWTN5ts8OWIm57JRV2RWrsToT7J49sif2bD1YL9ar9fY9mrNmO7vsF6z3LyFhmzA=</latexit>

P ⇠ D(busy2)
<latexit sha1_base64="Q9vR3OTYxp21YqeTJS3E8hbpQqI=">AAACDHicbVDLSgNBEJyNrxhfq14EL4NBiJewK4oeg3rwGME8IAmhd9KJQ2YfzPQKYYmf4Fd41ZM38eo/ePBf3I05aGKdiqpuurq8SElDjvNp5RYWl5ZX8quFtfWNzS17e6duwlgLrIlQhbrpgUElA6yRJIXNSCP4nsKGN7zM/MY9aiPD4JZGEXZ8GASyLwVQKnXtvWrbSL/tA90JUMnVuOTFZtR1j7p20Sk7E/B54k5JkU1R7dpf7V4oYh8DEgqMablORJ0ENEmhcFxoxwYjEEMYYCulAfhoOsnkgzE/jA1QyCPUXCo+EfH3RgK+MSPfSyezqGbWy8T/vFZM/fNOIoMoJgxEdoikwskhI7RMq0HekxqJIEuOXAZcgAYi1JKDEKkYp10V0j7c2e/nSf247J6WnZuTYuVi2kye7bMDVmIuO2MVds2qrMYEe2BP7Jm9WI/Wq/Vmvf+M5qzpzi77A+vjGx/Rmy8=</latexit>

P ⇠ D(busy1)
<latexit sha1_base64="+OtMGIFFv76ABZDEtma9ViyrKmg=">AAACCnicbVDLSgNBEJyNrxhfq4IXL4NBiJewK4oeg3rwGME8IAmhd9KJQ2YfzPQKYc0f+BVe9eRNvPoTHvwXd2MOmlinoqqbri4vUtKQ43xauYXFpeWV/GphbX1jc8ve3qmbMNYCayJUoW56YFDJAGskSWEz0gi+p7DhDS8zv3GP2sgwuKVRhB0fBoHsSwGUSl17r9o20m/7QHcCVHI1LsmewqOuXXTKzgR8nrhTUmRTVLv2V7sXitjHgIQCY1quE1EnAU1SKBwX2rHBCMQQBthKaQA+mk4yyT/mh7EBCnmEmkvFJyL+3kjAN2bke+lkFtTMepn4n9eKqX/eSWQQxYSByA6RVDg5ZISWaTHIe1IjEWTJkcuAC9BAhFpyECIV47SpQtqHO/v9PKkfl93TsnNzUqxcTJvJs312wErMZWeswq5ZldWYYA/siT2zF+vRerXerPef0Zw13dllf2B9fAOpWppm</latexit>

P ⇠ D(idle)

Figure 13.2: Example SHA modeling a machine’s power demand and energy consump-
tion.

nates when the teacher does not identify a counterexample to ⟨S , E , Z , T ⟩
in TEACHER.T Robs. We report on the number of traces requested by the
teacher to terminate (see Fig. 13.1a) and the duration of each experiment
(see Fig. 13.1b). As previously discussed, all learned SHA are correct. As
per Fig. 13.1a, the most resource-intensive experiment (i.e., experiment 9,
with |A| = 55) has required 2220 traces to terminate. In terms of computa-
tion time, all experiments for CPS1 have been completed in a time ranging
from 8s (i.e., experiment 1, with |A| = 8) to 4min15s for experiment 9.

13.3 CPS2: Energy Consumption of Machining Centers

The application domain of CPS2 involves the prediction of machine energy
consumption in industrial applications. Specifically, we focus on the spin-
dle energy consumption. The learned SHA captures the correlation between
the machining tasks, executed accordingly to a set of designed operations,
and the spindle power request.

The approach is designed to work even under partial knowledge of the
machining task. Therefore, it mandatorily requires only three signals: the
spindle speed, which is one of the main cutting parameters, the clamping
pressure, which indicates the presence of a workpiece in the machine; and
the spindle energy consumption. Spindle speed and clamping pressure are
also referred to as event mining signals as they highlight contingencies in
the SUL significantly affecting the physical property under learning (i.e.,
the energy consumption).

The learned SHA, of which Fig. 13.2 shows an example, enables the
prediction of the spindle power request of a certain machining task given
the event mining signals.

For this CPS exemplar, set W of the automaton in Fig. 13.2 contains
variables P and E modeling the power request and energy consumption
of a machine, respectively. In Fig. 13.2, P is understood as a function
P (t, k) and E as E(t, k), where t is the variable representing time and k is
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13.3. CPS2: Energy Consumption of Machining Centers

an independent randomly distributed term.

For every location l ∈ L, D(l) characterizes E while the machine be-
havior is modeled by location l. Therefore, the domain of function Ṗ and
Ė is R+ ×R and P and E are interpreted as stochastic processes. The two
locations in Fig. 13.2 are such that F(l) = ⟨Ṗ = 0, Ė = k⟩ holds for all
locations l ∈ {idle, busy}, meaning that power P is constant over time and
equal to k thus E is linear over time with slope k.

Event Mining

Collected data is processed to extract the timed traces. The event mining
signals hereby considered are the spindle speed and the clamping pressure.
Let p(ti) ∈ R+ be the clamping pressure value measured at time ti and
s(ti) ∈ R+ be the spindle speed value measured at time ti.

A necessary condition for the machining process to start is the presence
of the workpiece loaded into the machine. Events load and unload are
respectively representing the beginning and the end of part-program exe-
cution and need to be identified. Signal p(ti) is used to identify load and
unload events as for sudden variations of the clamping pressure, where
pmin is the minimum pressure required to block the workpiece.

Variations in spindle speed might result in a different power request.
Thus, speed variations are events to be extracted from signal s(ti). The
spindle speed signal is discretized into a sequence of step-like signals to
bypass small variations.

The spindle speed range is technologically limited in [smin, smax] where
smax is the nominal maximum speed of machine’s spindle and smin is the
minimum speed to consider the spindle active. The range is divided into
m bins of equal width δs = smax − smin/m. Specifically, for the three
scenarios, smin = 100 rpm, smax = 10′000 rpm, and m = 50 according to
expert knowledge. Events are identified whenever the spindle speed signal
switches between two bins. We label as startj with j = 1 . . .m the event
of the spindle reaching a speed within the j-th range defined as (smin+(j−
1)δs, smin+jδs]. When the spindle speed drops below smin, the spindle stops
(event stop).
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Chapter 13. L∗SHA Empirical Validation

Function L is fully given in Eq.13.1:

L(ti) =





load, if i > 0 ∧ p(ti) ≥ pmin ∧ p(ti−1) < pmin

unload, if i > 0 ∧ p(ti) < pmin ∧ p(ti−1) ≥ pmin

stop, if i > 0 ∧ s(ti) < smin ∧ s(ti−1) ≥ smin

startj, if i > 0 ∧ s(ti) ∈ (smin + (j − 1)δs, smin + jδs]

∧ s(ti−1) /∈ (smin + (j − 1)δs, smin + jδs]

⊥, otherwise
(13.1)

Learned SHA Post-Processing

Data is split into training and validation datasets. Training data is fed to
L∗SHA. Post-processing is then necessary to make the learned SHA amenable
to trace-based simulation [123]. Specifically, edges of the learned SHA
are extended with updates while a distribution estimate is assigned to each
location.

The SHA learned through L∗SHA features, for every location l ∈ L, an
empirical distribution identified by ht queries. L∗SHA has no constraints on
the specific shape of distribution functions; therefore, empirical functions
identified by ht queries may converge to any arbitrary distribution.

Let X(l) ⊆ R+ be the sample set underlying the empirical distribu-
tion assigned to l ∈ L. The Gaussian Kernel Density Estimation (KDE)
method [169, 186] is applied to X(l), ∀l ∈ L to estimate D(l). KDE is a
well-established non-parametric method to estimate the probability density
function of a random variable based on kernels as weights that does not
imply any prior distribution. Gaussian KDE specifically uses the normal
kernel function. KDE requires the proper selection of a kernel smoothing
parameter h > 0 called bandwidth, which is calculated through the Silver-
man’s approximation method [198].

For all locations l ∈ L of the learned SHA, the empirical distribution is
replaced with the corresponding kernel density estimator of D(l).

Learned SHA Validation

The validation dataset is used to validate the SHA resulting from post-
processing. The compatibility check filters the validation dataset to identify
traces eligible for trace-driven simulation. The estimated energy consump-
tion is compared against field data to assess the learned model’s accuracy.
To improve model accuracy, new training traces should be collected (loop
in Fig. 4.1).
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13.3. CPS2: Energy Consumption of Machining Centers

<latexit sha1_base64="alx3var7rO6u6RLf4RZrCBUULqU=">AAAB+nicbVC7TsNAEFyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sgmnnB/crZEik5+ghYoO0fIzFPwLtnEBCVONZna1s+NFShqy7U+rtLS8srpWXq9sbG5t71R399omjLXAlghVqLseN6hkgC2SpLAbaeS+p7DjTa4yv/OA2sgwuKVphK7Px4EcScEplbrUV3jPHHtQrdl1OwdbJE5BalCgOah+9YehiH0MSChuTM+xI3ITrkkKhbNKPzYYcTHhY+ylNOA+GjfJ887YUWw4hSxCzaRiuYi/NxLuGzP1vXTS53Rn5r1M/M/rxTS6cBMZRDFhILJDJBXmh4zQMi0C2VBqJOJZcmQyYIJrToRaMi5EKsZpM5W0D2f++0XSPqk7Z3X75rTWuCyaKcMBHMIxOHAODbiGJrRAgIIneIYX69F6td6s95/RklXs7MMfWB/f3aeT5g==</latexit>

t  10

<latexit sha1_base64="Xkn2TnqngdkqxxxNDkBhbKOPrAo=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIRCMoIGsogyENKrOh82YRTzg/drUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+NFShqy7U+rtLS8srpWXq9sbG5t71R399omjLXAlghVqLseN6hkgC2SpLAbaeS+p7DjTa4yv/OA2sgwuKNphK7Px4EcScEplW7VwBlUa3bdzsEWiVOQGhRoDqpf/WEoYh8DEoob03PsiNyEa5JC4azSjw1GXEz4GHspDbiPxk3yqDN2FBtOIYtQM6lYLuLvjYT7xkx9L530Od2beS8T//N6MY0u3EQGUUwYiOwQSYX5ISO0TDtANpQaiXiWHJkMmOCaE6GWjAuRinFaSiXtw5n/fpG0T+rOWd2+Oa01LotmynAAh3AMDpxDA66hCS0QMIYneIYX69F6td6s95/RklXs7MMfWB/foL2SHQ==</latexit>

l1
<latexit sha1_base64="XNcYU25oeKL7v4Jjpkl/bqvwRCs=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRXYEgjKChjII8pASK1pfNuGU80N3a1Bk5RNooaJDtHwPBf+CbVxAwlSjmV3t7HiRkoZs+9NaWl5ZXVsvbZQ3t7Z3dit7+20TxlpgS4Qq1F0PDCoZYIskKexGGsH3FHa8yVXmdx5QGxkGdzSN0PVhHMiRFECpdKsG9UGlatfsHHyROAWpsgLNQeWrPwxF7GNAQoExPceOyE1AkxQKZ+V+bDACMYEx9lIagI/GTfKoM34cG6CQR6i5VDwX8fdGAr4xU99LJ32gezPvZeJ/Xi+m0YWbyCCKCQORHSKpMD9khJZpB8iHUiMRZMmRy4AL0ECEWnIQIhXjtJRy2ocz//0iaddrzlnNvjmtNi6LZkrskB2xE+awc9Zg16zJWkywMXtiz+zFerRerTfr/Wd0ySp2DtgfWB/fokySHg==</latexit>

l2

<latexit sha1_base64="Xxpwa0ZV6G0mf+Z0C3X+0ihCwOc=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTYPQRlBQxkEeUiJFZ0vm3DK+aG7NSiy8gm0UNEhWr6Hgn/BNi4gYarRzK52drxISUO2/WktLC4tr6yW1srrG5tb25Wd3ZYJYy2wKUIV6o7HDSoZYJMkKexEGrnvKWx746vMbz+gNjIM7mgSoevzUSCHUnBKpVvVP+lXqnbNzsHmiVOQKhRo9CtfvUEoYh8DEoob03XsiNyEa5JC4bTciw1GXIz5CLspDbiPxk3yqFN2GBtOIYtQM6lYLuLvjYT7xkx8L530Od2bWS8T//O6MQ0v3EQGUUwYiOwQSYX5ISO0TDtANpAaiXiWHJkMmOCaE6GWjAuRinFaSjntw5n9fp60jmvOWc2+Oa3WL4tmSrAPB3AEDpxDHa6hAU0QMIIneIYX69F6td6s95/RBavY2YM/sD6+AaPbkh8=</latexit>

l3
<latexit sha1_base64="9tPvuY+igXB61eyktocJCLZwOhw=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogyENKrGh92YRTzg/drUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+NFShqy7U+rtLS8srpWXq9sbG5t71R399omjLXAlghVqLseGFQywBZJUtiNNILvKex4k6vM7zygNjIM7mgaoevDOJAjKYBS6VYNTgfVml23c/BF4hSkxgo0B9Wv/jAUsY8BCQXG9Bw7IjcBTVIonFX6scEIxATG2EtpAD4aN8mjzvhRbIBCHqHmUvFcxN8bCfjGTH0vnfSB7s28l4n/eb2YRhduIoMoJgxEdoikwvyQEVqmHSAfSo1EkCVHLgMuQAMRaslBiFSM01IqaR/O/PeLpH1Sd87q9s1prXFZNFNmB+yQHTOHnbMGu2ZN1mKCjdkTe2Yv1qP1ar1Z7z+jJavY2Wd/YH18A6VqkiA=</latexit>

l4

<latexit sha1_base64="/u896qs/q5LE031w2DTcEVZkWCw=">AAAB+nicbVC7TsNAEFzzDOEVoKQ5ESFRRTYPQRlBQxkk8pASKzpfNuGU84O7NVJk8hO0UNEhWn6Ggn/BNi4gYarRzK52drxISUO2/WktLC4tr6yW1srrG5tb25Wd3ZYJYy2wKUIV6o7HDSoZYJMkKexEGrnvKWx746vMbz+gNjIMbmkSoevzUSCHUnBKpQ71FN4z56Rfqdo1OwebJ05BqlCg0a989QahiH0MSChuTNexI3ITrkkKhdNyLzYYcTHmI+ymNOA+GjfJ807ZYWw4hSxCzaRiuYi/NxLuGzPxvXTS53RnZr1M/M/rxjS8cBMZRDFhILJDJBXmh4zQMi0C2UBqJOJZcmQyYIJrToRaMi5EKsZpM+W0D2f2+3nSOq45ZzX75rRavyyaKcE+HMAROHAOdbiGBjRBgIIneIYX69F6td6s95/RBavY2YM/sD6+AeJUk+k=</latexit>

t  13

<latexit sha1_base64="taTsXbckLXC3qUrgJtFWZRkEhjU=">AAAB+nicbVC7TsNAEFzzDOEVoKQ5ESFRRXYEgjKChjJI5CElVnS+bMIp5wd3a6TI5CdooaJDtPwMBf+CbVxAwlSjmV3t7HiRkoZs+9NaWl5ZXVsvbZQ3t7Z3dit7+20TxlpgS4Qq1F2PG1QywBZJUtiNNHLfU9jxJleZ33lAbWQY3NI0Qtfn40COpOCUSl3qK7xndWdQqdo1OwdbJE5BqlCgOah89YehiH0MSChuTM+xI3ITrkkKhbNyPzYYcTHhY+ylNOA+GjfJ887YcWw4hSxCzaRiuYi/NxLuGzP1vXTS53Rn5r1M/M/rxTS6cBMZRDFhILJDJBXmh4zQMi0C2VBqJOJZcmQyYIJrToRaMi5EKsZpM+W0D2f++0XSrtecs5p9c1ptXBbNlOAQjuAEHDiHBlxDE1ogQMETPMOL9Wi9Wm/W+8/oklXsHMAfWB/f4MaT6A==</latexit>

t  21

<latexit sha1_base64="ExzWh+M7uJiKOk0sBfqc7diIkFk=">AAAB+nicdVDLTgJBEJzFF+IL9ehlIjHxRGZBXjeiF4+YiJAAIbNDgxNmH870mhDkJ7zqyZvx6s948F+cRUzUaJ0qVd3p6vIiJQ0y9uaklpZXVtfS65mNza3tnezu3pUJYy2gKUIV6rbHDSgZQBMlKmhHGrjvKWh547PEb92CNjIMLnESQc/no0AOpeBopTZ2R3BDXdbP5lielUu1IqMsX2JupVazhLFytVigriUJcmSBRj/73h2EIvYhQKG4MR2XRdibco1SKJhlurGBiIsxH0HH0oD7YHrTed4ZPYoNx5BGoKlUdC7C940p942Z+J6d9Dlem99eIv7ldWIcVntTGUQxQiCSQygVzA8ZoaUtAuhAakDkSXKgMqCCa44IWlIuhBVj20zG9vH1NP2fXBXybinPLk5y9dNFM2lyQA7JMXFJhdTJOWmQJhFEkXvyQB6dO+fJeXZePkdTzmJnn/yA8/oBQp2UKg==</latexit>

t � 10

<latexit sha1_base64="+Z+xdhINzPSPqcmTRcKxP46bbH4=">AAAB+nicdVDLTgJBEJzFF+IL9ehlIjHxRGZBXjeiF4+YiJAAIbNDgxNmH870mhDkJ7zqyZvx6s948F+cRUzUaJ0qVd3p6vIiJQ0y9uaklpZXVtfS65mNza3tnezu3pUJYy2gKUIV6rbHDSgZQBMlKmhHGrjvKWh547PEb92CNjIMLnESQc/no0AOpeBopTZ2R3BD3WI/m2N5Vi7VioyyfIm5lVrNEsbK1WKBupYkyJEFGv3se3cQitiHAIXixnRcFmFvyjVKoWCW6cYGIi7GfAQdSwPug+lN53ln9Cg2HEMagaZS0bkI3zem3Ddm4nt20ud4bX57ifiX14lxWO1NZRDFCIFIDqFUMD9khJa2CKADqQGRJ8mByoAKrjkiaEm5EFaMbTMZ28fX0/R/clXIu6U8uzjJ1U8XzaTJATkkx8QlFVIn56RBmkQQRe7JA3l07pwn59l5+RxNOYudffIDzusHR0qULQ==</latexit>

t � 13

<latexit sha1_base64="ujb9S+bN2l3EysVr/25J9dK+eL8=">AAAB+nicdVDLTgJBEJzFF+IL9ehlIjHxRGZBXjeiF4+YiJAAIbNDgxNmH870mhDkJ7zqyZvx6s948F+cRUzUaJ0qVd3p6vIiJQ0y9uaklpZXVtfS65mNza3tnezu3pUJYy2gKUIV6rbHDSgZQBMlKmhHGrjvKWh547PEb92CNjIMLnESQc/no0AOpeBopTZ2R3BDC24/m2N5Vi7VioyyfIm5lVrNEsbK1WKBupYkyJEFGv3se3cQitiHAIXixnRcFmFvyjVKoWCW6cYGIi7GfAQdSwPug+lN53ln9Cg2HEMagaZS0bkI3zem3Ddm4nt20ud4bX57ifiX14lxWO1NZRDFCIFIDqFUMD9khJa2CKADqQGRJ8mByoAKrjkiaEm5EFaMbTMZ28fX0/R/clXIu6U8uzjJ1U8XzaTJATkkx8QlFVIn56RBmkQQRe7JA3l07pwn59l5+RxNOYudffIDzusHRbyULA==</latexit>

t � 21

<latexit sha1_base64="8twqChM70TB75WRTl0l7HC+3gE4=">AAACBXicdVC7TsNAEDyHVwivBEqagwiJKrIjQ1JG0FAGiTykxLLOl0045fzQ3RoUWan5Clqo6BAt30HBv2CbIAGCqUYzu7dz40VSaDTNN6OwtLyyulZcL21sbm3vlCu7XR3GikOHhzJUfY9pkCKADgqU0I8UMN+T0POm55nfuwGlRRhc4SwCx2eTQIwFZ5hKbrky9BleIyYamcK5ax245apZO7Wb9aZFzZqZIyO21bBtai2UKlmg7Zbfh6OQxz4EyCXTemCZETpJ+pzgEualYawhYnzKJjBIacB80E6SR5/To1gzDGkEigpJcxG+byTM13rme+lkFlT/9jLxL28Q47jpJCKIYoSAZ4dQSMgPaa5E2gnQkVCAyLLkQEVAOVMMEZSgjPNUjNOSSmkfX5+m/5NuvWad1MxLu9o6WzRTJPvkkBwTizRIi1yQNukQTm7JPXkgj8ad8WQ8Gy+fowVjsbNHfsB4/QCmopjU</latexit>

start1!

<latexit sha1_base64="WD7xlH5G4JaqV1Uyp/0Pbwnnvh4=">AAACAHicdVC7TsNAEDyHVwivACXNQYREZdnIkJQRNJRBIg8pMdH5sgmnnB+6WyNFVhq+ghYqOkTLn1DwL9jGSIBgqtHMrnZ2vEgKjZb1ZpQWFpeWV8qrlbX1jc2t6vZOR4ex4tDmoQxVz2MapAigjQIl9CIFzPckdL3peeZ3b0FpEQZXOIvA9dkkEGPBGabS9cBneIOYaAyj+f6wWrPMU6dx3LCpZVo5MuLYdcehdqHUSIHWsPo+GIU89iFALpnWfduK0E2YQsElzCuDWEPE+JRNoJ/SgPmg3SRPPaeHsWYY0ggUFZLmInzfSJiv9cz30skspf7tZeJfXj/GccNNRBDFCAHPDqGQkB/SXIm0DqAjoQCRZcmBioByphgiKEEZ56kYp/1U0j6+nqb/k86xaZ+Y1qVTa54VzZTJHjkgR8QmddIkF6RF2oQTRe7JA3k07own49l4+RwtGcXOLvkB4/UDKJeXjQ==</latexit>

stop!

<latexit sha1_base64="6LX0OMEhWY1I9q66UKD7QYOfXIk=">AAACBXicdVC7TsNAEDyHVwivBEqagwiJKrIjQ1JG0FAGiTykxLLOl0045fzQ3RoUWan5Clqo6BAt30HBv2CbIAGCqUYzu7dz40VSaDTNN6OwtLyyulZcL21sbm3vlCu7XR3GikOHhzJUfY9pkCKADgqU0I8UMN+T0POm55nfuwGlRRhc4SwCx2eTQIwFZ5hKbrky9BleIyYamcK5Wz9wy1Wzdmo3602LmjUzR0Zsq2Hb1FooVbJA2y2/D0chj30IkEum9cAyI3SS9DnBJcxLw1hDxPiUTWCQ0oD5oJ0kjz6nR7FmGNIIFBWS5iJ830iYr/XM99LJLKj+7WXiX94gxnHTSUQQxQgBzw6hkJAf0lyJtBOgI6EAkWXJgYqAcqYYIihBGeepGKclldI+vj5N/yfdes06qZmXdrV1tmimSPbJITkmFmmQFrkgbdIhnNySe/JAHo0748l4Nl4+RwvGYmeP/IDx+gGoMpjV</latexit>

start2!
<latexit sha1_base64="NOYDDOoBSq8JlJjPpa0auhyxqKc=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogyENKrGh92YRTzg/drUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+NFShqy7U+rtLS8srpWXq9sbG5t71R399omjLXAlghVqLseGFQywBZJUtiNNILvKex4k6vM7zygNjIM7mgaoevDOJAjKYBS6VYN7EG1ZtftHHyROAWpsQLNQfWrPwxF7GNAQoExPceOyE1AkxQKZ5V+bDACMYEx9lIagI/GTfKoM34UG6CQR6i5VDwX8fdGAr4xU99LJ32gezPvZeJ/Xi+m0YWbyCCKCQORHSKpMD9khJZpB8iHUiMRZMmRy4AL0ECEWnIQIhXjtJRK2ocz//0iaZ/UnbO6fXNaa1wWzZTZATtkx8xh56zBrlmTtZhgY/bEntmL9Wi9Wm/W+89oySp29tkfWB/fny6SHA==</latexit>

l0
<latexit sha1_base64="SwbxvTtGazW1rjZysCTLAxn9bjQ=">AAAB+XicbVC7TsNAEFzzDOEVoKQ5ESFRRTYCQRlBQxkk8pCSKDpfNuGU89ncrZEiKx9BCxUdouVrKPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6aaO8ubW9s1vZ22/ZMDYCmyJUoen43KKSGpskSWEnMsgDX2Hbn1xnfvsRjZWhvqNphP2Aj7UcScEpldrUU/jA3EGl6tbcHGyReAWpQoHGoPLVG4YiDlCTUNzarudG1E+4ISkUzsq92GLExYSPsZtSzQO0/SSPO2PHseUUsggNk4rlIv7eSHhg7TTw08mA072d9zLxP68b0+iyn0gdxYRaZIdIKswPWWFk2gOyoTRIxLPkyKRmghtOhEYyLkQqxmkx5bQPb/77RdI6rXnnNff2rFq/KpopwSEcwQl4cAF1uIEGNEHABJ7gGV6cxHl13pz3n9Elp9g5gD9wPr4BaeqTqw==</latexit>

t  0
<latexit sha1_base64="LdRCJjACFTX7oMn0xPN1f6fvZlM=">AAAB+XicdVDLSgNBEJz1GeMr6tHLYBA8hVk1r1vQi8cIJhGSJcxOOnHI7MOZXiEs+QivevImXv0aD/6LszGCitapqOqmq8uPlTTI2JuzsLi0vLKaW8uvb2xubRd2dtsmSrSAlohUpK99bkDJEFooUcF1rIEHvoKOPz7P/M4daCOj8AonMXgBH4VyKAVHK3WwN4JbyvqFIiuxSrl+wigrlZlbrdctYaxSOzmmriUZimSOZr/w3htEIgkgRKG4MV2XxeilXKMUCqb5XmIg5mLMR9C1NOQBGC+dxZ3Sw8RwjGgMmkpFZyJ830h5YMwk8O1kwPHG/PYy8S+vm+Cw5qUyjBOEUGSHUCqYHTJCS9sD0IHUgMiz5EBlSAXXHBG0pFwIKya2mLzt4+tp+j9pH5fccoldnhYbZ/NmcmSfHJAj4pIqaZAL0iQtIsiY3JMH8uikzpPz7Lx8ji4485098gPO6wfO1pPv</latexit>

t � 0
<latexit sha1_base64="gIGihldlOToYtkPZMI2z89t9RhE=">AAACAHicdVC7TsNAEDyHVwivACXNQYREFdnIkJQRNJRBIg8pCdH6sgmnnB+6WyNFVhq+ghYqOkTLn1DwL9ghSIBgqtHMrnZ2vEhJQ7b9ZuUWFpeWV/KrhbX1jc2t4vZO04SxFtgQoQp12wODSgbYIEkK25FG8D2FLW98nvmtW9RGhsEVTSLs+TAK5FAKoFS67vpAN0SJCmGwP+0XS3b51K0eVx1ul+0ZMuI6FdflzlwpsTnq/eJ7dxCK2MeAhAJjOo4dUS8BTVIonBa6scEIxBhG2ElpAD6aXjJLPeWHsQEKeYSaS8VnIn7fSMA3ZuJ76WSW0vz2MvEvrxPTsNpLZBDFhIHIDpFUODtkhJZpHcgHUiMRZMmRy4AL0ECEWnIQIhXjtJ9C2sfX0/x/0jwuOydl+9It1c7mzeTZHjtgR8xhFVZjF6zOGkwwze7ZA3u07qwn69l6+RzNWfOdXfYD1usH7HmXZw==</latexit>

load!
<latexit sha1_base64="WD7xlH5G4JaqV1Uyp/0Pbwnnvh4=">AAACAHicdVC7TsNAEDyHVwivACXNQYREZdnIkJQRNJRBIg8pMdH5sgmnnB+6WyNFVhq+ghYqOkTLn1DwL9jGSIBgqtHMrnZ2vEgKjZb1ZpQWFpeWV8qrlbX1jc2t6vZOR4ex4tDmoQxVz2MapAigjQIl9CIFzPckdL3peeZ3b0FpEQZXOIvA9dkkEGPBGabS9cBneIOYaAyj+f6wWrPMU6dx3LCpZVo5MuLYdcehdqHUSIHWsPo+GIU89iFALpnWfduK0E2YQsElzCuDWEPE+JRNoJ/SgPmg3SRPPaeHsWYY0ggUFZLmInzfSJiv9cz30skspf7tZeJfXj/GccNNRBDFCAHPDqGQkB/SXIm0DqAjoQCRZcmBioByphgiKEEZ56kYp/1U0j6+nqb/k86xaZ+Y1qVTa54VzZTJHjkgR8QmddIkF6RF2oQTRe7JA3k07own49l4+RwtGcXOLvkB4/UDKJeXjQ==</latexit>

stop!

<latexit sha1_base64="M9ABpaCtYw0lAOKk5Y5eY5UMY8s=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIjIigjaCiDRB4osaLzZRNOubPN3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudna8UAqDtv1plVZW19Y3ypuVre2d3b3q/kHXBJHm0OGBDHTfYwak8KGDAiX0Qw1MeRJ63uwq83uPoI0I/Fuch+AqNvXFRHCGqXSHQwkPcaOZjKo1u27noMvEKUiNFGiPql/DccAjBT5yyYwZOHaIbsw0Ci4hqQwjAyHjMzaFQUp9psC4cR44oSeRYRjQEDQVkuYi/N6ImTJmrrx0UjG8N4teJv7nDSKcXLix8MMIwefZIRQS8kOGa5E2AXQsNCCyLDlQ4VPONEMELSjjPBWjtJpK2oez+P0y6TbqTrNu35zVWpdFM2VyRI7JKXHIOWmRa9ImHcKJIk/kmbxYifVqvVnvP6Mlq9g5JH9gfXwDYG+Uzg==</latexit>

t  25

<latexit sha1_base64="XUMVimjiEDf21tT3lrDGhis8fHg=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIjXmUEDWWQyAMlVnS+bMIp57O5WyNFlr+CFio6RMvHUPAv2MYFJEw1mtnVzo4XSmHQtj+t0tLyyupaeb2ysbm1vVPd3euYINIc2jyQge55zIAUCtooUEIv1MB8T0LXm15lfvcRtBGBusVZCK7PJkqMBWeYSnc4kPAQN86SYbVm1+0cdJE4BamRAq1h9WswCnjkg0IumTF9xw7RjZlGwSUklUFkIGR8yibQT6liPhg3zgMn9CgyDAMagqZC0lyE3xsx842Z+V466TO8N/NeJv7n9SMcX7ixUGGEoHh2CIWE/JDhWqRNAB0JDYgsSw5UKMqZZoigBWWcp2KUVlNJ+3Dmv18knUbdOa3bNye15mXRTJkckENyTBxyTprkmrRIm3DikyfyTF6sxHq13qz3n9GSVezskz+wPr4BYf+Uzw==</latexit>

t  26

<latexit sha1_base64="kFAU6/S3K2leJzT8Qz3GF6Xp3uE=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTYigjKChjII8pASKzpfNuGU80N3a1Bk5RNooaJDtHwPBf+CbVxAwlSjmV3t7HiRkoZs+9NaWl5ZXVsvbZQ3t7Z3dit7+20TxlpgS4Qq1F2PG1QywBZJUtiNNHLfU9jxJleZ33lAbWQY3NE0Qtfn40COpOCUSrdqUB9UqnbNzsEWiVOQKhRoDipf/WEoYh8DEoob03PsiNyEa5JC4azcjw1GXEz4GHspDbiPxk3yqDN2HBtOIYtQM6lYLuLvjYT7xkx9L530Od2beS8T//N6MY0u3EQGUUwYiOwQSYX5ISO0TDtANpQaiXiWHJkMmOCaE6GWjAuRinFaSjntw5n/fpG0T2tOvWbfnFUbl0UzJTiEIzgBB86hAdfQhBYIGMMTPMOL9Wi9Wm/W+8/oklXsHMAfWB/fpvmSIQ==</latexit>

l5
<latexit sha1_base64="qd3ztO8gMxBF/c+lH0TACwHmSHI=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTbiVUbQUAZBHlJiRefLJpxyfuhuDYqsfAItVHSIlu+h4F+wjQtImGo0s6udHS9S0pBtf1oLi0vLK6ultfL6xubWdmVnt2XCWAtsilCFuuNxg0oG2CRJCjuRRu57Ctve+Crz2w+ojQyDO5pE6Pp8FMihFJxS6Vb1z/qVql2zc7B54hSkCgUa/cpXbxCK2MeAhOLGdB07IjfhmqRQOC33YoMRF2M+wm5KA+6jcZM86pQdxoZTyCLUTCqWi/h7I+G+MRPfSyd9Tvdm1svE/7xuTMMLN5FBFBMGIjtEUmF+yAgt0w6QDaRGIp4lRyYDJrjmRKgl40KkYpyWUk77cGa/nyet45pzWrNvTqr1y6KZEuzDARyBA+dQh2toQBMEjOAJnuHFerRerTfr/Wd0wSp29uAPrI9vqIiSIg==</latexit>

l6

<latexit sha1_base64="Pj0N9BkDOD21RT3YXMzb1JVOkGA=">AAAB+nicdVDLTgJBEJzFF+IL9ehlIjHxRGZBXjeiF4+YiJAAIbNDgxNmH870mhDkJ7zqyZvx6s948F+cRUzUaJ0qVd3p6vIiJQ0y9uaklpZXVtfS65mNza3tnezu3pUJYy2gKUIV6rbHDSgZQBMlKmhHGrjvKWh547PEb92CNjIMLnESQc/no0AOpeBopTZ2R3BDC6V+NsfyrFyqFRll+RJzK7WaJYyVq8UCdS1JkCMLNPrZ9+4gFLEPAQrFjem4LMLelGuUQsEs040NRFyM+Qg6lgbcB9ObzvPO6FFsOIY0Ak2lonMRvm9MuW/MxPfspM/x2vz2EvEvrxPjsNqbyiCKEQKRHEKpYH7ICC1tEUAHUgMiT5IDlQEVXHNE0JJyIawY22Yyto+vp+n/5KqQd0t5dnGSq58umkmTA3JIjolLKqROzkmDNIkgityTB/Lo3DlPzrPz8jmachY7++QHnNcPS/iUMA==</latexit>

t � 25

<latexit sha1_base64="KOWm1iReJNvlkw4JY1uHNP2vXNs=">AAAB+nicdVDLTgJBEJzFF+IL9ehlIjHxRGZBXjeiF4+YiJAAIbNDgxNmH870mhDkJ7zqyZvx6s948F+cRUzUaJ0qVd3p6vIiJQ0y9uaklpZXVtfS65mNza3tnezu3pUJYy2gKUIV6rbHDSgZQBMlKmhHGrjvKWh547PEb92CNjIMLnESQc/no0AOpeBopTZ2R3BDC+V+NsfyrFyqFRll+RJzK7WaJYyVq8UCdS1JkCMLNPrZ9+4gFLEPAQrFjem4LMLelGuUQsEs040NRFyM+Qg6lgbcB9ObzvPO6FFsOIY0Ak2lonMRvm9MuW/MxPfspM/x2vz2EvEvrxPjsNqbyiCKEQKRHEKpYH7ICC1tEUAHUgMiT5IDlQEVXHNE0JJyIawY22Yyto+vp+n/5KqQd0t5dnGSq58umkmTA3JIjolLKqROzkmDNIkgityTB/Lo3DlPzrPz8jmachY7++QHnNcPTYeUMQ==</latexit>

t � 26
<latexit sha1_base64="nqYTLIVim0euldGrQCF3le6bSeQ=">AAACBHicdVC7TsNAEDzzDOFloKQ5iJCoIjsyJGUEDSVIBJCSKFpfFjjlfLbu1pEiKy1fQQsVHaLlPyj4F+wQJEAw1WhmVzs7YaKkJc97c2Zm5+YXFktL5eWV1bV1d2PzwsapEdgSsYrNVQgWldTYIkkKrxKDEIUKL8PBceFfDtFYGetzGiXYjeBGy2spgHKp57qdCOiWKEu1iqE/3um5Fa96GDRqDZ97VW+CggR+PQi4P1UqbIrTnvve6ccijVCTUGBt2/cS6mZgSAqF43IntZiAGMANtnOqIULbzSbJx3wvtUAxT9BwqfhExO8bGUTWjqIwnyxy2t9eIf7ltVO6bnQzqZOUUIviEEmFk0NWGJlXgrwvDRJBkRy51FyAASI0koMQuZjmHZXzPr6e5v+Ti1rVP6h6Z0GleTRtpsS22S7bZz6rsyY7YaesxQQbsnv2wB6dO+fJeXZePkdnnOnOFvsB5/UDHqWYjw==</latexit>

unload!

(a) Controller reproducing a trace compatible with the machine SHA in Fig. 3.1.

<latexit sha1_base64="alx3var7rO6u6RLf4RZrCBUULqU=">AAAB+nicbVC7TsNAEFyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sgmnnB/crZEik5+ghYoO0fIzFPwLtnEBCVONZna1s+NFShqy7U+rtLS8srpWXq9sbG5t71R399omjLXAlghVqLseN6hkgC2SpLAbaeS+p7DjTa4yv/OA2sgwuKVphK7Px4EcScEplbrUV3jPHHtQrdl1OwdbJE5BalCgOah+9YehiH0MSChuTM+xI3ITrkkKhbNKPzYYcTHhY+ylNOA+GjfJ887YUWw4hSxCzaRiuYi/NxLuGzP1vXTS53Rn5r1M/M/rxTS6cBMZRDFhILJDJBXmh4zQMi0C2VBqJOJZcmQyYIJrToRaMi5EKsZpM5W0D2f++0XSPqk7Z3X75rTWuCyaKcMBHMIxOHAODbiGJrRAgIIneIYX69F6td6s95/RklXs7MMfWB/f3aeT5g==</latexit>

t  10

<latexit sha1_base64="Xkn2TnqngdkqxxxNDkBhbKOPrAo=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIRCMoIGsogyENKrOh82YRTzg/drUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+NFShqy7U+rtLS8srpWXq9sbG5t71R399omjLXAlghVqLseN6hkgC2SpLAbaeS+p7DjTa4yv/OA2sgwuKNphK7Px4EcScEplW7VwBlUa3bdzsEWiVOQGhRoDqpf/WEoYh8DEoob03PsiNyEa5JC4azSjw1GXEz4GHspDbiPxk3yqDN2FBtOIYtQM6lYLuLvjYT7xkx9L530Od2beS8T//N6MY0u3EQGUUwYiOwQSYX5ISO0TDtANpQaiXiWHJkMmOCaE6GWjAuRinFaSiXtw5n/fpG0T+rOWd2+Oa01LotmynAAh3AMDpxDA66hCS0QMIYneIYX69F6td6s95/RklXs7MMfWB/foL2SHQ==</latexit>

l1
<latexit sha1_base64="XNcYU25oeKL7v4Jjpkl/bqvwRCs=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRXYEgjKChjII8pASK1pfNuGU80N3a1Bk5RNooaJDtHwPBf+CbVxAwlSjmV3t7HiRkoZs+9NaWl5ZXVsvbZQ3t7Z3dit7+20TxlpgS4Qq1F0PDCoZYIskKexGGsH3FHa8yVXmdx5QGxkGdzSN0PVhHMiRFECpdKsG9UGlatfsHHyROAWpsgLNQeWrPwxF7GNAQoExPceOyE1AkxQKZ+V+bDACMYEx9lIagI/GTfKoM34cG6CQR6i5VDwX8fdGAr4xU99LJ32gezPvZeJ/Xi+m0YWbyCCKCQORHSKpMD9khJZpB8iHUiMRZMmRy4AL0ECEWnIQIhXjtJRy2ocz//0iaddrzlnNvjmtNi6LZkrskB2xE+awc9Zg16zJWkywMXtiz+zFerRerTfr/Wd0ySp2DtgfWB/fokySHg==</latexit>

l2

<latexit sha1_base64="Xxpwa0ZV6G0mf+Z0C3X+0ihCwOc=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTYPQRlBQxkEeUiJFZ0vm3DK+aG7NSiy8gm0UNEhWr6Hgn/BNi4gYarRzK52drxISUO2/WktLC4tr6yW1srrG5tb25Wd3ZYJYy2wKUIV6o7HDSoZYJMkKexEGrnvKWx746vMbz+gNjIM7mgSoevzUSCHUnBKpVvVP+lXqnbNzsHmiVOQKhRo9CtfvUEoYh8DEoob03XsiNyEa5JC4bTciw1GXIz5CLspDbiPxk3yqFN2GBtOIYtQM6lYLuLvjYT7xkx8L530Od2bWS8T//O6MQ0v3EQGUUwYiOwQSYX5ISO0TDtANpAaiXiWHJkMmOCaE6GWjAuRinFaSjntw5n9fp60jmvOWc2+Oa3WL4tmSrAPB3AEDpxDHa6hAU0QMIIneIYX69F6td6s95/RBavY2YM/sD6+AaPbkh8=</latexit>

l3
<latexit sha1_base64="9tPvuY+igXB61eyktocJCLZwOhw=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogyENKrGh92YRTzg/drUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+NFShqy7U+rtLS8srpWXq9sbG5t71R399omjLXAlghVqLseGFQywBZJUtiNNILvKex4k6vM7zygNjIM7mgaoevDOJAjKYBS6VYNTgfVml23c/BF4hSkxgo0B9Wv/jAUsY8BCQXG9Bw7IjcBTVIonFX6scEIxATG2EtpAD4aN8mjzvhRbIBCHqHmUvFcxN8bCfjGTH0vnfSB7s28l4n/eb2YRhduIoMoJgxEdoikwvyQEVqmHSAfSo1EkCVHLgMuQAMRaslBiFSM01IqaR/O/PeLpH1Sd87q9s1prXFZNFNmB+yQHTOHnbMGu2ZN1mKCjdkTe2Yv1qP1ar1Z7z+jJavY2Wd/YH18A6VqkiA=</latexit>

l4

<latexit sha1_base64="/u896qs/q5LE031w2DTcEVZkWCw=">AAAB+nicbVC7TsNAEFzzDOEVoKQ5ESFRRTYPQRlBQxkk8pASKzpfNuGU84O7NVJk8hO0UNEhWn6Ggn/BNi4gYarRzK52drxISUO2/WktLC4tr6yW1srrG5tb25Wd3ZYJYy2wKUIV6o7HDSoZYJMkKexEGrnvKWx746vMbz+gNjIMbmkSoevzUSCHUnBKpQ71FN4z56Rfqdo1OwebJ05BqlCg0a989QahiH0MSChuTNexI3ITrkkKhdNyLzYYcTHmI+ymNOA+GjfJ807ZYWw4hSxCzaRiuYi/NxLuGzPxvXTS53RnZr1M/M/rxjS8cBMZRDFhILJDJBXmh4zQMi0C2UBqJOJZcmQyYIJrToRaMi5EKsZpM+W0D2f2+3nSOq45ZzX75rRavyyaKcE+HMAROHAOdbiGBjRBgIIneIYX69F6td6s95/RBavY2YM/sD6+AeJUk+k=</latexit>

t  13

<latexit sha1_base64="taTsXbckLXC3qUrgJtFWZRkEhjU=">AAAB+nicbVC7TsNAEFzzDOEVoKQ5ESFRRXYEgjKChjJI5CElVnS+bMIp5wd3a6TI5CdooaJDtPwMBf+CbVxAwlSjmV3t7HiRkoZs+9NaWl5ZXVsvbZQ3t7Z3dit7+20TxlpgS4Qq1F2PG1QywBZJUtiNNHLfU9jxJleZ33lAbWQY3NI0Qtfn40COpOCUSl3qK7xndWdQqdo1OwdbJE5BqlCgOah89YehiH0MSChuTM+xI3ITrkkKhbNyPzYYcTHhY+ylNOA+GjfJ887YcWw4hSxCzaRiuYi/NxLuGzP1vXTS53Rn5r1M/M/rxTS6cBMZRDFhILJDJBXmh4zQMi0C2VBqJOJZcmQyYIJrToRaMi5EKsZpM+W0D2f++0XSrtecs5p9c1ptXBbNlOAQjuAEHDiHBlxDE1ogQMETPMOL9Wi9Wm/W+8/oklXsHMAfWB/f4MaT6A==</latexit>

t  21

<latexit sha1_base64="ExzWh+M7uJiKOk0sBfqc7diIkFk=">AAAB+nicdVDLTgJBEJzFF+IL9ehlIjHxRGZBXjeiF4+YiJAAIbNDgxNmH870mhDkJ7zqyZvx6s948F+cRUzUaJ0qVd3p6vIiJQ0y9uaklpZXVtfS65mNza3tnezu3pUJYy2gKUIV6rbHDSgZQBMlKmhHGrjvKWh547PEb92CNjIMLnESQc/no0AOpeBopTZ2R3BDXdbP5lielUu1IqMsX2JupVazhLFytVigriUJcmSBRj/73h2EIvYhQKG4MR2XRdibco1SKJhlurGBiIsxH0HH0oD7YHrTed4ZPYoNx5BGoKlUdC7C940p942Z+J6d9Dlem99eIv7ldWIcVntTGUQxQiCSQygVzA8ZoaUtAuhAakDkSXKgMqCCa44IWlIuhBVj20zG9vH1NP2fXBXybinPLk5y9dNFM2lyQA7JMXFJhdTJOWmQJhFEkXvyQB6dO+fJeXZePkdTzmJnn/yA8/oBQp2UKg==</latexit>

t � 10

<latexit sha1_base64="+Z+xdhINzPSPqcmTRcKxP46bbH4=">AAAB+nicdVDLTgJBEJzFF+IL9ehlIjHxRGZBXjeiF4+YiJAAIbNDgxNmH870mhDkJ7zqyZvx6s948F+cRUzUaJ0qVd3p6vIiJQ0y9uaklpZXVtfS65mNza3tnezu3pUJYy2gKUIV6rbHDSgZQBMlKmhHGrjvKWh547PEb92CNjIMLnESQc/no0AOpeBopTZ2R3BD3WI/m2N5Vi7VioyyfIm5lVrNEsbK1WKBupYkyJEFGv3se3cQitiHAIXixnRcFmFvyjVKoWCW6cYGIi7GfAQdSwPug+lN53ln9Cg2HEMagaZS0bkI3zem3Ddm4nt20ud4bX57ifiX14lxWO1NZRDFCIFIDqFUMD9khJa2CKADqQGRJ8mByoAKrjkiaEm5EFaMbTMZ28fX0/R/clXIu6U8uzjJ1U8XzaTJATkkx8QlFVIn56RBmkQQRe7JA3l07pwn59l5+RxNOYudffIDzusHR0qULQ==</latexit>

t � 13

<latexit sha1_base64="ujb9S+bN2l3EysVr/25J9dK+eL8=">AAAB+nicdVDLTgJBEJzFF+IL9ehlIjHxRGZBXjeiF4+YiJAAIbNDgxNmH870mhDkJ7zqyZvx6s948F+cRUzUaJ0qVd3p6vIiJQ0y9uaklpZXVtfS65mNza3tnezu3pUJYy2gKUIV6rbHDSgZQBMlKmhHGrjvKWh547PEb92CNjIMLnESQc/no0AOpeBopTZ2R3BDC24/m2N5Vi7VioyyfIm5lVrNEsbK1WKBupYkyJEFGv3se3cQitiHAIXixnRcFmFvyjVKoWCW6cYGIi7GfAQdSwPug+lN53ln9Cg2HEMagaZS0bkI3zem3Ddm4nt20ud4bX57ifiX14lxWO1NZRDFCIFIDqFUMD9khJa2CKADqQGRJ8mByoAKrjkiaEm5EFaMbTMZ28fX0/R/clXIu6U8uzjJ1U8XzaTJATkkx8QlFVIn56RBmkQQRe7JA3l07pwn59l5+RxNOYudffIDzusHRbyULA==</latexit>

t � 21

<latexit sha1_base64="8twqChM70TB75WRTl0l7HC+3gE4=">AAACBXicdVC7TsNAEDyHVwivBEqagwiJKrIjQ1JG0FAGiTykxLLOl0045fzQ3RoUWan5Clqo6BAt30HBv2CbIAGCqUYzu7dz40VSaDTNN6OwtLyyulZcL21sbm3vlCu7XR3GikOHhzJUfY9pkCKADgqU0I8UMN+T0POm55nfuwGlRRhc4SwCx2eTQIwFZ5hKbrky9BleIyYamcK5ax245apZO7Wb9aZFzZqZIyO21bBtai2UKlmg7Zbfh6OQxz4EyCXTemCZETpJ+pzgEualYawhYnzKJjBIacB80E6SR5/To1gzDGkEigpJcxG+byTM13rme+lkFlT/9jLxL28Q47jpJCKIYoSAZ4dQSMgPaa5E2gnQkVCAyLLkQEVAOVMMEZSgjPNUjNOSSmkfX5+m/5NuvWad1MxLu9o6WzRTJPvkkBwTizRIi1yQNukQTm7JPXkgj8ad8WQ8Gy+fowVjsbNHfsB4/QCmopjU</latexit>

start1!

<latexit sha1_base64="WD7xlH5G4JaqV1Uyp/0Pbwnnvh4=">AAACAHicdVC7TsNAEDyHVwivACXNQYREZdnIkJQRNJRBIg8pMdH5sgmnnB+6WyNFVhq+ghYqOkTLn1DwL9jGSIBgqtHMrnZ2vEgKjZb1ZpQWFpeWV8qrlbX1jc2t6vZOR4ex4tDmoQxVz2MapAigjQIl9CIFzPckdL3peeZ3b0FpEQZXOIvA9dkkEGPBGabS9cBneIOYaAyj+f6wWrPMU6dx3LCpZVo5MuLYdcehdqHUSIHWsPo+GIU89iFALpnWfduK0E2YQsElzCuDWEPE+JRNoJ/SgPmg3SRPPaeHsWYY0ggUFZLmInzfSJiv9cz30skspf7tZeJfXj/GccNNRBDFCAHPDqGQkB/SXIm0DqAjoQCRZcmBioByphgiKEEZ56kYp/1U0j6+nqb/k86xaZ+Y1qVTa54VzZTJHjkgR8QmddIkF6RF2oQTRe7JA3k07own49l4+RwtGcXOLvkB4/UDKJeXjQ==</latexit>

stop!

<latexit sha1_base64="6LX0OMEhWY1I9q66UKD7QYOfXIk=">AAACBXicdVC7TsNAEDyHVwivBEqagwiJKrIjQ1JG0FAGiTykxLLOl0045fzQ3RoUWan5Clqo6BAt30HBv2CbIAGCqUYzu7dz40VSaDTNN6OwtLyyulZcL21sbm3vlCu7XR3GikOHhzJUfY9pkCKADgqU0I8UMN+T0POm55nfuwGlRRhc4SwCx2eTQIwFZ5hKbrky9BleIyYamcK5Wz9wy1Wzdmo3602LmjUzR0Zsq2Hb1FooVbJA2y2/D0chj30IkEum9cAyI3SS9DnBJcxLw1hDxPiUTWCQ0oD5oJ0kjz6nR7FmGNIIFBWS5iJ830iYr/XM99LJLKj+7WXiX94gxnHTSUQQxQgBzw6hkJAf0lyJtBOgI6EAkWXJgYqAcqYYIihBGeepGKclldI+vj5N/yfdes06qZmXdrV1tmimSPbJITkmFmmQFrkgbdIhnNySe/JAHo0748l4Nl4+RwvGYmeP/IDx+gGoMpjV</latexit>

start2!

<latexit sha1_base64="NOYDDOoBSq8JlJjPpa0auhyxqKc=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogyENKrGh92YRTzg/drUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+NFShqy7U+rtLS8srpWXq9sbG5t71R399omjLXAlghVqLseGFQywBZJUtiNNILvKex4k6vM7zygNjIM7mgaoevDOJAjKYBS6VYN7EG1ZtftHHyROAWpsQLNQfWrPwxF7GNAQoExPceOyE1AkxQKZ5V+bDACMYEx9lIagI/GTfKoM34UG6CQR6i5VDwX8fdGAr4xU99LJ32gezPvZeJ/Xi+m0YWbyCCKCQORHSKpMD9khJZpB8iHUiMRZMmRy4AL0ECEWnIQIhXjtJRK2ocz//0iaZ/UnbO6fXNaa1wWzZTZATtkx8xh56zBrlmTtZhgY/bEntmL9Wi9Wm/W+89oySp29tkfWB/fny6SHA==</latexit>

l0
<latexit sha1_base64="SwbxvTtGazW1rjZysCTLAxn9bjQ=">AAAB+XicbVC7TsNAEFzzDOEVoKQ5ESFRRTYCQRlBQxkk8pCSKDpfNuGU89ncrZEiKx9BCxUdouVrKPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6aaO8ubW9s1vZ22/ZMDYCmyJUoen43KKSGpskSWEnMsgDX2Hbn1xnfvsRjZWhvqNphP2Aj7UcScEpldrUU/jA3EGl6tbcHGyReAWpQoHGoPLVG4YiDlCTUNzarudG1E+4ISkUzsq92GLExYSPsZtSzQO0/SSPO2PHseUUsggNk4rlIv7eSHhg7TTw08mA072d9zLxP68b0+iyn0gdxYRaZIdIKswPWWFk2gOyoTRIxLPkyKRmghtOhEYyLkQqxmkx5bQPb/77RdI6rXnnNff2rFq/KpopwSEcwQl4cAF1uIEGNEHABJ7gGV6cxHl13pz3n9Elp9g5gD9wPr4BaeqTqw==</latexit>

t  0
<latexit sha1_base64="LdRCJjACFTX7oMn0xPN1f6fvZlM=">AAAB+XicdVDLSgNBEJz1GeMr6tHLYBA8hVk1r1vQi8cIJhGSJcxOOnHI7MOZXiEs+QivevImXv0aD/6LszGCitapqOqmq8uPlTTI2JuzsLi0vLKaW8uvb2xubRd2dtsmSrSAlohUpK99bkDJEFooUcF1rIEHvoKOPz7P/M4daCOj8AonMXgBH4VyKAVHK3WwN4JbyvqFIiuxSrl+wigrlZlbrdctYaxSOzmmriUZimSOZr/w3htEIgkgRKG4MV2XxeilXKMUCqb5XmIg5mLMR9C1NOQBGC+dxZ3Sw8RwjGgMmkpFZyJ830h5YMwk8O1kwPHG/PYy8S+vm+Cw5qUyjBOEUGSHUCqYHTJCS9sD0IHUgMiz5EBlSAXXHBG0pFwIKya2mLzt4+tp+j9pH5fccoldnhYbZ/NmcmSfHJAj4pIqaZAL0iQtIsiY3JMH8uikzpPz7Lx8ji4485098gPO6wfO1pPv</latexit>

t � 0
<latexit sha1_base64="gIGihldlOToYtkPZMI2z89t9RhE=">AAACAHicdVC7TsNAEDyHVwivACXNQYREFdnIkJQRNJRBIg8pCdH6sgmnnB+6WyNFVhq+ghYqOkTLn1DwL9ghSIBgqtHMrnZ2vEhJQ7b9ZuUWFpeWV/KrhbX1jc2t4vZO04SxFtgQoQp12wODSgbYIEkK25FG8D2FLW98nvmtW9RGhsEVTSLs+TAK5FAKoFS67vpAN0SJCmGwP+0XS3b51K0eVx1ul+0ZMuI6FdflzlwpsTnq/eJ7dxCK2MeAhAJjOo4dUS8BTVIonBa6scEIxBhG2ElpAD6aXjJLPeWHsQEKeYSaS8VnIn7fSMA3ZuJ76WSW0vz2MvEvrxPTsNpLZBDFhIHIDpFUODtkhJZpHcgHUiMRZMmRy4AL0ECEWnIQIhXjtJ9C2sfX0/x/0jwuOydl+9It1c7mzeTZHjtgR8xhFVZjF6zOGkwwze7ZA3u07qwn69l6+RzNWfOdXfYD1usH7HmXZw==</latexit>

load!
<latexit sha1_base64="WD7xlH5G4JaqV1Uyp/0Pbwnnvh4=">AAACAHicdVC7TsNAEDyHVwivACXNQYREZdnIkJQRNJRBIg8pMdH5sgmnnB+6WyNFVhq+ghYqOkTLn1DwL9jGSIBgqtHMrnZ2vEgKjZb1ZpQWFpeWV8qrlbX1jc2t6vZOR4ex4tDmoQxVz2MapAigjQIl9CIFzPckdL3peeZ3b0FpEQZXOIvA9dkkEGPBGabS9cBneIOYaAyj+f6wWrPMU6dx3LCpZVo5MuLYdcehdqHUSIHWsPo+GIU89iFALpnWfduK0E2YQsElzCuDWEPE+JRNoJ/SgPmg3SRPPaeHsWYY0ggUFZLmInzfSJiv9cz30skspf7tZeJfXj/GccNNRBDFCAHPDqGQkB/SXIm0DqAjoQCRZcmBioByphgiKEEZ56kYp/1U0j6+nqb/k86xaZ+Y1qVTa54VzZTJHjkgR8QmddIkF6RF2oQTRe7JA3k07own49l4+RwtGcXOLvkB4/UDKJeXjQ==</latexit>

stop!

<latexit sha1_base64="M9ABpaCtYw0lAOKk5Y5eY5UMY8s=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIjIigjaCiDRB4osaLzZRNOubPN3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudna8UAqDtv1plVZW19Y3ypuVre2d3b3q/kHXBJHm0OGBDHTfYwak8KGDAiX0Qw1MeRJ63uwq83uPoI0I/Fuch+AqNvXFRHCGqXSHQwkPcaOZjKo1u27noMvEKUiNFGiPql/DccAjBT5yyYwZOHaIbsw0Ci4hqQwjAyHjMzaFQUp9psC4cR44oSeRYRjQEDQVkuYi/N6ImTJmrrx0UjG8N4teJv7nDSKcXLix8MMIwefZIRQS8kOGa5E2AXQsNCCyLDlQ4VPONEMELSjjPBWjtJpK2oez+P0y6TbqTrNu35zVWpdFM2VyRI7JKXHIOWmRa9ImHcKJIk/kmbxYifVqvVnvP6Mlq9g5JH9gfXwDYG+Uzg==</latexit>

t  25

<latexit sha1_base64="XUMVimjiEDf21tT3lrDGhis8fHg=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIjXmUEDWWQyAMlVnS+bMIp57O5WyNFlr+CFio6RMvHUPAv2MYFJEw1mtnVzo4XSmHQtj+t0tLyyupaeb2ysbm1vVPd3euYINIc2jyQge55zIAUCtooUEIv1MB8T0LXm15lfvcRtBGBusVZCK7PJkqMBWeYSnc4kPAQN86SYbVm1+0cdJE4BamRAq1h9WswCnjkg0IumTF9xw7RjZlGwSUklUFkIGR8yibQT6liPhg3zgMn9CgyDAMagqZC0lyE3xsx842Z+V466TO8N/NeJv7n9SMcX7ixUGGEoHh2CIWE/JDhWqRNAB0JDYgsSw5UKMqZZoigBWWcp2KUVlNJ+3Dmv18knUbdOa3bNye15mXRTJkckENyTBxyTprkmrRIm3DikyfyTF6sxHq13qz3n9GSVezskz+wPr4BYf+Uzw==</latexit>

t  26

<latexit sha1_base64="kFAU6/S3K2leJzT8Qz3GF6Xp3uE=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTYigjKChjII8pASKzpfNuGU80N3a1Bk5RNooaJDtHwPBf+CbVxAwlSjmV3t7HiRkoZs+9NaWl5ZXVsvbZQ3t7Z3dit7+20TxlpgS4Qq1F2PG1QywBZJUtiNNHLfU9jxJleZ33lAbWQY3NE0Qtfn40COpOCUSrdqUB9UqnbNzsEWiVOQKhRoDipf/WEoYh8DEoob03PsiNyEa5JC4azcjw1GXEz4GHspDbiPxk3yqDN2HBtOIYtQM6lYLuLvjYT7xkx9L530Od2beS8T//N6MY0u3EQGUUwYiOwQSYX5ISO0TDtANpQaiXiWHJkMmOCaE6GWjAuRinFaSjntw5n/fpG0T2tOvWbfnFUbl0UzJTiEIzgBB86hAdfQhBYIGMMTPMOL9Wi9Wm/W+8/oklXsHMAfWB/fpvmSIQ==</latexit>

l5
<latexit sha1_base64="qd3ztO8gMxBF/c+lH0TACwHmSHI=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTbiVUbQUAZBHlJiRefLJpxyfuhuDYqsfAItVHSIlu+h4F+wjQtImGo0s6udHS9S0pBtf1oLi0vLK6ultfL6xubWdmVnt2XCWAtsilCFuuNxg0oG2CRJCjuRRu57Ctve+Crz2w+ojQyDO5pE6Pp8FMihFJxS6Vb1z/qVql2zc7B54hSkCgUa/cpXbxCK2MeAhOLGdB07IjfhmqRQOC33YoMRF2M+wm5KA+6jcZM86pQdxoZTyCLUTCqWi/h7I+G+MRPfSyd9Tvdm1svE/7xuTMMLN5FBFBMGIjtEUmF+yAgt0w6QDaRGIp4lRyYDJrjmRKgl40KkYpyWUk77cGa/nyet45pzWrNvTqr1y6KZEuzDARyBA+dQh2toQBMEjOAJnuHFerRerTfr/Wd0wSp29uAPrI9vqIiSIg==</latexit>

l6

<latexit sha1_base64="Pj0N9BkDOD21RT3YXMzb1JVOkGA=">AAAB+nicdVDLTgJBEJzFF+IL9ehlIjHxRGZBXjeiF4+YiJAAIbNDgxNmH870mhDkJ7zqyZvx6s948F+cRUzUaJ0qVd3p6vIiJQ0y9uaklpZXVtfS65mNza3tnezu3pUJYy2gKUIV6rbHDSgZQBMlKmhHGrjvKWh547PEb92CNjIMLnESQc/no0AOpeBopTZ2R3BDC6V+NsfyrFyqFRll+RJzK7WaJYyVq8UCdS1JkCMLNPrZ9+4gFLEPAQrFjem4LMLelGuUQsEs040NRFyM+Qg6lgbcB9ObzvPO6FFsOIY0Ak2lonMRvm9MuW/MxPfspM/x2vz2EvEvrxPjsNqbyiCKEQKRHEKpYH7ICC1tEUAHUgMiT5IDlQEVXHNE0JJyIawY22Yyto+vp+n/5KqQd0t5dnGSq58umkmTA3JIjolLKqROzkmDNIkgityTB/Lo3DlPzrPz8jmachY7++QHnNcPS/iUMA==</latexit>

t � 25

<latexit sha1_base64="KOWm1iReJNvlkw4JY1uHNP2vXNs=">AAAB+nicdVDLTgJBEJzFF+IL9ehlIjHxRGZBXjeiF4+YiJAAIbNDgxNmH870mhDkJ7zqyZvx6s948F+cRUzUaJ0qVd3p6vIiJQ0y9uaklpZXVtfS65mNza3tnezu3pUJYy2gKUIV6rbHDSgZQBMlKmhHGrjvKWh547PEb92CNjIMLnESQc/no0AOpeBopTZ2R3BDC+V+NsfyrFyqFRll+RJzK7WaJYyVq8UCdS1JkCMLNPrZ9+4gFLEPAQrFjem4LMLelGuUQsEs040NRFyM+Qg6lgbcB9ObzvPO6FFsOIY0Ak2lonMRvm9MuW/MxPfspM/x2vz2EvEvrxPjsNqbyiCKEQKRHEKpYH7ICC1tEUAHUgMiT5IDlQEVXHNE0JJyIawY22Yyto+vp+n/5KqQd0t5dnGSq58umkmTA3JIjolLKqROzkmDNIkgityTB/Lo3DlPzrPz8jmachY7++QHnNcPTYeUMQ==</latexit>

t � 26
<latexit sha1_base64="nqYTLIVim0euldGrQCF3le6bSeQ=">AAACBHicdVC7TsNAEDzzDOFloKQ5iJCoIjsyJGUEDSVIBJCSKFpfFjjlfLbu1pEiKy1fQQsVHaLlPyj4F+wQJEAw1WhmVzs7YaKkJc97c2Zm5+YXFktL5eWV1bV1d2PzwsapEdgSsYrNVQgWldTYIkkKrxKDEIUKL8PBceFfDtFYGetzGiXYjeBGy2spgHKp57qdCOiWKEu1iqE/3um5Fa96GDRqDZ97VW+CggR+PQi4P1UqbIrTnvve6ccijVCTUGBt2/cS6mZgSAqF43IntZiAGMANtnOqIULbzSbJx3wvtUAxT9BwqfhExO8bGUTWjqIwnyxy2t9eIf7ltVO6bnQzqZOUUIviEEmFk0NWGJlXgrwvDRJBkRy51FyAASI0koMQuZjmHZXzPr6e5v+Ti1rVP6h6Z0GleTRtpsS22S7bZz6rsyY7YaesxQQbsnv2wB6dO+fJeXZePkdnnOnOFvsB5/UDHqWYjw==</latexit>

unload!

(b) Controller reproducing a trace not compatible with the machine SHA in Fig. 3.1 (the highlighted event causes
the incompatibility).

Figure 13.3: Examples of controller SHA. Each location is represented with its label and
invariant.

Verifying whether a trace is compatible with the machine SHA entails
the generation of a controller SHA to compose a SHA network. The con-
troller SHA mimics the timed sequence of events of the trace under analy-
sis. The trace determines the structure of the controller SHA, which, thus,
does not require learning through L∗SHA. In all controller SHA, t ∈ W is a
real-valued variable that grows uniformly with time (i.e., ṫ = 1 holds in all
locations).

An edge labeled with c! with c ∈ C cannot fire (thus, time cannot flow)
unless another SHA in the network has an edge enabled with label c?. If
all edges of the controller fire successfully, the machine SHA captures the
trace under analysis: hence, the trace is compatible with the learned SHA
and eligible for trace-based simulation.

For instance, let us assume that the validation dataset contains two traces,
namely:

⟨load, start1, stop, start2, stop, unload⟩
⟨load, start1, start2, stop, stop, unload⟩

with events at timestamps ⟨10, 13, 21, 25, 26⟩ in both cases. Traces compat-
ibility with the machine SHA in Fig. 3.1 needs to be verified, and Fig. 13.3
shows the two controller SHA corresponding to the first and second trace,
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respectively. The controller shown in Fig. 13.3a mimics a trace compatible
with the machine SHA in Fig. 3.1, while the trace mimicked by the SHA
in Fig. 13.3b is not compatible because the edge from l2 to l3 cannot fire.

Trace-driven simulation is executed for compatible traces. To this end,
the machine SHA is paired with the controller SHA mimicking the trace
under analysis. The resulting SHA network is subject to trace-based sim-
ulation through the Uppaal tool for formal modeling, and verification [46].
The tool generates Nval ∈ N runs of the system simulating the power P in
response to the events of the trace under analysis (fired by the controller
SHA).

Whenever an edge incoming location l ∈ L fires, update ξl draws a
sample of P from estimated D(l) through an acceptance/rejection algo-
rithm [35]. However, trace-based simulation requires the estimation of
probability density function D(l) to generate random samples through up-
dates ξl [46]. From each of the Nval generated simulations, Uppaal estimates
the expected energy consumed to execute the trace E[E] by integrating the
power P over the simulated time.

Design of Experiments

Three scenarios of increasing complexity are devised:

1. Scenario A represents a mass production application where high vol-
umes of the same type of product are machined.

2. Scenario B represents the production of a family of products (i.e.,
three product types).

3. Scenario C represents the production of highly customized products.
Machines work on unique solutions executing part-programs tailored
to client requests, where the production of individual workpieces can
be entirely different.

All experiments are performed on a machine running Ubuntu 22.04 with
64GB of memory and 4 cores. Trace-based simulation is performed using
Uppaal v.4.1.24.

Numerical results are obtained by performing 10 experiments, summed
up in Table 13.2 and characterized as follows:

• Six instances of scenario A are created starting from literature data,
specifically the 27 machining tasks presented in [134]. Data has been
combined to create the sequence of machining tasks for six part types.
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Table 13.2: Design of experiments (Scenarios A, B, and C).

Exp. Scenario Part mix Part type Trace length
1− 6 A i− vi Single p = 6 / p = 12
7− 9 B i, ii, iii / iv, v, vi / i, iv, vi Multiple p = 6 / p = 12
10 C Unknown Multiple p ∈ [6, 21]

Types i, ii, iii consist of p = 6 tasks, while part types iv, v, vi con-
sist of p = 12 tasks. Experiments 1 to 6 refer to part types i − vi,
respectively. Training and validation datasets have been generated by
concatenating the signals available and adding white noise.

• Three instances of scenario B are created starting from literature data
[134]. Each instance includes three part types, respectively: exper-
iment 7 features types i, ii, iii, experiment 8 features iv, v, vi, and
experiment 9 features i, iv, vi. Training and validation datasets have
been generated by adding white noise to the source signals.

• Experiment 10 refers to scenario C. The part mix is unknown. As for
the field acquisition, part types include up to 21 tasks (with a minimum
of 6) executed sequentially to produce a single workpiece. Training
and validation datasets are extracted from field data.

Experimental Results

The approach is applied to problem instances by increasing the number of
Ntr training traces. For scenarios A and B, we consider Ntr = 3, 10, 20
traces for each produced part type to train L∗SHA, whilst for scenario C, we
consider Ntr = 5, 7, 9 traces.

Table 13.3, Table 13.4, and Table 13.5 report on L∗SHA performance for
scenarios A, B, and C, respectively.

The training dataset volume is proportional to Ntr (i.e., the number of
traces) and execution time of the part-program, which is the acquisition
time to obtain a single trace. The acquisition time is reported in Table 13.3
for each part type i − vi. For instances of scenario A, the average part-
program execution time to obtain a single item is 1331 s (22.19 minutes).
Thus, the training dataset for a single instance of scenario A includes on
average 1.1h, 3.7h, and 7.4h of acquisition for respectively Ntr = 3, 10, 20.
Similarly an instance of scenarios B includes the production of three items
and requires on average 3.7h, 12.2h, and 24.4h of acquisition for respec-
tively Ntr = 9, 30, 60. Regarding the instance of scenario C, a single trace
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Table 13.3: L∗SHA running time ([s]) for scenario A broken down by experiment, produced
part mix, number of locations and edges of the learned SHA, and number of training
traces Ntr with related acquisition time ([h]).

Exp. Part Mix |L| |E| Ntr Acquisition Time [h] Learning Time [s]

1 i 8 11
3 1.00 8.84
10 3.33 16.63
20 6.65 18.40

2 ii 12 12
3 0.46 4.67
10 1.53 8.35
20 3.06 10.27

3 iii 11 12
3 0.93 7.97
10 3.09 15.58
20 6.18 19.94

4 iv 12 16
3 1.77 46.37
10 5.91 52.44
20 11.82 67.66

5 v 17 19
3 0.95 32.29
10 3.16 48.87
20 6.31 58.24

6 vi 23 24
3 1.55 58.03
10 5.18 81.93
20 10.35 99.78

Table 13.4: L∗SHA running time ([s]) for scenario B broken down by experiment, produced
part mix, number of locations and edges of the learned SHA, and number of training
traces Ntr with related acquisition time ([h]).

Exp. Part Mix |L |E| Ntr Acquisition Time [h] Learning Time [s]

7 i, ii, iii 20 25
3× 3 4.32 49.28
10× 3 14.41 76.59
20× 3 28.82 146.21

8 iv, v, vi 48 54
3× 3 2.38 247.34
10× 3 7.95 354.32
20× 3 15.89 659.59

9 i, iv, vi 30 36
3× 3 4.27 146.08
10× 3 14.24 204.43
20× 3 28.48 385.04

requires on the average 1.44h; thus it includes a total of 5.5h, 8h, and 13h
of acquisition, respectively for Ntr = 5, 7, 9 training traces.

Concerning the SHA complexity, flow conditions and real-valued vari-
ables do not vary across experiments. Since each location is endowed with
at most one probability distribution, the number of locations and edges of
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Table 13.5: L∗SHA running time ([s]) for the experiment of scenario C broken down by the
number of locations and edges of the learned SHA, and number of training traces Ntr

with related acquisition time [h].

Exp. |L| E Ntr Acquisition time [h] Learning Time [s]

10
15 34 5 5.5 568.05
30 60 7 8 1216.49
42 83 9 13 4119.48

Figure 13.4: Example of field data for part type i. Events are marked with triangles: green
for load, yellow for start, blue for stop, and red for unload. The top plot highlights the
time window during each task and the corresponding task numerical identifier.

the learned SHA (reported in Table 13.3, Table 13.4, and Table 13.5) indi-
cate how the SHA complexity varies between different experiments.

In all experiments, L∗SHA running time (i.e., the computation time re-
quired by the algorithm to perform the learning) is increasing in the volume
of the training dataset and the complexity of the learned SHA.

We illustrate an example of learned SHA, specifically for part type i as
obtained with Ntr = 10. Machining tasks constituting the part-program
of part type i feature the spindle moving at three different nominal speeds
(Fig. 13.4). Accordingly, the data processing of the speed signal captures
three events start8, start12, and start16 in addition to stop, load and
unload events which are trivially captured for any trace. The learned SHA
has seven locations in addition to the default init and accordingly to the
estimatedD(l) we can differentiate among locations q1, q3, q5, and q6 where
the cutting process is in execution and the spindle requires not negligible
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<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?

<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?

<latexit sha1_base64="gHgbzU9TERqo5W0kYldq+4Ezgxw=">AAACB3icbVDLSgNBEJyNrxhf0Ry9DAbBg4RdUfQSCIrgMYJ5QLKE2UknDpl9MNMrhGU/wK/wqidv4tXP8OC/OLvmoIl1Kqqr6O7yIik02vanVVhaXlldK66XNja3tnfKu3ttHcaKQ4uHMlRdj2mQIoAWCpTQjRQw35PQ8SZX2bzzAEqLMLjDaQSuz8aBGAnO0EiDcqU/DDFppnX7OGfXab05KFftmp2DLhJnRqpkBuP/Mlke+xAgl0zrnmNH6CZMoeAS0lI/1hAxPmFj6BkaMB+0m+THp/Qw1gxDGoGiQtJchN+JhPlaT33POH2G93p+lon/zXoxji7cRARRjBDwbBEKCfkizZUwrQAdCgWILLscqAgoZ4ohghKUcW7E2NRUMn04898vkvZJzTmr2ben1cblrJki2ScH5Ig45Jw0yA1pkhbhZEqeyDN5sR6tV+vNev+xFqxZpkL+wPr4BvKwmOM=</latexit>

Ṗ = 0, Ė = P
<latexit sha1_base64="gHgbzU9TERqo5W0kYldq+4Ezgxw=">AAACB3icbVDLSgNBEJyNrxhf0Ry9DAbBg4RdUfQSCIrgMYJ5QLKE2UknDpl9MNMrhGU/wK/wqidv4tXP8OC/OLvmoIl1Kqqr6O7yIik02vanVVhaXlldK66XNja3tnfKu3ttHcaKQ4uHMlRdj2mQIoAWCpTQjRQw35PQ8SZX2bzzAEqLMLjDaQSuz8aBGAnO0EiDcqU/DDFppnX7OGfXab05KFftmp2DLhJnRqpkBuP/Mlke+xAgl0zrnmNH6CZMoeAS0lI/1hAxPmFj6BkaMB+0m+THp/Qw1gxDGoGiQtJchN+JhPlaT33POH2G93p+lon/zXoxji7cRARRjBDwbBEKCfkizZUwrQAdCgWILLscqAgoZ4ohghKUcW7E2NRUMn04898vkvZJzTmr2ben1cblrJki2ScH5Ig45Jw0yA1pkhbhZEqeyDN5sR6tV+vNev+xFqxZpkL+wPr4BvKwmOM=</latexit>

Ṗ = 0, Ė = P
<latexit sha1_base64="gHgbzU9TERqo5W0kYldq+4Ezgxw=">AAACB3icbVDLSgNBEJyNrxhf0Ry9DAbBg4RdUfQSCIrgMYJ5QLKE2UknDpl9MNMrhGU/wK/wqidv4tXP8OC/OLvmoIl1Kqqr6O7yIik02vanVVhaXlldK66XNja3tnfKu3ttHcaKQ4uHMlRdj2mQIoAWCpTQjRQw35PQ8SZX2bzzAEqLMLjDaQSuz8aBGAnO0EiDcqU/DDFppnX7OGfXab05KFftmp2DLhJnRqpkBuP/Mlke+xAgl0zrnmNH6CZMoeAS0lI/1hAxPmFj6BkaMB+0m+THp/Qw1gxDGoGiQtJchN+JhPlaT33POH2G93p+lon/zXoxji7cRARRjBDwbBEKCfkizZUwrQAdCgWILLscqAgoZ4ohghKUcW7E2NRUMn04898vkvZJzTmr2ben1cblrJki2ScH5Ig45Jw0yA1pkhbhZEqeyDN5sR6tV+vNev+xFqxZpkL+wPr4BvKwmOM=</latexit>

Ṗ = 0, Ė = P

<latexit sha1_base64="yMAfud1+LnjjRpFAbTT+5vhlUXg=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkEeUiJFa0vm3DK+cHdGhRZ+QRaqOgQLd9Dwb9gGxeQMNVoZlc7O16kpCHb/rQWFpeWV1ZLa+X1jc2t7crObsuEsRbYFKEKdccDg0oG2CRJCjuRRvA9hW1vfJn57QfURobBLU0idH0YBXIoBVAq3dz37X6latfsHHyeOAWpsgKNfuWrNwhF7GNAQoExXceOyE1AkxQKp+VebDACMYYRdlMagI/GTfKoU34YG6CQR6i5VDwX8fdGAr4xE99LJ32gOzPrZeJ/Xjem4bmbyCCKCQORHSKpMD9khJZpB8gHUiMRZMmRy4AL0ECEWnIQIhXjtJRy2ocz+/08aR3XnNOafX1SrV8UzZTYPjtgR8xhZ6zOrliDNZlgI/bEntmL9Wi9Wm/W+8/oglXs7LE/sD6+AacDkiE=</latexit>q0
<latexit sha1_base64="mOscIuDwNbi3o0XWDluIL7HKDHQ=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRTYCQRlBQxkEeUiJFZ0vm3DK+cHdGhRZ+QRaqOgQLd9Dwb9gGxeQMNVoZlc7O16kpCHb/rQWFpeWV1ZLa+X1jc2t7crObsuEsRbYFKEKdcfjBpUMsEmSFHYijdz3FLa98WXmtx9QGxkGtzSJ0PX5KJBDKTil0s193+lXqnbNzsHmiVOQKhRo9CtfvUEoYh8DEoob03XsiNyEa5JC4bTciw1GXIz5CLspDbiPxk3yqFN2GBtOIYtQM6lYLuLvjYT7xkx8L530Od2ZWS8T//O6MQ3P3UQGUUwYiOwQSYX5ISO0TDtANpAaiXiWHJkMmOCaE6GWjAuRinFaSjntw5n9fp60jmvOac2+PqnWL4pmSrAPB3AEDpxBHa6gAU0QMIIneIYX69F6td6s95/RBavY2YM/sD6+AaiSkiI=</latexit>q1

<latexit sha1_base64="5JJWkto383NtfgoEaQbK8PSdy6M=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIjEJQRNJRBkIeURNH6sgmnnB/crUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+OGShqy7U+rsLS8srpWXC9tbG5t75R391omiLTApghUoDsuGFTSxyZJUtgJNYLnKmy7k8vUbz+gNjLwb2kaYt+DsS9HUgAl0s39oDYoV+yqnYEvEicnFZajMSh/9YaBiDz0SSgwpuvYIfVj0CSFwlmpFxkMQUxgjN2E+uCh6cdZ1Bk/igxQwEPUXCqeifh7IwbPmKnnJpMe0J2Z91LxP68b0ei8H0s/jAh9kR4iqTA7ZISWSQfIh1IjEaTJkUufC9BAhFpyECIRo6SUUtKHM//9ImnVqs5p1b4+qdQv8maK7IAdsmPmsDNWZ1eswZpMsDF7Ys/sxXq0Xq036/1ntGDlO/vsD6yPb6ohkiM=</latexit>q2

<latexit sha1_base64="20dIYGVQiSy810OQnZpSHM9tV1U=">AAAB+3icdVC7TgMxEPTxDOEVoKSxiJCoIjsCEjoEDSVIhIeSU+RzNsHC98DeQ0Sn+wpaqOgQLR9Dwb/gC0ECBFONZna1sxMkWllk7M2bmJyanpktzZXnFxaXlisrq2c2To2Elox1bC4CYUGrCFqoUMNFYkCEgYbz4Pqw8M9vwVgVR6c4TMAPxSBSfSUFOumyc6e62U2X5d1KldUYY5xzWhDe2GWO7O0167xJeWE5VMkYx93Ke6cXyzSECKUW1rY5S9DPhEElNeTlTmohEfJaDKDtaCRCsH42CpzTzdQKjGkChipNRyJ838hEaO0wDNxkKPDK/vYK8S+vnWK/6WcqSlKESBaHUGkYHbLSKNcE0J4ygCiK5EBVRKUwAhGMokJKJ6aumrLr4+tp+j85q9f4To2dbFf3D8bNlMg62SBbhJMG2SdH5Ji0iCQhuScP5NHLvSfv2Xv5HJ3wxjtr5Ae81w/md5Un</latexit>

⇠q0

<latexit sha1_base64="QqUM8ozpZ5wVmBWAW1Mb3Q2docI=">AAACAHicdVDLSgNBEJyNrxhfUY9eBoPgKeyG1eRm0IvHCOYBSQy9k04cnH0w0yuEJRe/wquevIlX/8SD/+JujKCidSqquunq8iIlDdn2m5VbWFxaXsmvFtbWNza3its7LRPGWmBThCrUHQ8MKhlgkyQp7EQawfcUtr2bs8xv36I2MgwuaRJh34dxIEdSAKXSVc8HuiZKVAjD6cmgWLLLx26tUnO4XbZnyIjrVF2XO3OlxOZoDIrvvWEoYh8DEgqM6Tp2RP0ENEmhcFroxQYjEDcwxm5KA/DR9JNZ6ik/iA1QyCPUXCo+E/H7RgK+MRPfSyezlOa3l4l/ed2YRrV+IoMoJgxEdoikwtkhI7RM60A+lBqJIEuOXAZcgAYi1JKDEKkYp/0U0j6+nub/k1al7ByV7Qu3VD+dN5Nne2yfHTKHVVmdnbMGazLBNLtnD+zRurOerGfr5XM0Z813dtkPWK8fG6aXhQ==</latexit>

load?

<latexit sha1_base64="gHgbzU9TERqo5W0kYldq+4Ezgxw=">AAACB3icbVDLSgNBEJyNrxhf0Ry9DAbBg4RdUfQSCIrgMYJ5QLKE2UknDpl9MNMrhGU/wK/wqidv4tXP8OC/OLvmoIl1Kqqr6O7yIik02vanVVhaXlldK66XNja3tnfKu3ttHcaKQ4uHMlRdj2mQIoAWCpTQjRQw35PQ8SZX2bzzAEqLMLjDaQSuz8aBGAnO0EiDcqU/DDFppnX7OGfXab05KFftmp2DLhJnRqpkBuP/Mlke+xAgl0zrnmNH6CZMoeAS0lI/1hAxPmFj6BkaMB+0m+THp/Qw1gxDGoGiQtJchN+JhPlaT33POH2G93p+lon/zXoxji7cRARRjBDwbBEKCfkizZUwrQAdCgWILLscqAgoZ4ohghKUcW7E2NRUMn04898vkvZJzTmr2ben1cblrJki2ScH5Ig45Jw0yA1pkhbhZEqeyDN5sR6tV+vNev+xFqxZpkL+wPr4BvKwmOM=</latexit>

Ṗ = 0, Ė = P
<latexit sha1_base64="gHgbzU9TERqo5W0kYldq+4Ezgxw=">AAACB3icbVDLSgNBEJyNrxhf0Ry9DAbBg4RdUfQSCIrgMYJ5QLKE2UknDpl9MNMrhGU/wK/wqidv4tXP8OC/OLvmoIl1Kqqr6O7yIik02vanVVhaXlldK66XNja3tnfKu3ttHcaKQ4uHMlRdj2mQIoAWCpTQjRQw35PQ8SZX2bzzAEqLMLjDaQSuz8aBGAnO0EiDcqU/DDFppnX7OGfXab05KFftmp2DLhJnRqpkBuP/Mlke+xAgl0zrnmNH6CZMoeAS0lI/1hAxPmFj6BkaMB+0m+THp/Qw1gxDGoGiQtJchN+JhPlaT33POH2G93p+lon/zXoxji7cRARRjBDwbBEKCfkizZUwrQAdCgWILLscqAgoZ4ohghKUcW7E2NRUMn04898vkvZJzTmr2ben1cblrJki2ScH5Ig45Jw0yA1pkhbhZEqeyDN5sR6tV+vNev+xFqxZpkL+wPr4BvKwmOM=</latexit>

Ṗ = 0, Ė = P

<latexit sha1_base64="tYW1PBhL2PqkK1lqjgC/ukbhxmc=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrJ5CMoIGsogyENKrOh82YRTzg/u1qDIyifQQkWHaPkeCv4F26SAhKlGM7va2fEiJQ3Z9qdVWFhcWl4prpbW1jc2t8rbO00TxlpgQ4Qq1G2PG1QywAZJUtiONHLfU9jyRpeZ33pAbWQY3NI4Qtfnw0AOpOCUSjf3veNeuWJX7RxsnjhTUoEp6r3yV7cfitjHgITixnQcOyI34ZqkUDgpdWODERcjPsROSgPuo3GTPOqEHcSGU8gi1Ewqlov4eyPhvjFj30snfU53ZtbLxP+8TkyDczeRQRQTBiI7RFJhfsgILdMOkPWlRiKeJUcmAya45kSoJeNCpGKcllJK+3Bmv58nzaOqc1q1r08qtYtpM0XYg304BAfOoAZXUIcGCBjCEzzDi/VovVpv1vvPaMGa7uzCH1gf36uwkiQ=</latexit>q3
<latexit sha1_base64="pe0aVzPHDlLi8p4lBZcfRnukejA=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJRBkIeURNH6sgmnnB/crUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+OGShqy7U+rsLS8srpWXC9tbG5t75R391omiLTApghUoDsuGFTSxyZJUtgJNYLnKmy7k8vUbz+gNjLwb2kaYt+DsS9HUgAl0s39oDYoV+yqnYEvEicnFZajMSh/9YaBiDz0SSgwpuvYIfVj0CSFwlmpFxkMQUxgjN2E+uCh6cdZ1Bk/igxQwEPUXCqeifh7IwbPmKnnJpMe0J2Z91LxP68b0ei8H0s/jAh9kR4iqTA7ZISWSQfIh1IjEaTJkUufC9BAhFpyECIRo6SUUtKHM//9ImmdVJ3Tqn1dq9Qv8maK7IAdsmPmsDNWZ1eswZpMsDF7Ys/sxXq0Xq036/1ntGDlO/vsD6yPb60/kiU=</latexit>q4

<latexit sha1_base64="N0cDzTbP6Glvk84Rx6bYzY1MB+U=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIRrzKChjII8pASKzpfNuGU84O7NSiy8gm0UNEhWr6Hgn/BNikgYarRzK52drxISUO2/WkVFhaXlleKq6W19Y3NrfL2TtOEsRbYEKEKddvjBpUMsEGSFLYjjdz3FLa80WXmtx5QGxkGtzSO0PX5MJADKTil0s1977RXrthVOwebJ86UVGCKeq/81e2HIvYxIKG4MR3HjshNuCYpFE5K3dhgxMWID7GT0oD7aNwkjzphB7HhFLIINZOK5SL+3ki4b8zY99JJn9OdmfUy8T+vE9Pg3E1kEMWEgcgOkVSYHzJCy7QDZH2pkYhnyZHJgAmuORFqybgQqRinpZTSPpzZ7+dJ86jqnFTt6+NK7WLaTBH2YB8OwYEzqMEV1KEBAobwBM/wYj1ar9ab9f4zWrCmO7vwB9bHN7Bdkic=</latexit>q6
<latexit sha1_base64="gHgbzU9TERqo5W0kYldq+4Ezgxw=">AAACB3icbVDLSgNBEJyNrxhf0Ry9DAbBg4RdUfQSCIrgMYJ5QLKE2UknDpl9MNMrhGU/wK/wqidv4tXP8OC/OLvmoIl1Kqqr6O7yIik02vanVVhaXlldK66XNja3tnfKu3ttHcaKQ4uHMlRdj2mQIoAWCpTQjRQw35PQ8SZX2bzzAEqLMLjDaQSuz8aBGAnO0EiDcqU/DDFppnX7OGfXab05KFftmp2DLhJnRqpkBuP/Mlke+xAgl0zrnmNH6CZMoeAS0lI/1hAxPmFj6BkaMB+0m+THp/Qw1gxDGoGiQtJchN+JhPlaT33POH2G93p+lon/zXoxji7cRARRjBDwbBEKCfkizZUwrQAdCgWILLscqAgoZ4ohghKUcW7E2NRUMn04898vkvZJzTmr2ben1cblrJki2ScH5Ig45Jw0yA1pkhbhZEqeyDN5sR6tV+vNev+xFqxZpkL+wPr4BvKwmOM=</latexit>

Ṗ = 0, Ė = P
<latexit sha1_base64="gHgbzU9TERqo5W0kYldq+4Ezgxw=">AAACB3icbVDLSgNBEJyNrxhf0Ry9DAbBg4RdUfQSCIrgMYJ5QLKE2UknDpl9MNMrhGU/wK/wqidv4tXP8OC/OLvmoIl1Kqqr6O7yIik02vanVVhaXlldK66XNja3tnfKu3ttHcaKQ4uHMlRdj2mQIoAWCpTQjRQw35PQ8SZX2bzzAEqLMLjDaQSuz8aBGAnO0EiDcqU/DDFppnX7OGfXab05KFftmp2DLhJnRqpkBuP/Mlke+xAgl0zrnmNH6CZMoeAS0lI/1hAxPmFj6BkaMB+0m+THp/Qw1gxDGoGiQtJchN+JhPlaT33POH2G93p+lon/zXoxji7cRARRjBDwbBEKCfkizZUwrQAdCgWILLscqAgoZ4ohghKUcW7E2NRUMn04898vkvZJzTmr2ben1cblrJki2ScH5Ig45Jw0yA1pkhbhZEqeyDN5sR6tV+vNev+xFqxZpkL+wPr4BvKwmOM=</latexit>

Ṗ = 0, Ė = P

<latexit sha1_base64="6aXCWdZVzqeEtLAUqpRxx+nQ19s=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIREZQRNJRBkIeUWNH5sgmnnB/crUFRlE+ghYoO0fI9FPwLtnEBCVONZna1s+NFShqy7U+rsLS8srpWXC9tbG5t75R391omjLXApghVqDseN6hkgE2SpLATaeS+p7DtjS9Tv/2A2sgwuKVJhK7PR4EcSsEpkW7u+7V+uWJX7QxskTg5qUCORr/81RuEIvYxIKG4MV3Hjsidck1SKJyVerHBiIsxH2E3oQH30bjTLOqMHcWGU8gi1Ewqlon4e2PKfWMmvpdM+pzuzLyXiv953ZiG5+5UBlFMGIj0EEmF2SEjtEw6QDaQGol4mhyZDJjgmhOhlowLkYhxUkop6cOZ/36RtE6qTq1qX59W6hd5M0U4gEM4BgfOoA5X0IAmCBjBEzzDi/VovVpv1vvPaMHKd/bhD6yPb67OkiY=</latexit>q5

<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?

<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?
<latexit sha1_base64="20dIYGVQiSy810OQnZpSHM9tV1U=">AAAB+3icdVC7TgMxEPTxDOEVoKSxiJCoIjsCEjoEDSVIhIeSU+RzNsHC98DeQ0Sn+wpaqOgQLR9Dwb/gC0ECBFONZna1sxMkWllk7M2bmJyanpktzZXnFxaXlisrq2c2To2Elox1bC4CYUGrCFqoUMNFYkCEgYbz4Pqw8M9vwVgVR6c4TMAPxSBSfSUFOumyc6e62U2X5d1KldUYY5xzWhDe2GWO7O0167xJeWE5VMkYx93Ke6cXyzSECKUW1rY5S9DPhEElNeTlTmohEfJaDKDtaCRCsH42CpzTzdQKjGkChipNRyJ838hEaO0wDNxkKPDK/vYK8S+vnWK/6WcqSlKESBaHUGkYHbLSKNcE0J4ygCiK5EBVRKUwAhGMokJKJ6aumrLr4+tp+j85q9f4To2dbFf3D8bNlMg62SBbhJMG2SdH5Ji0iCQhuScP5NHLvSfv2Xv5HJ3wxjtr5Ae81w/md5Un</latexit>

⇠q0

<latexit sha1_base64="Fj96oRcLLwwtwCvdUEIV9Z6x6hM=">AAAB+3icdVC7TgMxEPTxJrwClDQWERJVZEdAQoegoQwSCaDkFPmcTbDwPbD3EOh0X0ELFR2i5WMo+Bd8IUiAYKrRzK52doJEK4uMvXkTk1PTM7Nz86WFxaXllfLqWtvGqZHQkrGOzXkgLGgVQQsVajhPDIgw0HAWXB0V/tkNGKvi6BTvEvBDMYzUQEmBTrro3qpedt3byXvlCqsyxjjntCC8vscc2d9v1HiD8sJyqJAxmr3ye7cfyzSECKUW1nY4S9DPhEElNeSlbmohEfJKDKHjaCRCsH42CpzTrdQKjGkChipNRyJ838hEaO1dGLjJUOCl/e0V4l9eJ8VBw89UlKQIkSwOodIwOmSlUa4JoH1lAFEUyYGqiEphBCIYRYWUTkxdNSXXx9fT9H/SrlX5bpWd7FQODsfNzJENskm2CSd1ckCOSZO0iCQhuScP5NHLvSfv2Xv5HJ3wxjvr5Ae81w/st5Ur</latexit>

⇠q4

<latexit sha1_base64="qnwgJoyGDZvaasynFp5UNVAfR/M=">AAAB+3icdVC7TgMxEPSFd3gFKGksIiSqyI6AJB2ChhIkEoKSU+QzC1jxPbD3EOh0X0ELFR2i5WMo+Bd8IUiAYKrRzK52doJEK4uMvXmlicmp6ZnZufL8wuLScmVltWPj1Ehoy1jHphsIC1pF0EaFGrqJAREGGk6D4UHhn96AsSqOTvAuAT8Ul5G6UFKgk876t2qQXQ/q+aBSZTXGGOecFoQ3dpkjrVazzpuUF5ZDlYxxNKi8989jmYYQodTC2h5nCfqZMKikhrzcTy0kQg7FJfQcjUQI1s9GgXO6mVqBMU3AUKXpSITvG5kIrb0LAzcZCryyv71C/MvrpXjR9DMVJSlCJItDqDSMDllplGsC6LkygCiK5EBVRKUwAhGMokJKJ6aumrLr4+tp+j/p1Gt8p8aOt6t7++NmZsk62SBbhJMG2SOH5Ii0iSQhuScP5NHLvSfv2Xv5HC1545018gPe6wfpl5Up</latexit>

⇠q2

<latexit sha1_base64="qnwgJoyGDZvaasynFp5UNVAfR/M=">AAAB+3icdVC7TgMxEPSFd3gFKGksIiSqyI6AJB2ChhIkEoKSU+QzC1jxPbD3EOh0X0ELFR2i5WMo+Bd8IUiAYKrRzK52doJEK4uMvXmlicmp6ZnZufL8wuLScmVltWPj1Ehoy1jHphsIC1pF0EaFGrqJAREGGk6D4UHhn96AsSqOTvAuAT8Ul5G6UFKgk876t2qQXQ/q+aBSZTXGGOecFoQ3dpkjrVazzpuUF5ZDlYxxNKi8989jmYYQodTC2h5nCfqZMKikhrzcTy0kQg7FJfQcjUQI1s9GgXO6mVqBMU3AUKXpSITvG5kIrb0LAzcZCryyv71C/MvrpXjR9DMVJSlCJItDqDSMDllplGsC6LkygCiK5EBVRKUwAhGMokJKJ6aumrLr4+tp+j/p1Gt8p8aOt6t7++NmZsk62SBbhJMG2SOH5Ii0iSQhuScP5NHLvSfv2Xv5HC1545018gPe6wfpl5Up</latexit>

⇠q2

<latexit sha1_base64="EgiAwI0ng+bkQI6tH8MZzrXx9bA=">AAACCHicdVC5TsNAFFyHK4TLHB3NigiJKrIjQ9IRQUMZJHJIiRWtNy9hlfWh3WekYOUH+ApaqOgQLX9Bwb9gByMBgqlGM+/tmx0vkkKjZb0ZhYXFpeWV4mppbX1jc8vc3mnrMFYcWjyUoep6TIMUAbRQoIRupID5noSONznP/M4NKC3C4AqnEbg+GwdiJDjDVBqYe32f4TViopEpnA0Suzo7HZhlq3Li1Kt1m1oVa46MOHbNcaidK2WSozkw3/vDkMc+BMgl07pnWxG6Sfqi4BJmpX6sIWJ8wsbQS2nAfNBuMk8/o4exZhjSCBQVks5F+L6RMF/rqe+lk1lW/dvLxL+8XoyjupuIIIoRAp4dQiFhfkhzJdJagA6FAkSWJQcqAsqZYoigBGWcp2Kc9lRK+/j6NP2ftKsV+7hiXTrlxlneTJHskwNyRGxSIw1yQZqkRTi5JffkgTwad8aT8Wy8fI4WjHxnl/yA8foBLB+aOg==</latexit>

start12?

<latexit sha1_base64="kpOR1cBDvOKzA+qo8IpHDKR5/cE=">AAACB3icdVDLSsNAFJ34rPUV7dLNYBFchaRE251FNy4r2Ae0JUymt3Xo5MHMjVBCP8CvcKsrd+LWz3Dhv5jECip6Vodz7p175vixFBpt+81YWl5ZXVsvbZQ3t7Z3ds29/Y6OEsWhzSMZqZ7PNEgRQhsFSujFCljgS+j604vc796C0iIKr3EWwzBgk1CMBWeYSZ5ZGQQMbxBTjUzh3Esb8zPPrNrWqduoNRxqW3aBnLhO3XWps1CqZIGWZ74PRhFPAgiRS6Z137FjHKbZg4JLmJcHiYaY8SmbQD+jIQtAD9Mi/JweJZphRGNQVEhaiPB9I2WB1rPAzybzqPq3l4t/ef0Ex41hKsI4QQh5fgiFhOKQ5kpkrQAdCQWILE8OVISUM8UQQQnKOM/EJKupnPXx9Wn6P+nULOfEsq/cavN80UyJHJBDckwcUidNcklapE04mZF78kAejTvjyXg2Xj5Hl4zFToX8gPH6AbxkmgU=</latexit>

start8?
<latexit sha1_base64="T/6J+PDMuJE8FnquUZ9KXysHIZM=">AAACCHicdVC5TsNAFFyHK4TLHB3NigiJKrKRSdIRQUMZJHJIiRWtNy9hlfWh3WekYOUH+ApaqOgQLX9Bwb9gByMBgqlGM+/tmx0vkkKjZb0ZhYXFpeWV4mppbX1jc8vc3mnrMFYcWjyUoep6TIMUAbRQoIRupID5noSONznP/M4NKC3C4AqnEbg+GwdiJDjDVBqYe32f4TViopEpnA0Suzo7HZhlq1J16sd1m1oVa46MOHbNcaidK2WSozkw3/vDkMc+BMgl07pnWxG6Sfqi4BJmpX6sIWJ8wsbQS2nAfNBuMk8/o4exZhjSCBQVks5F+L6RMF/rqe+lk1lW/dvLxL+8XoyjupuIIIoRAp4dQiFhfkhzJdJagA6FAkSWJQcqAsqZYoigBGWcp2Kc9lRK+/j6NP2ftI8r9knFunTKjbO8mSLZJwfkiNikRhrkgjRJi3ByS+7JA3k07own49l4+RwtGPnOLvkB4/UDMmOaPg==</latexit>

start16?

<latexit sha1_base64="EgiAwI0ng+bkQI6tH8MZzrXx9bA=">AAACCHicdVC5TsNAFFyHK4TLHB3NigiJKrIjQ9IRQUMZJHJIiRWtNy9hlfWh3WekYOUH+ApaqOgQLX9Bwb9gByMBgqlGM+/tmx0vkkKjZb0ZhYXFpeWV4mppbX1jc8vc3mnrMFYcWjyUoep6TIMUAbRQoIRupID5noSONznP/M4NKC3C4AqnEbg+GwdiJDjDVBqYe32f4TViopEpnA0Suzo7HZhlq3Li1Kt1m1oVa46MOHbNcaidK2WSozkw3/vDkMc+BMgl07pnWxG6Sfqi4BJmpX6sIWJ8wsbQS2nAfNBuMk8/o4exZhjSCBQVks5F+L6RMF/rqe+lk1lW/dvLxL+8XoyjupuIIIoRAp4dQiFhfkhzJdJagA6FAkSWJQcqAsqZYoigBGWcp2Kc9lRK+/j6NP2ftKsV+7hiXTrlxlneTJHskwNyRGxSIw1yQZqkRTi5JffkgTwad8aT8Wy8fI4WjHxnl/yA8foBLB+aOg==</latexit>

start12? <latexit sha1_base64="T/6J+PDMuJE8FnquUZ9KXysHIZM=">AAACCHicdVC5TsNAFFyHK4TLHB3NigiJKrKRSdIRQUMZJHJIiRWtNy9hlfWh3WekYOUH+ApaqOgQLX9Bwb9gByMBgqlGM+/tmx0vkkKjZb0ZhYXFpeWV4mppbX1jc8vc3mnrMFYcWjyUoep6TIMUAbRQoIRupID5noSONznP/M4NKC3C4AqnEbg+GwdiJDjDVBqYe32f4TViopEpnA0Suzo7HZhlq1J16sd1m1oVa46MOHbNcaidK2WSozkw3/vDkMc+BMgl07pnWxG6Sfqi4BJmpX6sIWJ8wsbQS2nAfNBuMk8/o4exZhjSCBQVks5F+L6RMF/rqe+lk1lW/dvLxL+8XoyjupuIIIoRAp4dQiFhfkhzJdJagA6FAkSWJQcqAsqZYoigBGWcp2Kc9lRK+/j6NP2ftI8r9knFunTKjbO8mSLZJwfkiNikRhrkgjRJi3ByS+7JA3k07own49l4+RwtGPnOLvkB4/UDMmOaPg==</latexit>

start16?

<latexit sha1_base64="GW7jFHDTXB4KSN81Pqpgjj0XX+8=">AAAB+3icdVC7TgMxEPTxDOEVoKSxiJCoIjsCEjoEDSVIhIeSU+RzNsHC98DeQ0Sn+wpaqOgQLR9Dwb/gC0ECBFONZna1sxMkWllk7M2bmJyanpktzZXnFxaXlisrq2c2To2Elox1bC4CYUGrCFqoUMNFYkCEgYbz4Pqw8M9vwVgVR6c4TMAPxSBSfSUFOumyc6e62U2X591KldUYY5xzWhDe2GWO7O0167xJeWE5VMkYx93Ke6cXyzSECKUW1rY5S9DPhEElNeTlTmohEfJaDKDtaCRCsH42CpzTzdQKjGkChipNRyJ838hEaO0wDNxkKPDK/vYK8S+vnWK/6WcqSlKESBaHUGkYHbLSKNcE0J4ygCiK5EBVRKUwAhGMokJKJ6aumrLr4+tp+j85q9f4To2dbFf3D8bNlMg62SBbhJMG2SdH5Ji0iCQhuScP5NHLvSfv2Xv5HJ3wxjtr5Ae81w/oB5Uo</latexit>

⇠q1

<latexit sha1_base64="kNYNlbP6ELt0LsbWLSe1K+zXkQ8=">AAAB+3icdVC7TgMxEPTxDOEVoKSxiJCoIhtBHl0EDWWQyAMlUeRzFrDwPbD3ENEpX0ELFR2i5WMo+Bd8IUiAYKrRzK52dvxYK4uMvXkzs3PzC4u5pfzyyuraemFjs2WjxEhoykhHpuMLC1qF0ESFGjqxARH4Gtr+9XHmt2/BWBWFZziKoR+Iy1BdKCnQSee9OzVIbwbl8aBQZCXGGOecZoRXysyRWq26z6uUZ5ZDkUzRGBTee8NIJgGEKLWwtstZjP1UGFRSwzjfSyzEQl6LS+g6GooAbD+dBB7T3cQKjGgMhipNJyJ830hFYO0o8N1kIPDK/vYy8S+vm+BFtZ+qME4QQpkdQqVhcshKo1wTQIfKAKLIkgNVIZXCCEQwigopnZi4avKuj6+n6f+ktV/ihyV2elCsH02byZFtskP2CCcVUicnpEGaRJKA3JMH8uiNvSfv2Xv5HJ3xpjtb5Ae81w/v15Ut</latexit>

⇠q6

<latexit sha1_base64="GW7jFHDTXB4KSN81Pqpgjj0XX+8=">AAAB+3icdVC7TgMxEPTxDOEVoKSxiJCoIjsCEjoEDSVIhIeSU+RzNsHC98DeQ0Sn+wpaqOgQLR9Dwb/gC0ECBFONZna1sxMkWllk7M2bmJyanpktzZXnFxaXlisrq2c2To2Elox1bC4CYUGrCFqoUMNFYkCEgYbz4Pqw8M9vwVgVR6c4TMAPxSBSfSUFOumyc6e62U2X591KldUYY5xzWhDe2GWO7O0167xJeWE5VMkYx93Ke6cXyzSECKUW1rY5S9DPhEElNeTlTmohEfJaDKDtaCRCsH42CpzTzdQKjGkChipNRyJ838hEaO0wDNxkKPDK/vYK8S+vnWK/6WcqSlKESBaHUGkYHbLSKNcE0J4ygCiK5EBVRKUwAhGMokJKJ6aumrLr4+tp+j85q9f4To2dbFf3D8bNlMg62SBbhJMG2SdH5Ji0iCQhuScP5NHLvSfv2Xv5HJ3wxjtr5Ae81w/oB5Uo</latexit>

⇠q1

<latexit sha1_base64="ec6g9h/SDXS8fDVJ1EvzegXi5ac=">AAAB+3icdVC7TgMxEPTxDOEVoKSxiJCoIjs8knQRNJRBIgkoiSKfWcCK74G9h4hO+QpaqOgQLR9Dwb/gC0ECBFONZna1s+PHWllk7M2bmp6ZnZvPLeQXl5ZXVgtr6y0bJUZCU0Y6Mme+sKBVCE1UqOEsNiACX0PbHxxlfvsWjFVReIrDGHqBuArVpZICnXTevVP99Ka/O+oXiqzEGOOc04zwygFzpFarlnmV8sxyKJIJGv3Ce/cikkkAIUotrO1wFmMvFQaV1DDKdxMLsZADcQUdR0MRgO2l48Ajup1YgRGNwVCl6ViE7xupCKwdBr6bDARe299eJv7ldRK8rPZSFcYJQiizQ6g0jA9ZaZRrAuiFMoAosuRAVUilMAIRjKJCSicmrpq86+Prafo/aZVLfL/ETvaK9cNJMzmySbbIDuGkQurkmDRIk0gSkHvyQB69kffkPXsvn6NT3mRng/yA9/oB6yeVKg==</latexit>

⇠q3

<latexit sha1_base64="dzKzwoRPWhsaDmzdv1SySYprx3o=">AAAB+3icdVC7TgMxEPTxJrwClDQWERJVZEcEQhdBQwkS4aHkFPnMJljxPbD3ENHpvoIWKjpEy8dQ8C/4QpAAwVSjmV3t7ASJVhYZe/MmJqemZ2bn5ksLi0vLK+XVtTMbp0ZCS8Y6NheBsKBVBC1UqOEiMSDCQMN5MDgs/PNbMFbF0SkOE/BD0Y9UT0mBTrrs3KludtOt591yhVUZY5xzWhC+t8sc2d9v1HiD8sJyqJAxjrvl985VLNMQIpRaWNvmLEE/EwaV1JCXOqmFRMiB6EPb0UiEYP1sFDinW6kVGNMEDFWajkT4vpGJ0NphGLjJUOC1/e0V4l9eO8Vew89UlKQIkSwOodIwOmSlUa4JoFfKAKIokgNVEZXCCEQwigopnZi6akquj6+n6f/krFbl9So72ak0D8bNzJENskm2CSd7pEmOyDFpEUlCck8eyKOXe0/es/fyOTrhjXfWyQ94rx/uR5Us</latexit>

⇠q5

<latexit sha1_base64="qnwgJoyGDZvaasynFp5UNVAfR/M=">AAAB+3icdVC7TgMxEPSFd3gFKGksIiSqyI6AJB2ChhIkEoKSU+QzC1jxPbD3EOh0X0ELFR2i5WMo+Bd8IUiAYKrRzK52doJEK4uMvXmlicmp6ZnZufL8wuLScmVltWPj1Ehoy1jHphsIC1pF0EaFGrqJAREGGk6D4UHhn96AsSqOTvAuAT8Ul5G6UFKgk876t2qQXQ/q+aBSZTXGGOecFoQ3dpkjrVazzpuUF5ZDlYxxNKi8989jmYYQodTC2h5nCfqZMKikhrzcTy0kQg7FJfQcjUQI1s9GgXO6mVqBMU3AUKXpSITvG5kIrb0LAzcZCryyv71C/MvrpXjR9DMVJSlCJItDqDSMDllplGsC6LkygCiK5EBVRKUwAhGMokJKJ6aumrLr4+tp+j/p1Gt8p8aOt6t7++NmZsk62SBbhJMG2SOH5Ii0iSQhuScP5NHLvSfv2Xv5HC1545018gPe6wfpl5Up</latexit>
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(a) Learned SHA, color-coded as in Fig. 3.1.
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Figure 13.5: Output of L∗SHA for Scenario A, Part type i, Ntr = 10 training traces.

power, and locations q0, q2, and q4 where the spindle stops and does not
require any power. Locations q0, q2, and q4 are reached after either load,
unload, or stop events, as expected. Fig. 13.5b shows an example of
KDE, specifically D(q1).

Although there are 6 machining s, the learned SHA has 4 locations mod-
eling active operational states. Indeed, operation 26 is repeated twice, and
location q1 captures both repetitions. Also, operation 16 is not considered
statistically different from operation 26, thus L∗SHA groups them into a sin-
gle location.

Furthermore, locations modeling operational states (q1, q3, q5, and q6)
only have outgoing edges labeled with the stop event. Similarly, locations
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modeling idle states (q0, q2, and q4) only have outgoing edges with event
labels starti with i ∈ {8, 12, 16}. As a consequence, upon simulating the
behavior of the SHA in Fig. 13.5a, it is impossible to observe two consecu-
tive stop events or two consecutive starti events as it never occurs in the
input field data.

Table 13.3 and Table 13.4 report the number of locations and edges of
the learned SHA in scenarios A and B, respectively. For each instance of
scenarios A and B, varying the value of Ntr does not impact the number
of locations and edges of the learned SHA. As a matter of fact, L∗SHA expe-
riences the same sequence of events in scenario A as the produced work-
pieces belong to the same part type. Although scenario B includes three
part types, at least one trace for each part type is included in the training
dataset, and each training trace represents a known part type. Therefore, all
learned SHA equally capture such traces irrespective of the value of Ntr.

Differently, the sequence of events changes for each training trace of
scenario C capturing a possibly new part type being produced. As a con-
sequence, the structure of the learned L∗SHA might vary significantly as the
training dataset enlarges. Table 13.5 reports the number of locations and
edges of the learned SHA for scenario C showing an increasing complex-
ity.

The validation phase is performed with Nval = 30 validation traces in
scenario A (i.e., on average 11.1h of acquisition per instance) and with
Nval = 90 validation traces (30 traces for each involved part type) in sce-
nario B (i.e., on average 36.6h of acquisition per instance). SHA learned in
scenario C are validated against Nval = 103 traces collected over the course
of three weeks of acquisition.

Each instance of scenario A includes a single part type, so any trace
represents the same sequence of machining tasks. Similarly, scenario B in-
cludes three part types, but the part mix is assumed to be known. Therefore,
the learned models in scenarios A and B are compatible with all traces in
the validation dataset.

As a difference, never-before-seen part types are included in the valida-
tion dataset of scenario C. Therefore, each trace may capture a different
part-program with a new sequence of tasks and/or never-before-seen tasks.
As the training dataset increases in the number of traces, the probability of
facing never-before-seen part types or tasks decreases. When a trace is not
compatible with the learned automata, partial compatibility is checked by
generating a controller that only mimics a prefix of the trace (in this case,
containing no less than 5 events).

Numerical results referring to scenarioC (instance ID=10) include Nval =
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Figure 13.6: Example of a sampled signal of the spindle power for part type i (also shown
in the top plot in Fig. 13.4) and power signal generated through Uppaal by simulating
the behavior of the learned SHA in Fig. 13.5a.

Table 13.6: Estimate errors broken down by instance ID and the number of traces Ntr

used for L∗SHAlearning.

ID Ntr MREest MREBL ID Ntr MREest MREBL

1
3 0.918% 0.410%

6
3 1.240% 0.507%

10 0.592% 0.361% 10 1.198% 0.487%
20 0.558% 0.349% 20 1.029% 0.167%

2
3 0.720% 0.747%

7
3× 3 4.482% 13.408%

10 0.691% 0.482% 10× 3 4.255% 11.747%
20 0.100% 0.109% 20× 3 3.764% 9.370%

3
3 0.566% 0.274%

8
3× 3 3.292% 14.011%

10 0.475% 0.264% 10× 3 2.839% 12.363%
20 0.402% 0.246% 20× 3 2.332% 12.060%

4
3 1.393% 0.425%

9
3× 3 3.787% 9.422%

10 1.041% 0.390% 10× 3 3.304% 8.745%
20 1.034% 0.388% 20× 3 2.354% 8.478%

5
3 1.319% 0.319%

10
5 37.67% 96.84%

10 1.208% 0.195% 7 26.75% 89.84%
20 1.165% 0.120% 9 22.52% 84.05%

103 traces all different from each other and never-before-seen during train-
ing. Among them, 12, 27, and 32 are (at least) partially compatible with the
automata learned with Nval = 5, 7, 9, respectively. The low compatibility
ratio observed is motivated by the degree of customization of the involved
part types, which yields a very diverse part mix. Nevertheless, the com-
patibility ratio is intrinsically increasing with the value of Ntr. Moreover,
should a desired trace be found to be incompatible, it is possible to add the
trace to the training dataset and to update the SHA by repeating the training.

Each learned SHA is paired with a controller SHA mimicking a com-
patible trace. Each SHA pair is imported into Uppaal to generate Nval runs
through trace-based simulation. As an example, Fig. 13.6 shows the orig-
inal and the estimated power signals obtained by performing trace-driven
simulation on the SHA learned for part i with Ntr = 10 (see Fig. 13.5a).
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We exploit as a measure of accuracy for the learned SHA the mean rel-
ative error MREest over all validation traces in estimating the energy con-
sumed by trace i = 1 . . .Nval under analysis, i.e., Ei,est. Let us denote Ei,ref

as the reference energy consumption of trace i computed from the spindle
power signal. We define the relative percentage error REi,est for validation
trace i = 1 . . .Nval as follows:

REi,est =
|Ei,ref − Ei,est|

Ei,ref

· 100.

Then, the mean relative percentage error MREest is computed over the Nval

traces (Table 13.6).
The proposed methodology is compared with a standard and simple

baseline estimation of the energy. To this end, the machine’s average power
is estimated from the training traces (irrespective of speed variations). The
baseline energy estimate Ei,BL is calculated by multiplying the duration
of each validation trace and the estimated machine average power. Simi-
larly for estimate Ei,est, the relative percentage error REi,BL and its mean
MREBL is computed (Table 13.6).

Obtained results in Table 13.6 show that the proposed method achieves
good results in estimating machine energy consumption. Validation of sce-
nario A and scenario B yields respectively up to MREest = 1.393% and
MREest = 4.482% in the worst case. In scenario C, all training traces are
different, and the L∗SHA is fed with a wider variety of part types. Therefore,
MREest is high, suggesting more extended training needs.

Obtained results in Table 13.6 show that errors decrease as the number
of training traces increases, as expected. The improvement is more evident
for ID=10 (from 37.67% to 22.52% with four additional traces), where each
additional training trace might carry important information about new part
programs.

As for the comparison against the baseline, the proposed method achieves
significantly better results in scenarios B and C, while in scenario A, the
results are similar. In scenario A, the learned SHA is less accurate than
the benchmark (i.e., MREest > MREBL holds) in 16 cases out of 18 due
to fitting errors which do not come into play when calculating the bench-
mark. Indeed, since a single part type is produced, the potential of L∗SHAin
capturing machine flexibility is not exploited.

As for scenario B, the learned SHA can capture the differences among
the three produced part types using the spindle speed signals. On the con-
trary, the baseline estimate considers an average part type unable to distin-
guish between tasks. The learned SHA is more accurate in all instances (up
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to 30% of relative gap among MREest and MREBL). In scenario C, the
advantage of using the learned SHA compared to the baseline is even more
evident.
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CHAPTER14
Human Behavior Model Adjustment

Human-robot interactive applications are a paradigmatic example of
the learning technique described in Chapter 12, constituting the model
adjustment phase of the development framework (see Section 4.4).

Field observations cover physiological aspects, specifically human
fatigue, and physical elements from which events related to human be-
havior are inferred (e.g., the human’s location within the room). Col-
lected data are fed to L∗SHA to learn a SHA modeling human behavior,
which is thus always up-to-date with the available observations. The
learned SHA modeling human behavior is then plugged into the SHA
network replacing the initial draft model to perform the SMC experi-
ments. Application developers then proceed with the robotic mission
planning or reconfiguration process in light of the learning and SMC
results.

This chapter introduces how raw EMG signals are processed before
being fed to L∗SHA and how the learned SHA capturing human behavior
is extended to be compliant with the SHA network presented in Chapter
6.
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Figure 14.1: Plots representing the three processing stages of a sample EMG signal
from [110]. The upper plot contains an example of the raw EMG signal of a sub-
ject walking up to t = 296.3s and then standing for 5min. The signal was collected
through electrodes attached to the subject’s left tibialis anterior. The middle plot dis-
plays the corresponding ln(fMEAN(t)) (solid line) and regression line (dashed line)
with slope m. The bottom plot shows the estimated fatigue curve with λ̂ = −m up to
time 296.3 and ρ̂ = m afterwards. Note that the plotted fatigue curves are portions of
exponential curves with slow dynamics (thus, the apparent linearity).

14.1 Data-Driven Fatigue Estimation

As explained in Section 12.2, flow conditions characterizing each location
of the learned SHA feature a stochastic parameter (as is the case in models
of human behavior described in Section 6.3). Such parameter is calcu-
lated differently depending on the nature of the physical variable through
function est_param while performing the ht queries introduced in Section
12.2.2.

In the specific application to human-robot interaction, human fatigue is
the involved physical variable, and fatigue (resp. recovery) rate λ (resp.
ρ) from Eq.6.5 are the random parameters whose calculation, starting from
the raw sampled signal, is required and illustrated in the following. This
signal processing procedure is exploited when running ht queries to process
raw signals and estimate the parameter values whose distribution has to be
identified.

Fatigue—i.e., a muscle’s performance decay—is not directly measured.
Previous studies document how it can be estimated starting from variations
in muscle fibers’ electrophysiological properties [139, 156]. The input to
the estimation procedure is the electromyography (EMG) signal (an exam-
ple of which is shown in Fig. 14.1), recorded through non-invasive elec-
trodes placed on the skin.

Spectral variations of the EMG signal are frequently proposed as fatigue
indexes, most notably in the work by Lindström et al. [139]. The authors
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discuss how the mean spectral frequency (MNF) is used to estimate the
fatigue and recovery rates (λ and ρ in Eq.6.5). To calculate the MNF1, first,
it is necessary to identify all activation windows of the EMG signal.

Previous studies show how muscle activation is periodic, and this in-
termittency manifests itself through bursts of the signals [40]. Given a
time instant t, the corresponding burst j—starting at time ts,j and ending
at time te,j and such that ts,j ≤ t ≤ te,j holds—is determined by function
B : R+ → (R+ × R+) using the Teager-Kaiser energy operator [199]. The
MNF fMEAN(B(t)) for burst B(t) = ⟨ts,j, te,j⟩ is defined in Eq.14.1: fi and
Pi are the frequency value and EMG signal power spectrum at frequency
bin i, and n = sr · (te,j − ts,j) is the number of frequency bins, which de-
pends on burst B(t)’s length and sampling rate sr.

fMEAN(B(t)) =

∑n
i=1 fiPi∑n
i=1 Pi

(14.1)

To estimate the rates, it is necessary to calculate ln(fMEAN(B(t))) for
every point of the EMG signal and calculate a regression line. The middle
plot in Fig. 14.1 shows the logarithm of the MNF (solid line) obtained from
the EMG signal in the upper plot and its corresponding regression line (the
dashed line). The module of the regression line’s slope m is an estimate for
rates λ and ρ [156], as per Eq.14.2. The MNF decreases when the muscle
is strained and increases during recovery, as in Fig. 14.1 (middle plot).

m < 0 −→ λ̂ = −m
m ≥ 0 −→ ρ̂ = m

(14.2)

The bottom plot in Fig. 14.1 shows the estimated fatigue curve com-
puted by replacing in Eq.6.5 parameters λ, ρ with estimates λ̂, ρ̂: fatigue
increases while the subject is walking and starts decreasing when the sub-
ject stops (time 296.3s).

The hereby presented procedure to calculate λ̂ and ρ̂ constitutes the im-
plementation of the function est_param invoked by Algorithm 4 (line 3)
specific to our use case. Function est_param takes as input a segment of
a signal collected from the SUL and returns either the λ̂ or the ρ̂ estimate
calculated as previously explained. The L∗SHA teacher, then, performs hy-
pothesis testing on a collection of fatigue rates (all λ̂ or ρ̂ estimates from all
EMG signals segments following a specific sequence of events) to identify
their probability distribution.

1To perform EMG signal processing (including burst identification), we rely on library biosignalsnotebooks
(https://biosignalsplux.com).
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hidle
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<latexit sha1_base64="mZZ6skryYD0Dmku8tcYjv6syrZ0=">AAACE3icdVC7TsNAEDzzDOFloKTgRIREFdmRIelA0FAGiQBSbFnnywKn3NnW3RoJWSn5BL6CFio6RMsHUPAv2CZIgGCquZnd292JUikMOs6bNTE5NT0zW5urzy8sLi3bK6unJsk0hx5PZKLPI2ZAihh6KFDCeaqBqUjCWTQ8LP2za9BGJPEJ3qQQKHYZiwvBGRZSaG/4iuEVYs7VwA+vwuqpVW6QaRyN9kK74TR3vU6r41Kn6VQoiee2PY+6Y6VBxuiG9rs/SHimIEYumTF910kxyIvfBJcwqvuZgZTxIbuEfkFjpsAEeXXIiG5lhmFCU9BUSFqJ8L0jZ8qYGxUVleWe5rdXin95/QwvOkEu4jRDiHk5CIWEapDhWhQJAR0IDYis3ByoiClnmiGCFpRxXohZEVm9yOPraPo/OW013Z2mc+w19g/GydTIOtkk28QlbbJPjkiX9Agnt+SePJBH6856sp6tl8/SCWvcs0Z+wHr9AMSNn4E=</latexit>

cmd hstart?
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cmd hstop?

<latexit sha1_base64="pEybJGKDsiROie8Q6kYXB8mN4aI="></latexit>

Ḟ = frec(t, ⇢i),
<latexit sha1_base64="b6YuXbJtjsOL42dwkNZszckdqG8="></latexit>

Ḟ = fftg(t, �i),
<latexit sha1_base64="OFIxDfH4b0NuhZ5iQ5qAAgg+Zas="></latexit>

Nidle(µ⇢i
, �2

⇢i
)

<latexit sha1_base64="C85pK5pwduOmbNGo5BrW/YLVPf8="></latexit>

Nbusy(µ�i
, �2

�i
)

Figure 14.2: Example of SHA modeling human behavior resulting from L∗SHA.

After multiple runs of the robotic application, by iterating this procedure
for each run, it is possible to collect a set of estimated values for parameters
λ and ρ. Fatigue and recovery rates are mutable to the extent that they
can display slight variations across subjects and different trials of the same
subject [141]. It is also acknowledged that fatigue and recovery rates might
be considered constant for a single subject over a limited time frame (in
the range of minutes) but can vary significantly among different subjects
depending on their physical conditions [141].

The model adjustment phase aims to reduce the model-to-reality gap
and increase the accuracy of formal verification results. Therefore, formal
verification experiments must consider the fatigue phenomenon’s variabil-
ity. To this end, as explained in Section 6.3, we do not model fatigue and
recovery rates as scalars (e.g., the mean of all estimated values λ̂ and ρ̂) but
as samples of a probability distribution.

The fatigue profile of a category of subjects is characterized by two nor-
mal distributions describing parameters λ and ρ for that specific category
(e.g., young and sick or elderly and healthy) and for each operating con-
dition (e.g., running and sitting). Each run of the robotic application (real
or simulated) adds to the traces available to the L∗SHA teacher and is pro-
cessed as described in this section to obtain the corresponding set of λ̂ and
ρ̂ estimates. Suppose the collected set of estimates is not compatible with
the Normal distributions that have already been identified (e.g., because a
different class of subjects was involved in the application). In that case, a
new one will be added through an ht query as per Algorithm 4 (line 12).

14.2 Integrating Learned SHA in the SHA Network

In this section, we explain how SHA modeling human behavior learned
by L∗SHA fit into our model-driven framework and, in particular, the for-
mal model defined through a network of SHA. The automata network in-
cludes SHA modeling the robot, the orchestrator, the robot’s battery, and
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<latexit sha1_base64="5/rKVBszB+9rbWLeEropPv6K/AA=">AAACAHicbVC7TsMwFHXKq5RXgZHFokJiqhIEgrGChbFI9CG1oXLc22LVcSL7BqmKuvAVrDCxIVb+hIF/wQkZoOVMR+fc63t8glgKg6776ZSWlldW18rrlY3Nre2d6u5e20SJ5tDikYx0N2AGpFDQQoESurEGFgYSOsHkKvM7D6CNiNQtTmPwQzZWYiQ4Qyvd9UOG92aUGmQaZ4Nqza27Oegi8QpSIwWag+pXfxjxJASFXDJjep4bo5/atwSXMKv0EwMx4xM2hp6lioVg/DRPPaNHiWEY0Rg0FZLmIvzeSFlozDQM7GSect7LxP+8XoKjCz8VKk4QFM8OoZCQHzJcC1sH0KHQgMiy5ECFopxphghaUMa5FRPbT8X24c3/fpG0T+reWd29Oa01LotmyuSAHJJj4pFz0iDXpElahBNNnsgzeXEenVfnzXn/GS05xc4++QPn4xs185eU</latexit>

start
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Ḟ = frec(t, ⇢i),
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Ḟ = frec(t, ⇢i),
<latexit sha1_base64="8rKENyNaCA3QYblABdSbybnLuls="></latexit>
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Figure 14.3: Transformation pattern for a non-critical operating condition. Invariants are
in purple and channels in red, as in Fig. 14.2, whereas guard conditions and update
instructions are in green and blue, respectively. Separate instances of this pattern differ
from each other because of the location label h⟨op⟩.
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Ḟ = fftg(t, �i),

<latexit sha1_base64="M4RpEyRXsPNJdAhXBs6TMR2nDBQ="></latexit>

tupd � Tpoll

<latexit sha1_base64="cQuIqZivdx9leeUN/OgogswYK9A=">AAACGnicbVC7TsNAEDzzJrwClDQnIhBVZCMQlAgaSpAIiRRH0frYhBPns3W3Roqs/AGfwFfQQkWHaGko+BfOJgUkbDWa2ddMlCppyfc/vanpmdm5+YXFytLyyupadX3j2iaZEdgQiUpMKwKLSmpskCSFrdQgxJHCZnR3VujNezRWJvqKBil2Yuhr2ZMCyFHd6m4YA91Kym+H3RLaXh4q0H2FPEl5aEo47FZrft0vi0+CYARqbFQX3epXeJOILEZNQoG17cBPqZODISncvkqYWUxB3EEf2w5qiNF28tLPkO9kFijhKRouFS9J/D2RQ2ztII5cZ/nyuFaQ/2ntjHrHnVzqNCPUojhE0hktDllhpAsK+Y00SATF58il5gIMEKGRHIRwZOaSq7g8gnH3k+B6vx4c1v3Lg9rJ6SiZBbbFttkeC9gRO2Hn7II1mGAP7Ik9sxfv0Xv13rz3n9YpbzSzyf6U9/ENg0uh7A==</latexit>

hhopi
<latexit sha1_base64="sOSJGPX/yCkm8Km5ySUtS5l1q9Q="></latexit>^ tupd  Tpoll

<latexit sha1_base64="5/rKVBszB+9rbWLeEropPv6K/AA=">AAACAHicbVC7TsMwFHXKq5RXgZHFokJiqhIEgrGChbFI9CG1oXLc22LVcSL7BqmKuvAVrDCxIVb+hIF/wQkZoOVMR+fc63t8glgKg6776ZSWlldW18rrlY3Nre2d6u5e20SJ5tDikYx0N2AGpFDQQoESurEGFgYSOsHkKvM7D6CNiNQtTmPwQzZWYiQ4Qyvd9UOG92aUGmQaZ4Nqza27Oegi8QpSIwWag+pXfxjxJASFXDJjep4bo5/atwSXMKv0EwMx4xM2hp6lioVg/DRPPaNHiWEY0Rg0FZLmIvzeSFlozDQM7GSect7LxP+8XoKjCz8VKk4QFM8OoZCQHzJcC1sH0KHQgMiy5ECFopxphghaUMa5FRPbT8X24c3/fpG0T+reWd29Oa01LotmyuSAHJJj4pFz0iDXpElahBNNnsgzeXEenVfnzXn/GS05xc4++QPn4xs185eU</latexit>

start

<latexit sha1_base64="5N4AWSEJ0Gz1JFY3pXILO1UrdV0=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sgmnnM/H3RopslLwFbRQ0SFaPoWCf8E2LiBhqtHMrnZ2Ai2FRdf9dEpLyyura+X1ysbm1vZOdXevbaPYcGjxSEamGzALUihooUAJXW2AhYGETjC5yvzOAxgrInWLUw1+yMZKjARnmEp+P2R4Z0eJxUjPBtWaW3dz0EXiFaRGCjQH1a/+MOJxCAq5ZNb2PFejnzCDgkuYVfqxBc34hI2hl1LFQrB+koee0aPYMoyoBkOFpLkIvzcSFlo7DYN0Mg8572Xif14vxtGFnwilYwTFs0MoJOSHLDcibQPoUBhAZFlyoEJRzgxDBCMo4zwV47SeStqHN//9Immf1L2zuntzWmtcFs2UyQE5JMfEI+ekQa5Jk7QIJ/fkiTyTF+fReXXenPef0ZJT7OyTP3A+vgFpV5ci</latexit>

stop

<latexit sha1_base64="A8sGVdvcQmASaNGu/wMzshMmBqU=">AAACAHicdZA9SwNBEIb3/IzxK2ppsxgEq3Anxo8uKIhlBPMBuRjmNpO4ZG/v3J0TQkjjr7DVyk5s/ScW/hcvMYqKvtXwvDPMzBvESlpy3Vdnanpmdm4+s5BdXFpeWc2trVdtlBiBFRGpyNQDsKikxgpJUliPDUIYKKwFvZORX7tBY2WkL6gfYzOErpYdKYBSdOkr0G2fn/oKr7nXyuXdQtH1jvY97hbcsfgX8SYkzyYqt3JvfjsSSYiahAJrG54bU3MAhqRQOMz6icUYRA+62EhLDSHa5mB89ZBvJxYo4jEaLhUfQ/w+MYDQ2n4YpJ0h0JX97Y3gX14joc5hcyB1nBBqMVpEUuF4kRVGpnEgb0uDRDC6HLnUXIABIjSSgxApTNJ8smken0/z/4vqbsErFtzzvXzpeJJMhm2yLbbDPHbASuyMlVmFCWbYHbtnD86t8+g8Oc8frVPOZGaD/ZDz8g5YgZZn</latexit>^ F  1

<latexit sha1_base64="LQPEKR+iJDpOzMX8loZguH+PMKw=">AAAB+XicdVDLSgNBEJz1GeMr6tHLYBA8hVk1r1tQEI8RzAOSEGYnnThk9uFMrxCWfIRXPXkTr36NB//F2RhBRetUVHXT1eVFShpk7M1ZWFxaXlnNrGXXNza3tnM7u00TxlpAQ4Qq1G2PG1AygAZKVNCONHDfU9Dyxuep37oDbWQYXOMkgp7PR4EcSsHRSq2L7ghuqdvP5VmBlYrVE0ZZocjccrVqCWOlyskxdS1JkSdz1Pu59+4gFLEPAQrFjem4LMJewjVKoWCa7cYGIi7GfAQdSwPug+kls7hTehgbjiGNQFOp6EyE7xsJ942Z+J6d9DnemN9eKv7ldWIcVnqJDKIYIRDpIZQKZoeM0NL2AHQgNSDyNDlQGVDBNUcELSkXwoqxLSZr+/h6mv5PmscFt1hgV6f52tm8mQzZJwfkiLikTGrkktRJgwgyJvfkgTw6ifPkPDsvn6MLznxnj/yA8/oBh5+Twg==</latexit>

F � 1<latexit sha1_base64="QK/cLRgJLLDFx9UOU9/UD/az4wc=">AAACHnicbVC7bhNBFJ01kBgDyRJKmhEWUpTC2kWJQmlBk9JI+CF5rdXd8bU98uzsaOYukrXyP+QT+ApaUqVDtFDwL8wuLsDmVkfn3Nc5mVHSURT9DFoPHj46Om4/7jx5+uzkNHx+NnJFaQUORaEKO8nAoZIahyRJ4cRYhDxTOM7W72t9/Amtk4X+SBuDsxyWWi6kAPJUGl4kOdBKUrXapg10i8qkVaJALxXywvDENnC7TcNu1Iua4ocg3oEu29UgDX8l80KUOWoSCpybxpGhWQWWpPALO0np0IBYwxKnHmrI0c2qxtOWvy4dUMENWi4Vb0j8e6KC3LlNnvnO5u19rSb/p01LWrydVVKbklCL+hBJ77Q+5ISVPizkc2mRCOrPkUvNBVggQis5COHJ0qfX8XnE++4PwehNL77qRR8uu/13u2Ta7CV7xc5ZzK5Zn92wARsywW7ZF/aV3QWfg/vgW/D9T2sr2M28YP9U8OM3IFOj2w==</latexit>

hphopi
<latexit sha1_base64="M7qVetxTYEEC7G0BsNqi3d1F12w=">AAACBHicbVA9TwJBEN3DL8SvU0ubjcTEitwZjZZEG0tMBEmAkLllgA17e5fdORJyofVX2GplZ2z9Hxb+F++QQsFXvbw3k3nzglhJS5736RRWVtfWN4qbpa3tnd09d/+gYaPECKyLSEWmGYBFJTXWSZLCZmwQwkDhQzC6yf2HMRorI31Pkxg7IQy07EsBlEld1x122yHQ0IRpH6SmadctexVvBr5M/DkpszlqXfer3YtEEqImocDalu/F1EnBkBQKp6V2YjEGMYIBtjKqIUTbSWfJp/wksUARj9FwqfhMxN8bKYTWTsIgm8xT2kUvF//zWgn1rzqp1HFCqEV+iKTC2SErjMwqQd6TBokgT45cai7AABEayUGITEyyjkpZH/7i98ukcVbxLyre3Xm5ej1vpsiO2DE7ZT67ZFV2y2qszgQbsyf2zF6cR+fVeXPef0YLznznkP2B8/ENGCOYig==</latexit>

hfaint

<latexit sha1_base64="k/qWbbb75L+CAAIhM/UI/mtRnG8="></latexit>{tupd}; ⇠ftg
<latexit sha1_base64="b6YuXbJtjsOL42dwkNZszckdqG8="></latexit>

Ḟ = fftg(t, �i),

<latexit sha1_base64="rwo+gfaStJQOVDLKKczgljxeOoY="></latexit>

phftgi! ^ phposi!

<latexit sha1_base64="S5Y5+ikmhHUsP+1wka+EZTecIE0="></latexit>

Nhopi(µ�i
, �2

�i
)

<latexit sha1_base64="S5Y5+ikmhHUsP+1wka+EZTecIE0="></latexit>

Nhopi(µ�i
, �2

�i
)

Figure 14.4: Transformation pattern for a critical operating condition. Color-coding and
features distinguishing two instances are the same as for Fig. 14.3. This pattern fea-
tures an additional outgoing edge (and invariant) from h⟨op⟩ to deadlock location hfaint

due to fatigue F ∈W reaching the critical threshold 1.

the humans: the latter are progressively replaced by the automata learned
by L∗SHA based on field observations. To integrate learned SHA in the net-
work, they need to be modified to make them homogeneous with the rest of
the network. This adaptation depends on the modeling approach used in the
model-driven framework. In the following, we introduce the modification
rules required by our modeling approach.

The formal model has features capturing phenomena from the real world,
which are required to make the model more realistic and, thus, obtain a
more reliable outcome prediction. Specifically, these features are:

1. the ⟨op⟩_pub pattern, which captures the periodic publication of sen-
sor data performed by robots and humans towards the orchestrator,
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<latexit sha1_base64="W4DEaGB7rZXq31w4sZtEh9tB5s0=">AAAB/XicbVA9TwJBEN3DL8Qv1NJmIzGxIndGoyXRxhKNfCRAyNwywIa9vcvunIZciL/CVis7Y+tvsfC/eJwUCr7q5b2ZzJvnR0pact1PJ7e0vLK6ll8vbGxube8Ud/fqNoyNwJoIVWiaPlhUUmONJClsRgYh8BU2/NHV1G/co7Ey1Hc0jrATwEDLvhRAqdRq38rBkMCY8KFbLLllNwNfJN6MlNgM1W7xq90LRRygJqHA2pbnRtRJwJAUCieFdmwxAjGCAbZSqiFA20myyBN+FFugkEdouFQ8E/H3RgKBtePATycDoKGd96bif14rpv5FJ5E6igm1mB4iqTA7ZIWRaRfIe9IgEUyTI5eaCzBAhEZyECIV47ScQtqHN//9IqmflL2zsntzWqpczprJswN2yI6Zx85ZhV2zKqsxwUL2xJ7Zi/PovDpvzvvPaM6Z7eyzP3A+vgFfupX2</latexit>)

<latexit sha1_base64="JbujRwtgRmW5zUPV7sBfcP9WDDU=">AAACE3icbVC7TsNAEDzzJrwClBSciJCoIhuBoETQUIJEIFIcWevLJpw4n627NRKyKPkEvoIWKjpEywdQ8C+cTQpI2GpuZvd2Z+JMSUu+/+lNTE5Nz8zOzdcWFpeWV+qra5c2zY3AlkhVatoxWFRSY4skKWxnBiGJFV7FNyelfnWLxspUX9Bdht0EBlr2pQByVFTfvI7CBOja9otQgR4o5GkWBTw01eM+qjf8pl8VHwfBEDTYsM6i+lfYS0WeoCahwNpO4GfULcCQFO6/WphbzEDcwAA7DmpI0HaLysg9384tUMozNFwqXpH4e6KAxNq7JHad1dGjWkn+p3Vy6h92C6mznFCLchFJZ7VcZIWRLiHkPWmQCMrLkUvNBRggQiM5COHI3EVWc3kEo+7HweVuM9hv+ud7jaPjYTJzbINtsR0WsAN2xE7ZGWsxwR7YE3tmL96j9+q9ee8/rRPecGad/Snv4xvyvZ5b</latexit>

hhop1i

<latexit sha1_base64="NbrbCvhh31EsYI5n6KM9r0y9wXw=">AAACE3icbVC7TsNAEDzzDOEVoKTgRIREFdkIBGUEDSVIBJDiyFpfNuHE+WzdrZGQRckn8BW0UNEhWj6Agn/hbFIAYau5md3bnYkzJS35/oc3MTk1PTNbm6vPLywuLTdWVs9tmhuBHZGq1FzGYFFJjR2SpPAyMwhJrPAivj4q9YsbNFam+oxuM+wlMNRyIAWQo6LGxlUUJkBXdlCECvRQIU+zaIeHpnrcRY2m3/Kr4uMgGIEmG9VJ1PgM+6nIE9QkFFjbDfyMegUYksL9Vw9zixmIaxhi10ENCdpeURm541u5BUp5hoZLxSsSf04UkFh7m8Suszr6r1aS/2ndnAYHvULqLCfUolxE0lktF1lhpEsIeV8aJILycuRScwEGiNBIDkI4MneR1V0ewV/34+B8pxXstfzT3Wb7cJRMja2zTbbNArbP2uyYnbAOE+yePbIn9uw9eC/eq/f23TrhjWbW2K/y3r8A9FWeXA==</latexit>

hhop2i

<latexit sha1_base64="vY8zgHs35Ux9LZHB/pwDEkIEJlg=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxtJlFiHIjevGIUcAENmR2aHDC7CMzvRqy4RO86smb8er3ePBf3F0xUaN1qlR1p6vLi5Q0yNibVVhYXFpeKa6W1tY3NrfK2zsdE8ZaQFuEKtTXHjegZABtlKjgOtLAfU9B15ucZX73FrSRYXCF0whcn48DOZKCYypdRoPqoFxhdp05jXqDMrtaZ41aLSXMYeyoRh2b5aiQOVqD8nt/GIrYhwCF4sb0HBahm3CNUiiYlfqxgYiLCR9DL6UB98G4SR51Rg9iwzGkEWgqFc1F+L6RcN+Yqe+lkz7HG/Pby8S/vF6MoxM3kUEUIwQiO4RSQX7ICC3TDoAOpQZEniUHKgMquOaIoCXlQqRinJZSSvv4epr+TzpV26nb7KJWaZ7OmymSPbJPDolDjkmTnJMWaRNBxuSePJBH6856sp6tl8/RgjXf2SU/YL1+AAQZkl8=</latexit>p2

<latexit sha1_base64="6puebi5/KxA2eFH8EmborqUM3o0=">AAAB9XicdVA9TwJBFNzDL8Qv1NJmIzGxuuzhXZSOaGOJUcAECNlbHrhhb++y+05DCD/BVis7Y+vvsfC/eCAmanSqycx7efMmTJS0yNibk1tYXFpeya8W1tY3NreK2zsNG6dGQF3EKjbXIbegpIY6SlRwnRjgUaigGQ7Ppn7zFoyVsb7CUQKdiA+07EvBMZMuk67XLZaYGzCvElQoc8sBq/h+RpjH2JFPPZfNUCJz1LrF93YvFmkEGoXi1rY8lmBnzA1KoWBSaKcWEi6GfACtjGoege2MZ1En9CC1HGOagKFS0ZkI3zfGPLJ2FIXZZMTxxv72puJfXivF/klnLHWSImgxPYRSweyQFUZmHQDtSQOIfJocqNRUcMMRwUjKhcjENCulkPXx9TT9nzTKrhe47MIvVU/nzeTJHtknh8Qjx6RKzkmN1IkgA3JPHsijc+c8Oc/Oy+dozpnv7JIfcF4/AAKKkl4=</latexit>p1

<latexit sha1_base64="UWXhXZjM512eKbYoZIEPhoVdHBk=">AAACCnicdVDLSgNBEJz1bXxFBS9eBoPgKcwaE80tKIhHBfOAJITZsROHzD6c6VXCmj/wK7zqyZt49Sc8+C/OxggqWqeiqpuuLi9S0iBjb87E5NT0zOzcfGZhcWl5Jbu6VjNhrAVURahC3fC4ASUDqKJEBY1IA/c9BXWvf5T69WvQRobBOQ4iaPu8F8iuFByt1MludG9aPbhq+RwvTTc5rncSvBwOO9kcy7NSsVxglOWLzN0vly1hrHRQ2KWuJSlyZIzTTva9dRGK2IcAheLGNF0WYTvhGqVQMMy0YgMRF33eg6alAffBtJNR/iHdjg3HkEagqVR0JML3jYT7xgx8z06Ocv72UvEvrxlj96CdyCCKEQKRHkKpYHTICC1tMUAvpAZEniYHKgMquOaIoCXlQlgxtk1lbB9fT9P/SW037xbz7GwvVzkcNzNHNskW2SEu2ScVckJOSZUIckvuyQN5dO6cJ+fZefkcnXDGO+vkB5zXD1ABm3Y=</latexit>

fw � FWth
<latexit sha1_base64="s9IhxPkkeKlYLP1OUi/77cx8aVI=">AAAB93icdVDLSgNBEJz1GeMr6tHLYBA8hZmgJrkFvXiMYB6QhDA76cQhsw9meoWw5Bu86smbePVzPPgvzsYIKlqnoqqbri4/1soiY2/e0vLK6tp6biO/ubW9s1vY22/ZKDESmjLSken4woJWITRRoYZObEAEvoa2P7nM/PYdGKui8AanMfQDMQ7VSEmBTmr2UuzNBoUiKzHGOOc0I7xyzhyp1aplXqU8sxyKZIHGoPDeG0YyCSBEqYW1Xc5i7KfCoJIaZvleYiEWciLG0HU0FAHYfjoPO6PHiRUY0RgMVZrORfi+kYrA2mngu8lA4K397WXiX143wVG1n6owThBCmR1CpWF+yEqjXAtAh8oAosiSA1UhlcIIRDCKCimdmLha8q6Pr6fp/6RVLvGzErs+LdYvFs3kyCE5IieEkwqpkyvSIE0iiSL35IE8elPvyXv2Xj5Hl7zFzgH5Ae/1Awpgk48=</latexit>{t}

<latexit sha1_base64="JbujRwtgRmW5zUPV7sBfcP9WDDU=">AAACE3icbVC7TsNAEDzzJrwClBSciJCoIhuBoETQUIJEIFIcWevLJpw4n627NRKyKPkEvoIWKjpEywdQ8C+cTQpI2GpuZvd2Z+JMSUu+/+lNTE5Nz8zOzdcWFpeWV+qra5c2zY3AlkhVatoxWFRSY4skKWxnBiGJFV7FNyelfnWLxspUX9Bdht0EBlr2pQByVFTfvI7CBOja9otQgR4o5GkWBTw01eM+qjf8pl8VHwfBEDTYsM6i+lfYS0WeoCahwNpO4GfULcCQFO6/WphbzEDcwAA7DmpI0HaLysg9384tUMozNFwqXpH4e6KAxNq7JHad1dGjWkn+p3Vy6h92C6mznFCLchFJZ7VcZIWRLiHkPWmQCMrLkUvNBRggQiM5COHI3EVWc3kEo+7HweVuM9hv+ud7jaPjYTJzbINtsR0WsAN2xE7ZGWsxwR7YE3tmL96j9+q9ee8/rRPecGad/Snv4xvyvZ5b</latexit>

hhop1i

<latexit sha1_base64="NbrbCvhh31EsYI5n6KM9r0y9wXw=">AAACE3icbVC7TsNAEDzzDOEVoKTgRIREFdkIBGUEDSVIBJDiyFpfNuHE+WzdrZGQRckn8BW0UNEhWj6Agn/hbFIAYau5md3bnYkzJS35/oc3MTk1PTNbm6vPLywuLTdWVs9tmhuBHZGq1FzGYFFJjR2SpPAyMwhJrPAivj4q9YsbNFam+oxuM+wlMNRyIAWQo6LGxlUUJkBXdlCECvRQIU+zaIeHpnrcRY2m3/Kr4uMgGIEmG9VJ1PgM+6nIE9QkFFjbDfyMegUYksL9Vw9zixmIaxhi10ENCdpeURm541u5BUp5hoZLxSsSf04UkFh7m8Suszr6r1aS/2ndnAYHvULqLCfUolxE0lktF1lhpEsIeV8aJILycuRScwEGiNBIDkI4MneR1V0ewV/34+B8pxXstfzT3Wb7cJRMja2zTbbNArbP2uyYnbAOE+yePbIn9uw9eC/eq/f23TrhjWbW2K/y3r8A9FWeXA==</latexit>

hhop2i

<latexit sha1_base64="mZZ6skryYD0Dmku8tcYjv6syrZ0=">AAACE3icdVC7TsNAEDzzDOFloKTgRIREFdmRIelA0FAGiQBSbFnnywKn3NnW3RoJWSn5BL6CFio6RMsHUPAv2CZIgGCquZnd292JUikMOs6bNTE5NT0zW5urzy8sLi3bK6unJsk0hx5PZKLPI2ZAihh6KFDCeaqBqUjCWTQ8LP2za9BGJPEJ3qQQKHYZiwvBGRZSaG/4iuEVYs7VwA+vwuqpVW6QaRyN9kK74TR3vU6r41Kn6VQoiee2PY+6Y6VBxuiG9rs/SHimIEYumTF910kxyIvfBJcwqvuZgZTxIbuEfkFjpsAEeXXIiG5lhmFCU9BUSFqJ8L0jZ8qYGxUVleWe5rdXin95/QwvOkEu4jRDiHk5CIWEapDhWhQJAR0IDYis3ByoiClnmiGCFpRxXohZEVm9yOPraPo/OW013Z2mc+w19g/GydTIOtkk28QlbbJPjkiX9Agnt+SePJBH6856sp6tl8/SCWvcs0Z+wHr9AMSNn4E=</latexit>

cmd hstart?

<latexit sha1_base64="EGfexvxBMTXvZ9eriPgTR8SABp8="></latexit>�hop2i <latexit sha1_base64="mZZ6skryYD0Dmku8tcYjv6syrZ0=">AAACE3icdVC7TsNAEDzzDOFloKTgRIREFdmRIelA0FAGiQBSbFnnywKn3NnW3RoJWSn5BL6CFio6RMsHUPAv2CZIgGCquZnd292JUikMOs6bNTE5NT0zW5urzy8sLi3bK6unJsk0hx5PZKLPI2ZAihh6KFDCeaqBqUjCWTQ8LP2za9BGJPEJ3qQQKHYZiwvBGRZSaG/4iuEVYs7VwA+vwuqpVW6QaRyN9kK74TR3vU6r41Kn6VQoiee2PY+6Y6VBxuiG9rs/SHimIEYumTF910kxyIvfBJcwqvuZgZTxIbuEfkFjpsAEeXXIiG5lhmFCU9BUSFqJ8L0jZ8qYGxUVleWe5rdXin95/QwvOkEu4jRDiHk5CIWEapDhWhQJAR0IDYis3ByoiClnmiGCFpRxXohZEVm9yOPraPo/OW013Z2mc+w19g/GydTIOtkk28QlbbJPjkiX9Agnt+SePJBH6856sp6tl8/SCWvcs0Z+wHr9AMSNn4E=</latexit>

cmd hstart?

<latexit sha1_base64="EGfexvxBMTXvZ9eriPgTR8SABp8="></latexit>�hop2i

<latexit sha1_base64="mZZ6skryYD0Dmku8tcYjv6syrZ0=">AAACE3icdVC7TsNAEDzzDOFloKTgRIREFdmRIelA0FAGiQBSbFnnywKn3NnW3RoJWSn5BL6CFio6RMsHUPAv2CZIgGCquZnd292JUikMOs6bNTE5NT0zW5urzy8sLi3bK6unJsk0hx5PZKLPI2ZAihh6KFDCeaqBqUjCWTQ8LP2za9BGJPEJ3qQQKHYZiwvBGRZSaG/4iuEVYs7VwA+vwuqpVW6QaRyN9kK74TR3vU6r41Kn6VQoiee2PY+6Y6VBxuiG9rs/SHimIEYumTF910kxyIvfBJcwqvuZgZTxIbuEfkFjpsAEeXXIiG5lhmFCU9BUSFqJ8L0jZ8qYGxUVleWe5rdXin95/QwvOkEu4jRDiHk5CIWEapDhWhQJAR0IDYis3ByoiClnmiGCFpRxXohZEVm9yOPraPo/OW013Z2mc+w19g/GydTIOtkk28QlbbJPjkiX9Agnt+SePJBH6856sp6tl8/SCWvcs0Z+wHr9AMSNn4E=</latexit>

cmd hstart?

<latexit sha1_base64="EGfexvxBMTXvZ9eriPgTR8SABp8="></latexit>�hop2i

<latexit sha1_base64="s9IhxPkkeKlYLP1OUi/77cx8aVI=">AAAB93icdVDLSgNBEJz1GeMr6tHLYBA8hZmgJrkFvXiMYB6QhDA76cQhsw9meoWw5Bu86smbePVzPPgvzsYIKlqnoqqbri4/1soiY2/e0vLK6tp6biO/ubW9s1vY22/ZKDESmjLSken4woJWITRRoYZObEAEvoa2P7nM/PYdGKui8AanMfQDMQ7VSEmBTmr2UuzNBoUiKzHGOOc0I7xyzhyp1aplXqU8sxyKZIHGoPDeG0YyCSBEqYW1Xc5i7KfCoJIaZvleYiEWciLG0HU0FAHYfjoPO6PHiRUY0RgMVZrORfi+kYrA2mngu8lA4K397WXiX143wVG1n6owThBCmR1CpWF+yEqjXAtAh8oAosiSA1UhlcIIRDCKCimdmLha8q6Pr6fp/6RVLvGzErs+LdYvFs3kyCE5IieEkwqpkyvSIE0iiSL35IE8elPvyXv2Xj5Hl7zFzgH5Ae/1Awpgk48=</latexit>{t}

<latexit sha1_base64="s6oSN1WWs9eLF1aTLeu9QYbDNDU="></latexit>�hop1i
<latexit sha1_base64="1jF9Nf/HrKYr+1a3w4hYOeh0/yI=">AAACEnicdVBNS8NAEN34WetX1aMgi0XwVBKJtjeLXjxWsB/QlrDZTtvF3STsToQSevMn+Cu86smbePUPePC/mMQKKvpOb96bYWaeH0lh0LbfrLn5hcWl5cJKcXVtfWOztLXdMmGsOTR5KEPd8ZkBKQJookAJnUgDU76Etn99nvntG9BGhMEVTiLoKzYKxFBwhqnklfZ6iuEYMeFq0PPGXl5qlRgMo+n01CuV7cqJWzuqOdSu2Dky4jpV16XOTCmTGRpe6b03CHmsIEAumTFdx46wnzCNgkuYFnuxgYjxazaCbkoDpsD0k/yPKT2IDcOQRqCpkDQX4ftEwpQxE+WnndmZ5reXiX953RiHtX4igihGCHi2CIWEfJHhWqQBAR0IDYgsuxyoCChnmiGCFpRxnopxmlgxzePrafo/aR1VnOOKfemW62ezZApkl+yTQ+KQKqmTC9IgTcLJLbknD+TRurOerGfr5bN1zprN7JAfsF4/APC7nw8=</latexit>

cmd hstop?

<latexit sha1_base64="b6YuXbJtjsOL42dwkNZszckdqG8=">AAACGXicdZDJSgNBEIZ7XGPcoh69NAZBQcKMuB6EoCAeFYwKSRhqOpXYpGehu0aQIU/gI/gUXvXkTbx68uC72BOjqGidiu+v9Q8SJQ257qszNDwyOjZemChOTk3PzJbm5s9MnGqBNRGrWF8EYFDJCGskSeFFohHCQOF50D3I9fMr1EbG0SldJ9gMoRPJthRAFvml5UYrpuywt9f2GyHQpQ6zNnV6K7TGG8qOaYEvV9f8UtmtbLre7pbH3YrbD/5FvAEps0Ec+6U3O1ekIUYkFBhT99yEmhlokkJhr9hIDSYgutDBuk0jCNE0s/47Pb6cGqCYJ6i5VLwP8XtHBqEx12FgK/OTzW8th39p9ZTaO81MRklKGIl8EUmF/UVGaGl9Qt6SGokgvxy5jLgADUSoJQchLEytcUXrx+fT/P/kbL3ibVbck41ydX/gTIEtsiW2wjy2zarsiB2zGhPsht2xe/bg3DqPzpPz/FE65Ax6FtiPcF7eATjqoJU=</latexit>

Ḟ = fftg(t, �i),

<latexit sha1_base64="pEybJGKDsiROie8Q6kYXB8mN4aI="></latexit>

Ḟ = frec(t, ⇢i),
<latexit sha1_base64="pEybJGKDsiROie8Q6kYXB8mN4aI="></latexit>

Ḟ = frec(t, ⇢i),

<latexit sha1_base64="b6YuXbJtjsOL42dwkNZszckdqG8="></latexit>

Ḟ = fftg(t, �i),

<latexit sha1_base64="UWXhXZjM512eKbYoZIEPhoVdHBk=">AAACCnicdVDLSgNBEJz1bXxFBS9eBoPgKcwaE80tKIhHBfOAJITZsROHzD6c6VXCmj/wK7zqyZt49Sc8+C/OxggqWqeiqpuuLi9S0iBjb87E5NT0zOzcfGZhcWl5Jbu6VjNhrAVURahC3fC4ASUDqKJEBY1IA/c9BXWvf5T69WvQRobBOQ4iaPu8F8iuFByt1MludG9aPbhq+RwvTTc5rncSvBwOO9kcy7NSsVxglOWLzN0vly1hrHRQ2KWuJSlyZIzTTva9dRGK2IcAheLGNF0WYTvhGqVQMMy0YgMRF33eg6alAffBtJNR/iHdjg3HkEagqVR0JML3jYT7xgx8z06Ocv72UvEvrxlj96CdyCCKEQKRHkKpYHTICC1tMUAvpAZEniYHKgMquOaIoCXlQlgxtk1lbB9fT9P/SW037xbz7GwvVzkcNzNHNskW2SEu2ScVckJOSZUIckvuyQN5dO6cJ+fZefkcnXDGO+vkB5zXD1ABm3Y=</latexit>

fw � FWth

<latexit sha1_base64="s6oSN1WWs9eLF1aTLeu9QYbDNDU="></latexit>�hop1i
<latexit sha1_base64="1jF9Nf/HrKYr+1a3w4hYOeh0/yI=">AAACEnicdVBNS8NAEN34WetX1aMgi0XwVBKJtjeLXjxWsB/QlrDZTtvF3STsToQSevMn+Cu86smbePUPePC/mMQKKvpOb96bYWaeH0lh0LbfrLn5hcWl5cJKcXVtfWOztLXdMmGsOTR5KEPd8ZkBKQJookAJnUgDU76Etn99nvntG9BGhMEVTiLoKzYKxFBwhqnklfZ6iuEYMeFq0PPGXl5qlRgMo+n01CuV7cqJWzuqOdSu2Dky4jpV16XOTCmTGRpe6b03CHmsIEAumTFdx46wnzCNgkuYFnuxgYjxazaCbkoDpsD0k/yPKT2IDcOQRqCpkDQX4ftEwpQxE+WnndmZ5reXiX953RiHtX4igihGCHi2CIWEfJHhWqQBAR0IDYgsuxyoCChnmiGCFpRxnopxmlgxzePrafo/aR1VnOOKfemW62ezZApkl+yTQ+KQKqmTC9IgTcLJLbknD+TRurOerGfr5bN1zprN7JAfsF4/APC7nw8=</latexit>

cmd hstop?

<latexit sha1_base64="6puebi5/KxA2eFH8EmborqUM3o0=">AAAB9XicdVA9TwJBFNzDL8Qv1NJmIzGxuuzhXZSOaGOJUcAECNlbHrhhb++y+05DCD/BVis7Y+vvsfC/eCAmanSqycx7efMmTJS0yNibk1tYXFpeya8W1tY3NreK2zsNG6dGQF3EKjbXIbegpIY6SlRwnRjgUaigGQ7Ppn7zFoyVsb7CUQKdiA+07EvBMZMuk67XLZaYGzCvElQoc8sBq/h+RpjH2JFPPZfNUCJz1LrF93YvFmkEGoXi1rY8lmBnzA1KoWBSaKcWEi6GfACtjGoege2MZ1En9CC1HGOagKFS0ZkI3zfGPLJ2FIXZZMTxxv72puJfXivF/klnLHWSImgxPYRSweyQFUZmHQDtSQOIfJocqNRUcMMRwUjKhcjENCulkPXx9TT9nzTKrhe47MIvVU/nzeTJHtknh8Qjx6RKzkmN1IkgA3JPHsijc+c8Oc/Oy+dozpnv7JIfcF4/AAKKkl4=</latexit>p1

<latexit sha1_base64="vY8zgHs35Ux9LZHB/pwDEkIEJlg=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxtJlFiHIjevGIUcAENmR2aHDC7CMzvRqy4RO86smb8er3ePBf3F0xUaN1qlR1p6vLi5Q0yNibVVhYXFpeKa6W1tY3NrfK2zsdE8ZaQFuEKtTXHjegZABtlKjgOtLAfU9B15ucZX73FrSRYXCF0whcn48DOZKCYypdRoPqoFxhdp05jXqDMrtaZ41aLSXMYeyoRh2b5aiQOVqD8nt/GIrYhwCF4sb0HBahm3CNUiiYlfqxgYiLCR9DL6UB98G4SR51Rg9iwzGkEWgqFc1F+L6RcN+Yqe+lkz7HG/Pby8S/vF6MoxM3kUEUIwQiO4RSQX7ICC3TDoAOpQZEniUHKgMquOaIoCXlQqRinJZSSvv4epr+TzpV26nb7KJWaZ7OmymSPbJPDolDjkmTnJMWaRNBxuSePJBH6856sp6tl8/RgjXf2SU/YL1+AAQZkl8=</latexit>p2

<latexit sha1_base64="s6oSN1WWs9eLF1aTLeu9QYbDNDU="></latexit>�hop1i
<latexit sha1_base64="1jF9Nf/HrKYr+1a3w4hYOeh0/yI=">AAACEnicdVBNS8NAEN34WetX1aMgi0XwVBKJtjeLXjxWsB/QlrDZTtvF3STsToQSevMn+Cu86smbePUPePC/mMQKKvpOb96bYWaeH0lh0LbfrLn5hcWl5cJKcXVtfWOztLXdMmGsOTR5KEPd8ZkBKQJookAJnUgDU76Etn99nvntG9BGhMEVTiLoKzYKxFBwhqnklfZ6iuEYMeFq0PPGXl5qlRgMo+n01CuV7cqJWzuqOdSu2Dky4jpV16XOTCmTGRpe6b03CHmsIEAumTFdx46wnzCNgkuYFnuxgYjxazaCbkoDpsD0k/yPKT2IDcOQRqCpkDQX4ftEwpQxE+WnndmZ5reXiX953RiHtX4igihGCHi2CIWEfJHhWqQBAR0IDYgsuxyoCChnmiGCFpRxnopxmlgxzePrafo/aR1VnOOKfemW62ezZApkl+yTQ+KQKqmTC9IgTcLJLbknD+TRurOerGfr5bN1zprN7JAfsF4/APC7nw8=</latexit>

cmd hstop?

<latexit sha1_base64="s9IhxPkkeKlYLP1OUi/77cx8aVI=">AAAB93icdVDLSgNBEJz1GeMr6tHLYBA8hZmgJrkFvXiMYB6QhDA76cQhsw9meoWw5Bu86smbePVzPPgvzsYIKlqnoqqbri4/1soiY2/e0vLK6tp6biO/ubW9s1vY22/ZKDESmjLSken4woJWITRRoYZObEAEvoa2P7nM/PYdGKui8AanMfQDMQ7VSEmBTmr2UuzNBoUiKzHGOOc0I7xyzhyp1aplXqU8sxyKZIHGoPDeG0YyCSBEqYW1Xc5i7KfCoJIaZvleYiEWciLG0HU0FAHYfjoPO6PHiRUY0RgMVZrORfi+kYrA2mngu8lA4K397WXiX143wVG1n6owThBCmR1CpWF+yEqjXAtAh8oAosiSA1UhlcIIRDCKCimdmLha8q6Pr6fp/6RVLvGzErs+LdYvFs3kyCE5IieEkwqpkyvSIE0iiSL35IE8elPvyXv2Xj5Hl7zFzgH5Ae/1Awpgk48=</latexit>{t}

<latexit sha1_base64="s9IhxPkkeKlYLP1OUi/77cx8aVI=">AAAB93icdVDLSgNBEJz1GeMr6tHLYBA8hZmgJrkFvXiMYB6QhDA76cQhsw9meoWw5Bu86smbePVzPPgvzsYIKlqnoqqbri4/1soiY2/e0vLK6tp6biO/ubW9s1vY22/ZKDESmjLSken4woJWITRRoYZObEAEvoa2P7nM/PYdGKui8AanMfQDMQ7VSEmBTmr2UuzNBoUiKzHGOOc0I7xyzhyp1aplXqU8sxyKZIHGoPDeG0YyCSBEqYW1Xc5i7KfCoJIaZvleYiEWciLG0HU0FAHYfjoPO6PHiRUY0RgMVZrORfi+kYrA2mngu8lA4K397WXiX143wVG1n6owThBCmR1CpWF+yEqjXAtAh8oAosiSA1UhlcIIRDCKCimdmLha8q6Pr6fp/6RVLvGzErs+LdYvFs3kyCE5IieEkwqpkyvSIE0iiSL35IE8elPvyXv2Xj5Hl7zFzgH5Ae/1Awpgk48=</latexit>{t}

<latexit sha1_base64="vrBudfyeqUerRA0YF4dguU96KDE="></latexit>

Nhop2i(µ�i
, �2

�i
)

<latexit sha1_base64="+kKQ9OKe058heKPARP6pNzFVzOE="></latexit>

Nhop1i(µ⇢i
, �2

⇢i
)

<latexit sha1_base64="+kKQ9OKe058heKPARP6pNzFVzOE="></latexit>

Nhop1i(µ⇢i
, �2

⇢i
)

<latexit sha1_base64="vrBudfyeqUerRA0YF4dguU96KDE="></latexit>

Nhop2i(µ�i
, �2

�i
)

Figure 14.5: Transformation pattern for an edge between two operating conditions h⟨op1⟩
and h⟨op2⟩. Weights p1 and p2 influence the automaton to take the edge or not when an
event fires through channels cmd_hstart (or cmd_hstop) and guard γ⟨op2⟩ (or γ⟨op1⟩) is
verified. Edges might also fire autonomously due to variable fw .

which is necessary for the latter to have up-to-date information about
the system (e.g., the current human fatigue level);

2. the possibility for the human to make decisions independently of the
orchestrator’s instructions capturing the unpredictability of human be-
havior, i.e., the Disobey/Obey and Free Will SHA add-ons intro-
duced in detail in Chapter 8.

The parts of the formal model corresponding to these features are fixed
for all SHA modeling humans and, therefore, do not need to be learned.
Nevertheless, any SHA learned by L∗SHA must be expanded with these fea-
tures, using a fixed set of rules, to be fully compatible with the SHA net-
work.

The rules distinguish locations based on the characteristics of their flow
conditions, and in particular, based on whether the corresponding flow con-
dition (an element of setM ) causes physical variables in the system to reach
a critical threshold. In our model-driven framework, the core physical vari-
able is human fatigue, whose critical threshold (i.e., 1) is reachable when
the human is moving, and fatigue is increasing (thus, evolving according to
Eq.6.5(fatigue)).

In the following, we present the rules used to expand L∗SHA outcomes,
using as a running example the SHA in Fig. 14.2. In this case, there are
only two locations capturing the human standing and walking (hidle and
hbusy, respectively). Each location is labeled with the identified flow con-
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14.2. Integrating Learned SHA in the SHA Network

<latexit sha1_base64="Nqu2WPwxOgXfMUYLxH0rUKmxcRs=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJGNQFBG0FAGiYRIiWWdL5vklPNDd2ukyErJV9BCRYdo+RAK/oWzcQEJU41mdm/nJkik0Og4n1ZlZXVtfaO6Wdva3tmt23v7XR2nikOHxzJWvYBpkCKCDgqU0EsUsDCQcB9Mr3P//gGUFnF0h7MEvJCNIzESnKGRfLs+8Qchw4kKMzGUMPfthtN0CtBl4pakQUq0fftrMIx5GkKEXDKt+66ToJcxhYKb92qDVEPC+JSNoW9oxELQXlYEn9PjVDOMaQKKCkkLEX5vZCzUehYGZjIPqRe9XPzP66c4uvQyESUpQsTzQygkFIc0V8I0AnQoFCCyPDlQEVHOFEMEJSjj3Iipqahm+nAXf79MuqdN97zp3J41WldlM1VySI7ICXHJBWmRG9ImHcJJSp7IM3mxHq1X6816/xmtWOXOAfkD6+MbN/eYDA==</latexit>

hidle

<latexit sha1_base64="gXQ1VDUaQLn85sqgkOS+SWnPbCU=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJGNQFBG0FAGiYRIiWWdL5vklPNDd3tIkZWSr6CFig7R8iEU/Au2cQEJU41mdrWzEyRSaHScT6uysrq2vlHdrG1t7+zW7b39ro6N4tDhsYxVL2AapIiggwIl9BIFLAwk3AfT69y/fwClRRzd4SwBL2TjSIwEZ5hJvl2f+IOQ4USFaWD0bO7bDafpFKDLxC1Jg5Ro+/bXYBhzE0KEXDKt+66ToJcyhYJLmNcGRkPC+JSNoZ/RiIWgvbQIPqfHRjOMaQKKCkkLEX5vpCzUehYG2WQeUi96ufif1zc4uvRSESUGIeL5IRQSikOaK5E1AnQoFCCyPDlQEVHOFEMEJSjjPBNNVlEt68Nd/H6ZdE+b7nnTuT1rtK7KZqrkkByRE+KSC9IiN6RNOoQTQ57IM3mxHq1X6816/xmtWOXOAfkD6+MbcduYMQ==</latexit>

hbusy

<latexit sha1_base64="M7qVetxTYEEC7G0BsNqi3d1F12w=">AAACBHicbVA9TwJBEN3DL8SvU0ubjcTEitwZjZZEG0tMBEmAkLllgA17e5fdORJyofVX2GplZ2z9Hxb+F++QQsFXvbw3k3nzglhJS5736RRWVtfWN4qbpa3tnd09d/+gYaPECKyLSEWmGYBFJTXWSZLCZmwQwkDhQzC6yf2HMRorI31Pkxg7IQy07EsBlEld1x122yHQ0IRpH6SmadctexVvBr5M/DkpszlqXfer3YtEEqImocDalu/F1EnBkBQKp6V2YjEGMYIBtjKqIUTbSWfJp/wksUARj9FwqfhMxN8bKYTWTsIgm8xT2kUvF//zWgn1rzqp1HFCqEV+iKTC2SErjMwqQd6TBokgT45cai7AABEayUGITEyyjkpZH/7i98ukcVbxLyre3Xm5ej1vpsiO2DE7ZT67ZFV2y2qszgQbsyf2zF6cR+fVeXPef0YLznznkP2B8/ENGCOYig==</latexit>

hfaint

<latexit sha1_base64="b6YuXbJtjsOL42dwkNZszckdqG8="></latexit>

Ḟ = fftg(t, �i),

<latexit sha1_base64="LQPEKR+iJDpOzMX8loZguH+PMKw=">AAAB+XicdVDLSgNBEJz1GeMr6tHLYBA8hVk1r1tQEI8RzAOSEGYnnThk9uFMrxCWfIRXPXkTr36NB//F2RhBRetUVHXT1eVFShpk7M1ZWFxaXlnNrGXXNza3tnM7u00TxlpAQ4Qq1G2PG1AygAZKVNCONHDfU9Dyxuep37oDbWQYXOMkgp7PR4EcSsHRSq2L7ghuqdvP5VmBlYrVE0ZZocjccrVqCWOlyskxdS1JkSdz1Pu59+4gFLEPAQrFjem4LMJewjVKoWCa7cYGIi7GfAQdSwPug+kls7hTehgbjiGNQFOp6EyE7xsJ942Z+J6d9DnemN9eKv7ldWIcVnqJDKIYIRDpIZQKZoeM0NL2AHQgNSDyNDlQGVDBNUcELSkXwoqxLSZr+/h6mv5PmscFt1hgV6f52tm8mQzZJwfkiLikTGrkktRJgwgyJvfkgTw6ifPkPDsvn6MLznxnj/yA8/oBh5+Twg==</latexit>

F � 1

<latexit sha1_base64="pEybJGKDsiROie8Q6kYXB8mN4aI="></latexit>

Ḟ = frec(t, ⇢i),
<latexit sha1_base64="ZC4Z7ujGxiI+Dh0nxBmFdJhF92o="></latexit>^ tupd  Tpoll

<latexit sha1_base64="NOvclNpH9vixRm1bo01hFCvsvnM=">AAACA3icdZA9SwNBEIb3/IzxI1FLm8UgWIU7MX50QUEsI5gPyIUwt5nEJXt75+6cEEJKf4WtVnZi6w+x8L94iVFU9K2G551hZt4gVtKS6746M7Nz8wuLmaXs8srqWi6/vlGzUWIEVkWkItMIwKKSGqskSWEjNghhoLAe9E/Hfv0GjZWRvqRBjK0Qelp2pQBKUTuf8xXoDvf5ma/wmnvtfMEtllzv+MDjbtGdiH8Rb0oKbKpKO//mdyKRhKhJKLC26bkxtYZgSAqFo6yfWIxB9KGHzbTUEKJtDSeHj/hOYoEiHqPhUvEJxO8TQwitHYRB2hkCXdnf3hj+5TUT6h61hlLHCaEW40UkFU4WWWFkmgjyjjRIBOPLkUvNBRggQiM5CJHCJI0om+bx+TT/v6jtFb1S0b3YL5RPpslk2BbbZrvMY4eszM5ZhVWZYAm7Y/fswbl1Hp0n5/mjdcaZzmyyH3Je3gErnpbC</latexit>^ F  1

<latexit sha1_base64="da/T2wJof+O1LL4I3rqCAYsbaFM=">AAACB3icbVC7TsNAEDyHVwgvQ0qaExESVWQjEJQRNJRBIiFSYlnnyyY55Xy27tZIkZUP4CtooaJDtHwGBf+CbVxAwlSjmd3buQliKQw6zqdVWVldW9+obta2tnd29+z9g66JEs2hwyMZ6V7ADEihoIMCJfRiDSwMJNwH0+vcv38AbUSk7nAWgxeysRIjwRlmkm/XJ/4gZDjRYRr7qRhKmM99u+E0nQJ0mbglaZASbd/+GgwjnoSgkEtmTN91YvRSplHw7MHaIDEQMz5lY+hnVLEQjJcW4ef0ODEMIxqDpkLSQoTfGykLjZmFQTaZBzWLXi7+5/UTHF16qVBxgqB4fgiFhOKQ4VpkrQAdCg2ILE8OVCjKmWaIoAVlnGdiktVUy/pwF3+/TLqnTfe86dyeNVpXZTNVckiOyAlxyQVpkRvSJh3CyYw8kWfyYj1ar9ab9f4zWrHKnTr5A+vjG62zmfs=</latexit>

hpidle

<latexit sha1_base64="xxdmJdgtWu02w3aOCrSK9wIQyLU=">AAACB3icbVC7TsNAEDyHVwgvQ0qaExESVWQjEJQRNJRBIiFSYlnnyyY55fzQ3RrJsvwBfAUtVHSIls+g4F+wjQtImGo0s6udHS+SQqNlfRq1ldW19Y36ZmNre2d3z9w/6OswVhx6PJShGnhMgxQB9FCghEGkgPmehHtvfl349w+gtAiDO0wicHw2DcREcIa55JrNmTvyGc6Un0Zu6sU6yTLXbFltqwRdJnZFWqRC1zW/RuOQxz4EyCXTemhbETopUyi4hKwxijVEjM/ZFIY5DZgP2knL8Bk9jjXDkEagqJC0FOH3Rsp8rRPfyyeLoHrRK8T/vGGMk0snFUEUIwS8OIRCQnlIcyXyVoCOhQJEViQHKgLKmWKIoARlnOdinNfUyPuwF79fJv3Ttn3etm7PWp2rqpk6OSRH5ITY5IJ0yA3pkh7hJCFP5Jm8GI/Gq/FmvP+M1oxqp0n+wPj4Bue8miA=</latexit>

hpbusy

<latexit sha1_base64="M4RpEyRXsPNJdAhXBs6TMR2nDBQ=">AAACF3icdVBNLwRBEO3xbX0tji4dH4nTpocs9iZcHEkskt3Npqe3dnX0zLTuGolM5gf4CX6Fm3BykIiro4OfwVnPIEGo06v3XqWqXqCVtMjYs9fXPzA4NDwyWhobn5icKk/PHNg4MQLqIlaxOQq4BSUjqKNEBUfaAA8DBYfByXauH56BsTKO9vFcQyvkvUh2peDoqHZ5AdvNkOOxCdNEd7JmD06L3nbT/XaqY6WyzLlYha1Va6uMskqV+eu1mgOMrW2srlDfgbwWNhdfr+/Pxt522+WXZicWSQgRCsWtbfhMYyvlBqVQkJWaiQXNxQnvQcPBiIdgW2nxTEaXEssxphoMlYoWJHyfSHlo7XkYOGdx6G8tJ//SGgl2N1qpjHSCEIl8EUoFxSIrjHQpAe1IA4g8vxyojKjghiOCkZQL4cjExVZyeXw9Tf8HBysVv1phey6YLfJRI2SOzJNl4pN1skl2yC6pE0EuyBW5IbfepXfnPXiPH9Y+73Nmlvwo7+kdmvyl6w==</latexit>

tupd � Tpoll

<latexit sha1_base64="rwo+gfaStJQOVDLKKczgljxeOoY="></latexit>

phftgi! ^ phposi!

<latexit sha1_base64="UWXhXZjM512eKbYoZIEPhoVdHBk=">AAACCnicdVDLSgNBEJz1bXxFBS9eBoPgKcwaE80tKIhHBfOAJITZsROHzD6c6VXCmj/wK7zqyZt49Sc8+C/OxggqWqeiqpuuLi9S0iBjb87E5NT0zOzcfGZhcWl5Jbu6VjNhrAVURahC3fC4ASUDqKJEBY1IA/c9BXWvf5T69WvQRobBOQ4iaPu8F8iuFByt1MludG9aPbhq+RwvTTc5rncSvBwOO9kcy7NSsVxglOWLzN0vly1hrHRQ2KWuJSlyZIzTTva9dRGK2IcAheLGNF0WYTvhGqVQMMy0YgMRF33eg6alAffBtJNR/iHdjg3HkEagqVR0JML3jYT7xgx8z06Ocv72UvEvrxlj96CdyCCKEQKRHkKpYHTICC1tMUAvpAZEniYHKgMquOaIoCXlQlgxtk1lbB9fT9P/SW037xbz7GwvVzkcNzNHNskW2SEu2ScVckJOSZUIckvuyQN5dO6cJ+fZefkcnXDGO+vkB5zXD1ABm3Y=</latexit>

fw � FWth

<latexit sha1_base64="mZZ6skryYD0Dmku8tcYjv6syrZ0=">AAACE3icdVC7TsNAEDzzDOFloKTgRIREFdmRIelA0FAGiQBSbFnnywKn3NnW3RoJWSn5BL6CFio6RMsHUPAv2CZIgGCquZnd292JUikMOs6bNTE5NT0zW5urzy8sLi3bK6unJsk0hx5PZKLPI2ZAihh6KFDCeaqBqUjCWTQ8LP2za9BGJPEJ3qQQKHYZiwvBGRZSaG/4iuEVYs7VwA+vwuqpVW6QaRyN9kK74TR3vU6r41Kn6VQoiee2PY+6Y6VBxuiG9rs/SHimIEYumTF910kxyIvfBJcwqvuZgZTxIbuEfkFjpsAEeXXIiG5lhmFCU9BUSFqJ8L0jZ8qYGxUVleWe5rdXin95/QwvOkEu4jRDiHk5CIWEapDhWhQJAR0IDYis3ByoiClnmiGCFpRxXohZEVm9yOPraPo/OW013Z2mc+w19g/GydTIOtkk28QlbbJPjkiX9Agnt+SePJBH6856sp6tl8/SCWvcs0Z+wHr9AMSNn4E=</latexit>

cmd hstart?

<latexit sha1_base64="vY8zgHs35Ux9LZHB/pwDEkIEJlg=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxtJlFiHIjevGIUcAENmR2aHDC7CMzvRqy4RO86smb8er3ePBf3F0xUaN1qlR1p6vLi5Q0yNibVVhYXFpeKa6W1tY3NrfK2zsdE8ZaQFuEKtTXHjegZABtlKjgOtLAfU9B15ucZX73FrSRYXCF0whcn48DOZKCYypdRoPqoFxhdp05jXqDMrtaZ41aLSXMYeyoRh2b5aiQOVqD8nt/GIrYhwCF4sb0HBahm3CNUiiYlfqxgYiLCR9DL6UB98G4SR51Rg9iwzGkEWgqFc1F+L6RcN+Yqe+lkz7HG/Pby8S/vF6MoxM3kUEUIwQiO4RSQX7ICC3TDoAOpQZEniUHKgMquOaIoCXlQqRinJZSSvv4epr+TzpV26nb7KJWaZ7OmymSPbJPDolDjkmTnJMWaRNBxuSePJBH6856sp6tl8/RgjXf2SU/YL1+AAQZkl8=</latexit>p2

<latexit sha1_base64="1jF9Nf/HrKYr+1a3w4hYOeh0/yI=">AAACEnicdVBNS8NAEN34WetX1aMgi0XwVBKJtjeLXjxWsB/QlrDZTtvF3STsToQSevMn+Cu86smbePUPePC/mMQKKvpOb96bYWaeH0lh0LbfrLn5hcWl5cJKcXVtfWOztLXdMmGsOTR5KEPd8ZkBKQJookAJnUgDU76Etn99nvntG9BGhMEVTiLoKzYKxFBwhqnklfZ6iuEYMeFq0PPGXl5qlRgMo+n01CuV7cqJWzuqOdSu2Dky4jpV16XOTCmTGRpe6b03CHmsIEAumTFdx46wnzCNgkuYFnuxgYjxazaCbkoDpsD0k/yPKT2IDcOQRqCpkDQX4ftEwpQxE+WnndmZ5reXiX953RiHtX4igihGCHi2CIWEfJHhWqQBAR0IDYgsuxyoCChnmiGCFpRxnopxmlgxzePrafo/aR1VnOOKfemW62ezZApkl+yTQ+KQKqmTC9IgTcLJLbknD+TRurOerGfr5bN1zprN7JAfsF4/APC7nw8=</latexit>

cmd hstop?

<latexit sha1_base64="rwo+gfaStJQOVDLKKczgljxeOoY="></latexit>

phftgi! ^ phposi!

<latexit sha1_base64="UWXhXZjM512eKbYoZIEPhoVdHBk=">AAACCnicdVDLSgNBEJz1bXxFBS9eBoPgKcwaE80tKIhHBfOAJITZsROHzD6c6VXCmj/wK7zqyZt49Sc8+C/OxggqWqeiqpuuLi9S0iBjb87E5NT0zOzcfGZhcWl5Jbu6VjNhrAVURahC3fC4ASUDqKJEBY1IA/c9BXWvf5T69WvQRobBOQ4iaPu8F8iuFByt1MludG9aPbhq+RwvTTc5rncSvBwOO9kcy7NSsVxglOWLzN0vly1hrHRQ2KWuJSlyZIzTTva9dRGK2IcAheLGNF0WYTvhGqVQMMy0YgMRF33eg6alAffBtJNR/iHdjg3HkEagqVR0JML3jYT7xgx8z06Ocv72UvEvrxlj96CdyCCKEQKRHkKpYHTICC1tMUAvpAZEniYHKgMquOaIoCXlQlgxtk1lbB9fT9P/SW037xbz7GwvVzkcNzNHNskW2SEu2ScVckJOSZUIckvuyQN5dO6cJ+fZefkcnXDGO+vkB5zXD1ABm3Y=</latexit>

fw � FWth
<latexit sha1_base64="6puebi5/KxA2eFH8EmborqUM3o0=">AAAB9XicdVA9TwJBFNzDL8Qv1NJmIzGxuuzhXZSOaGOJUcAECNlbHrhhb++y+05DCD/BVis7Y+vvsfC/eCAmanSqycx7efMmTJS0yNibk1tYXFpeya8W1tY3NreK2zsNG6dGQF3EKjbXIbegpIY6SlRwnRjgUaigGQ7Ppn7zFoyVsb7CUQKdiA+07EvBMZMuk67XLZaYGzCvElQoc8sBq/h+RpjH2JFPPZfNUCJz1LrF93YvFmkEGoXi1rY8lmBnzA1KoWBSaKcWEi6GfACtjGoege2MZ1En9CC1HGOagKFS0ZkI3zfGPLJ2FIXZZMTxxv72puJfXivF/klnLHWSImgxPYRSweyQFUZmHQDtSQOIfJocqNRUcMMRwUjKhcjENCulkPXx9TT9nzTKrhe47MIvVU/nzeTJHtknh8Qjx6RKzkmN1IkgA3JPHsijc+c8Oc/Oy+dozpnv7JIfcF4/AAKKkl4=</latexit>p1

<latexit sha1_base64="M4RpEyRXsPNJdAhXBs6TMR2nDBQ="></latexit>

tupd � Tpoll

<latexit sha1_base64="6puebi5/KxA2eFH8EmborqUM3o0=">AAAB9XicdVA9TwJBFNzDL8Qv1NJmIzGxuuzhXZSOaGOJUcAECNlbHrhhb++y+05DCD/BVis7Y+vvsfC/eCAmanSqycx7efMmTJS0yNibk1tYXFpeya8W1tY3NreK2zsNG6dGQF3EKjbXIbegpIY6SlRwnRjgUaigGQ7Ppn7zFoyVsb7CUQKdiA+07EvBMZMuk67XLZaYGzCvElQoc8sBq/h+RpjH2JFPPZfNUCJz1LrF93YvFmkEGoXi1rY8lmBnzA1KoWBSaKcWEi6GfACtjGoege2MZ1En9CC1HGOagKFS0ZkI3zfGPLJ2FIXZZMTxxv72puJfXivF/klnLHWSImgxPYRSweyQFUZmHQDtSQOIfJocqNRUcMMRwUjKhcjENCulkPXx9TT9nzTKrhe47MIvVU/nzeTJHtknh8Qjx6RKzkmN1IkgA3JPHsijc+c8Oc/Oy+dozpnv7JIfcF4/AAKKkl4=</latexit>p1
<latexit sha1_base64="mZZ6skryYD0Dmku8tcYjv6syrZ0=">AAACE3icdVC7TsNAEDzzDOFloKTgRIREFdmRIelA0FAGiQBSbFnnywKn3NnW3RoJWSn5BL6CFio6RMsHUPAv2CZIgGCquZnd292JUikMOs6bNTE5NT0zW5urzy8sLi3bK6unJsk0hx5PZKLPI2ZAihh6KFDCeaqBqUjCWTQ8LP2za9BGJPEJ3qQQKHYZiwvBGRZSaG/4iuEVYs7VwA+vwuqpVW6QaRyN9kK74TR3vU6r41Kn6VQoiee2PY+6Y6VBxuiG9rs/SHimIEYumTF910kxyIvfBJcwqvuZgZTxIbuEfkFjpsAEeXXIiG5lhmFCU9BUSFqJ8L0jZ8qYGxUVleWe5rdXin95/QwvOkEu4jRDiHk5CIWEapDhWhQJAR0IDYis3ByoiClnmiGCFpRxXohZEVm9yOPraPo/OW013Z2mc+w19g/GydTIOtkk28QlbbJPjkiX9Agnt+SePJBH6856sp6tl8/SCWvcs0Z+wHr9AMSNn4E=</latexit>

cmd hstart?

<latexit sha1_base64="vY8zgHs35Ux9LZHB/pwDEkIEJlg=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxtJlFiHIjevGIUcAENmR2aHDC7CMzvRqy4RO86smb8er3ePBf3F0xUaN1qlR1p6vLi5Q0yNibVVhYXFpeKa6W1tY3NrfK2zsdE8ZaQFuEKtTXHjegZABtlKjgOtLAfU9B15ucZX73FrSRYXCF0whcn48DOZKCYypdRoPqoFxhdp05jXqDMrtaZ41aLSXMYeyoRh2b5aiQOVqD8nt/GIrYhwCF4sb0HBahm3CNUiiYlfqxgYiLCR9DL6UB98G4SR51Rg9iwzGkEWgqFc1F+L6RcN+Yqe+lkz7HG/Pby8S/vF6MoxM3kUEUIwQiO4RSQX7ICC3TDoAOpQZEniUHKgMquOaIoCXlQqRinJZSSvv4epr+TzpV26nb7KJWaZ7OmymSPbJPDolDjkmTnJMWaRNBxuSePJBH6856sp6tl8/RgjXf2SU/YL1+AAQZkl8=</latexit>p2
<latexit sha1_base64="1jF9Nf/HrKYr+1a3w4hYOeh0/yI=">AAACEnicdVBNS8NAEN34WetX1aMgi0XwVBKJtjeLXjxWsB/QlrDZTtvF3STsToQSevMn+Cu86smbePUPePC/mMQKKvpOb96bYWaeH0lh0LbfrLn5hcWl5cJKcXVtfWOztLXdMmGsOTR5KEPd8ZkBKQJookAJnUgDU76Etn99nvntG9BGhMEVTiLoKzYKxFBwhqnklfZ6iuEYMeFq0PPGXl5qlRgMo+n01CuV7cqJWzuqOdSu2Dky4jpV16XOTCmTGRpe6b03CHmsIEAumTFdx46wnzCNgkuYFnuxgYjxazaCbkoDpsD0k/yPKT2IDcOQRqCpkDQX4ftEwpQxE+WnndmZ5reXiX953RiHtX4igihGCHi2CIWEfJHhWqQBAR0IDYgsuxyoCChnmiGCFpRxnopxmlgxzePrafo/aR1VnOOKfemW62ezZApkl+yTQ+KQKqmTC9IgTcLJLbknD+TRurOerGfr5bN1zprN7JAfsF4/APC7nw8=</latexit>

cmd hstop?

<latexit sha1_base64="k/qWbbb75L+CAAIhM/UI/mtRnG8="></latexit>{tupd}; ⇠ftg

<latexit sha1_base64="mYKD+Kx7lmREk4+nPCODuTbcAqs="></latexit>{tupd}; ⇠rec

<latexit sha1_base64="ZC4Z7ujGxiI+Dh0nxBmFdJhF92o="></latexit>^ tupd  Tpoll

<latexit sha1_base64="s9IhxPkkeKlYLP1OUi/77cx8aVI=">AAAB93icdVDLSgNBEJz1GeMr6tHLYBA8hZmgJrkFvXiMYB6QhDA76cQhsw9meoWw5Bu86smbePVzPPgvzsYIKlqnoqqbri4/1soiY2/e0vLK6tp6biO/ubW9s1vY22/ZKDESmjLSken4woJWITRRoYZObEAEvoa2P7nM/PYdGKui8AanMfQDMQ7VSEmBTmr2UuzNBoUiKzHGOOc0I7xyzhyp1aplXqU8sxyKZIHGoPDeG0YyCSBEqYW1Xc5i7KfCoJIaZvleYiEWciLG0HU0FAHYfjoPO6PHiRUY0RgMVZrORfi+kYrA2mngu8lA4K397WXiX143wVG1n6owThBCmR1CpWF+yEqjXAtAh8oAosiSA1UhlcIIRDCKCimdmLha8q6Pr6fp/6RVLvGzErs+LdYvFs3kyCE5IieEkwqpkyvSIE0iiSL35IE8elPvyXv2Xj5Hl7zFzgH5Ae/1Awpgk48=</latexit>{t}

<latexit sha1_base64="s9IhxPkkeKlYLP1OUi/77cx8aVI=">AAAB93icdVDLSgNBEJz1GeMr6tHLYBA8hZmgJrkFvXiMYB6QhDA76cQhsw9meoWw5Bu86smbePVzPPgvzsYIKlqnoqqbri4/1soiY2/e0vLK6tp6biO/ubW9s1vY22/ZKDESmjLSken4woJWITRRoYZObEAEvoa2P7nM/PYdGKui8AanMfQDMQ7VSEmBTmr2UuzNBoUiKzHGOOc0I7xyzhyp1aplXqU8sxyKZIHGoPDeG0YyCSBEqYW1Xc5i7KfCoJIaZvleYiEWciLG0HU0FAHYfjoPO6PHiRUY0RgMVZrORfi+kYrA2mngu8lA4K397WXiX143wVG1n6owThBCmR1CpWF+yEqjXAtAh8oAosiSA1UhlcIIRDCKCimdmLha8q6Pr6fp/6RVLvGzErs+LdYvFs3kyCE5IieEkwqpkyvSIE0iiSL35IE8elPvyXv2Xj5Hl7zFzgH5Ae/1Awpgk48=</latexit>{t}

<latexit sha1_base64="s9IhxPkkeKlYLP1OUi/77cx8aVI=">AAAB93icdVDLSgNBEJz1GeMr6tHLYBA8hZmgJrkFvXiMYB6QhDA76cQhsw9meoWw5Bu86smbePVzPPgvzsYIKlqnoqqbri4/1soiY2/e0vLK6tp6biO/ubW9s1vY22/ZKDESmjLSken4woJWITRRoYZObEAEvoa2P7nM/PYdGKui8AanMfQDMQ7VSEmBTmr2UuzNBoUiKzHGOOc0I7xyzhyp1aplXqU8sxyKZIHGoPDeG0YyCSBEqYW1Xc5i7KfCoJIaZvleYiEWciLG0HU0FAHYfjoPO6PHiRUY0RgMVZrORfi+kYrA2mngu8lA4K397WXiX143wVG1n6owThBCmR1CpWF+yEqjXAtAh8oAosiSA1UhlcIIRDCKCimdmLha8q6Pr6fp/6RVLvGzErs+LdYvFs3kyCE5IieEkwqpkyvSIE0iiSL35IE8elPvyXv2Xj5Hl7zFzgH5Ae/1Awpgk48=</latexit>{t}

<latexit sha1_base64="s9IhxPkkeKlYLP1OUi/77cx8aVI=">AAAB93icdVDLSgNBEJz1GeMr6tHLYBA8hZmgJrkFvXiMYB6QhDA76cQhsw9meoWw5Bu86smbePVzPPgvzsYIKlqnoqqbri4/1soiY2/e0vLK6tp6biO/ubW9s1vY22/ZKDESmjLSken4woJWITRRoYZObEAEvoa2P7nM/PYdGKui8AanMfQDMQ7VSEmBTmr2UuzNBoUiKzHGOOc0I7xyzhyp1aplXqU8sxyKZIHGoPDeG0YyCSBEqYW1Xc5i7KfCoJIaZvleYiEWciLG0HU0FAHYfjoPO6PHiRUY0RgMVZrORfi+kYrA2mngu8lA4K397WXiX143wVG1n6owThBCmR1CpWF+yEqjXAtAh8oAosiSA1UhlcIIRDCKCimdmLha8q6Pr6fp/6RVLvGzErs+LdYvFs3kyCE5IieEkwqpkyvSIE0iiSL35IE8elPvyXv2Xj5Hl7zFzgH5Ae/1Awpgk48=</latexit>{t}

<latexit sha1_base64="oD+oxMD4ET8nXMyhJdQ1eezZ5iM=">AAACLnicdZDPattAEMZXbtO6btK67TGXpabgQDCSafrvFNpLTiWB2AlYrhitx/aQXUnsjgpG+F36CH2KXptToIfQax8jkuKEJKRzGn7fDN/MF2eaHPv+H6/x4OHao8fNJ62n6xvPnrdfvBy6NLcKByrVqT2OwaGmBAdMrPE4swgm1ngUn3yp9KPvaB2lySEvMhwbmCU0JQVcoqj9KTTAcwW6+LqM6t6agiYal93Q5FER2nka0XJbho5mBr71r9FW1O74vR0/+PgukH7Pr0tek2BFOmJV+1H7PJykKjeYsNLg3CjwMx4XYJlUadgKc4cZqBOY4ahsEzDoxkX941K+yR1wKjO0krSsId7cKMA4tzBxOVl94e5qFbxPG+U8/TAuKMlyxkRVRkwaayOnLJXhoZyQRWaoLkdJiVRggRktSVCqhHmZZqvM4+pp+f9m2O8FOz3/4G1n9/MqmabYFK9FVwTivdgVe2JfDIQSP8Qv8Vucej+9M+/c+3s52vBWO6/ErfL+XQDPJKpa</latexit>

Nidle(µ⇢i
, �2

⇢i
)

<latexit sha1_base64="qYYxf7k+ADBgUJNqH0+DqWkIQCA="></latexit>

Nbusy(µ�i
, �2

�i
)

Figure 14.6: SHA resulting from the application of the three patterns to the SHA in Fig.
14.2, specifically: hidle is an operating condition, hbusy is a critical operating condi-
tion, and the edges connecting them are two free will edges. Color-coding is the same
as in Fig. 14.3.

dition, frec(t, ρi) and fftg(t, λi) (see Eq.6.8 and Eq.6.7) where ρi and λi are
distributed according toN(µρidle , σ

2
ρidle

) andN(µλbusy
, σ2

λbusy
), respectively.

The transition between the two locations is triggered by firing an event
through channels cmd_hstart, cmd_hstop∈ C , instructing the human to start
and stop walking, respectively. Note that the labeling function Lπσ de-
fined by L∗SHAdoes not distinguish between labels (γ, c!) and (γ, c?) (i.e.,
whether the event is sent or received through channel c): in our network
since humans receive instructions from the orchestrator, learned edge la-
bels are always finalized as (γ, c?).

In a learned SHA, we identify the following elements, which are then
transformed according to the patterns in Fig. 14.3, Fig. 14.4, and Fig. 14.5:

a) non-critical operating conditions are locations with a flow condition
that prevents the physical variable from reaching a critical threshold
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Chapter 14. Human Behavior Model Adjustment

(e.g., hidle in Fig. 14.2);

b) critical operating conditions are locations in which the associated flow
condition may cause the physical variable to reach a critical threshold
(e.g., hbusy in Fig. 14.2);

c) edges between operating conditions (critical or not, e.g., both edges in
Fig. 14.2).

The publication of sensor data is a feature that is introduced by suitably
expanding the SHA around operating conditions (critical or not). The act of
sharing sensor data, indeed, occurs while the agent is performing an action
corresponding, in the formal model, to the automaton staying in a specific
location (i.e., the operating condition).

The free will of humans, instead, is introduced by modifying the edges
connecting operating conditions. Free will manifests itself when the hu-
man receives an orchestrator’s instruction to switch from one behavior to
another, which is modeled as an edge between operating conditions but can
decide otherwise.

Finally, the model is expanded by allowing for the possibility that crit-
ical operating conditions can lead to a deadlock/error due to the physical
variable exceeding a critical threshold. We remark that, although we de-
fined the transformation rules to introduce features typical of applications
involving human-robot interactions, they apply to any system with the same
characteristics (i.e., periodic sensor data sharing, the existence of flow con-
ditions that may lead to a critical deadlock situation, and the possibility
of haphazard behavior). Nevertheless, when presenting the transforma-
tion patterns in detail in the following, some features (e.g., flow condi-
tions frec(t, ρi) and fftg(t, λi)) will be specific to the human model use case
which is the core of this work.

Every operating condition h⟨op⟩ is expanded according to the pattern
made of the following elements, formalizing the publication of sensor data
(fatigue and position) regarding the human (see Fig. 14.3):

1. invariant tupd ≤ Tpoll, which is added to location h⟨op⟩ (e.g., hidle in
Fig. 14.2): clock tupd ∈ X measures the time elapsed between two
sensor readings and a new measurement is available every Tpoll ∈ K
instants;

2. committed location hp⟨op⟩: as per Uppaal convention, time cannot elapse
in a committed location [123], thus the automaton is forced to take an
outgoing edge immediately upon entering such locations;
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14.2. Integrating Learned SHA in the SHA Network

3. the edge from h⟨op⟩ to hp⟨op⟩ that, due to the combination of invariant
tupd ≤ Tpoll and guard tupd ≥ Tpoll fires as soon as tupd = Tpoll holds,
resetting clock tupd and executing instruction ξrec to calculate the new
sensor readings;

4. the edge from hp⟨op⟩ to h⟨op⟩ that, due to the nature of committed lo-
cations, immediately fires an event over channels p⟨ftg⟩ and p⟨pos⟩ to
publish the new sensor readings for fatigue and position, respectively.

As in Fig. 14.3, we depict transitions that connect a pair of locations, one
inside the pattern and one outside it, as connected to ports start and stop,
depending on their direction (incoming or outgoing, respectively); indeed,
ports are not part of the SHA formalism but an expedient to visualize how
the pattern is connected to the rest of the automaton.

The transformation pattern for critical operating conditions, shown in
Fig. 14.4, includes elements formalizing that the automaton must enter a
deadlock location when a real-valued variable reaches a critical threshold.
In the case of SHA modeling a human, the physical variable constrained by
flow conditions is human fatigue (modeled by real-valued variable F ∈W )
whose maximum value is 1. According to the fatigue model in Eq.6.5, fa-
tigue can reach the critical threshold if it is increasing, thus, when it evolves
according to flow condition fftg(t, λi). This pattern contains the same ele-
ments as the one for non-critical operating conditions (capturing the send-
ing of human-related data), plus the following ones:

5. invariant F ≤ 1 on h⟨op⟩ to ensure that the automaton leaves the loca-
tion after the critical threshold is reached;

6. deadlock location hfaint. Note that hfaint is an ordinary location and not
an operating condition since, once the human reaches full exhaustion,
the robotic mission immediately fails. It is no longer necessary to
share sensor data. The pattern is not, therefore, applied recursively;

7. the edge from h⟨op⟩ to hfaint with guard condition F ≥ 1.

The third and final pattern, shown in Fig. 14.5, is applied to transi-
tions connecting two operating conditions h⟨op1⟩ and h⟨op2⟩ (irrespective of
whether they are critical or not) and captures the agent’s free will. For il-
lustrative purposes, in Fig. 14.5 h⟨op1⟩ is non-critical, and h⟨op2⟩ is critical,
but all remarks in the following also hold in the other cases. The pattern
includes the following elements:

1. a probabilistic transition from h⟨op1⟩ to h⟨op2⟩ guarded by condition
γ⟨op2⟩, triggered by an event through channel cmd_hstart and labeled
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with probability weight p1: when this edge fires, it captures the case
in which the human decides to follow the orchestrator’s instruction;

2. a probabilistic self-loop on h⟨op1⟩ guarded by the same condition γ⟨op2⟩,
triggered by an event through the same channel cmd_hstart but labeled
with a different probability weight p2: when this edge fires, it cap-
tures the case in which the human decides to ignore the orchestrator’s
instruction and remain in operating condition h⟨op1⟩;

3. a transition from h⟨op1⟩ to h⟨op2⟩ that may autonomously fire when
guard fw ≥ FWmax holds: variable fw ∈ Vdc is periodically up-
dated with a value uniformly drawn from a range [0,FWmax] (where
FWmax ∈ K). The autonomous decision can then be enacted if and
only if the new value is such that fw ≥ FWth holds, where FWth ∈ K
is a constant parameter.

After any of the edges to h⟨op2⟩ fires, clock tphase (see Eq.6.8 and Eq.6.7)
is reset and a new value of λi is generated from N(µλ⟨op2⟩

, σ2
λ⟨op2⟩

). The
edge from h⟨op2⟩ to h⟨op1⟩ (also in Fig. 14.5) encapsulates the same fea-
tures. However, it is enabled by condition γ⟨op1⟩, triggered by events on
channel cmd_hstop and, when it fires, a new value of ρi is drawn from
N(µρ⟨op1⟩

, σ2
ρ⟨op1⟩

).
The patterns described above are added to learned SHA via the follow-

ing rules:

1. locations with flow condition frec, capturing recovery, are expanded
with the pattern for non-critical operating conditions (when fatigue is
decreasing, it cannot reach the critical threshold);

2. locations with flow condition fftg, capturing increasing fatigue, are ex-
panded with the pattern for critical operating conditions (when fatigue
increases, it may eventually reach the critical threshold);

3. edges connecting two operating conditions (critical or not) are ex-
panded with the pattern capturing free will.

Fig. 14.6 shows the SHA resulting from the application of these three rules
to the example of Fig. 14.2. The resulting automaton includes, in addition
to locations hidle and hbusy, location hfaint connected to hbusy. Locations
hidle and hbusy are connected by edges capturing the agent’s free will trig-
gered via channels cmd_hstart and cmd_hstop, respectively. Note that, like
the original edges in Fig. 14.2, the edges capturing free will in Fig. 14.6
do not include a guard condition, meaning they are always enabled. The
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14.2. Integrating Learned SHA in the SHA Network

SHA in Fig. 14.6 maintains the same physical behavior as the automaton
learned from real observations and has the additional features necessary to
be plugged into the formal model. The resulting SHA network with the
updated model of human behavior can thus undergo formal verification to
predict the scenario’s outcome as explained in Chapter 4.
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CHAPTER15
Human Behavior Learning Validation

L∗SHA is validated on the human-robot interaction CPS exemplar first
through the model-driven approach (i.e., with manually drafted refer-
ence models) and, secondly, through the simulation-driven approach
with simulation data (see Chapter 13 for the description of the two
approaches).

With the model-driven validation, L∗SHA’s accuracy is assessed through
manual inspection of the learned SHA (which is compared with the ref-
erence model of human behavior) and by estimating through two dis-
tinct Uppaal experiments the probability of success of the benchmark
scenario with the learned SHA and the reference model.

With the simulation-driven approach, the success probability with
the learned SHA is estimated through Uppaal and compared against
the success rate observed at runtime.

15.1 Model-Driven Experiments

In this CPS exemplar, the entities subject to uncertainty are the humans in-
teracting with the robot, of which we learn the temporal behavior of phys-
ical fatigue. The latter is impacted by human actions that involve moving
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Figure 15.1: Experimental setup of the benchmark robotic mission used to evaluate the
SHA learned through L∗SHA. The humans and the robot are displayed in their starting
positions. The figure also highlights the distance between points A, B, and C, i.e., the
destination for the 3 services.

(causing an increase in fatigue) and resting (causing a decrease in fatigue).
For the purpose of validation, we devise a benchmark human-robot in-

teraction scenario from the application domain described in Chapter 4. Fig.

<latexit sha1_base64="dFvIKfz+RICNt8Y6978enZrMhMQ=">AAACDXicbVC7TsNAEDyHVwivABWiOREhUUU2AkEZQUMZJPKQkihaXxZyyvls3a2RIiviE/gKWqjoEC3fQMG/YJsUkDDVaGZXOzt+pKQl1/10CguLS8srxdXS2vrG5lZ5e6dpw9gIbIhQhabtg0UlNTZIksJ2ZBACX2HLH11mfusejZWhvqFxhL0A7rS8lQIolfrlvW4ANJSUDCf9nJogsQR6MOmXK27VzcHniTclFTZFvV/+6g5CEQeoSSiwtuO5EfUSMCSFwkmpG1uMQIzgDjsp1RCg7SX5CxN+GFugkEdouFQ8F/H3RgKBtePATyezlHbWy8T/vE5Mt+e9ROooJtQiO0RSYX7ICiPTbpAPpEEiyJIjl5oLMECERnIQIhXjtKxS2oc3+/08aR5XvdOqe31SqV1MmymyfXbAjpjHzliNXbE6azDBHtgTe2YvzqPz6rw57z+jBWe6s8v+wPn4BsLQnMc=</latexit>

hstand

<latexit sha1_base64="DiKfkqKq9JUeoPtoWIsjst+reuo=">AAACDHicbVC7TsNAEDzzDOEVoEGiOREhUUU2AkEZQUMZJPKQkihaXzbJKeeH7tagyAqfwFfQQkWHaPkHCv4F27iAhKlGM7va2XFDJQ3Z9qe1sLi0vLJaWCuub2xubZd2dhsmiLTAughUoFsuGFTSxzpJUtgKNYLnKmy646vUb96hNjLwb2kSYteDoS8HUgAlUq+03/GARpLi0bSXUe3F96DG016pbFfsDHyeODkpsxy1Xumr0w9E5KFPQoExbccOqRuDJikUToudyGAIYgxDbCfUBw9NN84+mPKjyAAFPETNpeKZiL83YvCMmXhuMpmGNLNeKv7ntSMaXHRj6YcRoS/SQyQVZoeM0DKpBnlfaiSCNDly6XMBGohQSw5CJGKUdFVM+nBmv58njZOKc1axb07L1cu8mQI7YIfsmDnsnFXZNauxOhPsgT2xZ/ZiPVqv1pv1/jO6YOU7e+wPrI9v7I6cUg==</latexit>

hwalk

<latexit sha1_base64="0ygUstuA5st5KWB9F5LfBpVhbDo=">AAACC3icbVC7TsNAEDzzDOEVoKCgOREhUUU2AkEZQUMZJPKQEss6XzbJKeezdbdGiix/Al9BCxUdouUjKPgXbOMCEqYazexqZ8ePpDBo25/W0vLK6tp6ZaO6ubW9s1vb2++YMNYc2jyUoe75zIAUCtooUEIv0sACX0LXn97kfvcBtBGhusdZBG7AxkqMBGeYSV7tcBAwnAhMJqlXUB0kOlapV6vbDbsAXSROSeqkRMurfQ2GIY8DUMglM6bv2BG6CdMouIS0OogNRIxP2Rj6GVUsAOMmxQMpPYkNw5BGoKmQtBDh90bCAmNmgZ9N5hnNvJeL/3n9GEdXbiJUFCMonh9CIaE4ZLgWWTNAh0IDIsuTAxWKcqYZImhBGeeZGGdVVbM+nPnvF0nnrOFcNOy783rzumymQo7IMTklDrkkTXJLWqRNOEnJE3kmL9aj9Wq9We8/o0tWuXNA/sD6+AYxeJvu</latexit>

hrun

<latexit sha1_base64="lJoBcsLSb1BLcSMblfJ1qCWVIiI=">AAACC3icbVC7TsNAEDzzDOEVoKCgOREhUUU2AkEZQUMZJPKQEss6XzbJKXe2dbdGiix/Al9BCxUdouUjKPgXbOMCEqYazexqZ8ePpDBo25/W0vLK6tp6ZaO6ubW9s1vb2++YMNYc2jyUoe75zIAUAbRRoIRepIEpX0LXn97kfvcBtBFhcI+zCFzFxoEYCc4wk7za4UAxnAhMJqlXUK0SIzD1anW7YRegi8QpSZ2UaHm1r8Ew5LGCALlkxvQdO0I3YRoFl5BWB7GBiPEpG0M/owFTYNykeCClJ7FhGNIINBWSFiL83kiYMmam/Gwyz2jmvVz8z+vHOLpyExFEMULA80MoJBSHDNciawboUGhAZHlyoCKgnGmGCFpQxnkmxllV1awPZ/77RdI5azgXDfvuvN68LpupkCNyTE6JQy5Jk9ySFmkTTlLyRJ7Ji/VovVpv1vvP6JJV7hyQP7A+vgEpnpvp</latexit>

hsit

<latexit sha1_base64="WBSjFFK7J2ZrqqYq4oI1AerHOjo="></latexit>�run

<latexit sha1_base64="weTf2dpo9PKY/LjYaAOUMqfHZgk="></latexit>¬�run

<latexit sha1_base64="6uLX+txge8q2t72uO434BpA0kjc=">AAACA3icdVC7TsNAEDzzDOGRACXNiQiJyrIjQ9IRQUMZJPKQEis6XzbhlPNDd2ukyErJV9BCRYdo+RAK/gXbGAkQTDWa2b2dGy+SQqNlvRlLyyura+uljfLm1vZOpbq719VhrDh0eChD1feYBikC6KBACf1IAfM9CT1vdpH5vVtQWoTBNc4jcH02DcREcIapNKpWhj7DG8REI1O4OBtVa5Z56jTrTZtappUjI47dcBxqF0qNFGiPqu/DcchjHwLkkmk9sK0I3SR9THAJi/Iw1hAxPmNTGKQ0YD5oN8mDL+hRrBmGNAJFhaS5CN83EuZrPfe9dDKLqX97mfiXN4hx0nQTEUQxQsCzQygk5Ic0VyJtBOhYKEBkWXKgIqCcKYYISlDGeSrGaUXltI+vT9P/Sbdu2iemdeXUWudFMyVyQA7JMbFJg7TIJWmTDuEkJvfkgTwad8aT8Wy8fI4uGcXOPvkB4/UDnXiYTg==</latexit>

start?

<latexit sha1_base64="6uLX+txge8q2t72uO434BpA0kjc=">AAACA3icdVC7TsNAEDzzDOGRACXNiQiJyrIjQ9IRQUMZJPKQEis6XzbhlPNDd2ukyErJV9BCRYdo+RAK/gXbGAkQTDWa2b2dGy+SQqNlvRlLyyura+uljfLm1vZOpbq719VhrDh0eChD1feYBikC6KBACf1IAfM9CT1vdpH5vVtQWoTBNc4jcH02DcREcIapNKpWhj7DG8REI1O4OBtVa5Z56jTrTZtappUjI47dcBxqF0qNFGiPqu/DcchjHwLkkmk9sK0I3SR9THAJi/Iw1hAxPmNTGKQ0YD5oN8mDL+hRrBmGNAJFhaS5CN83EuZrPfe9dDKLqX97mfiXN4hx0nQTEUQxQsCzQygk5Ic0VyJtBOhYKEBkWXKgIqCcKYYISlDGeSrGaUXltI+vT9P/Sbdu2iemdeXUWudFMyVyQA7JMbFJg7TIJWmTDuEkJvfkgTwad8aT8Wy8fI4uGcXOPvkB4/UDnXiYTg==</latexit>

start?

<latexit sha1_base64="weTf2dpo9PKY/LjYaAOUMqfHZgk="></latexit>¬�run
<latexit sha1_base64="6uLX+txge8q2t72uO434BpA0kjc=">AAACA3icdVC7TsNAEDzzDOGRACXNiQiJyrIjQ9IRQUMZJPKQEis6XzbhlPNDd2ukyErJV9BCRYdo+RAK/gXbGAkQTDWa2b2dGy+SQqNlvRlLyyura+uljfLm1vZOpbq719VhrDh0eChD1feYBikC6KBACf1IAfM9CT1vdpH5vVtQWoTBNc4jcH02DcREcIapNKpWhj7DG8REI1O4OBtVa5Z56jTrTZtappUjI47dcBxqF0qNFGiPqu/DcchjHwLkkmk9sK0I3SR9THAJi/Iw1hAxPmNTGKQ0YD5oN8mDL+hRrBmGNAJFhaS5CN83EuZrPfe9dDKLqX97mfiXN4hx0nQTEUQxQsCzQygk5Ic0VyJtBOhYKEBkWXKgIqCcKYYISlDGeSrGaUXltI+vT9P/Sbdu2iemdeXUWudFMyVyQA7JMbFJg7TIJWmTDuEkJvfkgTwad8aT8Wy8fI4uGcXOPvkB4/UDnXiYTg==</latexit>

start?

<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?
<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?

<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?

<latexit sha1_base64="pcXELF6m13h3NA7DbHx4b7EoOp8=">AAACB3icdVDLSgNBEJz1bXxFPXoZDIKnMKsmmpvoxaOCUSEJoXds4+DM7jLTK4QlH+BXeNWTN/HqZ3jwX5yNEVS0TkVVN11dUaqVIyHegrHxicmp6ZnZ0tz8wuJSeXnlzCWZldiUiU7sRQQOtYqxSYo0XqQWwUQaz6Obw8I/v0XrVBKfUj/FjoFerK6UBPJSt7za7oEx0G0boGtrcqdo0C1XRFXUa41twUW1JsLdRsMTIep721s89KRAhY1w3C2/ty8TmRmMSWpwrhWKlDo5WFJS46DUzhymIG+ghy1PYzDoOvkw/IBvZA4o4SlarjQfivh9IwfjXN9EfrLI6H57hfiX18roaq+TqzjNCGNZHCKlcXjISat8K8gvlUUiKJIjVzGXYIEIreIgpRczX1PJ9/H1NP+fnG1Vw1pVnOxU9g9GzcywNbbONlnIdtk+O2LHrMkk67N79sAeg7vgKXgOXj5Hx4LRzir7geD1A+nSmiY=</latexit>�sit
<latexit sha1_base64="CVGx+W4nK7BJngaiyyCbCfTKadw="></latexit>¬�sit

<latexit sha1_base64="RjrXhiLwi+tmkii03bTRat4njBo=">AAACFnicdZC7SgNBFIZnvRtvUUubwSBEkLArxkshiIJYKpgoJCGcnZzEIbMXZs4KYUnvI/gUtlrZia2the/ibIyioqc6fP+5/n6spCHXfXVGRsfGJyanpnMzs3PzC/nFpaqJEi2wIiIV6UsfDCoZYoUkKbyMNULgK7zwu0eZfnGN2sgoPKdejI0AOqFsSwFkUTO/Wm9FlB7399vNegB0pYO0TZ1+kTZ4XdkxLVhv5gtuqex6e9sed0vuIPgX8YakwIZx2sy/2aEiCTAkocCYmufG1EhBkxQK+7l6YjAG0YUO1mwaQoCmkQ5+6fO1xABFPEbNpeIDiN87UgiM6QW+rczuNb+1DP6l1RJq7zZSGcYJYSiyRSQVDhYZoaU1CXlLaiSC7HLkMuQCNBChlhyEsDCxruWsH59P8/+T6mbJK5fcs63CweHQmSm2wlZZkXlshx2wE3bKKkywG3bH7tmDc+s8Ok/O80fpiDPsWWY/wnl5BySAn4M=</latexit>

Ḟ = fftg(t, �)

<latexit sha1_base64="RjrXhiLwi+tmkii03bTRat4njBo=">AAACFnicdZC7SgNBFIZnvRtvUUubwSBEkLArxkshiIJYKpgoJCGcnZzEIbMXZs4KYUnvI/gUtlrZia2the/ibIyioqc6fP+5/n6spCHXfXVGRsfGJyanpnMzs3PzC/nFpaqJEi2wIiIV6UsfDCoZYoUkKbyMNULgK7zwu0eZfnGN2sgoPKdejI0AOqFsSwFkUTO/Wm9FlB7399vNegB0pYO0TZ1+kTZ4XdkxLVhv5gtuqex6e9sed0vuIPgX8YakwIZx2sy/2aEiCTAkocCYmufG1EhBkxQK+7l6YjAG0YUO1mwaQoCmkQ5+6fO1xABFPEbNpeIDiN87UgiM6QW+rczuNb+1DP6l1RJq7zZSGcYJYSiyRSQVDhYZoaU1CXlLaiSC7HLkMuQCNBChlhyEsDCxruWsH59P8/+T6mbJK5fcs63CweHQmSm2wlZZkXlshx2wE3bKKkywG3bH7tmDc+s8Ok/O80fpiDPsWWY/wnl5BySAn4M=</latexit>

Ḟ = fftg(t, �)

<latexit sha1_base64="7uoV0gdGDAHXqdgvaIUv1oqmcDg=">AAACE3icdZDJSgNBEIZ74hbjFvXowcYgRJAwI8blIAQF8RjBLJCE0NOpJE16FrprhDDk6CP4FF715E28+gAefBdnxlFUtE7F99f6274UGk3z1chMTc/MzmXncwuLS8sr+dW1uvYCxaHGPempps00SOFCDQVKaPoKmGNLaNijs1hvXIPSwnOvcOxDx2EDV/QFZxihbn6z3fMwPJ+c9Ltth+FQOaECPiniLm2robfTzRfMUtm0jg8sapbMJOgXsVJSIGlUu/m3aCIPHHCRS6Z1yzJ97IRMoeASJrl2oMFnfMQG0IpSlzmgO2HyyIRuB5qhR31QVEiaQPjeETJH67FjR5Xxsfq3FsO/tFaA/aNOKFw/QHB5vAiFhGSR5kpEDgHtCQWILL4cqHApZ4ohghKUcR7BILIsF/nx+TT9P6nvlaxyybzcL1ROU2eyZINskSKxyCGpkAtSJTXCyQ25I/fkwbg1Ho0n4/mjNGOkPevkRxgv79A3nkY=</latexit>

Ḟ = frec(t, ⇢)
<latexit sha1_base64="7uoV0gdGDAHXqdgvaIUv1oqmcDg=">AAACE3icdZDJSgNBEIZ74hbjFvXowcYgRJAwI8blIAQF8RjBLJCE0NOpJE16FrprhDDk6CP4FF715E28+gAefBdnxlFUtE7F99f6274UGk3z1chMTc/MzmXncwuLS8sr+dW1uvYCxaHGPempps00SOFCDQVKaPoKmGNLaNijs1hvXIPSwnOvcOxDx2EDV/QFZxihbn6z3fMwPJ+c9Ltth+FQOaECPiniLm2robfTzRfMUtm0jg8sapbMJOgXsVJSIGlUu/m3aCIPHHCRS6Z1yzJ97IRMoeASJrl2oMFnfMQG0IpSlzmgO2HyyIRuB5qhR31QVEiaQPjeETJH67FjR5Xxsfq3FsO/tFaA/aNOKFw/QHB5vAiFhGSR5kpEDgHtCQWILL4cqHApZ4ohghKUcR7BILIsF/nx+TT9P6nvlaxyybzcL1ROU2eyZINskSKxyCGpkAtSJTXCyQ25I/fkwbg1Ho0n4/mjNGOkPevkRxgv79A3nkY=</latexit>

Ḟ = frec(t, ⇢)
<latexit sha1_base64="yRTxGhhjBKUMvXO05s2dxILun3w="></latexit>

⇢ ⇠ N (µstand, �2
stand)

<latexit sha1_base64="BHbLfeA7biC+v4JrzxH2g1EzzBc="></latexit>

⇢ ⇠ N (µsit, �
2
sit)

<latexit sha1_base64="5RuX/YQ9Zr0hoQAkPQeoiHOBnLQ="></latexit>

� ⇠ N (µwalk, �
2
walk)

<latexit sha1_base64="keEViIlGmJpA111JSecVWxVUyOw="></latexit>

� ⇠ N (µrun, �2
run)

<latexit sha1_base64="pcXELF6m13h3NA7DbHx4b7EoOp8=">AAACB3icdVDLSgNBEJz1bXxFPXoZDIKnMKsmmpvoxaOCUSEJoXds4+DM7jLTK4QlH+BXeNWTN/HqZ3jwX5yNEVS0TkVVN11dUaqVIyHegrHxicmp6ZnZ0tz8wuJSeXnlzCWZldiUiU7sRQQOtYqxSYo0XqQWwUQaz6Obw8I/v0XrVBKfUj/FjoFerK6UBPJSt7za7oEx0G0boGtrcqdo0C1XRFXUa41twUW1JsLdRsMTIep721s89KRAhY1w3C2/ty8TmRmMSWpwrhWKlDo5WFJS46DUzhymIG+ghy1PYzDoOvkw/IBvZA4o4SlarjQfivh9IwfjXN9EfrLI6H57hfiX18roaq+TqzjNCGNZHCKlcXjISat8K8gvlUUiKJIjVzGXYIEIreIgpRczX1PJ9/H1NP+fnG1Vw1pVnOxU9g9GzcywNbbONlnIdtk+O2LHrMkk67N79sAeg7vgKXgOXj5Hx4LRzir7geD1A+nSmiY=</latexit>�sit
<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?

<latexit sha1_base64="6uLX+txge8q2t72uO434BpA0kjc=">AAACA3icdVC7TsNAEDzzDOGRACXNiQiJyrIjQ9IRQUMZJPKQEis6XzbhlPNDd2ukyErJV9BCRYdo+RAK/gXbGAkQTDWa2b2dGy+SQqNlvRlLyyura+uljfLm1vZOpbq719VhrDh0eChD1feYBikC6KBACf1IAfM9CT1vdpH5vVtQWoTBNc4jcH02DcREcIapNKpWhj7DG8REI1O4OBtVa5Z56jTrTZtappUjI47dcBxqF0qNFGiPqu/DcchjHwLkkmk9sK0I3SR9THAJi/Iw1hAxPmNTGKQ0YD5oN8mDL+hRrBmGNAJFhaS5CN83EuZrPfe9dDKLqX97mfiXN4hx0nQTEUQxQsCzQygk5Ic0VyJtBOhYKEBkWXKgIqCcKYYISlDGeSrGaUXltI+vT9P/Sbdu2iemdeXUWudFMyVyQA7JMbFJg7TIJWmTDuEkJvfkgTwad8aT8Wy8fI4uGcXOPvkB4/UDnXiYTg==</latexit>

start?

<latexit sha1_base64="CVGx+W4nK7BJngaiyyCbCfTKadw="></latexit>¬�sit

<latexit sha1_base64="WBSjFFK7J2ZrqqYq4oI1AerHOjo=">AAACB3icdVCxThtBEN0DkhATkgsu06ywkKisPcDY7hBpUjpSDEi2Zc2tx2bF7t5pdy6SdfIH5CvSJhVdRMtnpOBf2DNGIhG86um9Gc2bl+ZaeRLib7S2vvHq9ZvNt7Wtd9vvP8Qfd858VjiJfZnpzF2k4FEri31SpPEidwgm1XieXn2u/PPv6LzK7Dea5zgyMLNqqiRQkMZxfTgDY2A8NECXzpSusItx3BBNcdzqHgoumi2RtLvdQIQ47hwe8CSQCg22Qm8c3w0nmSwMWpIavB8kIqdRCY6U1LioDQuPOcgrmOEgUAsG/ahchl/wvcIDZTxHx5XmSxGfbpRgvJ+bNExWGf3/XiU+5w0KmnZGpbJ5QWhldYiUxuUhL50KrSCfKIdEUCVHriyX4IAIneIgZRCLUFMt9PH4NH+ZnB00k1ZTfD1qnJyumtlkn9gu22cJa7MT9oX1WJ9JNmc/2S/2O/oRXUd/opuH0bVotVNn/yC6vQfxrJor</latexit>�run

Figure 15.2: Learned SHA for Exp.3. Color-coding is the same as in Fig. 3.1.
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15.1. Model-Driven Experiments

15.1 represents the floor layout and the agents involved in the scenario:
two humans—a patient in need of medication and a doctor—and a mobile
robot. The patient (labeled as HUM 1) follows the robot to the waiting
room (point A), where they can sit. The doctor (HUM 2) leads the robot
to a cupboard (point B) to fetch the required medication. Finally, the robot
returns to the waiting room to lead the patient to the doctor’s office.

Each location ofAhyp features an element in set M ′×Z representing the
dynamics of fatigue (i.e., either increasing or decreasing) and the distribu-
tion of the respective rate in a specific behavioral state. Subjects undergo
alternate fatigue and recovery cycles, depending on whether they are ac-
tively performing a task (such as walking) or resting. In the corresponding
SHA, fatigue is modeled through real-valued variable F ∈ W . The possi-
ble flow conditions constraining fatigue are known a priori and referred to
as fftg(t, λ) for fatigue cycles and frec(t, ρ) for recovery cycles [118]. Pa-
rameters λ and ρ represent the rate at which fatigue increases or decreases,
respectively, which are known to be normally distributed [140]. The mean
and variance of such distributions vary based on the specific operational
state and are subject to learning. Set Z contains samples of parameter ρ
when the human is resting and parameter λ when the human is moving.

As explained in Section 12.2, L∗SHA handles observable events. The fact
that a subject starts or stops walking (without sitting) can be inferred by the
position’s sampled signal. If the human starts running, their position will
vary at a higher speed, which can be recorded through an Indoor Positioning
System (IPS) sensor. The building layout is known a priori as well as the
location of seating areas, thus we can reasonably assume that, if a human
stops close to a chair’s location (which is also recorded by the IPS), they
have sat down.

In this validation phase, the events (also in Table 15.1) that impact the
subject’s fatigue or recovery rate are “walk”, “run”, “stand”, and “sit”,
each corresponding to a different behavioral state: walking, running, rest-
ing (while standing still), and sitting. When a subject runs, fatigue rate λ is
higher than during a normal walk, and—similarly—sitting increases recov-
ery rate ρ compared to standing. All events are observable and identifiable
by labeling function Lπσ (see Section 12.2.1).

We have defined 5 different SHA modeling human behavior to be learned
by L∗SHA. These SHA are manually drafted in Uppaal and produce the traces
fed to L∗SHA when the Teacher requests it. All learned SHA are reported
in [133] and Appendix A, while Fig. 15.2 shows the learned SHA for Exp.
3 featuring 4 locations—hstand, hsit, hwalk, and hrun—corresponding to as
many behavioral states.

259



Chapter 15. Human Behavior Learning Validation

Table 15.1: Comparison between the original SHA modeled in Uppaal (labeled as SUL)
and the learned SHA (labeled as L∗SHA) for the 5 experiments. Employed metrics are
analogous to Table 13.1. The two SHA are further compared based on the probability
of success of the benchmark mission (PM(⋄≤τ scs)).

Exp. Events |L| |E| |M ′| |Z| PM(⋄≤τ scs)

1 SUL
2

2 2 2 2 [0.73, 0.83]
L∗SHA 2 2 2 2 [0.76, 0.86]

2 SUL
4

3 4 2 3 [0.83, 0.93]
L∗SHA 3 4 2 3 [0.82, 0.92]

3 SUL
6

4 8 2 4 [0.90, 0.99]
L∗SHA 4 8 2 4 [0.90, 1.00]

4 SUL
6

4 6 2 4 [0.90, 1.00]
L∗SHA 4 7 2 4 [0.90, 0.99]

5 SUL
6

4 7 2 5 [0.75, 0.85]
L∗SHA 7 13 2 5 [0.77, 0.87]

Labels start, stop ∈ C are channels marking that the human has
started or stopped moving: in SHA modeling human behavior, all labels
are followed by ? since the human always receives an instruction by the
robot. In all learned SHA, events “walk” and “run” correspond to pairs
⟨¬γrun, start⟩ and ⟨γrun, start⟩, while “stand” and “sit” correspond to
pairs ⟨¬γsit, stop⟩ and ⟨γsit, stop⟩.

Table 15.1 reports metrics comparing the original SUL to the L∗SHA out-
come. The comparison accounts for the same SHA features as in Table
13.1, indicating whether L∗SHA learns the SHA graph accurately. Exp. 4 and
5 report discrepancies. As for Exp. 4, in the original SHA, if the human is
running, they switch to the same location whether they simply stand or they
sit. The switch is captured through a single edge representing a disjunction
between the conditions of events “stand” and “sit”.

As per Section 12.2, in SHA learned by L∗SHA, each edge is labeled by a
single event (conjunctions and disjunctions are not explicitly learned). The
edge with a disjunction in the original SHA is realized in the learned SHA
by two edges, each equivalent to a disjunct. In Exp. 5, the original SHA
features a source of inconsistency as described for Exp. 6, 9, 10 in Section
13.2, which causes 3 out of the original 4 locations to be split into two
locations. Therefore, a manual inspection of learned SHA highlights that
they behave correspondingly to the reference models for all experiments.

To determine whether the distributions learned through ht queries are
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15.1. Model-Driven Experiments
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(a) Traces requested by L∗SHA to complete the learning for all model-driven experiments.
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(b) Time ([s]) requested by L∗SHA to complete the learning for all model-driven experiments.

Figure 15.3: Plots reporting on L∗SHA performance with increasing SUL complexity, mea-
sured through the learned SHA size (|A|).

acceptable, we perform a Kolmogorov-Smirnov test on the normal distri-
butions associated with the reference SHA locations and the empirical dis-
tributions identified by L∗SHA associated with the corresponding locations on
the learned SHA. With α = 0.05, in 94% of the cases, it cannot be refuted
that the two sets are drawn from the same distribution. The percentage
grows to 100% with α = 0.1.

For each learned SHA, we estimate the success probability of the robotic
mission, indicated as PM(⋄≤τ scs), where τ is the time-bound for the SMC
experiment. The same success probability is then estimated with the orig-
inal SHA. Table 15.1 shows the two sets of success probability ranges es-
timated through SMC with the same time-bound τ = 220s. The resulting
confidence intervals (CIs) for the success probability overlap in all 5 exper-
iments. Although there is no ground to establish whether the CIs obtained
with the reference and learned models are equal, the overlap guarantees
that they are not incompatible.

Finally, metrics concerning L∗SHA performance are reported in Fig. 15.3
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15.2. Simulation-Driven Experiments

<latexit sha1_base64="RjrXhiLwi+tmkii03bTRat4njBo=">AAACFnicdZC7SgNBFIZnvRtvUUubwSBEkLArxkshiIJYKpgoJCGcnZzEIbMXZs4KYUnvI/gUtlrZia2the/ibIyioqc6fP+5/n6spCHXfXVGRsfGJyanpnMzs3PzC/nFpaqJEi2wIiIV6UsfDCoZYoUkKbyMNULgK7zwu0eZfnGN2sgoPKdejI0AOqFsSwFkUTO/Wm9FlB7399vNegB0pYO0TZ1+kTZ4XdkxLVhv5gtuqex6e9sed0vuIPgX8YakwIZx2sy/2aEiCTAkocCYmufG1EhBkxQK+7l6YjAG0YUO1mwaQoCmkQ5+6fO1xABFPEbNpeIDiN87UgiM6QW+rczuNb+1DP6l1RJq7zZSGcYJYSiyRSQVDhYZoaU1CXlLaiSC7HLkMuQCNBChlhyEsDCxruWsH59P8/+T6mbJK5fcs63CweHQmSm2wlZZkXlshx2wE3bKKkywG3bH7tmDc+s8Ok/O80fpiDPsWWY/wnl5BySAn4M=</latexit>

Ḟ = fftg(t, �)

<latexit sha1_base64="7uoV0gdGDAHXqdgvaIUv1oqmcDg=">AAACE3icdZDJSgNBEIZ74hbjFvXowcYgRJAwI8blIAQF8RjBLJCE0NOpJE16FrprhDDk6CP4FF715E28+gAefBdnxlFUtE7F99f6274UGk3z1chMTc/MzmXncwuLS8sr+dW1uvYCxaHGPempps00SOFCDQVKaPoKmGNLaNijs1hvXIPSwnOvcOxDx2EDV/QFZxihbn6z3fMwPJ+c9Ltth+FQOaECPiniLm2robfTzRfMUtm0jg8sapbMJOgXsVJSIGlUu/m3aCIPHHCRS6Z1yzJ97IRMoeASJrl2oMFnfMQG0IpSlzmgO2HyyIRuB5qhR31QVEiaQPjeETJH67FjR5Xxsfq3FsO/tFaA/aNOKFw/QHB5vAiFhGSR5kpEDgHtCQWILL4cqHApZ4ohghKUcR7BILIsF/nx+TT9P6nvlaxyybzcL1ROU2eyZINskSKxyCGpkAtSJTXCyQ25I/fkwbg1Ho0n4/mjNGOkPevkRxgv79A3nkY=</latexit>

Ḟ = frec(t, ⇢)

<latexit sha1_base64="RjrXhiLwi+tmkii03bTRat4njBo=">AAACFnicdZC7SgNBFIZnvRtvUUubwSBEkLArxkshiIJYKpgoJCGcnZzEIbMXZs4KYUnvI/gUtlrZia2the/ibIyioqc6fP+5/n6spCHXfXVGRsfGJyanpnMzs3PzC/nFpaqJEi2wIiIV6UsfDCoZYoUkKbyMNULgK7zwu0eZfnGN2sgoPKdejI0AOqFsSwFkUTO/Wm9FlB7399vNegB0pYO0TZ1+kTZ4XdkxLVhv5gtuqex6e9sed0vuIPgX8YakwIZx2sy/2aEiCTAkocCYmufG1EhBkxQK+7l6YjAG0YUO1mwaQoCmkQ5+6fO1xABFPEbNpeIDiN87UgiM6QW+rczuNb+1DP6l1RJq7zZSGcYJYSiyRSQVDhYZoaU1CXlLaiSC7HLkMuQCNBChlhyEsDCxruWsH59P8/+T6mbJK5fcs63CweHQmSm2wlZZkXlshx2wE3bKKkywG3bH7tmDc+s8Ok/O80fpiDPsWWY/wnl5BySAn4M=</latexit>

Ḟ = fftg(t, �)

<latexit sha1_base64="KqDWwiEQSRf+SIxbyZxP/b8dgbw=">AAACAHicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pASE50vm+SU89m620OKrDR8BS1UdIiWP6HgX7CNC0iYajSzq52dIJbCoOt+OkvLK6tr66WN8ubW9s5uZW+/ZSKrOTR5JCPdCZgBKRQ0UaCETqyBhYGEdjC5zvz2A2gjInWH0xj8kI2UGArOMJXux/1eyHCsw0RbNetXqm7NzUEXiVeQKinQ6Fe+eoOI2xAUcsmM6XpujH7CNAouYVbuWQMx4xM2gm5KFQvB+EmeekaPrWEY0Rg0FZLmIvzeSFhozDQM0skso5n3MvE/r2txeOknQsUWQfHsEAoJ+SHDtUjrADoQGhBZlhyoUJQzzRBBC8o4T0Wb9lNO+/Dmv18krdOad15zb8+q9auimRI5JEfkhHjkgtTJDWmQJuFEkyfyTF6cR+fVeXPef0aXnGLngPyB8/ENIoiXiA==</latexit>

hrun
<latexit sha1_base64="eN10lqvq/jZPUe8AaxndFWRl4yI=">AAACBHicbVA9TwJBEN3DL8SvU0ubjcTEitwZjZZEG0tMBEmAkLllgA17e5fdORJyofVX2GplZ2z9Hxb+F++QQsFXvbw3k3nzglhJS5736RRWVtfWN4qbpa3tnd09d/+gYaPECKyLSEWmGYBFJTXWSZLCZmwQwkDhQzC6yf2HMRorI31Pkxg7IQy07EsBlEld1x122yHQ0ISpJdC9adctexVvBr5M/DkpszlqXfer3YtEEqImocDalu/F1EnBkBQKp6V2YjEGMYIBtjKqIUTbSWfJp/wksUARj9FwqfhMxN8bKYTWTsIgm8xT2kUvF//zWgn1rzqp1HFCqEV+iKTC2SErjMwqQd6TBokgT45cai7AABEayUGITEyyjkpZH/7i98ukcVbxLyre3Xm5ej1vpsiO2DE7ZT67ZFV2y2qszgQbsyf2zF6cR+fVeXPef0YLznznkP2B8/ENJQCYkg==</latexit>

hstand
<latexit sha1_base64="OPCL8a6KhlT8UwL6HKlqvrR3cDM=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJGNQFBG0FAGiTykxLLWl01yyvmhuzUoslLyFbRQ0SFaPoSCf8EOKSBhqtHMrnZ2/FhJQ7b9aRVWVtfWN4qbpa3tnd1yZW+/ZaJEC2yKSEW644NBJUNskiSFnVgjBL7Ctj++zv32PWojo/COJjG6AQxDOZACKJO8Snnk9QKgkQ7SB1DjqVep2jV7Br5MnDmpsjkaXuWr149EEmBIQoExXceOyU1BkxQKp6VeYjAGMYYhdjMaQoDGTWfBp/w4MUARj1FzqfhMxN8bKQTGTAI/m8xDmkUvF//zugkNLt1UhnFCGIr8EEmFs0NGaJk1grwvNRJBnhy5DLkADUSoJQchMjHJKiplfTiL3y+T1mnNOa/Zt2fV+tW8mSI7ZEfshDnsgtXZDWuwJhMsYU/smb1Yj9ar9Wa9/4wWrPnOAfsD6+MbUquYHQ==</latexit>

hwalk

<latexit sha1_base64="WBSjFFK7J2ZrqqYq4oI1AerHOjo="></latexit>�run
<latexit sha1_base64="weTf2dpo9PKY/LjYaAOUMqfHZgk="></latexit>¬�run

<latexit sha1_base64="6uLX+txge8q2t72uO434BpA0kjc=">AAACA3icdVC7TsNAEDzzDOGRACXNiQiJyrIjQ9IRQUMZJPKQEis6XzbhlPNDd2ukyErJV9BCRYdo+RAK/gXbGAkQTDWa2b2dGy+SQqNlvRlLyyura+uljfLm1vZOpbq719VhrDh0eChD1feYBikC6KBACf1IAfM9CT1vdpH5vVtQWoTBNc4jcH02DcREcIapNKpWhj7DG8REI1O4OBtVa5Z56jTrTZtappUjI47dcBxqF0qNFGiPqu/DcchjHwLkkmk9sK0I3SR9THAJi/Iw1hAxPmNTGKQ0YD5oN8mDL+hRrBmGNAJFhaS5CN83EuZrPfe9dDKLqX97mfiXN4hx0nQTEUQxQsCzQygk5Ic0VyJtBOhYKEBkWXKgIqCcKYYISlDGeSrGaUXltI+vT9P/Sbdu2iemdeXUWudFMyVyQA7JMbFJg7TIJWmTDuEkJvfkgTwad8aT8Wy8fI4uGcXOPvkB4/UDnXiYTg==</latexit>

start?
<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?

<latexit sha1_base64="6uLX+txge8q2t72uO434BpA0kjc=">AAACA3icdVC7TsNAEDzzDOGRACXNiQiJyrIjQ9IRQUMZJPKQEis6XzbhlPNDd2ukyErJV9BCRYdo+RAK/gXbGAkQTDWa2b2dGy+SQqNlvRlLyyura+uljfLm1vZOpbq719VhrDh0eChD1feYBikC6KBACf1IAfM9CT1vdpH5vVtQWoTBNc4jcH02DcREcIapNKpWhj7DG8REI1O4OBtVa5Z56jTrTZtappUjI47dcBxqF0qNFGiPqu/DcchjHwLkkmk9sK0I3SR9THAJi/Iw1hAxPmNTGKQ0YD5oN8mDL+hRrBmGNAJFhaS5CN83EuZrPfe9dDKLqX97mfiXN4hx0nQTEUQxQsCzQygk5Ic0VyJtBOhYKEBkWXKgIqCcKYYISlDGeSrGaUXltI+vT9P/Sbdu2iemdeXUWudFMyVyQA7JMbFJg7TIJWmTDuEkJvfkgTwad8aT8Wy8fI4uGcXOPvkB4/UDnXiYTg==</latexit>

start?

<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?

<latexit sha1_base64="CVGx+W4nK7BJngaiyyCbCfTKadw="></latexit>¬�sit

<latexit sha1_base64="ITFGCI/eDjUCm0GcetPZgb6cMXI="></latexit>

⇢ ⇠ N (µstand, �2
stand)

<latexit sha1_base64="9786tghsW0TpkOCsGdpRkUbcQcE="></latexit>

� ⇠ N (µwalk, �
2
walk)

<latexit sha1_base64="t0abaaFudQRndHGwu1Wu0AXn3yo="></latexit>

� ⇠ N (µrun, �2
run)

(a)

<latexit sha1_base64="RjrXhiLwi+tmkii03bTRat4njBo=">AAACFnicdZC7SgNBFIZnvRtvUUubwSBEkLArxkshiIJYKpgoJCGcnZzEIbMXZs4KYUnvI/gUtlrZia2the/ibIyioqc6fP+5/n6spCHXfXVGRsfGJyanpnMzs3PzC/nFpaqJEi2wIiIV6UsfDCoZYoUkKbyMNULgK7zwu0eZfnGN2sgoPKdejI0AOqFsSwFkUTO/Wm9FlB7399vNegB0pYO0TZ1+kTZ4XdkxLVhv5gtuqex6e9sed0vuIPgX8YakwIZx2sy/2aEiCTAkocCYmufG1EhBkxQK+7l6YjAG0YUO1mwaQoCmkQ5+6fO1xABFPEbNpeIDiN87UgiM6QW+rczuNb+1DP6l1RJq7zZSGcYJYSiyRSQVDhYZoaU1CXlLaiSC7HLkMuQCNBChlhyEsDCxruWsH59P8/+T6mbJK5fcs63CweHQmSm2wlZZkXlshx2wE3bKKkywG3bH7tmDc+s8Ok/O80fpiDPsWWY/wnl5BySAn4M=</latexit>

Ḟ = fftg(t, �)

<latexit sha1_base64="7uoV0gdGDAHXqdgvaIUv1oqmcDg=">AAACE3icdZDJSgNBEIZ74hbjFvXowcYgRJAwI8blIAQF8RjBLJCE0NOpJE16FrprhDDk6CP4FF715E28+gAefBdnxlFUtE7F99f6274UGk3z1chMTc/MzmXncwuLS8sr+dW1uvYCxaHGPempps00SOFCDQVKaPoKmGNLaNijs1hvXIPSwnOvcOxDx2EDV/QFZxihbn6z3fMwPJ+c9Ltth+FQOaECPiniLm2robfTzRfMUtm0jg8sapbMJOgXsVJSIGlUu/m3aCIPHHCRS6Z1yzJ97IRMoeASJrl2oMFnfMQG0IpSlzmgO2HyyIRuB5qhR31QVEiaQPjeETJH67FjR5Xxsfq3FsO/tFaA/aNOKFw/QHB5vAiFhGSR5kpEDgHtCQWILL4cqHApZ4ohghKUcR7BILIsF/nx+TT9P6nvlaxyybzcL1ROU2eyZINskSKxyCGpkAtSJTXCyQ25I/fkwbg1Ho0n4/mjNGOkPevkRxgv79A3nkY=</latexit>

Ḟ = frec(t, ⇢)

<latexit sha1_base64="RjrXhiLwi+tmkii03bTRat4njBo=">AAACFnicdZC7SgNBFIZnvRtvUUubwSBEkLArxkshiIJYKpgoJCGcnZzEIbMXZs4KYUnvI/gUtlrZia2the/ibIyioqc6fP+5/n6spCHXfXVGRsfGJyanpnMzs3PzC/nFpaqJEi2wIiIV6UsfDCoZYoUkKbyMNULgK7zwu0eZfnGN2sgoPKdejI0AOqFsSwFkUTO/Wm9FlB7399vNegB0pYO0TZ1+kTZ4XdkxLVhv5gtuqex6e9sed0vuIPgX8YakwIZx2sy/2aEiCTAkocCYmufG1EhBkxQK+7l6YjAG0YUO1mwaQoCmkQ5+6fO1xABFPEbNpeIDiN87UgiM6QW+rczuNb+1DP6l1RJq7zZSGcYJYSiyRSQVDhYZoaU1CXlLaiSC7HLkMuQCNBChlhyEsDCxruWsH59P8/+T6mbJK5fcs63CweHQmSm2wlZZkXlshx2wE3bKKkywG3bH7tmDc+s8Ok/O80fpiDPsWWY/wnl5BySAn4M=</latexit>

Ḟ = fftg(t, �)

<latexit sha1_base64="KqDWwiEQSRf+SIxbyZxP/b8dgbw=">AAACAHicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pASE50vm+SU89m620OKrDR8BS1UdIiWP6HgX7CNC0iYajSzq52dIJbCoOt+OkvLK6tr66WN8ubW9s5uZW+/ZSKrOTR5JCPdCZgBKRQ0UaCETqyBhYGEdjC5zvz2A2gjInWH0xj8kI2UGArOMJXux/1eyHCsw0RbNetXqm7NzUEXiVeQKinQ6Fe+eoOI2xAUcsmM6XpujH7CNAouYVbuWQMx4xM2gm5KFQvB+EmeekaPrWEY0Rg0FZLmIvzeSFhozDQM0skso5n3MvE/r2txeOknQsUWQfHsEAoJ+SHDtUjrADoQGhBZlhyoUJQzzRBBC8o4T0Wb9lNO+/Dmv18krdOad15zb8+q9auimRI5JEfkhHjkgtTJDWmQJuFEkyfyTF6cR+fVeXPef0aXnGLngPyB8/ENIoiXiA==</latexit>

hrun
<latexit sha1_base64="eN10lqvq/jZPUe8AaxndFWRl4yI=">AAACBHicbVA9TwJBEN3DL8SvU0ubjcTEitwZjZZEG0tMBEmAkLllgA17e5fdORJyofVX2GplZ2z9Hxb+F++QQsFXvbw3k3nzglhJS5736RRWVtfWN4qbpa3tnd09d/+gYaPECKyLSEWmGYBFJTXWSZLCZmwQwkDhQzC6yf2HMRorI31Pkxg7IQy07EsBlEld1x122yHQ0ISpJdC9adctexVvBr5M/DkpszlqXfer3YtEEqImocDalu/F1EnBkBQKp6V2YjEGMYIBtjKqIUTbSWfJp/wksUARj9FwqfhMxN8bKYTWTsIgm8xT2kUvF//zWgn1rzqp1HFCqEV+iKTC2SErjMwqQd6TBokgT45cai7AABEayUGITEyyjkpZH/7i98ukcVbxLyre3Xm5ej1vpsiO2DE7ZT67ZFV2y2qszgQbsyf2zF6cR+fVeXPef0YLznznkP2B8/ENJQCYkg==</latexit>

hstand
<latexit sha1_base64="OPCL8a6KhlT8UwL6HKlqvrR3cDM=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJGNQFBG0FAGiTykxLLWl01yyvmhuzUoslLyFbRQ0SFaPoSCf8EOKSBhqtHMrnZ2/FhJQ7b9aRVWVtfWN4qbpa3tnd1yZW+/ZaJEC2yKSEW644NBJUNskiSFnVgjBL7Ctj++zv32PWojo/COJjG6AQxDOZACKJO8Snnk9QKgkQ7SB1DjqVep2jV7Br5MnDmpsjkaXuWr149EEmBIQoExXceOyU1BkxQKp6VeYjAGMYYhdjMaQoDGTWfBp/w4MUARj1FzqfhMxN8bKQTGTAI/m8xDmkUvF//zugkNLt1UhnFCGIr8EEmFs0NGaJk1grwvNRJBnhy5DLkADUSoJQchMjHJKiplfTiL3y+T1mnNOa/Zt2fV+tW8mSI7ZEfshDnsgtXZDWuwJhMsYU/smb1Yj9ar9Wa9/4wWrPnOAfsD6+MbUquYHQ==</latexit>

hwalk

<latexit sha1_base64="WBSjFFK7J2ZrqqYq4oI1AerHOjo="></latexit>�run
<latexit sha1_base64="weTf2dpo9PKY/LjYaAOUMqfHZgk="></latexit>¬�run

<latexit sha1_base64="6uLX+txge8q2t72uO434BpA0kjc=">AAACA3icdVC7TsNAEDzzDOGRACXNiQiJyrIjQ9IRQUMZJPKQEis6XzbhlPNDd2ukyErJV9BCRYdo+RAK/gXbGAkQTDWa2b2dGy+SQqNlvRlLyyura+uljfLm1vZOpbq719VhrDh0eChD1feYBikC6KBACf1IAfM9CT1vdpH5vVtQWoTBNc4jcH02DcREcIapNKpWhj7DG8REI1O4OBtVa5Z56jTrTZtappUjI47dcBxqF0qNFGiPqu/DcchjHwLkkmk9sK0I3SR9THAJi/Iw1hAxPmNTGKQ0YD5oN8mDL+hRrBmGNAJFhaS5CN83EuZrPfe9dDKLqX97mfiXN4hx0nQTEUQxQsCzQygk5Ic0VyJtBOhYKEBkWXKgIqCcKYYISlDGeSrGaUXltI+vT9P/Sbdu2iemdeXUWudFMyVyQA7JMbFJg7TIJWmTDuEkJvfkgTwad8aT8Wy8fI4uGcXOPvkB4/UDnXiYTg==</latexit>

start?
<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?

<latexit sha1_base64="6uLX+txge8q2t72uO434BpA0kjc=">AAACA3icdVC7TsNAEDzzDOGRACXNiQiJyrIjQ9IRQUMZJPKQEis6XzbhlPNDd2ukyErJV9BCRYdo+RAK/gXbGAkQTDWa2b2dGy+SQqNlvRlLyyura+uljfLm1vZOpbq719VhrDh0eChD1feYBikC6KBACf1IAfM9CT1vdpH5vVtQWoTBNc4jcH02DcREcIapNKpWhj7DG8REI1O4OBtVa5Z56jTrTZtappUjI47dcBxqF0qNFGiPqu/DcchjHwLkkmk9sK0I3SR9THAJi/Iw1hAxPmNTGKQ0YD5oN8mDL+hRrBmGNAJFhaS5CN83EuZrPfe9dDKLqX97mfiXN4hx0nQTEUQxQsCzQygk5Ic0VyJtBOhYKEBkWXKgIqCcKYYISlDGeSrGaUXltI+vT9P/Sbdu2iemdeXUWudFMyVyQA7JMbFJg7TIJWmTDuEkJvfkgTwad8aT8Wy8fI4uGcXOPvkB4/UDnXiYTg==</latexit>

start?

<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?

<latexit sha1_base64="EwcSq2tB/4glWOKMKG4WVm97YOY=">AAACAHicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pASE50vm+SUu7N1t0aKrDR8BS1UdIiWP6HgX7CNC0iYajSzq52dIJLCout+OkvLK6tr66WN8ubW9s5uZW+/ZcPYcGjyUIamEzALUmhookAJncgAU4GEdjC5zvz2AxgrQn2H0wh8xUZaDAVnmEr3435PMRwblViBs36l6tbcHHSReAWpkgKNfuWrNwh5rEAjl8zarudG6CfMoOASZuVebCFifMJG0E2pZgqsn+SpZ/Q4tgxDGoGhQtJchN8bCVPWTlWQTmYZ7byXif953RiHl34idBQjaJ4dQiEhP2S5EWkdQAfCACLLkgMVmnJmGCIYQRnnqRin/ZTTPrz57xdJ67Tmndfc27Nq/apopkQOyRE5IR65IHVyQxqkSTgx5Ik8kxfn0Xl13pz3n9Elp9g5IH/gfHwDGq6Xgw==</latexit>

hsit

<latexit sha1_base64="7uoV0gdGDAHXqdgvaIUv1oqmcDg=">AAACE3icdZDJSgNBEIZ74hbjFvXowcYgRJAwI8blIAQF8RjBLJCE0NOpJE16FrprhDDk6CP4FF715E28+gAefBdnxlFUtE7F99f6274UGk3z1chMTc/MzmXncwuLS8sr+dW1uvYCxaHGPempps00SOFCDQVKaPoKmGNLaNijs1hvXIPSwnOvcOxDx2EDV/QFZxihbn6z3fMwPJ+c9Ltth+FQOaECPiniLm2robfTzRfMUtm0jg8sapbMJOgXsVJSIGlUu/m3aCIPHHCRS6Z1yzJ97IRMoeASJrl2oMFnfMQG0IpSlzmgO2HyyIRuB5qhR31QVEiaQPjeETJH67FjR5Xxsfq3FsO/tFaA/aNOKFw/QHB5vAiFhGSR5kpEDgHtCQWILL4cqHApZ4ohghKUcR7BILIsF/nx+TT9P6nvlaxyybzcL1ROU2eyZINskSKxyCGpkAtSJTXCyQ25I/fkwbg1Ho0n4/mjNGOkPevkRxgv79A3nkY=</latexit>

Ḟ = frec(t, ⇢)

<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?
<latexit sha1_base64="6uLX+txge8q2t72uO434BpA0kjc=">AAACA3icdVC7TsNAEDzzDOGRACXNiQiJyrIjQ9IRQUMZJPKQEis6XzbhlPNDd2ukyErJV9BCRYdo+RAK/gXbGAkQTDWa2b2dGy+SQqNlvRlLyyura+uljfLm1vZOpbq719VhrDh0eChD1feYBikC6KBACf1IAfM9CT1vdpH5vVtQWoTBNc4jcH02DcREcIapNKpWhj7DG8REI1O4OBtVa5Z56jTrTZtappUjI47dcBxqF0qNFGiPqu/DcchjHwLkkmk9sK0I3SR9THAJi/Iw1hAxPmNTGKQ0YD5oN8mDL+hRrBmGNAJFhaS5CN83EuZrPfe9dDKLqX97mfiXN4hx0nQTEUQxQsCzQygk5Ic0VyJtBOhYKEBkWXKgIqCcKYYISlDGeSrGaUXltI+vT9P/Sbdu2iemdeXUWudFMyVyQA7JMbFJg7TIJWmTDuEkJvfkgTwad8aT8Wy8fI4uGcXOPvkB4/UDnXiYTg==</latexit>

start?

<latexit sha1_base64="pcXELF6m13h3NA7DbHx4b7EoOp8=">AAACB3icdVDLSgNBEJz1bXxFPXoZDIKnMKsmmpvoxaOCUSEJoXds4+DM7jLTK4QlH+BXeNWTN/HqZ3jwX5yNEVS0TkVVN11dUaqVIyHegrHxicmp6ZnZ0tz8wuJSeXnlzCWZldiUiU7sRQQOtYqxSYo0XqQWwUQaz6Obw8I/v0XrVBKfUj/FjoFerK6UBPJSt7za7oEx0G0boGtrcqdo0C1XRFXUa41twUW1JsLdRsMTIep721s89KRAhY1w3C2/ty8TmRmMSWpwrhWKlDo5WFJS46DUzhymIG+ghy1PYzDoOvkw/IBvZA4o4SlarjQfivh9IwfjXN9EfrLI6H57hfiX18roaq+TqzjNCGNZHCKlcXjISat8K8gvlUUiKJIjVzGXYIEIreIgpRczX1PJ9/H1NP+fnG1Vw1pVnOxU9g9GzcywNbbONlnIdtk+O2LHrMkk67N79sAeg7vgKXgOXj5Hx4LRzir7geD1A+nSmiY=</latexit>�sit

<latexit sha1_base64="CVGx+W4nK7BJngaiyyCbCfTKadw="></latexit>¬�sit

<latexit sha1_base64="ITFGCI/eDjUCm0GcetPZgb6cMXI="></latexit>

⇢ ⇠ N (µstand, �2
stand)

<latexit sha1_base64="9786tghsW0TpkOCsGdpRkUbcQcE="></latexit>

� ⇠ N (µwalk, �
2
walk)

<latexit sha1_base64="t0abaaFudQRndHGwu1Wu0AXn3yo="></latexit>

� ⇠ N (µrun, �2
run)

<latexit sha1_base64="mu7QqlxiOrPamx3SKhPuD9/uPN8="></latexit>

⇢ ⇠ N (µsit, �
2
sit)

(b)

Figure 15.4: SHA learned from simulation traces for Exp.3a (a) (with insufficient traces)
and 3b (b) (with sufficient traces, leading to the correct result).

as a function of SHA size |A|, which is computed as described in Section
13.2. Learning time ranges from approximately 18s to 7, 5min. The num-
ber of traces collected before termination ranges from 140 to 1740. Note
that, for comparable SHA sizes and requested traces (both batches of ex-
periments are performed with nmin = 20), the human-robot interaction CPS
exemplar requires a longer learning time than CPS1 (see Section 13.2). The
reason is that the Uppaal model from which traces are generated features
a more complex SHA network than CPS1; thus, each round of knowledge
refinement (i.e., the ref query) lasts longer.

15.2 Simulation-Driven Experiments

The model-driven validation approach provides evidence of the accuracy
of L∗SHA while learning known reference SHA. With the simulation-driven
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(a) Traces requested by L∗SHA to complete the learning for all simulation-driven experiments.
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(b) Time ([min]) requested by L∗SHA to complete the learning for all simulation-driven experiments.

Figure 15.5: Plots reporting on L∗SHA performance with increasing SUL complexity, mea-
sured through the learned SHA size (|A|).

approach described in the following, we test the algorithm in a realistic
setup without a reference SHA modeling human behavior. For this reason,
L∗SHA’s goal is to infer a model of human behavior from realistic sensor logs
to analyze the application offline.

We exploit the deployment framework presented in Chapter 10 to re-
peatedly simulate the benchmark application in a realistic virtual environ-
ment. With each experiment, we enrich the range of actions (“events” in
Table 15.2) the user can choose from to increase the SUL complexity: for
instance, in Exp. 1, the only action that increases human fatigue is “walk”,
while Exp. 4 also features alternatives “run”, “carry a load”, “walk/run in
an uncomfortable environment.” The collected simulation traces constitute
the pool for L∗SHA to draw from when the teacher performs a ref query.

Table 15.2 displays the results with the simulation-driven validation ap-
proach. All learned SHA are shown in Appendix A. Similar to Table 13.1
and Table 15.1, metrics concerning SHA size are reported for the learned
SHA; however, they are not reported for the original one since, in this case,
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15.2. Simulation-Driven Experiments

it does not exist. Therefore, to asses how accurate the learning is with
this validation approach, we perform formal verification experiments on
the model learned with each experiment. Formal verification results are
compared with metrics extracted from the real system’s behavior observed
at runtime.

Firstly, we evaluate whether human fatigue values are compatible with
those observed in simulations; secondly, whether the success probability
within a time-bound estimated through SMC is compatible with the obser-
vations. The expected maximum value of fatigue for a subject within time
τ corresponds to the value of expression E≤τ [max(F )]. For this metric, for
each experiment, three values are reported (one for each service in the mis-
sion): for HUM 1 while following the robot to point A, for HUM 2, and
for HUM 1 while following the robot to point C. For the learned SHA, the
value is calculated in Uppaal, whereas for the SUL, it corresponds to the
sample average extracted from traces.

Success probability is estimated through SMC for the learned SHA,
whereas, for the SUL, it is calculated as the ratio between traces report-
ing success before time τ and all available traces.

During this validation phase, traces are generated through simulation,
not Uppaal. Therefore, function resample(s, nmin) (see Algorithm 7) ex-
tracts new observations of trace s from the available pool of data but can-
not trigger the generation of a new trace. If TEACHER.Σobs already con-
tains the entire available pool of traces, resample returns the empty set (i.e.,
TEACHER.Σobs is not updated in subsequent learning rounds). When no
new counterexample is available (i.e., the termination condition in Algo-
rithm 9), L∗SHA terminates, returning a closed and consistent SHA that only
captures the behaviors inferrable from the available data pool.

Exp. 3 is an example of such an occurrence. Therefore, it has been
broken into two steps to provide an example of L∗SHA’s result in case a ref
query is necessary, but all available traces have been processed. The learned
automaton for Exp. 3a is shown in Fig. 15.4a, while Fig. 15.4b shows the
SHA learned with a larger pool of traces in Exp. 3b. Exp. 3a returns a SHA
that does not capture all possible behaviors of the CPS. Specifically, L∗SHA

is not able to learn the hsit location in Fig. 15.4b. Since the model does not
capture the possibility that the human may sit and rest, the expected value
of fatigue while walking back from the waiting room to the office (i.e.,
E≤τ [max(F )] for HUM 1 to point C in Table 15.2) is higher. The mission
success probability is lower than the values recorded at runtime. Running
new simulations provides a larger pool of traces to L∗SHA to refine the SHA
and obtain accurate results, as shown in the row labeled as 3b in Table
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Chapter 15. Human Behavior Learning Validation

15.2. Specifically, L∗SHA runs with nmin = 20 to balance the requirements
of L∗SHA queries and the cost of executing the benchmark scenario: a run
of the application in the simulation environment lasts approximately 4min
and, in a physical setting, would involve two subjects, potentially in critical
conditions.

The maximum fatigue expected value and success probability are esti-
mated and compared with the SUL behavior as a reference. The average
estimation error for the maximum fatigue value for all subjects across all
experiments is 9%, and the sample means of fatigue calculated from SUL
traces falls within the estimated range in 11 cases out of 12 (i.e., 3 human
subject for 4 experiments). Given that fatigue is highly subject to variabil-
ity, small oscillations and estimation errors are acceptable as long as they
do not impact the success probability. The success rate within τ = 220s
recorded at runtime falls within the estimated range for all 4 experiments.

This validation phase provides an example of how the learning phase
impacts the robotic mission design, as described in Chapter 4. At the end of
Exp. 2, L∗SHA returns a SHA with the additional behavioral state modeling
the case in which the subject is sitting (i.e., recovering at a higher pace).
Formal analysis with the new model results in a higher success rate within
the same time bound compared to Exp. 1 (CI [0.893, 0.992] compared to
[0.751, 0.851]). Similar conclusions can be drawn about Exp. 3b: L∗SHA

learns the running behavioral state, causing the second subject to reach—
on average—a higher fatigue value (CI 0.158± 0.03 compared to 0.0319±
0.004), but their service is completed in less time, leading to a slightly
higher success rate compared to Exp. 2 within the same time bound (CI
[0.902, 1] compared to [0.893, 0.992]).

The results of Exp. 4 reverse this trend. In this experiment, simulations
feature a much broader spectrum of human actions, significantly boosting
the variability of fatigue rates. This setup yields a lower estimated success
rate at design time—within the range [0.536, 0.636]—which would urge the
analyst to redesign the robotic mission. A possible reconfiguration consists
of a simplification of the benchmark scenario: the patient follows the robot
directly to the doctor’s office, and, subsequently, the robot can serve the
doctor and follow them to the cupboard’s location. This re-planning so-
lution exposes the patient to a single relocation instead of two, reducing
their overall cumulative fatigue. Repeating the SMC experiment with the
updated mission design and the same time bound as Exp. 4 (indicated as
Exp. 4bis in Table 15.2) leads to a success probability higher than 95%.
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CHAPTER16
Model-Driven Framework Validation

This chapter presents the results obtained while validating the overall
framework.a Firstly, the accuracy of the design-time analysis phase
is assessed through three case studies by comparing the formal veri-
fication outcomes with field data. Estimation errors for the physical
variables and scenario outcomes are all smaller than 10%.

For the second phase, realistic service robotic scenarios are mined
from the literature to assess whether they could be analyzed through
the framework, showing a coverage percentage of 80%. Three scenar-
ios are then presented that synthesize common features from real-life
examples and put through design-time analysis and deployment to as-
sess the framework’s efficacy with more complex missions.

Finally, the added value of the model adjustment phase is assessed.
Specifically, the three scenarios from the second phase are re-assessed
with a refined model of human behavior obtained through automata
learning. The accuracy gain ranges from 2.4% in the worst case to
30% in the best case.

aThe content presented in this chapter also partially appears in [129] and [131]. The author of this the-
sis declares to have also authored the reproduced text, figures, and data and to have the right to reproduce
such content in a dissertation according to the license under which both articles are published.
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16.1 Validation Goals

The validation process addresses the following questions:

G1. Is the formal model presented in Chapter 6 adherent to the physical
robotic system, and how accurate are SMC results?

G2. Is the model-driven framework described in Chapter 4 practical and
useful while developing interactive scenarios with multiple subjects
and services? More specifically, we evaluate:

(a) how the DSL supports designers in configuring complex scenar-
ios;

(b) how the design-time analysis phase provides reliable and valuable
insights into the modeled scenario;

(c) how scenarios can be reconfigured to improve key indicators (the
probability of success and estimated fatigue level of human sub-
jects).

G3. What is the impact of the model adjustment phase, thus of learning a
refined model of human behavior, on design-time analysis results?

Both validation phases have been carried out following the framework
workflow in Fig. 4.1. Firstly, we model the scenarios through the DSL
described in Section 5.2. The case studies feature one mobile robot pro-
viding services (in compliance with the patterns presented in Section 5.1)
to one or multiple humans. Agents operate within the floor layout rep-
resented in Fig. 16.1, corresponding to the third floor of Building 22 of
Politecnico di Milano. Specifically, Fig. 9.1 highlights the POIs, while Fig.
9.2 shows how the real layout is abstracted as a set of rectangular areas
as described in Section 5.2.1. While the physical layout where the robotic
device moves is a university building, its areas are repurposed in the sim-
ulation environment to reproduce a healthcare setting. The layout features
a main entrance ENTR where the robot meets patients to assist them and
two side aisles, each with cupboards containing medical kits (CUP1 and
CUP2), two rooms serving either as waiting rooms for the patients or ex-
amination rooms where doctors administer medications (R1a, R1b, and
R2), and doctors’ offices (OFF1, OFF2, and OFF3).

DSL models1 are automatically converted into a JSON file and finally
into a Uppaal model implementing the SHA network described in Chapter

1The DSL sources are available at https://github.com/LesLivia/hri_dsl.
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ENTR

CUP1 CUP2

R1a

R1b R2
OFF1

OFF3

OFF2

RECH

(a) Points of interest within the experimental setting: the entrance and recharge station are in orange, cupboards
are in green (CUP1 and CUP2), examination/waiting room entrances are in red (R1a, R1b, and R2), and
doctors’ offices in blue (OFF1, OFF2, and OFF3).

[15.5m] [15.5m]

[18m]

[7.4m]

[6.75m]

[5.85m]

(b) Representation of the layout abstraction as a set of rectangular areas, with wall sizes ([m]) and intersection
points between areas marked by × symbols.

Figure 16.1: Layout used for the experimental validation.

(a) Portion of the simulation scene with the simulated human
and the phantom robot replicating the real robot’s behav-
ior.

(b) Real TurtleBot3 operating
in the physical environ-
ment and reacting to the
human in the simulation
scene.

Figure 16.2: Hybrid real/simulated deployment environment.

6 modeling the specific scenario.2 The framework also automatically sets
up and runs the SMC experiment. For the case studies discussed in this

2The tool to generate the Uppaal model is available at https://github.com/LesLivia/hri_designtime.
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section, we perform SMC through Uppaal v.4.1.26 on a machine running
macOS v.10.15.7 with 4 cores and 8GB of RAM.

All case studies are subsequently deployed as described in Chapter 10
[128].3 We have adopted the digital-twin deployment pattern [161] (see
Fig. 16.2) with a real mobile robot operating in the physical environment
(shown in Fig. 16.2b) and reacting to virtual human subjects in the simula-
tion scene (of which a portion is shown in Fig. 16.2a). The hybrid deploy-
ment environment allows us to verify the adherence of the robotic system’s
model and the orchestrator’s efficacy with a real device while also perform-
ing several runs with (virtual) subjects exhibiting critical fatigue profiles.
Electromyography signals serving as the dataset to simulate fatigue curves
in the simulation environment are provided by [110]. The mobile device is
a TurtleBot3 Waffle Pi.4 Scenarios are deployed using V-REP v.3.6.2 for
the simulation scene, Python v.3.6.9 for the orchestrator script, and ROS
Melodic to communicate with virtual agents and the TurtleBot3 [176]. The
deployment software tools run on a single machine running Ubuntu v.18.04
with 2 cores and 4GB of RAM.

16.2 G1: Formal Model Validation

The purpose of the hereby presented experiments is to assess the accu-
racy of the formal model presented in Chapter 6 and of the SMC results
(validation goal G1). To this end, we perform the design-time analysis as
presented in Chapter 5 on three scenarios, referred to as HF (“Human Fol-
lower”), HL (“Human Leader”) and LB (“Low Battery”), all taking place
in the experimental setup in Fig. 16.1 and described in detail in Table
16.1. The three scenarios are structured to validate the main features of
the formal model: human-robot dyadic leader/follower dynamics, human
fatigue model, robot’s battery model, and orchestrator policies. Therefore,
the three experiments test the formal model with both critical (low battery
in LB and high fatigue in HL) and non-critical elements (high battery in
HF/HL and low fatigue in HF/LB).

We perform SMC with decreasing values of time-bound τ to estimate
the success probability of the three scenarios (i.e., query with QueryType
P_SCS). This corresponds to the value of expression PM(⋄≤τ scs), where
M is the SHA network modeling each mission. SMC experiments are per-
formed in Uppaal with default statistical parameters, thus with ϵ = α =
0.05. We also estimate the maximum human fatigue value (expression

3The tool implementing the deployment approach is available at https://github.com/LesLivia/hri_deployment
4Full documentation is available at https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/.
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Table 16.1: Scenarios used for the formal model validation phase (abbreviation and de-
tailed description). For each service, we indicate the starting location of the human
and the target location as START→ TARGET.

SCENARIO DESCRIPTION MISSION
HF The robot (Tbot) leads the human

(H1) from OFF1 to CUP1. The
robot is sufficiently charged to com-
plete the mission, and the human ex-
hibits a non-critical fatigue profile
(Young/Healthy).

H1 Follower OFF1→ CUP1

HL The robot (Tbot) follows the hu-
man (H1) from OFF1 to CUP1.
The robot is sufficiently charged to
complete the mission, and the hu-
man exhibits a critical fatigue profile
(Elderly/Sick).

H1 Leader OFF1→ CUP1

LB The robot (Tbot) leads the human
(H1) from OFF1 to CUP1. The
robot gets fully discharged during
the mission, while the human ex-
hibits a non-critical fatigue profile
(Young/Healthy).

H1 Follower OFF1→ CUP1

Algorithm 10 Estimation of the success probability CI for a set of deployment tracesDT .

Input: DT , τ , Nh, Tint, α
1: DT scs ← ∅
2: for dt ∈ DT do
3: SVDdt ← {t|t ∈ N ∧ i ∈ [1,Nh] ∧ hi,svd ∈ dt(t)} ▷ Timestamps corresponding

to the end of a service.
4: if |SVD |= Nh ∧max(SVD) ≤ τ − Tint then
5: DT scs ← DT scs ∪ {dt} ▷ All humans have been served within τ − Tint.
6: pl ← ppf(α/2, |DT scs|, |DT | − |DT scs|+ 1)
7: pu ← ppf(1− α/2, |DT scs|+ 1, |DT | − |DT scs|)
8: ϵ← (pu − pl)/2
9: p← pl + ϵ

Output: p, ϵ

EM,τ [max(f)]), and the robot’s residual charge at the end of the mission
(expression EM,τ [min(bchg,%)]), i.e., queries with QueryType E_FTG and
E_CHG, respectively.

Subsequently, we deploy the three scenarios in the digital-twin setting
(see Fig. 16.2) to collect runtime observations, compute the same metrics,
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and compare the results with those obtained at design time. To this end,
we apply a partial replication of SMC (summarized by Algorithm 10) to
the traces collected through deployment to estimate the success probabil-
ity range observed at runtime. We refer to the simulation log and sensor
logs collected during a single run (described in Chapter 10) as deployment
trace. Given deployment trace dt, we indicate as dt(t) the set of data (sen-
sor readings and milestones recorded by the orchestrator, if any) logged at
time t ∈ N. Since the orchestrator records the timestamp at which each
human is served, it is possible to infer from a deployment trace dt whether
the mission ended successfully. If human i ∈ [1,Nh] has been served in
trace dt, there exists t ∈ N such that hi,svd ∈ dt(t) holds. We indicate
as DT the set of all deployment traces collected for a given scenario. Set
SVDdt = {t|t ∈ N ∧ i ∈ [1,Nh] ∧ hi,svd ∈ dt(t)} at Line 3 in Algorithm
10 contains the timestamps corresponding to the completion of a service in
a specific trace dt. Similar to SMC, given a time-bound τ and the set of
collected deployment traces DT , for each deployment trace dt ∈ DT , we
check whether the mission has ended with success within τ (i.e., whether
⋄≤τ scs holds for dt). Algorithm 10 checks through the condition on Line
4 whether set SVDdt has Nh elements (i.e., all humans have been served),
and the maximum of SVDdt is smaller than τ − Tint (i.e., the last human
to be served has been served within the time bound minus the time required
by the orchestrator to process the information). If the condition on Line 4
is verified, trace dt constitutes a success and is added to set DT scs by the
instruction on Line 5.

Algorithm 10 computes PDT (⋄≤τ scs) in terms of a confidence interval
of the form p ± ϵ with confidence level 1 − α. We adopt the Clopper-
Pearson approach for binomial distributions to compute the CI, as it is
also exploited by the Uppaal tool. Specifically, pl = p − ϵ can be calcu-
lated as the α-quantile of a Beta distribution with parameters successes and
trials− successes+ 1 (Line 6), while pu = p+ ϵ can be calculated as the γ-
quantile with γ = 1−α and parameters successes+ 1 and trials− successes
(Line 7) [194].5 Unlike point estimator successes/trials, this procedure also
provides an insight into the variability of the success rate (i.e., the value of
ϵ) and how its value changes as more runs are performed.

The results of the SMC experiments, the time and runs necessary to
complete it with the required level of confidence, and the fatigue and charge
estimations are reported in Table 16.2 (marked as DT, “Design Time”). The

5The Python implementation exploits the scipy.stats.distributions.beta.ppf function (referred to as ppf
in Algorithm 10) from the SciPy library to calculate the required quantiles. Full documentation available at:
https://docs.scipy.org.
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success probability ranges estimated for scenarios HF, HL, and LB through
Algorithm 10 are reported in Table 16.2 (marked as DEPL, “Deployment”).

Results in Table 16.2 corroborate the intuition that, for decreasing val-
ues of τ , the probability of success decreases both at design time and dur-
ing deployment. Experimental results with the largest difference between
design time and deployment estimations are highlighted in grey. We se-
lect values of parameter τ to be displayed in Table 16.2 corresponding to
probability ranges in three macro-intervals: high success probability (i.e.,
with p > 80%), average success probability (i.e., with 40% < p < 70%),
and low success probability (i.e., with p < 25%). Scenarios HF and HL
require 75s and 50s, respectively, to end successfully with probability ap-
proximately equal to 1. At the same time, it drops to approximately 20%
when the analysis is bounded to 34s and 33s.

The variability of the success probability between runs within 34s (for
HF) or 33s (for HL) and those requiring up to 75s is due to the human stop-
ping haphazardly during the mission as described in Section 6.3, causing a
delay in the completion of the mission. As shown in Table 16.2, the con-
figurations with the largest difference between design-time and runtime es-
timations of the success probability (highlighted in grey) are also the ones
requiring the largest number of traces for the SMC experiment (395 and
389 compared to the 110 and 120 performed in the physical setting). This
is due to how PM(⋄≤τ scs) and PDT (⋄≤τ scs) are calculated: if traces that
have been generated or collected are consistent with each other (e.g., they
are all successful), it takes a smaller set of traces to obtain a certain value
of ϵ than when the number of successes fluctuates. Indeed, the estimated
success probabilities resulting from the configurations requiring the largest
number of runs (395 for HF and 389 for HL) are also the closest to 50%. In
the worst case, the values of p estimated at design-time and runtime differ
by 6.7% (for HF) and 1.4% (for HL) while this drops to 0.2% in the best
case.

Data collected through the three scenarios are also necessary to assess
whether the formal model accurately captures the robot’s battery voltage
drop (i.e., the battery discharging while the robot is operative). To esti-
mate the expected value of the minimum charge for the same decreasing
values of τ used for the success probability ranges, we calculate the value
of expression EM,τ [min(bchg,%)] in Uppaal (column DT) and the average
of minimum values logged for each deployment trace EDT ,τ [min(bchg,%)]
(column DEPL). Table 16.2 reports the battery charge percentage estima-
tions at time τ for the three scenarios, highlighting, as in previous cases,
the configurations leading to the largest estimation error. We recall that
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Figure 16.3: Graph representing the battery voltage (Q [V]) evolution during a complete
TurtleBot3 discharge/recharge cycle (approximately 140min each). Dots represent
real voltage sensor readings. The red and green lines are the fitted discharge and
recharge curves. Black dashed lines mark the voltage values corresponding to 100%
(about 12.4V) of the charge and 0% (11.0V). The red dashed line marks the time
instant where the design-time estimation is the least accurate.

the differential equations obtained by deriving Eq.6.3 and Eq.6.4 constrain
the battery voltage ([V]), whose value in the real system is directly mea-
sured through a sensor. The percentages shown in Table 16.2 are calculated
according to Eq.16.1, where bchg represents the dense counter presented
in Section 6.2.2 (for column DT) or the value shared by the real sensor
(for column DEPL), Cfail is the lowest voltage value allowed by the device
(as presented in Section 6.2.2), and Cfull is the (approximate) voltage value
when the battery is fully charged.

bchg,% =
bchg − Cfail

Cfull − Cfail
· 100 (16.1)

For the three scenarios, we estimate the residual battery charge, assum-
ing that C0 is set to 99%, 75%, 0.8% for HF, HL, and LB, respectively. The
largest estimation error is 0.61% for HF and 0.53% for HL. Unsurprisingly,
charge-related estimations are more accurate than human fatigue, which has
a higher degree of variability and is subject to the human’s unforeseeable
choices. Nevertheless, the time span required for the scenarios is orders of
magnitude shorter than a full battery discharge cycle (approximately 2.5h).
Therefore, while these estimations provide insights into how accurate the
model is in the range of seconds, we have also assessed its accuracy in the
longer run.

We have recorded the real battery sensor readings over the course of
three full discharge/recharge cycles. This set of data has been used to fit pa-
rameters in Eq.6.3 and Eq.6.4 governing the evolution of real-valued vari-
able Q in the SHA. Fig. 16.3 shows the voltage curves (modeled in SHA
through real-valued variable Q) resulting from the fitting (red and green
lines), compared against the actual sensors readings of a fourth complete
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discharge/recharge cycle (grey dots). Sensor readings used to fit the curve
parameters and those shown in Fig. 16.3 are different data sets. The largest
estimation difference (also highlighted in Fig. 16.3) is 0.54%, comparable
to the previously described differences obtained with the three scenarios.
The fitted model must be evaluated assuming that experiments were car-
ried out in a layout that is relatively free of obstacles and does not require
complex trajectories (i.e., the layout mostly consists of straight corridors).
Therefore, the impact of turns or obstacle avoidance in this situation is neg-
ligible, and the model shows good accuracy without considering these fac-
tors. However, should the framework be deployed in a more critical setting,
different parameters or a more complex discharge cycle model should be
employed to keep the same degree of accuracy.

Scenario LB requires a separate analysis. This experiment aims to assess
whether the formal model accurately captures reality in a boundary condi-
tion where the robot’s charge is insufficient to complete the mission (as
previously mentioned, in this case, C0 is 0.8%). When the mission starts,
since the charge level is too low (c ≤ Clow holds), the orchestrator im-
mediately instructs the robot to start moving towards the recharge station,
which, however, requires about 3.5min to be reached. In contrast, the robot
has only 2.5min of battery life left. The design-time analysis correctly pre-
dicts this outcome as the mission has 0% success probability within 150s
(see Table 16.2), and all the collected deployment traces end in failure.

No fatigue estimation is provided in this case since the human never
starts moving. As a matter of fact, the robot needs to recharge as soon
as the mission starts, thus the orchestrator immediately enters submachine
rrech (see Fig. 6.14) without sending any instructions to the human. As
per Formula 6.15, failure occurs when voltage drops sufficiently close to
0%, which is why the estimation reported in Table 16.2 is not exactly 0%.
However, the estimated probability of failure is still 1. On the other hand,
the negative percentage estimated from deployment traces is due to how the
real device works. As soon as the detected battery voltage equals 11V, the
device will start emitting an acoustic signal to notify the need to recharge,
it will beep for a few seconds and then stop sending power to the motors
(thus, no motion is possible). From the moment it starts beeping to the
moment it stops moving, the voltage drops slightly below 11V, leading to
the negative percentage (see Eq.16.1).

Concerning the estimation of human fatigue, Table 16.2 reports the max-
imum value estimated through Uppaal (column DT) and from deployment
traces (column DEPL). To estimate the maximum fatigue expected value at
design time, we compute the value of expression EM,τ [max(f)] in Uppaal
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(Table 16.2, column DT), whose result is a 95% confidence interval of the
requested value [46]. The same procedure is applied to the set of deploy-
ment traces DT . For each deployment trace, we calculate the maximum
value of fatigue of the human subject within time bound τ . The so-obtained
values constitute the set of independent samples, of which we subsequently
calculate the 95% confidence level (results are reported in Table 16.2, col-
umn DEPL).

In scenario HF, the human has the least critical fatigue profile (Young/
Healthy), thus it only reaches a fatigue value of approximately 2%. For
this scenario, in the worst case, the largest design-time estimation error
(calculated as the difference between the average value at design time and
observed during deployment) is 1.75%. In HL, the human reaches higher
fatigue values (up to approximately 20%). All intervals calculated from
deployment traces fall within the range estimated at design time. In the
worst case, also highlighted in Table 16.2, the estimation error is 8.6%.
Although design-time estimations pertaining to fatigue are promising, it is
important to remark that the simulator scripts governing human behavior
during deployment directly result from the model-to-code transformation
(presented in [128]) of the SHA described in Section 6.3. Therefore, these
results do not constitute conclusive empirical proof that SHA modeling
humans accurately capture reality. Nevertheless, since simulated sensors
share their readings with the orchestrator over actual ROS topics, the lim-
ited design time-to-deployment errors indicate that modeling patterns deal-
ing with readings update and publishing (i.e., the pattern in Fig. 6.4 and the
RosPubNode pattern presented in [128]) are reliable.

Concerning performance and scalability, given the limited complexity
of the scenarios analyzed in this batch of SMC experiments, verification
experiments performed through Uppaal last between 0.31 and 4.25min. For
the deployment phase, we have performed a total of 337 real runs (110 for
HF, 120 for HL, 107 for LB). By factoring in the time required to perform
each run, reset the layout to its starting configuration at the end of each run,
and the time required to recharge the robot, this corresponds to approxi-
mately 64h of non-stop deployment and runtime data collection. Consider-
ing that, in a real healthcare facility, employees have multiple tasks to deal
with, robots are not actively deployed 100% of the time, and there are time
breaks between shifts, so the data collection phase would take longer.
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16.3 G2: DSL and Design-Time Analysis Validation

After the analysis of the accuracy of the formal model, we focus on the
overall efficacy of the model-driven framework (goal G2).

16.3.1 Real Case Studies Coverage Analysis

To this end, we have analyzed 41 real-world scenarios describing service
robotic applications extracted from [12,14,18,70,99,155]. We remark that
given that service robot deployment is not widespread at the time of writing,
there is no structured repository collecting natural language specifications
of such scenarios; to the best of the authors’ knowledge, the RoboMAX
repository (providing 14 of the 41 identified scenarios) is the first attempt
in this direction [12]. Therefore, the scenario collection phase has been
performed manually by surveying related works in the literature and com-
mercial service robots’ documentation.

Within the set of eligible scenarios, we consider 14 scenarios to fall
outside of the scope of our framework. As our work targets service robot
applications featuring mobile robots that interact with humans, we con-
sider out-of-scope all scenarios featuring robots that operate autonomously
(e.g., performing patrolling or automated room cleaning), are teleoperated
or provide information without expecting any reaction on the human side
(e.g., periodical medication reminders).

As for the 27 scenarios within the framework’s scope, we assess that
24 can be modeled through our framework, leading to a coverage percent-
age of 88.8%. The three scenarios that our framework does not cover fea-
ture: a) exoskeletons, which are considered service robots by standard ISO
13482 [103] (thus, they are in-scope with respect to our framework) but re-
quire different software development practices than mobile robots that our
framework targets; b) cognitive interaction (e.g., comforting children or re-
habilitating cognitive skills of patients recovering from strokes), whereas
our framework targets physical coordination between humans and robots.

16.3.2 DTA of Realistic Healthcare Scenarios

To address goal G2, we have developed three more sophisticated scenar-
ios, referred to as DPa (“Doctor-Patient”), DPb, and DPc, collecting the
most frequent elements of the 24 real-world scenarios found in the litera-
ture (fetch-and-delivery tasks, doctor-patients dynamics, patient greeting,
and transporting items). The three scenarios are described in detail in Table
16.3.
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In all three scenarios, the robot has to serve one (in DPa and DPb) or
two (DPc) pairs of human subjects representing a doctor and a patient. The
robot always accompanies the patient to the waiting room (R1a, R1b, or
R2) first (adhering, thus, to the Follower pattern), and then supports the
doctor in retrieving the instrumentation needed to treat the patient. Doctors
are either Leaders (D1 in DPa and DPb, and D2 in DPc) or Recipients
(D1 in DPc) depending on whether they personally lead the robot to the
destination, or it moves independently and then delivers the resource. For
this experimental phase, the robot’s charge is always sufficient (the opposite
boundary condition has already been investigated with scenario LB), and
patients exhibit more critical fatigue profiles than doctors.

As per Fig. 4.1, the entry point to the design-time phase analysis is the
specification of the scenarios through the DSL presented in Section 5.2.
The complete DSL file for the three scenarios is reported in Appendix B.
All scenarios are set in the same layout (shown in Fig. 16.1), thus, there is
a single definition.

Agents participating in the three scenarios are fixed; specifically, the
DSL features one robot definition (identified as Tbot) and eight human
definitions (P1 and D1 for DPa, P1 and D1 for DPb, and P1, D1, P2, and
D2 for DPc). We recall that the maximum velocity and acceleration for the
robot are directly derived from its type parameter, which, in this case, is
turtlebot3_wafflepi.

Each scenario in Table 16.3 corresponds to a robotic mission, thus, there
are three mission definition blocks defining the sequence of services that
the robot must provide to complete the mission with success.

Finally, queries are defined to compute the metrics required to carry
out this design-time analysis, i.e., the probability of success for decreasing
values of τ , estimated fatigue for all human subjects, and residual battery
charge. Parameter R (the bound on runs) is set to auto, to indicate that
Uppaal should generate as many runs as necessary to compute estimations
with the requested confidence level. As per Fig. 5.2, for each mission (thus,
in our case, DPa, DPb, DPc), a JSON file is automatically generated and
converted into a pair of Uppaal model/query files to perform verification.

We assess the “efficiency” of the DSL in terms of effort saved compared
to manually drafting the SHA network modeling each scenario. To this end,
we calculate the ratio (indicated as DSL2SHA in Table 16.4) between the
size of a DSL instance and the size of the corresponding SHA network. We
compute the size of a DSL model as the number of words needed to config-
ure the scenario. Counting words rather than abstract elements captured by
the DSL gives us a more accurate indication of the DSL’s verbosity: note
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that, since the declaration of each element in Section 5.2 requires at least
one word, counting abstract elements would result in more favorable ratios.
Given a SHAA, we compute its size, indicated as |A| according to Eq.16.2:

|A| = |E|+ |Γ(W )|+ |C!?|+ |Ξ(W )|+ |L|+ |D|+ |F|+ |W | (16.2)

The size of a network of SHA equals the sum of the sizes of all the SHA
that compose it. Table 16.4 reports the resulting ratios.

SMC results are reported in Table 16.4 and discussed in the follow-
ing. For this validation phase, the duration of verification experiments per-
formed through Uppaal ranges from 16.36min to 175.68min in the worst
case (i.e., scenario DPc, which has the most complex robotic mission and
highest τ values). Unlike the previous phase, in this case, the goal is to test
the framework’s efficacy when developing realistic scenarios. Therefore,
we do not collect a large batch of deployment traces to keep the duration
of the deployment phase more practical (i.e., shorter than 1h). Given the
smaller number of deployment traces that have been collected, the proba-
bility of success of the deployed system is not calculated through Algorithm
10, as it would yield scarcely significant CIs.

In this case, we adopt point estimator p given by the percentage of suc-
cessful runs as specified by Eq.16.3, where DT is the set of deployment
traces and set SVDdt is calculated from a deployment trace dt ∈ DT as in
Algorithm 10, Line 3.

p =
|{dt|dt ∈ DT ∧ |SVDdt| = Nh ∧max(SVDdt) ≤ τ − Tint}|

|DT | · 100
(16.3)

Metrics related to fatigue (for each human subject) and battery charge are
computed as in the previous validation phase.

Through the design-time analysis, we estimate that the three scenarios
require a τ of approximately 7min, 9min, and 25min, respectively, to end
in success with probability greater than 90%. As previously mentioned, the
robot’s charge is not critical for any of the scenarios. Although DPc is the
most demanding in terms of the robot’s power since the initial charge C0 is
99%, the estimated residual charge at the end of the mission is greater than
60%. Doctors (i.e., agents D1 and D2) all adhere to the Elderly/Healthy
fatigue profile, thus they do not constitute a criticality to the mission. As
per Table 16.4, they reach an estimated maximum fatigue level between
2.18% and 3.7%, in particular, D1 in DPc (who participates in the Re-
cipient pattern) reaches the lowest fatigue value (0.6%) as they only move
haphazardly out of free will while waiting for the robot to deliver the re-
source (see Section 6.3.3). On the other hand, as expected, patients reach
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more critical values. We remark that, although they walk for longer, patient
P1 in all three scenarios reaches fatigue levels compatible with those esti-
mated for HL because they have time to rest while the robot is assisting the
doctor.

The design-time analysis highlights that the most concerning aspect among
the three scenarios is the fatigue level reached by patient P2 in DPc, as they
also adhere to a critical fatigue profile (Elderly/Sick) and have to cover
a significant distance from R1b to OFF3. For all experiments, thresh-
old Fhigh (see Table 6.4) is set to 0.6. Therefore, some traces of the for-
mal model feature the orchestrator instructing P2 to stop and rest (when
f ≥ Fhigh holds), causing a delay in the mission. We remark that this safety
measure embedded in the orchestrator is necessary to prevent the patient
from reaching the maximum value of fatigue. Still, it is not sufficient to
prevent them from reaching a significant (average) fatigue level (i.e., ap-
proximately 60%).

Results observed by deploying the scenarios in the hybrid setting cor-
roborate the outcomes predicted at design time. As in the first validation
phase, Table 16.4 highlights the results corresponding to larger estimation
errors. Specifically, success probability ranges estimated at design time and
reported in column DT (we recall that rates in column DEPL are point es-
timators and, thus, not reported as ranges) are the least accurate when the
average success rate is closer to 50% or 60% (DPa with τ = 350s and DPb
with τ = 450s, also highlighted in grey). On the other hand, estimations of
the fatigue level have design time-to-deployment differences ranging from
approximately 5% in the best case (D1 in DPc) to 16% in the worst case
(D2 in DPc, also highlighted in grey). Nevertheless, we recall that, al-
though errors are larger than those obtained with the first three scenarios,
these are not an indication of inaccuracies within the formal model as only
5 deployment traces are performed for DPa, DPb, and DPc (compared to
more than 100 for the previous validation phase).

Given the results of the first design-time analysis round and the data col-
lected during deployment, the designer in charge of developing and main-
taining these scenarios may choose to apply reconfiguration measures and
refine the three robotic missions as described in Section 4.2.

The reconfiguration measures applied to the three scenarios (hereinafter
referred to as R-DPa, R-DPb, and R-DPc) and the updated sequences of
services are described in Table 16.5. Since the robot’s battery was not a
critical element in the first round of analysis, replacing the robot with a
different one or recharging it would not impact the updated results.

For scenarios DPa and DPb, the sequence of services (i.e., the robot’s
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Table 16.5: Reconfiguration measures applied to scenarios DPa, DPb, and DPc, and
updated sequence of services.

SCENARIO RECONFIGURATION MEA-
SURES

MISSION

R-DPa The robot (Tbot) leads P1 directly
to R2, then it serves D1 by follow-
ing them to CUP1 and back to R2.

P1 Follower ENTR→ R2,
D1 Leader R2→ CUP1,
D1 Leader CUP1→ R2

R-DPb The robot (Tbot) serves D1 first by
fetching the resource from CUP2
and follows them to R2, then it
serves P1 and leads them to R2.

D1 Recipient OFF2↔ CUP2,
D1 Leader OFF2→ R2,
P1 Follower ENTR→ R2

R-DPc
The robot (Tbot) leads P2 to R1b
first and then provides the same
sequence of services as scenario
DPc.

P2 Follower ENTR→ R1b,
P1 Follower ENTR→ R1a,
D1 Recipient OFF1↔ CUP1,
D2 Leader OFF3→ CUP2,
D2 Leader CUP2→ OFF3,
P1 Follower R1a→ OFF1,
P2 Follower R1b→ OFF3

mission) is modified to reduce the time required to complete the mission
or, in other words, to obtain a high probability of success for smaller values
of τ . In these two cases, the patient is led straight to the examination room
rather than to the waiting room first.6

As for the third scenario, the goal is to lighten the strain on the patient
in the most delicate condition. Therefore, the robot serves P2 first and
leads them to the doctor’s office last to allow them a longer recovery time
while in the waiting room. Table 16.6 reports the DSL2SHA ratio for the
reconfigured scenarios. Note that the ratio is unvaried for R-DPc since only
the order in which humans are served is changed. On the other hand, for
R-DPa and R-DPb, removing one human declaration (13 words) reduces
the SHA network size by 11% and 10.8%, respectively.

The results of the second round of design-time analysis are reported in
Table 16.6. Quality metrics report a slight improvement compared to the
first round of analysis since the robotic mission is shorter for R-DPa and R-
DPb. In this case, verification time ranges from 10.54min to approximately
149.31min in the worst case, as scenario R-DPc is substantially unvaried
in terms of performance.

6Note that, in a real healthcare facility, this may not be feasible in all cases: the examination room must either
be empty when P1 is served or equipped to host more than one patient simultaneously.
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Chapter 16. Model-Driven Framework Validation

Estimations inform us that for R-DPa and R-DPb, the updated mission
can be completed successfully in less time as we obtain a success prob-
ability > 90% for τ equal to 300s and 350s, respectively (compared to
400s and 520s for the initial configuration). Since the patient only walks
from the entrance to R2, their estimated maximum level of fatigue is also
approximately 60% (in R-DPa) and 43% (in R-DPb) lower than fatigue es-
timations obtained with DPa and DPb, respectively. In contrast, the value
remains essentially unchanged for D1 as they perform the same actions as
in the original scenario.

For R-DPc, we observe that allowing P2 more time to rest in the waiting
room reduces their maximum fatigue level by 37%. Furthermore, as they
do not reach the critical threshold Chigh = 60% anymore, the orchestrator
does not instruct them to stop mid-service, leading to a slight reduction in
the duration of the mission.

16.4 G3: Model Adjustment Impact Analysis

We illustrate the effectiveness of the model adjustment phase through six
experimental scenarios from the healthcare setting (goal G3). This section
mainly discusses how the learning procedure based on data collected at
runtime reduces the error of verification results when exploiting automata
learned through a batch of deployment traces to estimate the outcome of
new scenarios.

Scenarios take place in the layouts shown in Fig. 16.1 and Fig. 7.2a.
DP0 is the benchmark scenario used in Chapter 15, while DPa, DPb, and
DPc are described in Table 16.3. MR1 and MR2 result from the two alter-
native paths for the scenario presented in Section 7.2, with Nr = 2 and both
robots set at C0 = 30% (thus, two task handovers occur).

The workflow in Fig. 4.1 is followed. The designer configures the sce-
nario (i.e., the layout, the involved agents, humans and robots, and the ser-
vices constituting the robotic mission), and the tool automatically generates
SHA network M. For the first round of design-time analysis, the SHA net-
work features the manually drafted version of automata modeling human
behavior, of which Fig. 3.1 shows a snippet. Subsequently, SMC exper-
iments are performed to estimate the probability of success of the robotic
mission for decreasing values of time-bound τ . For all scenarios, we cal-
culate through Uppaal the value of expression E≤τ̂ [max(FHUM)], which is
the maximum fatigue reached by each human (indicated as HUM) with the
highest time bound considered for that scenario (indicated as τ̂ , e.g., 340s in
DP0). The results of the first round of design-time analysis for all scenarios

288



16.4. G3: Model Adjustment Impact Analysis

C
S

τ
Su

cc
es

sP
ro

ba
bi

lit
y

([
%
])

P M
(⋄

≤
τ
sc
s)

C
om

pl
ex

ity
|M

|(
[×

1
0
3
])

Ve
ri

fic
at

io
n

Ti
m

e
[m

in
]

H
U

M
E

xp
.F

at
ig

ue
([
%
])

E
≤

τ̂
[m

a
x(
F

H
U
M
)]

D
T-

1
D

T-
2

D
E

P
L

∆
E

p
(τ

)
D

T-
1

D
T-

2
D

T-
1

D
T-

2
D

T-
1

D
T-

2
D

E
P

L
∆
E

f
(τ̂

)

D
P

0
3
4
0
s

9
5
.0

±
5

8
3
.5

±
5

8
0
.5

-1
4
.3

1
7
5
.9

2
6
7
.5

6
.7
4

1
4
.4

P
1

D
1

2
4
.6

±
4

5
.4

±
1

3
9
.2

±
7

7
.4

±
1

4
1
.4

6
.8

-3
5
.2

-1
1
.4

2
6
0
s

5
6
.5

±
5

4
4
.5

±
5

4
1
.3

-2
9
.1

4
.5
0

1
0
.0

1
8
0
s

1
2
.5

±
5

9
.4
8
±

5
8
.7
5

-3
4
.5

2
.4
7

6
.1
1

D
P

a
5
0
0
s

9
5
.0

±
5

7
9
.3

±
5

7
4
.0

-2
1
.2

1
7
5
.9

2
6
7
.5

1
6
.4

3
4
.8

P
1

D
1

2
0
.4

±
3

5
.5

±
1

3
8
.4

±
7

6
.2

±
1

3
1
.1

5
.8
8

-1
0
.7

-1
.0

3
2
5
s

5
8
.6

±
5

4
6
.7

±
5

4
0
.0

-2
9
.8

9
.0
9

2
0
.9

2
0
0
s

6
.5

±
5

5
.0

±
5

5
.0

-3
0
.0

4
.6
7

1
4
.8

D
P

b
5
8
0
s

9
5
.0

±
5

7
5
.3

±
5

8
1
.0

-1
0
.2

1
7
9
.3

2
9
1
.5

1
4
.8

3
2
.0

P
1

D
1

2
1
.7

±
1

7
.6

±
2

4
1
.0

±
3

1
3
.4

±
2

3
4
.2

1
0
.9

-1
6
.7

-7
.5

4
5
0
s

6
0
.2

±
5

4
5
.5

±
5

4
9
.0

-1
5
.7

8
.0
8

1
4
.7

3
0
0
s

6
.6
7
±

5
1
1
.0

±
5

1
0
.0

-2
3
.3

4
.7
5

8
.3
4

D
P

c

1
5
0
0
s

9
3
.7

±
5

7
4
.1

±
5

8
0
.0

-9
.8

1
9
3
.4

3
9
7
.0

3
1
.6

9
2
.1

P
1

2
2
.6

±
4

3
2
.7

±
2

2
8
.6

-1
3
.2

1
4
0
0
s

7
4
.2

±
5

5
5
.6

±
5

6
1
.0

-1
2
.8

2
4
.9

7
0
.9

D
1

5
.9

±
1

4
.4

±
3

5
.1

-2
.0

1
3
0
0
s

3
7
.9

±
5

2
5
.2

±
5

2
8
.0

-2
5
.4

2
0
.9

5
4
.3

P
2

5
1
.9

±
3

6
2
.9

±
9

6
1
.7

-1
3
.9

1
2
0
0
s

6
.5

±
5

5
.0

±
5

5
.0

-3
0
.0

1
8
.5

3
7
.6

D
2

2
.2

±
1

2
.8

±
1

2
.4

8
.3

M
R

1

1
2
0
0
s

9
5
.0

±
5

8
5
.1

±
5

8
9
.0

-2
.4

3
7
1
.7

6
2
6
.8

2
6
.0

8
9
.9

P
1

D
1

D
2

3
9
.4

±
3

2
.8

±
1

1
.2

±
1

4
8
.3

±
4

2
.9

±
1

1
.8

±
1

4
6
.9

3
.1

1
.5

-1
2
.9

-3
.2

6
.9

1
0
0
0
s

6
3
.5

±
5

4
5
.5

±
5

5
1
.0

-1
3
.7

1
6
.3

5
1
.6

8
0
0
s

2
7
.9

±
5

2
3
.7

±
5

2
2
.0

-1
9
.1

1
2
.9

3
3
.4

7
0
0
s

6
.8
9
±

5
6
.3
4
±

5
6
.0

-9
.2

8
.7
0

1
4
.5

M
R

2

1
2
0
0
s

9
1
.2

±
5

8
1
.3

±
5

8
0
.0

-1
2
.4

3
6
8
.3

6
0
2
.8

2
8
.7

8
3
.8

P
1

D
1

D
2

3
5
.7

±
2

4
.0

±
3

1
.5

±
1

4
3
.6

±
2

7
.4

±
3

1
.8

±
1

4
0
.4

5
.8

1
.6

-1
1
.6

-3
.4

5
.0

1
0
0
0
s

5
8
.6

±
5

4
2
.4

±
5

4
7
.0

-1
4
.9

1
7
.1

5
0
.4

8
0
0
s

2
4
.5

±
5

1
8
.7

±
5

2
1
.0

-5
.7

1
3
.7

3
7
.5

7
0
0
s

7
.6
8
±

5
6
.8
1
±

5
5
.0

-1
7
.4

7
.4
6

1
2
.9

Ta
bl

e
16

.7
:

E
xp

er
im

en
ta

lr
es

ul
ts

ob
ta

in
ed

fr
om

th
e

ca
se

st
ud

ie
s

(C
S

).
Fo

r
ea

ch
sc

en
ar

io
,t

he
co

m
pl

ex
ity

of
th

e
SH

A
ne

tw
or

k
(|M
|)

is
th

e
cu

m
ul

at
iv

e
si

ze
of

its
SH

A
(o

ne
fo

r
ea

ch
ag

en
t)

,w
hi

ch
is

a
fu

nc
tio

n
of

th
e

nu
m

be
r

of
lo

ca
tio

ns
,e

dg
es

,a
nd

of
th

e
ca

rd
in

al
ity

of
va

ri
ab

le
s’

do
m

ai
ns

.

289



Chapter 16. Model-Driven Framework Validation

are shown in Table 16.7 (columns DT-1).
Secondly, we exploit the virtual deployment environment to gather a

large amount of data without putting a strain on real subjects. Through
the simulation environment, we replicate a broader spectrum of human be-
haviors affecting the fatigue curve throughout the scenario.7 These actions
range from running and carrying loads (which are daily tasks for healthcare
professionals) to sitting or standing in an uncomfortable environment (i.e.,
with a very low or very high room temperature or a high degree of humid-
ity, such as in field hospitals). We perform multiple simulations of scenario
DP0 to collect a large batch of runtime observations (i.e., traces), serving as
training data as human subjects perform a wider range of actions than the
ones captured by the initial SHA. For this specific experiment, 5407 traces
(with automated human avatars) have been collected, each lasting approxi-
mately 340s. To obtain the same amount of data in a physical environment,
running the application non-stop for 21 workdays would be necessary.

Collected runs are fed to L∗SHA to learn human behavior. With this train-
ing dataset, L∗SHA terminates in approximately 37min returning an SHA
modeling human behavior that has five times the number of locations than
the original one (i.e., the outcome of Exp.5 described in Section 15.2). The
updated SHA modeling human actions are then plugged into the SHA net-
work to repeat the design-time analysis, for all scenarios, with the refined
model (columns DT-2 in Table 16.7).

The learned model is tested with scenarios different than DP0 (i.e., the
source of training data). DPa, DPb, and DPc are deployed in the hybrid
setting with a real robotic device, while MR1 and MR2 are fully simu-
lated. Runtime observations collected while deploying these five scenarios
(collectively, 500 runs) serve as testing data.

Table 16.7 reports the success rate and maximum fatigue level observed
at runtime (columns DEPL). Testing scenarios are newly verified with Up-
paal with the refined model of human behavior to evaluate how the learn-
ing phase reduces the estimation error of SMC results, as explained in the
following. Let XDT-i(τ) be the average of metric X (the success rate or
fatigue level) calculated in Uppaal with time bound τ for phase i ∈ {1, 2}.
Let XDEPL(τ) be the average value of metric X observed at runtime within
time bound τ . Let EX,i(τ) be the error between estimation XDT-i(τ) and
XDEPL(τ), calculated as in Eq.16.4.

7The extended set of human behaviors is not exploited for the experimental validation of G1, given that its
goal is to assess the accuracy of the formal model (specifically, the robot’s and the battery’s model) when it
behaves correspondingly to the real setting, i.e., in ordinary conditions.
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16.4. G3: Model Adjustment Impact Analysis

EX,i(τ) =
|XDT-i(τ)− XDEPL(τ)|

XDEPL(τ)
· 100 (16.4)

We indicate as ∆EX(τ) = EX,2(τ)− EX,1(τ) the difference between the
error with the model learned through L∗SHA and the initial model. When
∆EX(τ) is negative, SMC results obtained through the SHA network (par-
tially) learned by L∗SHA are more accurate than the manually drafted network
(EX,1(τ) > EX,2(τ) holds). Since L∗SHA is the first automata learning algo-
rithm targeting SHA, we can internally assess its impact on our design and
development framework. Still, we cannot evaluate its performance against
that of alternative algorithms.

The source of the large estimation errors of DT-1 experiments is the
broader range of actions that humans perform at runtime, which are not
captured by the initial SHA network but learned through L∗SHA and taken
into consideration for DT-2 experiments. To highlight the gap between
known human actions before and after the learning phase, Fig. 16.4 shows
how long, on average, the subjects from scenario DP0 spend in each state
of the SHA modeling human behavior (e.g., stand and walk in Fig. 3.1).
The upper bar plot shows the distributions for the initial behavior model,
whereas the bottom bar plot shows the distributions for the SHA learned by
L∗SHA. Distributions are obtained by analyzing 1000 traces of the SHA net-
work generated through Uppaal. The plot highlights how human behavior
has a significantly higher degree of variability than the one accounted for
by the initial model. More specifically, the refined model features locations
with more critical fatigue rate distributions (e.g., walking in uncomfortable
environments), which justify the gap between the two rounds of fatigue
estimations.

When exploiting the model learned through L∗SHA to estimate fatigue for
all subjects of scenarios other than DP0 (i.e., the source of traces used for
learning), we obtain ∆Ef (τ̂) < 0 in 11 cases out of 14, indicating that the
learning procedure results in a formal model that more accurately captures
reality. The three subjects for which ∆Ef (τ̂) ≥ 0 holds are professionals
with non-critical fatigue profiles, indicating that the learned model may
lead to an overestimation of the fatigue level for this category of subjects.
We remark that, in both rounds, for these subjects, the estimated fatigue
levels are not critical (< 10%). Thus, small fluctuations do not overturn the
result of the design-time analysis.

As shown in Table 16.7, DT-1 experiments establish that all scenarios
can be completed successfully with probability greater than 90% with τ
ranging from about 6min (for DP0) to 25min (for DPc). For decreasing
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Figure 16.4: Average time ([s]) spent by the case study subjects in each state of the human
behavior model state. States that are only feasible to a professional (resp. patient) are
marked with a (D) (resp. (P)). The bars’ color code is shown at the bottom.

values of τ , the success probability decreases since the agents do not have
sufficient time to complete their tasks. Nevertheless, as per Table 16.7, the
success rate observed at runtime (column DEPL) is lower than its initial
estimation. Fatigue impacts the probability of success since the orchestra-
tor (i.e., the robot’s controller) instructs humans to stop and rest when their
fatigue level exceeds a critical threshold, leading to a delay in complet-
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ing the mission (thus, the success probability within a specific time-bound
decreases). The error reduction of fatigue estimation corresponds to an
improvement in the success probability calculation. As for success proba-
bility, we obtain ∆Ep(τ) < 0 for all scenarios and all time-bounds.

16.5 Discussion

We can summarize how we have addressed the validation goals as follows:

G1. We have performed more than 300 runs of three experimental sce-
narios in a digital-twin environment involving simulated humans and
a real robotic device communicating via ROS. Collected deployment
traces have been exploited to assess the accuracy of the formal model
and SMC results.

G2. We have assessed the coverage of our development framework with
respect to existing real-world scenarios in the service robotics domain.
Then, we collected the most recurring tasks within the set of real ap-
plications into three scenarios to be analyzed and developed through
our framework. In this regard:

(a) We have assessed the efficiency of the presented DSL by calculat-
ing the number of words necessary to configure the whole SHA
network (i.e., the DSL2SHA metric).

(b) We have analyzed the three scenarios at design time and the re-
sults of such analysis are reflected by the deployment traces.

(c) We have reconfigured the three scenarios in light of the collected
deployment traces and iterated the design-time analysis.

G3. We have exploited the outcome of automata learning resulting from
deployment traces of a benchmark scenario to perform the design-
time analysis of five different scenarios and assessed the accuracy gain
resulting from the refined model of human behavior.

Concerning the analysis of the formal model accuracy (goal G1), as dis-
cussed in Section 11.4, we obtain relative estimation errors for the proba-
bility of success and charge level smaller than 10% also in boundary condi-
tions, e.g., involving subjects with a critical fatigue profile or a robot close
to complete discharge. Success probability and minimum battery charge
ranges provide empirical evidence of the reliability of the SHA modeling
the robotic system. Since we have only performed experiments with virtual
human agents whose model derives from literature analysis, the validation
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Chapter 16. Model-Driven Framework Validation

of the formal model of human behavior needs further investigation. As fu-
ture work, the validation process is to be completed by performing exper-
iments with real human subjects to assess the accuracy of SHA modeling
human behavior.

Coverage analysis (enabling the pursuit of goal G2) yields that more
than 80% of the collected real-world scenarios within the scope of this work
can be designed and deployed through the presented framework. The anal-
ysis carried out on scenarios DPa, DPb, and DPc shows how the frame-
work supports practitioners throughout the entire development process by
automating the generation of the formal model and the deployment of the
resulting application.

The analysis of the DSL2SHA ratio (smaller than 30% in all cases)
shows that the DSL requires less effort than manually drafting the formal
model (goal G2a). DSL2SHA values show that the DSL grows more effi-
cient than the manual creation of the formal model as the size of the SHA
network in question increases. This is because the portion of DSL config-
uring the geometrical layout (which is the same for all scenarios in Section
11.5, regardless of the mission’s complexity) is the most verbose element.
This issue will be addressed in the future by automatically acquiring the
information regarding the layout from planimetry data to boost the DSL’s
efficiency significantly.

Indicators estimated through the design-time analysis phase of the three
scenarios are corroborated by the observations collected during deployment
(goal G2b). With a small number of deployment traces (i.e., 5), relative es-
timation errors do not exceed 16%. As for goal G2c, reconfiguration mea-
sures applied to scenarios DPa and DPb (through minor modifications to
the DSL specification) improve the estimated success probabilities with a
time-bound smaller by 25% (300s compared to 400s) and 33% (350s com-
pared to 570s), respectively. As previously discussed, reconfiguring DPc
reduces the physical effort imposed on subject P2.

Concerning the model adjustment impact (i.e., goal G3), the accuracy
gain in estimating success probability ranges from 2.4% to 30% in the best
case (except for the training scenario DP0). These results indicate that the
learning phase, although time-consuming (both in terms of data collection
and L∗SHA running time), is beneficial to the development process, also for
scenarios different than the training one.

Naturally, reducing the error has a price in terms of verification time
given the increased SHA network complexity. Phase DT-1 takes between
2.47min and 31.6min, while, for phase DT-2, SMC experiments last from
6min to 92min in the worst case. For this specific phase, experiments are
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performed with a bound on runs with different values of α to obtain ϵ =
0.05 (as shown in Table 16.7) but isolate the dependency on τ and the size
of the SHA network (indicated as |M| in Table 16.7). Results show that
verification time increases more steeply with τ than with |M|. As Table
16.7 highlights, smaller (in terms of |M|), longer (in terms of τ ) missions
(e.g., DPc with τ = 1500s) take longer to verify than bigger, shorter ones
(e.g., MR1 with τ = 1200s).

295





CHAPTER17
Conclusions and Future Work

This chapter summarizes the contributions presented in this thesis and
the main results that have been obtained and illustrates future research
directions.

17.1 Conclusions

This thesis introduces a model-driven development toolchain for service
robotics applications in which human-robot interaction is a prominent fac-
tor. The ever increasing demand for services, particularly in healthcare due
to a progressively aging society, constitutes a significant challenge in terms
of scalability and effectiveness. A strategic deployment of service robots
in these settings can improve the quality of life of those who request the
service. At the same time, robots and professionals can work cohesively to
lift the latter from clerical and time-consuming tasks.

However, the technological barrier between robotics and the technical
skillset of practitioners remains considerable [60]. The thesis addresses the
lack of software development techniques that consider factors related to
human subjects’ well-being with guarantees of reliability and accessibility.

The presented framework supports practitioners (or designers) from an
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early stage of development of the robotic application through iterative re-
finements until a conclusive design is devised.

A custom DSL enables the specification of the interactive scenarios, pre-
cisely the layout, the agents’ characteristics, and the robotic mission. The
presented formal modeling approach is then exploited to automatically gen-
erate the SHA network capturing the specified scenario and perform formal
analysis through SMC. Verification results provide insight into the outcome
of the mission and the strain it poses on the involved subjects.

The scenario can then be iteratively re-configured until it is ready for
deployment, either on the field or in a simulated environment for further
investigation. Collected data is then fed to a novel active automata learning
algorithm (L∗SHA) to exploit the knowledge accumulated on the field and
adjust the model of human behavior, which constitutes the primary source
of uncertainty in the targeted domain.

In the following, we summarize and discuss the framework’s main fea-
tures showcased throughout the thesis.

Dependability

The framework relies on formal methods throughout all phases. Since the
framework targets everyday settings, people without prior training in in-
teracting with robots or proper safety measures are likely to be widely in-
volved. Therefore, the targeted domain is strongly safety-critical and poses
high dependability demands, making the soundness of formal models and
formal verification techniques a valuable asset. However, clear box models
of human decisions (even in contained scenarios) would be intractable with
exhaustive techniques given the considerable volume of possible contingen-
cies. To this end, the probabilistic formalization and the use of SMC lead to
a reasonable trade-off between performance and (probabilistic) guarantees.

The empirical validation presented in Section 16.2 assesses how accu-
rately the formal model captures the real agents on benchmark scenarios.
Results show that, in the worst cases, estimation errors amount to 6.7% for
the success probability, 0.61% for the robot’s battery charge, and 8.6% for
human fatigue.

The accuracy of the deployment framework, exploited to obtain such
results, is assessed in Chapter 11, highlighting errors no higher than 5.35%.
We remark that no standardization exists on maximum allowable errors in
this domain, and thus the decision on whether these thresholds fit a facility’s
policies is left to human investigation.
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Flexibility

Although some of its features are tailored to the healthcare domain, the
presented framework is sufficiently general to be applied to any service
setting. Furthermore, it applies to a wide variety of scenarios of which the
different experimental validation activities presented throughout the thesis
analyze 12 with further variations.

The flexibility of the approach is more thoroughly investigated through
the coverage analysis presented in Section 16.3.1. The analysis assesses
that 24 out of 27 realistic scenarios collected by surveying the literature and
industrial use cases (also serving as a source of inspiration for the scenarios
used for empirical validation) are covered by the framework, leading to a
coverage rate higher than 85%.

Furthermore, we remark that, as outlined in Section 12.1, the L∗SHA al-
gorithm developed for this thesis is domain-agnostic and applicable to any
CPS that meets a specific set of requirements. As a matter of fact, besides
human behavior learning, which is the main focus of this thesis, it has been
tested on a different real-life use case dealing with the energy consumption
of machining centers as presented in Section 13.3.

Adaptability

As previously discussed, humans constitute a critical source of uncertainty
for the targeted domain. For a model-driven approach, the unavoidable
model-to-reality gap constitutes a significant threat to the validity of the
approach itself. Therefore, given that the starting model of human behav-
ior is necessarily an underapproximation, introducing the automated model
adjustment phase is a helpful countermeasure.

As shown by the experimental results in Section 16.4, learning a refined
model of human behavior from field data increases the accuracy of the for-
mal analysis. Specifically, the success probability estimation across the six
benchmark scenarios with the refined model of human behavior is more ac-
curate by 18.1% while the accuracy increase for the fatigue estimation is,
on average, 7.7%.1

We remark that the experiments in Section 16.4 also assess how the
model learned from data related to a particular scenario increases the accu-
racy of the formal analysis of different scenarios. Therefore, the relevance
of these results also relates to the fact that all costs (in terms of time and ma-
chinery/space employment) endured to test a scenario on the field, collect

1The two metrics are calculated as the average of columns ∆Ep(τ) and ∆Ef (τ̂) of Table 16.7, respectively.
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data, and train a new model are damped when depreciate when exploiting
the same refined model on different scenarios.

User-Friendliness

As discussed in Chapter 1, target users of the framework are professionals
without prior training in formal methods or software development. There-
fore, one of the primary objectives of this research work is to keep the
technological barrier as low as possible.

To this end, we have developed a lightweight textual notation (i.e., , the
DSL presented in Section 5.2) to serve as a friendly interface to the over-
all development pipeline. The DSL2SHA indicator presented in Section
16.3.2 (smaller than 30% on all scenarios, including their reconfigured ver-
sions) is an estimate of the manual effort saved on the practitioner’s side
when configuring a scenario through the DSL rather than directly drafting
the formal model in Uppaal.

Furthermore, the workflow is highly automated as per Fig. 4.1. Starting
from the DSL file, the following tasks are performed automatically: gener-
ating the formal model, running SMC, setting up the deployment environ-
ment, mining traces, learning the refined model, and iterating the formal
analysis. The activities currently performed by the designer are the config-
uration of the scenario (which, as previously argued, cannot be automated),
the assessment of the verification results, and the selection of potential re-
configuration measures.

17.2 Future Research Outlook

In the future, the work can be extended in different directions.
Firstly, the current limitations of the approach ought to be addressed.

The framework’s experimental validation presented in Chapter 16 must be
completed by assessing the formal model’s accuracy in capturing real hu-
man behavior. Similarly, a user study can be carried out involving prac-
titioners from the targeted user audience to empirically assess the frame-
work’s accessibility, specifically concerning the DSL configuration phase.

The current phases of the framework can also be further extended. A
study on how cognitive models of the human decision-making process can
be formally modeled and incorporated into the analysis is currently under-
way. Such models will constitute an alternative to the erroneous behavior
model presented in Chapter 8, highlighting different ways the robotic mis-
sion can unravel. The designer will be in charge of selecting the desired
behavioral model during the configuration phase.
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Figure 17.1: Framework’s workflow highlighting the tasks planned as future extensions.
Existing tasks are represented as grey boxes, while future extensions are represented
as white boxes.

On the other hand, SHA modeling human behavior can be further ex-
tended to capture physiological factors other than muscle fatigue, such as
heart rate variability, breathing rate, or cognitive load. Different patterns
may impact each physiological factor differently (for example, an action
that does not cause significant physical strain may stress the subject men-
tally), and this should emerge from the formal analysis.

Although its coverage of existing case studies is satisfactory, the pre-
determined set of interaction patterns may become a limitation in the long
run as more case studies with different interaction contingencies emerge.
To this end, we plan to extend the DSL and the formal model generation
mechanism with new primitives that allow designers to define new interac-
tion patterns and generate the corresponding SHA automatically.

The L∗SHA algorithm and, from a higher-level perspective, the model ad-
justment phase can also be extended. Firstly, the current limitation on the
predetermined candidate flow conditions ought to be lifted. This requires
extending the mi query to identify a possible flow condition for the set of
segments under analysis and assess its similarity with previously identi-
fied functions through proper techniques. Secondly, the algorithm can also
be improved to extend the learning to probability weights on edges (i.e.,
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function P from Definition 1). To this end, the results obtained by Tap-
pler et al. [207] in developing algorithm L∗MDP could be exploited. Finally,
the user-friendliness and flexibility of the overall framework can be further
improved by extending the DSL with primitives to customize the learning
process, i.e., to define which signals are available in the environment and
how they can be exploited to mine traces fed to L∗SHA.

The overall development framework can also be extended to broaden the
analysis as represented in Fig. 17.1.

The deployment phase can be enriched with a technique to monitor the
scenario while it is executing and provide an estimation of its outcome in
real time. However, although SMC is cheaper and faster than exhaustive
model-checking, verification times are typically in the order of minutes or
higher for more complex scenarios. Therefore, obtaining a real-time pre-
diction through SMC before the mission’s end (either in success or failure)
may not be feasible.

To this end, Artificial Intelligence techniques targeting Human-Machine
Teaming (HMT) and explainability can be exploited. The variables of a
scenario that characterize the interaction between the human and the robot
and are highly volatile (i.e., they may significantly vary during deployment
due to environmental reasons) are referred to as HMT factors, which may
be both categorical and continuous. HMT factors include the human’s fa-
tigue profile or the robot’s speed. The scenario configuration defined by the
designer originates a model space containing any possible combination of
HMT factor values. Each combination is subject to SMC to estimate the
corresponding success/failure probability. Since the size of the HMT factor
space is likely extensive, performing SMC for all combinations may not
be feasible; to this end, metaheuristic optimizing search can be exploited
to guide the exploration [23]. The so-obtained success/failure regions are
used to train a classification model (e.g., a Random Forest or Neural Net-
work) that monitors HMT factors at runtime and yields a success/failure
prediction. The classification model also generates a local explanation in-
terpretable by the designer of how HMT factors impact the prediction.

Finally, having to manually choose and apply one or multiple recon-
figuration measures when SMC results are not acceptable is also a current
limitation of the framework. To this end, model abstraction and optimiza-
tion techniques can be exploited. The previously described HMT factor
space can be exploited to abstract the SHA network into a TGA network
with uncontrollable edges capturing the transitions subject to uncertainty.
Tools such as Uppaal Stratego [45] can be exploited to calculate the opti-
mal strategy, i.e., the mission plan that, also in the event of HMT factor
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configuration change, maximizes the probability of success. The resulting
strategy must then be re-converted into a SHA and incorporated into the
original network.

303





APPENDIXA
Learned SHA

All learned SHA described in Chapter 13 and Chapter 15 are shown in full
in the following. Each learned SHA is paired with the reference one (if it
exists) for visual inspection.

A.1 Thermostat CPS

Figure A.1: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.1.
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Figure A.2: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.2.

Figure A.3: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.3.
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A.1. Thermostat CPS

Figure A.4: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.4.

Figure A.5: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.5.
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Figure A.6: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.6.

Figure A.7: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.7.

Figure A.8: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.8.
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Figure A.9: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.9.
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Figure A.10: Mapping between learned SHA (top) and reference SHA (bottom) for
Exp.10.

A.2 Human-Robot Interaction CPS (Model-Driven Experiments)

Figure A.11: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.1.
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A.2. Human-Robot Interaction CPS (Model-Driven Experiments)

Figure A.12: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.2.

Figure A.13: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.3.

Figure A.14: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.4.
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Figure A.15: Mapping between learned SHA (top) and reference SHA (bottom) for Exp.5.
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APPENDIXB
Full DSL Sources

This Appendix contains the DSL configuration of scenarios DPa, DPb,
and DPc from Chapter 16. The complete .dsl file is constituted by the
concatenation of Listings B.1 through B.5.

Listing B.1: DSL section defining layout areas (i.e., the rectangles higlighted in Fig. 9.2)
and POIs: specifically, the entrances to the three offices, to the waiting room and
emergency room, the two cupboards, main entrance, and robot’s recharge station. As
all scenarios are set in the same layout, the DSL features only one layout definition.

1 param m e a s u r e m e n t _ u n i t cm
2 d e f i n e l a y o u t :
3 area a1 in ( 0 . 0 , 1 1 0 . 0 ) ( 1 5 5 0 . 0 , 2 9 9 . 5 )
4 area a2 in ( 0 . 0 , 1 1 0 . 0 ) ( 1 8 5 . 0 , 8 5 0 . 0 )
5 area a3 in ( 0 . 0 , 6 7 2 . 5 ) ( 1 5 5 0 . 0 , 8 5 0 . 0 )
6 area a4 in ( 1 3 5 2 . 0 , 1 1 0 . 0 ) ( 1 5 5 0 . 0 , 8 5 0 . 0 )
7 area a5 in ( 2 9 7 0 . 0 , 1 1 0 . 0 ) ( 4 5 1 2 . 5 , 2 9 9 . 5 )
8 area a6 in ( 2 9 7 0 . 0 , 1 1 0 . 0 ) ( 3 1 5 5 . 0 , 8 5 0 . 0 )
9 area a7 in ( 2 9 7 0 . 0 , 6 7 2 . 5 ) ( 4 5 1 2 . 5 , 8 5 0 . 0 )
10 area a8 in ( 4 3 2 2 . 0 , 1 1 0 . 0 ) ( 4 5 1 2 . 5 , 8 5 0 . 0 )
11 area a9 in ( 1 9 4 5 . 0 , 0 . 0 ) ( 2 6 7 0 . 0 , 6 9 5 . 0 )
12 area a10 in ( 1 3 5 2 . 0 , 1 1 0 . 0 ) ( 3 1 5 5 . 0 , 4 2 5 . 0 )
13

14 poi OFF1 in ( 2 0 0 . 0 , 2 0 0 . 0 )
15 poi OFF2 in ( 4 4 0 0 . 0 , 2 0 0 . 0 )
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16 poi OFF3 in ( 4 4 0 0 . 0 , 7 0 0 . 0 )
17 poi R1a in ( 1 2 0 0 . 0 , 6 8 0 . 0 )
18 poi R1b in ( 4 0 0 . 0 , 2 7 0 . 0 )
19 poi R2 in ( 4 0 0 0 . 0 , 2 7 0 . 0 )
20 poi CUP1 in ( 1 4 0 0 . 0 , 4 5 0 . 0 )
21 poi CUP2 in ( 3 0 0 0 . 0 , 4 5 0 . 0 )
22 poi ENTR in ( 2 3 0 0 . 0 , 6 0 0 . 0 )
23 poi RECH in ( 4 2 5 0 . 0 , 4 5 0 . 0 )

Listing B.2: DSL section defining robot Tbot and its features. As illustrated in Chapter
16, it is a TurtleBot3 Waffle Pi starting with 90% of charge.

1 d e f i n e r obo t s :
2 robot Tbot in ( 2 3 0 0 . 0 , 4 0 0 . 0 ) id 1 type t u r t l e b o t 3 _ w a f f l e p i

charge 90

Listing B.3: DSL section defining the human subjects and their features. Patients (P1a,
P1b, P1c, and P2c) all have sick fatigue profiles, and only P2c belongs to the elderly
age group. Doctors (D1a, D1b, D1c, and D2c) all have healthy fatigue profiles and
belong to the elderly age group, except for D2c. Walking speeds are set to 40cm/s for
patients, and 100cm/s for doctors.

1 d e f i n e humans :
2 human P1a in ( 2 3 0 0 . 0 , 6 0 0 . 0 ) id 1 speed 4 0 . 0 i s y o u n g _ s i c k

f r e e w i l l normal
3 human D1a in ( 4 4 0 0 . 0 , 7 0 0 . 0 ) id 2 speed 100 .0 i s e l d e r l y _ h e a l t h y

f r e e w i l l low
4

5 human P1b in ( 2 3 0 0 . 0 , 6 0 0 . 0 ) id 1 speed 4 0 . 0 i s y o u n g _ s i c k
f r e e w i l l normal

6 human D1b in ( 4 4 0 0 . 0 , 7 0 0 . 0 ) id 2 speed 100 .0 i s e l d e r l y _ h e a l t h y
f r e e w i l l normal

7

8 human P1c in ( 2 2 9 0 . 0 , 6 0 0 . 0 ) id 1 speed 4 0 . 0 i s y o u n g _ s i c k
f r e e w i l l h igh

9 human P2c in ( 2 4 0 0 . 0 , 5 8 0 . 0 ) id 2 speed 4 0 . 0 i s e l d e r l y _ s i c k
f r e e w i l l normal

10 human D1c in ( 2 0 0 . 0 , 2 0 0 . 0 ) id 3 speed 100 .0 i s e l d e r l y _ h e a l t h y
f r e e w i l l low

11 human D2c in ( 4 4 0 0 . 0 , 7 0 0 . 0 ) id 4 speed 100 .0 i s y o u n g _ h e a l t h y
f r e e w i l l normal

Listing B.4: DSL section defining the service sequences (i.e., the robotic missions). As
described in Section 11.5, each scenario corresponds to a mission declaration. Service
sequences are defined as in Table 16.3 and Table 16.5.

1 d e f i n e mis s ion DPa :
2 do r o b o t _ l e a d e r f o r P1a with t a r g e t R1b
3 do r o b o t _ f o l l o w e r f o r D1a with t a r g e t CUP1
4 do r o b o t _ f o l l o w e r f o r D1a with t a r g e t R2
5 do r o b o t _ l e a d e r f o r P1a with t a r g e t R2
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7 d e f i n e mis s ion DPb :
8 do r o b o t _ l e a d e r f o r P1b with t a r g e t R1a
9 do r o b o t _ t r a n s p o r t e r f o r D1b with t a r g e t CUP2
10 do r o b o t _ f o l l o w e r f o r D1b with t a r g e t R2
11 do r o b o t _ l e a d e r f o r P1b with t a r g e t R2
12

13 d e f i n e mis s ion DPc :
14 do r o b o t _ l e a d e r f o r P1c with t a r g e t R1a
15 do r o b o t _ l e a d e r f o r P2c with t a r g e t R2
16 do r o b o t _ t r a n s p o r t e r f o r D1c with t a r g e t CUP1
17 do r o b o t _ f o l l o w e r f o r D2c with t a r g e t CUP2
18 do r o b o t _ f o l l o w e r f o r D2c with t a r g e t OFF3
19 do r o b o t _ l e a d e r f o r P1c with t a r g e t OFF1
20 do r o b o t _ l e a d e r f o r P2c with t a r g e t OFF3
21

22 d e f i n e mis s ion R−DPa :
23 do r o b o t _ l e a d e r f o r P1a with t a r g e t R2
24 do r o b o t _ f o l l o w e r f o r D1a with t a r g e t CUP1
25 do r o b o t _ f o l l o w e r f o r D1a with t a r g e t R2
26

27 d e f i n e mis s ion R−DPb :
28 do r o b o t _ t r a n s p o r t e r f o r D1b with t a r g e t CUP2
29 do r o b o t _ f o l l o w e r f o r D1b with t a r g e t R2
30 do r o b o t _ l e a d e r f o r P1b with t a r g e t R2
31

32 d e f i n e mis s ion R−DPc :
33 do r o b o t _ l e a d e r f o r P2c with t a r g e t R1b
34 do r o b o t _ l e a d e r f o r P1c with t a r g e t R1a
35 do r o b o t _ t r a n s p o r t e r f o r D1c with t a r g e t CUP1
36 do r o b o t _ f o l l o w e r f o r D2c with t a r g e t CUP2
37 do r o b o t _ f o l l o w e r f o r D2c with t a r g e t OFF3
38 do r o b o t _ l e a d e r f o r P1c with t a r g e t OFF1
39 do r o b o t _ l e a d e r f o r P2c with t a r g e t OFF3

Listing B.5: DSL section defining the queries to be performed for the design-time analysis.
Queries defined in this Listing yield the results shown in Table 16.4 and Table 16.6.

1 d e f i n e q u e r i e s o f mis s ion DPa :
2 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 400 runs a u t o
3 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 350 runs a u t o
4 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 300 runs a u t o
5 compute e x p e c t e d _ c h a r g e with durat ion 400 runs a u t o
6 compute e x p e c t e d _ f a t i g u e with durat ion 400 runs a u t o
7

8 d e f i n e q u e r i e s o f mis s ion DPb :
9 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 520 runs a u t o
10 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 450 runs a u t o
11 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 400 runs a u t o
12 compute e x p e c t e d _ c h a r g e with durat ion 520 runs a u t o
13 compute e x p e c t e d _ f a t i g u e with durat ion 520 runs a u t o
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14

15 d e f i n e q u e r i e s o f mis s ion DPc :
16 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 1500 runs a u t o
17 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 1400 runs a u t o
18 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 1300 runs a u t o
19 compute e x p e c t e d _ c h a r g e with durat ion 1500 runs a u t o
20 compute e x p e c t e d _ f a t i g u e with durat ion 1500 runs a u t o
21

22 d e f i n e q u e r i e s o f mis s ion R−DPa :
23 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 300 runs a u t o
24 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 250 runs a u t o
25 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 200 runs a u t o
26 compute e x p e c t e d _ c h a r g e with durat ion 300 runs a u t o
27 compute e x p e c t e d _ f a t i g u e with durat ion 300 runs a u t o
28

29 d e f i n e q u e r i e s o f mis s ion R−DPb :
30 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 350 runs a u t o
31 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 320 runs a u t o
32 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 300 runs a u t o
33 compute e x p e c t e d _ c h a r g e with durat ion 350 runs a u t o
34 compute e x p e c t e d _ f a t i g u e with durat ion 350 runs a u t o
35

36 d e f i n e q u e r i e s o f mis s ion R−DPc :
37 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 1500 runs a u t o
38 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 1400 runs a u t o
39 compute p r o b a b i l i t y _ o f _ s u c c e s s with durat ion 1300 runs a u t o
40 compute e x p e c t e d _ c h a r g e with durat ion 1500 runs a u t o
41 compute e x p e c t e d _ f a t i g u e with durat ion 1500 runs a u t o
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