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1. Introduction
1.1. Cystic Fibrosis
Cystic fibrosis (CF) is an autosomal recessive
disease caused by the mutation of the Cystic
fibrosis transmembrane conductance regulator
(CFTR) protein, a ionic channel that modulates
the secretion of chloride inside of the body [1].
In healthy subjects, proper mucociliary activity
is promoted by the equilibrium of sodium ab-
sorption and sodium secretion. A mutation of
the CFTR channel compromises the chloride se-
cretion and lead to fluid hyper-absorption due to
the osmotic pressure generated. The mucus pro-
duced in CF patients is dense and sticks to the
airways surface , limiting the mucociliary clear-
ance. Mucin plaques and plagues cause airflow
obstruction and they also become site of chronic
cycles of infections and inflammations leading to
structural damages of the airways.
The "gold-standard" for the evaluation and
monitoring of CF lung disease are pulmonary
function tests (PFTs) and high resolution com-
puted tomography (HRCT). PFTs provide a
global measure of pulmonary function, while
HRCT determines the severity and the spa-
tial distribution of structural abnormalities [2].

Multiple scoring systems are present in liter-
ature for the semi-quantitative assessment of
chest CT in CF lung disease [3–5] and most
of them include the evaluation of bronchiecta-
sis, airway-wall thickening, mucous plugging and
parenchymal opacities. Nevertheless, the scor-
ing of HRCT is performed by trained radiol-
ogists, thus is time consuming and introduces
inter- and intra-subject variability in the evalu-
ation of the images.

1.2. Aim
The aim of this work is to develop an auto-
mated algorithm that, based on lung CT imag-
ing, is able to quantitatively evaluate radiolog-
ical pat- terns in patients affected by CF lung
disease. To this aim, healthy and pathological
patterns were described through standard tex-
ture analysis features and features related to
airways morphology and positioning, which rep-
resent common features used by radiologists to
evaluate cystic fibrosis (CF) lung disease. The
information retrieved for each pattern was used
to develop a classifier, to quantify pathologi-
cal patterns within the lungs in patients diag-
nosed with CF. Then, the correlation between
the quantification of the structural damage and
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pulmonary function tests was evaluated to in-
vestigate structure-function relationship in CF
lung disease.

2. Materials and Methods
2.1. Dataset
The dataset (Table 1) was composed of 472
regions of interest (ROIs) divided, according
to a radiologist, in 4 classes: 79 airway wall-
thickening (AWT), 142 bronchiectasis (BR), 86
mucous plugging (MP) and 165 healthy (HLT).
Two datasets with ROIs of different sizes (16x16
pixels and 32x32 pixels) were created to assess
the dimension which provided the best perfor-
mance.

Class Samples

AWT 79

BR 142

MP 86

HLT 165

Total 472

Table 1: Composition of the dataset.

2.2. Features
Each ROI was characterized with standard
features based on thresholds, first order statis-
tics and second order statistics (GLCM). In
addition to these common textural descriptors,
also features related to airways morphology and
positioning were computed.

Standard features. Four thresholds were
selected to enhance different patterns: air-
trapping, consolidation, ground-glass opacity
(GGO) and high attenuation structures. The
first order statistics included: mean, standard
deviation, minimum, maximum, median, mode,
skewness and kurtosis. Before computing
the GLCM, each ROI was quantized in 16
levels, ranging from 0 to 15. Then, from the
GLCM, the following features were computed:
Contrast, Dissimilarity, Homogeneity, ASM,
Energy, Correlation.

Airways features. Two approaches were
developed to segment the airways within a ROI.

The first one searched for contours around a
manually selected HU level. An airway was
accepted if it was a closed contour, which
enclosed a low-density area (airway lumen) and
was completely surrounded by high attenuating
structures (airway wall). As this method re-
quired the constant tweaking of one parameter
to correctly identify the airways, it was not
adapt for an automated approach. To solve this
problem, the second approach used a UNET for
the identification of the airways. To create the
train, validation and test-set, 10373 ROIs were
extracted from CT scans of 19 patients: 17 were
used for the train-set (9305 ROIs), 1 for the
validation-set (490 ROIs) and 1 for the test-set
(578 ROIs). Once the UNET was trained, it
provided airways candidates that had to follow
the same criteria of the manual method in
order to be validated. Thus, for each ROI,
the following parameters were extracted: the
number of airways, airways average roundness,
perimeter, area and the number of pixels in the
prediction which had a value above 0.5. The
last variable was added to account for airways
partially included in the ROI.

2.3. Features Selection
The features deemed redundant or irrelevant
were removed from the dataset. Pearson corre-
lation coefficient (ρ) was computed for each pair
of features and in highly correlated features (ρ
>0.9) one of the two was removed. Then, the
correlation coefficient was computed between
each feature and the target class, retaining only
features moderately correlating with the target
(ρ > 0.4). From 24 features, only 8 were selected
(Table 2).

Method Feature

Threshold GGO

First Order
Mean

Standard deviation
Skewness

GLCM Contrast

Airways and Lung
Number of airways

Average area
Presence of Airways

Table 2: Final set of features.
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2.4. Classification
Two classifiers, the support vector machine
(SVM) and the gaussian naïve bayes (GNB),
were implemented for comparison. The fea-
tures dataset was divided into train (75%) and
test-set (25%). As the training set was imbal-
anced, Synthetic Minority Over-sampling Tech-
nique (SMOTE) was applied to make the classes
homogeneous.
The following metrics were used to evaluate
the models’ performance: specificity, sensitivity,
precision and f1. The training was performed
100 times to obtain a more reliable estimate of
the metrics, which are expressed as mean ± stan-
dard deviation. The process of features extrac-
tion, creation of the train and test-set and clas-
sifier evaluation is shown in Figure 1.

Figure 1: Dataset creation and classifier imple-
mentation.

2.5. Patient Evaluation
For each patient, the whole lung CT volume was
analyzed. First, the lungs are segmented and
then the vessels are removed with a Frangi’s fil-
ter to limit their impact during the classification.
A grid is built from the lungs bounding box and
each cell presents a dimension of 8x8 pixels and
is selected as a trade-off between resolution of
the classification and computational cost. Then,
a window slides across all the grid cells and only
the ones that contained at least 80% of pixels

belonging to the lungs are used for the evalua-
tion. Thus, each grid cell is assigned to a class.
Figure 2 shows the volume evaluation process.
For each HRCT, the percent volume of AWT,

a b

c d

Figure 2: (a) HRCT image. (b) The lungs are
segmented and the vessels are removed. (c) A
grid is built from the bounding box of the lungs.
(d) Each cell is assigned to one of the four classes
by the classifier.

BR, MP and HLT is quantified (AWT%, BR%,
MP%, HLT%). Moreover, also the percentage
volume of airways is reported (vol_a%).

3. Results
3.1. UNET Evaluation
The performance of the UNET to correctly seg-
ment the airways was tested on 100 ROIs. The
performance of the model was scored as follows:
correct if all the airways of the ROIs were cor-
rectly segmented, non correct if at least one of
the airway contained in the ROI was not cor-
rectly segmented. The UNET showed an overall
accuracy of 93%.

3.2. Classifier Performance
The SVM and GNB performances were tested
on ROIs of 16x16 pixels. The SVM showed a
better f1 score than the GNB (SVM: 87.06 ±
2.54%, GNB: 82.32 ± 3.24%). SVM had a bet-
ter performance than GNB also considering the
other metrics (Figure 3). Thus, SVM was se-
lected for the next steps.
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Figure 3: Comparison of SVM and GNB models

The SVM was trained on ROIs of size 16x16
pixels and 32x32 pixels to assess the impact of
ROI dimension on the classification task. The
model trained on smaller ROIs had a better f1
score, precision, sensitivity and specificity (f1:
87.06 ± 2.54%, 83.84 ± 2.99%, respectively for
16x16 and 32x32 ROIs).
To test the impact of airways features, two fea-
ture datasets were created: the first one included
airways features, while the latter did not. The
presence of airways features greatly improved
the performance of the classifier (f1: 87.06 ±
2.54%, 76.93 ± 3.52%, respectively for model
with and without airways features). The air-
ways’ features significantly improved the model
performance for BR, AWT and surprisingly also
for MP (Figure 4).

Figure 4: Comparison of the SVM trained on
the dataset with and without airways features.

3.3. Volume Analysis Results
In Figure 5 two representative patients with in-
creasing structural damage are shown at three
lung levels.
Significant correlations (Pearson) were found be-
tween the automatic algorithm quantification
and the radiological scores of AWT, BR and MP
(Table 3).

Scores ρ AWT% ρ BR% ρ MP%

AWT 0,72** - -

BR - 0,70** -

MP - - 0,55*

Table 3: Correlations results between radiologi-
cal scores and percent volume quantified by the
automatic algorithm. Significant values (*: p-
value < 0,05; **: p-value < 0,01) are highlighted
in bold.

Moreover, significant correlation (Spearman)
was also found with some PFTs (Table 4).

4. Discussion
Our work developed a classification model that
could evaluate the whole lung volume. The anal-
ysis of an overall HRCT requires about 5 min-
utes.
The trained model was able to correctly identify
pathological patterns, as shown from the good
correlation with radiological scores.
The study population was limited, as only 15
HRCTs had radiological scores and 15 had
PFTs (partially overlapped with the first group).
Moreover, the patients evaluated in the present
study were all enrolled in a clinical trial, thus
the patients are not completely representative of
the range of severity of cystic fibrosis lung dis-
ease. Indeed, only mild and moderate cases are
present, as end-stage patients were not included
in the trial. The algorithm should be applied to
a larger cohort to have more significant results,
and a bigger ROI dataset could contribute to
improve the model performance.
The actual workflow analyzes 3D volumes but
does not use 3D information during the classifi-
cation. Texture descriptors must be adapted to
work in three dimensions, and also the UNET
must be modified. A 3D UNET could improve
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Patient B

Patient A

Figure 5: The images of the two patients are taken at significant positions: the aortic arch, the carina
and the top diaphragm.

PFTs ρ AWT% ρ BR% ρ MP% ρ HLT% ρ vol_a%

FEV1 (L) -0,05 -0,50 -0,48 0,58* -0,18

%FEV1 -0,02 -0,53* -0,18 0,52* -0,47

FVC (L) -0,03 -0,32 -0,47 0,49 -0,14

%FVC -0,22 -0,60* -0,47 0,68** -0,52*

FEF25%-75% (L) -0,03 -0,36 -0,18 0,38 -0,15

%FEF25%-75% -0,02 -0,37 -0,02 0,33 -0,30

LCI 2,5% norm 0,15 0,24 0,02 -0,25 0,46

Table 4: Correlations results between PFTs and the presence of patterns in HRCT. Significant values
(*: p-value < 0,05; **: p-value < 0,01) are highlighted in bold.
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the segmentation of the airways, as the airways
continuity could be used to differentiate them
from other portions of the lungs. Moreover in a
3D approach, the UNET could be used to seg-
ment also the airway-wall and the airway com-
plementary artery. This could be beneficial to
the correct classification of AWT% and BR% as
some important indexes (airway to artery ratio,
airway tapering and wall to artery ratio) could
be computed. These features were not included
in the actual work as it was not possible to ob-
tain a reliable measure.

5. Conclusions
This work developed an automated algorithm
to evaluate HRCT in patients affected by cys-
tic fibrosis lung disease. The algorithm provided
promising results, but it need further validation
in a larger cohort of patients. Further work
should be aimed to improve the model perfor-
mance, which might be achieved with a 3D anal-
ysis or introducing other features typical of CF.
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