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Abstract

This thesis delves into the realm of commercial aviation accidents, seeking to enhance our
understanding of their causes and the potential predictive power of advanced data anal-
ysis techniques. The research is bifurcated in two distinct phases each leveraging unique
analytical methodologies.
The first phase consists in the employment of the Agresti-Coull confidence intervals to
conduct an in-depth analysis of accident rates across a multitude of flights, considering a
wide array of features. This comprehensive approach provides insights into the character-
istic trends of accident occurrences, offering a nuanced perspective on risk factors within
commercial aviation.
In the second phase, we shift our focus towards predictive modelling by implementing a
gradient boosting binary safety classifier for flights. Leveraging machine learning tech-
niques this classifier harnesses the power of data-driven insights to predict the likelihood of
aviation accidents. By training on historical aviation data , the model becomes a valuable
tool for evaluating risks, ultimately contributing to enhanced aviation safety insurance
procedures.
This study underscores the importance of employing diverse analytical approaches to gain
a comprehensive understanding of commercial aviation accidents. By combining tradi-
tional statistical approaches with cutting-edge machine learning techniques, we not only
identify critical risk factors but also develop a predictive tool to proactively address safety
concerns, ultimately fostering a more aware aviation industry.

Keywords: aviation safety, accident rate analysis, rare events classification, gradient
boosting, CatBoost.





Abstract in lingua italiana

Questo progetto di tesi si addentra nel campo degli incidenti dell’aviazione commerciale,
cercando di migliorare la comprensione delle loro cause e del potenziale predittivo di tec-
niche avanzate di analisi dei dati. Il lavoro è suddiviso in due fasi distinte, ognuna delle
quali fa leva su metodologie analitiche specifiche.
La prima fase consiste nell’impiego degli intervalli di confidenza di Agresti-Coull per con-
durre un’analisi approfondita in merito ai tassi di incidenti su una moltitudine di voli,
considerando un’ampia gamma di caratteristiche. Questo tipo di approccio consente di
evidenziare le principali tendenze relative all’occorrenza di incidenti aerei, offrendo una
prospettiva sui fattori di rischio nell’ambito dell’aviazione commerciale. dell’aviazione
commerciale.
Nella seconda fase, la ricerca si concentra sulla modellazione predittiva implementando
un classificatore binario, tramite gradient boosting, per valutare la sicurezza dei voli.
Grazie a tecniche di machine learning, questo classificatore sfrutta la potenzialità di un
approccio basato su grandi quantità di dati per prevedere la probabilità di incidenti aerei.
Basandosi su dati storici dell’aviazione, il modello diventa uno strumento prezioso per la
valutazione del rischio, contribuendo in ultima analisi a migliorare le procedure assicura-
tive nell’ambito dell’aviazione.
Questo lavoro evidenzia l’importanza di utilizzare diversi approcci analitici per ottenere
un quadro completo degli incidenti nell’aviazione commerciale. Combinando approcci
statistici tradizionali con tecniche di machine learning all’avanguardia, non solo identifica
i fattori di rischio più critici, ma permette anche di sviluppare uno strumento predittivo
per la sicurezza aerea, favorendo la crescità di un’industria areonautica più consapevole.

Parole chiave: sicurezza aerea, analisi dei tassi di incidenti, classificazione di eventi
rari, gardient boosting, CatBoost.
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Introduction

The commercial aviation industry has revolutionized global travel and connectivity, be-
coming an essential part of our society. While air travel is generally considered the safest
mode of transportation, commercial aviation accidents continue to happen and are a cause
of concern for both industry stakeholders and the public. These accidents, thought stati-
cally extremely rare, have highly significant and far-reaching consequences, affecting the
safety of the passengers, air industry professionals, as well as causing immense financial
losses for airlines, aircraft manufacturers and insurance companies involved.
The importance of studying commercial aviation accidents lies in the need of contin-
uously enhancing safety standards and obtain a broader outlook on this phenomenon.
Each accident, whether large scale disasters or minor accidents, provides valuable insights
into potential weaknesses in aircraft design, insights regarding the safety of specific flight
routes, and airlines.
Furthermore as air travel keeps growing and becoming an essential part of our day to
day life the technological advancements in this field have been substantial over the last
few decades, thus significantly reducing the occurrence of commercial aviation accidents,
making the pattern identification process for this phenomena increasingly difficult and
requiring extreme precision and granularity when it comes to data collection.

This thesis aims to investigate commercial aviation accidents, analyzing their causes.
By examining past accidents and their implications, this study seeks to identify trends
and recurring patterns, shedding light on potential risk factors that may persist in the
current aviation safety framework. The finding of this research could be instrumental in
helping aviation professionals in their work as an additional tool to be paired with their
industry experience.

There is a plethora of studies conducted to analyze this issues, from the usage of the
implementations of artificial neural networks and fault tree models ([18]), the more so-
phisticated use of Bayesian neural networks ([11]) or the implementations of ensemble
machine learning and deep learning models ([14]) to less specific, but more broad, anal-



2 | Introduction

yses of commercial aviation accident occurrence rates ([15]). The first ones although
interesting often rely on extremely specific features for their analyses (like cabin pressure
and other indicators registered on the aircraft before an accident [14, 18]), while the latter
([15]) offers a broader view on the commercial aviation accidents phenomenon but lacking
the in depth multivariate feature analysis offered by the others.
In opposition to the previous developed studies this thesis aims at analyzing the phe-
nomenon of commercial aviation accidents from a broad perspective on the flights, while
trying to keep an in depth multivariate approach (in the later stages) to better identify
patterns and trends.

In this thesis the following research questions will be addressed:

• How do commercial aviation accident rates vary among the different characteristics
of the flights, and how can we evaluate these variations?

• Is it possible to evaluate the risk of future flights to turn into an accident and can
modern Machine Learning techniques help us in this task?

To address these concerns the following tools will be implemented:

• Evaluation of commercial aviation accident rates through the use of specific confi-
dence intervals, such as the Agresti-Coull confidence interval, that are more suitable
to handle small proportions than the more common counter part options (see [1, 4]).

• Implement a classification model for the flights through the use of Gradient Boosting
Machines (GBMs) for binary classification (see [12]), in order to have a multivari-
ate point of view on the commercial aviation accidents phenomenon and to make
predictions and evaluate the risk of each flight.

For the latter point the Python library CatBoost will be used due to the high efficiency
at handling categorical features, and the tools it provides for results interpretation see
([16, 19]), when compared with its competitors (XGBoost and LightGBM).

This thesis structure is laid out as follows.
First a complete overview of the available data will be made, explaining its features and
the cleaning process adopted in order to obtain a satisfactory outcome fit for our future
analyses (Chapter 1). Then a chapter conducting a brief analysis of the available data is
presented, in order to understand the nature of commercial aviation accident and how to
handle their future analysis (Chapter 2).
Subsequently we present available theoretical options to deal with confidence interval es-
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timation for binomial proportions, and select the Agresti-Coull interval as the best fit for
our analysis (Chapter 3). Based on the conclusions of the previous chapter we then move
on into an in depth analysis of the commercial aviation accident rates, with the objective
of identifying interesting trends among flights characteristics (Chapter 4).
We then move on with a theoretical chapter explaining the inner workings of GBMs and
how they can be used for rare events classification, focusing on specific model choices that
will be implemented later on (Chapter 5). Subsequently we proceed with the implementa-
tion, optimization and results interpretation of flight safety classifier based on a gradient
boosting approach, in order to gain deeper insights on flights behaviour (Chapter 6).
Finally we conclude this study with an overview of the obtained results, discussing its
limitations and possible further developments (Chapter 7).

This study was carried out during the author’s internship at the R&D department of
elseco, an independent multi-line managing general agent and Lloyd’s coverholder based
in Dubai specialized in space, aviation and energy insurance. The objective of this thesis
is to provide a comprehensive overview of the commercial aviation safety phenomenon,
for the aviation underwriting team, and to develop a novel forecasting tool for their future
underwriting purposes.
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1| Dataset

In this study two different data sources will be considered, one for the flights and one
for the accidents, that will be subsequently combined in a single dataset to achieve our
aviation accident analysis goal. Overall, 4 years of data (2019-2022) are considered due
to lack of availability of previous years flights data, although this is not to be considered
a drawback given the extremely high amount of data at our disposal.
One of the main goals of this study is to build the most comprehensive and accurate data
in order to have a clear overview of aviation accidents and their behaviour. Due to the lack
of a comprehensive dataset containing flights and accidents, one of the major challenges
of this study has been to come up with an effective matching procedure between flights
and accidents

1.1. Flights Data

The focus of this section is to give a comprehensive explanation of the flights data con-
sidered in this study, highlighting the features of interest from a more general view of a
flight (operator, region, schedule, ecc.) down to its specifics (delay, METAR data, ecc.).

1.1.1. OAG Data

OAG (see [13]) is data provider for commercial aviation flights data, this data is privately
owned thus no data source will be provided.
Each OAG dataset contains all the recorded information of commercial flights in a given
year, in particular we have the following information at our disposal for each flight:

• Flight ID (OAG specific)

• Scheduled departure and arrival times (UTC format)

• Scheduled departure and arrival airports

• Registration number of the aircraft

• Airline operator ID
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• Type of service offered for the flight

• Minutes of delay at departure and arrival

• Departure and arrival METAR ids (see 1.1.2)

It is of crucial importance to notice how ids for airline operators and aircraft allows us to
retrieve additional information about this features:

• Operating region/country

• Operator fleet size

• Aircraft age

• Aircraft manufacturer

• Aircraft type (i.e. the model)

1.1.2. METAR Data

METARs (METerological Aerodrome Reports [3]) is a form of reporting weather informa-
tion used by pilots and meteorologists for weather forecasting specifically in the aviation
sector.
In this study METAR data will be used to access weather information for each flight at
take off and landing locations and times.
METARs provide an extensive collection of weather variables; in this study the focus will
be restricted to the following:

• METAR id

• TMPF - Temperature [◦F ]

• RELH - Relative humidity

• SKNT - Wind speed [kn]

• VSBY - Visibility [mi ]

These variables were selected after experts opinions on the most influential weather factors
in aviation accidents. It is important to highlight that the impact of weather conditions
on aviation accidents has reduced significantly over the last decades, due to the prominent
technological advancements that have been made in this field.
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1.2. Aviation Safety Network Data

The Aviation Safety Network (ASN, see [2]) is the most reliable publicly available database
of aviation accidents (both for commercial and general aviation), for the collection of
this data an online data scraper has been built retrieving all accidents data available in
the considered time period (2019 - 2022). ASN provides various information about the
accidents; following is a list of the considered features:

• Date and time of the accident (local time)

• Registration number of the aircraft

• Phase of the flight in which the accident took place

• Geographical location of the accident (name)

• Scheduled departure and arrival airports of the flight

• Damage sustained by the aircraft

• Number of fatalities

1.2.1. Data cleaning

From the rather extensive data provided by ASN only commercial aviation flights were
selected, since general aviation is not considered in this study, significantly reducing the
accidents at our disposal.
Furthermore, geocoding (through the use of a specific Python library [9]) of the accidents
locations has been applied in order to retrieve with relative accuracy the latitude and lon-
gitude coordinates of the accidents, which were then used to identify the correct timezone
of each accident, allowing for the conversion of accidents date and time to the UTC time
zone for an accurate matching with the flights.
Overall, 1614 accidents were identified, distributed over the considered time period as
shown in Table 1.1.

2019 2020 2021 2022

Accidents 499 233 404 478

Table 1.1: Accident frequency per year
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The lower accident occurrence for the year 2020 can be easily explained by the COVID-19
pandemic, in fact compared to 2019 during 2020 the flights decreased by almost 50%.

1.3. Final Dataset

In this section the matching procedure to uniquely match an ASN accident to an OAG
flight will be presented and then the quality of the obtained data will be analyzed.

1.3.1. Accident-Flight matching procedure

The final step in the data processing phase is to match the reported accidents from ASN
to the flights data provided by OAG. The matching procedure was conducted as follows:

1. For each available aircraft registration number among the ASN accidents extract all
the recorded flights available.

2. Among the available flights select all the flights with scheduled departure date or
scheduled arrival date within a neighborhood, of length of 2 days, of the accident
date.

3. Check if the departure airport recorded for the accident matches with the scheduled
departure airport provided by OAG.

4. Check if the arrival airport recorded for the accident matches with the scheduled
arrival airport provided by OAG.

For our matching purposes step 1 and 2 presented above are necessary for an accident
and a flight to be considered a match. Notice that step 3 and 4 are not conducted in
parallel, since in case the accident occurs during the take off or initial climb phases ASN
might not report the arrival airport of the accident.
After this initial matching procedure we are sometimes left with accidents matched to
multiple flights, to fix this this issue and finally achieve unique accident-flights matches a
control procedure has been put in place that operates as follows:

1. Check that the time of the accident is exactly between the scheduled departure time
and the arrival departure time. When this step fails we proceed with step 2.

2. If the damage sustained by the aircraft is of category substantial or major we select
the last available flight among the candidate matches following the logical reasoning
that in these cases the considered aircraft will not fly again soon. When this step
fails we proceed with step 3.
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3. Make use of the flight phase in which the accident occurred to select the most likely
flight candidate as follows:

(a) Take off/Initial climb: Select the candidate flight that has scheduled departure
time closer to the recorded accident time in ASN.

(b) En route: Select the candidate flight that minimizes the sum of time difference
between scheduled departure/arrival and the accident time.

(c) Approach/Landing: Select the candidate flight that has scheduled arrival time
closer to the recorded accident time in ASN.

After this lengthy and computational intense, but necessary, procedure all of the matched
flights have been reduced to a unique one to one match with the accidents.

1.3.2. Data quality

Finally let us go through a brief summary of results achieved in terms of data quality and
the final cleaning procedures.
Over the considered time period we have the following quality of flight-accident matched
data as shown in Table 1.2, where the last column represents the percentage of uniquely
matched accidents among the selected candidates:

Year No. Flights No. Accidents % of matched accidents

2019 31,549,494 396 80.59%
2020 16,246,688 222 66.67%
2021 19,248,202 381 63.67%
2022 24,482,124 400 73.37%

Table 1.2: Matched data quality

Overall, we have satisfactory matching quality of the data (with a total of 1399 accidents
uniquely matched to a flight) considering that around 30% of the OAG flights lack an
aircraft registration number, thus not making them eligible for the matching procedure.
Finally for future analyses only accidents with at least minimal damage caused to the
aircraft will be considered, effectively eliminating all the accidents with none or unknown
damage due to their lack of interest for our purposes.
It is also worth noticing how moving forward we consider only flights associated with a
carefully selected list of aircraft types (see Table A.1 in Appendix A), compiled with the
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help of aviation experts, in order to remove aircraft types mainly associated with cargo
flights and also get rid of outdated models that are almost out of use.

The deep data granularity achieved for the flights will allow for an agile computation
of the accident rates among different features (operators, countries, aircraft manufac-
turers, aircraft types, ecc.), so that we can swiftly compare accident rates belonging to
different features sub classes and gain a deep understanding of their behavior.
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2| Preliminary analysis

In this chapter we will take a first look at the commercial aviation accident phenomenon,
starting from a brief look into the ASN accidents and their characteristics, and then
the rate of accidents across the 4 years in analysis (2019 - 2022) will be considered, to
gain a better understanding and select the appropriate tools to deal with the issue at hand.

2.1. ASN accidents

After the previously described data cleaning measures adopted (see 1.2.1) and having
gone through the appropriate flights-accidents matching procedure (see 1.3.1), we can
now take a close look at the accidents and their behaviour focusing in particular on the
damage sustained by the aircraft and phase of the flight in which the accident occurred.

Figure 2.1: ASN accidents classified by aircraft damage in 3 classes: minimal, substantial
and major

By looking at Figure 2.1 we notice that the majority of commercial aviation accidents
exhibit minimal damage to the aircraft (approximately 89.9%), while the substantial (ap-
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proximately 8.8%) and major (approximately 1.3%) damage represent an extremely small
fraction of the accidents making them rare events among commercial aviation accidents
which are rare events themselves. This is something to keep in my mind in our future
analyses, since by nature minimal damage are more random and might be dependent from
external factors not at our disposal (i.e. human error).

Figure 2.2: ASN accidents classified by flight phase in 3 classes: Take off/Initial climb,
En route and Approach/Landing

By visual inspection of Figure 2.2 most accidents, as expected, happen when the plane
is either in the Take off/Initial climb or the Approach/Landing phases (approximately
80.3% combined), this feature is crucial in achieving accurate flight-accident matches (see
1.3.1) since the En route accidents are the hardest to appropriately match. Furthermore,
this is something to keep in mind moving forward when arrival and departure METAR
data will be considered.
Finally let us shed a light on ASN accidents’ seasonality in order to identify any particular
monthly trends.

Figure 2.3: ASN accidents monthly distribution
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The results depicted in Figure 2.3 are to be considered cautiously. First of all we notice
the significant impact of the COVID-19 pandemic that caused a substantial reduction of
the flights (and consequently of the accidents) starting from March 2020. Furthermore,
the rest of the seasonality trends can be explained by the high seasons and low seasons of
the aviation industry (peaks in December and during the summer months), paired with
the randomness of the phenomenon.

2.2. Commercial aviation accident rates

First we proceed by removing all flights with matching registrations and all accidents
with either none or unknown aircraft damage, to minimize accident reporting bias, due
to different accident reporting procedure laws belonging to different countries or regions;
furthermore the accident rates will be represented as percentage for visualization purposes.

In the following Table 2.1 a preliminary look into accident rates is presented:

Year No. Flights No. Accidents Accident Rate (%)

2019 29,063,825 233 0.00080168
2020 14,340,483 82 0.00057181
2021 15,865,361 153 0.00096437
2022 18,489,566 181 0.00097893
TOT 77,759,235 649 0.00083463

Table 2.1: Commercial aviation accidents yearly rates

It is immediately clear the extreme rarity of such events even when considering low dam-
ages to the aircraft. We also notice a significant decrease in flights after 2019, this is
easily explained by the COVID-19 pandemic which hit the commercial aviation industry
particularly hard. The same reasoning can be adopted for the extremely low accident
rate recorded in 2020. Since we have to keep in mind that ASN reporting procedure is
executed mainly by volunteers, it is safe to assume that its reporting is quality mainly
focused on more important events losing on accuracy. Moving forward we will have to be
aware at results and trends relative to 2020 (and partially also 2021) due to this issue.
The next logical step in the commercial aviation accident rates analysis would be to cat-
egorize the flights, and subsequently the accidents, according to the different categorical
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features at our disposal (region, country, age of the aircraft, aircraft type, delay, ecc.)
in order to spot interesting patterns among them, and try to evaluate their influence on
flight safety by evaluating the accident rates.

Figure 2.4: Commercial aviation accidents yearly rates.

Furthermore, by looking at Figure 2.4 we can put in perspective the differences among
these accident rates, it is immediately noticeable how the considered rates show consider-
able variability and thus the need of a tool to evaluate such statistical differences becomes
apparent, in particular we will look into binomial proportions confidence intervals (see
Chapter 3).
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3| Binomial proportion confidence

intervals

In the world of statistics a binomial proportion confidence interval is an interval for the
estimation of the probability of successes computed from the result of a series of Bernoulli
trials. In other words, a binomial proportion confidence interval acts as an estimate of
the probability of success p, given that the number of trials n and the number of successes
nS are known.
There are several available formulas for the estimation of binomial confidence intervals and
all of them share one common trait: they rely on the assumption of a binomial distribution.
In general a binomial distribution is considered when an experiment is repeated a known
amount of times, where each trial admits only two possible outcomes (success or failure)
making the success probability (and analogously the failure probability) equal for each
trial, furthermore assuming statistical independence among the trials.

3.1. Normal approximation interval

The most common example of a binomial proportion confidence interval is the normal
approximation interval or Wald interval. This interval relies on approximating the distri-
bution of a binomial variable, nS, with a normal distribution. This kind of approximation
relies on the Central Limit Theorem, which estimates the distribution of p̂, i.e. of bino-
mial distributed variable divided by its parameter n, as n grows; this estimate becomes
extremely unreliable when the sample size is small (not of our concern for the application)
or when the success probability is close to 0 or 1 (this is the main concern for us since
commercial aviation accident are extremely rare events).
Using the normal approximation we obtain the following estimate for the success proba-
bility p:

p̂± zα
2

√
p̂(1− p̂)

n
(3.1)



16 3| Binomial proportion confidence intervals

or equivalently,
nS

n
±

zα
2

n
√
n

√
nSnF (3.2)

where p̂ =
nS
n

is the estimate proportion of successes in a Bernoulli process, measured with
n trials with an outcome of nS successes and nF = 1 − nS failures, and zα

2
= Φ-1

(
1 − α

2

)
represents the 1− α

2
quantile of a standard normal distribution which corresponds to the

interval confidence level α (yielding zα
2
= 1.96 in case of α = 0.95).

As previously stated the main weakness of the normal approximation interval is its un-
reliability when dealing with small proportions close to 0 which makes it unfit for our
purposes, thus the need of introducing a stronger interval fit to deal with this issues
arises.

3.2. Agresti-Coull interval

The Agresti-Coull interval (see [1]) is a non-parametric interval for the estimate of bi-
nomial proportions, meaning that it does not make any assumptions on the underlying
distributions of the data. This particular feature makes it a more robust choice than
parametric intervals, such as the Wald interval, when the assumptions of the parametric
interval are not met.
The Agresti-Coull interval is constructed in the following way.
Given nS successes in n trials, define

ñ = n+ z2α
2

(3.3)

and

p̃ =
1

ñ

(
nS +

z2α
2

2

)
(3.4)

Then the Agresti-Coull confidence interval for p is obtained as follows

p̃± zα
2

√
p̃

ñ
(1− p̃) (3.5)

3.3. Conclusion

It is proven by L. D. Brown and T. T. Cai (see [4]) that the Agresti-Coull interval is more
fit than the normal approximation interval to deal with close to 0 proportions interval
estimation providing a wider coverage.
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Thus moving forward, for our interval estimation purposes of the commercial aviation
accident rates, the Agresti-Coull interval will be considered due to its previously shown
benefits when dealing with small proportions. The latter also provides an asymmetric
coverage for p̂ (symmetric for p̃) which is larger for values above p, when it’s close to 0,
which conveniently fits our interval estimation goals since it provides a larger coverage in
case of higher accident rates.
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4| In depth commercial accident

rates analysis

In this chapter we proceed with the explorative analysis of an extensive selection of differ-
ent flight’s features on the commercial aviation accident rates, starting from more generic
airline operator features, such as the operating region and the fleet size, to then get into
the aircraft specifics and finally look into the flight exclusive features, such as the delay
and the flight duration (for an in depth overview of the considered features in the study
see Section 1.1.1).
To conduct such analysis of the accident rates we will make use of the Agresti-Coull inter-
val introduced in Section 3.2, due to the previously explained robustness of this approach
when dealing with proportions close to 0. All the intervals represented in this chapter
are evaluated at a confidence level of 95% (α = 0.95) and considered as one-at-the-time
confidence intervals for each individual rate.
Recall that, as previously mentioned (see Section 2.2), the accident rates will be repre-
sented as a percentage for better visualization purposes.

4.1. Airline operators

In this section we will analyze all the aspects that identifying a flight with its respective
airline operator brings to the table. Starting from the more broad view of regional cate-
gorization of operators, to then move into a deeper look of each individual airline shining
a light on the most active ones and finally focusing on the trend provided by the fleet size
of the operators when compared with their respective accident rates.

4.1.1. Operating region

Now the regional commercial aviation accident rates will be considered. It is important
to remark that the flights are classified by operating region, that is the region of residence
of the airline operator of each flight; in most cases this coincides with the departure region
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and the arrival region, since the vast majority of commercial flights are not intercontinen-
tal, but that is not always the case.

Figure 4.1: Operating region accident rates.

Figure 4.1 depicts an interesting image that is, for the most part, consistent with aviation
experts opinions.
Africa, CIS (i.e. Commonwealth of Independent States, a regional organization of 12
countries that were formerly part of the Soviet Union) and LATAM (i.e. Latin America)
all show the highest, and comparable, accident rates among the considered regions and
their higher confidence interval amplitudes are mainly due to the lower air traffic when
compared to the other regions. This view is consistent with experts’ opinions which
consider Africa as the most dangerous region shortly followed by LATAM, it is interesting
how the behaviour of the CIS accident rate is higher than expected.
Asia Pacific seems to be in a category of its own which stands in between the previously
mentioned higher rate category and the lower one which will be shortly discussed, this
might due to the fact that this region includes, by far, the most heterogeneous group of
countries in terms of wealth and thus flight safety procedures.
Moving on we get to the third group in our analysis which is made up from the wealthiest
regions in the world: Europe, MEA (i.e. Middle East and North Africa) and North
America. All of the just mentioned regions show very similar rates and a significantly
smaller confidence interval amplitude mainly due to their higher air traffic. This results
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are uniform with the expert’s opinions which consider these regions among the safest in
the world.
Finally the most interesting case is by far the one of North Asia (i.e. China) which
operates completely in a category of its own, displaying an extremely low accident rate
as well as the smallest confidence interval among all the regions. Although this might
surprise a naive reader, and lead to think this is due to a lack of accident reporting by the
region’s air traffic institutions, North Asia is unanimously considered the safest region to
fly in by experts as well.

4.1.2. Airlines

In our study we consider an extensive list of 396 commercial airline operators from industry
giants to less active and only local airlines.
For visualization purposes we will represent only the top 50 operators ranked by total
amount of flights in the considered time period, which represent over 60% of the world
wide air traffic and around 57% of the considered accidents.

Figure 4.2: Airline operators accident rates.

Although the results shown in Figure 4.2 are of difficult interpretation, due to high am-
plitude and fluctuation of the confidence intervals caused by the large number of classes
introduced, some interesting observations can still be made.
First of all we notice low accident rates for the top Chinese airline operators such as
China Southern Airlines, China Eastern Airlines, Air China, Xiamen Airlines, Shenzhen
Airlines, ecc. when compared to other region’s top operators. This result is consistent
with the already discussed regional trends in the previous section.
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Furthermore, we observe how almost all of the high accident rate airline operators belong
to higher rated regions, for example Azul operates in LATAM, while ANA-All Nippon
Airways, GOL, Japan Airlines and Air India all operate in Asia Pacific. The only no-
ticeable outlier from the regional trends is represented by Air Canada which operates in
North America.

Finally, as the last step in the airline operators analysis, it is interesting to focus on
the influence of the fleet size of airlines, that is the number of aircraft employed by an
airline, on the accident rates since it is commonly believed, by aviation experts, that
wealthier (and thus bigger) airlines usually are more reliable than local ones.

Figure 4.3: Airline operators fleet size accident rates trend.

As we can see in the log-log plot represented in Figure 4.3, a clearly decreasing trend in
the accident rates is noticeable as the fleet size increases (for visualization purposes only
the positive rates operators are represented). Furthermore, it is also noticeable how the
spread between observation tightens as the fleet size increases, as expected.
Moreover, a power trend line is represented which gives the following relation between the
two variables:

log(rate) = 0.9867 · log(fleet size)−0.61 (4.1)
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yielding,

rate ≈ fleet size−0.602 (4.2)

which is to be considered carefully given the fact that:

1. null rate observations are not being considered

2. the trend line seems to be heavily leveraged by the presence of outlying observations
with extremely high fleet size

4.2. Aircraft specifics

Moving further in our study we will consider the types of aircraft considered and their
characteristics from the manufacturer, the different aircraft types and body types and
finally a bin classification of the years each aircraft has been active.
Recall that, for our data cleaning purposes, we decided to consider only a specific list of
aircraft types in order to remove out of use aircraft types not relevant to our analysis (see
Table A.1 in Appendix A).

4.2.1. Manufacturer

Now the subset of available aircraft manufacturers at our disposal is to be considered,
overall we consider 8 different manufacturers ranked in order of their respective aircraft
usage.
It is worth underlining the fact that Airbus and Boeing, the two biggest manufacturers in
terms of number of flights employing their aircraft, add up to over 78% of the world wide
air traffic and over 72% of the active aircraft with almost equal shares in both categories.

Figure 4.4: Aircraft manufacturers accident rates.
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By visual inspection of Figure 4.4, it is interesting to notice how Airbus displays slightly
better performance when compared to the other industry giant Boeing, this is worth
noticing, although the difference seems to be minor, because the two manufacturers look
extremely similar on paper: both produce a wide and complete range of different aircraft,
covering all different needs from domestic to intercontinental flights, (see A.1) and also
have almost the same numbers in terms of market share.
Then we observe lower rates for Embraer and Bombardier (Canadair) and higher rates
for Bombardier (de Havilland) and ATR. These manufactures, unlike Airbus and Boeing,
are more specific about the kinds of aircraft they produce focusing on selected body types
(the first two on narrow bodies and regional jets, while the latter two on wide bodies and
turboprops respectively), their difference in rates is most likely due to this fact and will
be shortly explored.
Finally it is hard to draw conclusions on the last two manufacturers, Boeing (Mc Donnell-
Douglas) and Saab, since collectively they represent less than 1% of the worldwide air
traffic, and of course this issue is reflected by the amplitude of their confidence intervals,
especially for Saab which, although displays the highest accident rate among all the man-
ufacturers, it also has an extremely large confidence interval making it hard to evaluate
when compared to the others.

4.2.2. Aircraft type

For a broader view on the influence of an aircraft on the accident rates an overview of the
aircraft types will be now presented.
In total 33 aircraft types are considered, among the previously listed manufacturers (see
Table A.1), ranked in descending order when it comes to their employments (i.e. number
of flights).

Figure 4.5: Aircraft types accident rates.
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The results depicted in Figure 4.5 show a very similar behaviour among the most com-
monly employed aircraft types (737 NG, A320, A321, A319, 175 and CRJ900 ), which all
are either narrow body or regional jets generally used for short distance flights (we will
analyze aircraft body types shortly).
Moving further down the list, the estimation of the influence of different types becomes
harder, due to a fast increase of the amplitude of the confidence intervals.
One interesting aspect is the high accident rate of the 737 MAX type when compared to
other narrow body aircraft.

The need of introducing a new perspective on the aircraft types by classifying them
by body type becomes apparent. Moreover, we consider 4 different body types as follows:

• Narrow body - Mainly employed in short and medium length flights

• Regional jet - Exclusively employed for short distance flights

• Turboprop - Much like regional jets are employed for short distance flights (they
have different propulsion system)

• Wide body - Mainly employed for long flights (e.g. intercontinental flights)

For an extensive list of all the aircraft type and their respective body type, as always,
refer to Table A.1

Figure 4.6: Aircraft accident rates classified by body types.
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The results shown in Figure 4.6 are interesting and of easier interpretation compared to
the aircraft type results.
First of all we observe how narrow bodies and regional jets have significantly the lowest
rates, and are comparable among each other. Turboprop display an higher accident rate
accompanied by also a larger confidence interval, and finally the most surprising result is
the extremely high accident rate displayed by wide bodies. This last result is not consistent
with the wide spread opinion of industry experts that generally turboprops are the worst
performing body type, this conviction might be led by the fact that the latter are often
used for cargo flights which are inherently more dangerous that commercial flights, but
not considered in our analysis.
Moreover, this interesting result leads us to think that the flight duration might play a
bigger role in the evaluation of accident rates than one might think and will be shortly
investigated (see Section 4.3).

4.2.3. Aircraft age

Finally we conclude by shifting our attention towards the role played by the aircraft age
on the accident rates’ trend.
Moreover, the aircraft at our disposal have been grouped up according to their age in 9

different bins of equal size of 3 years apart form the first bin, 1-6 years, and the last bin,
28+ years.

Figure 4.7: Aircraft accident rates categorized by age.
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Overall, for the first 18 years of an aircraft lifespan the rates seem to be comparable
both when it comes to their value and to the amplitude of the confidence intervals, thus
displaying no apparent increasing safety issues in this period, as one might expect.
Furthermore, we have a peculiar drop of the accident rate in the 19-21 bin, this is an
unusual behaviour given the fact that in the remaining final 3 bins we observe an increase
of the accident rates as expected, although the confidence intervals grow significantly in
size due to the lack of still active aircraft in that age range.
Moreover, the age of the aircraft doesn’t seem to play the crucial role that a naive indi-
vidual might expect before a closer inspection,.

4.3. Flight specifics

In this section we will focus on the flight specific variables and their effect on commercial
aviation accident rates. Starting from a broad classification of flights according to their
nature (i.e. domestic or international), to then look into the flight duration, and finally
the flight delay will be considered.

4.3.1. Nature

Now we compare domestic and international flights and how they might influence accident
rates, but first let us introduce the following assumption:

• A flight is considered domestic when its departure and arrival airports are located
in the same country, on the other hand when this condition isn’t met it is considered
international

(a) Yearly rates. (b) Total rates with confidence intervals.

Figure 4.8: Accident rates classified by nature.
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The results represented in Figure 4.8a depict a clear disparity between domestic and in-
ternational flights with the latter ones clearly showing more accident predisposition.
Moreover, by taking in consideration Figure 4.8b we notice how the previous observation
is also true when we include the confidence intervals; in fact the two intervals are relatively
small and show no overlapping.

This significant trend might be due to different reasons. First of all it could be linked to
the flight duration since, for obvious reasons, international flights in the majority of the
cases display an higher flight time. Furthermore, according to industry experts, this trend
could also be connected to the issues that flying to another country might introduce, for
example, language barriers, different safety procedures and fatigued pilots due to long
hours flights, just to mention a few.

4.3.2. Duration

Moving forward, in the deep dive into flight specific features, now we shine a light on the
influence of flight duration on the accident rates.
A classification of the flights based on 2 hours bins will be considered with the exception
of the last bin, for which all flights with a flight time over 6 hours are grouped together.

(a) Yearly rates. (b) Total rates with confidence intervals.

Figure 4.9: Accident rates classified by flight duration.

As we can see in Figure 4.9a the trend is consistent among the 4 considered years, in
particular there seem to be no noticeable differences between flights with below 4 hours
duration, and then a significant increase in the accident rates in the other two classes, with
all the available years hitting their respective peaks when considering 6+ hours flights.
Furthermore, by taking in consideration the confidence intervals shown in Figure 4.9b we
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solidify the observations made above. Indeed, the classes 0-2 hours and 2-4 hours share
not only almost identical rates, but also completely overlapping (and of small amplitude)
confidence intervals, confirming the assumption of no statistical difference of the accident
rates among the two classes.
Moreover, the other remaining classes, 4-6 hours and 6+ hours, show a distinct increase
in their rates and, despite having significantly bigger confidence intervals, no overlapping
among said intervals, confirming a significant statistical difference between them and with
the first two classes.

Finally an exponential trend line is represented which fits the class rates extremely well
with R2 = 0.9535. Although this result looks impressive it is to be taken into account
carefully since only 4 points (the 4 different classes) are used to identify the trend.
The results obtained for the flight duration feature are very crucial since they are most
likely the main reason of previously observed trend for the features nature and the aircraft
body type (in Section 4.2), in particular when it comes to the extremely high accident rate
observed for wide body aircraft, which are used almost exclusively for long distance flights.

4.3.3. Flight delay

As the final step, in this flight specific analysis of the commercial aviation accident rates,
we shift our attention towards flight delays. The overall delay is calculated as the sum of
the departure and landing delays.
At first we start by classifying the flights into 4 different classes based on their delay as
follows: On time, which includes also includes flights that have negative overall delay (i.e.
ahead of schedule), 15-30 minutes delay, 30-60 minutes delay and 60+ minutes delay.

(a) Yearly rates. (b) Total rates with confidence intervals.

Figure 4.10: Accident rates classified by overall flight delay among 4 classes.
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As we can see from Figure 4.10, there doesn’t seem to be consistent results among the 4

different delay classes. In particular by looking at Figure 4.10b we notice how the classes
On time and 15-30 minutes seem to be very similar due to significant overlapping of the
confidence interval, the same reasoning stands even stronger for the classes 30-60 minutes
and 60+ minutes.
Moreover, this conclusions seem to be true across all the considered years, see Figure
4.10a, with the odd exception of 2021. This considerations lead us to rethink the flight
delay classification process.

Let us now consider only 2 classes, based on the previous observations we are led to
classify flight delays as follows: delay < 30 minutes, effectively unifying the previous on
time and 15-30 minutes, classes and delay > 30 minutes, effectively unifying the previous
30-60 minutes and 60+ minutes.

(a) Yearly rates. (b) Total rates with confidence intervals.

Figure 4.11: Accident rates classified by overall flight delay among 2 classes.

As we can see now in Figure 4.11a we have a much more consistent distribution among
the different years; only 2020 shows a more pronounced difference than the other years.
Moreover, also in Figure 4.11b we get confirmation that with this new classification we
have much better separation among the classes, indeed we have significantly different rates
among them and no overlapping between the confidence intervals.

The much higher accident rate when it comes to significantly delayed flights (i.e. de-
lay > 30 minutes), when compared to lower delayed flights (i.e. delay < 30 minutes),
might be due to a collection of different reasons from the stress caused to the pilots arising
from time pressure, to airport organizational issues caused by sudden schedule changes.
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4.4. Results

Overall, the in depth analysis of the behaviour of commercial accident rates conducted
in this chapter has led to some interesting and eye opening conclusions when it comes to
understand the main causes of aviation accidents.
Among them we confirmed experts opinions when it comes to considering certain world
regions as more dangerous than others, aircraft body type having an influence on acci-
dents and the role played by flight delays.
On the other hand some surprising trends were also spotted such as the extremely signif-
icant increasing trend linked to the duration of flights, the not so significant trend linked
to different aircraft manufacturers and finally, the most surprising of all, the fact that the
age of an aircraft does not seem to play as big of a role as previously expected.

Although this analysis has provided interesting insights when it comes to the issue at
hand, there are some limitations. The major one is given by the fact that this approach
allows us to look at the influence of the available features one at time, without allowing
us to evaluate correlation, interaction and importance among these features and most of
all it doesn’t allow for methodical feature selection process.
For these reasons, moving on in our analyses, we will consider a machine learning classi-
fication approach for flights in order to find the main features that constitute an accident
and tackle the shortcomings of the analysis conducted in this chapter.
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There is a plethora of different approaches to tackle the problem of commercial avia-
tion accidents classification, from the usage of the implementations of artificial neural
networks and fault tree models ([18]), the more sophisticated use of Bayesian neural
networks ([11]) to the implementations of ensemble machine learning and deep learning
models ([14]). Although very interesting these previously proposed solutions often rely on
extremely specific features for their analyses (i.e. cabin pressure values monitored during
the flights) and are rarely fit to handle properly large amounts of data which is of course
one of our primary concerns (see Chapter 1).
For these reasons we decided to consider a gradient boosting approach for our classifica-
tion purposes.

Generally the most common approach for data-driven modeling is to build a single strong
predictive model. An alternative is to consider an ensemble of weaker models for a specific
learning task. The ensemble approach relies on considering predictions of a large scale of
weaker models synthesized in a strong ensemble prediction.
Other ensemble techniques, like random forest, rely on a simple average of the weak mod-
els considered in the ensemble, instead boosting methods are based on different procedure:
at each iteration a new weak model (base-learner) is trained with respect to the overall
error of the ensemble learnt up to that point.
In gradient boosting machines (GBMs) the learning phase sequentially fits new weak mod-
els in order to improve the prediction on the target variable, this is done by introducing
the new base-learners so that they are maximally correlated with the negative gradient of
the loss function of the ensemble. There is an extensive collection of loss functions studied
in literature to tackle a variety of different problems from regression, to classification and
more. Furthermore there are also different base-learners to choose from when fitting a
GBMs with decision trees being the most popular option.
In this chapter a complete overview of GBMs’ methodology will be presented with par-
ticular attention on how they can be used for classification purposes, for a more in depth
and complete theoretical framework of GBMs see [7, 12].
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5.1. Methodology

We start by considering the function estimation problem in the common supervised learn-
ing setting.
Considering a dataset (x, y)Ni=1, where x = (x1, ..., xd) is the collection of input variables
and y refers to the associated response variable, the goal is to extract the functional de-
pendence f between x and y. To achieve this we rely on an estimate f̂(x) such that a
specific loss function Ψ(y, f) is minimized:

f̂(x) = y,

f̂(x) = argmin
f(x)

Ψ(y, f(x))
(5.1)

The optimization problem can be written in terms of the conditional expectation as fol-
lows:

f̂(x) = argmin
f(x)

Ex[Ey[Ψ(y, f(x))]|x] (5.2)

where Ey[Ψ(y, f(x))] is the expected y loss, and Ex[Ey[Ψ(y, f(x))]|x] is the expectation
over the whole dataset.
The decision of the loss function for the problem comes from the distribution of the
response variable y, in particular in the case of a binary response, y ∈ {0, 1}, we could
opt for the log loss function, that is the binary version of the cross-entropy function.

5.1.1. Gradient descent

In this section an overview of the gradient descent method is presented as described by
A. Natekin and A. Knoll (see [12]).
In the case of conventional machine learning models to tackle the function estimating
problem we restrict the search to a parametric collection of functions f(x, θ), effectively
changing the optimization problem to the following:

f̂(x) = f(x, θ̂),

θ̂ = argmin
θ

Ex[Ey[Ψ(y, f(x, θ))]|x]
(5.3)

Since generally the closed form solutions of 5.3 are not available we adopt an iterative
numerical approximation procedure. Consider M iterations, and rewrite the parameter
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estimate in incremental form:

θ̂ =
M∑
i=1

θ̂i (5.4)

The most utilized parameter estimation technique is gradient descent where, having con-
sidered the dataset (x, y)Ni=1, we want to minimize J(θ), an empirical loss function, over
the data:

J(θ) =
N∑
i=1

Ψ(yi, f(xi, θ̂)) (5.5)

The main idea of gradient descent optimization is to continuously improve the estimate
along the direction of the gradient of the loss function ∇J(θ).
The gradient descent optimization is conducted as follows:

1. Initialize the parameter estimate θ̂0

At each iteration t:

2. Compute a parameter estimate θ̂t from all the preceding iterations:

θ̂t =
t−1∑
i=0

θ̂i (5.6)

3. Compute ∇J(θ) and evaluate it given the ensemble parameter estimates:

∇J(θ) =
[
∂J(θ)

∂J(θi)

]
θ=θ̂t

(5.7)

4. Compute the new incremental parameter estimate, with step-size ρ:

θ̂t ← θ̂t−1 − ρ∇J(θ) (5.8)

5. update the ensemble estimate by adding the new estimate θ̂t

5.1.2. Gradient boosting

In this section an overview of the gradient boosting algorithm is presented as described
by A. Natekin and A. Knoll (see [12]).
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The main difference between conventional machine learning procedures, such as the one
presented above, and boosting methods is that in latter ones the optimization procedure
is carried out in the functional space.
This means that we directly parameterize the function estimate in an incremental way:

f̂(x) = f̂M(x) =
M∑
i=0

f̂i(x) (5.9)

where M is the number of iterations considered, f̂0 is the initial function estimate and
{f̂i}Mi=1 are function increments also known as "boosts".
Now we introduce the parameterized "base-learner" functions h(x, θ) in order to differ-
entiate them from the overall ensemble estimate f̂(x). There is a plethora of different
base-learners to choose from according to ones specific modelling needs, the most com-
mon choice are decision trees (we will go through the considered options in Section 5.2.2).
Now we can finally detail the so called "greedy stagewise" approach with the base-learners
as function increments (introduced by Friedman, see [7]). In this case the optimal step-
size ρ has to be specified at each iteration t, thus defining the optimization procedure at
each iteration as follows:

f̂t ← f̂t−1 + ρth(x, θt),

(ρt, θt) = argmin
ρ,θ

N∑
i=1

Ψ(yi, f̂t−1) + ρh(xi, θ),
(5.10)

Problems arise in practical implementations of the procedure, indeed having specified the
loss function Ψ(y, f) and the base-learner the solution of parameter estimation can be
difficult to obtain.
To deal with this issue Friedman ([7]) proposed to consider a new function h(x, θt) to be
the most parallel to the negative gradient {gt(xi)}Ni=1 along the considered data:

gt(x) = Ey

[
∂Ψ(y, f(x))

∂f(x)
|x
]
f(x)=f̂ t−1(x)

(5.11)

This allows us to simply select the new function increment such that it is the most
correlated with −gt(x), which means that we can circumnavigate a potentially arduous
optimization task with a least-squares minimization problem:
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(ρt, θt) = argmin
ρ,θ

N∑
i=1

(
− gt(xi) + ρh(xi, θ)

)2 (5.12)

Finally we can summarize the Gradient Boost algorithm proposed by Friedman (see [7]):

1. Initialize f̂0 as a constant
For each iteration t:

2. Compute the negative gradient gt(x) as shown in 5.11

3. Fit a new base-learner function h(x, θt) such that is the most parallel to the negative
gradient.

4. Compute the optimal step-size ρt:

ρt = argmin
ρ

N∑
i=1

Ψ
[
yi, f̂t−1(xi) + ρh(xi, θt)

]
(5.13)

5. Update the function estimate as follows:

f̂t ← f̂t−1 + ρth(x, θt) (5.14)

Furthermore, for our future implementation of gradient boosting we will use the Python
library CatBoost ([19]) which makes use of a specific GBM algorithm that allows for a
smooth handling of categorical features without the need of one-hot encoding, that is the
conversion of categorical features to numerical ones (for more information on CatBoost
refer to [6, 8, 16]).

5.2. Model design

The design choices, for a specific GBM built for particular task, consist in the selection of
the functional parameters, that is the loss function Ψ(y, f) and the base-learner h(x, θ).
Namely, one has to first specify the objective of the optimization, i.e. the loss function,
and then select the functional form used to achieve the solution, i.e. the base-learner.

In this section we will go through the most popular options available when it comes
to the selection of said functional parameters. Furthermore, the main focus will be on
classification tasks and on the selection of options that will be implemented later on.
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5.2.1. Loss function

Depending on the learning task at hand there is an extensive selection of loss functions
Ψ(y, f), with different options available depending on the response variable. When con-
sidering a categorical response variable the most popular options are the quantile loss
function and the cross-entropy loss function.
Moving forward we will consider the case of a binary categorical response variable, y ∈
{0, 1}, and the associated cross-entropy loss function which in this case is also known as
the log loss function.

Log loss function

The log loss function is a widely used performance metric in machine learning and opti-
mization tasks when it comes to dealing with binary response variables.
The goal of the log loss function is to evaluate the discrepancy between the true label y
and the predicted probability of the positive class (i.e. class 1) ŷ:

Ψ(y, ŷ)log = −[y log(ŷ) + (1− y) log(1− ŷ)] (5.15)

The value of the log loss ranges from 0 to infinity with lower values representing better
model performances.
When evaluated over a dataset of sample size N the log loss is calculated as follows:

Ψ(y, ŷ)log = −
N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (5.16)

When considering highly imbalanced data, which is of our concern since we are dealing
with commercial aviation accidents (see Chapter 2), it is common practice to consider
a weighted version of the log loss function in order to encourage the model to focus on
predicting correctly samples belonging to the minority class. For a binary classification
problem the weighted log loss function is computed as follows:

Ψ(y, ŷ)weighted log = −
N∑
i=1

[ω0yi log(ŷi) + ω1(1− yi) log(1− ŷi)] (5.17)

where ω0 is the weight assigned to the negative class (i.e. class 0) and ω1 is the weight
assigned to the positive class (i.e. class 1).
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5.2.2. Base-learners

There is a diverse selection of base-learners in the literature to choose from when consid-
ering a specific GBM design.
The base-learners of popular use can be classified in three different categories: linear
models, smooth models and decision trees.
Although linear models, such as linear regression and ridge regression, and smooth mod-
els, such as p-splines, can be effective as base-learners they have some drawbacks when
it comes to dealing with large datasets. For these reasons decision trees are the most
common choice when it comes to popular GBM algorithms (such as XGBoost, LightGBM
and CatBoost) and we will consider them as base-learners moving forward.

Decision trees

Decision tree models are a computationally friendly approach at capturing interactions
between variables in GBM models.
The concept behind a decision tree is to partition the input variables space in sub-areas
following a tree rule system. Each tree split corresponds to a if-then decision over a specific
variable. Due to this structure interactions between variables are naturally modelled.
Usually the number of splits is a parameter (called interaction depth) set by the user;
one might think that the deeper the tree the more accurate the results will be, but it
has been proven that, in an ensemble model framework such as GBMs, complex trees
(interaction depth > 20) do not provide significant improvements compared to compact
ones (interaction depth ≈ 5).
The most important characteristic of decision trees is that, by construction, a single
decision tree will always output a constant value function.

5.2.3. Early stopping

The biggest concern when designing any machine learning model from data is the final
model generalization effectiveness. If we overlook proper applications of the learning pro-
cess overfitting issues are not uncommon. These problems are the same for GBMs.
Indeed, it is common to encounter a situation where base-learners are added until the
data is completely overfitted. In statistics this concept is commonly known as the bias-
variance trade-off, which refers to the fact that it is difficult to simultaneously minimize
the bias, that is the difference between the expected value of a model’s prediction and the
true value of the target variable, and the variance, that is the amount of variation in the
model’s predictions.
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To tackle these issues different regularization approaches were considered, in particular
we will focus on early stopping since it will be the regularization technique used during
the later modelling stages.

Early stopping stems from practical considerations, where after a certain number of it-
erations the loss function evaluated on the test set starts increasing, while the same on
the training set keeps decreasing effectively confirming that overfitting is taking place. To
solve this issue we reduce the ensemble to the number of trees corresponding to the test
set minima on the loss curve. To achieve this result an iteration threshold k is set, and the
learning procedure is stopped if, after k consecutive iterations, there are no improvements
on the minimization of the test set curve.

5.3. Model interpretation

When it comes to practical applications it is of paramount importance to be able to
interpret the model results. When using additive GBM models, that is with linear models
as base-learners, the results can be trivially explained since the additive components
correspond to the marginal dependence plots by design.
This approach is of no use when one uses a GBM with high interaction depth decision
trees as base-learners, and despite the simple structure of a decision tree, when it comes to
an ensemble of thousands of them the results interpretation becomes a challenging task.
A collection of different tools has been developed to tackle interpretation issues in decision
tree based GBMs. In this section we will describe the later on implemented tools for GBM
interpretation.

5.3.1. SHAP values

Shapley values are a model agnostic interpretation tool that comes from cooperative
game theory, recently their employment as machine learning explanation tools as become
prevalent due to their versatility (see [10]).
This method requires the training of the model on every feature subset S ⊆ F , where F

is the complete set of features. In order to do this we effectively train two models, fS∪{i}
with the considered feature present and fS with the feature withheld. Successively the
predictions from the two models are compared on a specific input fS∪{i}(xS∪{i})− fS(xS),
where xS represents the feature values in S. The latter difference is then computed for
all subsets S ⊆ F \ {i}, and the Shapley values are a weighted average of said differences:



5| Gradient boosting machines 41

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})− fS(xS)] (5.18)

Once the Shapley values are computed for all the features they can effectively be used as
feature importance measure.

Moving forward for our model interpretation purposes we will consider SHAP (SHap-
ley Additve exPlanation) values (see [10, 17]).
SHAP values are the Shapley values of a conditional expectation function of the original
model under analysis. SHAP values assign to each feature the modification in the predic-
tion of the expected model when conditioning with respect to that feature. They allow
us to explain how to get from the base expected value E[f(x)] to the model output f(x).
For a more in depth theoretical framework of the inner workings and properties of SHAP
values refer to Scott M. Lundberg and Su-In Lee’s paper: A Unified Approach to Inter-
preting Model Predictions ([10]).
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model

In this chapter an implementation of a safety GBM tree-based classification model for
the OAG flights will be presented (see Section 1.1.1), with the aim of identifying patterns
in the available descriptive features to gain a deeper understanding of the characteristics
of commercial aviation accidents. Furthermore, also METAR data (see Section 1.1.2) at
departure and arrival will be taken into account for each flight.
For the modelling and analyses conducted in this chapter only the flights relative to 2019

will be considered, this is due to two main reasons: the first, and more obvious, reason
is to avoid extremely high computational burdens, the second reason is because, as pre-
viously discussed in Chapter 2, 2019 data is not affected by the COVID-19 pandemic,
therefore it allows to consider more data compared to the previous years and also will
reflect more accurately the trends of future years.

Among the available flight features (presented in Chapter 1, or introduced in Chapter
4), the following will be considered in the modelling:

• Operating region - OPERATING_REGION

• Airline operator - OPERATOR

• Aircraft body type - BODY_TYPE

• Aircraft type - TYPE

• Aircraft age - AGE

• Flight nature - NATURE (see Section 4.3.1)

• Flight delay class - DELAY_CLASS (see Section 4.3.3)

• Flight duration - DURATION

Additionally we will also considered the following METAR features (introduced in Sec-
tion 1.1.2), for each flight, both at departure and arrival (with prefix DEP and ARR
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respectively):

• Temperature [◦F ] - DEP_TMPF and ARR_TMPF

• Relative humidity - DEP_RELH and ARR_RELH

• Wind speed [kn] - DEP_SKNT and ARR_SKNT

• Visibility [mi ] - DEP_VSBY and ARR_VSBY

Finally the target variable in this modelling chapter is a binary variable, y ∈ {0, 1}, where
the positive class represents the occurrence of an aviation accident for each flight.
Before tackling the model implementation we should address the data processing measures
taken into account to deal with the high class imbalance at hand.

6.1. Data processing

As previously discussed in Chapter 2, the main issue to deal with is the extreme class
imbalance among our data. There are several ways to tackle this problem from to data-
processing methods, such as oversampling of the minority class (i.e. accidents) or under-
sampling of the majority class (i.e. non-accidental flights); to considering alternative loss
functions, such as the weighted log loss function (see 5.17).

It’s pretty clear, from initial attempts at fitting a classification model, that due to this
extreme imbalance we cannot rely on only one of this methods to obtain somewhat decent
results. Indeed, if we were to perform a total undersampling of the non-accidental flights,
we would reduce the dataset to an extremely small fraction of itself, loosing any possi-
ble identifiable pattern in the flights. On the other hand if we were to perform a total
oversampling of the accidents, the dataset size would augment to an extent that would
cause serious computational issues. Finally also considering a weighted loss function on
the original data would cause serious misclassification issues assigning an extremely high
weight to the accident class.
For the above reasons moving forward we decided to adopt a hybrid method among the
proposed solutions. Indeed, both undersampling for the majority class and oversampling
for the minority class will be performed to a controlled extent, in order to maintain the
characteristic imbalanced nature of the phenomenon and tame the above listed problems.
Furthermore, in the model training stage the weighted log loss function will be considered.
Moreover, only flight samples with available departure and arrival METAR data are taken
into consideration.
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6.1.1. Data oversampling and undersampling

The main issue when it comes to sampling techniques on the considered flight data lays
in the fact that we are dealing with both numerical and categorical features, therefore
significantly restricting the options at our disposal. First of all we perform a train-test
split of our dataset so that 80% of the available flights will be used for the training phase,
while the remaining 20% for the testing phase. It is important to highlight that all of the
following sampling strategies described will be implemented only on the training data,
effectively maintaining the structure of the test data untouched.

To reduce the size of the safe flights a random undersampling procedure has been adopted.
That is random samples are selected from the majority class, obtaining a new dataset for
the latter corresponding to 50% of its original size.
When it comes to generating synthetic data for the aviation accidents a finer technique as
been implemented: SMOTE-NC (Synthetic Minority Over-sampling Technique for Nom-
inal and Continuous features, see [5]). SMOTE-NC extends the concept of SMOTE, a
commonly used synthetic data generation technique, to deal with both categorical and
numerical variables. Continuous features are numeric and can be interpolated to generate
new values. When it comes to continuous features SMOTE-NC interpolates the contin-
uous features of the target instance and its chosen neighbor (or neighbours) to create
synthetic samples. The interpolation process considers the feature values of the target
instance and the neighbors, and it generates new values within the range of the chosen
feature, by multiplying the difference between the target instance and the neighbors by
a random number between 0 and 1 and adding it to the target instance’s feature value.
This generates a new instance that lies on the line segment connecting the target instance
and the nearest neighbor in the feature space.
On the other hand, for each categorical feature SMOTE-NC selects a target instance and
its k-nearest neighbors, based on a suitable distance metric for categorical features. For
each categorical feature, it selects a value from either the seed instance or the nearest
neighbor with a certain probability. The probabilities are often determined by the ratio
of the number of this feature’s values in the nearest neighbor and the seed instance.
This procedure allows us to create synthetic accident data samples (for a more in depth
theoretical overview of SMOTE-NC see [5]). We apply SMOTE-NC to the training data
effectively increasing the count of accident data by 10 times its original size.

In the following Table 6.1 we present the structure of the new training data obtained
after the METAR data empty values removal (performed on the whole dataset) and the
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above discussed sampling techniques (performed only on the training data).

Data No. Safe flights No. Accidents Accident Rate (%)

Original 12,158,646 110 0.000905
Resampled 6,080,368 1100 0.018091

Table 6.1: Training data resampling to mitigate class imbalance

As we can see from the results in the table, we are able to significantly improve the repre-
sentation of accidents in the training data while still maintaining the intrinsic imbalanced
nature of the phenomenon.
Now that we have completed the data processing stage we can finally move to the GBM
aviation safety classification modelling part.

6.2. GBM classification model

Now that all the pieces are in the correct place we can finally proceed with the modelling
stage. We consider a gradient boosting binary classifier for the available flights to discern
patterns between safe flights and aviation accidents, taking into account all the available
features mentioned at the beginning of this chapter. To do so a CatBoost binary classifier
model is considered, that is a gradient boosting ensemble model with decision trees as
base-learners, with the following optimized parameters:

Parameter Value

Loss function Log loss
Class weights Balanced
Learning rate 0.01

Max tree depth 6
No. Iterations 4000

Early Stopping iterations 150

Table 6.2: Modelling parameters of the full GBM classifier model

As we can see, from the selected parameters shown in Table 6.2, we are opting for low
learning rate with a high number of total iterations (M = 4000) in order to be able
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to capture the most nuances possible from the model. Moreover, we opt for a log loss
function with balanced class weights, that is of the form 5.17, to account for the class
imbalance. The balanced class weight calculation for a class i ∈ {0, 1} has the following
formula:

ωi =
1
ni

N

(6.1)

where ni represents the sample size of class i, while N represents the full sample size.
Therefore, by substitution of the results in Table 6.1, we obtain ω0 ≃ 1 and ω1 ≃ 5528.
This high discrepancy among the weights will favor the correct classification of accidental
flights instead of safe ones.
Furthermore, to avoid any possible overfitting problems we apply an early stopping pro-
cedure to the model (see 5.2.3), with threshold on the iterations of k = 150.

Figure 6.1: Full GBM model log loss evaluation for both training and testing.

By visual inspection of Figure 6.1 we notice how the full 4000 iterations are not needed.
Indeed, we reach a minimum for the testing log loss, with value 0.2083 at iteration Mopt =

1793 (highlighted on the testing loss curve), after which the model starts overfitting the
training data; indeed there is a noticeable increase in the values of the testing log loss,
and the training process is truncated by early stopping before the 2000th iteration.
Overall, both the learning and testing curves display regular decreasing trends without
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any spike or major oscillatory behaviour, furthermore reaching good low levels of the
respective log losses: 0.0778 for the learning and 0.2083 for the testing.

6.2.1. Performance evaluation

Now we are interested in analyzing the model’s performance. To do so we will rely on
two specific metrics: the accuracy and the recall. Moreover, our attention will be mainly
towards trying to keep a decent level of accuracy with a recall above 0.5, this approach has
been adopted since, for our purposes, we are more interested in correctly classifying the
minority class samples (i.e. the accidents). Furthermore, also visualization tools such as
the confusion matrix and the receiver operating characteristic (ROC) curve, and its area
under curve (AUC) as an additional metric, are considered to visualize the performance
of the classifier.

Initially we consider the model with default value for the classification threshold ϵ = 0.5

and we have the following results on the testing set:

Metric Value

Accuracy 0.992395
Recall 0.038461
AUC 0.621156

Table 6.3: Full GBM classifier evaluation metrics with classification threshold ϵ = 0.5.

(a) Confusion matrix. (b) ROC curve.

Figure 6.2: Full GBM classifier visualization tools with classification threshold ϵ = 0.5.
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As we can see from Table 6.3 we have an extremely high model accuracy but we sacrifice
a lot when it comes to the recall. This is also reflected by the results displayed in the
confusion matrix in Figure 6.2a. Indeed, we correctly classify only one accident among
the 26 available in the testing set.
From the above results its clear that the default threshold ϵ = 0.5 is way too conservative
when it comes to our main concern which is to identify patterns in accidents.

For this reason we opt to select an optimal classification threshold, in order to improve the
recall, by maximizing the difference between the true positive rate and the false positive
rate on the ROC curve (see Figure 6.2b). By doing so the following optimal threshold for
the model is obtained: ϵopt = 0.040783.
Adopting this new threshold for classification we observe the following results, evaluated
on the testing set.

Metric Value

Accuracy 0.566950
Recall 0.653846
AUC 0.621156

Table 6.4: Full GBM classifier evaluation metrics with classification threshold ϵopt.

Figure 6.3: Full GBM classifier confusion matrix with classification threshold ϵopt.

As we can see from the metrics displayed in Table 6.4, we are now able to achieve a much
higher recall while still maintaining an above average accuracy. This also clear from the
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confusion matrix displayed in Figure 6.3, indeed even if we lose classification accuracy
when it comes to the safe flights we gain a lot the accident classification accuracy; this
trade-off is to be expected when dealing with such rare events.

Now that we have maximized the classification potential of the GBM classifier, when
considering all the available features, the only logical step forward is to perform a feature
selection process to improve the model classification performance.

6.3. Features selection

In order to retrieve the best subset of features to achieve higher model performance the
built-in feature selection tool of CatBoost is considered, evaluating the change in the loss
function (in our case the weighted log loss function, see 5.17) caused by each feature’s
removal.
CatBoost uses a technique called permutation importance to select features for the model.
Permutation importance works by randomly permuting the values of a feature and observ-
ing the change in the model’s accuracy. If we have a significant decrease in the model’s
accuracy when the values are permuted than that feature is to be considered important.
For a detailed explanation of the inner workings on CatBoost and permutation impor-
tance see [6, 8, 16].
In our case after the evaluation of the features’ importance we proceed by removing them
one-at-the-time the least important features, and evaluating the reduced models accuracy
at each step through the evaluation of the log loss function on the testing set.

For the feature selection process the same parameters as the ones set for the training of
the full GBM model have been set for consistency reasons (see Table 6.2). Furthermore,
for computational reasons the training of the reduced models is performed at 5 steps,
that are the steps at which individual reduced model is evaluated, selected considering
the features’ permutation importance. The final set of features evaluated to conclude the
feature selection process will consist of 4 features, from the starting 16 considered in the
full model. In particular we will evaluate the model accuracy at 16 features (Model 0,
that is the full model presented in Section 6.2), 11 features (Model 1), 8 features (Model
2), 6 features (Model 3) and 4 features (Model 4).
Furthermore, for computational speed issues, a one-hot encoding parameter for the cate-
gorical features has been enabled in the training of the models which might yield a slight
reduction in terms of loss function performance and overfitting problems, due to CatBoost
characteristic of being optimized for raw categorical features, reason for which once the
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reduced model is selected it will be retrained again on its own.

(a) Models training.

(b) Minimum loss function value at each step.

Figure 6.4: Feature selection with 4 step model training and evaluation.

As we can see from visual inspection of Figure 6.4a we achieve similar results for model
0 and model 1, while for the rest of the trained models the performance significantly
decreases as we keep removing features.
Moreover, in Figure 6.4b we plot the minimum values achieved at each step of the training,
and we can see that we have slight improvement in the loss value when considering model
1. Indeed, this model achieves a minimum loss value of 0.204832 removing 5 features in
the following order:

1. Operating region (OPERATING_REGION)

2. Flight delay class (DELAY_CLASS)

3. Flight duration (DURATION)
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4. Arrival relative humidity (ARR_RELH)

5. Departure visibility (DEP_VSBY)

This result is rather interesting since, from our previous analyses of the commercial avia-
tion accident rates (see Chapter 4), features such as Operating region and Fight duration
seemed to have a strong influence on the accident rates.

6.4. GBM reduced classification model

In this section we proceed with training and evaluation of the reduced GBM classifier
identified in the previous section, that is removing the identified 5 features (Operating
region, Flight delay class, Flight duration, Arrival RELH and Departure VSBY) from the
original pool of features presented at the beginning of the chapter, thus considering 11

features (Airline operator, Aircraft body type, Aircraft type, Aircraft age, Flight nature,
Arrival TMPF, Departure TMPF, Departure RELH, Arrival SKNT, Departure SKNT
and Arrival VSBY). Furthermore, we will compare the performance of the reduced model
with the full model to identify the best one for our purposes.

For the training of the GBM reduced classifier we consider a CatBoost classifier with
the following optimized parameters:

Parameter Value

Loss function Log loss
Class weights Balanced
Learning rate 0.01

Max tree depth 6
No. Iterations 5000

Early Stopping iterations 150

Table 6.5: Modelling parameters of the reduced GBM classifier model

As we can see from the selected parameters in Table 6.5, once again we opt for a low
learning rate with high number of maximum iteration (M = 5000), increased with respect
to the full GBM model since we expect more iterations might be needed in order to reach
convergence. And just as before we opt for a log loss function with balanced weights (see
5.17 and 6.1).
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Finally, once again, to avoid overfitting issues we apply early stopping with k = 150

iterations threshold.

Figure 6.5: Reduced GBM model log loss evaluation for both training and testing.

By visual inspection of Figure 6.5 we notice how the full 5000 iterations are not needed.
Indeed, we reach a minimum for the testing log loss, with value 0.1913 at iteration Mopt =

2778 (highlighted on the testing loss curve), after which the model starts overfitting the
training data; indeed there is a noticeable increase in the values of the testing log loss,
and the training process is truncated by early stopping before the 3000th iteration.
Overall, both the learning and testing curves display regular decreasing trends without
any spike or major oscillatory behaviour, furthermore reaching good low levels of the
respective log losses: 0.0515 for the learning and 0.1913 for the testing.
We can already see from the loss function evaluation that we achieve better results when
compared to the full model (see Figure 6.1).

6.4.1. Performance evaluation

Now we proceed with a performance evaluation of the reduced model. Once again we rely
on evaluation metrics such as accuracy and recall with an analogous approach on trying
to keep decent levels of accuracy while maximizing the recall. Furthermore, to evaluate
the classifier’s performance also the area under curve (AUC) of the receiver operating
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characteristic (ROC) curve is considered.

Once again initially the model is evaluated with default value for the classification thresh-
old ϵ = 0.5 yielding the following results on the testing set:

Metric Value

Accuracy 0.992944
Recall 0.0
AUC 0.714485

Table 6.6: Reduced GBM classifier evaluation metrics with classification threshold ϵ = 0.5.

(a) Confusion matrix. (b) ROC curve.

Figure 6.6: Reduced GBM classifier visualization tools with classification threshold ϵ =

0.5.

As we can see, from the results displayed in Table 6.6, we achieve an extremely high level
of accuracy but we are not able to correctly capture any accident, indeed this is portrayed
both by the null recall and in the confusion matrix in Figure 6.6a.
Nonetheless we observe an high level of the AUC = 0.714485 of the ROC curve in Figure
6.6b. This leads us to further optimize the classification threshold, since the default one
of ϵ = 0.5 is clearly too conservative for our purposes.

Once again, as previously done with the full model, we opt to select an optimal clas-
sification threshold that maximizes the difference between the true positive rate and the
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false positive rate on the ROC curve (see Figure 6.6b). This procedure leads to obtain
the following optimal classification threshold: ϵopt = 0.025418.
Adopting this new improved threshold we observe the following results on the reduced
model, again evaluated on the testing set.

Metric Value

Accuracy 0.605911
Recall 0.807692
AUC 0.714485

Table 6.7: Reduced GBM classifier evaluation metrics with classification threshold ϵopt.

Figure 6.7: Reduced GBM classifier confusion matrix with classification threshold ϵopt.

As we can see from the metrics displayed in Table 6.7, we are able to achieve a very
satisfactory value of recall, above 80%, while maintaining an overall decent level of accu-
racy. This is also displayed in the confusion matrix in Figure 6.7, indeed even if we lose
classification accuracy when it comes to the safe flights we gain a lot when it comes to
accidents, correctly classifying 21 instances over the 26 available in the testing set.
The only concern when it comes to the reduced model is the fact that we observe null true
positive rate for very small threshold values on the ROC curve (see Figure 6.6b). Indeed,
this indicates that the reduced model might struggle to correctly classify instances with
very small probability of belonging to the positive class.

Before moving forward in our analysis we will present a comparison between the two



56 6| Flights safety classification model

presented models considering their respective optimal classification thresholds, highlight-
ing pros and cons of each one considering our accident analysis purposes.

6.4.2. Model selection

We can now compare the evaluation metric of the full and reduced models (presented in
the Sections 6.2 and 6.4 respectively), with respect to their relative optimal thresholds
(0.040783 and 0.025418 respectively), to better understand which one to consider to move
forward in our analysis.

Metric Full Model Reduced Model

Min. Test loss value 0.2083 0.1913
Accuracy 0.5669 0.6059

Recall 0.6538 0.8077
AUC 0.6212 0.7145

Table 6.8: Comparison of the evaluation metrics of the full and reduced models with
optimal thresholds.

As we can see form the results displayed in Table 6.8, the reduced model outperforms the
full model in every metric. In particular it is interesting to see how the reduced model has
significantly improved recall and AUC compared to the full model, and how it is able to
achieve better results with only a marginal decrease in the loss value and furthermore by
maintaining an higher level of accuracy. This means that the reduced model, not only is
better at identifying accidents by a significant margin, but also at classifying safe flights at
the same time (this can also be noticed by visual comparison of the full model’s confusion
matrix, see Figure 6.2a, with the reduced model’s counterpart, see Figure 6.6a).

If we compare the ROC curves of the two proposed models (see Figure 6.2b and Figure
6.6b), we notice how the reduced model’s ROC curve has null true positive rate for very
small values of the classification threshold, unlike the full model. This, in general, could
be a concern since it means that the reduced model might have problems at correctly
classifying instances with low probability of belonging to the positive class. However,
this concern is trumped by the overall increase in performance under every metric of the
reduced model when compared to the full model. Indeed, given the critical nature of
flight safety a high recall is extremely valuable, and the relatively high accuracy suggests



6| Flights safety classification model 57

that the model is performing well overall. Moreover, the choice of the optimal threshold,
ϵopt = 0.025418, seems to be offering good trade-off between correctly identifying acci-
dents and maintaining a reasonable level of accuracy, which aligns with the priorities and
requirements of flight safety.
For the extensive list of reasons mentioned above, moving forward for our flight classifica-
tion and analysis purposes, the reduced model presented and evaluated will be considered
over the full model initially developed.

6.5. Results interpretation

In this section the focus will be shifted on the interpretation of the results obtained with
the reduced model introduced in Section 6.4.
Moreover, this interpretation will be conducted through the use of the SHAP Python
library (see [17]), which allows for useful graphical tools to represent the Shapley values
(see Section 5.3.1) for each considered feature. Furthermore, a global overview of the
Shapley values for the model will be initially presented, to try and explain the global
effect of the features on the model’s output; later on a local interpretation by comparison
of similar flights and their Shapley values will be provided, to further understand what
might be the causes that separate a safe flight from an accident.

6.5.1. Global interpretation

Let us now focus on the global effect of different features on the reduced model output,
moreover on their associated Shapley values computed on the training set so that we can
try to understand how the model learns to classify flights.

Figure 6.8: Bar plot of the mean Shapley values associated to each feature
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Figure 6.8 shows interesting results. In particular it is interesting to notice how the fea-
tures Operator and Type seem to be the most influential features, among the general flight
ones, when it comes to classifying flights’ safety; while the aircraft age and the flight’s
nature play a marginal role.
Furthermore, by looking at the METAR features (see Section 1.1.2) we notice a striking
trend. That is the fact that the arrival METAR features are all consistently more crucial
than the departure ones. This could be explained by the fact that it is common knowledge
that most of the accidents happen upon landing (for a visual representation see Figure 2.2).

Now we shift the focus on the influence of numerical variables, in particular the METAR
features.

Figure 6.9: Beeswarm plot of the Shapley values of each flight feature

The beeswarm plot represented in Figure 6.9 is to be interpreted in the following way:
for each feature all the flights are represented, color coded depending on the value of the
feature. Furthermore, the positive Shapley values are associated with a positive predic-
tion (i.e. an accident), while the negative Shapley values are associated with a negative
prediction (i.e a safe flight).
While no particular pattern is spotted for the arrival temperature, with both low values
of the feature being present in a positive and negative prediction, we notice a clearly
increasing trend for its departure counterpart. Indeed, the departure temperature shows
a compelling increasing trend, with high values for the feature being associated with a
positive classification.
Furthermore, it is surprising to see how both the arrival and departure wind speed seems
to be to be negatively correlated with positive predictions, indeed for both these features
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high values of the features are mostly towards predicting a flight as safe. This could be
due to erroneous measurements or data reporting.
An extremely surprising result is given by the arrival visibility, where we notice a clear
separation among the feature values with low towards a negative prediction and high
values towards a positive one. One might think that this is due to different units of mea-
surements but this is not actually the case, indeed all visibility data has been converted
in miles [mi ]; this is more likely due to different reporting procedures when it comes
to visibility across different regions; in particular with North America, which is by far
the region with more commercial aviation flights, being associated with extremely high
visibility values (see Figure A.1 in Appendix A for a more detailed explanation of this
phenomenon).
Finally another surprising result is represented by the aircraft age, indeed we have low
values shifting the predictions towards a positive outcome, this is likely due to high values
of the age being very rare and thus their representation among the accidents might be
overshadowed due to the data processing procedures explained in Section 6.1, particularly
the removal of flights with missing METAR data and the oversampling.

Now we would like to focus on the airline operators, moreover on producing a rank-
ing system for them based on the mean of Shapley values associated to the feature of all
the available flights considered in the training. This procedure will allow us to compare
operators’ performances among each other.
In Table 6.9 a ranking of the airline operators with positive mean of the Shapley values
is shown:

Airline operator Mean shap value

Pakistan International Airlines 0.841733
Onur Air 0.482366
GoAir 0.475167

Alliance Air 0.365707
TUI UK 0.332119

Hawaiian Airlines 0.211060
BoA 0.188303

ANA-All Nippon Airways 0.007476

Table 6.9: Ranking of the most dangerous airline operators based on the mean of their
Shapley values.
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The results displayed above are very much aligned with the previously conducted airlines
operators rates analysis in Chapter 4. In particular Pakistan International Airlines is
among the worst performing airlines across the 4 years, counting 8 accidents with only
73619 recorded flights. The same can be said also for the other airlines in the list which
all display an above average accident rate. Moreover, it is interesting to see how also
ANA-All Nippon Airways is part of this list confirming the results analyzed previously
in Figure 4.2, where it was identified as one of the worst performing airlines operating in
Asia Pacific.
To complete this analysis of the airline operators it is interesting to also take a look at
the best performing ones based on the mean of their Shapley values.

Airline operator Mean shap value

Ryanair -2.858941
EasyJet -2.521200

China Airlines -2.383004
Korean Air -2.177598

Pegasus -1.897567
Etihad Airways Airlines -1.682134

Vistara -1.425271
Air China -1.332490

Table 6.10: Ranking of the safest airline operators based on the mean of their Shapley
values.

All of the results displayed in Table 6.10 are in line with commercial aviation accident
rates analysis, with all the above listed operators having a below average accident rate.
In particular it is interesting to see how airlines such as Ryanair, EasyJet ans Air China
are among the safest in the top 50 operators represented in Figure 4.2. It is important
to remark that the accident rate analysis was conducted over 4 years of data, while the
GBM classification models were trained and tested only over 2019 data, reason for which
we might find some discrepancies among the results.

6.5.2. Local interpretation

One of the main advantages of working with Shapley values as an interpretation tool, is
that they allow us to understand the features’ influence among each individual sample.
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This approach is extremely useful for comparing similar flights, for example flights be-
longing to the same airline or carried out through the same aircraft type, yielding different
classification outcomes (i.e. safe flight or accident), granting us an in depth look at the mi-
cro differences among two (or more) samples and how they affect the classification process.

Now we can compare two flights with different outcome belonging to the same opera-
tor. In this case Air France was selected, due to its variety in terms of flights since it
handles both domestic and international flights with a variety of aircraft types when it
comes to its fleet. Overall, in both cases, we expect a negative influence of the com-
mon airline operator towards a negative classification, since Air France displays an above
average performance in accident rates terms.

(a) Safe flight. (b) Accident flight.

Figure 6.10: Shapley values waterfall plots comparison of a safe flight with an accidental
flight from Air France.

From visual inspection of Figure 6.10 we notice that the main difference among the two
flights is represented by the type of aircraft employed. Indeed, the safe flight is carried
out through an A319 narrow body aircraft while the accidental flight employs an A380
wide body. It is interesting to see the influence of the body type on the outcome, that
is that the narrow body has a negative influence on the classification of the safe flight
shifting it towards a negative outcome in striking contrast with the wide body category in
the accidental flight, which is among the most influential features in shifting its classifi-
cation towards a positive outcome. This result is in line with the outcome of the accident
rate analysis previously conducted and displayed in Figure 4.6, which shows wide bodies
aircraft as the riskiest body type.
Moreover, going deeper in the aircraft types differences, we notice in both cases a neg-
ative contribution for both the A319 and A380 types. While the first result is very
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much in line with our previous analysis, represented in Figure 4.5, that shows the A319
as one of the best performing aircraft types on the market, the same cannot be said of
the A380. Indeed, from the previous analysis the latter is one of the worst performing
aircraft types. This mismatch among the model’s result and the commercial aviation
accident rate analysis can be explained by the oversampling techniques adopted (see Sec-
tion 6.1) in combination with the lack of data for this specific aircraft type. Indeed, we
count only 239 active aircraft when it come to the A380 type (compared to the 1243 of
the A319 ) making one of the least employed aircraft types among our list, thus resulting
in an unlikely generation of synthesized accidents for this aircraft type (especially when
considering only one year of data).
Finally it is interesting to see the influence of METAR data on the two different outcomes.
First of all we notice how, for the accidental flight, an higher departure temperature has
the most influence on the positive classification, while a lower value has the opposite im-
pact on the safe flight. Moreover, we notice how also the arrival visibility plays a crucial
role in the classification outcome. Indeed, in the safer flight we have a visibility value of
6.21mi (i.e. 10km), which is the European standard for optimal conditions, shifting the
prediction towards a safer outcome; while a lower value for the accidental flight shifts the
prediction in the opposite direction.

Now as a final comparison among flights we are interested in comparing two flights carried
out by wide body aircraft, to identify safer types among this category and also investigate
the influence of different airlines.

(a) Safe flight. (b) Accident flight.

Figure 6.11: Shapley values waterfall plots comparison of a safe flight with an accidental
flight of wide body aircraft.

The results depicted in Figure 6.11 allow us to extract interesting conclusions. First of



6| Flights safety classification model 63

all, we can see how the influence of different airline operators plays a crucial role in the
classification outcome. Indeed, we notice how for the safe flight the operator Turkish Air-
lines represent the major factor towards a positive classification, while for the accidental
one ANA-All Nippon Airways has the opposite effect. This result is very much in line
with the analysis conducted in Section 4.1.2, which shows ANA-All Nippon Airways as
one of the riskiest operators form the Asia Pacific region; furthermore Turkish Airlines
displays a good performance in terms of accident rates.
Moreover it is compelling the difference among the two aircraft types, even when they
belong to the same body type category, representing an A330 as a safer option compared
with the 777. This result is also reflected by the previous analysis (see Figure 4.5), al-
though we would not expect such a striking difference. Furthermore, it is interesting to
see how the aircraft age has almost no influence on the classification, indeed in this case
we have a significantly older aircraft in the accidental flight but with an almost null (but
still positive) associated Shapley value, while the aircraft age of the safe flight has no
influence on the classification.
When it comes to the available METAR data the results are of arduous interpretation.
In both cases we notice a negative contribution to the prediction given by the same stan-
dard value of the arrival visibility in good weather conditions (as for the safe flights of
the previous case in Figure 6.10a). When it comes to the other METAR features the
interpretation is not as straightforward, indeed among the most influential factors to-
wards a positive outcome in the accidental flight we have the arrival temperature and
the departure relative humidity, which don’t seem to display a particular pattern towards
classification outcomes (see Figure 6.9).

Overall, the results interpretation provided in the final part of this chapter yielded com-
pelling results and new tools to tackle the commercial aviation safety problem, while
shining a light on different shortcomings, especially when it comes to the interpretation
of METAR features and under represented categories among the categorical features.
In general we are satisfied with the interpretation of the results provided by the classifica-
tion model, considering this is one of the main issues when dealing with machine learning
models compared to a classical additive model alternative approach.
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7| Conclusions

This study provided a comprehensive analysis of the commercial aviation safety phe-
nomenon, concluding significant results.
Starting from a custom developed matching procedure to uniquely identify accidents to
flight data, to then move on to more intricate analyses. This included a more classical
analysis approach of commercial aviation accident rates, allowing us to identify the most
interesting trends among a plethora of different features, through the employment of the
Agresti-Coull binomial proportion interval to best evaluate the issue at hand.

Moving on, a binary classification model for flight safety was implemented through the use
of gradient boosting machines, thus introducing deeper insights to the problem thanks to
a modern machine learning approach. This allowed us to introduce weather aviation data
(i.e. METAR) into the picture, to gain an insight into the safety of specific flights and,
chiefly, to develop a forecasting tool specifically tailored for commercial aviation flights.
The data processing, model training, parameter tuning and feature selection were all in-
teresting and challenging phases of this study, that granted us with a well performing and
finely tuned prediction model.
Furthermore, the interpretation of the model’s findings through the exploitation of the
Shapley values, associated to the model’s learning phase, yielded compelling results.
Among those the high dependence of the commercial aviation accidents phenomenon
from the flights’ airline operators allowed us to extract a safety exposure ranking system,
for the operators, based on their associated Shapley values. Moreover, the conducted
comparison of the Shapley values associated to specific flights, provides an extremely de-
tailed analysis tool for flight evaluation; allowing us to compare similar flights, based on
a specific set of features, to investigate the reasoning behind their classification and gain
insights into the model learning process.

Overall, between the results obtained through the commercial aviation accident rates
analysis and the development of the GBM flight safety classification model, not only
we were able to depict a complete picture about commercial aviation safety, but also to
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provide different evaluation and prediction tools that could be key for future aviation
underwriting purposes.
Thus we were able to achieve the goals set out at the beginning of the study; notwith-
standing, the intrinsic extremely rare nature of commercial aviation accidents, which are
among the rarest events, thus making their analysis extremely arduous.

7.1. Limitations of the study

During the unfolding of this study we encountered a series of different limitations towards
our analysis goals.
First and foremost, the quality of the available data. Indeed not having a unique source
of data for both flights and recorded accidents posed a big limit to our further analyses, in
spite of the the efficient flight-accident developed algorithm. Indeed, we recall how around
30% of the OAG flights had missing registration number, making them completely unfit
for accident matching to begin with; on top of that having to rely on ASN, an open source
online database, for accidents data could cause some issues due to reporting biases form
different countries.

Furthermore, the intrinsic rare nature of commercial aviation accidents posed a limi-
tation in itself, forcing us to resort to a restricted family of models for our forecasting
purposes, and requiring beforehand heavy data processing procedures which might re-
strict the model’s generalization capabilities, given the rarity of the phenomenon. This
issue led us to consider a machine learning classification approach, through the imple-
mentation of a GBM binary classifier, which, although yielded satisfactory results, made
the interpretation of the results a complicated task. Indeed, the necessary generation of
synthetic data for the accidents through SMOTE-NC, can cause biased results when it
comes to evaluating rare instances for the considered categorical features, especially since
we considered only one year of data.

7.2. Further developments

When it comes to possible improvements and further developments to this study the pos-
sibilities are virtually endless.
Moreover, the extension of the GBM flight safety classifier to a larger pool of data, for
example the available time period of 4 years, could produce higher results and signifi-
cantly improve the model’s generalization capabilities towards forecasting future flights’
safety. The same can be said of the considered features, indeed the pool of considered
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features could be increased including features like the departure and arrival airports, spe-
cific countries instead of the broader geographical regions considered and so on.
Moreover, a plethora of model optimization can be done moving forward. From the
development of a custom loss function that accounts better for extreme level of class im-
balance at hand. To the development of a multiclass classification model, based on the
level of damages sustained by the aircraft involved in the accidents, or even based on
flight’s phase in which the accident occurred. In particular the latter one could allow for
a smarter approach towards the available weather (i.e. METAR) data, since a separation
between departure and arrival weather is provided. Furthermore, a different feature selec-
tion approach, such as one based on Shapley values, could be considered. This approach
is generally more accurate than the loss gain approach implemented in this study, but it
was avoided due to its high computational burden.
Overall, each possible further development would pose its own set of challenges, especially
when it comes to the multiclass classification alternatives previously proposed, since it
would make synthetic accidents data generation an even more delicate and crucial process.
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A| Additional content

Here we present the full list of aircraft types considered in our analyses, organized by their
respective manufacturers with additional information regarding the body type:

Manufacturer Aircraft type Body type

Airbus A220 Regional Jet
Airbus A300 Wide Body
Airbus A318 Narrow Body
Airbus A319 Narrow Body
Airbus A320 Narrow Body
Airbus A321 Narrow Body
Airbus A330 Wide Body
Airbus A350 Wide Body
Airbus A380 Wide Body
ATR ATR 72 Turboprop

Boeing 717 Narrow Body
Boeing 737 Narrow Body
Boeing 737 MAX Narrow Body
Boeing 737 NG Narrow Body
Boeing 747 Wide Body
Boeing 757 Wide Body
Boeing 767 Wide Body
Boeing 777 Wide Body
Boeing 787 Wide Body

Boeing (McDonnel-Douglass) MD-11 Wide Body
Boeing (McDonnel-Douglass) MD-80 Wide Body

Bombardier (Canadair) CRJ Regional Jet
Bombardier (Canadair) CRJ700 Regional Jet
Bombardier (Canadair) CRJ900 Regional Jet
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Bombardier (Canadair) CRJ1000 Regional Jet
Bombardier (de Havilland) DHC-8 Turboprop

Embraer 170 Regional
Embraer 175 Regional Jet
Embraer 190 Regional Jet
Embraer ERJ-140 Narrow Body
Embraer ERJ-145 Regional Jet

Saab 340 Turboprop

Table A.1: List of aircraft type considered for the analyses

Here we present a comparison between the arrival visibility distributions of the Europe
and North America operating regions. Highlighting the fact that it is very likely that the
two regions share different reporting standards when it comes to this METAR feature.

Figure A.1: Comparison of the distributions of the arrival visibility among Europe and
North America

Indeed, by visual inspection of Figure A.1, we notice how Europe seems to have a cut-off
point at 6.21mi (which corresponds to 10km) to represent clear visibility. On the other end
North America doesn’t display this pattern, instead has a more homogeneous distribution
with no apparent cut-off point.
In this instance only Europe and North America have been compared, this is because
North America is the only region displaying this peculiar behaviour while all the other
regions seem to follow the standard employed by Europe, with the same cut-off point when
it comes to optimal visibility conditions.
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