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1. Introduction
In recent years, there has been a growing interest
in Unmanned Aerial Vehicles (UAVs), commonly
known as drones. These aircraft operate with-
out a pilot on board and can be either remotely
controlled or autonomously guided by sophisti-
cated flight control systems. UAVs come in vari-
ous types and sizes, serving diverse mission pur-
poses. Quadrotor UAVs, in particular, are gain-
ing popularity due to their compact size and ver-
satility in handling a range of scenarios, includ-
ing search and rescue missions, exploration of
hazardous indoor environments, surveillance op-
erations, and delivery. Given the limited flight-
time capabilities of battery-powered UAVs, the
drone must be able to make instantaneous deci-
sions regarding the continuation of the assigned
mission or returning to the base for recharging,
with the goal of subsequently resuming the mis-
sion from the point where it was interrupted. A
possible solution explored in this thesis is the
use of adaptive control techniques, to ensure a
high level of performance despite the progres-
sive discharge of the battery and to also provide
a real-time estimate of a parameter indicative of
the battery state for use in decision-making al-
gorithms, since the estimate of the battery state
of charge available in standard UAV autopilots is

not always reliable [2]. Therefore, the goal of the
work is to develop a mission management sys-
tem based on an hybrid automaton that solves
the persistent trajectory tracking problem, tak-
ing into consideration battery discharge and the
possibility of recharging at dedicated pads.

2. Problem Formulation
For the formulation of the control problem, a
mathematical model capturing both the UAV
flight dynamics and the battery dynamics must
be developed.
Starting from the drone model, one can define
two different frames, the inertial Cartesian frame
FI := (OI , {xI ,yI , zI}) and the body-fixed
Cartesian one attached to the center of mass of
the quadrotor FB := (OB, {xB,yB, zB}), where
with Ok we refer to the origin of the two frames,
and xk,yk, zk are unit vectors that form a ba-
sis of an orthogonal frame. The position vector
p ∈ R3 from OI to OB and the rotation ma-
trix R := [b1,b2,b3] ∈ SO(3) describing the
attitude of FB with respect to FI can be de-
fined in order to fully describe the configuration
of the quadrotor through the definition of the
tuple (p,R) ∈ R3 × SO(3). is described by the
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following set of nonlinear differential equations:
Ṙ = RS(ωc)

ṗ = v

mv̇ = λ Tc Re3 −mg e3 + fe

. (1)

S(ωB) is called the Skew operator, m ∈ R>0

represents the UAV mass, Tc > 0 ∈ R3 repre-
sents the overall thrust applied by the propellers,
fe ∈ R3 the external disturbances, g the gravi-
tational acceleration, e3 = [0, 0, 1]T, λ ∈ R>0

is the control effectiveness, which gradually de-
creases during nominal operating conditions due
to battery discharge. Moreover, as shown by S.
Meraglia et al. in [7], considering ωB ∈ R3,
which represents the angular velocity describing
the rotation of FB with respect to FI , as the con-
trol input ωc, the drone’s orientation dynamics
can be decoupled from position control. There-
fore, attitude dynamics can controlled by using
classic control designs such as PID loops, that
have been demonstrated to be effective also in
highly dynamic motions.
Regarding the battery dynamics, the most com-
mon solution in the literature is to create an
equivalent circuit that can simulate the voltage
and current behaviour over time of a real bat-
tery. For this thesis, we decided to use the Rint
model formalized by D. Tang in [9]. This model,
explicitly designed for drones, also incorporates
a power consumption model derived from heli-
copter aerodynamic theory, allowing for better
simulation of different discharges depending on
the drone’s flight stages.

Figure 1: Rint model equivalent circuit

By defining the State of Energy (SOE) as
the normalized remaining available energy of
lithium-ion batteries, as follows:

SOE(t) = SOE(t0)−
∫ t
t0
Ptot(τ) d(τ)

Ecrit
, (2)

where, Ecrit represents the maximum available
energy of the battery and Ptot the overall power
consumption at the selected time instant, which

is composed of the power delivered to the actua-
tor P together with the dissipated one, the state-
space model of the battery can be expressed as:

dSOE

dt
= (P (t) + IL(t)

2R0(t))E
−1
crit,

dR0(t)

dt
= w(t).

(3)

(4)

It can be noticed that R0(t), which represents
the internal resistance, in reality depends itself
on the SOE, but due to some external factor,
such as the temperature, the coupling between
the resistance and the SOE has been shown that
it is not as straightforward. So the dynamic of
the internal resistance is simulated by an in-
creasing Gaussian noise process w(t) at each
time instant. The other variables characteriz-
ing the equivalent circuit can be obtained by the
following set of equations:

UL(t) = Uoc(t)− IL(t)R0(t),

Uoc(t) = vL + λb e
−γ SOE(t),

IL(t) =
Uoc(t)−

√
Uoc(t)2 − 4R0(t)P (t)

2R0(t)
,

where UL and IL are the delivered voltage and
current, Uoc represents Open Circuit Voltage,
the parameters vL, λb and γ are experimental
parameters and P is derived from the power con-
sumption model reported in [9].
For the full dynamical model, the power con-
sumed by the drone depends on the drone’s
speed v and altitude z, which will affect the
battery discharge. The other coupling term is
represented by the term λ. Therefore, it will be
necessary to understand how the battery state
influences the value of this parameter. In liter-
ature, several authors provide empirical proofs
that within a specific range where the propellers
are considered to work in a regime condition,
the thrust is directly proportional to the volt-
age/current.

Figure 2: Relation between Voltage and Thrust
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Therefore, by computing the ratio between the
delivered voltage UL(t) at each instant with the
voltage that would have been generated with
a fully charged battery Ufull

L , and by scaling
this ratio by a factor KU to match the Thrust-
Voltage curve slope, uncertainty of the thrust
value can be expressed as follows:

λ = 1−KU
Ufull
L

UL
. (5)

Alternatively, Podhradský et al. in [8] found
an empirical correlation between the State of
Charge (SOC) and the delivered thrust which
can be observed in the figure below:

Figure 3: Relation between SOC and Thrust
(from [8])

The SOC, which is another parameter exploited
in the literature to characterize the battery
state, is defined as the level of charge of an elec-
tric battery relative to its capacity, mathemati-
cally expressed as:

SOC(t) =
Qc −

∫ t
t0
IL(τ) d(τ)

Qc
, (6)

where, Qc is the current capacity of the battery.
The model shown in Fig. 3 was obtained through
a least-squares spline approximation of the mea-
sured thrust loss, placing two nodes at 10% and
90%, respectively, to separate the almost linear
central piece from the highly nonlinear portions
at the edges. So, approximating the value of
SOC to that of SOE, knowing that from the
literature the maximum difference is estimated
to be no more than 2/3% ([4]), by inserting the
SOE level into this function, it will be possi-
ble to obtain the value of λ directly. Both these
models have been considered when testing the
proposed adaptive controller, which is described
in the next section.

3. Adaptive control design
In a typical autopilot controller, the effect of bat-
tery discharge is usually compensated for by the
integral terms of the control action. The goal
of our controller, however, will not only be to
compensate for this loss but also to estimate it,
allowing us to use this information in the mis-
sion management context. Considering that the
attitude controller proposed by S. Meraglia et al.
in [7] is operating properly, the attitude of the
drone R can be considered approximately equal
to the desired attitude Rd and we can focus on
the position dynamics alone. Furthermore, to
focus more closely on the impact caused by bat-
tery discharge, the external forces, included in
the vector fe and the uncertainties of the plant
have been neglected. Considering λ = 1 − ∆Tc

Tc
,

the thrust can be broken down into its nomi-
nal value Tc and its uncertain variation ∆Tc as
follows:

mv̇ = −mge3 + (Tc −∆Tc)Rde3. (7)

Then, setting Tc = |fd| and Rde3 = fd
|fd| , and

selecting:

fd = m (ge3 + v̇d) + u,

the linear velocity dynamics reads:

v̇ = v̇d +
1

m
(u−∆TcRde3) . (8)

It can be noticed that the controller is composed
by a feedforward term, m (ge3 + v̇d), which
compensate for the constant gravity force and
ensure tracking by providing the desired accel-
eration, and a feedback term u to be designed.
Therefore, the position dynamics can be ex-
pressed in state space form as:

ẋp = Apxp +Bp (u+ΘΦ) +Bprr, (9)

where Φ := Rde3 ∈ R3 is the regressor, Θ :=
∆Tc ∈ R is the uncertain parameter and the
other components are defined as follows:

xp =
[
pT,vT] , r =

[
pT
d ,v

T
d , v̇

T
d

]T ,

Ap =

[
03 I3
03 03

]
, Bp =

1

m

[
03
I3

]
,

Bpr =

[
03 03 03
03 03 I3

]
,
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where I3,03 ∈ R3×3 represent respectively the
identity and the zero matrix of dimension three.
Moreover, u, can be split by considering it as
the sum of the baseline control input designed
in absence of uncertainty, denoted as ubl, and
an adaptive component, denoted as uad, which
instead will compensate for the uncertainty:

u = ubl + uad. (10)

3.1. Baseline Controller
As mentioned earlier, since the adaptive con-
troller will replace the integral contribution, the
baseline will be chosen as a simple PD controller:

ubl = −Kpep −Kvev, where
ep := p− pd

ev := v − vd

,

where Kp,Kv ∈ R3×3 contain the gains for
the position and velocity error. Therefore,
the closed loop position dynamics for the
uncertainty-free system can be rewritten as:

ẋp = APD
ref xp +BPD

ref r, (11)

where

APD
ref =

[
03 I3

−Kp

m −Kv
m

]
,

BPD
ref =

[
03 03 03

−Kp

m −Kv
m I3

]
.

The PD controller thus defined guarantees
global exponential tracking of the reference tra-
jectory when relating to the uncertainty-free sys-
tem.

3.2. Adaptive Controller
In order to compensate for the uncertainty rep-
resented by ΘΦ, one must remember that Θ is
assumed to be constant and unknown. Never-
theless, this value can be estimated by using an
adaptive control law. The starting point is the
definition of the parameter estimation error:

∆Θ = Θ̂(t)−Θ = ∆T̂c(t)−∆Tc.

Then, the adaptive control input is chosen as:

uad = −Θ̂(t)Φ. (12)

Three different techniques, belonging to the
family of Model Reference Adaptive Control
(MRAC), which differ precisely in the model

chosen as a reference, have been implemented.
By defining the tracking error as:

e = xp − xref , (13)

the reference model for the classic MRAC is cho-
sen as:

ẋref = Arefxref +Brefr,

where
Aref := Ap

Bref := Bpr
.

In order to derive adaptive laws, a Lyapunov
design approach is employed, choosing as candi-
date a quadratic positive definite function of the
tracking and of the parameter estimation errors:

V (e,∆Θ) = eT Pe+
∆Θ2

2γΘ
, (14)

where γΘ is a scalar tunable parameter of the
adaptive law and P satisfies the Lyapunov equa-
tion reported hereafter:

PAref +AT
ref P = −Q

where Q = QT > 0.

(15)

(16)

As common in adaptive control design, to ensure
convergence on the reference mismatch error e,
the adaptive law is derived by imposing a nega-
tive semi-definite condition on the Lie derivative
of the Lyapunov function.
As regard the Closed-loop Model Reference
Adaptive Control (CMRAC) [6], the reference
model is obtained by adding an output injection
term as follows:

ẋref = Arefxref +Brefr+ Le, (17)

where L ∈ R6×6 is a gain matrix. For what con-
cerns Predictor Model Reference Adaptive Con-
trol (PMRAC) [5], it is obtained by including
a state predictor x̂ in the adaptive law in or-
der to predict the system state derivative. The
PMRAC design improves transient performance
over the standard MRAC and modifies the base-
line controller input only when the plant uncer-
tainties are not compensated for. The so-called
predictor dynamics can be defined as follows:

˙̂x = Apr (x̂− xp) +Arefxp +Brefr. (18)

Repeating the same steps used for the MRAC,
one can obtain the adaptive laws for the other
two control techniques.
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4. Simulations and experimen-
tal tests

To validate the effectiveness of the presented
controllers, preliminary tests were conducted by
considering the plant’s dynamics presented in
Section 3.

Figure 4: ANT-X drone

Then, the implemented solutions were trans-
ferred and tested in the UAV simulator of the
ANT-X drone developed by the ASCL, which is
based on the identified models of the drone’s an-
gular velocity dynamics acquired by using the
PBSID blackbox identification method, which
provides a higher level of reliability for evalu-
ating the effectiveness of the proposed control
techniques. The PMRAC controller provided
the best performance and thus, it has been se-
lected to be implemented and tested on the
drone.
To validate the proposed discharge models and
to enable a direct comparison between the simu-
lation and the experimental data, an endurance
test was performed, keeping the drone in hov-
ering mode for as long as possible. The graph
below illustrates the evolution of the estimated
parameter Θ̂ over time during this test:

Figure 5: Θ̂ function with respect to time

Similarly to what was done by Podhradský et al.
in [8], experimental data has been filtered and
divided into 3 different curves, separating the
nearly linear region in the center from the other
two highly non-linear regions at the edges, thus
obtaining a model of thrust loss as a function of
flight time. So, through this model, it will be
possible to understand the remaining flight time
starting from the estimate of the thrust lost, in
the absence of external disturbances.
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Figure 6: Θ̂ VS delivered voltage VS SOC

Moreover, during this test other output coming
from the drone autopilot (PX4) were extracted
and compared the estimated parameter of lost
thrust. Notably, the estimation of SOC turned
out to be entirely inaccurate, especially when
compared with the estimation of lost thrust, as
can be seen in Fig. 6. Then, simulation results
exploiting the obtained empirical model have
been compared with the results of experimental
tests concerning a sequence of steps.

Figure 7: Response comparison to sequence of
steps

Lastly, the relationship between voltage and

5



Executive summary Alessandro Boldrini

thrust loss confirms the proportionality between
these two quantities.

Figure 8: Θ̂ and voltage lost correlation

5. Mission Management
As mentioned earlier, the mission is divided into
various modes, each of which has a defined do-
main based on both the value of the parameter
estimated by the adaptive controller and its po-
sition, and the resulting error with respect to the
reference trajectory. The modes are denoted by
the letter q ∈ [−1, 0, 1, 2, 3, 4], and the overall
scheme is represented in the following scheme:

Figure 9: Scheme of the overall switch logic

Where the macro mode for safe landing has been
adapted and refined to better align with the pur-
pose of this thesis, drawing inspiration from the
work done by Gozzini et al. [3].
The continuity of the mission, even after making
a charging stop from where the mission was in-
terrupted, is endured by applying the same tech-
nique that has been adopted by Andreetto et al.
in [1], in which a generalized time is defined that
only elapses when the drone is in the trajectory
tracking mode. In mathematical terms, it can
be represented as follows:

ṫgen = s, where

{
s = 1, if q = 1

s = 0, else
.

As regards the reference trajectory, it is assumed
that control laws for Tc exist that enable the
asymptotic tracking of any bounded velocity tra-
jectory, denoted as vd(t) ∈ R3. This assumption
allows us to formulate the tracking problem in-
dependently of the specific UAV actuation mech-
anism, relying on the kinematic model:

ṗc = vc, (19)

where vc is a virtual input representing the
drone’s velocity in the inertial frame, utilized for
control design purposes. Under this assumption,
we can use this strategy to track any sufficiently
smooth trajectory, denoted as t → pd(t) ∈ R3.
Defining the tracking error as:

ε(t) := p(t)− pd(tgen), (20)

the corresponding dynamics of the error can be
rewritten as

ε̇(t) = v(t)− vd(tgen), (21)

where considering the measurements of both
the position p(t) and the velocity v(t) for the
trajectory generation, closed-loop guidance is
achieved. The proposed control law will then
be expressed by

vc(t) = −vM tanh

(
Kε ε(t)

vM

)
+ vd(tgen),

where vM ∈ R>0 represents the saturation level
for the velocity, while Kε ∈ R3 is a diagonal
matrix containing positive gains. Moreover, the
hyperbolic tangent function has been preferred
over a simple saturation function in order to ob-
tain a smoother trajectory to follow. Therefore,
the acceleration setpoints ac(t), can be derived
by deriving the previous formula:

ac(t) = −Kε sech
(
Kp ε(t)

vM

)
ε̇(t) + ad(tgen),

while, for the position setpoints pc(t), numerical
integration will be used. It can be observed that
through this choice, each mode can have differ-
ent values in the Kε matrix, saturation velocity
vM to better adapt to the required performance
in the each mode. Additionally, excluding the
main mode where tracking a trajectory is re-
quired, in the other modes, vd(tgen) and ad(tgen)
will be zero, and the hyperbolic tangent will
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only create a smooth trajectory leading to the
required point pd(tgen). So, the overall dynam-
ics each mode and the corresponding outputs y
can be represented as:

ṗc = vc

ṫgen = s

y = (pc(t),vc(t),ac(t))

. (22)

In order to return safely to the charging base,
∆TM represents the threshold value of the esti-
mated parameter at which the drone must inter-
rupt the mission , while ∆Tcrit represents a criti-
cal value that will initiate the landing procedure
at the current location of the drone, given the
impossibility of a safe landing on the pad. Let-
ting ∆TM to be a function of the distance from
the charging base, the drone can increase the
duration of the mission. In Section 4 a model
of thrust loss dynamics as a function of time
was derived from an endurance test. Therefore,
knowing the battery duration in hovering, it will
be possible to choose the right point to end the
mission based on the remaining time until bat-
tery discharge. In order to consider different
flight stages from hovering, a safety factor have
to be used to scale this threshold in order to in-
crease safety, at the expense of longer endurance.
The selected formula will be:
∆TM =min(∆TM

Max,

∆Tfun(K(Tbatt − Tland − |Ψ⊥| /vM ))).

In the above formula ∆Tfun represents the em-
pirical model, K is the safety scale factor, Tbatt

is the time when thrust loss reaches 30% of the
maximum thrust in hovering conditions, Tland

represents the time taken to descend from the
cruising altitude to the ground and the last term
consider the time that the drone implies to reach
the recharge station from the point where the
mission is interrupted (Tdist). A graphical rep-
resentation of the function is shown:

K(T
dist

+T
land

)

T
dist

T
land

Figure 10: Visual representation of ∆TM

Safety in the final stages of the mission can be
further increased by imposing a maximum loss
equal to ∆TM

Max for the activation of the land-
ing mode.
Finally, to avoid the phenomenon of chattering,
caused by possible fluctuations in the estimated
parameter, it was decided to follow what was
done in [3], using hysteric switch conditions be-
tween the modes.
Different trajectories have been simulated to
prove the effectiveness of the mission manager
independently of the trajectory: a circular tra-
jectory simulating loitering around a specific
point, and a more complex trajectory that simu-
lates the surveillance of a rectangular area using
a pattern of line segments. The results obtained
for the simulation of the pattern trajectory are
shown hereafter:

Figure 11: Pattern trajectory tracking errors

Figure 12: Generalized time and active mode

After demonstrating the correct functioning of
the logic in the case of nominal discharge, we
decided to test progressively faster discharges,
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noting that the drone can complete the mis-
sion by landing at the predetermined point even
with discharges up to about 70% faster than ex-
pected. For higher values, the drone will enter
the emergency landing mode, simply attempting
to land in its current location.

6. Conclusions
One of the objective of this thesis was to formu-
late a control law capable of compensating for
the performance degradation due to battery dis-
charge in multirotor UAVs while solving trajec-
tory tracking tasks. The adaptive control tech-
niques used have demonstrated the ability to
extend the performance obtained under nomi-
nal conditions, even considering the effects gen-
erated by the battery discharge. Furthermore,
the utility of this control technique goes beyond
achieving this result, with an online estimation
of thrust loss. This parameter was subsequently
successfully used in decision-making within an
algorithm that allowed the drone to complete a
mission autonomously. This estimated param-
eter becomes even more important, especially
when compared to what can be obtained from
SOC or SOE estimators already implemented
in the autopilots, as PX4, in which reliable es-
timates from simple models is not as straight-
forward. The other objective of the thesis was
to define a mission management system. The
choice to divide the mission into various modes
with different domain of application and objec-
tives proved to be an excellent decision. This is
also thanks to the decision to introduce hystere-
sis in the transition functions between the vari-
ous modes, avoiding the phenomenon of chatter-
ing and the degradation of performance that fol-
lows. The robustness derived from the choice of
the algorithm for generating the threshold value
for mission termination should also be empha-
sized, as it ensured the completion of the mis-
sion even in the presence of considerably anoma-
lous conditions, with discharge rates much faster
than expected.
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