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Introduction
Protein-ligand interactions are pivotal in mod-
ern drug discovery. While traditional methods
offer structural snapshots, they often fall short
in capturing the dynamic nature of these in-
teractions. Molecular Dynamics (MD) simula-
tions have emerged as a powerful tool, providing
detailed insights into the temporal evolution of
protein-ligand systems at the atomic level. How-
ever, the analysis of the extensive datasets gen-
erated by MD simulations poses significant chal-
lenges. While the integration of machine learn-
ing with MD shows promise, current methodolo-
gies primarily rely on supervised machine learn-
ing models, which face challenges with data la-
beling and standardization. To address this, an
unsupervised deep learning framework tailored
for efficient and meaningful pattern extraction
from high-dimensional MD data was introduced
and benchmarked in a previous study on rela-
tively rigid proteins [1]. In the present study, we
have further tested and adapted this framework
for flexible proteins, with a case study on the
SARS-CoV2 Main Protease (Mpro). Through
this research, our aim is to provide valuable in-
sights into the intricate interplay between dy-
namic protein conformations and ligand bind-
ing. We believe that the advanced analytical

framework presented in this study has significant
potential to revolutionise the analysis of protein-
ligand complex MD data, thereby potentially ac-
celerating the drug discovery process.

Materials and Methods
Molecular dynamics simulations
In this study, we conducted MD simulations of
Mpro in both apo- and ligand-binding forms to
analyze the structural and dynamic patterns in-
duced by 11 different ligands. Mpro is a homod-
imeric cysteine protease comprising 306 amino
acids per monomer, organized into three subdo-
mains and the substrate-binding region located
at the interface of domains I and II [2]. The in-
hibitors we considered in this study varied in
molecular weight (ranging from 270.24 g/mol
to 709.98 g/mol) and displayed a broad spec-
trum of IC50 values (ranging from 0.04 µM to
10.7 µM). Production simulations, each lasting
1 µs, were performed in triplicate for each sys-
tem, providing rich temporal information on the
protein-ligand interactions. The simulations ex-
hibited a performance rate of 310 ns/day, result-
ing in an approximate runtime of 77 hours each.
System stability was assessed by monitoring the
convergence of protein root mean square devia-
tion (RMSD). Ligand movement relative to the
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Figure 1: a MD trajectories for ligand-free (apo-protein) and ligand-bound (holo-protein) systems. b
The distance between the center of mass of each binding-pocket residue and the center of geometry of
the binding pocket is calculated over the trajectories. c Ligand-induced protein dynamics is represented
by the local dynamics ensemble (LDE), which is an ensemble of short-term trajectories of the distance
descriptor. d The difference between the LDEs of pairs of systems is calculated on the basis of the
Wasserstein distance Wij using the function fij approximated by deep neural networks (DNNs). e
The Wasserstein distance matrix is embedded into points in a lower-dimensional space, and principal
component analysis is performed to the embedded points. f The function gij(xi) helps interpret how
specific residues contribute to the difference between the LDEs of system pairs, as determined by the
DNNs. For both characteristic and non-characteristic trajectories, we computed the average value of
the distance descriptor di for each residue. Notably, when there is a relevant difference in di values
between characteristic and non-characteristic trajectories, the residues are highly influenced by the
ligand.

binding pocket was monitored through the lig-
and heavy atoms RMSD.

Descriptors of molecular systems from
MD data
In the process of analyzing MD trajectory data,
input types (descriptor and LDE definition),
binding-site residues, and appropriate time win-
dows selection is crucial for subsequent Deep
Neural Network (DNN) analyses (Fig. 1). Our
focus lies on the binding-site residues, aiming
to capture differences in protein behavior upon
ligand binding while reducing computational
complexity. Dealing with proteins with high-
flexibility, it’s necessary to carefully choose a de-
scriptor that overcomes challenges related to co-
ordinate dependency (e.g structure fitting issues
arising from the combination of overall rotation

and internal motion) and considers conforma-
tional dynamics. After careful testing, we opted
for the distance between the center of mass of the
binding-pocket residues and the center of geom-
etry of the binding-pocket. This distance effec-
tively encapsulates relevant information about
the structural and dynamic differences of Mpro,
offering a robust representation of the thermo-
dynamic and kinetic properties of the systems.

Selection of the binding-pocket
residues and MD trajectory time
windows
In order to determine the binding-site residues,
trajectories from the final 200 ns were considered
to identify protein-ligand atom pairs involved in
hydrogen bonds, within 4.5Å in over 75% of the
time frame. A total of 36 residues were iden-
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tified (18 for each binding site). Trajectories of
the centers of mass of these binding-site residues
were extracted and the distance descriptor was
calculated throughout the MD trajectories. We
then strategically refined the MD trajectories by
selecting specific time windows. PCA helped to
distinguish stable molecular conformations from
fluctuations, ensuring that the selected time in-
tervals accurately represented the local changes
induced by ligand binding. Leveraging the in-
sights from PCA, we chose distinct 300-ns inter-
vals characterized by enhanced stability. This
targeted approach enhances the ability of subse-
quent machine-learning analyses to capture rele-
vant conformational changes associated with lig-
and binding.

Analysis of protein conformation dy-
namics using ML
Here, we briefly introduce the machine-learning
methods. The input of the DNNs is the Local
Dynamics Ensemble (LDE), which is defined an
ensemble of short-term trajectories of the dis-
tance descriptor. Derived from the MD simula-
tion data, the LDE portrays the temporal evolu-
tion of this descriptor, thereby offering a snap-
shot of localized changes in the protein-ligand
systems over time. Upon computing the LDE
for every particle present in the binding site, a
high-dimensional matrix is obtained (Fig. 1c),
offering a comprehensive representation of the
system’s structural and dynamic behavior. To
quantify differences between LDEs, the Wasser-
stein distance is employed. This metric, rooted
in optimal transport theory, effectively assesses
dissimilarities between two probability distribu-
tions [3]. Mathematically, the Wasserstein dis-
tance between two LDEs yi and yj , is expressed
as:

Wij = sup
|fij |≤1

Exi∼yi [fij(x)]− Exj∼yj [fij(x)] (1)

where xi and xj are short-term trajectories
of systems i and j, respectively. The function
fij(x) that solves the maximization problem in
Eq. 1 is approximated by the network (Fig. 1d)
with the 1-Lipschitz constraint. The DNNs con-
sisted of multilayer perceptron used in a previous
study [1]. Short-term trajectories x of the LDEs
are flattened and used as input for the DNN. In
the optimization process, the loss function with
gradient penalty was minimized. The optimiza-
tion process was performed for up to 500,000
steps per model, when the moving averages of

DNN output over 10,000 steps converged. The
mean value of the last 10,000 steps was used as
the Wasserstein distance. Nonlinear dimension-
ality reduction and Principal Component Anal-
ysis (PCA) yield an embedding map, thus pro-
viding a compact and insightful representation
of the complex high-dimensional dynamics in-
herent to the presence of different ligands.
Additionally, we conducted an analysis to ex-
tract the characteristic dynamics using the func-
tion g(xi) (Fig. 1f). This function evaluates
the contribution of a single short-term trajec-
tory to the overall differences between the two
systems. A small g(x) value for a trajectory in
system i compared to system j indicates that
system i’s trajectory closely mirrors the gen-
eral behavior observed in system j and vice
versa. Since gij(xi) includes short-term trajec-
tories over many residues, we can identify the
residues that significantly influence the Wasser-
stein distance between systems, and are there-
fore strongly affected by ligand binding. The
computation of g(xi) was executed using the
optimized Deep Neural Networks (DNNs). For
this, the specific short-term trajectory of system
i and the average local trajectory of the other
system j served as inputs. The ML-driven anal-
ysis of the MD trajectories was completed within
a single day.

Results and discussion
Flexibility of SARS-CoV-2 Mpro

The Root Mean Square Fluctuations (RMSF)
of the residues were computed throughout the
trajectory, providing valuable insights into their
dynamic flexibility. The results of the RMSF
analysis provided evidence for the intrinsic flex-
ibility of Mpro, a feature that was corrobo-
rated by a number of experimental and compu-
tational investigations. Understanding protein
flexibility is crucial in the context of drug bind-
ing thermodynamics and underscores the im-
portance of considering conformational dynam-
ics in protein-ligand interaction studies. The
ligand-free system showed higher fluctuations
than some protein-ligand systems and lower fluc-
tuations than others. This suggests that lig-
and binding cannot simply be correlated with
the higher/lower induced fluctuations of Mpro

residues. Unsupervised deep learning can over-

3



Executive summary Jessica Mustali

0 50 100 150 200 250 300
residue

0.0

0.2

0.4

C
 R

M
SF

 (n
m

) apo protein
6M2N
6XMK
6Y2F
7JU7_lig_neu
7K6D
7K40
6LZE
7JYC
6M0K
6WTK
7JU7_lig_pos

Figure 2: Residue-based root mean squared fluc-
tuation (RMSF) of the protein backbone aver-
aged between monomer A and monomer B in
the first 1 µs MD simulation for the 12 systems.

come these challenges and reveal complex dy-
namic properties by detecting hidden patterns
in MD data that conventional analysis methods
such as RMSF cannot uncover.

Unsupervised deep learning-based in-
sights into protein-ligand dynamics
The Wasserstein distance matrix provides a
quantitative measure of ligand-induced changes
across systems. The color-coded representa-
tion of this matrix shows the relative distances
between the systems, with system 7JYC dis-
tinctly separated from the other systems (Fig-
ure3a). This observation suggests that sys-
tem 7JYC exhibits unique trajectories that were
captured and highlighted by our unsupervised
deep-learning methodology. Starting from the
Wasserstein distance matrix, we constructed an
embedding map that spatially arranges the sys-
tems. Here, each system is represented as a
point, with color indicating the experimental
binding-affinity values (pIC50). A meaningful
pattern emerged: systems with lower affinity are
found closer to the apo-protein, reflecting struc-
tural and dynamic similarities to the ligand-free
state. Conversely, high-affinity systems occupy
positions further along PC2, denoting distinct
ligand-influenced structures and dynamics (Fig-
ure 3b). Furthermore, we observed that systems
6M0K and 6LZE, exhibiting higher affinities,
displayed notable similarities in ligand chemi-
cal structures and shared identical PC2 values.
To reinforce the information obtained from the
embedding map, we correlated the experimen-
tal binding affinity values (pIC50) with PC2 val-
ues. The Pearson’s correlation coefficient of 0.7
affirm the substantial correlation between PC2
and IC50 for high- and low-affinity ligands, un-
derscoring the potential of our deep-learning ap-
proach to detect subtle shifts in ligand-induced
trajectories within Mpro (Figure 4).
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Figure 3: a Distance matrix of Wasserstein dis-
tances between the probability distributions of
the LDEs for system pairs. A large Wasser-
stein distance (yellow) corresponds to a large
difference in the protein structure and dynamics.
b Embedded points of the distance matrix and
chemical structure of the corresponding system.
The points are colored according to the exper-
imental binding-affinity values (pIC50). pIC50
corresponds to − log(IC50).

Figure 4: Correlation between PC2 and experi-
mental binding-affinity data (pIC50). The cor-
relation, quantified using Pearson Coefficient, is
0.7
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Interpretation of the contribution of
residues to ligand-induced dynamics
The correlation observed between the PC2 com-
ponent of the embedding map and pIC50 values
underscores PC2’s significance in capturing con-
formational disparities linked to ligand-binding
affinity. To delve deeper into the molecular un-
derpinnings of this observation, we aimed to
identify specific amino acids that showed promi-
nent dynamic disparities between the highest
and lowest binding-affinity systems using the
function g(x). Notably, Met49 and Arg188-
Gln189-Thr190 emerge as pivotal residues in
ligand binding. Conformational disparities in
Arg188-Gln189-Thr190 are primarily captured
in PC2, while Met49 is represented in PC1. The
convergence of insights across various indepen-
dent studies bolsters the robustness of our con-
clusions, providing a more comprehensive un-
derstanding of the dynamics governing protein-
ligand interactions in Mpro.

Conclusions
Molecular dynamics (MD) simulations are cen-
tral in the drug discovery process, offering atom-
istic insights into protein-ligand interactions cru-
cial for therapeutic design. However, effec-
tively analyzing extensive MD datasets remains
a standing challenge. Throw a case study on
SARS-CoV-2 Mpro we tested our unsupervised
deep-learning framework for the analysis of MD
simulation data of flexible protein-ligand com-
plexes. First we conducted MD simulations of
Mpro with various ligands. In the pursuit of
effective MD trajectory analysis, the MD data
were refined by focusing on binding site residues
and time frames in stable protein conformations
and the optimal input type was ascertained. We
tested different input types and selected the dis-
tance between each residue and center of the
binding pocket as descriptor and defined the
Local Dynamic Ensemble LDE as the time se-
ries of the descriptor. We fed the Local Dy-
namic Ensemble (LDE) into our neural network
to compute the Wasserstein distance across sys-
tem pairs, revealing ligand-induced conforma-
tion differences in Mpro. Dimension reduction
yielded an embedding map correlating ligand-
induced dynamics and binding affinity with a
Pearson coefficient of 0.7. This finding implies
that the most active compounds had the maxi-

mum impact on the local structure and dynam-
ics of the target protein, resulting in them be-
ing further distanced from the ligand-free sys-
tem. We also identified the residues that con-
tribute most to the difference between the sys-
tems, and the results are consistent with the lat-
est literature on the subject. While our results
are promising, we acknowledge potential limita-
tions and avenues for future research. The ef-
fectiveness of our approach relies on initial con-
ditions, specifically the initial structure of the
protein and the chosen input feature. Expand-
ing the dataset to encompass a broader range of
ligands and optimizing simulation strategies are
areas for further exploration. Looking ahead,
we believe that the unsupervised deep-learning
framework utilized in this study will be highly
valuable for early-stage drug discovery, aiding
in the prioritization of promising compounds. It
also could be extended to diverse protein-ligand
interactions, including allosteric events. In con-
clusion, this novel methodology, combining the
strengths of deep learning and MD simulations,
can help improve our understanding of molec-
ular mechanisms and accelerate drug discovery,
thereby setting the stage for rapid and refined
therapeutic exploration.
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