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“If you can’t solve a problem,
then there is an easier problem you can’t solve: find it.”

G. Pólya.
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Summary

LOW-TEMPERATURE plasmas frequently show non-equilibrium fea-
tures, due to the low collisionality and to the effect of the electric
and magnetic fields. An accurate modeling of such situations re-

quires to employ kinetic descriptions (such as the Boltzmann or Vlasov
equations), that describe the evolution in phase space of the particle ve-
locity distribution function (VDF). This is the case, for example, for Hall
thruster electric propulsion devices, where non-equilibrium characterizes
both neutrals and charged species. Fluid methods (such as the Euler or the
Navier-Stokes-Fourier hydrodynamic approaches) cannot reproduce such
situations accurately, and often mispredict transport processes. Moreover,
such methods cannot reproduce kinetic instabilities, commonly observed
in Hall thruster devices. Nonetheless, such methods are widely employed,
due to their favorable computational cost, if compared to the much more
expensive kinetic simulations.

A promising strategy for extending fluid descriptions towards non-equi-
librium is offered by moment methods. Such methods solve for an enlarged
set of equations, including higher-order moments with respect to the com-
monly employed mass, momentum and energy balances. This work aims
at investigating the accuracy of moment and fluid methods for modeling
kinetic plasmas. Particular emphasis is put on a selection of the kinetic
features appearing in Hall thrusters. Among the possible moment meth-
ods, order-4 maximum-entropy methods will be considered, as they show
a superior robustness and the ability to represent strongly non-Maxwellian
distribution functions. In particular, the 5 and 14-moment systems will
be studied. These formulations are able to retrieve important VDFs, com-
monly appearing in plasma physics, such as the Druyvesteyn distribution,
as well as ring-like and anisotropic VDFs, and reproduce the Maxwellian
as a limiting case.
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This work starts with an analysis of the maximum-entropy methods in
low-collisional situations, that are often encountered in low-temperature
plasmas and particularly in Hall thrusters. Then, the methods are extended
to the simulation of plasmas, by formulating electromagnetic source terms
and investigating the dispersion relation of electrostatic plasma waves.

The 5 and 14-moment systems are then applied to the simulation of the
axial and azimuthal ion dynamics in a Hall thruster channel, and to the
dynamics of electrons. The latter are magnetized and drift in the E × B
direction, and their distribution function is known to settle to non-equilib-
rium steady states, also due to the presence of a weak collisionality with
background neutrals. For all cases, a kinetic reference solution is obtained,
either numerically (with the use of particle or deterministic solvers) or ana-
lytically, and the accuracy of the maximum-entropy systems is investigated,
and additionally compared to the solution of the Euler equations of gas dy-
namics. The maximum-entropy systems demonstrate strong improvements
for all the considered conditions, and often reach the same accuracy as ki-
netic methods, in terms of the tracked moments. This comes at the price
of a higher computational cost with respect to the Euler equations, but still
lower than kinetic methods. Finally, the last chapter of this work is devoted
to the study of the propellant dynamics, and an alternative gas feed configu-
ration is proposed, aimed at increasing the mass utilization efficiency of the
thruster through a maximisation of the residence time of neutral particles in
the ionization region.

From the analysis performed in this work, the order-4 maximum-entropy
methods appear completely suitable for the task of describing a number of
kinetic features in Hall thruster plasmas. The computational cost is clearly
higher than for the Euler equations, but still advantageous with respect to
fully kinetic formulations. Additional developments of this method, build-
ing upon this work and suggested as future work activities, will pave the
way to further applications of the methods to different plasma applications.
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Sommario

IPLASMI a bassa temperatura sono spesso caratterizzati da non-equilib-
rio termodinamico, per effetto della bassa collisionalità e dei campi
elettrici e magnetici. Una modellazione accurata di tale situazione

richiede l’uso di descrizioni cinetiche (quali per esempio le equazioni di
Boltzmann o Vlasov), che descrivono l’evoluzione della funzione di dis-
tribuzione delle velocità nello spazio delle fasi. I propulsori spaziali di tipo
Hall sono un esempio di tale non-equilibrio, che caratterizza sia le specie
cariche che le specie neutrali presenti nel plasma. La descrizione del prob-
lema tramite un approccio di tipo “fluido” (quali le equazioni inviscide di
Eulero o l’approccio idrodinamico di Navier-Stokes-Fourier) non perme-
tte di riprodurre accuratamente le situazioni di non-equilibrio menzionate,
e spesso predice in modo fallimentare i processi di trasporto. Inoltre, i
metodi fluidi non permettono di predirre le instabilità di natura cinetica
spesso osservate nei propulsori di tipo Hall. Malgrado tali limitazioni, i
metodi di tipo fluido sono frequentemente utilizzati per via del loro basso
costo computazionale, che li rende favorevoli rispetto alle molto più impeg-
native simulazioni cinetiche.

Una strategia promettente per estendere le descrizioni fluide verso situ-
azioni di non-equilibrio consiste nei “metodi dei momenti”. Tali metodi
risolvono un sistema allargato di equazioni, che include momenti di ordine
superiore rispetto ai soli bilanci di massa, momento ed energia. L’obiettivo
di questo lavoro consiste nell’investigare l’accuratezza di metodi dei mo-
menti e di metodi fluidi, per l’applicazione a plasmi cinetici. Tra i pos-
sibili metodi dei momenti, saranno considerati metodi della massima en-
tropia, che mostrano un ottimo grado di robustezza e la capacità di rap-
presentare funzioni di distribuzione fortemente non-Maxwelliane. In par-
ticolare, saranno studiati sistemi di 5 e 14 momenti, membri di ordine 4
della famiglia dei metodi della massima entropia. Tali formulazioni perme-
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ttono di riprodurre importanti funzioni di distribuzione, comuni nella fisica
dei plasmi, quali la distribuzione di Druyvesteyn, funzioni di distribuzione
“ad anello” ed anisotrope, ed includono la distribuzione Maxwelliana come
caso limite.

Questo lavoro parte dall’analisi dei sistemi della massima entropia in
condizioni scarsamente collisionali, caratteristiche dei plasmi a bassa tem-
peratura, e dei propulsori di tipo Hall. I metodi sono poi applicati alla sim-
ulazione di plasmi, tramite la formulazione dei termini di sorgente elettro-
magnetici, e l’analisi della relazione di dispersione per onde elettrostatiche.
I sistemi di 5 e 14 momenti sono poi applicati allo studio dell’evoluzione
assiale ed azimutale degli ioni nel canale di un propulsore di tipo Hall,
e successivamente allo studio della dinamica degli elettroni. Gli elettroni
in particolare sono magnetizzati, ed hanno una componente di velocità di
drift nella direzione E × B. La loro funzione di distribuzione è nota es-
sere fuori equilibrio anche nello stato stazionario, per l’effetto dei campi
elettromagnetici e della collisionalità con gli atomi neutrali. Per tutti i
casi considerati, una soluzione cinetica è ottenuta numericalmente (tramite
metodi alle particelle o solutori deterministici) oppure analiticamente, ed
è successivamente confrontata con i metodi della massima entropia e con
la soluzione delle equazioni di Eulero. I metodi della massima entropia
mostrano forti miglioramenti rispetto ai classici approcci fluidi, ed in molti
casi mostrano un’accuratezza analoga ai metodi cinetici. Infine, l’ultimo
capitolo di questo lavoro è dedicato allo studio della dinamica del propel-
lente neutrale, dall’iniezione all’espansione fuori dal canale, ed una config-
urazione alternativa di iniezione viene proposta ed investigata. Tale con-
figurazione ha l’obiettivo di migliorare l’efficienza del propulsore, tramite
la massimizzazione del tempo di residenza delle particelle neutrali nella
regione di ionizzazione.

Dalle analisi eseguite in questo lavoro, il metodo della massima entropia
di ordine 4 (sistemi di 5 e 14 momenti) appare completamente applica-
bile all’obiettivo di modellare il non-equilibrio nei propulsori di tipo Hall.
Il costo computazionale di questi metodi appare notevolmente superiore
ad una soluzione delle equazioni di Eulero, ma in ogni caso vantaggioso
rispetto a formulazioni completamente cinetiche. Ulteriori sviluppi del
metodo sono suggeriti come lavoro futuro, e permetteranno l’applicazione
dei metodi della massima entropia a differenti tipologie di plasmi.
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CHAPTER1
Introduction

Starting at the beginning of the last century, with the development of the
vacuum tube diode [1], which marked the dawn of electronics, plasmas
have quickly become a fundamental branch of human technology. Nowa-
days, plasmas are employed in a huge variety of industrial and medical
applications, and in a large number of research fields. We shall cite, for ex-
ample, the surface processing of semiconductors [2], X-rays generation [3],
novel compact particle accelerator designs [4], nuclear fusion research [5],
Solar physics and space weather prediction [6].

This work focuses on low-temperature plasmas, where the heavy species
(background neutrals and ions) are typically at a much lower temperature
than electrons. Particular emphasis will be put to the plasma conditions
encountered in Hall thruster electric propulsion devices.

1.1 Plasmas for space propulsion: the Hall thruster

Since the early days of rocket propulsion research, it was recognized that
electric fields have the potential to accelerate ions to very high velocities,
drastically increasing the specific impulse Isp of classical chemical rockets
[7, 8]. As the power input is typically limited by solar cells, this form of
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Chapter 1. Introduction

space propulsion is characterized by low thrust, often in the sub-Newtons
range, depending on the size of the thruster. Therefore, these devices are
not able to lift a spacecraft from the ground to orbit, but still require an
initial kick to orbital speed by use of traditional chemical boosters.

However, electrical propulsion has a number of important advantages.
To start off, the low thrust happens to be finely tunable through a selection
of the mass flow rate and the power input, making electric thrusters very
accurate devices for tasks such as satellite maneuvering and station keeping,
and the high specific impulse additionally reduces the amount of required
fuel, increasing the possible mission time or the payload [9, 10].

The latter point happens to be crucial for what concerns Solar System
exploration. Indeed, considering the Tsiolkovskii equation [11], one can
easily see that the low specific impulse of chemical rockets implies the
need for extremely high amounts of fuel [12]. For example, it can be es-
timated that a mission to Mars could easily require that 85% of the space-
craft mass is composed by fuel, and the situation drastically worsens for
other planets (for instance, the percentage is roughly 90% for Venus, 98%
for Mercury etc.) [13], making gravity assist absolutely necessary. From
this perspective, the high specific impulse of electric propulsion is a game
changer. Also, in terms of trajectory design, the possibility to keep the
thrusters active for long amounts of time introduces new degrees of free-
dom, and combinations of the classical ballistic trajectory and thrust arcs
can be employed, optimizing the fuel efficiency or the travel time [14, 15].

A large number of different electric thruster designs have been proposed
over the years [16, 17]. As a quick review, we shall cite, among others,
the pulsed plasma thruster (PPT) [18], the pulsed inductive thruster [19],
the magnetoplasmadynamic thruster (MPD) [20] and the helicon thruster
[21]. More advanced concepts have also been presented in the past and
are currently being investigated, such as fusion-based propulsion (see for
example [22, 23]). Finally, we shall cite the two most widely studied (and
employed) designs: the gridded ion thruster and the Hall thruster [24]. Each
configuration comes with its own advantages in terms of reliability, specific
impulse and attainable thrust levels.

In this work, particular attention is put on plasma modeling for the con-
ditions encountered in Hall thrusters. However, a number of the results
could be easily extended to different configurations.

The Hall thruster

In Hall thrusters, the potential drop that accelerates ions is obtained by
limiting the longitudinal electron mobility by effect of a radial magnetic

2



1.1. Plasmas for space propulsion: the Hall thruster

field B [25, 26]. The resulting electric field E is mostly axial, and this
results in a crossed electric and magnetic fields configuration, that makes
electrons drift in the E× B direction.1

Figure 1.1: Schematic of a magnetic layer Hall thruster (SPT). S(x) and E(x) indicate
the ionization and electric field profiles.

The structure of a simple Hall thruster2 is shown in Fig. 1.1. The pro-
pellant (typically xenon) is injected from the anode and is confined among
insulating walls, while electrons are injected at the cathode, located outside
of the channel. A fraction of electrons manages to enter the channel walls,
and eventually reaches the anode, overcoming the magnetic field barrier by
effect of (i) collisions with neutral particles (ii) wall collisions and (iii) by
effect of oscillations.3 Inside the channel, the neutrals are ionized in a re-
gion that often precedes the exit plane and the regions of maximum electric
and magnetic fields. Such region is denoted as the ionization region, and
is followed by the acceleration region, where ions are accelerated electro-
statically to velocities in the order of 15 − 20 km/s. Finally, part of the
electrons emitted by the cathode neutralize the plume, preventing a gradual
charging-up of the spacecraft.

A number of different Hall thruster designs have been investigated over
the years. For example, double-stage Hall thrusters have been proposed,

1For this reason, Hall thrusters are referred to as “closed drift” devices.
2Of magnetic layer type.
3These effects are responsible for the anomalous transport observed in experiments.
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allowing for a separate control between thrust and specific impulse by sep-
arating the ionization and acceleration stages [27]. Various magnetic con-
figurations have also been proposed, with the aim of optimizing the plasma
profile, or reducing wall erosion4 (see the magnetically shielded thrusters,
[29, 30]).

The choice of the walls material proves to be crucial in a Hall thruster,
as it dictates the temperature of wall-emitted electrons, and thus their dif-
fusion across the magnetic field lines [25, 31]. An important variation of
the insulating-walls design is obtained by employing conductive walls [32]
instead of the frequently used boron nitride ceramic walls. In such con-
ducting-wall thrusters, a part of the channel becomes electrically equipo-
tential, and most of the acceleration happens in a thin region near the anode
(thruster with anode layer, TAL). Wall-less configurations have also been
investigated [33], aiming at directly solving the problem of wall erosion.

In this work, we will only consider the simple configuration of Fig. 1.1,
often referred to as “magnetic layer Hall thruster”, or “Stationary Plasma
Thruster” (SPT). Unless otherwise specified, all mentions to “Hall thrusters”
in this work will refer to such configuration.

1.2 Modeling of low-temperature plasmas

The modeling of low-temperature plasmas encountered in electric propul-
sion devices can be tackled at different levels of accuracy. In the following,
we shall give a brief introduction to some of the possible models, and high-
light their range of validity and computational complexity. Most of the
attention will be put on transport modeling, while a number of important
topics (such as the detailed treatment of collisions, instabilities and particle-
wall interactions [34, 35]) will not be discussed in detail, as to reflect the
aim and focus of the present work.

At the simplest level, when collisions dominate the dynamics of each
species, one can consider drift-diffusion models, that have proven effective
for a range of problems for Torr-level discharges [36]. Such models solve
for the density equations of the different charged species, assuming a simple
diffusion-type relation between the drift velocity and the applied fields. The
drift-diffusion model typically has a low computational effort, although the
equations are parabolic, due to the presence of diffusion terms.5

For situations of lower collisionality, the diffusion laws become ques-

4See for example [28].
5This requires to satisfy the von Neumann condition on finite grids (see [37]), which is sub-optimal with

respect to hyperbolic equations, that only need to respect the CFL conditions.
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tionable, and drift-diffusion models can be replaced by multi-fluid formula-
tions, where a larger set of equations is solved for each species [38], and the
coupling happens through the electromagnetic fields and the inter-species
collisional sources.6 The choice for the set of equations to be solved de-
pends on the considered species and the operating conditions, a common
choice being the set of mass, momentum and energy equations. This results
in the so-called “fluid models”, typically consisting in the Euler equations
of gas dynamics (one set of equations for each species) if the conduction
and viscous terms are neglected, or the Navier-Stokes-Fourier (NSF) equa-
tions in the “hydrodynamic approach”.

Multi-fluid models based on the Euler/NSF equations are valid when the
assumption of local thermodynamic equilibrium is satisfied, namely when
the considered species have a (quasi-) Maxwellian distribution of particle
velocities [39]. A first extension of such methods, commonly employed in
plasma physics whenever magnetic fields are present, consists in includ-
ing temperature anisotropy between the parallel and perpendicular direc-
tions [40]. However, as will also be discussed in this work, Hall thrusters
happen to show further deviations from equilibrium [41]. Indeed, ions ap-
pear to be low-collisional, and strongly affected by the electric field. On the
other hand, electrons are both magnetized and collisional [42, 43], result-
ing in skewed and asymmetric velocity distribution functions (VDF) [44].7

Non-equilibrium directly affects transport quantities, as the Euler/NSF con-
vective fluxes may no longer be accurate due to the breaking apart of the
closure assumptions. Moreover, Hall thrusters are known to show a wide
range of plasma instabilities, whose origin and and characteristics are ki-
netic in nature (see for example [47, 48]), and are known to heavily influ-
ence the electron cross-field transport [49].

In principle, all such kinetic effects could be described by solving the
Boltzmann, Fokker-Planck or Vlasov kinetic equations, but at the price of
a very high computational cost [50]. This ultimately reflects the high di-
mensionality of the kinetic equation (in case of a deterministic numerical
solution [51, 52]), or the need to keep the statistical noise to an acceptable
level (for Particle-in-Cell (PIC) methods [53]). Additionally, such methods
are often time-explicit, and thus need to resolve the plasma frequency, forc-
ing a rather small time step, and the Debye length, imposing tiny cell sizes.
Various strategies have been proposed for reducing the computational cost
of kinetic methods, such as scaling the thruster geometry [54, 55] or arti-

6Other possible coupling phenomena such as radiation will not be considered in this work.
7In this regard, Hall thrusters share a number of similarities with magnetron sputtering devices [45,46], except

that they typically operate at a much lower background pressure.
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ficially modifying the vacuum permittivity [56], while preserving certain
crucial plasma properties. However, such models in general do not guaran-
tee that all kinetic features are properly preserved. Despite the high com-
putational cost, kinetic methods are often employed for obtaining a deep
understanding of selected features, often in reduced dimensionalities, as to
reduce the computational complexity [57–59].

The hybrid fluid-PIC method is a commonly employed approach for
speeding-up the calculations, while retaining some kinetic information [60,
61]. This approach is based on the observation that the electron dynamics
is so fast that a quasi-steady state is reached at the ion time scales. In these
models, one simulates ions (slow and low-collisional) as particles, while
the electron population (more collisional due to the higher temperature and
lower mass, and faster) is described by the Euler or NSF equations. These
approaches simplify significantly the fast electron dynamics, still retaining
a kinetic description for ions. However, of course, such methods assume
that electrons have reached conditions close to local thermodynamic equi-
librium, which is not necessarily the case in low-collisional E × B config-
urations.

Non-equilibrium fluid-like models: moment methods

In order to extend the validity of fluid models towards non-equilibrium, an
option consists in enlarging the set of governing equations, as to include ad-
ditional thermodynamic fields such as the heat flux vector, up to the desired
order [40, 62]. Such formulations are commonly referred to as “moment
methods”, and promise to increase the range of validity of fluid systems,
while retaining affordable computational costs.

Among all possible formulations, we shall cite the Grad [63] and max-
imum-entropy [64, 65] families of moment methods. In both cases, one
starts by assuming a shape for the distribution function, that can reproduce
non-Maxwellian shapes. An equation is then written for each parameter ap-
pearing in the assumed distribution function, resulting in a set of moment
equations, that include but extend the mass-momentum-energy description.

The Grad method has the strong advantage of providing a direct link
between the shape of the VDF and its moments, but also has a series of
drawbacks. For example, it does not guarantee that the VDF is positive.
On the other hand, the maximum-entropy formulation is typically more ro-
bust, guarantees a positive VDF by construction, and is hyperbolic. Among
its drawbacks, it should be mentioned that such formulation was shown
unable to reproduce some states that would otherwise be physically realiz-
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able [66]. Moreover, in this formulation, the link between the moments and
the distribution function is not known analytically, and would require an
entropy-maximisation problem to be solved at every occurrence during the
simulations. The latter problem can however be mitigated through the use
of approximated solutions [67], which make the maximum-entropy meth-
ods much more computationally affordable. For this reason, and in view of
its robustness (even in non-equilibrium conditions), the maximum-entropy
method will be the method of choice for this work. More details about its
formulation and on the mentioned issues will be given in Chapter 2.

1.3 Objectives and structure of the thesis

1.3.1 Motivation

As discussed, moment methods are obtained by extending the fluid formu-
lation, including additional equations for the higher order moments. These
additional governing equations allow us to reproduce accurately a range of
non-equilibrium states. Moreover, this is done at a computational cost that
can be comparable to fluid methods, and is often much lower than the cost
of a kinetic solution. Also, being based on PDEs, moment methods are
not subject to the statistical noise that affects particle-based kinetic meth-
ods, and are suitable for the application of a broad range of optimization
strategies.8 Methods that are at the same time computationally efficient and
accurate in non-equilibrium situations will provide in the next future a use-
ful tool for the design of Hall thrusters and low-temperature plasma devices
in general.

Besides this specific application, one should consider that non-equilib-
rium situations are virtually ubiquitous in plasma physics. Many different
moment formulations for plasma applications are actively being investi-
gated [68–71] and are likely to become a broadly employed approach for
the study of many plasma problems and for obtaining engineering predic-
tions. Among all possibilities, we choose to investigate the maximum-en-
tropy family of moment methods. Such methods have been studied in a
range of conditions and for different problems, but their systematic appli-
cation to plasmas is still missing in the literature. The accuracy of these
methods, as well as their computational advantage over full kinetic ap-
proaches, are still to be investigated for most plasma problems, including
Hall thrusters.

8Such as, for instance, adjoint optimization methods.
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1.3.2 Aims of this work

This thesis aims at investigating the applicability of moment methods to
the accurate description of the non-equilibrium conditions that characterize
Hall thrusters. Particular emphasis will be put on the order-4 maximum-
entropy moment methods. The thesis is centered around two tasks:

• After a theoretical introduction, the first part deals with developing the
order-4 maximum-entropy moment method, that has been previously
applied to rarefied and multiphase flows, but never to completely colli-
sionless and charged gases, and in presence of electrical and magnetic
fields;

• The second part is then devoted to the applications to Hall thrusters-
like conditions. Different test cases are investigated, and the accu-
racy and computational cost of the maximum-entropy method are dis-
cussed, comparing it to kinetic solutions and to simpler moment meth-
ods.

Throughout the work, a number of heavy simplifications have been made.
For instance, the collision operator will be often simplified with a BGK ap-
proximation, if not completely neglected. Even more drastically, all anal-
ysis of this work consider individual species and never couple them. Ions
are studied independently from electrons, and the electric field (the only
coupling element, if we neglect charge-charge collisions) is externally im-
posed. Of course, the coupling is a crucial feature of any real plasma.

However, in terms of the present work, the coupling constitutes an un-
necessary complexity. Keeping in mind our goal of describing the problem
using moment methods, aiming at retrieving as many kinetic features as
possible, one can identify three sources of error: (i) the higher order clos-
ing moments appearing in the fluxes (ii) electro-magnetic source terms and
(iii) the computation of collisional sources.9 The first two points reflect
how accurately the moment method can represent the streaming of the dis-
tribution function in physical space (Point i) and velocity (Point ii). Point
(iii) on the other hand reflects the collision operator and chemical produc-
tion. Prior to considering full and coupled systems, it is here reputed that
investigating the accuracy of the said points, individually, has priority. For
this reason, rather than providing a full description of the plasma, the aim
of the work is instead to give an accurate comparison of the methods in
very controlled conditions.

9These points will be discussed in detail in the next sections.
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Clearly, a number of further issues may arise when the coupling will be
enabled, and additional careful studies will thus be required. Among other
topics, this will be indeed one of the suggested future work activities.

1.3.3 Structure of this manuscript

This manuscript is structured as follows.
The Chapters 2 and 3 are introductory, and outline the theoretical fun-

dations and numerical methods upon which this work is built. In partic-
ular, Chapter 2 discusses some of the theoretical models that allow us to
describe rarefied gases and plasmas. The chapter starts from kinetic the-
ory and describes all sets of moment equations that will be employed in
this work, including the Euler equations and the 5-moment and 14-moment
(order-4) maximum-entropy systems. Chapter 3 briefly discusses how the
governing equations can be solved numerically.

The kinetic equation and the Euler equations are readily applied to rar-
efied gases and plasmas, and have been discussed in a broad literature both
theoretically and numerically. On the other hand, the maximum-entropy
systems have been covered only partially. Chapter 4 discusses the fur-
ther ingredients required in order to solve the maximum-entropy system in
the required conditions, in terms of numerical solution (approximating the
eigenvalues, identifying the proper numerical schemes) and modeling of
the electromagnetic terms and their resulting dispersion relation.

All other chapters discuss applications to Hall thruster-like configura-
tions. First, ions are considered: Chapter 5 constitutes a first attempt at an-
alyzing the problem. By considering the thruster channel as 1-dimensional,
some analytical results are obtained for the axial velocity distribution func-
tion, and a simple moment method is developed. These results are com-
pared to 2-dimensional kinetic simulations and experiments, and give both
qualitative and quantitative information over the kinetic features to be ex-
pected.

Then, the ion description using the maximum-entropy systems is inves-
tigated in Chapter 6. The same test cases of the previous chapter is con-
sidered, together with other cases relevant for plasma physics and to Hall
thrusters. In particular, a Tonks-Langmuir sheath is studied, together with
ions in stationary and moving waves, in one and two dimensions. All along,
a comparison between kinetic results, moments and the Euler equations is
given.

Chapter 7 then tackles electrons modeling. As mentioned, electrons
are magnetized, and this includes additional complexity to the problem.

9
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The maximum-entropy description is first compared to analytical solutions
from the literature, for 0-dimensional test cases. This is followed by the for-
mulation of electron-neutral collisional terms, and the study of space homo-
geneous relaxation problems, and finally by the analysis of 1-dimensional
problems, where electrons evolve along a thruster-like channel, in presence
of a magnetic field barrier. This chapter completes the work on moment
methods.

Chapter 8 considers a quite different problem, and discusses the neutral
species injection and expansion into the Hall thruster channel. The analysis
focuses on the residence time of neutral particles inside an imposed ioniza-
tion region, and the corresponding ionization probability, resulting in the
engine efficiency, is studied. An alternative injection configuration is then
proposed: the propellant is injected from a slit located on the inner wall,
close to the exit plane, and is directed towards the anode. The numerical
analysis suggest that this configuration is associated to an increased mass
utilization efficiency.

Finally, a concluding chapter is devoted to summarize the work, high-
lighting the main achievements and weaknesses, and some possible future
developments are suggested.

10



CHAPTER2
Kinetic and fluid modeling of gases and

plasmas

This chapter introduces the governing equations for the description of rar-
efied gases and low-temperature plasmas. The numerical solution of such
equations and the application to Hall thrusters configurations will be dis-
cussed in the next chapters.

The starting point for studying the behavior of a rarefied gas or plasma
consists in analyzing the individual behavior of its particles. Only elec-
trons and monoatomic species will be considered, since most often electric
propulsion operates on noble gases.1 In most electric propulsion applica-
tions, the particle energy is rather low (the electron energy is in the range
of 1 − 100 eV, while heavy particles are slower and have a temperature
roughly in the 1000 K range) and a non-relativistic description can be prof-
itably employed. In this work, the internal (electronic) structure of atomic
species will not be considered, hence all particles are considered as classi-

1A notable exception consists in iodine-fed thrusters, currently being tested both in the lab and in orbit [72].
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cal points evolving following the Newton’s equations:


dxi
dt

= vi ,

dvi
dt

=
Fi
mi

,

(2.1)

where xi and vi are the position and velocity of the i–th particle, mi its
mass and Fi all forces acting on it, including inter-particle interactions and
external forces of electromagnetic nature. Inter-particle interactions depend
on the considered species and divide in three categories: neutral-neutral,
neutral-charged and charged-charged (Coulomb) interactions.

For macroscopic systems, one does not solve these equations directly,
due to the large number of particles involved. Instead, a statistical for-
mulation is introduced. Different strategies are possible at this point: one
possibility consists in writing the equations using the Hamiltonian formal-
ism, deriving the Liouville equation for the N-particles distribution func-
tion, and then expanding it in the BBGKY hierarchy and neglecting corre-
lations [39,73,74]. This is the preferred approach in gas dynamics. Another
strategy, common in plasma physics, consists in deriving the Klimontovich
equation for the microscopic distribution function, and then applying an
average operator to it [75–77]. In either case, one ends up with an equation
for the one-particle distribution function f , discussed in the following.

This chapter is structured as follows. Section 2.1 introduces the kinetic
equation (Boltzmann/Vlasov/BGK), that governs the evolution of the dis-
tribution function f . A non-dimensionalization of such equations allows
one to extract dimensionless parameters, that can be profitably employed
for understanding the operating regimes. This is done in Section 2.2, where
the operating conditions of typical Hall thrusters are analyzed for electri-
ons, ions an neutrals. In Section 2.3, the statistical microscopic formulation
is connected to macroscopic thermodynamics through the definition of the
moments of the distribution function. A generalized moment equation for
the evolution of a given moment is discussed, and is employed to derive the
pressureless gas approximation and the Euler equations of gas dynamics.
Moment methods are also introduced as a generalization of the said sys-
tems. Section 2.4 then considers the maximum-entropy moment method,
that will be employed in this work, discussing the governing equations and
specifying the shape of the closing moments.

12



2.1. Kinetic theory

2.1 Kinetic theory

By “kinetic equation” we refer to an evolution equation for the one-particle
velocity distribution function (VDF) fa(x,v, t):

∂fa
∂t

+ v · ∂fa
∂x

+
Fa
ma

· ∂fa
∂v

= Ca , (2.2)

where the subscript a specifies which species is being described, either
electrons, ions or neutrals. The vector Fa introduces external forces,2 that
accelerate the VDF along the velocity axes. The only forces considered
here have electromagnetic nature and are described by the Lorentz force,
Fa = qa(E+v×B), with E and B the electric and magnetic fields.3 These
fields include the externally imposed fields and the self-consistent ones aris-
ing from space-charge distributions (Coulomb long-range interactions) and
currents. These fields may be obtained through the Maxwell equations, or
simply the Poisson equation in the electrostatic case.

In the general case, the VDF is defined in three physical space and three
velocity dimensions, constituting the 6-dimensional phase space. This case
will be denoted in the following chapters by 3D3V. Analogously, 1D1V
refers to a 1-dimensional approximation both in space and velocity and
corresponds to a gas of particles with only one velocity component, that
evolves in one physical direction only.

The collision operator Ca lumps the effect of all collisions, that are short-
range interactions in the case of neutral-neutral and charged-neutral inter-
actions, and only include the effect of short-range charged interactions.

The Boltzmann equation

Boltzmann derived the homonymous equation in the assumptions that

• Only binary collisions are accounted for (the gas is dilute);

• Correlations vanish in time and can be neglected (this is the “molecu-
lar chaos” assumption, that introduces irreversibility and leads to the
H-theorem);

• Spatial variations of the distribution function are neglected for the sake
of collisions (the problem must be sufficiently uniform).

2In Eq. (2.2), the forcing term was written out of the velocity gradient: this is correct for the Lorenz force,
and whenever the forces do not depend on the particle velocity.

3Note that the velocity v that multiplies the magnetic field B is the velocity coordinate in the phase space, as
different points in the phase space experience a different magnetic force.
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In such cases, and for multi-species mixtures, the collision operator can
be written as a sum of the contributions for each species in the mixture,
denoted by c subscript in the following [39, 78]

Ca =
∑
c

Cac =

ˆ
(f ′af

′
c − fafc) |v − vc| b db dε dvc , (2.3)

where f ′a and f ′c are evaluated using the inverse collision, b is the impact
parameter and ε the angle of the collision cylinder. The collision operator
can be rewritten as to let the collision cross-section emerge. In case of
Coulomb collisions, the long-range nature of the forces introduces either
the need to crop the integral at the Debye length, or to rewrite it as to obtain
the Landau collision operator [79]. This will not be discussed further, as
charge-charge collisions turn out to be unimportant for the conditions of
this work (see Section 2.2).

A major consequence of the Boltzmann equation is the H-theorem, show-
ing that a colliding gas eventually settles to the Maxwellian equilibrium
distribution function,

Ma = na

(
ma

2πkBTa

)3/2

exp

[
−ma(v − ua)2

2kBTa

]
, (2.4)

with na the gas number density, ma the particle mass, kB the Boltzmann
constant, Ta the gas temperature, and ua the average velocity. Note that for
particles having a single translational degree of freedom (such as in the case
of a 1D1V description), the equilibrium Maxwellian takes an exponent of
1/2 in place of 3/2,

M(1V)
a = na

(
ma

2πkBTa

)1/2

exp

[
−ma(v − ua)2

2kBTa

]
, (2.5)

The Boltzmann operator results in an integro-differential kinetic equa-
tion, whose analytical solution is known only in a limited set of cases. A
number of further simplifications are possible. We shall mention only a few
here.

The BGK kinetic equation

A simplified form of the collision operator was proposed by Bhatnagar,
Gross and Krook [80], where the VDF is assumed to relax towards a local
Maxwellian. For a simple gas, the relaxation happens at a given rate, equal
to the inverse of the collision frequency, τ = 1/ν, and we have:

Ca = −fa −Ma

τ
. (2.6)
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operating regime for electrons, ions and neutrals

This results in the BGK kinetic equation.4 This model automatically re-
trieves the H-theorem and is simple enough to allow for obtaining analytical
solutions. However, its simplicity also brings a number of drawbacks. For
example, besides resulting in the same relaxation rate for all moments of
the distribution function, this model is known to reproduce a wrong Prandlt
number of 1, in place of the value 2/3 that one may expect for monatomic
gases (see for example [81, 82]).

Nonetheless, in view of its great simplicity, the BGK model has been
applied to multiple different conditions, including multi-species gases with
internal degrees of freedom [83–85]. Moreover, while the original model
uses a macroscopic collision frequency, the model has been extended to
include the dependence of the particles velocity [86, 87].

The Vlasov equation

Finally, plasmas (especially when fully ionized) may be substantially col-
lisionless, when the density is low enough and the electric and magnetic
fields dominate the dynamics. In such case, the collision operator is Ca = 0
and one obtains the Vlasov equation,

∂fa
∂t

+ v · ∂fa
∂x

+
Fa
ma

· ∂fa
∂v

= 0 . (2.7)

2.2 The dimensionless kinetic equation:
operating regime for electrons, ions and neutrals

In this section, we introduce a non-dimensionalization of the kinetic equa-
tion (2.2), and apply it to Hall thruster plasmas. This will allow us to com-
pute the dimensionless numbers for electrons, ions and neutrals, and will
thus give an insight on the operating regimes. This analysis is preliminary
to the formulation of a simplified model, and allows us to understand what
terms can be safely neglected.

Non-dimensionalisation is performed by first introducing a characteris-
tic quantity for all variables, and then collecting them as to form dimen-
sionless groups [73], resulting in the dimensionless kinetic equation,

4This choice for the collision operator leads to the “relaxation time approximation”, commonly employed in
plasma physics
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(
L0

Vat0

)
∂f̃a

∂t̃
+ ṽ · ∂f̃a

∂x̃
+

(
qaE0

maV 2
a /L0

)
Ẽ · ∂f̃a

∂ṽ

+

(
qaB0Va
maV 2

a /L0

)(
ṽ × B̃

)
· ∂f̃a
∂ṽ

=

(
νa

Va/L0

)
J̃a +

(
νa,r
Va/L0

)
R̃a (2.8)

where dimensionless quantities are denoted by •̃, the subscript 0 is a charac-
teristic quantity common to all species (such as the thruster geometry) and
characteristic quantities with subscript a are species-specific. The collision
operator at the right hand side was splitted into non-reactive (Ja) and reac-
tive (Ra) collisions. For the sake of the present simplified analysis, we will
not detail further the effect of different inelastic collisional processes, and
we will neglect recombination reactions.5 The terms inside the parentheses
are respectively, from left to right:

• The Strouhal number, expressing the time scale for the considered
species, with respect to the reference time t0;

• The inverse of the Froude numbers for the electric and magnetic fields,
ratio of the inertia and the electromagnetic forces;

• At the right hand side, the inverse of the Knudsen number, where
1/Kn→ 0 gives collisionless conditions.

The relative importance of these terms gives an estimation of the regime
of the various species. An accurate value for the reference dimensions and
fields is not needed, and an estimate correct within an order of magnitude
is sufficient. The values employed here are based on the SPT-100 thruster
[88–90], L0 = 0.025 m, E0 = 50 000 V/m, B0 = 0.02 T. Other reference
quantities are species-specific. The plasma density is taken as ne = ni =
1018 m−3, and the neutral density is nn = 5 × 1019 m−3. For electrons,
we assume a temperature of Te = 80 eV. Electrons are typically subsonic,
therefore we take their characteristic velocity equal to the thermal velocity:
Ve ≈ 6× 106 m/s. Xenon singly charged ions are considered, whose mass
is mi = 2.18×10−25 kg, and with a temperature Ti = 10 000 K. Since ions
are typically supersonic, their characteristic velocity is taken as the bulk
velocity, Vi = 15 000 m/s. Neutrals are colder and slower. We assume
Tn = 500 K and Vn = 300 m/s.

5Gas-phase recombination, being a three-body reaction, can be expected to be less important than ionization
in the considered low-pressure and high temperature regimes.
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Collision frequencies are computed as follows. First, the notation νab
denotes the collision frequency for a test particle of species a inside a pop-
ulation of species b. For neutral-neutral collisions, we assume a cross-
section σnn = 5.6 × 10−19 m2 (see [91]). The collision frequency is
νnn = nnσnnv

th
n ≈ 8000 s−1, with vthn the neutral thermal velocity. Elastic

ion-neutral collisions would require to consider the induced dipole [92], but
in terms of a rough estimate, we simply consider σin = σni ≡ σnn. There-
fore, νni = niσniVi ≈ 8400 s−1, while νin = nnσinVi ≈ 4.2 × 105 s−1.
Particular care should be taken in formulating this assumption in case of
charge-exchange collisions, where the cross-section could increase signifi-
cantly [34]. For electron-neutral collisions, given the electron temperature,
we consider the approximated value σen = 10−19 m2 [93, 94]. This gives
νen = nnσenVe ≈ 3 × 107 s−1 and will turn to be the leading collisional
process in Hall thruster plasmas. Following this derivation, one would
also write νne = neσenVe ≈ 6 × 105 s−1. Part of this large collision fre-
quency is responsible for ionization processes (and is thus crucial in terms
of ion balance). However, elastic electron-neutral collisions have a small
effect in the neutral momentum and energy, in view of the large mass ratio
me/mn ≈ 5 × 10−6. For this reason, when considering the neutral kinetic
equation, it is more meaningful to consider an effective collision frequency
for momentum transfer, by weighted the original collision frequency by the
mass ratio. We will use: ν(mom)

ne = neσenVeme/mn ≈ 2.5 s−1.
Charge-charge collisions require to consider the plasma parameter Λ and

the Coulomb logarithm [95, 96],

Λ =
4πε

3/2
0

3e3
√
n

(kBTe)
3/2 =⇒ ln(Λ) ≈ 14 , (2.9)

with n = ne = ni the plasma density and Te measured in [K]. The collision
frequency of a test electron with other electrons (νee) or with ions (νei) is
then estimated by

νee ≈ νei ≈
nee

4 ln Λ

ε2
0

√
me (kBTe)

3/2
≈ 2× 106 s−1 , (2.10)

while the ion-ion collision frequency is obtained as νii ≈ νei
√
me/mi ≈

4000 s−1. As mentioned for the neutral-electron collisions, the large mass
ratio is such that electron-heavy collisions are inefficient in terms of mo-
mentum and energy exchange. Therefore, also for ion-electron collisions,
we weight the collision frequency by the mass ratio, and write:

ν
(mom)
ie = νeime/mi ≈ 10 s−1 . (2.11)
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Finally, the characteristic time t0 is arbitrary, and is here taken from the
transit time of ions, t0 = L0/Vi = 1.67 µs.

Electrons

Considering the specified quantities, the dimensionless numbers for elec-
trons become

(0.002)
∂f̃e

∂t̃
+ ṽ · ∂f̃e

∂x̃
+ (6.1) Ẽ · ∂f̃e

∂ṽ
+ (14.6)

(
ṽ × B̃

)
· ∂f̃e
∂ṽ

=

(0.008) J̃ee + (0.008) J̃ei + (0.125) J̃en + (1/Kne,r) R̃e . (2.12)

Electrons are obviously seen to be much faster than ions (small Strouhal
number), and this justifies the often employed steady state assumption,
when only the ion or neutral time scales are of interest. This is due to
their much higher velocity, associated to their small mass. Both the elec-
tric and the magnetic fields appear to be important. The magnetic field in
particular will cause a rotation in the electrons velocities, such that a sim-
ple single-velocity 1V model is not applicable. Regarding the right hand
side, collisions appear to have a much smaller effect, in particular Coulomb
collisions are mostly negligible. Electron-neutral collisions are relatively
dim, but they are the leading collisional term and as such they need to be
retained. In particular, in a completely collisionless model, electrons would
have no mechanism to cross the magnetic field lines, and the magnetic field
would create a perfect confinement.6 On the other hand, in a real thruster,
electrons crossing the magnetic field are crucial for the creation of an ion-
ization region, and ultimately for the working of the Hall thruster.

Note that the magnitude of the chemical production source term (inverse
of the Knudsen number for reactive collisions) was not specified in the pre-
vious equation. Indeed, whatever its magnitude, this term must be retained,
as it is needed to balance out the ion charges produced in the ionization
region, and ultimately to obtain a consistent simulation.

Ions

The magnitude for the dimensionless quantities for ions reads

(1)
∂f̃i

∂t̃
+ ṽ · ∂f̃i

∂x̃
+ (4.1) Ẽ · ∂f̃i

∂ṽ
+ (0.025)

(
ṽ × B̃

)
· ∂f̃i
∂ṽ

=(
10−5

)
J̃ie + (0.007) J̃ii + (0.7) J̃in + (1/Kni,r) R̃i , (2.13)

6If one neglects oscillations and instabilities.
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where ν(mom)
ie was used in place of νie, as previously discussed. The Strouhal

number is unitary, due to our choice of the characteristic time. The Froude
numbers show that ions are affected by the electric field but are substan-
tially unmagnetized (ad discussed in Chapter 1). In the following simu-
lations, the magnetic field will be indeed completely neglected. Coulomb
collisions also appear to be negligible, while, as for the electron popula-
tion, collisions with background neutrals are not predominant (with respect
to the electric field), but are not completely negligible either. Note that in
the electron case, it was crucial to retain some collisional mechanism in
order to have a non-zero cross-field mobility. For ions on the other hand,
the magnetic field is negligible, and therefore collisions are not crucial. In
the remaining of this work, ions will be treated as completely collisionless
for simplicity, as often done in the Hall thrusters literature [27, 97–100].
Nonetheless, this assumption should be kept in mind and relaxed when-
ever possible. Also, it is important to stress that this assumption would
become questionable if higher mass flow rates were employed, and would
anyway completely lose its validity in the plume region, where the electric
field rapidly decays to zero and ion-neutral collisions soon dominate the
dynamics.

Finally, as done for the electrons, the reactive collision source has not
been detailed. Indeed, whatever its value, this term is crucial for ions to
build up inside the thruster.

Neutrals

For the neutral population, the kinetic equation is obviously simpler. Using
the collision frequency ν(mom)

ne for the neutral-electrons collision in place of
νne, one has

(50)
∂f̃n

∂t̃
+ ṽ · ∂f̃n

∂x̃
=
(
10−4

)
J̃ne + (0.7) J̃ni

+ (0.66) J̃nn + (10− 50) R̃n . (2.14)

The relatively large value of the Strouhal number reflects the slower
evolution of neutrals along the channel, with respect to the ions. In absence
of the electric and magnetic terms, collisions become an important effect.
The dimensionless numbers show that collisions may play a non-negligible
role, somehow comparable to the convection itself. In particular, neutral-
ion collisions (either momentum or charge exchange ones) are known to
increase the average neutral velocity beyond the value Vn = 300 m/s con-
sidered here. Note that the value of the Knudsen number for such collisions
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is slightly larger than one, meaning that the flow is significantly rarefied. In
such conditions, gas-surface interactions are likely to play an equally im-
portant role, depending on the surface-to-volume ratio.7

Differently than for electrons and ions, the value of the Knudsen number
for neutral ionization has been also given in the previous equation, based
on the ionization frequency νiz = neσizVe ≈ 6× 105 s−1. Using the whole
channel length results in an inverse Knudsen number of 50, while a more
reasonable estimate would consider that ionization happens mostly inside
the ionization region, whose length is approximately 5 mm [90]. This gives
a somewhat lower estimate of 10. These high values are expected, as they
confirm that the thruster is indeed effectively ionizing the propellant.

2.3 Fluid formulations: moments of the kinetic equation

As discussed, the kinetic equation is, in its most general case, 6-dimen-
sional. Numerical solvers must therefore deal with memory and com-
putational requirements that are often excessive for present day simula-
tions. Moreover, the information contained in the kinetic equation may be
sometimes unnecessarily detailed, and a much coarser description could be
enough. These observations motivate the derivation of fluid models, where
only few statistical moments of the distribution function are described. In
this section, the subscript “a” will be dropped for simplicity.

2.3.1 Moments of the distribution function

All macroscopic fields that compose the classical fluid dynamic descrip-
tions (such as the Navier-Stokes equations or the MHD formulations) are
statistical moments of the distribution function and are obtained by inte-
grating the VDF over the velocity space [39]. This removes the dependence
of the VDF on the particle velocity variable, and results in a quantity that
depends on space and time. From the definition of the VDF, the number
density reads

n(x, t) =

˚ +∞

−∞
f(x,v, t) dvx dvy dvz . (2.15)

The integrals range from −∞ to +∞, spanning all velocity space. In
other words, all particles contributing to the VDF are accounted for. The

7Since surfaces are introduced into the model as boundary conditions of the kinetic equation, this effect does
not appear automatically in this analysis.
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mass density is ρ = mn. The (average) momentum is obtained by weight-
ing the VDF by the particle momentum,

ρ(x, t)ui(x, t) =

˚ +∞

−∞
mvif(x,v, t) dvx dvy dvz . (2.16)

By computing moments of the distribution function about the average ve-
locity ui, one obtains central moments. These moments do not depend any-
more on the velocity, but instead describe the purely thermodynamic state
of the gas, and allow us to identify non-equilibrium. The pressure tensor
components are second order central moments, defined as

Pij(x, t) =

˚ +∞

−∞
m(vi − ui)(vj − uj)f(x,v, t) dvx dvy dvz . (2.17)

Where the hydrostatic pressure is P = (Pxx+Pyy+Pzz)/3. In this work,
we will consider perfect gases, such that P = nkBT . Note that a separate
temperature can be defined for each axis, such that Pxx ≡ Px = nkBTx,
and the same for the y and z components. From the kinetic definition, it is
clear that the temperatures give an indication of the width of the distribution
function along the three velocity axes. Using the same notation, the energy
of a particle with three translational degrees of freedom would read

ρ(x, t)E(x, t) =
ρu2

2
+

3

2
nkBT =

˚ +∞

−∞

mv2

2
f(x,v, t) dvx dvy dvz .

(2.18)
The heat flux vector is an order-3 central moment and is here defined as

qi(x, t) =

˚ +∞

−∞
mc2 ci f(x,v, t) dvx dvy dvz . (2.19)

where the peculiar velocity ci = vi − ui was defined. Note that in much
of the literature, the heat flux definition embeds a factor 1/2. Unless spec-
ified otherwise, in this work we employ the definition of Eq. (2.19) to be
consistent with the definitions that will follow. Being an odd-order central
moment, the heat flux indicates the skewness of the VDF, and being pro-
portional to the cube of the peculiar velocity, it is particularly sensitive to
the tails of the VDF. The mentioned moments are employed in most fluid
dynamic descriptions. However, there is no limit in the number of mo-
ments that can be computed. In particular, in the present work we will need
moments up to an order 5 of the velocity, that we define in the following.
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After having defined the heat flux vector, a heat flux tensor can also be
introduced,

Qijk(x, t) =

˚ +∞

−∞
mci cj ck f(x,v, t) dvx dvy dvz . (2.20)

Clearly, qi can be obtained from the contractions of Qijk. Denoting a sum-
mation by repeated indices, we use the notation:

qi = Qi ≡ Qijj . (2.21)

A rank 2 tensor is then defined for the order-4 moment, Rijkk,

Rijkk(x, t) =

˚ +∞

−∞
mci cj c

2 f(x,v, t) dvx dvy dvz , (2.22)

and its contraction Riijj = Rxxkk +Ryykk +Rzzkk,

Riijj(x, t) =

˚ +∞

−∞
mc4 f(x,v, t) dvx dvy dvz , (2.23)

At equilibrium, when the VDF is Maxwellian, this moment can be shown
to take the valueRiijj = 15P 2/ρ. This moment is connected to the kurtosis
of the VDF. Finally, a vector containing order-5 moments is also defined as

Sijjkk(x, t) =

˚ +∞

−∞
mcic

4 f(x,v, t) dvx dvy dvz . (2.24)

The moments described in the previous equations are a total of 29 inde-
pendent scalar quantities: the density, 3 velocity components, 6 entries for
the pressure tensor, 10 for Qijk, 6 for Rijkk and 3 for Sijjkk. No further mo-
ments will be needed in the present work, except for their contractions. It
should be noted that all odd-order central moments are zero for symmetric
VDFs.

Moments of the 1V distribution function

In case the kinetic equation is formulated as to describe one only compo-
nent of the particle velocity (“1-dimensional physics”), the moments of the
1V VDF are obtained as a single integral. The 29 independent moments
reduce to a small set of 5 moments, defined as

ρ =
´ +∞
−∞ mf(v) dv , (2.25a)

ρu =
´ +∞
−∞ mv f(v) dv , (2.25b)
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P =
´ +∞
−∞ m (v − u)2 f(v) dv , (2.25c)

Q =
´ +∞
−∞ m (v − u)3 f(v) dv , (2.25d)

r =
´ +∞
−∞ m (v − u)4 f(v) dv , (2.25e)

s =
´ +∞
−∞ m (v − u)5 f(v) dv . (2.25f)

Dimensionless moments

As seen, all moments are proportional to the particle mass and to an in-
creasing power of the velocity. An effective adimensionalization can thus
be performed by dividing the moments by ρ and by a power of the quantity√
P/ρ, that is fundamentally a thermal velocity. By doing this non-dimen-

sionalization on the density, momentum and hydrostatic pressure, we find

ρ? = 1 , u?i = ui/
√
P/ρ , P ? = 1 , (2.26)

while the dimensionless central moments read

P ?
ij = Pij/

[
ρ (P/ρ)2/2

]
, (2.27a)

Q?
ijk = Qijk/

[
ρ (P/ρ)3/2

]
, (2.27b)

R?
ijkk = Rijkk/

[
ρ (P/ρ)4/2

]
, (2.27c)

S?ijjkk = Siijkk/
[
ρ (P/ρ)5/2

]
, (2.27d)

The contractions q?i and R?
iijj are obtained in the same way.

2.3.2 The generalized moment equation

The moments definition can be generalized by denoting the particle quanti-
ties by ψ, and computing the moment of the VDF weighted by ψ as

Mψ =

˚ +∞

−∞
ψ(v)f(x,v, t) dv ≡ 〈ψ(v)〉 . (2.28)

Considering that f(x,v, t) = n g(x,v, t), with n the number density and g
the normalized distribution function, the moment Mψ represents the aver-
aged value of ψ(v) over the normalized distribution of particle velocities,
further scaled by the number density. For example, the choice ψ = m
would result in the mass density, while ψ = mvx would result in the aver-
age momentum along x. By multiplying by ψ the whole kinetic equation
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and then applying the average operator, one obtains a governing equation
for the moment Mψ, reading [39]

∂ 〈ψ〉
∂t

+
∂

∂x
· 〈v ψ〉 =

q

m

〈
(E + v × B) · ∂ψ

∂v

〉
+

˚
ψ C dv . (2.29)

This equation has an important characteristic: while writing it for a mo-
ment Mψ = 〈ψ〉 of a given order n, the convective fluxes 〈vψ〉 introduce
a moment of order n + 1 in the velocity. This requires that one also writes
an equation for the moment n + 1, that in turn will require the moment of
order n + 2. The resulting system is not closed, and an infinite number of
moment equations would be required to recover the kinetic equation. Prac-
tically speaking, one truncates the series at a certain point, or following
certain assumptions. The set of equations resulting from such choice will
be denoted by “moment method” and in conservative form are written as

∂U

∂t
+

∂

∂x
· [Fx,Fy,Fz] = GEB +Gc , (2.30)

where U is the vector of moments, Fi are the vectors of convective fluxes,
with i = x, y, z andGEB andGc the electromagnetic and collisional source
terms respectively.

2.3.3 Pressureless gas, Euler equations and moment methods

As seen in the previous section, the choice of a set of particle quantities ψ
results in a set of governing equations for the respective moments, that can
be closed by formulating some assumption. We shall illustrate here two
noteworthy examples, namely the pressureless gas system and the Euler
equations. More general strategies will be then introduced.

The pressureless gas formulation

The simplest formulation can be obtained by writing a governing equation
for the particle mass, choosing ψ = m, and three equations for the particle
momentum, obtained from ψ = mvi. The higher order moments (that
require a closure) are the pressure terms Pij . In the limiting case of a gas
where the convective fluxes are much larger than the thermal ones, one may
decide to neglect these contributions.8 The resulting system is known as the
pressureless gas formulation (sometimes called “cold gas”), and correspond
to prescribing that the VDF is a Dirac delta in velocity space, centered on

8This can be an effective choice in some situations, but results in discontinuities known as δ-shocks.
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the bulk velocity. The set of equations (2.30) is defined by

U =


ρ

ρux

ρuy

ρuz

 , Fi =


ρui

ρuiux

ρuiuy

ρuiuz

 , GEB =
ρ q

m


0

Ex + uyBz − uzBy
Ey + uzBx − uxBz
Ez + uxBy − uyBx

 ,

(2.31)

where the x,y and z convective fluxes are obtained by choosing i = x, y, z.
The formulation of the collisional source term Gc depends on the specific
case and the type of collisions to be considered. The pressureless gas sys-
tem will be employed for the description of ions in Section 6.6.

The Euler equations of gas dynamics

The choice ψ = m(1, vi, v
2/2) extends the previous description, by also

considering the energy of the particle. This results in the Euler equations
of gas dynamics, where the chosen closure consists in assuming that higher
order moments are zero (the heat flux qi in this case) and that the pressure
tensor is isotropic. The equations read

U =


ρ

ρux

ρuy

ρuz
1
2
ρu2 + 1

γ−1
P

 , Fi =


ρui

ρuiux + Pδxi

ρuiuy + Pδyi

ρuiuz + Pδzi
1
2
ρu2ui + γ

γ−1
Pui

 , (2.32)

where δij is the Kronecker delta, and γ is the specific heats ratio (adiabatic
constant), with N/2 = 1/(γ − 1), where N is the number of degrees of
freedom (DOF) for the considered species. Particles that show only three
DOFs (no internal energy) have N = 3, and therefore γ = 5/3. In the
case of a gas described by one single degree of freedom, only a single
component of velocity should be retained (say, vx) and the other moments
are to be discarded. The adiabatic constant is then obtained from the choice
N = 1, resulting in γ = 3.

The electromagnetic source term for the Euler equations is easily ob-
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tained as

GEB =
ρ q

m


0

Ex + uyBz − uzBy
Ey + uzBx − uxBz
Ez + uxBy − uyBx
Exux + Eyuy + Ezuz

 . (2.33)

Also in this case, the collision termsGc depend on the process and species
to be considered and will not be detailed here.

At a kinetic level, the aforementioned closure assumptions correspond
to prescribing that the VDF is symmetric. The Maxwellian is a particular
case of a symmetric VDF, that further results in a zero collisional source
term, for what concerns collisions between particles of the same species.
Other collisions terms may still be non-zero.9

Moment methods, the Chapman-Enskog expansion and the Grad closure

Strictly speaking, the term “moment methods” refers to modeling the prob-
lem by a system of moment equations, closed by some assumption.10 The
pressureless gas system and the Euler systems are two simple examples of
(rather low order) moment methods, and they were obtained by an intuitive
choice of the particle quantities ψ. A number of general formulations have
been proposed in the years, with varying degree of success and generality,
and we shall discuss here some of them.

The Chapman-Enskog expansion [101] is a common strategy to find a
closure to the moment equations, and consists in expanding the VDF in
powers of a small parameter ε (proportional to the inverse of the Knudsen
number),

f = f (0) + εf (1) + ε2f (2) + · · · , (2.34)

where f (0) is the local Maxwellian and the other terms are corrections of
progressively higher order. The choice of the maximum order of ε to be
retained results in a set of governing equations of increasing complexity.
For a Maximum order ε0, one retrieves the Euler equations. At the order ε1

on the other hand, the Navier-Stokes-Fourier equations are retrieved. At a
higher order, one obtains the Burnett [102] and super-Burnett systems, that
are however unstable to certain wavelengths [62] and are not well behaved
in terms of entropy production [103]. Various corrections to these prob-
lems have been proposed through the years (see for example [104]). Also,

9For example, electron collisions with background neutrals.
10Traditionally, in the fluid dynamic community, moment methods are refer to systems at least one order higher

than the Euler/NSF equations, thus writing governing equations for moments of higher order than the energy.
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detailed studies have been performed on the Chapman-Enskog method,
extending it towards multi-component plasmas, and including multiscale
analyses of the streaming and collision terms [105]. However, the behavior
of the Burnett and super-Burnett systems shows that the Chapman-Enskog
closure works well only for moderate deviations from equilibrium, and a
different formulation is in order if one wishes to reach higher orders.

Another general approach towards obtaining a closed set of moment
equations is the Grad method [63], that consists in expanding the VDF
in a series of N-dimensional Hermite polynomials of the velocity H(n)(v),
weighted by a set of coefficients a(n),

f = f0

(
1 + a

(1)
i H

(1)
i +

1

2
a

(2)
ij H

(2)
ij + ...+

1

N !
a

(N)
ij...qH

(N)
ij...q

)
(2.35)

where f0 is again the local Maxwellian. The moment equations are closed
by truncating such series, putting all coefficients a(n) above a certain or-
der equal to zero. This formulation has been broadly employed in plasma
physics, see for example the classical works of Zhdanov [40], Balescu [106]
and Braginskii [107], where the 13, 21 and 29-moment approximations are
discussed. The Grad formulation has an important advantage, namely the
moments of the distribution function f are directly mapped to the coeffi-
cients a(n). In terms of its drawbacks, it is important to notice that in order
to retrieve strong non-equilibrium conditions, it has been shown that the
number of required moments may be rather large [108, 109], with a signif-
icant increase in the computational complexity. Also, the Grad closure is
known to suffer from a limited region of hyperbolicity [110], such that the
eigenvalues of the fluxes Jacobian may develop an imaginary part. Finally,
for strong non-equilibrium situations, the Grad method does not guaran-
tee that the VDF remain positive, and the method may generate unphysical
subshocks beyond a certain Mach number [62], thus requiring a regulariza-
tion [111, 112].

A number of other formulations have been developed in the years (see
for example the Quadrature Moments [113, 114] or the Pearson Distribu-
tion [68,115] formulations). Among all possible formulations, we shall fo-
cus on the “maximum-entropy” family of moment methods, whose order-4
member will be investigated in this work.
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2.4 The maximum-entropy closure

This section introduces the maximum-entropy family of moment methods,
that will be central in this work. For a complete introduction to the method,
the reader is referred to [64, 65, 116], and for an application to different
problems including microfluidics and radiation transport, [117–122].

The idea behind the maximum-entropy method is the following: for a
given state of the gas, described by a finite set of moments U , an infinite
number of possible distribution functions exist; among these, the maxi-
mum-entropy method considers the distribution that maximises the entropy
of the system, σ = f log f . In a statistical sense, this corresponds to select-
ing the most probable distribution, given the limited amount of information
about its moments U . The resulting VDF takes the form of an exponential
of a polynomial of the particle velocity,

f = exp
[
αTΨ(v)

]
, (2.36)

where Ψ is a vector of monomials of the particle velocity v (where the
maximum power of v defines the order of the approximation), while α is
the vector of the corresponding weights. Provided that the order of the
highest-power velocity monomial inside Ψ is even, and that the respective
coefficient is negative, the maximum-entropy VDF is bounded. Also, it is
always positive (since the exponential of a real number is positive), which is
a strong advantage over the Grad system, especially if strong non-equilib-
rium conditions are targeted. Moreover, the resulting system of governing
equations for the moments can be shown to be hyperbolic whenever the
underlying entropy maximisation problem is solvable.

In order to ensure that the moments of the distribution function f are
equal to U , one writes the condition:

U −
˚ +∞

−∞
Ψ exp

[
αTΨ

]
dv = 0 . (2.37)

Since the maximum-entropy distribution has been employed, this is known
as the “entropy-maximisation problem”, where one aims at finding the vec-
tor of coefficients α that realize such condition. Practically speaking, one
often solves a slightly different problem: after the vector Ψ has been de-
fined, the functional J is maximised for a set of target moments U , where
J is defined as

J =

˚ +∞

−∞
exp

[
αTΨ

]
dv −αTU , (2.38)
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where the condition of zero gradient ∂J/∂α = 0 retrieves Eq. (2.37). After
this problem is solved, the maximum-entropy distribution f is fully de-
fined, and the closing moments appearing in the moment equations can be
obtained by integration.

Besides the mentioned advantages, this method also has a number of
drawbacks. In particular, the entropy maximisation problem proves to be
non-trivial for the methods above order 2. This requires to employ com-
putationally expensive numerical solutions. Also, for orders above 2, the
maximum-entropy method happens to embed a region of non-realizability
in the moment space, referred to as the Junk subspace [66, 123], such that
some states that would be physically realizable (as defined from the solu-
tion to the Hamburger problem [124]) cannot be properly reproduced by a
VDF in the form of Eq. (2.36). This region, associated to a singularity in the
fluxes, reaches the equilibrium point. As will be discussed in Section 4.2,
the wave speeds may grow unbounded as the singularity is approached, and
some additional care is required in the numerical solution.

Order-2 maximum-entropy method: the Euler equations

As a first example, we shall analyze the choice Ψ = (1, vi, v
2), with i =

x, y, z. This gives an order-2 method, from the maximum power appear-
ing in Ψ. The corresponding maximum-entropy VDF happens to be a
Maxwellian, that is thus a particular case of this formulation,

f = exp(α0 + αivi + α2v
2) ≡ A exp

[
B(vi − ui)2

]
. (2.39)

For this system, the entropy maximisation problem of Eq. (2.37) is triv-
ial. Indeed the coefficients α0, αi, α2 are easily mapped to the moments
of the Maxwellian VDF, observing that A = n(m/2πkBT )3/2 and B =
−m/2kBT , and the α coefficients are therefore obtained. All closing mo-
ments will be zero, since this VDF is symmetric, and one finally obtains
the Euler equations of gas dynamics.

Order-2 maximum-entropy method: the anisotropic Euler equations

The Maxwellian case is not the only order-2 member of the family of max-
imum-entropy methods. A more general choice would be Ψ = (1, vi, vivj),
that has 10 independent entries. The resulting maximum-entropy VDF is

f = exp(α0 + αivi + αijvivj) ≡ A exp

[∑
i

Bi(vi − ui)2

]
, (2.40)
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that is an anisotropic Gaussian. Also for this system, the vector of coeffi-
cients α is easily mapped to the moments of the VDF. This choice results
in a system composed by 10 governing equations, that can represent tem-
perature anisotropy, but still assume a symmetric VDF, thus resulting in a
zero heat flux.

2.4.1 Order-4 maximum-entropy method: 14-moment system

The next level after the order-2 methods, are the order-4 maximum-entropy
systems.11 A number of different choices are possible for the vector Ψ, but
the simplest is [64]

Ψ =
(
1, vi, vivj, viv

2, v4
)
, (2.41)

that has 14 different entries and will result in a 14-moment system. The
maximum-entropy VDF reads

f14 = exp(α0 + αivi + αijvivj + αi,3viv
2 + α4v

4) . (2.42)

Despite being the simplest member of the order-4 maximum-entropy meth-
ods, this VDF is very flexible. For example, this VDF includes as liming
cases the Maxwellian and the Gaussian distributions. Moreover, if all co-
efficients except α4 are zero, it can be seen to retrieve the Druyvestein dis-
tribution [2, 125]. This VDF can be both asymmetrical (thus allowing for
an heat flux) and anisotropic, and by effect of α4 it can reproduce ring-like
distributions. The resulting system of moment equations reads, in index
form,

∂
∂t
ρ+ ∂

∂xi
(ρui) = G1 , (2.43a)

∂
∂t

(ρui) + ∂
∂xj

(ρuiuj + Pij) = G2,3,4 , (2.43b)

∂
∂t

(ρuiuj + Pij) + ∂
∂xk

(ρuiujuk + uiPjk + ujPik

+ukPij +Qijk) = G5−10 , (2.43c)

∂
∂t

(ρuiujuj + uiPjj + 2ujPij +Qijj)

+ ∂
∂xk

(ρuiukujuj + uiukPjj + 2uiujPjk + 2ujukPij + ujujPik

+uiQkjj + ukQijj + 2ujQijk +Rikjj) = G11,12,13 , (2.43d)
11As mentioned, no order-3 closure exist, as this would generate an unbounded maximum-entropy VDF.
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∂
∂t

(ρuiuiujuj + 2uiuiPjj + 4uiujPij + 4uiQijj +Riijj)

+ ∂
∂xk

(ρukuiuiujuj + 2ukuiuiPjj + 4uiuiujPjk + 4uiujukPij + 2uiuiQkjj

+4uiukQijj + 4uiujQijk + 4uiRikjj + ukRiijj + Skiijj) = G14 , (2.43e)

where the heat flux vector is denoted by Qijj , and represents the contrac-
tion over Qijk terms. The source terms G at the right hand side include
both electromagnetic and collisional contributions. The collisional sources
depend on the considered species (for a single species BGK collision oper-
ator, the reader is referred to [67, 126]). The electromagnetic sources will
be developed in Section 4.5.

A solution of this system requires to specify the closing moments Qijk,
Rijkk and Sijjkk. These moments could be computed from the VDF, that
in turn is obtained by solving the entropy-maximisation problem. Unfor-
tunately, this problem happens to be rather complex for the 14-moment
formulation, and no algebraic solution is known. Therefore, in order to find
the f14 VDF from a set of target moments (and therefore, to compute the
closing terms of the moment system), one has to solve the problem numer-
ically, often done by employing iterative methods. During a simulation,
such procedure needs to be done at each time step and for each cell in the
domain, dramatically increasing the computational time, up to the point
that the method may be no longer convenient with respect to a fully kinetic
method.

Luckily, some interpolative approximations to the entropy maximisation
problem have been developed for the 14-moment system, allowing for af-
fordable CFD computations [67]. These formulations bypass the entropy
maximisation problem and directly give the closing moments as a function
of the moments U . For all details, the reader is referred to the original
paper, and only the main ingredients will be illustrated here. The closure
starts from the definition of a parabolic mapping of moment space, intro-
ducing a parameter σ that assumes a value σ → 0 in correspondence of
the Junk subspace (and thus, also the equilibrium point) and σ = 1 at the
physical realizability boundary:

σ =
1

4PijPji

[
2PijPji + PiiPjj − ρRiijj

+

√
(2PijPji + PiiPjj − ρRiijj)

2 + 8ρPmnPnmQkii (P−1)klQljj

]
.

(2.44)
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The closing moments are then written as

Rijkk =
1

σ
Qijl

(
P−1

)
lm
Qmkk +

2(1− σ)PikPkj + PijPkk
ρ

, (2.45)

with the elements of the heat flux tensor defined by

Qijk = KijkmQmnn , (2.46)

where the matrix Kijkm is defined as

Kijkm =
[
2Pil(P

2)jk + 2Pkl(P
2)ij + 2Pjl(P

2)ik
]
B−1
lm , (2.47)

and with the matrix Blm defined as

Blm = 2Plm(P 2)αα + 4(P 3)lm . (2.48)

The remaining moments Sijjkk read

Sijjkk =
1

σ2
P−1
kn P

−1
lm QnppQmjjQikl+2σ1/2PjjQikk

ρ
+(1−σ1/2)WimQmnn ,

(2.49)
Note that in this expression a power of σ equal to 1/2 is used, differently
from the original paper where a coefficient 3/5 was employed, as it has
been later shown to provide better results. The matrixWim appearing in the
expression is defined as

Wim =
1

ρ

[
2Pil(Pαα)3 + 12Pil(P

3)αα + 14(P 2)αα(P 2)il + 20Pαα(P 3)il

+20(P 4)il − 2(P 2)ααPββPil − 6(Pαα)2(P 2)il
]
B−1
lm . (2.50)

It is important to notice that the presented interpolative closure is not
entirely hyperbolic, and the eigenvalues may show some slight imaginary
part in some regions of the moment space (see Appendix C). This does not
bring particular issues into the computation. Also, it should be noted that
different interpolative closures have been developed in other references (see
[127]), providing an interpolation of increased accuracy in certain regions
of the moment space. These will not be considered in the present work.

Finally, we shall report here the expressions of the physical realizability
boundary and of the Junk subspace. The former is obtained by the solution
of the Hamburger problem and reads

Riijj ≥
(
Qkii

(
P−1

)
kl
Qljj + PiiPjj

)
/ρ , (2.51)
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and this is retrieved by σ = 1 in the parabolic mapping. On the other hand,
for σ → 0 the mapping retrieves the Junk subspace, whose moments cannot
be described by the assumed shape of the VDF. The Junk subspace reads

Qi = 0 and Riijj > (2PjiPij + PiiPjj) /ρ . (2.52)

In the discussion of the 5-moment system, these boundaries will simplify,
and a graphical interpretation will be shown. Since the Junk subspace is
associated to a singularity, where the wave speeds grow unbounded, a lower
limiting value is imposed to σ in numerical calculations. This value is
often in the range of σmin ≈ 10−3 − 10−5, and will be discussed further in
Section 4.3.

2.4.2 Order-4 maximum-entropy method: 5-moment system

A special case of the 14-moment system can be obtained in the limit of
“1D thermodynamics”, where the particle motion is constrained along one
single axis. This corresponds to the 1V kinetics considered in Section 2.1.
Considering that particles have a single translational degree of freedom,
the 14-moment formulation simplifies to a system of 5 equations. Denoting
by v the only nonzero velocity component, the 5-moment description is
obtained by the choice Ψ = m(1, v, v2, v3, v4). Notice that this description
is still of order 4. The resulting 1V distribution function is

f5 = exp(α0 + α1v + α2v
2 + α3v

3 + α4v
4) . (2.53)

Also in this case, the VDF is seen to be always positive, and is bounded
provided that α4 < 0. The resulting moment system reads

∂ρ

∂t
+

∂

∂x
(ρu) = G1 , (2.54a)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + P

)
= G2 , (2.54b)

∂

∂t

(
ρu2 + P

)
+

∂

∂x

(
ρu3 + 3uP +Q

)
= G3 , (2.54c)

∂

∂t

(
ρu3 + 3uP +Q

)
+

∂

∂x

(
ρu4 + 6u2P + 4uQ+ r

)
= G4 , (2.54d)

∂

∂t

(
ρu4 + 6u2P + 4uQ+ r

)
+

∂

∂x

(
ρu5 + 10u3P + 10u2Q

+5ur + s) = G5 . (2.54e)
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As for the 14-moment case, the collisional source terms depend on the
species considered and will be covered in the relevant sections, while the
electromagnetic sources will be developed in Section 4.5. Note that the 5-
moment formulation could also be obtained from the 14-moment system,
in the limit of a zero temperature and zero bulk velocity in two out of the
three space directions.

The 5-moment system has the same issues of the 14-moment system
in terms of absence of an algebraic solution to the entropy maximisation
problem. Clearly, as the system is much smaller, a numerical solution will
be much less demanding. Nonetheless, in this work we will employ the
interpolative closure developed in [67]. The first step consists in non-di-
mensionalizing the variables, scaling them by ρ and a power of the thermal
velocity

√
P/ρ, as done in Section 2.3.1 (subscript ?). The parameter σ is

then defined as

σ =
3− r? +

√
(3− r?)2 + 8Q2

?

4
. (2.55)

and the only required closing moment is

s? =
Q3
?

σ2
+ (10− 8σ1/2)Q? . (2.56)

The expression for the physical realizability boundary and the Junk sub-
space are much simpler for the 5-moment problem. Physical realizability
is satisfied by

r? ≥ Q2
? + 1 (2.57)

while the Junk subspace corresponds to the line

Q? = 0 and r? > 3 , (2.58)

where (q?, r?) = (0, 3) represents equilibrium, that happens to be located at
one extreme of the Junk line. These boundaries are represented in Fig. 2.1.
In this work, the solution to the 5-moment system will often be represented
in the (Q?, r?) plane, that will simply be referred to as “moment space”.
This is indeed a convenient way to graphically represent how the solution
evolves with respect to equilibrium.

2.5 Conclusions

This chapter has introduced some common governing equations that al-
lows to model rarefied gases and plasmas from the kinetic to the contin-
uum regime, together with the assumptions upon which they are built. The
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Figure 2.1: Physical realizability boundary, equilibrium and Junk line in moment space
for the 5-moment system. Variables q? and r? represent the dimensionless heat flux
and dimensionless order-4 moment respectively.

equations are to be written for each species separately, and coupling among
them will happen through collisions and electromagnetic source terms. For
a complete treatment of plasmas, one cannot leave aside the Maxwell (or
Poisson’s) equations that govern the dynamics of electromagnetic fields.
However, their treatment goes beyond the scope of this work, where we are
only interested in developing the governing equations and comparing them
for different conditions.

In the next chapter, the numerical schemes required to solve these equa-
tions are discussed.
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CHAPTER3
Overview of the numerical methods

This chapter introduces the numerical methods used for solving the gov-
erning equations discussed in Chapter 2. Section 3.1 considers a particle-
based solution of the kinetic equations, discussing the PIC and DSMC ap-
proaches. Section 3.2 then introduces the finite volume method (FV), that
allows one to efficiently integrate a system of PDEs. Besides the classical
application to the solution of the fluid and moment equations, the finite vol-
ume method is applied to the direct solution of the 1D1V kinetic equation,
in Section 3.2.5. Finally, Section 3.3 discusses a set of scaled units, that
will improve the numerical conditioning for situations of low density.

3.1 Particle-based solutions of the kinetic equation

As seen in Chapter 2, the kinetic equation is 6-dimensional in its most gen-
eral form.1 This high dimensionality, with respect to standard 3-dimensional
fluid dynamic simulations, causes large memory requirements, that often
happen to be overwhelming if the required cell size is small. For exam-
ple, in plasma physics the cell size is frequently governed by the Debye
length, often much smaller than the characteristic size of the problem. For

1Considering electrons or atomic species without internal degrees of freedom.
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this reason, one often gives up with the hope of discretizing directly the
6-dimensional kinetic equation with standard numerical methods (such as
finite differences/volumes/elements), and uses Monte Carlo-type methods
instead, based on simulating a limited set of particles [128]. For a compre-
hensive description of particle methods for gases and plasmas, the reader is
referred to the following classical references: for the simulation of charged
particles using the Particle-in-Cell (PIC) method, Birdsall & Langdon [53];
for the simulation of neutral gases, Bird [129]; and for a treatment of ad-
ditional problems, Hockney & Eastwood [130]. Only a succinct review of
the key concepts is given in the following.

The idea underlying particle methods consists in approximating the dis-
tribution function in phase space by a finite set of macro-particles (just
denoted as “particles” in the following), each describing a (usually large)
amount of real particles. The ratio of real-to-simulated particles plays an
important role and is defined as W = Nreal/Nsim. An operator splitting is
then applied to the kinetic equation under the assumptions that the gas is di-
lute, separating the particle advection from the gas-phase collisions, and the
two steps are performed successively. In case a charged gas is considered,
an additional step is included, where electromagnetic fields are computed
from the charges density and velocity.

For classical particles, the advection operation is performed by integrat-
ing Newton’s equations, and common integrators include the Leapfrog and
Boris particle pushers [131] when electric and magnetic fields are present,
or a simpler first order Euler ballistic advection for neutral particles. The
value of the electric and magnetic fields at the particle location are often
found by linear interpolation [132].

After particles are advected in space and velocity, collisions are per-
formed. Different formulations are possible, according to the type of colli-
sions and the considered problem. A common strategy in the simulation of
low-temperature plasmas consists in Monte Carlo Collisions (MCC) [133],
where the tracked species collide with a prescribed background gas. Var-
ious strategies have been formulated for describing the Boltzmann colli-
sion operator, such as the Direct Simulation Monte Carlo (DSMC) method
[129,134]. Such strategy groups particles within a spatial cell and lets them
collide, sampling the collision pairs according to the Boltzmann collision
rate probability density. A number of phenomenological models have been
formulated for describing the interaction potential, the most commonly
used being the hard-sphere (HS), the variable hard-sphere (VHS) and the
variable-soft-sphere (VSS) models (see [129, 135]). The collision step typ-
ically imposes strong limitations to explicit particle simulations, limiting
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the time step to a fraction of the mean collision time, and for the DSMC
method an additional limitation is imposed to the grid size, that should
properly resolve the mean free path.

Particle-surface collisions are often performed with the Maxwell model
[136], assuming a partial or full accommodation of the particle to the wall
temperature, described by an accommodation coefficient α, but more de-
tailed approaches are possible [137–139].

For simulating charged particles, the external and self-consistent elec-
tromagnetic fields need to be computed. This is done by assigning the
particles charge and velocity to grid points, employing some uniform, lin-
ear or bell-shaped weighting based on the distance between the particle and
the grid point [132]. After the charges and velocities are deposited, the
Maxwell equations (or simply the Poisson’s equation in case of an electro-
static simulation) are solved. An important requirement to avoid numerical
heating is that the grid size in PIC simulation needs to properly resolve the
local Debye length.

3.2 The finite volume method

The finite volume method allows us to solve a set of PDEs in a determin-
istic fashion, and is particularly suited to hyperbolic systems of governing
equations. In this work, the finite volume method will be used to solve the
fluid equations and in some occasions the Boltzmann equation.2 For a thor-
ough discussion of the method, the reader can refer to [37, 140, 141]. Only
a brief recap will be given in the following.

3.2.1 Formulation

We consider a system described by the state vector U , and write a system
of governing equations in conservative form,

∂U

∂t
+
∂Fk
∂xk

= G , (3.1)

where Fk are the fluxes vectors along direction k and G is a vector of
source terms. The domain is divided into a set of cells, that are separated
from the other cells via interfaces, as shown in Fig. 3.1 for a 1-dimensional
domain, where xmin and xmax are the borders of the domain and the cell
i has interfaces denoted by i ± 1/2. One or more ghost cells are placed
outside the domain, allowing us to apply the boundary conditions.

2No solution of the Poisson’s equation will be discussed, as it is beyond the scope of this work.
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Figure 3.1: Left: discretization of a 1D domain into finite volume cells and their inter-
faces. Right: labels for a 2D Cartesian cell.

The governing equation is then integrated over the individual cells, giving

d

dt

ˆ
Ωi

U dΩ +

˛
∂Ωi

F · n̂ dΣ =

ˆ
Ωi

G dΩ , (3.2)

where the Gauss’ theorem was employed to recast the volume integral into
a surface integral, and n̂ is the normal to the surface. The cell quantity Ωi

is the cell volume in a 3-dimensional description, the cell surface in a 2D
description and the cell length in case of a 1D description. The cell surface
∂Ωi is an actual surface in 3D, a line delimiting the cell in 2D or simply the
left and right cell extremes in a 1D description. Denoting byUi andGi the
average value of the solution and of the source vector over the cell,

Ui ≡
1

Ωi

ˆ
Ωi

U dΩ , Gi ≡
1

Ωi

ˆ
Ωi

G dΩ , (3.3)

one ultimately obtains the space-discretized form of the governing equa-
tion. In one dimension, this reads

dUi

dt
+

1

Li

[
Fi+1/2 − Fi−1/2

]
= Gi , (3.4)

where the numerical fluxes Fi±1/2 are taken only in the considered direc-
tion, and are still to be defined. In two dimensions, for a Cartesian grid
aligned with the x and y axes, one has

dUi

dt
+

1

Lix
[FE − FW ] +

1

Liy
[FN − FS] = Gi , (3.5)

where Lix and Liy are the cell length along the x and y directions respec-
tively and the subscripts N (north), S (south), W (west) and E (east) are
used to identify the interfaces, following Fig. 3.1. With this notation, FE
and FW are x–fluxes, while FN and FS are y–fluxes. Note that more ad-
vanced stencils could be employed,3 for better accuracies. The simple for-
mulation reported here will be sufficient for the present work.

3For example, including neighboring cells in the source terms definition.
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3.2.2 Numerical fluxes for fluid and moment systems

The choice for the numerical fluxes proves to be crucial for the performance
of a finite volume method. A number of different formulations have been
developed in the years (for a review of the main methods, see Toro [142]).
Rather than being completely general, a number of such methods have been
developed with a specific target system in mind. This is the case for the
Roe scheme [143], the AUSM family of schemes [144] and the kinetic
schemes [145,146] to cite a few, that specifically target the Euler or Navier-
Stokes equations. This is an issue for certain moment methods, as these
schemes would need either a very detailed knowledge of the eigenstructure
of the system [119], or at least to be reformulated and extended.

Central schemes such as Lax-Friedrichs’ are general enough to be di-
rectly applied to the moment equations, but are known to be very diffusive.
This happens to be a major issue for moment methods, where the wave
speeds may exceed by orders of magnitude the wave speeds of the Euler
system for some non-equilibrium conditions, as will be discussed in Sec-
tion 4.2. This magnifies the undesirable numerical diffusion of the Lax-
Friedrichs scheme. Higher order central schemes that mitigate such issue
have also been developed, as in the case of the Nessyahu-Tadmor [147] and
the Kurganov-Tadmor schemes [148], the latter requiring as an additional
information the maximum wave speed of the system.

When the maximum and minimum wave speeds of the system are known,
a classical and robust choice consists in the HLL (Harten, Lax & van Leer)
scheme [149]. Although not optimal for low-velocity flows such as bound-
ary layers or contact discontinuities (its HLLC extension would improve
the situation), the scheme has been proficiently employed in the solution of
moment systems due to its simplicity. However, it will be shown in Sec-
tion 4.1.3 that, despite working well for moderate departures from equi-
librium, the method shows some oscillations in the higher moments, when
applied to strong non-equilibrium conditions. This may be due to numerical
reasons, or may be caused by the scheme generating a non-realizable flux.
For additional discussion on possible methods for the maximum-entropy
system, the reader can refer to [150]. Finally, in case the full entropy max-
imisation problem is being solved at every iteration (as opposed to employ-
ing the interpolative closure), another option consists in employing kinetic
fluxes [151].

The preferred scheme of the present work will be the Rusanov scheme
(also known as “local Lax-Friedrichs”) [142]. Such scheme is slightly more
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diffusive than the HLL scheme,4 but this is easily fixed by going second or-
der in space, as discussed in the following. With the Rusanov scheme, the
interface flux Fint is obtained from the left and right states and fluxes (sub-
scripts L and R) and the maximum wave speed Smax (maximum absolute
value among the left and right cells),

Fint =
1

2
(FR + FL)− Smax

2
(UR −UL) . (3.6)

MUSCL scheme for second order spatial accuracy

If the left and right states of Eq. (3.6) are taken directly from the left and
right cells, the resulting spatial discretization is first order in space. The
van Leer’s MUSCL scheme [152] allows us to retrieve a second order so-
lution in space, by employing a linear reconstruction of the solution, where
the slope is limited to achieve TVD properties. With marginal modifica-
tions, one could also reach third order in space [153], however this was not
investigated in the present work.

For systems of conservation equations, reconstruction is conveniently
performed in primitive variables, that we define by Q. Using primitive
variables appears to be crucial for maximum-entropy simulations in pres-
ence of strong non-equilibrium.5 The left and right states of the interface
i+ 1/2 are obtained as

QL
i+1/2 = Qi +

xi+1/2 − xi
xi − xi−1

(Qi −Qi−1) Φ(θi) , (3.7a)

QR
i+1/2 = Qi+1 −

xi+1 − xi+1/2

xi+2 − xi+1

(Qi+2 −Qi+1) Φ(1/θi+1) , (3.7b)

where θi = (Qi+1 −Qi)/(Qi −Qi−1) is the ratio of consecutive gradients,
and Φ is a slope limiter function. The symmetric van Albada’s limiter is
selected in this work, Φ(θ) = (θ2 + θ)/(θ2 + 1).

The MUSCL approach, together with van Albada’s slope limiter and Ru-
sanov fluxes, has been seen to work smoothly for both the 5 and 14-moment
simulations for most conditions. However, for some test cases (such as the
crossing jets cases of Section 4.4), second order appears to stall the simu-
lation at certain simulated times. Employing different TVD slope limiters
did not appear to improve the situation significantly. On the other hand,
simply disabling the possibility to employ a linear reconstruction based on

4This may be the reason why the mentioned oscillations do not appear.
5Reconstruction in conserved variables may create large inconsistencies unless a dimensionless formulation

is employed. Indeed, conserved moments include increasing powers of the velocity: and a linear reconstruction
for the momentum ρu would be inconsistent with a linear reconstruction of, say, the order-4 moment ρu4 + · · · .
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a large stencil would result in an overly diffusing simulation and the need
to use a very large number of cells to reach spatial convergence. Therefore,
an intermediate approach was applied in such cases, artificially limiting the
slope by a further factor β = 0.5 or β = 0.75. For a uniform grid, this
modification reads

QL
i+1/2 = Qi + β Φ(θi)

Qi −Qi−1

2
, (3.8a)

QR
i+1/2 = Qi+1 − β Φ(1/θi+1)

Qi+2 −Qi+1

2
. (3.8b)

This further limiting causes the approach to depart from the second-order
TVD region (as defined in [140]). Nonetheless, it allows us to significantly
reduce the numerical diffusion of the Rusanov scheme, while still retaining
a robust method.

3.2.3 Time integration

Once the equations are discretized in space, a time integrator is selected.
The simplest choice consists in the explicit forward Euler scheme,

Un+1
i = Un

i −
∆t

Lix
[F n

E − F n
W ]− ∆t

Liy
[F n

N − F n
S ] + ∆tGn

i , (3.9)

where the superscript n denotes the current time and ∆t the time step. The
scheme has first order accuracy, and is only stable for Courant numbers
lower than one. More importantly, for charged gas simulations, the forward
Euler scheme may produce excessive numerical cooling (or heating) and
may numerically drive the temperature to zero, when conserved variables
are employed. This effect is important mostly in the study of the long-time
behavior of closed systems (see for example the test cases of Sections 6.4
and 6.5), when the external input of work in the system is negligible and
the self-consistent fields dominate. On the other hand, for open systems,
where the fluid is constantly being refreshed, this issue may very well be
negligible.

The reason for this to occur is that the Euler method does not integrate
exactly both the momentum and the total energy. Employing higher order
schemes (such as the ubiquitous order-4 Runge-Kutta method) surely im-
proves the situation, but does not solve it. The problem will be considered
in more detail in Appendix B, where it will be shown that the Midpoint
Euler method, a simple 2nd order Runge-Kutta formulation, allows one to
integrate exactly both the momentum and the total energy for simple test
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cases and uniform forces, thus solving the issue. For this reason, the Mid-
point Euler scheme is the reference method for the present work.

First, the method performs a half-step, and computes an intermediate
solution as:

U
n+1/2
i = Un

i −
∆t

2Lix
[F n

E − F n
W ]− ∆t

2Liy
[F n

N − F n
S ] +

∆t

2
Gn
i , (3.10)

this solution is then used to compute both the fluxes and the source terms
at the step n+ 1/2, denoted as F n+1/2 = F (Un+1/2) and the same for the
sources. The actual step is then performed from n to n + 1, but using only
the fluxes and sources at the intermediate step:

Un+1
i = Un

i −
∆t

Lix

[
F
n+1/2
E − F n+1/2

W

]
− ∆t

Liy

[
F
n+1/2
N − F n+1/2

S

]
+ ∆tG

n+1/2
i , (3.11)

In this work, collisions or fields were never so strong as to cause an
overwhelming stiffness, and thus to require an implicit formulation, and
the explicit Midpoint Euler method proved to work just fine. In the case of
stiffer problems, point-implicit formulations could be employed.

3.2.4 Boundary conditions

In the presence of solid walls, the choice of a proper set of boundary con-
ditions (BCs) may not be trivial in the case of moment equations. In par-
ticular, for wall-bounded gases, one may expect Knudsen layers to form
(see [119,154] for an implementation of the BCs for such conditions). The
simulation of plasmas shares analogous issues, as one may need to consider
for example secondary electron emission at walls, due to electron impact,
or the emission of electrons by ion impact at the electrodes. These problems
are respectively important for instance for modeling the near wall conduc-
tivity [31] and for DC gas discharges [36].

In the present work, we do not need to consider such problems in great
detail, and simple BCs are sufficient. All simulations will be either peri-
odic or will have open-boundaries, and BCs are implemented through ghost
cells. In the periodic case, the value at the ghost cells is updated in time as
to match the corresponding periodic neighbor cell. In open-boundary simu-
lations, the ghost cells are assigned a large velocity and small density, such
that all characteristic waves will leave the domain. This is rigorous for su-
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personic flows,6 but more care shall be taken for subsonic ones. It should
be noticed that the electrode-bounded plasmas considered in this work fall
in the cathegory of open-boundaries, due to the assumption of full recom-
bination at the electrodes.

3.2.5 Finite volume solution of the kinetic equation

Instead of using particle methods, the kinetic equation can be solved by
direct discretization of the phase space. Various approaches are possible
(see for example [155–157]). In this section we will discuss how to solve
the equations using the finite volume method [51]. In the general case, this
would require to consider 6-dimensional finite volume cells and is therefore
not trivial, but the situation changes dramatically if one only needs to solve
the simpler 1D1V case. In such case, the finite volume description is 2-
dimensional in total, one axis representing the physical position and the
other represents the velocity. The first step consists in rewriting the kinetic
equation in the form of Eq. (3.1),

∂f

∂t
+
∂Fx
∂x

+
∂Fv
∂v

= G , (3.12)

with Fx = vf , Fv = fqE/m, with q and E the electric charge and electric
field respectively, and f is the 1V distribution function. No magnetic field
can be considered in the 1D1V formulation, as it would rotate the VDF and
thus break the 1D1V assumptions. The source term G is case-dependent,
and can include both collisions and production of species. To discretize
the equation, a 2-dimensional grid in phase space is employed, as shown in
Fig. 3.2

Figure 3.2: Finite volume discretization of the phase space for solving the 1D1V kinetic
equation.

6Here, supersonic refers to the fastest wave speed of the system, that may be much larger than the speed of
sound for moment systems.
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Two indices i, j are used to identify the cells, and a Cartesian grid is
employed, as to simplify the fluxes. The final discretized equation reads

∂fij
∂t

+
1

Lx

[
Fx,i+1/2 − Fx,i−1/2

]
+

1

Lv

[
Fv,j+1/2 − Fv,j−1/2

]
= Sij (3.13)

Regarding the numerical fluxes, an upwinded formulation is easily writ-
ten from the following principle: the physical space axis x is to be advected
towards the positive or negative directions based on the value of the local
velocity, while the velocity axis v follows the local acceleration qE/m. By
adapting the second order upwinded formulation of Mieussens [51], the
numerical fluxes read

Fx,i+1/2 =
1

2

[
vjfi,j + vjfi+1,j − |vj|

(
fi+1,j − fi,j −Ψx,i+1/2

)]
(3.14a)

Fv,j+1/2 =
1

2

[
qEi
m
fi,j +

qEi
m
fi,j+1 −

∣∣∣∣qEim
∣∣∣∣ (fi,j+1 − fi,j −Ψv,j+1/2

)]
(3.14b)

where Ei is the value of the electric field in the i–th cell. The choice Ψ = 0
results in a first order solution (no reconstruction, pure upwinding), while
for second order accuracy we can chose a minmod limited reconstruction,

Ψx,i+1/2 = minmod
(
(fi,j − fi−1,j), (fi+1,j − fi,j), (fi+2,j − fi+1,j)

)
(3.15a)

Ψv,j+1/2 = minmod
(
(fi,j − fi,j−1), (fi,j+1 − fi,j), (fi,j+2 − fi,j+1)

)
(3.15b)

Where the minmod() function is implemented as:

minmod(a, b, c) =


min(a, b, c) if (a > 0 & b > 0 & c > 0)

−min(|a|, |b|, |c|) if (a < 0 & b < 0 & c < 0)

0 otherwise
(3.16)

A set of ghost cells is employed around the domain, and their value is
kept fixed at the desired boundary conditions during the simulation, or may
be varied following the desired time-evolution law. In the present work,
a simple forward Euler time integration scheme will be employed for the
1D1V kinetic solution. An open source numerical implementation of this
solver, with OpenMP parallelization, was prepared during this work and is
available at [158].
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3.3 Units for low-density numerical simulations

The low number density of charged particles in low-temperature plasmas
results in a particularly low numerical value of the electron mass density,
in view of their small mass. For example, considering an electron number
density of ne = 1017 m−3, reasonable for Hall thruster simulations, the
resulting mass density is ρe ≈ 10−13 kg/m3. This poses some issues in
the numerical solution of the maximum-entropy systems. In particular, a
direct application of the interpolative closure to such densities results in
difficulties in inverting the closure matrix Blm. The same problem may
appear for ions, if even lower number densities are considered.

Three strategies are possible to overcome this issue. A classical ap-
proach would consist in non-dimensionalizing the equations (or at least,
non-dimensionalizing the fluid quantities when they are initialized in the
code). Such approach is elegant and well suited to classical fluid simula-
tions, but requires some extra care in writing the electrical and chemical
source terms.

Another approach would consist in non-dimensionalizing selectively some
(but not all) variables. For example, in the present problem the density is
the variable that causes most issues. Therefore, one can re-write the set of
equations, consistently dividing each term by a reference density.

In this work, we consider a different approach: a slightly different set of
units is employed, maintaining the structure of the SI system, but measur-
ing the mass in picograms instead of kilograms. This introduces a scaling
of 1015 in the mass, strongly increasing the numerical value for the density.
With such definition, the numeric implementations are kept untouched (in-
cluding the source terms) and only the initialization and the definition of
numerical constants (kept separated, in the code) are affected.

Clearly, changing the mass units affects not only the density, but also
other fluid and electric quantities. For example, with this change, the elec-
tric potential and related quantities would be measured in fV. However, it
is here preferred to transform also the electric current by the same factor of
1015, measuring it in fA, thus keeping untouched the units of V and corre-
spondingly the electric and magnetic fields, and only charge units turn into
fC. All other fundamental units (m, s,K, ...) are kept unchanged. With this
choice, the full list of units required in the simulations reads

Mass [m] = pg

Electrical charge [q] = fC

Density [ρ] = pg/m3
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Pressure [P ] = fPa

Higher order moments [qi, Qijk, Riijj, Siijjk] = pg×
(

m
s

)n×m−6 = f(...)

Velocities [u] = m/s – unchanged

Boltzmann constant [kB] = fJ/K

Electric potential [φ] = V – unchanged

Electric field [E] = V/m – unchanged

Magnetic field [B] = T – unchanged

Vacuum permittivity [ε0] = F/m – unchanged

Note that all conserved fluid quantities (ρ, ρu + P , ...) are proportional to
the density (which is scaled) and to a power of the thermal velocity (whose
units are “m/s” and is therefore unchanged by our new variables). Therefore
all conserved quantities will simply be scaled by 1015. This scaling has
shown to work robustly for all simulations shown in the present work.
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CHAPTER4
Application of the maximum-entropy

closure to rarefied gases and plasmas

In order to apply the maximum-entropy method to the low-temperature
plasma conditions considered in this work, some further analysis and de-
velopments are necessary.

The first part of this chapter will focus on investigating the method in
low-collisional situations. First, in Section 4.1 we introduce the Sod shock
test case, and consider free-molecular, transitional and continuum condi-
tions, solving both the kinetic equation and the 1D1V 5-moment system.
This test case will offer a first verification of the 5-moment system for
varying degrees of non-equilibrium, and will serve as a basis for the further
sections. For this problem, Section 4.1.3 compares the HLL and Rusanov
numerical fluxes and identifies the most suitable one.

As can be seen from an analysis of the Sod shock tube problem, the
wave speeds of the maximum-entropy system differ greatly from the speed
of sound, when non-equilibrium situations are considered. Their analyti-
cal expression is not known, and computing them numerically during CFD
simulations is very expensive. In this regard, Section 4.2 is devoted to
the development of approximated wave speeds for the 14-moment system.
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The resulting expressions empirically extend some previous results avail-
able for the 5-moment system. Due to the CFL condition, computational
efficiency is strictly connected to the wave speeds. This point is analyzed in
Section 4.3, where the computational efficiency of the maximum-entropy
method is compared to the Euler equations. Finally, a 2-dimensional test
case is considered, analyzing two crossing jets in free molecular conditions
(Section 4.4).

The second part of the chapter extends the method towards plasmas:
Section 4.5 derives the electromagnetic source terms for the 5 and 14-
moment systems, and Section 4.6 discusses the dispersion relation for sim-
ple electrostatic longitudinal electron and ion waves. After the analysis and
developments presented in this chapter, the method will be ready for the
applications to Hall thruster-like configurations, discussed in the following
chapters.

4.1 The rarefied Sod shock tube problem

The solution of the 5-moment maximum-entropy system has been inves-
tigated on different Riemann problems in the literature, see for example
[159]. In this section, we consider the solution of the 5-moment system
with interpolative closure, for the classical Sod shock tube problem [160].
This configuration is a Riemann problem where the initial density is discon-
tinuous across the origin, while the temperature is uniform and the velocity
is initially zero everywhere. The solution is assumed to be in equilibrium on
both sides of the initial discontinuity, and the gas state is thus represented
by a Maxwellian distribution function.

Figure 4.1: Solution of the Sod shock tube problem: self-similar profile expanding in the
time-space plane.

The solution of the Sod shock tube problem in the continuum regime
is widely known to be composed by a fast-moving shock wave, a slower
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contact discontinuity and a rarefaction fan travelling in the opposite direc-
tion [161–163]. The solution shows similarity if scaled with the variable
ξ = x/t, with x the space position and t the time, since the waves travel at
a constant speed. This is shown in Fig. 4.1. However, these results grad-
ually break apart as one considers the transitional regime, up to the point
that no shock wave or discontinuity appears at all in the free-molecular
regime. These regimes are realized in the very first instants of the Riemann
problem, for times that are lower than the mean collision time. The ab-
solute value of such times depends on the considered density, and may be
as ridiculously low as some picoseconds in high-pressure laboratory tests1

or may reach much higher values in rarefied high atmosphere conditions.2

For the small-time rarefied solution, a scaled variable ξ = x/t can still be
profitably employed, and allows one to compare profiles obtained from the
same simulation at successive times, and similarity is established naturally
after a few mean collision times.

Whatever the density, the very same dimensionless profiles are obtained
when the same Knudsen number is simulated. In this section we arbitrarily
choose the left and right initial states (subscripts L,R) as uL,0 = uR,0 =
0, a discontinuous density ρL,0 = 4 kg/m3 and ρR,0 = 1 kg/m3, and a
uniform temperature TL,0 = TR,0 = 480 K.3 An Argon gas is simulated,
with mass mAr = 6.6337 × 10−26 kg. The collision cross section is set to
σ = 5.463× 10−19 m2. Then, the simulation is run for a certain time, until
the expanding shock structure reaches a desired given extent Lsim.

A definition of the Knudsen number for this problem is not trivial. The
spatially varying conditions would in principle require that one considers
local gradients for defining the Knudsen number [165]. Instead, we would
like here to consider the Knudsen number as a global indicator of how much
the solution has progressed with respect to the collisionality. In particular,
we define Kn = λ/Lsim, ratio of the mean free path to the simulated do-
main, where the mean free path is fixed for simplicity to the left-state value,
λ = 1/(nLσ) = 3.041 × 10−8 m. Since the actual density changes locally
and reaches the value ρR = 1 kg/m3, this choice results in a slight under-
estimation of Kn, by at most a factor 4.

For Kn → 0, the solution has plenty of time to equilibrate, and we ex-
pect to retrieve the classical “(shock) / (contact discontinuity) / (rarefaction
fan)” structure. For larger values, rarefaction becomes progressively more

1Clearly, this condition is idealized, as the opening time of laboratory shock tubes already exceeds many
mean collision times.

2For instance at an altitude of 100 km, the number density is roughly n ≈ 1019 m−3 and the mean collision
time is τ ≈ 0.3 ms [164].

3For Argon, this gives the pressures PL,0 = 400 000 Pa and PR,0 = 100 000 Pa.
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important, until for Kn → ∞, we expect the solution to be composed by
a smooth profile that connects the left and right states. Considering the
intermediate case of Kn = 0.1, the mean free path is 1/10 of the simu-
lated domain Lsim. Practically speaking, all solutions for Kn ≥ 1 appear
almost identical in terms of the lower order moments (density, velocity and
pressure), and differ only when higher order moments are considered.

We consider here a 1D1V problem, where particles are assumed to have
only one translational degree of freedom. This may appear to be an exces-
sive simplification, since the physical realm of a 1V shock is debatable at
best. However, this allows us to keep the difficulty at a minimum, and to
employ the simple deterministic solver developed in Chapter 3 in place of
the particle-based solver, allowing us to obtain noise-free estimations for
the higher order moments. The kinetic equation describing the 1D1V BGK
gas is

∂f

∂t
+ v

∂f

∂x
= −ν(f −M) , (4.1)

whereM is the 1V Maxwellian at the local conditions (see Eq. (2.5)) and
the velocity independent collision frequency ν is computed in every cell
from the local values,

ν = nvthσ = σ
ρ

m

√
8P

πρ
. (4.2)

The 5-moment system corresponding to this case is reported in Eq. 2.54,
and its BGK collision sources read [67]

G(5) =


0

0

0

−νQ
−ν (4uQ+R− 3P 2/ρ)

 . (4.3)

These terms do not affect the density, momentum and total energy, and only
drive the heat flux Q towards zero, and the order-4 moment R towards the
equilibrium value 3P 2/ρ.

4.1.1 Kinetic solution

A solution to the kinetic equation was computed for the three mentioned
conditions with the deterministic solver outlined in Section 3.2.5, using a
grid composed by 1000 × 1000 cells in physical space and velocity. A
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number of 15 000 time steps proved sufficiently fine for reproducing the
results with negligible numerical diffusion. The value of the time step is
chosen as to reach the required simulation time. The kinetic solution is
shown in Fig. 4.2. The effect of collisions is clearly dim at these conditions,
and the resulting distribution function is a combination of the left and right
families of particles (two Maxwellian at different densities).

Figure 4.2: Kinetic solution in phase space for a time comparable to the mean collision
time (Kn = 1). Test case a).

Solutions at lower values of the Knudsen number are qualitatively simi-
lar, except that the distribution is smoother in velocity, but obviously starts
to show discontinuities in space as the continuum regime is approached
[166–168]. The moments of the kinetic solution are shown in Fig. 4.3. The
considered cases correspond to the following conditions:

a) Kn = 1, Tsim = 10−11 s;

b) Kn = 0.1, Tsim = 10−10 s;

c) Kn = 0.01, Tsim = 10−9 s;

d) Kn = 0.001, Tsim = 10−8 s;

e) Kn = 0.0001, Tsim = 10−7 s;

For increasing simulated times, the solution is progressively more spread
in space: the different profiles are superimposed by rescaling the spatial
coordinate by the simulated time. As to allow for a comparison with the
maximum-entropy system, a plot of the solution in moment space is also
shown, together with the Junk subspace of the 5-moment system4 and the
physical realizability boundary. In Fig. 4.3, equilibrium is represented by
(q?, r?) = (0, 3).

4Clearly, the kinetic solution can cross freely the Junk subspace.
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Figure 4.3: Moments from the solution of the BGK kinetic equation. Cases (a) to (e) are
obtained from different simulations, with increasing simulation times and domain size.

4.1.2 Solution of the 5-moment system

The solution of the 5-moment system is obtained on a grid of 1000 cells,
with Rusanov fluxes and second order spatial accuracy (MUSCL linear re-
construction with symmetric van Albada limiter). The choice of Rusanov
fluxes will be detailed later on, in Section 4.1.3. Fig. 4.4 shows the solu-
tion in the two limiting cases of free-molecular regime (Kn = 100) and
continuum regime (Kn = 0.0001), and a comparison with the fully kinetic
solution will be given in the next section. The right-column in Fig. 4.4
shows the values of σ as an indicator of non-equilibrium.

The continuum solution takes the expected hydrodynamic shape, show-
ing (from left to right) a rarefaction fan (points i-iii), a contact discontinu-
ity (iv-vi) and a shock wave (vii-x). The three regions are easily identified
from both the density and the heat flux profiles. The fluid state between
these three waves is at equilibrium (regions iii-iv and vi-vii), with a zero
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Figure 4.4: Dimensionless solution of the 5-moment system. Top: continuum regime;
the simulated time is roughly 10 000 times the mean collision time τc. Bottom: free-
molecular regime, simulated time is roughly 0.01 τc.

heat flux and σ = 0.

For the free-molecular solution, we use Arabic numbers, that do not
necessarily match the Roman numbers of the continuum regime. The inter-
pretation of the rarefied solution is less trivial as it is composed by multiple
waves in the density profile. However, the dimensionless heat flux profile
still allows for a direct comparison among the two regimes. Indeed, the
rarefaction fan in the continuum regime (i-iii) has the same heat flux struc-
ture of points (1-4) for the free-molecular solution. Therefore, looking at
the density profile, the 5-moment system appears to break the rarefaction
fan into a smooth profile, followed by a density discontinuity. This region is
then followed by an equilibrium region, both in the continnum (iii-iv) and in
the free-molecular (4-5) regimes. The contact discontinuity is represented
by the region (5-9) in the heat flux, that incorporates two jumps in density.
From the sign of the heat flux, we see that the equilibrium region (vi-vii)
separating the contact discontinuity from the shock wave disappears in the

55



Chapter 4. Application of the maximum-entropy closure to rarefied gases
and plasmas

free-molecular regime, as points (vi,vii) appear to merge into point (9). Fi-
nally, the region (9-10-∞) will eventually give rise to the shock wave, as
the Knudsen number is decreased. No discontinuous shock is seen in the
density profile, that instead appears as a smooth transition to the right state.

Comparison of results

Figure 4.5: Solution of the 5-moment system (black line) and moments of the kinetic solu-
tion (symbols) for the case Kn = 0.01. Simulated time is Tsim = 10−9 s.

Figures 4.5 and 4.6 compare the 5-moment system and the kinetic so-
lutions for three transitional Knudsen numbers (defined based on the mean
free path of the left state – and therefore somehow under-estimated – and
the size of the simulated domain). For all cases, the maximum-entropy sys-
tem reproduces accurately the magnitude of all moments, but includes some
noticeable unphysical discontinuities already for Kn = 0.1. The trajectory
in moment space shows that the solution needs to cross the Junk line. This
appears to be of little importance in the Kn = 0.01 case, but is associated
to some stronger deviation from the kinetic moment-space trajectory in the
more rarefied cases.

It should be stressed that these results are obtained using the interpola-
tive approximation of the entropy maximisation problem [67]. We expect
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the global shape of the solution to be unchanged, however the details of
the trajectory in moment space appear to be very sensitive to the employed
grid, and are therefore likely to be affected by the details of the closure
approximations.

4.1.3 Comparison of the HLL and Rusanov fluxes

As discussed in Section 3.2.2, few schemes are directly applicable to the
maximum-entropy systems. In this section, we compare the often employed
HLL scheme to the simpler Rusanov fluxes, for rarefied and continuum
conditions. Lax-Friedrichs fluxes were also considered, but provided an
overwhelmingly high numerical diffusion in the free-molecular regime, due
to the high value of the wave speeds in non-equilibrium, such that no shock
structure could be identified for the considered grids. A comparison of the
HLL and Rusanov fluxes is shown in Fig. 4.7, using 500 grid cells and first
order accuracy. A second order solution is also computed, using Rusanov
fluxes on 5000 cells, as to show a reference shock profile.

The two methods appear roughly equivalent in continuum conditions,
the Rusanov scheme showing only a very slight additional diffusion. On
the other hand, in rarefied conditions, the HLL fluxes are significantly less
diffusive than the Rusanov ones, but induce strong oscillations in the higher
order moments. As previously mentioned, such oscillations may be con-
nected by the prediction of non-realizable numerical fluxes, or states very
close to the Junk line singularity, but this is to be investigated further. In
any case, the oscillations are a major problem, as they prevent to obtain
second order via piecewise limited reconstruction.

By employing Rusanov fluxes, we have no significant oscillations, and
second order can be reached, thus offering a remedy to Rusanov’s addi-
tional diffusion. Therefore, this will be the method of choice for most sim-
ulations in this work. The investigation and formulation of less diffusive
fluxes is suggested as a future work activity (see the Conclusions chapter).
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Figure 4.6: Solution of the 5-moment system (black line) and moments of the kinetic so-
lution (symbols). Cases for Kn = 1 (simulated time Tsim = 10−11 s) and Kn = 0.1
(Tsim = 10−10 s).
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Figure 4.7: Solution of the 5-moment system for the Sod shock tube problem, in the free-
molecular limit (Top) and in the continuum regime (Bottom). Black line: reference
solution. Blue dashed and Red lines: HLL and Rusanov fluxes, 500 cells, first order in
space.
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4.2 Approximated wave speeds

The eigenvalues of a system (or at least the maximum and minimum wave
speeds) play an important role in its numerical solution. As discussed in
Chapter 3, explicit time integration schemes are stable for given values of
the Courant number, that depends on the system wave speeds. A number
of implicit formulations also require a knowledge of the Courant number
(among others, we shall cite implicit dual-time stepping strategies [169–
171] where a CFL evolution law is introduced). Also, many numerical
fluxes formulations (such as the HLL, Rusanov or Kurganov-Tadmor to
cite a few) also require the wave speeds, and their accuracy influences the
numerical diffusion properties of such methods.

For the Euler system, the maximum and minimum wave speeds are eas-
ily obtained analytically and result in u ± a, u being the bulk velocity and
a the speed of sound. However, maximum-entropy systems have much
more complex convective fluxes, that include singular closing terms. The
analytical expression of such closing moments is either unknown (in the
general maximum-entropy formulation) or at least rather complex (in the
interpolative closure approximations). As a result, an analytical expression
for the eigenvalues of the fluxes Jacobian is often not available. Numeri-
cally, this means that one has to (i) build a Jacobian5 and (ii) compute its
numerical eigenvalues in each cell and at every time step. This dramati-
cally reduces the efficiency of numerical computations, and may become
unbearable if one considers multi-dimensional cases and non-equilibrium
conditions, where the computational cost of maximum-entropy methods is
already much higher than the Euler system (as will be discussed in Sec-
tion 4.3). Therefore, some approximation of the wave speeds is required.

The simplest strategy, consists in assuming that the maximum and min-
imum wave speeds of a maximum-entropy system have the same form of
the Euler wave speeds, but include a multiplying constant k:

wmax
min = u± ka . (4.4)

An arbitrary value k > 1 is chosen, large enough to reproduce the wave
speeds of the actual system, or anyway to introduce enough diffusion to
allow for a solution. This strategy has been profitably employed in the
transitional regime, see for example [154]. In that reference, it was however
shown that the maximum-entropy wave speeds can be larger than the Euler
equations by orders of magnitude, in non-equilibrium conditions.

5That is a 14 by 14 matrix for the 14-moment system.

60



4.2. Approximated wave speeds

Figure 4.8: Sod shock tube problem at different rarefaction conditions. Black line: numer-
ical value of the maximum and minimum wave speeds of the 5-moment system. Dotted
and dashed lines: estimation of the wave speeds using Eq. (4.4) with k = 1 and k = 2.

Figure 4.8 shows this situation for the Sod shock tube test cases con-
sidered in the previous section, at different degrees of rarefaction. The
approximation of Eq. (4.4) appears inaccurate for all test cases. For contin-
uum conditions (case Kn = 0.0001) the approximated values are anyway
reasonable, and may be employed profitably with limited addition of nu-
merical diffusion. However, as rarefaction is increased, the wave speeds of
the real system quickly depart from this approximation around the contact
discontinuity region, where non-equilibrium is stronger. Therefore, in or-
der to profitably employ Eq. (4.4), one would need a very large value of k,
that ends up overpredicting the wave speeds in most of the domain, causing
excessive numerical diffusion. Finally, if the largest wave speeds are not
properly retrieved, the numerical discretization may be unstable.

The test case with Kn = 100 of Figure 4.8 shows a large amount of
noise, while the previous moment profiles appeared to be reasonably clean.
This is ultimately due to the strong dependence of the wave speeds on the
heat flux, as will be discussed in the next sections, that amplifies the tiny
numerical oscillations of the heat flux, visible from a close inspection of
Fig. 4.6, probably originating from the second order discretization.

4.2.1 Approximated wave speeds for the 5-moment system

By numerical inspection, the magnitude of the dimensionless wave speeds
of the 5-moment system6 can be seen to be proportional to σ−1. Also, they
appear to depend strongly on the dimensionless heat flux q?. The maximum

6Being velocities, the wave speeds are non-dimensionalized by scaling with the characteristic velocity√
P/ρ.
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wave speed reaches infinity for σ → 0 and positive values of q?. The
negative wave speed is symmetric in q?, and thus approaches −∞ for σ →
0 and negative q?.

Given the dependence on σ−1, it is convenient to multiply the wave
speeds by σ for the sake of the present analysis. As shown in Figure 4.9-
Left, this makes all points roughly collapse on a single line, that is well
approximated by an hyperbola,

λmaxσ ≈
1

2

(
q? +

√
q?2 + 1

)
. (4.5)

A slightly different scaling could be obtained by dividing the heat flux
by σ. This is shown in Fig. 4.9-Right, but will not be discussed further in
this work.

Figure 4.9: Maximum wave speed for the 5-moment system. Left: wave speed multi-
plied by σ, numerical values at random points on the q? − σ plane (blue points) and
hyperbola of Eq. (4.5) (red dashed line). Right: scaling the heat flux axis by σ.

This simple expression of Eq. (4.5) appears to fit reasonably well the
general behavior, but gives a rather high error near equilibrium, for q? = 0.
Solving this requires to introduce a function of σ inside the square root of
the hyperbola. Also, one can introduce an offset proportional to σ

√
3− 3σ

to increase further the accuracy. All these points have been considered
more systematically by Baradaran [172], that has obtained approximated
expressions for all five wave speeds of the 5-moment system by considering
its limiting values in moment space.7 The maximum wave speed reads

σλmax ≈
1

2

[
q?x +

√
q?2x −

4

5
q?σC + 4σ2Y

]
+ σE , (4.6)

7Another reference discussing the wave speeds of the 5-moment system for a regularized closure is [159].
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with

E = 8/10
√

3− 3σ , B = 5− 4
√
σ +

√
10− 16

√
σ + 6σ , (4.7a)

C =
√

3− 3σ , Y = B + E2 − 2E
√
B . (4.7b)

These expressions will be empirically extended in the next sections.
Baradaran’s approximations follow the aforementioned hyperbola struc-

ture, and are accurate in most of the domain, losing some accuracy only
close to equilibrium, as shown in Fig. 4.10. Nonetheless, these small in-
accuracies are most likely to play no role in most practical computations,
where wave speeds are merely needed for computing the fluxes and for
estimating the Courant number. Indeed, Fig. 4.11 shows that an accurate
agreement is obtained between Baradaran’s approximations and numerical
wave speeds for the Sod shock problem.

Figure 4.10: Maximum wave speed for the 5-moment system. Blue symbols: random
values in the q? − σ plane. Red dashed line: Baradaran’s approximation.

4.2.2 Extending the approximation to the 6-moment system

In this section, the wave speeds approximations are extended to the 14-
moment system. The proposed formulation is empirical, and the final re-
sults are merely to be taken as approximations. Nonetheless, the results
constitute a noteworthy improve over the approximation of Eq. (4.4), still
allowing us to avoid building a Jacobian and numerically computing its
eigenvalues.

We shall start from a geometrically simplified version of the 14-moment
system, obtained by considering a 1-dimensional geometry, with Pyy =
Pzz ≡ Prr/2, Pij = 0 for i 6= j, qy = qz = 0 and uy = uz = 0. Note
that in the further case where Pyy = Pzz → 0, one retrieves the 1D1V
case of the 5-moment system. For more details and an expression of the
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Figure 4.11: Sod shock tube problem at different rarefaction conditions. Black line: nu-
merical value of the maximum and minimum wave speeds of the 5-moment system.
Green dashed line: approximation by Baradaran.

fluxes, the reader is referred to McDonald & Torrilhon [67]. As for the 14-
moment system, for the 6-moment system the dimensionless pressure reads
P ?
xx = (Pxx)/P , with P = (Pxx + Pyy + Pzz)/3, and therefore P ?

xx = 1 at
equilibrium.

The resulting system is composed by six independent moments: ρ, ux,
Pxx, Prr, qx and Riijj , and after non-dimensionalization, the independent
variables in the fluid reference frame are only three: P ?

xx, q?x and σ (where
σ is considered, in place of R?

iijj). Therefore, this case has only one addi-
tional variable with respect to the 5-moment system. Figure 4.12 shows a
numerical inspection of the maximum wave speed for this system, in the
q?x − σ plane and for different values of P ?

xx.

Figure 4.12: Maximum wave speed multiplied by σ for the 6-moment system. Left: ran-
dom points in the q?x − σ plane for assigned values of P ?xx. Right: magnification for
small values of q?x, with P ?xx at equilibrium.

In order to embed a dependence on the pressure, with some foresight we
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rewrite Baradaran’s expression as

σλmax ≈ W (P ?
xx)

1

2

[
q?x +

√
q?2x −

4

5
q?σC + 4σ2Y

]
+ χ(P ?

xx)σE , (4.8)

where a function W (P ?
xx) was introduced, to multiply the hyperbola-like

part, and a function χ(P ?
xx) multiplies the “offset”. We start by considering

the limit q?x → −∞, where Eq. (4.8) becomes

σλmax|q?x→−∞ ≈ χ(P ?
xx)σE . (4.9)

This case is shown in Fig. 4.13-Left. The quantity χ(P ?
xx) can be deter-

mined by numerical inspection. Indeed, if we write χEσ = Aσ
√

1− σ,
we find that the choice A =

√
3P ?

xx allows to match the pressure depen-
dence, as shown in Fig. 4.13-Right. This fixes χ(P ?

xx) =
√
P ?
xx.

Figure 4.13: Left: wave speed multiplied by σ in the limit of q?x → −∞, for different
values of P ?xx. Right: required values of A for matching the Left figure (symbols) and
function A =

√
3P ?xx.

We then move to the limit of large q?x. For the 5-moment case of the
previous section, the quantity σλmax would not depend on σ when eval-
uated for a fixed value of q?x � 1. However, Fig. 4.12-Left shows that
this is not anymore the case for the 6-moment system, and both the slope
and intercept of the function (σλmax)|q?x(σ) depend on the pressure. For
this reason, a quantity W (P ?

xx) was introduced as to modify this part of the
plot. We consider W = aσ + b, and determine the functions a = a(P ?

xx)
and b = b(P ?

xx) by numerical inspection. The values for a and b that allow
for Eq. (4.8) to match the 6-moment wave speed are shown in Fig. 4.14,
together with a simple fit.

The approximated maximum wave speed for the 6-moment system is
finally obtained as
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Figure 4.14: Fit of the slope a and intercept b as a function of the pressure.

λ6mom
max =

aσ + b

2σ

[
q?x +

√
q?2x − 4/5q?xσC + 4σ2Y

]
+ E , (4.10a)

a = 1.4 (P ?
xx)

1.1 exp
[
−P ?2

xx

]
, b = 0.9P ?

xx exp
[
−1/2 (P ?

xx)
1.4] ,
(4.10b)

E =
8

10

√
(3− 3σ)P ?

xx , C =
√

(3− 3σ)P ?
xx , (4.10c)

B = 5− 4
√
σ +

√
10− 16

√
σ + 6σ , Y = B + E2 − 2E

√
B .

(4.10d)

The minimum wave speed is obtained from symmetry considerations:
λmin(q?x) = −λmax(−q?x). Figures 4.15 and 4.16 show that this approxi-
mation is able to retrieve the global features of the 6-moment wave speeds,
within a maximum error of roughly 20% in most of the domain of inter-
est. A larger error could be expected very close to the physical realizability
boundary (Fig. 4.16-Bottom-Right).

4.2.3 Extending the approximation to the 14-moment system

In this section, the wave speeds approximation is extended to the 14-moment
system. In principle, the complexity of such system is much greater than for
the 6-moment case, as the number of dimensionless variables8 is nine: five
independent pressure components P ?

ij (since the pressure P = tr(Pij)/3
is used to scale quantities), three heat fluxes q?x and σ (in place of R?

iijj).

8After moving to a reference frame where the fluid is at rest.

66



4.2. Approximated wave speeds

Figure 4.15: Maximum wave speed for the 6-moment system. Red lines: approximated
values from Eq. (4.10). Blue dots: numerically computed values.

Figure 4.16: Maximum wave speed for the 6-moment system (Top) and relative error
(Bottom) for P ?xx = 1. Red lines: approximated values from Eq. (4.10). Blue dots:
numerically computed values. Bottom: relative error.

Building an approximation for the quantity σλmax should thus be done in a
9-dimensional space. Luckily, some simplifications are possible.

First, for the sake of computing the wave speeds along a given direction
(say, x), the reference system can be arbitrarily rotated around such direc-
tion, as to make one of the two transverse heat flux components zero. In
such reference system, the heat flux is q = (qx, q̃y, 0), with q̃y =

√
q2
y + q2

z .
This brings the number of independent variables to eight.

This rotation would require the components of the pressure tensor to be
rotated as well. However, one can observe9 that the maximum wave speed
does not change dramatically after such rotation. Indeed, for the sake of
obtaining approximated eigenvalues, one can preserve the pressure compo-
nent Pxx, and assume that the rest of the pressure tensor is isotropic, with

9From numerical inspection of the wave speeds.
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P̃yy = P̃zz = (Pyy + Pzz)/2 and Pij = 0 for i 6= j. This assumption re-
moves additional unknowns and the dimensionless wave speeds are defined
uniquely by the quantities P ?

xx, q?x, q̃?y , σ. This is just one additional quantity
with respect to the 6-moment system.

Figure 4.17: Maximum wave speed of the 14-moment system on the q?x − q?y plane.

The transverse heat flux q̃y has a strong effect on the wave speeds, as
shown in Fig. 4.17. This effect is however quite predictable, and q̃?y appears
to increase the wave speeds almost linearly. This can be reproduced by a
redefinition of the heat flux as

q̂x = qx + α|q̃y| = qx + α
√
q̃2
y , (4.11)

where α is to be defined. Substituting this definition in place of qx, in the
approximated 6-moment wave speeds of Eq. (4.10) has the effect of trans-
lating the hyperbola-like shape towards negative heat fluxes, whenever a
non-zero q̃y is present. By inspection of different conditions, this transla-
tion is seen to depend on the pressure, such that α = α(P ?

xx). This function
can be seen to be roughly a parabola, whose coefficients are easily found
via fitting:

α(x) = 0.6x2 − 0.38x+ 0.35 . (4.12)

This approximation results in a qualitative agreement with most values of
P ?
xx. In general, this agreement is reasonably good, except that, for high

values of σ and in presence of a non-zero q̃y, the approximation strongly
underpredicts the actual wave speed, posing some numerical stability is-
sues. We correct this problem by introducing a factor q̃2

y/10 inside the
square root, in the hyperbola expression. This completely defines the pro-
posed approximated expressions for the 14-moment system.

Figure. 4.17 shows this approximation for different conditions. The pro-
posed expressions appear to be over-predicting the true wave speeds (in-
creasing the numerical diffusion) in certain regions, but only seldom under-
predict them, and in such cases the difference is limited to roughly 20%.
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Therefore, despite all assumptions, the proposed wave speeds constitute a
useful improvement over the approximation “λ = u± ka”.

Summary of the procedure

For clarity, we summarize here the procedure for obtaining the minimum
and maximum wave speeds along the direction x.

1. First, the reference system is shifted as to have a zero bulk velocity.
The state of the gas is then defined by (ρ, Pij , qi, Riijj);

2. The reference system is rotated, and we define q̃y =
√
q2
y + q2

z ;

3. The hydrostatic pressure is computed as P = trPij/3, and the state is
non-dimensionalized, dividing by the density and suitable powers of√
P/ρ (see Section 2.3.1). The system is now completely described

by the dimensionless quantities (P ?
xx, q?x, q̃?y , σ);

4. The dimensionless wave speeds are then obtained from:

λ14mom
max =

aσ + b

2σ

[
q̂x +

√
q̂2
x − 4/5q̂xσC + 4σ2Y + q̃?2y /10

]
+ E ,

(4.13a)
q̂x = q?x +

√
q̃?2y
(
0.6P ?2

xx − 0.38Pxx + 0.35
)
, (4.13b)

a = 1.4 (P ?
xx)

1.1 exp
[
−P ?2

xx

]
, b = 0.9P ?

xx exp
[
−1/2 (P ?

xx)
1.4] ,
(4.13c)

E =
8

10

√
(3− 3σ)P ?

xx , C =
√

(3− 3σ)P ?
xx , (4.13d)

B = 5− 4
√
σ +

√
10− 16

√
σ + 6σ , Y = B + E2 − 2E

√
B ,

(4.13e)
λ14mom

min = −λ14mom
max (−q̂?x) , (4.13f)

where the minimum wave speed is obtained from symmetry considerations.
For convenience, we provide an Octave/MATLAB implementation of the
last step in Appendix D.

In order to test the approximated wave speeds, the Sod shock tube test
case of the previous sections was re-computed using the 14-moment sys-
tem. Figure 4.18 shows the actual wave speeds, compared to the approxi-
mation of Eq. (4.13) and to the simple approximation based on the speed of
sound. While the accuracy is not excellent, the proposed approximation is
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able to automatically retrieve reasonable values for all the considered rar-
efaction conditions. In Fig. 4.18, we also show the results of boosting the
approximated wave speeds by a factor 1.2. This increases a bit numerical
diffusion in some regions, but allows us to stay on the safe side. Notice
that the wave speeds exceed the plot region in Fig. 4.18-Right, and magni-
fication was reported for clarity. An analysis of the full scale suggests that
in this condition, the proposed approximation appears to underpredict the
actual wave speed by a factor of 2, in the region of the contact disconti-
nuity. Therefore, in case an explicit method is to be used, it is suggested
to keep the Courant number below 0.5 (although this may not be a strict
requirement).

Figure 4.18: Maximum and minimum wave speeds of the 14-moment problem, for the Sod
shock tube problem, at various degrees of rarefaction.

4.3 Computational efficiency and minimum allowed σ

This section discusses the computational cost required for solving the 14-
moment maximum-entropy system, as compared to the Euler equations.

At a first glance, the most striking factor causing an increased compu-
tational cost may appear to be the larger number of equations composing
the 14-moment system. This surely causes an increased number of oper-
ations. Besides that, the larger number of fields to be tracked is likely to
reduce data locality, with a direct increase in the computational times. The
numerosity of the closing moments is another important factor causing an
increase in the computational cost, even in the case of the interpolative clo-
sure [67]. For comparison, all closing moments are simply zero in the Euler
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equations, and no such computation is required.
Secondly, for certain density conditions, the collisional source terms

may play the most important role. As it was discussed in Chapter 2, the
mass, momentum and energy are collision invariants for a simple gas, and
thus the Euler equations show no right-hand-side collision sources. In-
stead, for the 14-moments system, collisions have the effect of equilibrat-
ing the higher order moments, and thus impose an additional dynamics at
the time scales of the collision frequency. To solve this problem, point-
implicit schemes can be employed, although this was never necessary for
the present work.

In the non-equilibrium conditions of this work, the most important con-
tribution to the increase in computational cost was found to be played by the
system eigenvalues, that determine the dynamics of the system. In particu-
lar, as discussed in Section 4.2, the wave speeds of the 14-moment system
can be larger than the speed of sound by orders of magnitude in non-equi-
librium situations. This forces one to employ smaller time steps in order
to have a reasonable Courant number, and thus to follow the faster sys-
tem dynamics. This is particularly important for time-explicit integration
schemes.

Effect of the limiting value σlim

In Section 2.4, it was mentioned that a minimum threshold for σ is imposed
in real simulations, denoted by σlim. In principle, smaller values of σlim
imply a better accuracy. However, in the previous section, it was seen that
the wave speeds are proportional to σ−1. Therefore, the choice of σlim
has a strong impact on the computational times, as smaller values of σlim
increase the stiffness of the problem, allowing it to develop larger wave
speeds. In the following, we consider again the Sod shock tube problem
of Section 4.1: we compare the profiles obtained for increasing values of
σlim and the resulting computational times. These results are clearly case-
specific, but give a clear idea of the results that one may expect.

We consider first the free-molecular case (Kn = 100, simulated time
Tsim = 1.5× 10−13 s) and limiting values of σlim ∈ (10−5, · · · , 0.1). Typ-
ical values are in the range of σlim ≈ 10−4. The computational times are
reported in Table 4.1. Grids of 1000 and 5000 cells were employed and
showed the very same behavior.10 The continuum case (Kn = 0.0001,
Tsim = 1.5 × 10−7 s) was then analyzed for a 5000 cells grid, and re-

10In principle, long simulation times should be employed for comparing the computational costs, as to exclude
the problem setup overheads. However, the fact that a 1000 cells and a 5000 cells grid give the very same
efficiencies indicates that the result is reliable.
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sults are reported in Table 4.1. From these results, one can appreciate the
strong dependence of the computational time with respect to the degree of
non-equilibrium, whereas the cost of the Euler system is unchanged. In the
non-equilibrium case, the computational cost of the maximum-entropy sys-
tem is at least 10–30 times higher than for the Euler equations and may be
100–200 times higher if reasonable values of σlim = 10−4− 10−5 are used.
On the other hand, in the continuum regime the problem is mitigated. The
computational cost is always between 6 and 10 times larger than the Euler
equation, even for small values of σlim. Indeed, in the continuum regime,
the value of the dimensionless heat flux is limited, therefore reducing the
wave speeds.

σlim T 1000
0.15 ps T 5000

0.15 ps T 5000
0.15µs

0.00001 80 s 1993 s 64 s
0.0001 24 s 631 s 64 s
0.001 8.8 s 215 s 61 s
0.01 5.4 s 137 s 57 s
0.1 3 s 79 s 49 s

Euler 0.34 s 7.1 s 7.2 s

Table 4.1: Computational time of the 14-moment system for different values of limiting
σ, and compressible Euler equations. Time-explicit simulations, first order in time and
space, CFL imposed to 0.5. The computations were run in serial on an Intel CORE i5
processor, with 12 GB of RAM.

Figure 4.19: Solution of the 14-moment system for the Sod shock tube problem, for differ-
ent values of σlim. Left: computational time (blue line with circles: 1000 cells, red line
with crosses: 5000 cells). Center and right: density and heat flux. Cases σ = 10−5

(light blue dashed), σ = 10−4 (purple solid line) and σ = 10−3 (green solid line)
almost superimpose. Some deviation is visible for σ = 10−2 (blue dash-dotted) and
for σ = 0.1 the results deviate strongly.
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The effects of the value of σlim are shown in Fig. 4.19 for the free-
molecular case, together with the computational times. Obviously, while
very large value of σlim are appealing in terms of computational efficiency,
they introduce progressively larger errors in the closing fluxes. All choices
of σlim ≤ 10−3 in Fig. 4.19 result roughly in the same profile, and only
some details on the (unphysical) jumps differ. The final effect is however
strongly case-sensitive, and ultimately depends on the importance of the
closing moments. For the simulations performed in this work, values of
σlim = 10−3 − 10−5 are employed, and never larger.

Finally, it should be stressed that the present analysis considers a sim-
ple explicit time marching scheme. Different figures of merit are expected
for implicit schemes, and one may employ preconditioning to improve the
situation [172]. These points are however beyond the scope in this work.

4.4 2-dimensional test case: rarefied crossing jets

We conclude this first part of the chapter by considering a 2-dimensional
test case. Two rarefied supersonic jets are simulated, injected from the sides
of a square domain as to cross in the middle, forming an angle of 90◦. The
density of the jets is taken to be low enough to be in the free-molecular
regime. On physical grounds, one would expect that the two jets do not
interact, and eventually re-separate. The state in the crossing region is ki-
netically out of equilibrium, and is the superposition of the drifted VDFs of
the two individual jets. A moment closure does not necessarily reproduce
this non-equilibrium correctly, hence the motivation for this test case.

This test case is apparently not related to electric propulsion. However,
one can consider a number of similarities, for example in the modeling of
the thruster plume, where the ions created in the thruster channels cross at
the axis and create a toroidal VDF [173]. In general, as we will be con-
sidering ions as collisionless, it is important to study the behavior of the
14-moment system for completely collisionless conditions, and a neutral
fluid is a good starting point. A similar version of this problem was consid-
ered in [120].

A square domain of length Lx = Ly = 1 m is considered, and the two
jets are centered on the left and on the bottom sides, with a size ∆x = ∆y =
Lx/7 m. Argon neutral gas is simulated. The initial solution inside the
domain is taken at a density n0 = 1010 m−3 and T0 = 300 K. To simulate
the jets, the ghost cells of the domain are set at a density nj = 1015 m−3,
temperature Tj = 300 K and the velocity is set to give a Mach number
M = 5. Both the initial state and the jets injection points are described by
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a Maxwellian in velocity space.

4.4.1 Kinetic solution

In the fully collisionless regime, the kinetic solution is simply computed
as a superposition of the particle streams that compose the two jet sources.
For a single rarefied jet expanding into vacuum, the distribution function is
known to present temperature anisotropy [174]. This is due to the geometry
of the problem, combined with lack of collisions, as will be discussed in
the following. A kinetic solution is here obtained by assuming that the
domain is 2-dimensional and uniform along the third direction z. From this
assumption, the normalized distribution function factorizes in

g(x, y, vx, vy, vz) = gzgxy with gz(vz) =

(
m

2kBTj

)1/2

exp

[
− mv2

z

2kBTj

]
,

(4.14)
while gxy = gxy(x, y, vx, vy) depends on the position to be probed. To
evaluate it at a position (xp, yp), we consider a small area centered around
that point, as shown in Fig. 4.20, and divide the jet source in a number Ns

of uniformly distributed point-source elements. The particles injected by
the i–th source element will reach the probed area only if their velocities
are directed within an angle θ ± dθ/2. In terms of velocity distribution
function, only a slice of the source VDF will reach the probed point, and
will therefore contribute to the VDF at position (xp, yp).

Figure 4.20: Scheme for the numerical evaluation of the collisionless kinetic solution.

The normalized VDF at the probed position (xp, yp) is thus obtained as a
superposition of all source elements,

g̃xy(xp, yp, vx, vy) ∝
Ns∑
i=1

gi(xi, yi, vx, vy)δθ , (4.15)
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where the function δθ is defined as

δθ =

{
1 if (θ − 1

2
dθ) ≤ atan(vy/vx) ≤ (θ + 1

2
dθ) ,

0 otherwise .
(4.16)

Figure 4.21 shows the resulting VDFs at some selected locations, ob-
tained on a velocity space grid composed by 2000 × 2000 elements, and
where the two jet sources were discretized into 1000 point-sources each.

Figure 4.21: Crossing rarefied jets. Top-Left: spatial configuration of point-sources and
probed points (1)–(5). The other boxes show the VDF (scaled arbitrarily) at such
points, in the (vx, vy) plane.

Moments of the kinetic solution

In terms of moments of the VDF, convergence is already obtained for a
grid of 1000 × 1000 elements in velocity space, and 200 point-sources for
each jet. The VDFs of Fig. 4.21 are arbitrarily scaled, as no proportionality
constant was expressed in Eq. (4.15). Such VDFs do not integrate to the
real flow density, since the number of employed sources is not taken into
account. However, for the sake of computing dimensionless moments, this
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is not an issue. Instead, we first compute a “numerical density” n′ as

n′ =

ˆ +∞

−∞
gz(vz) dvz

ˆˆ +∞

−∞
gxy(vx, vy) dvxdvy (4.17)

where the “prime” superscript recalls that this does not necessarily match
the physical density. The integral over vz was separated since g factorizes.
From the definition of gz (Eq. (4.14)) this integral givesˆ +∞

−∞
gz(vz) dvz = 1 . (4.18)

The average velocities ux and uy are obtained as averages of the numeri-
cally constructed gxy,

ui =
1

n′

ˆ +∞

−∞
gz(vz) dvz

ˆˆ +∞

−∞
vigxy(vx, vy) dvxdvy . (4.19)

Analogously, the temperatures in the x and y directions read

Ti =
m

n′kB

ˆ +∞

−∞
gz(vz) dvz

ˆˆ +∞

−∞
(vi − ui)2gxy(vx, vy) dvxdvy . (4.20)

The dimensionless heat fluxes are obtained by dividing the heat flux by
the factor ρ(P/ρ)3/2 = mn(kBT/m)3/2, with T = (Tx + Ty + Tz)/3 and
Tz = 300 K,

q?i =
1

mn′(kBT/m)3/2

ˆˆˆ +∞

−∞
mcic

2gxy(vx, vy)gz(vz) dvxdvydvz

=
1

n′(kBT/m)3/2

{
1×
ˆˆ +∞

−∞
ci
[
(vx − ux)2 + (vy − uy)2

]
gxy dvxdvy

+

ˆ +∞

−∞
v2
zgz(vz) dvz

ˆˆ +∞

−∞
cigxy(vx, vy) dvxdvy

}
, (4.21)

with ci = vi − ui and i either x or y. Notice that this time the velocity vz
appears in the integral (through the peculiar velocity term c2). We have thatˆ +∞

−∞
v2
zgz(vz) dvz =

kBT

m
, (4.22)

finally giving

q?i =
1

n′(kBT/m)3/2

ˆˆ +∞

−∞
ci

(
c2
x + c2

y +
kBT

m

)
gxy(vx, vy) dvxdvy .

(4.23)
These moments will be compared to the 14-moment solution in the next
section.
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4.4.2 14-moment and Euler solutions

In the free-molecular regime, the two rarefied jets should not interact. How-
ever, a general moment system does not necessarily reproduce correctly
such behavior. To start off, we compute the solution of the 14-moment sys-
tem for a single jet. This solution is then rotated by 90◦ and superimposed
to itself, as to give artificially the expected result of two crossing jets that
do not interact. This artificial solution is then compared to a full solution
of two jets simulated simultaneously.

The problem is solved on a Cartesian grid of 1280 × 1280 cells. A
time-marching approach is employed, with Courant number fixed to 0.5
and explicit Midpoint Euler time integrator. The steady state is reached
after roughly 1.5 ms of simulation time. The same numerical settings are
employed for both the single-jet and the two-jets simulations: in such way,
both simulations show an analogous degree of numerical diffusion, and
results can be compared.

The numerical solution of the full problem proceeds reasonably fast un-
til the two jets cross. At such point, non-equilibrium increases (as the VDF
deviates from the Maxwellian), and correspondingly the wave speeds also
increase, and a smaller time step is needed in order to respect the CFL con-
dition. In particular, the situation happens to be so strong that, when the
second order MUSCL approach is enabled, the wave speeds become ex-
tremely large and the simulation becomes impractical. This problem could
be solved by implicit time stepping, or by preconditioning the system. In
this work, we simply give up with second order accuracy, but in order to
reduce the high numerical diffusion of the Rusanov scheme, we adopt the
partial MUSCL reconstruction of Eq 3.8, with β = 0.75.

Figure 4.22 shows the resulting density field from the 14-moment sys-
tem, and compares the full solution of the two-jets to the artificially su-
perimposed jets. From such solution, the values were extracted along the
axis of one jet, on the line with y = 0.5 m, for x ∈ (0, 1) m, and dimen-
sionless moments were computed. These moments were also computed
from the kinetic results, and are compared in Fig. 4.23. All these results
confirm the quality of the 14-moment solution. It is useful to recall here
reference [127], where various shapes of the attainable VDFs are shown
for the 5-moment systems in moment space. The order-4 maximum-en-
tropy system shows capable of representing a number of situations such as
the bump-on-tail and bi-Maxwellians. Analogously, the 14-moment system
is a reasonable choice for representing the VDFs of the present case, that
are roughly the superposition of two drifted Maxwellians. We expect the
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Figure 4.22: Crossing rarefied jets, solution of the 14-moment system. Colors and black
lines: contours of the full two-jets solution. Red dashed lines: superimposed contours
of the artificial superimposed-jets solution.

solution to quickly lose accuracy if more jets would be considered, as the
VDF would show too many separate bumps to be properly reproduced. The
limits of applicability are still to be properly investigated.

The current solution is obtained with a GPU-accelerated solver (see Ap-
pendix A) and requires roughly 20 hours of computational time. The inac-
curacies of Figures 4.22 and 4.23 could probably be reduced by employing
a finer grid.

Solution of the Euler equations

For comparison, the solution of the Euler equations is also computed. For
this case, second order accuracy and HLL numerical fluxes are employed,
as to reduce the numerical error. As discussed in Chapter 2, the Euler sys-
tem is theoretically justified for Maxwellian VDFs. In absence of colli-
sions, also the more general class of symmetric VDFs would respect the
Euler closure. However, both situations are surely not representative of the
present two-humped VDFs. Indeed, this system is not able to reproduce the
jets separation, and once the jets cross, they interact forming an unphysi-
cal shock structure, as shown in Fig. 4.24. Moreover, for the considered
conditions, this result appears to be unstable, and a symmetric oscillating
solution quickly appears, eventually transitioning into asymmetric oscilla-
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Figure 4.23: Crossing rarefied jets; moments extracted along a jet centerline, for y =
0.5 m. Symbols: kinetic solution. Solid line: 14-moment solution.

tions (Fig. 4.25).

Figure 4.24: Solution of the Euler equations for two crossing jets at a timestep of 5 ms.
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Figure 4.25: Solution of the Euler equations for two crossing jets at a different time steps.
Density field. The solution is unstable, and shows first a symmetric instability (ii-iii),
that develops into an asymmetric one (iv-v-vi).

Computational efficiency

An analysis of the computational times was performed, analogously to what
was done in Section 4.3 for the Sod shock tube problem. Table 4.2 reports
the computational times for the 14-moment and the Euler systems, for var-
ious values of the parameter σlim.

σlim T1.5ms T 14/TE

0.00001 16565 s 368.1
0.0001 8873 s 197.2
0.001 4948 s 109.9
0.01 2663 s 59.17
0.1 1973 s 43.84

Euler 45 s -

Table 4.2: Computational time for the 14-moment system, for different values of limiting σ,
and Euler equations. 2D crossing jets test case, simulated time: 1.5 ms. Time-explicit
simulations, first order in time and space, CFL imposed to 0.5. Grid: 640× 640 cells.

The efficiency analysis is done on a reduced grid of 640 × 640 cells,
using a first order solution in time and space, and Rusanov fluxes for both
the 14-moment and the Euler systems. For the analysis, the program was
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run on an NVidia Tesla K20X GPU. Despite the differences with the Sod
shock tube case of Section 4.3 (this simulation has higher dimensionality,
and two different solvers are employed), the computational efficiencies are
in line with the previous results of Table 4.1.

4.5 Electromagnetic source terms

The previous sections analyzed the maximum-entropy system in rarefied
conditions. In order to apply the 14- and 5-moment systems to the simula-
tion of plasmas, one also needs to develop the electromagnetic source terms
GEB. These terms have first appeared in the generalized moment equation,
Eq 2.29, and for a given particle quantity ψ, they read

G
(ψ)
EB =

q

m

〈
(E + v × B) · ∂ψ

∂v

〉
. (4.24)

In the following, we shall detail their derivation for the 14- and 5-moment
systems.

14-moment system

For the 14-moment system, the source terms become

G
(ψ)
EB =

q

m

〈
Ex
∂ψ

∂vx
+ Ey

∂ψ

∂vy
+ Ez

∂ψ

∂vz

〉
+

q

m

〈
(vyBz − vzBy)

∂ψ

∂vx

+ (vzBx − vxBz)
∂ψ

∂vy
+ (vxBy − vyBx)

∂ψ

∂vz

〉
. (4.25)

The 14-moment closure is obtained by the choiceψ = m(1, vi, vivj, viv
2, v4),

as discussed in Chapter 2. Since the order of indices is a possible source of
error, the state vector is reported here in full form, for convenience:
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U =



U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

U11

U12

U13

U14



=



〈m〉
〈mvx〉
〈mvy〉
〈mvz〉
〈mvxvx〉
〈mvxvy〉
〈mvxvz〉
〈mvyvy〉
〈mvyvz〉
〈mvzvz〉
〈mvxv2〉
〈mvyv2〉
〈mvzv2〉
〈mv4〉



=



ρ

ρux

ρuy

ρuz

ρuxux + Pxx

ρuxuy + Pxy

ρuxuz + Pxz

ρuyuy + Pyy

ρuyuz + Pyz

ρuzuz + Pzz

ρuxu
2 + · · ·+ qx

ρuyu
2 + · · ·+ qy

ρuzu
2 + · · ·+ qz

ρu4 + · · ·+Riijj



. (4.26)

Computing the source terms is only a matter of computing the deriva-
tives of ψ with respect to the particle velocities, as reported in Table 4.3.

ψ ∂ψ/∂vx ∂ψ/∂vy ∂ψ/∂vz
1) m 0 0 0
2) mvx m 0 0
3) mvy 0 m 0
4) mvz 0 0 m
5) mvxvx 2mvx 0 0
6) mvxvy mvy mvx 0
7) mvxvz mvz 0 mvx
8) mvyvy 0 2mvy 0
9) mvyvz 0 mvz mvy

10) mvzvz 0 0 2mvz
11) mvxv

2 3mv2x +m(v2y + v2z) 2mvxvy 2mvxvz
12) mvyv

2 2mvxvy 3mv2y +m(v2x + v2z) 2mvyvz
13) mvzv

2 2mvxvz 2mvyvz 3mv2z +m(v2x + v2y)
14) mv4 4mvxv

2 4mvyv
2 4mvzv

2

Table 4.3: Velocity derivatives of particle quantities ψ = m(1, vi, vivj , viv
2, v4).

The resulting electric and magnetic sources are directly obtained. The
electric sources GE involve first derivatives of ψ, hence the source for a
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moment of order n involves only moments of order n− 1.



GE,1

GE,2

GE,3

GE,4

GE,5

GE,6

GE,7

GE,8

GE,9

GE,10

GE,11

GE,12

GE,13

GE,14



=
q

m



0

ExU1

EyU1

EzU1

2ExU2

ExU3 + EyU2

ExU4 + EzU2

2EyU3

EyU4 + EzU3

2EzU4

Ex (3U5 + U8 + U10) + 2EyU6 + 2EzU7

2ExU6 + Ey (U5 + 3U8 + U10) + 2EzU9

2ExU7 + 2EyU9 + Ez (U5 + U8 + 3U10)

4ExU11 + 4EyU12 + 4EzU13



. (4.27)

The magnetic source terms GB on the other hand, other than the veloc-
ity derivative of ψ, also include a cross product with the particle velocity.
Therefore, the final order of the velocity is the same, and the source for a
moment of order n involves other moments of the same order in the veloc-
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ity. The magnetic terms ultimately reads

GB,1

GB,2

GB,3

GB,4

GB,5

GB,6

GB,7

GB,8

GB,9

GB,10

GB,11

GB,12

GB,13

GB,14



=
q

m



0

BzU3 − ByU4

BxU4 − BzU2

ByU2 − BxU3

2 (BzU6 − ByU7)

−BzU5 + BxU7 + BzU8 − ByU9

ByU5 − BxU6 + BzU9 − ByU10

2 (BxU9 − BzU6)

BxU10 − BzU7 + ByU6 − BxU8

2 (ByU7 − BxU9)

BzU12 − ByU13

BxU13 − BzU11

ByU11 − BxU12

0



. (4.28)

As expected, the magnetic field has no effect on the mass (first equation)
and the 14–th moment equation, that represents the average of the particle
energies squared.

The electromagnetic source terms are closed, and do not require any
moment other than these already appearing in the state vector U . Also, the
source terms are linear in the moments11 and can be written asGEB = AU .
In the simple case of imposed electric and magnetic fields and no space
gradients, the time variation of U due to electric fields is thus

dU

dt
= AU =⇒ U(t) = exp

[
A(t− t0)

]
U (t0) . (4.29)

This could be employed for the formulation of time-integration methods,
as to ensure that all moments are integrated consistently (see Appendix B).

5-moment system

For the 5-moment system, the situation is much simpler. Indeed, consid-
ering only one translational degree of freedom forces one to neglect the
magnetic field, that would otherwise involve further directions. Strictly
speaking, this system can still describe the dynamics along the magnetic

11The electromagnetic fields do depend on the moments (density and current), but through the Maxwell equa-
tions. At a given time step of a time-explicit simulation, these fields are fixed.
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field lines (and in absence of collisions), where B has no effect and does
not appear in the sources. The sources simplify to GEB = 〈E ∂ψ/∂v〉,
which gives

GEB = GE =


GE,1

GE,2

GE,3

GE,4

GE,5

 =
q

m


0

EU1

2EU2

3EU3

4EU4

 . (4.30)

4.6 Plasma dispersion relations

As a final analysis of the order-4 maximum entropy system, we consider
the dispersion relation for electron and ion plasma waves. The reader is re-
ferred to classical references [5, 77] for more details. As the maximum-en-
tropy systems are able to reproduce non-equilibrium conditions and embed
a different thermodynamics than the Euler equations, we expect the disper-
sion relations to deviate from the classical values.12 In this section, we only
analyze electrostatic longitudinal waves. No collisions will be considered,
and the only restoring force will be provided by the Poisson’s equation,

− ε0
∂2φ

∂x2
= e(ni − ne) . (4.31)

In order to study dispersion relations, a small perturbation (subscript “1”)
to an otherwise uniform state (subscript “0”) is considered. For the maxi-
mum-entropy system, all states in moment space can be selected as the lin-
earization state “0”: both equilibrium and non-equilibrium points (where
the state is described by a non-Maxwellian maximum-entropy distribution)
are eligible. Indeed, since collision are disabled, all such initial states are
also steady state conditions, as there is no mechanism that would drive the
VDF towards a local Maxwellian. The only criteria for the choice of the
linearization state will be space uniformity and to present no charge unbal-
ance, or the Poisson’s equation would make such state unstable.

Wave-like solutions are then investigated, assuming a sinusoidal behav-
ior of the perturbations

n1 = ñ1 exp[i(kx− ωt)] , (4.32)

12In the best case scenario, one wishes that a moment systems could reproduce the kinetic dispersion relations
[77], although this point will not be analyzed in the present work.
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and the same for all other variables. In the following, the symbol “ ˜ ” will
be dropped for simplicity. The stability in time of a perturbation of wave
number k can be analyzed by checking the real and imaginary parts of the
angular frequency ω(k) (see for example [62]). Writing ω = ωR+iωI gives

n1 = ñ1 exp(ωIt) exp[i(kx− ωRt)] , (4.33)

hence, with this formulation, positive values of ωI imply amplification of
the perturbation, while negative values represent damping.

For wave-like solutions, the derivatives transform as ∂t → −iω, and
∂x → ik. Since the uniform state is taken as uniform, we obtain φ0 = 0,
and the Poisson’s equation transforms to

− ε0
∂2φ1

∂x2
= e(ni − ne) =⇒ φ1 =

e(ni1 − ne1)

k2ε0

. (4.34)

At this point, the charges dynamics is described by introducing a fluid
model. We consider here the Euler equations and the 5-moment system.
The 14-moment system is not considered: indeed, in absence of a mag-
netic field, electrostatic waves are purely longitudinal and involve a single
translational degree of freedom. Without collisions, this degree of freedom
does not exchange energy with the other translational modes. For this same
reason, in treating plasma waves, the authors typically set the adiabatic
constant to γ = 3 (see [5, 53]). The Euler system is written in primitive
variables and reads

∂tρ+ u ∂xρ+ ρ ∂xu = 0 ,

∂tu+ u ∂xu+ 1/ρ ∂xP = − q
m
∂xφ ,

∂tP + γP ∂xu+ u ∂xP = 0 ,

(4.35)

and after linearization, it is easily written in matrix form as

− iω

ρ1

u1

P1

+ ik

u0 ρ0 0

0 u0 1/ρ0

0 γP0 u0


ρ1

u1

P1

 = −ik q
m

 0

φ1

0

 . (4.36)

The same can be done for the 5-moment system, that in primitive variables
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reads 

∂tρ+ u ∂xρ+ ρ ∂xu = 0 ,

∂tu+ u ∂xu+ 1/ρ ∂xP = − q
m
∂xφ ,

∂tP + 3P ∂xu+ u ∂xP + ∂xQ = 0 ,

∂tQ+ 4Q∂xu− 3P/ρ ∂xP + u∂xQ+ ∂xR = 0 ,

∂tR + 5R∂xu− 4Q/ρ ∂xP + u∂xR + ∂xS = 0 .

(4.37)

and the very same linearization can be done. Note that in both systems the
electric field appears only in the velocity equation, since all other equations
are those of the central moments, that are not affected by it. The further
steps depend on the type of oscillations to be considered.

4.6.1 Electron waves

Let us start by analyzing longitudinal electron oscillations and waves. All
moments n, ρ, u, P,Q,R are referred to the electron population. Given the
large mass disparity, electron waves have a much higher frequency than
ion waves, hence ions can be treated as a background of fixed neutralizing
charges, with number density ni = ne0 = n0, and thus ni1 = 0. The lin-
earized Poisson’s equation gives φ1 = −en1/(k

2ε0), with n1 the perturbed
electrons number density. The Euler system thus becomesk

u0 ρ0 0

0 u0 1/ρ0

0 γP0 u0

+
1

k

q2

m2ε0

0 0 0

1 0 0

0 0 0

− ω
1 0 0

0 1 0

0 0 1



ρ1u1

P1

 =

0

0

0

 , (4.38)

that is an eigenvalue problem. We write it as{
k [J0] +

1

k

q2

m2ε0

[Mφ]− ω [I]

}
U1 = 0 (4.39)

with [J0] the Jacobian of the convective fluxes, evaluated at the linearization
state, [I] the identity matrix, and [Mφ] a matrix filled with zeros with a sole
unitary entry in the first element (density) of the second row (momentum
equation). The eigenvalues of such system can be easily obtained both an-
alytically and numerically, and result in the classical (fluid) warm electrons
dispersion relation

ω2 = ω2
p + 3

2
k2 (2kBT/m) (4.40)

where kB is the Boltzmann constant, T and m are the electron temperature
and mass and ωp =

√
n0e2/(mε0) the electron plasma frequency.
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The same calculations can be done on the 5-moment system and this
also results in Eq. (4.39), with

[J0] =


u ρ 0 0 0

0 u 1/ρ 0 0

0 3P u 1 0

0 4Q −3P/ρ u 1
∂S
∂ρ

5R −4Q/ρ+ ∂S
∂P

∂S
∂Q

u+ ∂S
∂R


0

, (4.41)

and where the matrix [Mφ] reads

[Mφ] =


0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 . (4.42)

The dispersion relation is less trivial for this case, due to the higher
dimensionality and the more complex structure of the fluxes Jacobian (at-
tributed to the closing moment S). However, by numerical computation
one can easily evaluate the dispersion relation at different points in moment
space.

Dispersion relation at different points in moment space

The linearization condition for the numerical computation of the dispersion
relation is taken as n0 = 1010 m−3, T0 = 1000 K and u0 = 0 m/s. The
only ion property that matters for electron waves is the density, ni0 = n0.

The 5-moment system without source terms is hyperbolic. Therefore,
its eigenvalues are in the form ω(k) = kλi, with λi the i–th (real) wave
speed.13 The dispersion relation for the electrically neutral 5-moment sys-
tem is thus composed by a straight line, with constant phase and group
velocities for each fluid mode. When introducing the self-consistent elec-
tric field as a source term, we observe the very same feature in the limiting
case of a very large wave number, kλDe � 1 (with λDe the Debye length for
the considered n0 and T0). This is shown in Fig. 4.26 for equilibrium condi-
tions (Q? = 0, R? = 3), where the numerical dispersion relation is seen to
asymptote to the neutral-fluid dispersion relation. For lower wave numbers,
the dispersion relation settles on the plasma frequency, as expected.

13This is evident if one considers the eigenvalue problem of Eq. (4.39), without electric fields, where the
eigenvalues of the system are seen to be equal to ω/k.
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Figure 4.26: Dispersion relation around equilibrium. The full 5-moment system (symbols)
retrieves the plasma frequency ωp (blue horizontal line) for small wave numbers, and
asymptotes to the convective-only dispersion relation (neutral fluid, orange dashed
lines) for large wave numbers.

An analysis of the real and imaginary parts of ω shows that in some
regions of the moment space, the problem may develop imaginary com-
plex conjugate eigenvalues, associated to a growth or decay of the initial
perturbation. Such region neighbors the physical realizability boundary,
where the VDF is strongly non-Maxwellian and is composed by two Dirac
deltas [127]. These results may reflect the presence of microinstabilities
(see for example [35, 175]), and are to be further investigated in future
works.

The maximum and minimum imaginary parts are shown in Fig. 4.27.
For every point in this plot, the values q?, R? determine the thermodynamic
state: such state was used to linearize the system and compute numerically
the dispersion relation for various values of k ∈ (0.001, 10)λDe. The max-
imum and minimum imaginary parts refer to the maximum and minimum
among all eigenvalues and for whatever considered value of k.

The dispersion relation is then analyzed more in detail at the locations
marked by labels “R” (for “real”) or “C” (complex) in Fig. 4.27. These are
shown in Fig. 4.28 for the real points, where the fluid dispersion relation
of Eq. (4.40) is also reported. The 5-moment results match closely the
warm fluid approximation for small values of k, but quickly departs from
it, having higher convective wave speeds.

The dispersion relation for the points (C1),(C2) and (C3) is shown in
Fig. 4.29. The presence of two complex conjugate eigenvalues is clearly
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Figure 4.27: Maximum and minimum imaginary part of ω in the moment space,
scaled by the plasma frequency. Only positive values of k are considered, for k ∈
(0.001, 10)λDe. The plot is symmetric with respect to q?. The white dashed line indi-
cates the physical realizability boundary. The symbols in the plot identify points that
are inspected in Figures 4.28 and 4.29.

seen in the dispersion relation, as one line suddenly branches for a given
value of k, and can also be seen in the complex plane plot of Fig. 4.29-
Bottom. In order to provide a more clear interpretation, the trajectory of
the eigenvalues in the complex plane is shown in Fig. 4.30 for one selected
case, where different eigenvalues are identified with different colors.

4.6.2 Ion acoustic waves

If the low-frequency response of ions is considered, one can assume that the
motion of electrons is fast enough as to shield the ion displacement. Fol-
lowing [5], the electron density is approximated by the Boltzmann relation,
that we linearize assuming small perturbations, giving

ne = n0 exp

[
eφ

kBTe

]
≈ n0 + n0

eφ

kBTe
= n0 + ne1 , (4.43)

where φ = φ1 as before. This results in an expression for the electrons
perturbation ne1 = n0eφ1/(kBTe), that can be inserted into the linearized
Poisson’s equation, giving

ε0k
2φ1 = eni1 −

e2n0

kBTe
φ1 =⇒ ε0φ1

(
k2λ2

De + 1
)

= eni1λ
2
De , (4.44)
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Figure 4.28: Eigenvalues of the 5-moment system (symbols) at locations (R1)–(R6) in
moment space. The plasma frequency (blue solid line) and the fluid warm electrons
dispersion relations are retrieved for k = 0 and kλDe � 1 respectively. Arrows
indicate how the eigenvalues have changed, with respect to equilibrium.

where the Debye length λ2
De = ε0kBTe/(e

2n0) appears. Then, the potential
φ1 can be substituted into the momentum equation, resulting in an eigen-
value problem in the form{

k [J0] +
kλ2

De

k2λ2
De + 1

q2

m2ε0

[Mφ]− ω [I]

}
U1 = 0 . (4.45)

The fluxes Jacobian and the matrix [Mφ] are the same as before, but this
time are referred to the ion population. Before inspecting the dispersion
relation numerically, it should be noted that

lim
kλDe→∞

kλ2
De

k2λ2
De + 1

q2

m2ε0

=
1

k

q2

m2ε0

, (4.46)

that is the same factor appearing in the previously studied electron eigen-
value problem. This results in a vanishing importance of the self-consistent
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Figure 4.29: Real (Top row) and imaginary (Bottom) parts of the eigenvalues at moment
space locations (C1),(C2) and (C3). The eigenvalues of the 5-moment system (symbols)
appear to retrieve the plasma frequency (blue solid line) and the fluid warm electrons
dispersion relations for k = 0 and kλDe � 1 respectively.

field, and the system will eventually asymptote to the convective wave
speeds. Therefore, except for the presence of the ion mass in place of the
electron mass, we expect this problem to retrieve the same eigenstructure
for large values of k. The effect of electrons in the ion acoustic modes is
thus predominant for small wave numbers, or long wave lengths if com-
pared to the Debye length. This is very reasonable, since the shielding
happens indeed at such scales.

These observations hold for both equilibrium and non-equilibrium states.
Moreover, in non-equilibrium, the eigenvalues that assume a non-zero imag-
inary part are the same as for the previous case, and the imaginary parts
also show the same amplitudes. For these reasons, results are shown only
for two selected cases at r? = 3, with Q? = 0 and Q? = 1.414, in Fig. 4.31.
The eigenvalues in such figure are computed for argon ions, the electron
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Figure 4.30: Evolution of the eigenvalues (identified with different colors) in the complex
plane. Arrows indicate increasing values of k ∈ (0, 1.5λDe).

temperature14 is fixed to Te = 10 eV, the ion temperature is Ti = 500 K
and the equilibrium density is n0 = 1015 m−3. Again, for small wave num-
bers k, the 5-moment system retrieves closely the classical fluid results.

Figure 4.31: Ion-acoustic dispersion relation at two selected locations in moment space.
Symbols: eigenvalues of the 5-moment system. Red dashed lines: classical ion-
acoustic dispersion relation. Green dotted lines: electron fluid acoustic velocity.

14Appearing through the Debye length.
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4.7 Conclusions

This chapter has introduced some developments and analysis preliminary
to the practical application of the order-4 maximum-entropy systems to rar-
efied gases and plasmas.

First part of the chapter: rarefied gases

First, a rarefied test case was defined as a reference: the Sod shock tube
problem was studied numerically from the free-molecular to the continuum
regime. This allowed us to compare the accuracy of the maximum-entropy
solution to the kinetic solution. The structure of the 5-moment solution,
composed by five waves in the rarefied regime, was also analyzed. The
Rusanov scheme was identified as the scheme of choice for this work, as it
does not need a detailed knowledge of the system eigenstructure (but only
the maximum wave speed) and appears to be more robust than the HLL
scheme.

This test case was then employed as a benchmark to analyze the wave
speeds of the maximum-entropy system. It was observed that these can ex-
ceed the speed of sound by orders of magnitude, and some approximations
were developed for the 6-moment and 14-moment systems. These approxi-
mations allow for more stable and much less diffusive numerical solutions.

A further test case was then defined, in two dimensions, to study the be-
havior of the 14-moment system, test the formulated wave speeds approx-
imation and to test second order accuracy in space. With these develop-
ments, the methods is ready and tested for tackling collisionless situations.

Second part of the chapter: plasmas

Then, attention was put to develop and characterize the plasma capabili-
ties of the method. In particular, the electromagnetic source terms were
developed for the 5 and 14-moment equations, and then plasma dispersion
relations were analyzed, for electrostatic waves.

Based on these developments and analysis, the next chapters will deal
with an application of the method to Hall thruster conditions.
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CHAPTER5
Collisionless ions in Hall thrusters:

an analytical axial model and a simple fluid
closure

The content of this chapter was published in [176]: Boccelli, S., Charoi,
T., Alvarez Laguna, A., Chabert, P., Bourdon, A., Magin, T.E., Colli-
sionless ion modeling in Hall thrusters: analytical axial velocity dis-
tribution function and heat flux closures, Physics of Plasmas 27 (7),
073506.

In the previous chapters, the theoretical basis for the description of rar-
efied gases and plasmas were introduced, and the order-4 maximum-en-
tropy systems were adapted to tackling plasma simulations. In this chapter,
we start the analysis of Hall thruster-like problems. However, before apply-
ing the maximum-entropy system, some preliminary study of the problem
is in order. In particular, in this chapter we start by considering the axial
evolution of ions in a Hall thruster channel, with the aims of:

• Obtaining an understanding of the problem, from both the kinetic and
fluid perspectives;
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• Developing reference solutions to be further analyzed, in the later
chapters, by the maximum-entropy system.

The preliminary analysis of Section 2.2 indicated that ions are, to a first
approximation, collisionless, unmagnetized and strongly affected by the
electric field. This causes the axial VDF to deviate from a Maxwellian, as
shown by both experiments and kinetic simulations [177–179].

Outside of the thruster channel, as the plume develops and the electric
field weakens, the effect of charge exchange (CEX) and momentum ex-
change (MEX) collisions eventually becomes dominant [180, 181]. The
present analysis focuses on the interior or near-plume of the thruster, ne-
glecting all collisions. Only ions will be considered in this chapter: elec-
trons and neutrals will not be accounted for, and their interaction with ions
is introduced by assigning a given electric field and ionization profile. In
such way, it is possible to compare different ion models without introducing
any error or assumptions related to the electrons model.

In Section 5.1, we consider the axial ion VDF, and describe its features
based on the structure of the ionization and electric field profiles. An ana-
lytical solution of the kinetic equation is then obtained in Section 5.2 and
is compared to PIC simulations (Section 5.2.2) and to experimental mea-
surements (Section 5.2.3). Then, a 3-equations fluid model is developed
in Section 5.3. The mass, momentum and energy equations are derived,
and an ad hoc non-Fourier closure for the heat flux is formulated in Sec-
tion 5.3.2. This formulation is then compared to the PIC simulations in
Section 5.3.3.

5.1 Genesis of the axial VDF

We start by a qualitative description of the ion axial VDF.
The shape of the ion VDF is conveniently explained by assuming steady

state conditions. Steady state is not necessarily realized in real situations:
this assumption could however be interpreted as a quasi-steady state in case
of low-frequency oscillations (such that the characteristic time is longer
than the transit time of ions into the channel) or as a time average for faster
modes.

In this section, we import the spatial profiles of the electric field (as-
sumed purely axial) and ionization source from [182]. The fields were
slightly adapted as to remove the negative electric field region, and are
shown in Fig. 5.1-Left. The maximum electric field for such case is Emax ≈
20 kV/m and the ionization source Smax ≈ 2.5× 1023 ions/(m3s). In Hall
thruster channels, the ionization source peak often precedes the peak in the
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electric field, creating a distinction between the ionization and the accelera-
tion regions. However, the two regions partially overlap, and this allows us
to understand the particular shape for the ion VDF. A point of ion velocity
inversion is predicted in a number of thruster models (see for example [90]):
this is neglected for simplicity in the present section, but will be recovered
later on along the chapter.

During an ionizing collision between a fast moving electron with a back-
ground neutral, the energy exchange is highly inefficient due to the large
mass ratio (me/mXe ≈ 4 × 10−6). Therefore, at a first approximation,
an ionizing collision can be described as an electron removing a bounded
electron from the background neutral, without changing its velocity appre-
ciably. The velocity distribution describing the newly born ions is therefore
equal to the neutral VDF, that we assume to be a Maxwellian with average
velocity un and a temperature Tn. For the sake of this section, we assume
Tn → 0, such that ion creation is monoenergetic at velocity v = un.

Figure 5.1: Genesis of the ion axial VDF. Left: imposed Electric field and ionization
profile, and identified regions (a)–(d). Center: particle trajectories in phase space.
Top: axial VDFs at the interface of the identified regions.

Ions are generated in phase space along a line at v = un and are accel-
erated due to the imposed electric field. Phase space trajectories are easily
computed numerically and are shown in Fig. 5.1. To obtain a qualitative
understanding of the problem, it is convenient to divide the domain in a
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series of regions. At the beginning of the ionization region (Region (a) in
Fig. 5.1), the electric field is low, such that all the created ions cumulate,
with negligible acceleration. This will create a sharp peak in the axial VDF.
Such ions travel towards the channel exit at low velocity, until they reach
the ionization region and start to accelerate. At first (Region (b)), the ion-
ization source is still dominant, and despite ions being accelerated towards
a higher average velocity, low-velocity ions are still being produced at each
location. This will generate a plateau in the ion VDF. Then (Region (c)), the
ionization term vanishes, while the electric field is in most cases still non-
negligible. Only few new ions are created in such region, and this region is
thus responsible for a translation of the VDF towards higher velocities. At
this point ions have typically entered the plume. Further on in the trail (Re-
gion (d)) both electric field and the ionization term are small, and collisions
play a major role in the evolution of the VDF.

The steady state axial VDF at the interface between the said regions is
shown in Fig. 5.1-Top, obtained as discussed in the following section.

5.2 Analytical axial VDF

For collisionless unmagnetized ions, the kinetic equation reads

∂f

∂t
+ v · ∂f

∂x
+
qE

m
· ∂f
∂v

= S(x,v) , (5.1)

where q and m are the ion charge and mass respectively, and f = f(x,v, t)
is the velocity distribution function. Under the assumptions of (i) monoen-
ergetic ion creation, (ii) 1-dimensional electric field and (iii) steady state
conditions, it is possible to obtain an analytical expression for the ion ax-
ial VDF. Steady state conditions imply ∂tf ≡ 0. The monoenergetic ion
creation assumption simplifies the ionization source term as

S(x,v) = S(x)δ(vx − vn)δ(vy)δ(vz) , (5.2)

with vn the (monoenergetic) velocity of neutral particles, corresponding
to their average velocity, vn = un for Tn → 0. Note that S(x) repre-
sents the number of ions created per unit time per unit physical volume:
[S] = s−1m−3 and its profile is imposed. Finally, the problem is simplified
by restricting the analysis to the centerline of the thruster channel. By as-
suming a purely axial electric field E = Ex̂, neglecting all azimuthal and ra-
dial variations, then ∂y = ∂z = 0. Moreover, the VDF loses its dependence
on the y and z coordinates: f(x,v) = f(x,v). All such assumptions are
questionable in real Hall thruster geometries, due to the presence of walls.
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Nonetheless, the present model allows to gain a noteworthy insight in the
problem, and may still be reasonable close to the channel centerline.

In the said simplifying assumptions, the three components of particle
velocities are decoupled. The (steady state) kinetic equation for f can be
recast into an equation for the marginal distribution function fx by integrat-
ing over the vy and vz velocity components,

vx
∂fx
∂x

+
qE

m

∂fx
∂vx

= S(x)δ(vx − vn) , (5.3)

with the marginal distribution function fx = fx(x, vx) defined as

fx(x, vx) ≡
¨ +∞

−∞
f(x, vx, vy, vz) dvy dvz . (5.4)

A solution to Eq. (5.3) is easily found by following the characteristic lines,
that correspond to ion trajectories in the 1D1V phase space. The solution
discussed in the following is an adaptation of a classical solution to the
Tonks-Langmuir sheath [183–185]. To our knowledge, it is the first time
that such solution is applied to a Hall thruster channel.

In the collisionless regime, ions fall freely along the electrostatic poten-
tial φ. Therefore, an ion injected at position x0 with velocity v0 = vn will
reach at position x a velocity

vx(x0;x) =

[
2q

m
(φ(x0)− φ(x)) + v2

0

]1/2

. (5.5)

With reference to Fig. 5.1, one can see that particles being injected between
the positions x0 and x0 + dx will have, at position x, a velocity between
vx(x0, x) and vx(x0, x) + dv. One can thus write the balance

vxfx(vx) dvx = −S(x0) dx0 , (5.6)

with the minus sign accounting for the inverse relation between an increase
in x0 and the final corresponding velocity. From Eq. (5.5), one computes

dvx
dx0

=
d

dx0

[
2q

m
(φ(x0)− φ(x)) + v2

n

]1/2

= − q

m

E(x0)

vx(x0;x)
, (5.7)

that can be inserted into Eq. (5.6), giving f(x, vx) = −S(x0)
vx

dx0
dvx

, and thus

fx(x, vx) =
m

q

S(x0)

E(x0)
. (5.8)
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Eq. (5.8) gives the marginal VDF at position x and velocity vx as a
function of the ratio S/E evaluated at the injection position x0. Note that
x0 is linked to vx, and is obtained by inverting Eq. (5.5). Practically, one
does not invert the relation, but instead the following procedure is adopted
(in the following, the • symbol denotes a numerical array):

1. The desired location x is chosen, where the VDF is to be obtained;

2. An array of values x0 is created (with x? ≤ x0 ≤ x, with x? to be
discussed in the following), and the fields S and E are sampled at such
locations;

3. An array of values vx is obtained from Eq. (5.5) from the target loca-
tion x and the array of locations x0;

4. Finally, by plugging the array x0 into Eq. (5.8), an array of values fx
is obtained and can be plotted against vx.

This process can be explained intuitively: the VDF at a location x is ob-
tained as the contribution of all ions that reach such position. In case the
electric field is positive all along the domain, one needs to consider ions
created from the very beginning of the domain, until the desired location.
Therefore, x? = 0 (or whatever the initial coordinate is). For a negative
electric field, the opposite considerations stand. If the electric field changes
sign along the domain, additional care should be taken.

Figure 5.2: Phase space trajectories for electric fields with changing sign; choice of x?.
Top: injection with vn = 0. Bottom: vn > 0.
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Let us consider first the case of zero injection velocity, vn = 0. The sit-
uation is depicted in Fig. 5.2-Top. In such case, for a given probed position
x located downstream of the point where the electric field reverses, all ions
created in the region of E > 0 will eventually reach x. On the other hand,
all ions produced in the region of E < 0 will never reach x. In this case, the
choice of x? simply coincides with the point where E = 0.

In case ions have a non-zero birth velocity vn 6= 0, some energy is avail-
able to overcome the adverse field, as depicted in Fig. 5.2-Bottom. For a
given position x located in the positive–E region, an additional contribu-
tion is to be considered, and x? is to be taken upstream of the nodal point
for E. One can easily find x? by equating the birth kinetic energy to the
electrostatic potential energy. Another possibility consists in locating x?

graphically, after a numerical computation of some particle trajectories.
Finally, note that this analysis does not account for closed islands of

electric field lines, that would trap particles indefinitely.

5.2.1 Moments of the analytical VDF

The moments of the analytical VDF (superscript “a” in the following) are
easily obtained from the kinetic definition (see Section 2.3.1). As we are
here interested in axial quantities only, the integral over the velocity space
can be performed selectively on the vy and vz components, leaving the de-
pendence of vx. The moments definition is recast into an integral over the
marginal VDF, fx dvx. This integral is transformed into an integral over the
axial coordinate through Eq. (5.6), and involves the ionization profile. The
analytical moments read:

na(x) =

ˆ +∞

−∞
fx(vx) dvx =

ˆ x

x?

S(x0)

v(x0;x)
dx0 , (5.9a)

ua(x) =
1

na(x)

ˆ +∞

−∞
vxfx(vx) dvx =

ˆ x

x?
S(x0) dx0 , (5.9b)

P a
x (x) =

ˆ x

x?
m

S(x0)

v(x0;x)
[v(x0;x)− vax(x)]2 dx0 , (5.9c)

Qa
x(x) =

ˆ x

x?

m

2

S(x0)

v(x0;x)
[v(x0;x)− vax(x)]3 dx0 , (5.9d)

Na
x (x) =

ˆ x

x?
m

S(x0)

v(x0;x)
[v(x0;x)− vax(x)]n dx0 , (5.9e)

where Na
x (x) denotes all further central moments of order n > 3. Notice

that, differently from the previous definitions, in this section a factor 1/2
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was embedded in the definition of the heat flux Qa
x. It is important to

stress that such moments rely on the same assumptions as the analytical
VDF: monoenergetic ion birth, collisionless ions, quasi-steady state.

5.2.2 Comparison with 2D PIC simulations

The analytical results are here compared to 2D PIC simulations that repre-
sent the axial-azimuthal plane of a Hall thruster geometry. The PIC simula-
tions model both electrons and ions and the electric field is computed self-
consistently through the Poisson’s equation. In order to compare with the
analytical VDF and its moments, the ionization profile and the azimuthally
averaged axial electric field are extracted from the simulations and imposed
in Eqs. (5.8) and (5.9).

Description of the PIC cases

The PIC simulations described here are only used as a reference for com-
parison, and were not developed in this work, but instead performed by
Charoy et al., at Laboratoire de Physique des Plasmas (École Polytech-
nique, Paris) [50, 186], based on the previous test case by Boeuf & Gar-
rigues [49]. The reader is referred to these references for a full description
of the problem, and the setup is only sketched here.

Figure 5.3: Computational domain for the PIC simulations.

The selected 2D test cases aim at studying the development of electron-
drift instabilities, commonly arising in Hall thrusters. The computational
domain is shown in Fig. 5.3. To simplify the setup and speed-up the com-
putation the simulations are completely collisionless and a fixed ionization
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profile is imposed with a cosine spatial shape:

S(x) =

{
S0 cos

(
π x−xM
x2−x1

)
ifx1 ≤ x ≤ x2

0 otherwise
(5.10)

with xM = (x1 + x2)/2 and where the quantity S0 ultimately defines the
total current. Ions are injected from a Maxwellian distribution at a temper-
ature Ti0 = 0.5 eV and negligible average velocity.

In the simulations, the radius of curvature is assumed to be infinite, such
that the azimuthal direction “θ” is effectively Cartesian. As mentioned, the
PIC simulations show travelling azimuthal instabilities, that affect the ion
moments quantities and the electric field. In order to apply the analysis
developed in the previous section, the PIC results are averaged in time on
40 different time steps, spaced by 5000 time steps each. Subsequently, the
results are averaged azimuthally.

PIC and analytical axial VDFs

Three different PIC simulations are considered for the comparison, with a
different position and maximum value of the ionization profile, as shown
in Fig. 5.4 together with the averaged axial electric field. Figure 5.5 shows
the averaged axial (marginal) VDFs extracted at different channel locations
from the simulation (A). Cases (B) and (C) show qualitatively analogous
VDFs.

Figure 5.4: Ionization profile and azimuthally averaged electric field for the three consid-
ered test cases (A), (B) and (C). The shaded areas represents regions excluded from the
fluid simulations of Section 5.3.
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Figure 5.5: Axial VDFs extracted from a PIC simulation. The anode is located at x = 0 m
and the cathode is out of the shown domain, at x = 0.025 m. Position x = 0.0075 m
marks the assumed exit plane.

Such VDFs show the characteristic shape discussed in Section 5.1. In
the ionization region, the acceleration is small, the injection temperature
dominates, and the VDFs appear approximately Maxwellian. As the ions
accelerate, a peak is formed at the high-velocity side. This peak shifts to
higher velocities inside the acceleration region, and is followed by a plateau
(or a long tail). Eventually, after the acceleration region, the VDF stops
evolving.

The analytical VDFs are compared to the PIC ones in Fig. 5.6 for test
case (A). Some error is visible in the ionization region (x ≈ 5 mm), and
is due to the assumption of monoenergetic ion birth. However, as soon
as acceleration starts, this error becomes negligible since the dynamics is
dominated by the electric field. The remarkable accuracy of the simple
analytical model in the accelaration region confirms the validity of the as-
sumptions for the considered collisionless test case, despite the unsteady
nature of the PIC simulations.

A comparison of the moments of the analytical VDF against the mo-
ments from PIC is shown in Fig. 5.7. The moments of the analytical VDF
are computed only for the region of positive electric field. An analogous
computation could be performed around the point of electric field inver-
sion, but would require additional care in matching the two results. The
accuracy in the considered moments is also confirmed. The only mismatch
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Figure 5.6: VDFs at different locations along the channel for test case (A). Red line:
analytical axial VDFs from the averaged electric field and ionization profile. Black
line: azimuthally and time-averaged VDFs from PIC

appears in the heat flux plot for the test case (C), in the plume region. This
is likely to be attributable to the unsteady behavior of the PIC simulations,
and may be due to a poor time average or to the presence of some stronger
transiting wave.

Figure 5.7: Moments of the analytical VDF against PIC results.

5.2.3 Comparison with experimental results

Experimental measurements of the ion VDF is available from a number of
works. However, complete information over the VDF, the ionization profile
and the electric field is much less frequent. In this section, a comparison
attempt is made for the experimental conditions by Mazouffre & Bour-
geois [178]. The ionization profile for the same conditions is reported in
Garrigues et al. [187]. We assume an average velocity for ion birth equal to
vn = 600 m/s, inferred from the experimental VDFs. This determines the
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lower tail of the ion VDF.1 The “current break mode” in the experimental
results is considered.

Unfortunately, the choice of the starting point x? is not trivial due to
the uncertainties in the ion birth velocity and the electric field measure-
ments, together with the added uncertainty coming from the electric field
reconstruction technique [99]. Such uncertainties affect the assumed phase-
space trajectories and ultimately the accuracy of the analytical solution. A
starting position x? = 0.015 m is chosen, that is reasonably close to the
position of electric field inversion.

Figure 5.8: Analytical VDF (red line) compared to LIF measurements (symbols) of the
axial VDF (points imported manually from [178]). Arrows represent an oscillation
of the 15% of the velocity peak. Top: 2 mm from the exit plane, inside the thruster.
Bottom: 8 mm out of the exit plane, in the plume.

A comparison of the analytical VDF from the experimental data is shown
in Fig. 5.8. The VDFs are scaled to have a unit integral, as to allow for a
direct comparison. Besides the mentioned accuracies, one should consider
some additional factors. First, the injection temperature of ions is assumed
to be zero in the analytical expression, while it is obviously finite in the
experiments. Considering a thermal velocity of the background neutrals in
the range of 310 m/s (as suggested by the authors [178]), this can explain
the diffused low-velocity tail of the VDF, in Fig. 5.8-Top. This effect also
contributes to partially smoothing the high-velocity discontinuity. Colli-
sions would also smear the VDF. However, these two effects alone are not
sufficient to explain the discrepancy at the high velocity tails.

1Another option could be inferring this quantity from the propellant mass flow rate, neutral temperature and
the channel width.
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Instead, one should consider that experiments report the presence of
breathing mode oscillations, that cause an oscillation of the average veloc-
ity of roughly 15%. This oscillation will likely affect not only the average
velocity, but all points of the axial VDF. By superimposing this effect on
the plot, it is clear that oscillations alone could explain the mismatch at
the high velocity side of the VDF and would smear the VDF discontinuity.
In principle, it would be possible to repeat the analytical computations for
different values of an oscillating electric field, at the breathing mode fre-
quency, and computing its average over a period. However, a knowledge
of the moving ionization profile would also be needed, but is not available.
Therefore, such analysis will not be performed here.

Figure 5.9: Comparison of the average velocity and velocity dispersion. Red line: analyt-
ical moments along the channel. Symbols: experiments.

A comparison is also performed in terms of average velocity and veloc-
ity dispersion (as defined in Gawron et al. [188]) and is shown in Fig. 5.9. It
should be noted that the strong ion acceleration in Hall thrusters is such that
convective terms are often much larger than the thermal contribution, and
the average velocity is comparable and often much larger than the thermal
velocity. For such supersonic flows, the shape of the VDF (and therefore, of
non-equilibrium) has a limited effect on the average velocity. On the other
hand, the detailed shape of the VDF always plays a large role in central mo-
ments such as the velocity dispersion. The VDF smearing due to electric
field oscillations can thus be expected to play a large role in Fig. 5.9-Right.

Finally, the heat flux can also be computed from the two experimental
VDFs of Fig. 5.8, and is compared to the analytical one in Fig. 5.10. It
should be stressed that, since only two experimental points are available,
this comparison is merely indicative.

5.2.4 Notes: beyond monoenergetic ion birth

Monoenergetic ion birth was described to create a sharp discontinuity in
both the low and high-velocity sides of the axial VDF. As seen, this effect
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Figure 5.10: Heat flux from the analytical VDF (red line) and two experimental points
(symbols).

has little importance in the acceleration region, but may be important in
the first part of the ionization region, for low values of the electric field.
Considering the VDF in the ionization region (marked by (i) in Fig. 5.11,
whose position is xi), and assuming for simplicity a strictly positive electric
field, the VDF at such location will be determined by three contributions:

1. Ions created for x < xi contribute to the red (positive-velocity) side
of the VDF at xi;

2. Ions created for x > xi but having a sufficient negative velocity to
overcome the electric field may backstream up to position xi and will
contribute to the blue part (negative velocity) of the VDF;

3. The same ions will eventually be stopped by the electric field and
be re-accelerated towards the exit, reaching again position xi at later
times and contributing to the positive velocity side.

Figure 5.11: Ion trajectories in the phase space for a positive electric field.
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A generalization of the monoenergetic model could be formulated by as-
suming injection from a local Maxwellian distribution. However, such a
model should carefully take into account the aforementioned contributions.

5.3 A fluid model with ad hoc heat flux closure

As shown in the previous sections, the ion axial VDF is strongly non-
Maxwellian. This section aims at formulating a simple fluid model that can
profitably reproduce such non-equilibrium. Given the collisionless nature
of the ion flow and the electrostatic acceleration, the continuum assump-
tion is questionable. Therefore, in place of the Fourier’s formula for the
heat flux, an ad hoc expression is derived by assuming a shape for the VDF.

5.3.1 Derivation of the fluid equations

As discussed in Chapter 2, a generalized moment equation, Eq. (2.29) can
be obtained by computing averages of the kinetic equation. For collision-
less and unmagnetized ions, and considering the mentioned symmetry as-
sumptions, Eq. (2.29) becomes

∂n 〈ψ〉
∂t

+
∂

∂x
[n 〈vxψ〉] =

nqE

m

∂ 〈ψ〉
∂vx

+

〈
δψ

δt

〉∣∣∣∣
r

, (5.11)

where the last term at the right hand side represents the variation of the mo-
ment associated to ψ due to production of ions (“r” for reactions). The op-
erator 〈•〉 represents an average of quantity • over the distribution function
f(vx, vy, vz). As the aim is obtaining a simple set of governing equations
for the axial quantities, we choose ψ = m(1, vx, v

2
x/2), and this leads to

• The continuity equation;

• One equation for the momentum in direction x;

• One equation for the energy associated to the x-component of the par-
ticle velocity, ρex = ρu2

x/2 + Pxx/2;

Note that writing equations for the x-component of the particle velocity
alone is conceptually equivalent to considering a gas with one single trans-
lational degree of freedom, whose adiabatic constant would be γ = 3,
whose total energy is ρex = ρu2

x+Pxx/(γ−1). In this formulation, only the
axial component of the pressure tensor Pxx appears. As ions are assumed
to be a perfect gas, the axial temperature and pressure will follow the re-
lation Pxx = nkBTx. The resulting governing equations can be written in
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conservative form, defining a vector of conserved variables U , the fluxes
F and the source termG,

∂U

∂t
+
∂F

∂x
= G , (5.12)

with

U =

 ρ

ρux
1
2
ρu2

x + 1
2
Pxx

 , F =

 ρux

ρu2
x + Pxx

1
2
ρu3

x + 3
2
Pxxux +Qx

 . (5.13)

The only closing moment in such problem is the scalar quantityQx, defined
as

Qx(x) =

˚ +∞

−∞

m

2
v3
xf(x, vx, vy, vz) d3v =

ˆ +∞

−∞

m

2
v3
xfx(x, vx) dvx .

(5.14)
It should be noted that a factor 1/2 was embedded in the definition of

Qx, differently from the definition employed in Chapter 2. Also note that,
differently from the usual definition of the heat flux vector, the quantity Qx

considered here only includes contributions from the axial velocity vx. The
source terms G are also obtained as simple averages from Eq. (5.11), and
are composed by a contribution from the electric field and a contribution
due to the chemical source. Ions are created from the neutrals population,
with an average momentummun and an average energymnu

2
n/2+kBTn/2.

G =

 0

nqE

nquxE

+

 mS

mSun

S
(

1
2
mnu

2
n + 1

2
kBTn

)
 , (5.15)

with S = S(x) the assigned ionization profile measured in [m−3s−1] and n
the ion number density.

5.3.2 Heat flux closure

The system of equations needs a closure for the heat flux Qx, as a function
of the lower moments. As the heat flux measures the skewness of the distri-
bution function, it is unlikely that the Euler adiabatic closure Qx = 0 could
describe the strongly asymmetric ion VDFs. Instead, this section proposes
an ad hoc closure that accounts for this skewness.

The simplest geometrical shapes that approximate the asymmetry of the
ions VDFs are polynomials of order p of the velocity, limited between two
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velocities VA and VB. For the sake of formulating a closure, the axial VDF
is approximated as

fx(vx) ≈ f (p)(vx) =

{
a(vx − VA)p for vx ∈ [VA, VB]

0 otherwise ,
(5.16)

where a, VA, VB depend on the position x and p is a fixed constant of the
model. The values p = 1, 2, 3 correspond to approximating the axial VDF
with a triangle, a parabola and a cubic function, with support [VA, VB]. For
example, the triangular distribution is shown in Fig. 5.12, with the addi-
tional definition of the distribution width L = |VB − VA|. It should be
stressed that the present approximation is limited to the axial VDF, and
no assumption is being made on the vy and vz axes, whose marginal VDF
could assume whatever shape.

Figure 5.12: Triangular approximation (p = 1) for the axial VDF.

The definition in Eq. (5.16) is built on three parameters, a, VA and VB
(for a chosen order p defined a priori). These parameters are directly con-
nected to the density, average velocity and temperature of such distribu-
tions, and this allows us to ultimately write the heat fluxQp

x as a function of
such moments. The calculations will be shown here for the case of a cubic
function, where p = 3, since this case showed the best accuracy. The other
cases are analogous. First, the number density is obtained as

n =

ˆ +∞

−∞
fx(vx) dvx =

ˆ VB

VA

a(vx − VA)3 dvx =
aL4

4
. (5.17)

The average axial velocity reads

ux =
1

n

ˆ +∞

−∞
vxfx(vx) dvx =

ˆ VB

VA

vxa(vx − VA)3 dvx , (5.18)

which is easily integrated by introducing the change of variables ξ = vx −
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VA, with ξ ∈ [0, L]. After substituting the number density, this gives{
VA = ux − 4

5
L ,

VB = ux + 1
5
L .

(5.19)

Finally, the temperature allows us to obtain an expression for the width L,

ρex =
Pxx
2

=
nkBTx

2
≡
ˆ VB

VA

ma

2
(vx − ux)2 (vx − VA)3 dvx , (5.20)

where the same change of variable done before gives

L =
√

75
2
kBTx/m . (5.21)

These results completely define the approximated VDF, given the lower
moments n, ux and T . The same calculations can be done for a generic
order p. In the following, we use the following notation: the subscript
“(p)”, refers to the order of the method, while when “p” appears alone, it
refers to the numerical value. This results in

a(p) = (p+ 1) n L−p−1
(p) , (5.22a){

VA,(p) = ux − p+1
p+2

L(p)

VB,(p) = ux + 1
p+2

L(p)

. (5.22b)

L(p) =

√√√√kBTx
m

[
p+ 1

p+ 3
−
(
p+ 1

p+ 2

)2
]−1

. (5.22c)

Figure 5.13: Triangular (p = 1, blue dot-dashed lines), parabolic (p = 2, orange dashed
lines) and cubic (p = 3, green solid lines) approximations compared to the PIC VDF
(black thick dashed lines).

Fig. 5.13 compares the triangular, parabolic and cubic approximations
and the PIC VDFs at selected locations. The approximations appear rather
rough, however, it should be noted that (i) the position of the VDFs’ peak
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is reasonably well captured by the position VB, especially for the cubic
closure; (ii) what really matters in terms of the closure is the heat flux Qx,
not the VDF per se.

As done for the lower moments, the heat flux for a polynomial VDF is
obtained from the kinetic definition,

Qx,(3) =

ˆ VB

VA

ma

2
(vx − ux)3(vx − VA)3 dvx = − 2ρ

875

(
75 kBTx

2m

)3/2

.

(5.23)
This gives the required closure Qx,(3)(ρ, Tx). As expected, since the heat
flux is a central moment, it does not depend on the average velocity ux. For
a generic p,

Qx,(p) =
ρL3

(p)

2

[
p+ 1

p+ 4
− 3

(p+ 1)2

(p+ 2)(p+ 3)
+ 2

(
p+ 1

p+ 2

)3
]
. (5.24)

Note that, whatever the value of p, the heat flux is proportional to the VDF
width L to the power of 3. Since L ∝

√
T , one has that Qx ∝ T 3/2, as

physically expected.
A preliminary verification of such closures can be obtained even without

running a full fluid simulation. Indeed, it is possible to extract the moments
ρ, Tx from the PIC simulation and plug them into the closures for Qx, com-
paring the approximated heat flux to the PIC heat flux. This is shown in
Fig. 5.14 for the conditions of test case (A) (see Section 5.2.2). The tri-
angular closure (p = 1) reproduces a qualitatively correct heat flux, but
misses the peak by roughly a factor 2. The parabolic (p = 2) and cubic
(p = 3) closures improve the accuracy further. We now focus on the case
of p = 3. Higher orders will not be investigated.2

The developed approximations appear to work well in the acceleration
region, but their validity is questionable inside the ionization region or near
the anode. The next section will address these issues.

Correction for negative and low velocities

The formulated closures implicitly assume that the ion velocity ux is pos-
itive. In order to describe regions of negative ion velocity (as may be the
case in certain regions of Hall thruster channels [90]) one would need to
mirror the polynomial distributions, such as to make them face the nega-
tive axis. This is done by simply including a sign(ux) function in the heat

2Indeed, it is likely that the accuracy is strongly dependent on the considered test case, and it makes little
sense to be excessively specific at this stage.
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Figure 5.14: Approximated polynomial heat fluxes (lines with symbols) and PIC heat flux
(black circles) for the conditions of test case (A) of Section 5.2.2.

flux. However, this introduces an issue, namely, Qx would jump from a
positive to a negative value around a point of velocity inversion. Instead,
what we would intuitively expect from the previously developed model is
that, when the velocity reverses, the VDF will be sort of symmetric, with a
zero heat flux. Moreover, whenever the average velocity is small (or any-
way lower than the thermal speed) the assumption of a polynomial VDF
becomes questionable, as the distribution function may be strongly influ-
enced by the (often Maxwellian) ion birth distribution.

To embed such effects into the model, we introduce an arbitrary limiting
on the heat flux. First, we define the parameter ∆ = |VB − ux| (with
∆ = L/3, L/4 and L/5 for p = 1, 2, 3 respectively). This parameter is
ultimately a measure of the thermal speed. Then, we arbitrarily decide to
limit the heat flux whenever ux < 2∆, meaning that the limiting will be in
place for somehow subsonic ions and will vanish in the limit of hypersonic
ions. The simplest choice consists in a linear function, where the limited
heat flux would read

Qlin. lim
x,(p) =

{
sign(ux)

|ux|
2∆

Qx,(p) if |ux| < 2∆ ,

sign(ux) Qx,(p) otherwise .
(5.25)

However, a smooth limiting may be preferable (both for numerical rea-
sons and to prevent unexpected unphysical results). One possibility is thus
employing a sigmoid function such as the error function erf(χ). In such
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case, we define χ = ux/∆ (that will result in a limiting whenever ux . 2∆)
and the limited heat flux reads

Qerf lim
x,(p) = sign(ux) erf (|ux|/∆) Qx,(p) . (5.26)

Figure 5.15: Linear (dashed line) and erf (solid line) limiting strategies.

A graphical comparison of the two limiting strategies is given in Fig. 5.15.
The latter expression, together with the choice p = 3, gives the best results
among the considered test cases. The suggested heat flux closure is there-
fore:

Qx = −sign(ux) erf

(
|ux|
∆

)
2ρ

875

(
75 kBTx

2m

)3/2

. (5.27)

As anticipated, the effect of the limiting is particularly important for low
velocities. This is shown in Fig. 5.16, that magnifies the previous Fig. 5.14
in the region of velocity inversion.

5.3.3 Comparison with PIC simulations

The fluid equations of Eq. (5.12) with the heat flux closure of Eq. (5.27) are
here compared to the azimuthally averaged moments of the PIC test cases
(A), (B), (C) of Section 5.2.2.

The electric field and ionization profile are taken from Fig. 5.4. The
shaded region in Fig. 5.4 is excluded from the domain, and only the region
of positive velocity is simulated. This choice is necessary due to the test
case assumptions. Indeed, by conservation of mass, a fluid model would
always predict (at steady state) a singularity in the density whenever the ve-
locity goes to zero, creating issues at the point of velocity inversion. Such
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Figure 5.16: Proposed heat flux closures and PIC heat flux. Magnification of Fig. 5.14.
The p = 3 corrected case is the closure of Eq. (5.27).

singularity does not affect particle-based simulations.3 In any case, crop-
ping the domain as shown does not have any impact on the validity of the
solution. The present method can be easily employed in a fully coupled
multi-fluid plasma simulation without taking such precautions.

The fluid equations are solved with the finite volume method, with sec-
ond order spatial accuracy obtained by van Leer’s MUSCL method, HLL
numerical fluxes and van Albada slope limiter. The solution is marched in
time until convergence with a first order point-implicit Euler scheme. Note
that the heat flux closure would alter the eigenvalues of the fluxes Jaco-
bian, and would thus influence the maximum and minimum wave speeds
to be employed in the HLL scheme. A possibility consists in computing
numerically the Jacobian’s eigenvalues. A less rigorous option would be
treating the heat flux derivative as a source term, and discretizing it with
centered finite differences. Both approaches have been tested and did not
bring noticeable differences.

A comparison with the PIC test cases is given in Fig. 5.17. The adiabatic
closure (Qx = 0) leading to the Euler equations shows able to retrieve ac-
curately the density and average velocity, due to the low ion pressure for the
considered case. However, a significant error appears in the pressure field.
The heat flux closure of Eq. (5.27) improves the situation and produces a
pressure field much closer to the target PIC results.

3Particle-based simulations are always unsteady at the particle level, and anyway the probability of creating
particles with exactly a zero velocity is small.
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Figure 5.17: Azimuthally averaged moments from the PIC simulations (symbols) and so-
lution of the fluid equations: Euler equations with zero heat flux (blue dashed line) and
heat flux closure of Eq. (5.27) (green line).

5.4 Conclusions

This chapter was devoted to the study of the axial VDF for collisionless ions
in Hall thrusters, and serves as a preliminary analysis for the next chapters,
where ion modeling will be approached using the maximum-entropy clo-
sure.

An analytical solution of the kinetic equation for the axial VDF was de-
rived, based on a classical result by Tonks & Langmuir [183]. Such solution
showed remarkable accuracy if compared to PIC simulations of Charoy et
al. [50], in terms of both the VDF itself and its moments. A comparison
with the experimental results of Mazouffre & Bourgeois [178] was also
attempted. However, this task is made more complicated by the uncertain-
ties in the electric field measurements, and particularly by the presence of
breathing mode oscillations. Nonetheless, by considering the magnitude of
the latter effect, the inaccuracies in the analytical model could be explained
to a satisfactory degree.

A fluid model was then formulated, and a non-Fourier closure was pro-
posed, based on approximating the axial VDF by a polynomial function.
This led to the formulation of an algebraic closure, that allows us to com-
pute the heat flux from the lower order moments, ρ, ux and Tx. A numerical
solution of the fluid equations with such closure showed a good matching
with the PIC results, and a superior accuracy with respect to the simpler
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Euler adiabatic closure. As a final note, we shall stress that while a “cold
ions” formulation is often sufficient for retrieving the ion velocity profile in
simple 1D cases, an accurate reproduction of the pressure profile may play
an important role in a number of circumstances, such as in determining the
saturation of instabilities, due to ion trapping (see for example [48, 58]).
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CHAPTER6
Maximum-entropy modeling of ions

As discussed in the previous chapter, the low collisionality of ions inside
Hall thrusters, together with a strong accelerating field, causes the VDFs
to deviate from the equilibrium Maxwellian. A phenomenological fluid
formulation was derived in Chapter 5 to describe the evolution of axial
quantities, even out of equilibrium. However, such formulation is very
specific and a generalization to different kinetic phenomena characterizing
Hall thrusters (such as wave-trapping, happening in the azimuthal direction
in presence of instabilities [58,59]) would require further ad hoc modeling.

The advantage of employing a general formulation, such as a moment
method, is to provide a unified framework, that automatically adapts to
different types of non-equilibrium. The aim of this chapter is to investigate
how well the order-4 maximum-entropy method (in its one-dimensional 5-
moment version or in the full 14-moment form) can reproduce different
non-equilibrium situations, commonly arising in low-temperature plasmas.

As did in Chapter 5, all cases discussed in this chapter consider ions
only. Electrons are not explicitly simulated, but instead an electric field and
an ionization profile are imposed in space. Besides simplifying the analy-
sis, this allows for a direct comparison between kinetic and fluid methods,
where additional sources of error may be introduced due to different elec-
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trons modeling.
Due to the low-pressure conditions, the numerical simulations presented

in this chapter are performed using scaled units, where picograms are used
in place of kilograms, and the remaining units are chosen accordingly, as
discussed in Section 3.3.

First, in Section 6.1, the maximum-entropy equations describing colli-
sionless ions are recapped. The equations are then applied, in Section 6.2,
to the very same case of Chapter 5, describing the axial ion evolution in a
Hall thruster channel. Section 6.3 then investigates the classical problem of
a Tonks-Langmuir sheath, describing a wall-bounded plasma. Sections 6.4
and 6.5 consider charged particles inside a stationary or moving electric
field wave, showing ion wave trapping. This case is then extended to two-
dimensions in Section 6.6, that aims at investigating traveling azimuthal
waves in a 2D Hall thruster-like geometry, in presence of an assigned axial
field.

6.1 Order-4 maximum-entropy systems for collisionless and
unmagnetized ions

The general theory regarding maximum-entropy moment methods was dis-
cussed in Section 2.4. This section describes the application of such system
to collisionless and unmagnetized ions.

6.1.1 Governing equations for ions: 5-moment system

For collisionless and unmagnetized particles in 1D geometries, the three
velocity components are often decoupled, and one may write governing
equations for a single degree of freedom. In such case, the order-4 max-
imum-entropy system is composed by 5 equations. In conservative form,
we write

∂U5

∂t
+
∂F5

∂x
= G5 , (6.1)

where the vector of conserved variables U5 and the fluxes F5 were defined
in Section 2.4.2. For collisionless and unmagnetized ions, the source term
G5 only includes the (x-component of the) electric field and chemical pro-
duction terms due to ionization: G5 = GE

5 + Giz
5 . The electric field GE

5

term was developed in Section 4.5.
The ionization termGiz

5 depends on the considered reactions and is dis-
cussed in the following. We consider that ions are created from a back-
ground of neutral particles only due to electron-neutral collisions. Ioniza-
tion due to neutral-neutral collisions are neglected due to the low tempera-
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ture of the background gas. Neutrals are assumed to be Maxwellian, char-
acterized by an average velocity un, temperature Tn and density nn. Such
quantities may depend on the position x, but will be assumed uniform in
the present chapter.

We define by gMn = gMn (v;un, Tn) the normalized Maxwellian distri-
bution of neutrals, that integrates to unity. When an ionizing electron-
neutral collision happens, we assume that the neutral loses one electron
without changing its velocity, due to the small electron-to-neutral mass ra-
tio.1 Therefore, the distribution of ion birth is characterized by the very
same normalized distribution gMn . The 1D1V kinetic equation for ions thus
reads

∂fi
∂t

+ v
∂fi
∂x

+
qiE

mi

∂fi
∂v

= Siz g
M
n (6.2)

with Siz = Siz(x) the ionization profile expressed in [ions/s/m3]. The ion-
ization source term for the moment 〈ψi〉 of the microscopic ion quantity ψi
(as defined in Chapter 2) reads:

∂ 〈ψi〉
∂t

∣∣∣∣
iz

= Siz

ˆ +∞

−∞
ψi g

M
n dv =

Siz

nn

ˆ +∞

−∞
ψi fn dv , (6.3)

where the neutral distribution function fn = nng
M
n was introduced. The

5-moment system is obtained by the choice ψi = mi(1, v, v
2, v3, v4). Since

we assume that a neutral turns into an ion by a simple loss of an electron,
without changing its velocity, we have ψi = ψnmi/mn (with mi/mn ≈ 1),
and the source terms thus become

∂ 〈ψi〉
∂t

∣∣∣∣
iz

= · · · = Siz

nn

mi

mn

ˆ +∞

−∞
ψn fn dv = Siz

mi

mn

〈ψn〉
nn

. (6.4)

In other words, the source for the moment 〈ψi〉 of the ion population is the
value of the same moment for the neutral population, 〈ψn〉, normalized with
respect to the neutral number density and corrected by the ratio mi/mn.
The ionization source terms for ions finally read

Giz
5 =

∂U5

∂t

∣∣∣∣
iz

= Siz(x)
mi

mnnn


ρn

ρnun

ρnu
2
n + Pn

ρnu
3
n + 3unPn +��qn

ρnu
4
n + 6u2

nPn + 4u��qn + rn

 , (6.5)

1For a kinetic analysis of the problem, the reader can refer to [189], where an analysis of the scaling is also
performed.
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with qn = 0 and rn = 3P 2
n/ρn (since neutrals are Maxwellian) and with

Pn = nnkBTn. More concisely,

Giz
5 =

∂U5

∂t

∣∣∣∣
iz

= Siz(x)
mi

ρn
U5,n . (6.6)

6.1.2 Governing equations for ions: 14-moment system

Beyond the 1D1V approximation, one may go for the full 14-moment sys-
tem. We write the system (in two dimensions) in conservative form as

∂U14

∂t
+
∂F14,x

∂x
+
∂F14,y

∂y
= G14 , (6.7)

where the vectors of conserved variables U14 and fluxes F14,x,y were de-
fined in Section 2.4.2. The source terms G14 = GE

14 +Giz
14 are composed

by the electric field contribution (derived in Section 4.5) and the ionization
source. The latter is obtained in the very same way as discussed in the
previous section for the 5-moment case, and ultimately reads

Giz
14 =

∂U14

∂t

∣∣∣∣
iz

= Siz(x)
mi

ρn
U14,n (6.8)

with U14,n the very same 14 moments as in the ion description, but evalu-
ated for the neutral population, at the temperature Tn, average velocity un,
number density nn, and where (since neutrals are assumed Maxwellian),
qn = 0 and Riijj,n = 15P 2

n/ρn.

6.2 Axial ion acceleration in a Hall thruster channel

As a first application of the maximum-entropy closure, we consider the
very same problem of Chapter 5, describing the axial accelartion of ions in
a Hall thruster channel. Since the problem is 1D1V, we solve the 5-moment
system of Eq. 6.1, thus considering only the axial ion velocity component.
Xenon ions are considered (mXe = 2.18× 10−25 kg), and the electric field
and ionization profile are these of test case (B) (see Section 5.2.2):

Siz(x) = S0 cos [π(x− xM)/(x2 − x1)] , (6.9)

with x1 = 0.0025 m and x2 = 0.01 m, xM = (x1 + x2)/2 and S0 = 2.62×
1023 m−3s−1. The electric field E(x) is imported from the PIC simulation.
The chemical production term due to ionization reactions was developed in
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Section 6.1.1 and is defined by a temperature of the background neutrals
Tn = 5802.3 K ≈ 0.5 eV and average velocity un = 0.

The numerical solution to the 5-moment system is obtained with a finite-
volume scheme, second order in space (Rusanov fluxes with wave speeds
estimation from [172], with MUSCL reconstruction and symmetric van Al-
bada limiter), marching in time until convergence. The boundary ghost
cells are set with a low value of the ion density and temperature, and a
velocity of 50 000 m/s leaving the domain (negative for the left ghost cell
and positive for the right one). Note that, due to the hyperbolic nature of
the equations (and the finite-volume framework), this choice does not im-
pose any Dirichlet boundary conditions, but merely allows for ions to freely
leave the domain.2

Figure 6.1: Evolution of axial quantities in a 1D Hall thruster channel, for the conditions
of test case (B) of Chapter 5.

A comparison of the 5-moment system to the Euler equations and to the
azimuthal average of the 2D PIC simulations is shown in Fig. 6.1. The 5-

2An alternative option could consist in setting the ghost cells dynamically in time, fixing the derivative of the
solution at the boundaries.
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moment system appears to improve strongly both the Euler equations and
the ad hoc approximation previously built in Chapter 5.

6.3 Tonks-Langmuir sheath

In this section, the maximum-entropy closure is then applied to the study of
ion evolution inside a plasma sheath. A sheath appears whenever a plasma
interacts with a solid wall [5, 190] and is due to the cumulation of negative
charges at an insulating surface. Indeed, the thermal velocity of electrons is
often much larger than that of ions, due to the much lower mass and higher
temperature (the latter being particularly true in low-temperature plasmas),
and this results in a higher electron flux at the walls. Such charge causes a
charge unbalance in the plasma (with an excess of positive charges near the
wall) and neutrality is restored at a distance of several Debye lengths λD.
Under the assumption of collisionless ions, the problem takes the name af-
ter Tonks and Langmuir, who have first obtained an analytical model [183].

6.3.1 Description of the case

Since this case is not strictly related to electric propulsion but rather to gen-
eral plasma physics, we consider argon ions in this section, with mAr+ =
6.6337 × 10−26 kg. While the sheath forms due to the electrons thermal
velocity, we are here interested only in the description of ions. Therefore,
the Debye length and the resulting electric field profile will be imposed.
We consider a one-dimensional domain x ∈ [0, L] with L = 0.1 m, and
assume that the right and left walls are at the same potential for symmetry.
At a physical level, this configuration could represent a radio-frequency ex-
cited plasma between insulating walls (see for example [190]). In order to
study a sheath-like configuration, we shall employ a realistic potential dis-
tribution. Therefore, the electric potential profile is assumed to follow the
Child-Langmuir formula [190]:

φ(x) = −φ0

[
e−x/λD + e−(L−x)/λD

]
. (6.10)

Since we are only interested in a reasonable potential profile for the
sake of computing the ions evolution, we impose λD = L/10, and take
φ0 = 5 V. The latter value is reasonable for low-temperature plasmas and
could be estimated from the electron temperature as

φ0 ≈ −
kBTe
2 qe

log

[
mi

2πme

]
≈ 5 V , (6.11)
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where the electron temperature was taken as Te = 11604 K (thus corre-
sponding to 1 eV). In the present formulation, φ0 is assumed to represent
the potential difference between the walls and the plasma bulk, the latter
being taken as zero in Eq. (6.10). In any case, any shift in the potential
does not change the electric field, that is obtained by differentiation and
only the difference φ0 matters. The electric field thus reads

E(x) = − φ0

λD

[
e−x/λD − e(x−L)/λD

]
. (6.12)

The electric field and the potential are shown in Fig. 6.2.

Figure 6.2: Imposed potential and electric field for the Tonks-Langmuir plasma test case.
Note that the electric field is zero at the symmetry plane.

A production term for ions is imposed, uniform along the domain. Its
values is arbitrarily fixed to Siz = 5 × 1020 [particles/m3s]. This value is
reasonable, as can be seen from the following check. First, the resulting
plasma density will be in the order of n ≈ 1016 m−3. Therefore, assum-
ing an electrons temperature, one can estimate the density of background
neutrals that would guarantee such ionization term. Considering then the
ion-neutral cross section and such neutral density, one can confirm that ions
are indeed rather rarefied in this condition.

Ions are assumed to be created from a cold and slow neutral background,
such that the kinetic equation reads

∂fi
∂t

+ v
∂fi
∂x

+
qiE

mi

∂fi
∂v

= Siz δ(v) , (6.13)

with δ(v) the Dirac delta function.

6.3.2 Kinetic solution

As mentioned, an analytical solution is available for Eq. (6.13), as also dis-
cussed in Chapter 5. Nonetheless, a numerical solution is here employed,

125



Chapter 6. Maximum-entropy modeling of ions

solving the kinetic equation with the deterministic solver discussed in Sec-
tion 3.2.5. on a phase space grid composed by 1000 × 1000 cells, with
a second order accuracy in space and velocity, and marching in time until
convergence. The time integrator is a first order forward Euler scheme (the
time integration error vanishes at convergence, anyway). The VDF is ini-
tialized to zero in the domain, and is set to zero in the boundary ghost cells,
allowing for ions to flow freely out of the domain.

The numerical solution is shown in Fig. 6.3. Clearly, the solution is
symmetric. If one considers only half of the domain, the problem is quali-
tatively similar to the previously analyzed creation and acceleration of ions
into the acceleration region of a thruster channel. Indeed, also in this case,
the VDF arises from the interplay between electrostatic acceleration and
ion chemical production sources. The VDF shows a peak at the high-veloc-
ity side, that is followed by a plateau (or a thick low-velocity tail), arising
from the production of ions all throughout the domain. A logarithmic scale
is employed in the figure, as to avoid the colors saturation due to the leading
peak. Moments are computed numerically from the kinetic solution and are
shown in Fig. 6.4.

Figure 6.3: Kinetic solution in the phase-space, logarithm of the distribution function.

6.3.3 5-moment maximum-entropy solution

The problem is then approached using the 5-moment system of Eqs. (6.1).
The chemical production source terms are these of Eq. (6.5), where neutrals
have a zero average velocity un = 0 and are assumed to be cold, implying
that Pn → 0 and rn → 0.
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The solution is obtained on a grid of 2048 cells, first order in space (fine
enough to provide space convergence). A second order solution based on
van Leer’s MUSCL scheme was not employed due to the density singularity
that appears at the point of zero velocity. This can be seen in Fig. 6.4 as
a peak in the density profile. Such issue arises due to the 1D formulation
of the problem, and is worsened by assuming a zero birth temperature for
ions (reducing diffusion) and by using a fixed electric field. Employing a
first order scheme provides some numerical dissipation in that region, and
contributes to reduce such unphysical behavior.

An initial density of ni0 = 1010 [ions/m3] is chosen, together with a
temperature of 300 K, zero heat flux and equilibrium for the order-4 mo-
ment, r0 = 3P 2

0 /ρ0. The left and right ghost cell values are assigned a
density equal to the initial density, and a velocity of 10 000 m/s leaving the
domain. A time step ∆t = 0.4 ns allows us to respect the CFL condition
and to properly follow the ionization rate. The solution is integrated in time
with an explicit forward Euler scheme, and the simulation is completely
converged after roughly 0.2 ms.

The solution is shown in Fig. 6.4 and shows a very accurate match with
the kinetic solution for all moments. Fig. 6.4-Bottom-Right shows the so-
lution in moment space, as a function of the dimensionless moments q?

and r?. Due to the strong acceleration, the VDF is deformed and assumes
a strongly asymmetric and peaked shape. Correspondingly, the 5-moment
solution approaches the physical realizability boundary near the right and
left domain boundaries. In the middle of the domain, where the electric
field is low, the solution appears to cross the Junk subspace. This may be
an artifact of the grid size though, that appears to be fine enough to provide
space accuracy, but results rather coarse in such region of moment space.
This was not investigated further, as the presence of the unphysical density
peak at the symmetry line would not allow us anyway to obtain a definite
answer.

6.3.4 Euler system solution

Finally, the system is solved using the Euler system of equations, with adi-
abatic constant γ = 3 as to represent one single translational degree of
freedom. The boundary conditions are the same as for the 5-moment sys-
tem, and the source terms (in the cold and slow neturals limit) reduce to:

∂

∂t

 ρi

ρiui

ρiEi


∣∣∣∣∣∣∣
iz

= miSiz

1

0

0

 . (6.14)
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Figure 6.4: Tonks-Langmuir test case, comparison of maximum-entropy, Euler system and
kinetic solution.

We note that for the considered case, the Euler equations allow for a
reasonably accurate match with the kinetic solution, especially in the lower
order moments, as also discussed in the results of Chapter 5. Note that, in
Fig. 6.4, a value for the heat flux q and the order-4 moment r are shown also
for the Euler system, although it does not solve explicitly for them. These
values are taken from the Maxwellian VDF, that is implicitly assumed by
the Euler system formulation.

6.4 Ions in a stationary wave

In this section, we consider a periodic system with an imposed sinusoidal
longitudinal electric field. The kinetic solution for such problem is strongly
non-equilibrium and consists in a progressive rolling up (in phase space) of
the initial VDF, that eventually develops filamentation. This problem has
been studied extensively, and analytical kinetic solutions are available (see
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for example [191, 192]). Not only this test case is interesting per se, but
is also propaedeutic to the study of travelling waves that mimic azimuthal
instabilities in Hall thrusters.

6.4.1 Description of the case

Xenon ions are simulated, in a periodic one-dimensional domain with x ∈
[0, 0.01] m. Ions are initialized uniformly in the domain, following a 1D1V
Maxwellian VDF with zero average velocity and a temperature of 10 eV.
Since the domain is periodic, no ionization source term is used. An electric
potential is imposed, and reads

V = V0 cos(kx) . (6.15)

The wave number k is chosen as to have four peaks in the simulated do-
main, k = 2Nπ/L, with N = 4. The electric field is simply obtained by
differentiating the potential,

E = kV0 sin(kx) . (6.16)

Since the ion temperature was assigned, the electric potential amplitude
V0 determines the dynamics of the problem. Indeed, on a particle perspec-
tive, all ions with an initial energy εi < V0 (with εi expressed in [eV]) will
be trapped inside the electric field profile and will oscillate back and forth.
On the other hand, ions with energy εi > V0 will manage to overcome
the electric field barrier, but will be perturbed by it. Finally, the ions for
which εi � V0 will travel almost unperturbed by the electric field. Differ-
ent regimes are thus obtained for different values of the ratio of the initial
ion thermal energy over the electrostatic energy. We consider the two cases:

• Case 1) V0 = Ti [eV];

• Case 2) V0 = 5Ti [eV].

6.4.2 Kinetic solution

As mentioned, no chemical production source term is considered. There-
fore, the kinetic equation corresponds to the 1D1V Vlasov equation with
imposed electric field. The kinetic solution is obtained with the determin-
istic solver, with 2048×2048 grid cells in physical space and velocity, sec-
ond order in phase space and first order in time. The computations were
performed with different time steps and phase space grids as to ensure con-
vergence. The phase space grid needs to be rather refined, especially due to
the appearance of filamentation and therefore strong gradients.

129



Chapter 6. Maximum-entropy modeling of ions

Fig. 6.5 shows the kinetic solution for the case of V0 = Ti [eV], at
two different time steps. A logarithmic scaling is using in the figure, as to
highlight the tails. From the figure, it is clear that the particles constituting
the bulk of the initial VDF are strongly accelerated and such portion of
the VDF curls on itself, while the high-velocity tails (both positive and
negative) are perturbed but not trapped by the electric field.

Figure 6.5: Kinetic solution for V0 = Ti [eV] in phase space. Logarithm of the 1D1V
distribution function. The moments of this VDF will be shown in Figs. 6.8 and 6.9, in
the region highlighted in white.

Filamentation is seen to start after the VDF has done a 180◦ turn on itself
(time t ≈ 0.4 µs) and causes sudden spikes in the VDF, as clearly visible
from Fig. 6.5-Right. The situation becomes even worse as time goes by,
and the VDF keeps rolling and creating more spikes, as shown in Fig. 6.6.
A detailed reproduction of such kinetic behavior using moment methods
would likely require a quite large number of simulated moments. Eventu-
ally, for longer times, the number of spikes increases up to a point where
the solution appears to recover a Maxwellian-like appearance. Simulat-
ing such long times requires some additional care on the time integration
(clearly, higher order is better) and especially an even more refined grid as
to resolve all peaks and also minimize numerical dissipation.

The kinetic solution for the case of V0 = 5Ti [eV] is shown in Fig. 6.7.
The result is qualitatively analogous to the previous case, except that virtu-
ally all particles are trapped by the electric field, and this results in an even
more extreme filamentation.
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Figure 6.6: Kinetic solution for V0 = Ti [eV] in phase space, at t = 2µs. This simulation
was performed on a smaller domain, as to allow for a finer grid and to capture more
accurately the filaments.

Figure 6.7: Kinetic solution for V0 = 5Ti [eV] in phase space. Logarithm of the 1D1V
distribution function. The moments of this VDF will be shown in Figs. 6.10 and 6.11,
in the region highlighted in white.
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6.4.3 5-moment and Euler solutions

The solution to the 5-moment and Euler systems are obtained on a space
grid of 2048 cells, second order both in space and time. The ionization
source terms are put to zero for this test case. The results are compared to
the kinetic solution in Figs. 6.8 and 6.9 for the V0 = Ti [eV] case and in
Figs. 6.10 and 6.11 for the case of V0 = 5Ti [eV]. Since the solution is
periodic, only a portion of the domain is shown in such figures, as to make
the results more clear.

The lower moments appear well reproduced by both the Euler and 5-
moment systems at early times (t ≈ 0.1 µs), while the Euler system al-
ready shows some inaccuracy in the higher moments. As time passes, for
t = 0.2 µs, the accuracy of the 5-moment system is still high, while the
Euler solution starts to show some artifacts and shock waves. Eventually,
as non-equilibrium keeps increasing, even the 5-moment solution starts to
deviate from the kinetic solution, especially in terms of the lower moments.
Remarkably, though, the higher moments maintain a higher accuracy even
for relatively long times. This behavior can be observed for both test cases.

As may be expected, the plot in moment space q? − r? shows that the
second case (V0 = 5Ti [eV]) is much farther from equilibrium than the pre-
vious one. Indeed, in the second case, the moment space trajectory reaches
both higher values for q? and r?, and also gets much closer to the physical
realizability boundary. The Junk subspace appears to be crossed already at
early times. In terms of the interpolative maximum-entropy closure, we can
expect the parameter σ to assume very small values even far from equilib-
rium, and correspondingly we expect wave speeds to deviate strongly from
the equilibrium values. This makes a time-explicit numerical solution of
the 5-moment system much more stiff than its Euler counterpart.

In terms of long-time solution, the kinetic equation would predict an
increasing number of filaments, with an increasingly small thickness, up
to the point where the VDF could appear macroscopically analogous to a
Maxwellian. Therefore, as a future work activity, we suggest the study of
the asymptotic behavior of the 5-moment system for this problem.
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Figure 6.8: Case V0 = Ti [eV]; first three moments at different times. Green sym-
bols+line: kinetic solution. Blue dashed line: Euler. Red line: 5 moments.

133



Chapter 6. Maximum-entropy modeling of ions

Figure 6.9: Case V0 = Ti [eV]; heat flux, order-4 moment and trajectory in moment space
at different times. Green symbols+line: kinetic solution. Blue dashed line: Euler. Red
line: 5 moments.
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Figure 6.10: Case V0 = 5Ti [eV]; first three moments at different times. Green sym-
bols+line: kinetic solution. Blue dashed line: Euler. Red line: 5 moments.
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Figure 6.11: Case V0 = 5Ti [eV]; heat flux, order-4 moment and trajectory in moment
space at different times. Green symbols+line: kinetic solution. Blue dashed line:
Euler. Red line: 5 moments.
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6.5 Ions in a travelling wave

In this section, we investigate the behavior of ions inside a travelling elec-
tric field wave. The test case setup is identical to the one described in the
previous section, except that a non-zero phase velocity is added into the si-
nusoidal electric field profile. The same phenomenology as for the previous
test case will be observed, but this time acting on a tail of the VDF rather
than on its bulk, and thus showing ion-trapping. The latter has been iden-
tified as one possible mechanism for the saturation of azimuthal electron
drift instabilities in Hall thruster discharges [58], making the present test
case particularly interesting in view of further more complete applications.

As for the previous test case, the potential profile is in the form

V (x, t) = V0 cos (ωt+ kx) , (6.17)

where x could represent the azimuthal direction in a Hall thruster geometry.
By differentiation, the electric field reads

E(x, t) = V0k sin (ωt+ kx) , (6.18)

A domain x ∈ [0, L] is employed, with L = 0.01 m. To simulate four
electric field peaks in the domain, we consider N = 4 and

k = N2π/L ≈ 2513.27 m−1 (6.19)

These choices allow us to select a regime that somehow resembles the
oscillations observed in the numerical simulations of Boeuf & Garrigues
[49], at least for their lower current test cases. An analogous test case is
performed by Charoy et al. [50]: by estimating the value of V0 from this
reference, we see that V0 ≈ Ti [eV]. Therefore, after having arbitrarily
chosen T eV

i = 10 eV, we select V0 consistently as V0 = 10 V.
From the numerical dispersion relation reported in [50], the wave ap-

pears to be traveling at roughly twice of the ion thermal speed. The phase
velocity is thus set to

vp =
ω

k
= 2

√
8kBTi
πm

, (6.20)

resulting in ω ≈ 21.745 MHz. The choice of these values is highly approx-
imated, but gives anyway a reasonable starting point.

Kinetic, 5-moment and Euler simulations

The setup for the kinetic, 5-moment and Euler system simulations are the
same as described in the previous section.
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The kinetic solution is obtained on 2048 × 2048 cells, with a time step
of dt = 5× 10−11 s, and is shown in Fig. 6.12. The kinetic solution shows
the characteristic ion wave-trapping behavior, also observed in the self-
consistent PIC simulations.

Figure 6.12: Travelling electric field test case. Kinetic solution at three time steps.

Figures 6.13 and 6.14 compare the moments of the kinetic solution to
the 5-moment and Euler systems. The 5-moment system reproduces accu-
rately the kinetic solution from the beginning of the simulation up to 2µs,
while Euler already appears to deviate considerably. At later times, when
the phase-space distribution is gradually degenerating into spirals, the 5-
moment system still reproduces the general behavior, but progressively de-
creases its accuracy.

The high accuracy in the initial stages of the phase-space vortices for-
mation is highly encouraging. Considering for example the Hall thruster
case, ions produced in the channel will be accelerated towards the exit and
only briefly pass through the region where the wave appear. The instabil-
ity could thus saturate at a point that is somehow intermediate between the
formation and the full 1D phase-space spirals development. This problem
will be studied in the next section.
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Figure 6.13: Travelling electric field test case. Density, velocity and pressure at three time
steps. Symbols: kinetic solution. Red line: 5-moment system. Blue dashed line: Euler
system.
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Figure 6.14: Travelling electric field test case. Heat flux and order-4 moment at three time
steps. Symbols: kinetic solution. Red line: 5-moment system. Blue dashed line: Euler
system.
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6.6 Ions in axial-azimuthal 2D plane

The test case considered in this section combines the axial acceleration case
of Section 6.2 and the azimuthal waves considered in Sections 6.4 and 6.5.
A two-dimensional domain is here considered, open in the x–direction and
periodic along y. Xenon ions are simulated inside imposed electric fields,
and four different methods are compared:

i) A cold-ions (pressureless gas) approximation;

ii) The Euler equations;

iii) The 14-moment maximum-entropy system of equations;

iv) A particle solution of the kinetic equation.

The cold-ions approximation [193] consists in neglecting the pressure
contribution to the ion momentum equation, and was introduced in Sec-
tion 2.3.3. This eliminates the need to solve the ion energy equation. Such
approximation is often employed due to its simplicity (see for example
[90, 194–197]) and will be here compared to the more complete models.

6.6.1 Description of the case

As for the previous test cases, the domain size is taken to resemble the test
cases described in [49,50], also discussed in Section 5.2.2: x ∈ [0, 0.025] m
represents the axial direction of a Hall thruster channel and y ∈ [0, 0.0128] m
the azimuthal direction, assumed to be Cartesian for simplicity (infinite ra-
dius). The ionization source term has a cosine profile (limited between
positions x1 = 0.0025 m and x2 = 0.01 m),

S(x) =

{
S0 cos

(
π x−xM
x2−x1

)
ifx1 ≤ x ≤ x2

0 otherwise ,
(6.21)

with xM = (x1 + x2)/2. The value of S0 fixes the maximum ion current
density Jmax,

Jmax =

ˆ x2

x1

S(x) dx =
2 e S0

π
(x2 − x1) . (6.22)

A value of S0 = 6.62 × 1023 [ions/m3s] results in a maximum current of
Jmax = 200 A/m2. As mentioned in the original work [49], such value is
rather low. However, this choice does not impact the validity of the present
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analysis, as the electric field is not self-consistent but rather externally im-
posed. The ion creation happens from a background neutrals Maxwellian
distribution with a temperature of 0.5 eV, and a zero average velocity.

The imposed electric field is composed by a fixed longitudinal acceler-
ating field Ex with a Gaussian shape in x, and an azimuthal travelling wave
Ey, whose amplitude is lower than Ex by a factor α

E(x, y, t) = Ex(x) x̂+ Ey(x, y, t) ŷ ,

Ex(x) = E0 exp [−(x− x0)2/L2
0] ,

Ey(x, y, t) = αEx(x) sin(ωyt+ kyy) ,

(6.23)

with E0 = 50 000 V/m and α = 0.1. The Gaussian profile is centered
around x0 = 0.008 m and has a width L0 = 0.0025 m. The value of ky
is chosen as to show three peaks, ky = 3 × 2π/Ly, with Ly = 0.0128 m.
Finally, the frequency is arbitrarily chosen as ωy = 2 MHz. Note that for a
given value of ky, the choice of ωy sets the phase velocity of the azimuthal
wave. As discussed in the Sections 6.4 and 6.5, different wave speeds result
in different portions of the ion VDF being trapped in the electric field. We
can therefore expect different values of ωy to have different effects on the
degree of non-equilibrium. The electric field components at time t = 0 s
are shown in Fig. 6.15.

Figure 6.15: Imposed electric field at time t = 0 s. The Ey wave moves towards negative
values of y.

In the previous 1D periodic cases, the solution was seen to be unsteady,
and composed of VDFs progressively curling on themselves. In the present
2D case, ions are not strictly confined in the region of the azimuthal field,
but accelerate axially and eventually leave the domain under the effect of
the axial field. Therefore, the ultimate non-equilibrium reached at steady
state will result as a balance between wave-trapping (in the azimuthal field)
and axial acceleration. A periodic steady state is eventually reached, as

142



6.6. Ions in axial-azimuthal 2D plane

shown in the next sections.

6.6.2 Kinetic solution

A solution to the kinetic equation is obtained using a 2D PIC approach
with imposed fields. At each time step, a number of particles is injected
in the domain and is advected according to the imposed fields. For a given
ionization profile S(x), and a simulated volume V , the number of ions
produced in the simulated volume is

Ṅ =

ˆ
V

S(x) dx dy dz

[
ions

s

]
. (6.24)

In terms of a 2D particle simulation, we consider a fictitious z–dimension
of size Lz = 1 m. Considering that S(x) is uniform along y for the whole
length Ly, and only depends on x, the number of particles to be injected
during the time step dt is

Ndt = dt LyLz

ˆ Lx

0

S(x) dx = dt LyLz S0
2(x2 − x1)

π
. (6.25)

The particles must be injected following the S(x) cosine profile. This is
done as follows. A cosine distribution is first defined as

g(x) =

{
I−1 cos(ax+ b) if x1 ≤ x ≤ x2 ,

0 otherwise ,
(6.26)

with a ≡ π/(x2−x1), b ≡ −πxM/(x2−x1) (notice the negative sign), and
where the division by its integral I = 2(x2 − x1)/π makes the distribution
unitary. The cumulative distribution G(x) of Eq. 6.26 is easily computed,

G(x) =

ˆ x

x1

I−1 cos(ax+ b) dx = I−1

[
1

a
sin(ax+ b)− 1

a
sin(ax1 + b)

]
(6.27)

where G(x) = 0 for x < x1. This relation is easily inverted, since G(x)
is monotonic. By defining a uniformly distributed random number R1 ∈
(0, 1), we invert the previous relation and define

X =
1

a
sin−1 [aIR1 + sin(ax1 + b)]− b

a
. (6.28)

The quantity X is thus distributed as a cosine between x1 and x2 and rep-
resents the position at which a particle is to be created. Also, one should
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consider that the particle injection happens continuously in time. Once the
particle is created, a fraction of the time step is selected as R2dt, with
R2 ∈ (0, 1), sampled from a uniform distribution, and the particle is ad-
vected accordingly.

The time integration scheme is a simple first order forward Euler integra-
tor. A time step dt = 5×10−9 s proved to be small enough to make the time
integration error negligible. All particles reaching the x–boundaries are re-
moved from the simulation, while particles crossing the y–boundaries are
re-introduced periodically. Since no electric field is computed (but instead,
it is artificially imposed) and since all collisions are neglected, there is no
need to employ a grid in the computation. A grid is created only a pos-
teriori, during the post-processing, for the sake of grouping particles and
computing their moments.

6.6.3 Fluid simulations

The simulation is then repeated using fluid models, solving the pressure-
less gas (cold ions), the Euler equations and the 14-moment system. For all
cases, a grid of 640 × 320 cells is employed. The cold ions and Euler sys-
tems are solved using HLL fluxes, achieving second order space accuracy
by use of a MSUCL linear reconstruction and symmetric van Albada lim-
iter. However, the HLL scheme was shown to introduce some oscillations in
the maximum-entropy simulations (see Section 4.1.3), therefore a more dif-
fusive Rusanov scheme is employed. The higher diffusivity is reduced by
following the “partial-MUSCL” approach of Eq. (3.8), using β = 0.7 and
the symmetric van Albada limiter. Some attempts of employing a vanilla
MUSCL approach to the 14-moment system were done. However, this re-
sulted in some extreme non-equilibrium states (probably, much of which is
due to numerical error or oscillations), that would eventually limit the time
step to extremely low values, practically stalling the simulation. With the
simple modification of β = 0.7, the results are slightly more diffuse, but
the simulation ran faultlessly.

Along y, symmetric boundary conditions are imposed by use of two
layers of ghost cells at each side. At the left and right boundaries, the
density in the ghost cells is set to the low value of n0 = 1010 m−3 and with
a supersonic velocity of 20 000 m/s leaving the domain. No other boundary
condition is necessary for the pressureless gas system. For the Euler and 14-
moment systems, a temperature of 10 000 K is imposed in the ghost cells,
and other moments of the 14-moment system are at equilibrium. The same
conditions are imposed throughout the domain for the initial time t = 0,
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except that the velocity is assumed to be zero.
A second-order Midpoint Euler time integration is employed. The time

step was obtained by fixing the Courant number to 0.5. An upper limit
to dt = 10−9 s is anyway imposed due to the presence of the electrical
and chemical source terms, and this proved particularly important in the
starting phases of the simulation. As to speed-up the computations, GPU
acceleration is employed (see Appendix A). Double precision is employed
(strictly required for using the 14-moment closure), with 16× 8 threads per
block along x and y respectively.

6.6.4 Comparison of the results

All simulated systems quickly settle to a periodic solution that follows the
azimuthally travelling wave. After ions have been created in the ionization
region, they travel towards the positive-x direction by effect of the electric
field. In the meanwhile, the azimuthal field is responsible of compressing
them into streaks, as shown in Fig. 6.16.

Figure 6.16: Scheme of the expected solution. Ion streaks form due to the azimuthal
electric field Ey . The streaks move downwards, in phase with the wave. Colours:
contours of Ey .

The results obtained from the different methods are shown in Fig. 6.17
for the density and in Fig. 6.18 for the azimuthal velocity uy. The pres-
sureless gas system shows some δ-shocks, appearing as singularities in
the density. This is a known characteristic of weakly-hyperbolic systems
[193, 198, 199]. The Euler system on the other hand appears prone to re-
produce shock waves, even where they should not be present in the (fully
collisionless) PIC simulation. Indeed (as was discussed in Section 4.4 by
analyzing crossing rarefied jets), the Euler system cannot reproduce colli-
sionless crossing streams of particles, and always has them interacting. The
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“crossing” effect here is due to the sinusoidal azimuthal acceleration. On
the other hand, the 14-moment system appears to reproduce closely the PIC
results. A good accuracy is shown for other moments as well, as shown in
Fig. 6.19.

Figure 6.17: 2D ion evolution inside an axial and a travelling azimuthal electric fields.
Number density at time t = 50 µs as predicted by different models.

6.7 Conclusions

In this chapter, we have investigated the accuracy of the 5 and 14-moment
maximum-entropy systems for problems related to plasma physics and Hall
thrusters. The method was seen to bring drastic improvements over the Eu-
ler equations for all tested situations, often reproducing the kinetic results
very accurately. In all cases, a profitable solution was obtained, despite the
strong non-equilibrium arising from the electric field and the collisionless
assumptions. In particular, the 2D test case suggests that the 14-moment
maximum-entropy method could be an appealing approach to substitute
the kinetic treatment for the study of Hall thruster plasmas.

It should be recalled that the 14-moment system has a much higher com-
putational cost than the Euler equations (confirming the previous results of
Section 4.3). However, this cost was seen to be lower by at least one order
of magnitude with respect to the kinetic simulations. A possible application
of this approach could regard hybrid methods (kinetic ions + fluid elec-
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Figure 6.18: 2D ion evolution inside an axial and a travelling azimuthal electric fields.
Azimuthal velocity uy at time t = 50 µs as predicted by different models.

trons). In place of a kinetic description, one could employ a 14-moment
modeling of ions. Among other advantages, such approach would remove
the costly particle-deposition procedure, characteristic of kinetic methods,
and the ion quantities would be known at the same grid points as the elec-
trons fluid. This further computational advantage is still to be investigated,
and is suggested as a future work.

This chapter concludes the study of ions. In the next chapter, the max-
imum-entropy method will be applied to electrons, that further include the
modeling complexity associated to the magnetic field.
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Figure 6.19: 2D ion evolution inside an axial and a travelling azimuthal electric fields.
Comparison of the 14-moment system and PIC solutions for selected moments. Time
t = 50 µs.
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CHAPTER7
Maximum-entropy modeling of electrons

The content of this chapter was partly published in [200]: Boccelli, S.,
Giroux, F., Magin, T.E., Groth, C.P.T., McDonald, J.G., A 14-moment
maximum-entropy description of electrons in crossed electric and mag-
netic fields, Physics of Plasmas 27 (12), 123506;
and partly presented at the 73rd Gaseous Electronics Conference [201].

While ions in Hall thrusters are fundamentally unmagnetized, a compu-
tation of the Larmor radius reveals that electrons are strongly affected by
the magnetic field, due to their small mass. Together with the axial electric
field, electrons are subject to a drift in the E × B direction. Also, while
ions were assumed to be collisionless, electrons collisions are much more
frequently, mostly with background neutrals, and such collisions are im-
portant in terms of cross-field electron transport, but not strong enough to
keep electrons close at thermodynamic equilibrium. Indeed, we will see
that electrons can be expected to develop strongly non-Maxwellian VDFs.
This chapter is aimed at investigating the maximum-entropy closure in such
conditions.

Due to the low plasma density, Coulomb collisions will be neglected
and only collisions with background neutrals will be accounted for. Only
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electrons will be simulated, and the electric and magnetic fields will be
prescribed.

This chapter is structured as follows. First, Section 7.1 gives an overview
of the main non-equilibrim effects that affect electrons in Hall thrusters.
Most of these will not be considered, and attention will be focused on cross-
field transport. Then, in Section 7.2, a simplified steady state problem is
considered, and the 14-moment maximum-entropy VDF is obtained and
compared to analytical results, together with both its tracked and its clos-
ing moments. Section 7.3 is devoted to the development of BGK-like colli-
sion terms for the 14-moment equations. Such terms are then employed in
Section 7.4 to study a space-homogeneous time-relaxation problem, where
electrons are initialized from a drifted Gaussian distribution, and evolve
following the E× B fields and in presence of background neutrals. Finally,
1D test cases are considered in Section 7.5, where we study the expansion
of electrons along a longitudinal electric field but in presence of a localized
magnetic field barrier.

Note that besides Hall thrusters, the results of this chapter could be ap-
plied in other E× B devices such as in magnetrons [45, 202], where analo-
gous conditions are often encountered (except for a generally higher back-
ground pressure, and consequently an increased collisionality).

7.1 Overview of non-equilibrium effects for electrons in Hall
thrusters

Non-equilibrium in the electron velocity (VDF) and energy (EDF) distri-
bution functions has been studied extensively in the past [203–205]. This
section offers a summary of the main points.

First, the presence of crossed electric and magnetic fields causes the
electron VDF to deviate from a Maxwellian. From the point of view of
single-particle trajectories, crossed E and B fields cause electrons to move
along a trochoid, and this gives rise to a ring-shaped VDF, centered around
the drift velocity ud = E/B (see [206, 207]). Collisions on the other
hand tend to thermalize the VDF, but in presence of low-collisionality,
the combined effects of collisions and E × B make the VDF asymmet-
rical [44, 208, 209], and thus introduce a non-zero heat flux (and further
odd-order moments).

In actual Hall thrusters, a number of other conditions are responsible for
non-equilibrium. For example, interaction with the walls plays an impor-
tant role. At the walls, electrons having a sufficient energy (“loss cone”
in the electron VDF) can overcome the potential barrier created across the
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sheath and are effectively lost, while low-velocity electrons are reflected
back into the plasma bulk [210]. Secondary electron emission (SEE) at the
walls is responsible for creating low-temperature electrons [57, 211] and is
known to cause near-wall conductivity (NWC) in presence of E× B fields
[31]. Inelastic collisions also cause the VDF to deviate from a Maxwellian,
since the cross-section is non-linear and only higher-energy electrons have
sufficient energy to excite/ionize the background neutrals. This depletes the
tails of the Maxwellian (see for example [133]). Finally, instabilities and
kinetic effects such as Landau damping are an important contributions to
non-equilibrium (see for example [41]).

7.2 14-moment formulation against analytical VDFs

As a first step towards assessing the quality of the maximum-entropy clo-
sure for modeling electrons, we assess how well the 14-coefficient distribu-
tion function f14 can reproduce analytical VDFs for a simplified problem.
A simple space-homogeneous steady state case is considered, with imposed
E×B fields, and only elastic collisions of electron with the background neu-
trals. By assuming a BGK collision operator, the kinetic equation is written
as

qe
me

(E + v × B) · ∂f
∂v

= −ν(f −Mb) , (7.1)

where ν is the electron-neutral collision frequency and where electrons that
experience a collision are assumed to be described by a Maxwellian VDF
Mb, subscript “b” standing for “birth”. Under such assumptions, Shagayda
has obtained an analytical solution for the electrons VDF [44]. In such
reference, the post-collision Maxwellian is written as

Mb = ne (hb/π)3/2 exp(−hbv2) , (7.2)

with hb = me/(2kBTb) and Tb the birth temperature. This assumes that
after a collision, the electron velocity is completely reset and assumes an
un-drifted Maxwellian distribution at Tb. The analytical solution of [44]
depends on the inverse Hall parameter β ≡ ν/ωc, with ωc = |qeB/me| the
electron cyclotron frequency, and on the value of the drift velocity ud =
E/B.

7.2.1 Preliminary considerations

Fig. 7.1 shows an example of a possible electron VDF, obtained from this
model. It is clear that a moment method aiming to reproduce this kind of
non-equilibrium needs to:
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Figure 7.1: Example of a stationary electron VDF in the plane perpendicular to the mag-
netic field, with simplified BGK collision operator, obtained from the model in [44]
with parameters Tb = 105 K, β = 0.3, E/B = 2.5× 106 m/s.

1) Include pressure (temperature) anisotropy, not only between the parallel
and perpendicular directions, but also within the parallel plane;

2) Include a treatment for the heat flux due to the strong asymmetry;

3) Allow for ring-like distributions, resulting in super-Maxwellian order-4
moment: Riijj > 15P 2/ρ.

The 14-moment system is the first member of the maximum-entropy fam-
ily that allows us to reproduce such features. The previous member (the
10-moment method) is instead based on a Gaussian closure, and therefore
misses requirements 2) and 3). In any case, a perfect match of the VDF
is not strictly required for the sake of reproducing moments, and the 10-
moment method could thus prove effective anyway, in certain situations.

7.2.2 Analytical and maximum-entropy VDFs

To assess the accuracy of the 14-moment VDF, we consider a range of val-
ues for β ∈ [0, 0.5]. Two different drift velocities are considered, obtained
by setting B = 0.01 T and either E = 25 000 V/m or 50 000 V/m. This re-
sults in a collisionless drift velocity uc−less

d = 2.5×106 m/s and 5×106 m/s
respectively. We select the birth temperature as Tb = 100 000 K, and this
results in a final temperature T ≈ 500 000 K.

The procedure for comparing the 14-moment distribution to the analyt-
ical VDF is the following:

1. The analytical VDF is constructed, for a given value of β and ud =
E/B;
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2. Its first 14 conserved moments are computed numerically (together
with the closing moments Qijk, Rijkk, Sijjkk, for a further compari-
son);

3. Such 14 moments are used as a target to obtain the maximum-entropy
distribution, by solving the entropy maximisation of Section 2.4.1;

4. The analytical and the maximum-entropy distributions are compared,
in terms of VDF and EDF.

The results are shown in Fig. 7.2 for the velocity components in the per-
pendicular plane. The VDF in the parallel plane is simply Maxwellian.
Considering the ratio between the drift and thermal velocity of electrons,
the case of Fig. 7.2-Top-Left is the most representative of Hall thrusters,
where commonly β → 0. The VDF in such case appears to have a flat top
if compared to a Maxwellian, and appears to approach the Druyvenstein
distribution, with f ∝ exp(−v4). This is well reproduced by the f14 VDF.
A small hole in the center is also observed in the analytical VDF, but this
does not appear in the f14.

Figure 7.2: Comparison of analytical and 14-moment maximum-entropy VDFs in the
perpendicular plane for different values of the collisionality and electric field. Top:
E = 25 kV/m. Bottom: E = 50 kV/m. B = 0.01 T, Tb = 100 000 K.

By increasing the electric field, the drift velocity is also increased. In
the velocity space, electrons are created from the un-drifted Maxwellian
of Eq. (7.2), and drift in circles with a radius equal to the drift velocity.
Therefore, when the ratio between drift and thermal velocity is larger than
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one, the perpendicular VDF assumes a ring-like shape. The f14 distribution
appears to recover this accurately. Some accuracy is lost as collisionality is
increased, and asymmetry is introduced correspondingly. This most likely
results in some accuracy loss in the heat fluxes. These cases are shown in
Fig. 7.2-Bottom.

An analysis of the EDF (computed numerically from the VDF) shows an
even better agreement, as shown in Fig. 7.3 for the collisionless cases β =
0. This is expected, since the EDF is obtained from an integration of the
VDF over constant velocity shells. The two bumps described in [206, 207]
are retrieved. For the lower values of the drift velocity, the two bumps
are only slightly visible, and the distribution is reasonably well reproduced
by a drifted Maxwellian. For higher drift velocities instead, the drifted
Maxwellian deviates strongly from the actual EDFs, and we may expect a
strong effect of non-equilibrium on the collisionality (and thus ionization
rates) in such conditions, due to the non-linearity of the cross-sections.

Figure 7.3: Normalized EEDFs obtained from the β = 0 cases of Fig. 7.2. Red solid line:
Shagayda’s analytical results. Blue dashed lines: f14. Thin black lines: un-drifted
(M) and drifted (Md) Maxwellians.

The moments of the analytical VDF are then compared to those of f14 in
Fig. 7.4. Note that only closing moments are shown, since there is no point
in comparing the first 14 moments. Indeed, these are used as target mo-
ments for computing f14, and coincide to the analytical ones to numerical
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accuracy.

Figure 7.4: Dimensionless closing moments vs β for the case E = 50 kV/m. Analogous
accuracy is shown for E = 25 kV/m.

For all considered collisionalities, the closing moments appear reason-
ably accurate. In particular, the accuracy appears to be very good for
Hall thruster conditions (β ≈ 0). For β → ∞, collisions eventually
turn the VDF into a Maxwellian, and all moments correspondingly reach
their equilibrium value: odd-order moments vanish, the pressure tensor be-
comes isotropic and diagonal, and the components of the order-4 moment
tensor become Rijkk → 5P 2δij/ρ, such that their contraction results in
Riijj = 15P 2/ρ. This comparison is of particular interest, since the final
goal is simulating the actual 14-moment system of equations, where clos-
ing moments play a crucial role through the convective fluxes. Nonethe-
less, an exact match is probably not strictly required, as the importance of
the closing moments is anyway mitigated, to some degree, by the presence
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of many other lower order (convective) moments. The moments in Fig. 7.4
are shown in dimension-less form (see Section 2.4.1). The computation
was repeated using the interpolative closure [67], and this resulted in the
same degree of accuracy.

Finally, despite not not being necessary in terms of the closure, it is in-
teresting to consider the limiting values of the average velocities. These are
shown in Fig. 7.5. For β = 0, the value of uy coincides with the collision-
less drift velocity ud = E/B and is progressively reduced as the collisions
are increased. The velocity uz on the other hand can be seen to follow
exactly the classical mobility across a magnetic field,

uz =
e/(mν)

ω2
c/ν

2 + 1
E = µE , (7.3)

with µ the classical mobility. At first, it may seem surprising that such an
accurate match is obtained despite the strong non-equilibrium. However,
this is to be expected, since the collision frequency ν is being imposed in
the present test case. In a real scenario, ν would be obtained from the state
of the gas, and would depend on the actual VDF.

Figure 7.5: Solid lines: average velocities for the case E = 50 kV/m. Symbols: classical
cross-field transport from Eq. (7.3).

7.3 BGK-like source terms for electron-neutral collisions

After having verified the capability of the 14-moment closure of repro-
ducing the electron non-equilibrium, the next step consists in testing a di-
rect application of the 14-moment governing equations, discussed in Sec-
tion 2.4.1,

∂U

∂t
+
∂Fx
∂x

= GE +GB +Gc , (7.4)

where the electric and magnetic sourcesGE,B were obtained in Section 4.5.
The source termGc for electron-neutral collisions is still to be derived, and
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this is the aim of the present section. In this work, we are mostly inter-
ested in the study of the streaming part of the system, therefore a simplified
treatment of collisions will be sufficient. The BGK collision operator [80]
is a convenient choice, as it allows for a simple derivation of the source
terms for the moment equations. Moreover, the BGK operator automati-
cally recovers the Boltzmann’s H-theorem, as relaxation happens towards
a Maxwellian. Such operator has been employed in a number of scenar-
ios, including multi-temperature monatomic/polyatomic gases and reacting
mixtures [83–85].

In the following, we develop a BGK-like collision operator for electron
collisions with background neutrals, in the conditions of low-temperature
non-thermal plasmas, where the electron temperature is much higher than
the neutral temperature. First, we write

C =

(
δf

δt

)
c

= −ν (f − fp) , (7.5)

where fp is the distribution that characterizes the post-collision state of
electrons and where the collision frequency ν only depends on the macro-
scopic parameters. The latter choice implies that all moments relax at the
same rate, which is unphysical, or at least inaccurate. An improvement
could be obtained by taking ν as a function of the particle velocity (and
thus not only depending on the macroscopic quantities), at the price of in-
creasing the model complexity [62, 86].

In the work of Shagayda [44], the post-collision distribution fp is as-
sumed Maxwellian. However, from a physical standpoint, this it is not
necessarily the case. As mentioned, such choice allows us to retrieve the
H-theorem, which is surely desired for ordinary gases in absence of external
fields, but is not necessarily representative of low-temperature plasmas. In-
deed, while in an ordinary gas all species relax towards a common tempera-
ture (consider for example the relaxation behind a strong shock wave), low-
temperature plasmas typically settle to a multi-temperature steady state:
electrons are typically in the [eV] range (being excited by external fields),
neutrals have a temperature often comparable to the walls temperature and
ions are somewhere in the middle. Therefore, the collision operator must
be formulated as to represent such steady state non-thermal conditions.

A second important aspect to be considered is mass disparity: as elec-
trons have a much lower mass than neutrals, the energy exchange becomes
extremely ineffective. In particular, considering the binary collision be-
tween a lightweight particle of mass m and a heavy particle of mass M , the
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exchange of energy ∆ε/ε results, in the limiting gase of m�M [212],

∆ε

ε
= 2

m

M
(1− cosχ) , (7.6)

where χ is the deflection angle. Considering collisions of electrons with
xenon atoms, me/MXe ≈ 4 × 10−6, such that the initial energy of a hot
electron will be transfered to the neutrals, in average, after some 105–106

elastic collisions.
In the following, we will consider isotropic scattering, that is a reason-

able approximation for low collision energies [133, 213].

7.3.1 A simple Maxwellian-relaxation collision model

The simplest choice for the post-collision distribution consists in assuming
that fp = M, with M the local Maxwellian, as also done in [44]. This
resembles a classical single-species BGK formulation, but differs in that:

• Neutrals are cold and slow with respect to the colliding electrons;

• The energy exchange ∆ε/ε is here neglected, and the energy of the
electrons population is conserved;

• Scattering is assumed isotropic in the center of mass frame, that ap-
proximately coincides with the center of mass of the heavy neutral
particle.

From these assumptions, the post-collision Maxwellian is characterized by
a zero average velocity, and collisions have the effect of transforming the
whole initial energy (kinetic + thermal) into thermal energy. Therefore, the
post-collision electron temperature is obtained from

3

2
kBTp =

3

2
kBT +

1

2
meu

2 , (7.7)

with T and u the temperature and average velocity of electrons. The post-
collision pressure simply reads Pp = nkBTp, where the local density n is
unchanged by the collision process, since only elastic collisions are being
considered.

The source terms for the 14-moment equations are then obtained as av-
erages over this collision term (see Chapter 2). After having defined the
vector of generating functions Ψ = m(1, vi, vivj, viv

2, v4), composed by
14 entries, the collisional sources are obtained as

GMc = −〈Ψ ν (f −M)〉 = −ν [〈Ψf〉 − 〈ΨM〉] . (7.8)
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In other words, the source terms for the 14-moment equations are the differ-
ence between the moments themselves (the term 〈Ψf〉) and their value for
a non-drifted Maxwellian at temperature Tp, weighted by the collision fre-
quency ν. From symmetry considerations, all odd-order central moments
of the Maxwellian are zero, and the source terms are easily evaluated by
considering that

• All odd-order moments (ui, qi, Qijk, Sijjkk) relax to zero;

• Even-order moments relax to their Maxwellian value (Pij → Pδij ,
Riijj → 15P 2/ρ).

This is easily verified by a direct calculation from Eq. (7.8), and ultimately
gives

GMc =

(
δU

δt

)
c

= −ν



0

U2

U3

U4

(U5 − Pp)
U6

U7

(U8 − Pp)
U9

(U10 − Pp)
U11

U12

U13

(U14 − 15P 2
p /ρ)



. (7.9)

7.3.2 Collision model for large mass disparity

In the previous section, the post-collision distribution was assumed to be
Maxwellian. Such assumption is not physically justified for electron-neutral
collisions, and was only based on simplicity. Indeed, during a single electron-
neutral collision, not only energy is (to a first approximation) conserved at
the population level, but also the energy of the single electron is conserved.
Therefore, the distribution that characterizes the post-collision state is not a
Maxwellian, but rather a distribution that has the very same energy content
as the initial distribution f . Therefore, when plotted in the energy variable,
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we have
fp(ε) = f(ε) =⇒ fp(v

2) = f(v2) . (7.10)

For simplicity, we further assume that collisions are isotropic, and there-
fore fp is symmetric, and we denote it by f iso

p for clarity. As before, the
source terms are obtained from

Giso
c = −

〈
Ψ ν

(
f − f iso

p

)〉
= −ν

[
〈Ψf〉 −

〈
Ψf iso

p

〉]
. (7.11)

For the sake of obtaining the source terms, an explicit knowledge of the
shape of f iso

p is not necessary, and the following considerations are suffi-
cient:

• Since f iso
p is isotropic, its odd-order central moments are zero;

• The average velocity of f iso
p is also zero, as we consider isotropic scat-

tering around a fixed target heavy particle;

• The temperature of f iso
p is also obtained from Eq. (7.7).

Some more considerations are required regarding the order-4 moment,
U14 = 〈mv4〉. Intuitively, one can realize that, since the electron energy is
conserved in each collision, its square will also be conserved. Therefore,
the moment 〈mv4〉 will be a conserved quantity, being the average of in-
dividually conserved quantities. This is easily shown at a formal level by
writing the definition of the order-4 moment in spherical coordinates, for
the post-collision isotropic distribution:〈

mv4
〉iso

p
=

ˆ
mv4f iso

p (v2)v2 sin θ dv dψ dθ , (7.12)

where the dependence on the velocity modulus is highlighted in the distri-
bution function by writing v2. From Eq. (7.10), since f iso

p (v2) = f(v2), we
simply obtain that

U14,p =
〈
mv4

〉iso

p
=
〈
mv4

〉
= U14 . (7.13)

Therefore, energy preserving collisions do make the distribution isotropic,
but have no effect on the contracted order-4 moment, and the energy spec-
trum of the VDF is preserved. Ultimately, the collisional sources from this
model are equal to the the previous Maxwellian-relaxation sources, differ-
ing only in the 14–th element:

Giso
c (1, · · · , 13) = GMc (1, · · · , 13) and Giso

c (14) = 0 . (7.14)
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7.3.3 Elastic collisions with energy loss

In the previous sections, the energy exchanged by electrons via collisions
with neutrals was neglected in view of the large mass disparity. We discuss
here how to include such effect.

Eq. (7.6) gives the energy transfered from a given electron to a target
neutral, ∆ε/ε = 2m/M(1− cosχ), as a function of the deflection angle χ
and the mass ratio. In general, the deflection angle is a function of the im-
pact parameter b and of the collision energy, through the differential cross
section. We assume isotropic scattering for simplicity, hence, the deflec-
tion angle only depends on the impact parameter b. In the assumption that
the position of the electron and the location of the target neutral are un-
correlated, the impact parameter b is linearly distributed (fewer electrons
have a head-on collision, and more electrons experience a grazing colli-
sion). From this observation, we can obtain the distribution of angles χ,
that is sinusoidal. The average deflection angle is π/2, and by definition
χ ∈ [0, π]. The quantity (1 − cosχ), appearing in the expression for the
energy loss, can be seen to be uniformly distributed (see [212]) over the
interval [0, 2], and averages to 1. Therefore, given all possible impact pa-
rameters, and consequent deflection angles χ, the electron in average loses
an amount of energy 〈∆ε/ε〉χ = 2m/M .

Let us now consider the whole population of electrons. In the previous
case, in the limit of an infinitely large mass disparity, the total energy of the
electron population was conserved. In the present case, the post-collision
energy should be investigated by averaging the energy loss over the electron
energy distribution function. An accurate analysis would also consider that
more energetic electrons collide more frequently than slow-moving ones.
However, such effects are neglected in a BGK-like approach, and we thus
limit ourselves to the following observation: if the energy lost by an elec-
tron, whatever the deflection angle, is 2m/M times the initial energy, then
the post-collision energy of the whole population shall be reduced by the
same factor. Therefore, we modify Eq. (7.7) into

3

2
kBTp =

(
3

2
kBT +

1

2
meu

2

)(
1− 2m

M

)
. (7.15)

Notice that the post-collision distribution is still symmetric, due to isotropic
scattering, and its odd-order central moments and the average velocity are
still zero. The pressure tensor relaxes to Pij = nkBTpδij , as for the previous
cases, with Tp from Eq. (7.15). This completely extends the Maxwellian
model of Section 7.3.1 to include energy losses.
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Regarding the general isotropic-collision model of Section 7.3.2, the
fourth-order moment still needs to be investigated. We recall that the order-
4 moment is defined as 〈mv4〉, that is proportional to the average of the
squared particle energies.1 By squaring Eq. (7.6), one can obtain the post-
collision quantity (mv′2)2 of an electron i deflected by the angle χ,

m2v′4i = m2v4
i

(
1− 2m

M
(1− cosχ)

)2

= m2v4
i

(
1 +

4m2

M2
(1− cosχ)2 − 4m

M
(1− cosχ)

)
. (7.16)

This eventually allows us to estimate the post-collision value for the order-
4 moment. At first, we shall average this term over all possible deflection
angles. Following the previous discussion, by considering that the impact
parameter is linearly distributed, the quantity (1 − cosχ) is found to be
uniformly distributed for isotropic collisions. The probability distribution
of (1 − cosχ)2 is thus also known, and can be seen to have an average
value of 4/3 (see [214]). Therefore, averaging Eq. (7.16) over χ, one ulti-
mately finds the (average over the possible deflection angles) post-collision
velocity as

v′4i = v4
i

(
1 +

16

3

m2

M2
− 4m

M

)
. (7.17)

Notice that the quantity inside the parenthesis is smaller than 1, such that
v′4i < v4

i . As done for the post-collision temperature, we write the post-col-
lision order-4 moment as the pre-collision moment reduced by the quantity
appearing in the parenthesis:〈

mv4
〉iso

p
=

(
1 +

16

3

m2

M2
− 4m

M

)〈
mv4

〉
. (7.18)

With this definition, the isotropic-collision model is also completely de-
fined. In particular, the isotropic-collision source terms are thus equal to
their Maxwellian counterpart for moments 1 to 13, and differ only for the
last moment:

Giso
c (14) = νU14

(
16

3

m2

M2
− 4m

M

)
. (7.19)

This term is in general small (being proportional to m/M ) and negative,
slowly reducing the Riijj moment in time. For t → ∞, if no energy is ex-
ternally supplied to the system, this collision operator would result in a pro-

1Except for a multiplying coefficient proportional to the mass.
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gressive cooling down of electrons. For this reason, this model is not suit-
able for reproducing standard gas dynamic situations, but is instead targeted
towards conditions of sustained temperature non-equilibrium. More com-
prehensive models that retrieve a common equilibrium temperature, equal
among all species, could be developed [83, 215].

7.3.4 Excitation and ionization reactions

The developed models could be extended towards inelastic collisions such
as excitation and ionization processes. First, obviously, the collision fre-
quency ν is to be taken relative to the considered process. For electron-
neutral excitation collisions, the source terms will be in the very same
form as for the elastic case, the only difference being that the post-collision
temperature must be reduced by the excitation energy (as also discussed
in [44]),

3

2
kBT

exc
p =

3

2
kBT +

1

2
meu

2 − εexc . (7.20)

A separate term should be introduced for each considered excitation pro-
cess, or multiple processes could be lumped in a single term, properly av-
eraging the excitation energies, and summing up the collision frequencies.

In case of ionizing collisions, one should first include a factor two in
the number density of the post-collision distribution, since each electron
produces an additional electron. Then, besides subtracting the ionization
energy from the initial energy, one must also divide the residual energy
between the two electrons,

3

2
kBT

iz
p =

1

2

(
3

2
kBT +

1

2
meu

2 − εiz

)
. (7.21)

Note that the division by a factor of two (rather than the subtraction of
the ionization energy) is the main cause of cooling, and is the reason why
ionization (rather than excitation) often plays the major role in the energy
balance of a low-temperature plasma.

7.3.5 Collision frequency and non-equilibrium

As to complete the BGK model, we shall discuss the choice of a collision
frequency. From its definition, the frequency at which one electron (in-
dexed as “i”) of velocity v collides with a population of neutrals is obtained
as an integral over the distribution of relative velocities, gr(vr),

ν(v) = nn

˚ +∞

−∞
σ(vr) vr gr(vr) dvr . (7.22)
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In the present case, electrons are much faster than neutrals, and the relative
velocity thus coincides with the electron velocity. Therefore, vn ≈ 0 =⇒
vr ≡ v, and gr(vr) ≡ δ(|vr − v|). The collision frequency of a given
individual electron thus simplifies to the well-known expression

ν(v) = nnσ(v) v , (7.23)

that is a velocity-dependent collision frequency. Given a population of elec-
trons, a single “averaged” collision frequency can be obtained by averaging
over the whole electron population:

ν =
1

ne

˚
ν(v) fe(v) dv =

nn
ne

˚
σ(v) v fe(v) dv . (7.24)

The detailed shape of the electron VDF (or better, the electron EDF) is
therefore expected to play an important role, especially for non-uniform
cross-sections. A precise calculation of this term under whatever non-equi-
librium conditions would require the knowledge of fe, but this knowledge
is not available for the 14-moment system, and would require to solve the
entropy-maximisation problem at each time step. Some approximation is
thus required.

We consider here only the simplistic case of a uniform cross section,
σ(v) ≡ σ̄. In such case, the population-averaged collision frequency be-
comes

ν = nnσ̄

[
1

ne

˚
|v| fe(v) dv

]
= nn 〈|v|〉 σ̄ , (7.25)

where the average velocity magnitude 〈|v|〉 appears. For a Maxwellian dis-
tribution with zero drift velocity, this term will be proportional to the ther-
mal velocity vth. In the general case, this term will be influenced by the
non-equilibrium shape of fe and by the drift velocity. Considering only the
thermal velocity would miss the latter effects. By neglecting non-equilib-
rium for the time being, the effect of the drift velocity can be embedded
by approximating 〈|v|〉 by using the total energy (in place of the thermal
energy):

〈|v|〉 ≈
√

8kBT tot

πm
with T tot =

2nεtot

3kB
and εtot =

u2
e

2
+

3

2

kBT

me

,

(7.26)
with n the electron number density, and the collision frequency is approxi-
mated as

ν = nnσ̄

√
16εtot

3π
. (7.27)
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Fig. 7.6 shows this approximation to the collision frequency against
a direct integration of the fully non-equilibrium VDF, for some condi-
tions of Section 7.2. Different values of the electric field are considered,
which directly maps to different drift velocities. For comparison, the sim-
ple un-drifted Maxwellian approximation ν ≈ nnσ̄v

th is also shown, with
vth =

√
8kBTe/(πme). It can be seen that including the drift velocity us-

ing Eq. (7.27) allows us to retrieve the full non-equilibrium case almost
exactly, while the thermal-only collision frequency includes a substantial
error. This is expected, as for the considered conditions, the drift and the
thermal velocities are indeed comparable, and one cannot simply neglect
one of the two.

Figure 7.6: Collision frequency for a constant cross-section, for the cases of Section 7.2,
at different values of the electric field. B = 0.01 T, Tb = 100 000 K and β = 0.
Blue solid line: numerical computation from non-equilibrium VDF. Dashed line: un-
drifted Maxwellian approximation (ν = nnσ̄v

th). Black symbols: approximation from
Eq. (7.27).

It should be stressed that the analysis of this section has been obtained in
the assumptions of a constant cross-section. This assumption is hardly re-
alistic even for elastic collisions, if Ramsauer gases are considered. There-
fore, further analysis on this topic is suggested as a future activity. Nonethe-
less, the simple example considered here clearly remarks the crucial impor-
tance of considering the drift velocity inside the collision frequency (and
therefore inside chemical rates as well).

7.4 Application: homogeneous relaxation towards non-equilibrium

In this section, the 14-moment system together with the developed collision
terms is applied to the study of a space-homogeneous (zero-dimensional)
relaxation of electrons in a bath of cold and slow neutrals. This case extends
the steady state analysis of Section 7.3 and embeds the collision terms de-
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veloped in the previous section. The results of this section are propaedeutic
to 1-dimensional applications, that will be considered in the next section.

Electrons are initialized from a drifted Gaussian distribution (anisotropic
Maxwellian),fe,0 = A exp

[
− m

2kB

(
v2x
T0x

+ (vy−u0y)2

T0y
+ v2z

T0z

)]
,

A = n0

(
m

2πkB

)3/2 (
1

T0xT0yT0z

)1/2

,
(7.28)

with initial density n0 = 1017 m−3, initial velocity u0y = 30 000 m/s and
temperatures T0x = 10 000, T0y = 20 000 and T0z = 5000 K. Electric and
magnetic field are enabled at time t = 0 s and have a constant value of
E = 20 000 ẑ V/m and B = 0.02 x̂ T. Electric quantities are chosen to
be somehow representative of Hall thrusters, and thermodynamic quantities
are initialized as to present some degree of anisotropy, in order to stress the
model. On a physical standpoint, this problem is characterized by at least
three time scales:

1. At the time scales of the cyclotron frequency, electrons spiral along
magnetic field lines. This will be associated to oscillations in the mo-
ments, as the initial anisotropy is transferred between the directions
perpendicular to the magnetic field;

2. At the collision frequency, the VDF tends to relax toward a somehow
isotropic distribution and the electron average velocity adapts to the
velocity of the neutral background (zero in this case);

3. At a time scale that depends on both the collision frequency and the
mass ratio, the temperature of electrons tends to equilibrate with the
background temperature.

Notice that a number of other scales are typically present in low-temperature
plasmas. The plasma oscillations for example have not been accounted for
(since the electric field is being imposed), as well as all time scales asso-
ciated to inelastic collision processes. Given the large mass disparity, the
energy relaxation time scale (the third one in the list) happens to be almost
decoupled from the first two. Moreover, if the ultimate equilibrium tem-
perature is required, including ionization and excitation reactions become
necessary. Neglecting them would result in an unphysically large heating
due to the lack of energy absorption mechanisms.

In this section, we consider a simpler toy model: the collision operator is
approximated by the BGK-like model of Section 7.3, and the post-collision
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temperature is not taken from the electron energy during the simulation,
but is instead imposed to the value Tp = 10 000 K. The collision frequency
is also imposed, equal to a fraction of the cyclotron frequency, such that
β = ν/ωc = 0.3. These two assumptions are a strong simplification, but
allow us to get rid of the longer time scale associated to energy relaxation.
Using the simple Maxwellian relaxation model, the kinetic equation reads

∂f

∂t
+
qE

m

∂f

∂vz
+
qB

m

[
vz
∂f

∂vy
− vy

∂f

∂vz

]
= −β ωc [f −M(Tp)] . (7.29)

This problem is solved using a PIC method, to obtain a reference kinetic
solution. The time step for such simulation was taken as ∆t = 1/(100ν)
and 107 particles were simulated. BGK collisions are implemented in a
simple stochastic way: for every simulated particle, the collision probabil-
ity is computed as Pc = 1− exp(−ν ∆t); a random numberR is computed
at every time step for each particle, and if R < Pc, a collision is per-
formed by resetting the particle velocities to random values sampled from
a Maxwellian at Tp. Note that the same procedure could be followed for
implementing the isotropic BGK-like collision operator of Section 7.3.2,
the only difference being that in place of sampling the new velocity from a
Maxwellian, one should rotate randomly the velocity vector without chang-
ing its magnitude. With the considered time step and number of particles,
the kinetic solution requires a few hours on a 32 cores machine. As ex-
pected, an analysis of the VDF shows a complete overlap to the analytical
VDFs of Shagayda [44], once steady state is reached.

The solution of the 14-moment system is then computed by solving the
set of Eqs. (7.4) with source terms from Eq. (7.9), using the same initial
conditions. Being zero-dimensional, the 14-moment system reduces to a
system of ODEs, and is conveniently integrated using an adaptive Runge-
Kutta algorithm for instance. The computation takes only a few seconds of
wall time.

A comparison of the two methods is shown in Fig. 7.7. The left col-
umn shows some of the moments that are present in the state vector of the
14-moment closure. After an initial oscillation at the time scale of the cy-
clotron frequency, the solution appears to settle to an equilibrium after a
comparable (actually, slightly longer) time has passed. This was expected,
given the choice of β = 0.3. Also, the average velocity component uz (par-
allel to the electric field) is seen to settle on the value given by the classical
mobility of Eq. (7.3), uz ≈ 2.7 × 105 m/s. The uy velocity (in the E × B
direction) is essentially equal to the value E/B = 106 m/s.

It is important to notice that, since the problem is zero-dimensional,
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no space fluxes are present, and the solution is totally independent from
closing fluxes. Therefore, for zero-dimensional problems, the 14-moment
solution is exact. This is indeed seen in Fig. 7.7-Left, where all moments
match the kinetic solution to numerical precision.

Anyway, the closing moments have also been calculated alongside the
relaxation, for the sake of a comparison with the kinetic scheme. Closing
moments are obtained using the iterative solution to the entropy-maximisation
problem. The interpolative closure of McDonald & Torrilhon [67] resulted
in analogous closing moments. These moments are shown in Fig. 7.7-
Right. Closing moments from the maximum-entropy approximation appear
to reproduce very closely the kinetic moments, and some discrepancies are
observed mainly for the heat flux tensor Qijk terms. This could result from
the fact that bothRijkk and Sijjkk contain some contractions over the veloc-
ity components, that could mitigate some error. However, it is important to
remark that an analysis of the closing moments in dimensionless form (su-
perscript ?) shows that R?

ijkk and S?ijjkk roughly have the same importance,
while the Q?

ijk terms are about 10 times smaller (and thus less important).
The test case thus confirms the quality of the 14-moment description, for
the conditions considered here.

7.5 Application: a one-dimensional test case

As a final application for the 14-moment system, we consider a 1D simu-
lation of electrons flowing along a longitudinal electric field and through a
perpendicular magnetic field. An electron-emitting cathode at a potential
φc = 0 V is located at the right extreme of the domain, and the left bound-
ary is assumed to be an anode at φa = 300 V. The distance between anode
and cathode is L = 0.1 m and such axis is denoted by x. Axes y and z are
not simulated, and we thus assume symmetry in such directions. Still, the
of having a non-zero velocity in such directions (driven by the magnetic
field) is retained, as the equations for the respective quantities are solved
anyway.

The electron density is assumed small enough as to give negligible space-
charge effects. The potential distribution is therefore linear, and the electric
field is constant. In particular, in the simulations we do not solve the Pois-
son equation, but instead impose an electric field E = (φa − φc)/L =
3000 V/m along x. This quantity is lower than the typical values found in
Hall thrusters by roughly a factor 10. This comes from having neglected
space-charge, that cumulate due to the magnetic confinement. As to re-
store a partial similarity with Hall thrusters, the amplitude of the imposed
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Figure 7.7: Homogeneous relaxation to a fixed temperature. Symbols: kinetic particle-
based solution. Lines: 14-moment maximum-entropy system with iterative closure.
Left column: some of the tracked moments, reproduced exactly. Right column: closing
moments. The label Qxij refers to all entries in the heat flux tensor that include the
x–velocity component.

magnetic field is therefore also down-scaled by a factor 10, to a value of
0.001 T = 10 Gs. This allows to retrieve a reasonable drift velocity of
ud = E/B = 3 × 106 m/s. The magnetic field profile follows a Gaussian,
centered in the middle of the domain (x = 0.05 m), with a width of 0.01 m,

B = 0.001 exp
[
−(x− 0.05)2/0.012

]
ẑ . (7.30)

The case is completely collisionless, and no chemical production terms
are considered. Electrons are injected from the right boundary, from a
Maxwellian distribution with a number density n0 = 1010 m−3, temper-
ature T0 = 5500 K ≈ 0.5 eV and with an average velocity u0x = −5 ×
106 m/s, entering the domain. Considering that the resulting thermal ve-
locity is vth ≈ 4 × 105 m/s, the electron injection is supersonic, and the
corresponding electron current is Je ≈ 8 mA/m2. Notice that reproduc-
ing the current of an actual thruster is not required, since the electric and
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magnetic fields are here imposed.

Numerical solution

This problem is solved by (i) a kinetic PIC scheme, (ii) the 14-moment
maximum-entropy and (iii) the Euler systems. In the kinetic simulation,
all particles crossing both the left and right boundaries are removed from
the domain, and particles are injected from the right boundary by sam-
pling a drifted Maxwellian. To reproduce the same conditions in the fluid
simulation, the state in the left ghost cell consists in a low density of nL =
105 m−3, and negative velocity of uLx = −5×107 m/s, as to induce a super-
sonic flux towards the left. The remaining conditions are uLy = uLz = 0 m/s

and equilibrium conditions at a temperature TL = 5500 K, PL
ij = Pδij ,

qLi = 0, and RL
iijj = 15P 2/ρ. The conditions in the right ghost cells are at

equilibrium, with the aforementioned values for the cathode injection. For
the initial condition, an empty domain is used for the kinetic simulation. In
the fluid simulations, a small density n0 = 105 m−3 is employed, with a
zero average velocity ux0 = uy0 = 0 m/s and T0 = 5500 K.

A Boris time integration scheme is used in the particle simulations. The
fluid systems are solved using a second order Midpoint Euler explicit time
integration scheme, marching until convergence. A space discretization
of 1000 cells is employed, with Rusanov fluxes and second order space
accuracy is achieved with van Leer’s MUSCL scheme, with symmetric van
Albada limiter.

The computational cost of the Euler simulation was approximately 2
minutes on a single-core machine, while the 14-moment approximation re-
quired roughly 10 minutes. The kinetic solution on the other hand required
around 1 hour on a 16-cores machine, as to converge the simulation and
reduce the statistical error to an acceptable value.

Results

The results of the numerical simulations are shown in Fig.7.8.
Once injected from the cathode with initial velocity ux0 = 5× 106 m/s,

electrons are accelerated by the electric field towards the anode, at x = 0 m.
The magnetic field acts as a barrier and converts part of the momentum into
the y direction, generating a drift velocity uy ≈ 3× 106 m/s, as mentioned
previously. After the electrons have passed the magnetic field region, there
is no mechanism to restore the value of uy, that therefore remains constant.
The density profile is affected by the magnetic field, that concentrate some
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electrons at the middle of the domain. A stronger magnetic field would re-
sult in a stronger confinement and would cause a bump around x = 0.05 m.

If compared to the kinetic solution, the Euler system appears to repro-
duce to an excellent accuracy the density and average velocity, and, as ex-
pected, the 14-moment system further reproduces accurately the tempera-
ture anisotropy and the order-4 moment.

Finally, we note that the heat flux is reproduced only qualitatively by
the 14-moment method. This may be puzzling, also in view of the previ-
ous results for ions, where the heat flux was well reproduced for apparently
similar configurations (Sections 6.2 and 6.3). Further electrons simulations
without any magnetic field give an analogous error in the heat flux. There-
fore, the magnetic field is not the cause of such inaccuracy. Instead, one
should consider the following points.

First, a comparison with the ions case is not entirely correct. Indeed, in
the ion test cases, a chemical source was introduced with the form Siz =
S0δ(v). This term causes a creation of particles along the line v = 0, in
phase space, and resulted in a VDF with a heavy low-velocity tail, thus
showing strong asymmetry. In the present case on the other hand, no chem-
ical source is being considered. Electrons are only injected at the cathode,
from a Maxwellian distribution, and keep roughly the same distribution,
as the axial electric field mostly has the effect of shifting the average ve-
locity, and a limited distortion is introduced [216]. Also, the absence of
electron-neutral collisions is such that the asymmetric VDFs of Section 7.2
do not arise in this case. From these considerations, one could expect the
heat flux to be small for the considered problem. A computation of the di-
mensionless moments confirms that this is indeed the case, as can be seen
by analyzing the magnitudes of q?i in Fig. 7.9. Therefore, in the considered
case, the 14-moment method appears inaccurate for the heat flux, but such
moment is anyway rather small and does not matter for the present solution.

7.6 Conclusions

This chapter was devoted to the application of the maximum-entropy method
to the modeling of non-equilibrium electrons in E×B configurations. First,
the method was shown to reproduce some analytical EDFs very accurately,
while the VDFs were reproduced slightly less precisely, but still showing
all the major features of anisotropy, asymmetry and excess of kurtosis.

While electromagnetic source terms had been previously developed in
Chapter 4, in this Chapter we specified the source terms for electron col-
lisions with a background of cold and slow-moving neutrals. Two models
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Figure 7.8: One-dimensional acceleration of electrons through a magnetic field barrier.

Figure 7.9: One-dimensional acceleration of electrons through a magnetic field barrier,
dimensionless moments.

were proposed, one based on a simple Maxwellian relaxation, and a second
model where the only assumption on the post-collision VDF is isotropy.

These developments allowed us to tackle first a space homogeneous time
relaxation test case, and then a 1-dimensional simulation. This latter case
mimics the electron dynamics in a Hall thruster channel, in strongly sim-
plified conditions, where the electrons are injected at the cathode and are
accelerated by an axial electric field, but whose mobility is reduced by a
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perpendicular magnetic field.
With this chapter, we conclude the part of this work related to maximum-

entropy modeling. Among the future developments, together with attempt-
ing a coupling with ions (and thus solving the full self-consistent problem),
it will be necessary to develop chemical source terms for electron-neutral
collisions, that take into account non-equilibrium conditions without re-
quiring to solve the entropy-maximisation problem at each time step.
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CHAPTER8
DSMC and TPMC analysis of the neutral

gas injection:
an alternative gas feed configuration

The content of this chapter is also discussed in [217]: Boccelli, S.,
Magin, T.E., Frezzotti, A., Numerical investigation of reversed gas feed
configurations for Hall thrusters, under review.

In the previous chapters, we have investigated the non-equilibrium regime
that characterizes ions and electrons. So far, neutrals were always treated
as a fixed background of cold and slow-moving particles.

In this chapter, we shift the attention on the neutral population, and in-
vestigate their dynamics from the injection to their expansion into the vac-
uum. The rarefaction degree will be seen to be high enough to require a
kinetic modeling, as the Knudsen numbers approach unity. No fluid mod-
eling will be attempted in this chapter, but we will focus instead on the
discussion of the effect of different injection configurations. The typical in-
jection strategy consists in placing the gas feed at the anode, located at the
closed end of the thruster channel. This setup will be here analyzed numer-
ically, and an alternative feed configuration will then be proposed, where
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the propellant is injected backwards from a slit located near the exit plane.
As will be discussed, different injection configurations are likely to result in
quite different thruster efficiencies. In particular, the ionization efficiency
can be estimated from the distribution of (and the average) residence times
of neutral particles, inside the ionization region. The proposed reversed
injection strategy causes an increased residence time, and this ultimately
affects the thruster mass utilization efficiency.

This chapter is structured as follows. After some preliminary consid-
erations about the degree of rarefaction and the mass utilization efficiency,
drawn in Section 8.1, a simplified analysis is proposed in Section 8.2, where
the ionization probabilities and an estimate of the thruster efficiency are
considered for a simplistic case that neglects all gas-phase collisions, and
employs a specular wall scattering kernel. All simplifying assumptions are
then relaxed in Section 8.3, where DSMC simulations are performed for
the SPT-100 thruster geometry, including gas-phase collisions and assum-
ing diffusive wall interactions. A test-particle Monte Carlo algorithm is
then introduced in Section 8.4, and is employed in Section 8.5 to obtain the
distribution of residence times of neutral particles inside the thruster chan-
nel and inside a region that we arbitrarily identify as the ionization region.
From such results, the efficiency of the reversed injection is analyzed and
compared to the direct injection strategy in Section 8.5.3, and maps of the
improved efficiency are given.

Only neutrals are considered in this chapter, and the interaction with
electrons and ions is completely disregarded, apart from an increased tem-
perature of the anode: two cases are considered, a cold anode at 300 K and
a warm anode at 1000 K.

8.1 Preliminary considerations

The neutral flow is characterized by rather large Knudsen numbers, Kn =
λ/Ltc, where λ is the mean free path and Ltc is a characteristic dimension
of the thruster channel, such as its width or length. The propellant flow
may be initially transitional at the injection point, but soon increases to
Kn ≈ 1 during the expansion into the channel, and eventually reaches the
free molecular regime Kn� 1 in the plume. In this work, we will consider
the SPT-100 geometry [89], where “100” stands for the diameter of the
outer wall in millimeters, and the inner diameter is 70 mm. As will be
seen in the next sections, Kn roughly ranges between Kn ≈ 0.1 − 1 for
such configuration. The neutrals analysis should therefore be tackled with
kinetic methods, such as the Direct Simulation Monte Carlo (DSMC) and
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the test-particle Monte Carlo methods. Other methods such as radiosity
methods could be employed for the higher rarefaction conditions [218],
whenever low mass flow rates1 or smaller thrusters such as the SPT-50 or
SPT-20 are employed [219].

The neutral density and velocity profiles have strong influence on the
performance of the thruster, in particular the mass utilization efficiency
(also known as “propellant efficiency”) is defined as [220]

ηm = ṁi/ṁp , (8.1)

with ṁi the mass flux of ions created inside the thruster and accelerated
outwards, and ṁp the propellant mass flow rate. For maximising ηm, the
residence time of neutrals inside the ionization region shall be maximised,
as to ensure the highest ionization probability. In operating Hall thrusters,
the quantity ṁp is composed by two contributions: most of the propellant
is injected at the anode and is actually ionised inside the chamber; a small
fraction of the propellant is used by the hollow cathode, and is effectively
lost. In the present chapter, we neglect for simplicity this second contribu-
tion. This will be equivalent to considering a filament cathode in place of a
hollow cathode, as frequently done in laboratory experiments [219].

The mass utilization efficiency varies widely with the operating condi-
tions and the thruster size [221,222], and ranges from below 0.5 for micro-
thrusters, up to above 0.9 for the SPT-100. The gas feed configuration
plays an important effect on ηm, and a number of designs have been in-
vestigated in the past, including the presence of injection ports along the
channel [223, 224].

8.2 Direct and reversed injection: a simplified analysis

As a starting point, we consider the simplified problem depicted in Fig. 8.1
and assume

1. Monoenergetic injection of particles (no thermal velocity, T → 0 K);

2. Free-molecular flow (no gas-phase collisions);

3. Specular reflection as a particle-wall interaction.

From the first assumption, all particles have the same axial velocity, that
we denote by vz. In free-molecular conditions and with specular reflection

1In highly rarefied conditions, the Knudsen number is inversely proportional to the mass flow rate, since
the latter directly influences the density in the chamber. As continuum Knudsen numbers are approached, this
dependence mitigates and additional fluid dynamic effects emerge.
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Figure 8.1: Trajectory of a particle with specular wall scattering in absence of gas-phase
collisions. Left: direct injection from the anode. Right: Reversed injection. Label “iz”
denotes the ionization region.

at the walls (no momentum/energy accommodation), a particle injected at
the anode will spend inside the ionization region a time τdir = Liz/vz, with
Liz the length of the ionization region. On the other hand, if the neutral
was to be injected at the exit of the channel, backwards, the ionization
region would be traversed twice, doubling the residence time: τ rev = 2τdir.
The probability that during the time τ a given neutral particle inside the
ionization region will be ionized by collision with an energetic electron is

Piz = 1− exp[−νizτ ] , (8.2)

where νiz is the ionization frequency, function of the local electron dis-
tribution function (mostly, function of their density, temperature and drift
velocity, as discussed in Section 7.3.5). The value of νiz does not need to be
specified further for the sake of this section, and it will be considered as an
effective value over the ionization region. From this definition, we obtain
a relation between the ionization probabilities in the direct and reversed
injection cases,

P rev
iz = 1−

(
1− P dir

iz

)τ rev/τdir
, (8.3)

where in the simple case of Fig. 8.1, τ rev = 2τdir and thus P rev
iz ≥ P dir

iz ,
with the largest improvement for small values of P dir

iz . In other words, if a
thruster has a small ionization efficiency, it will benefit the most from a re-
versed injection strategy. The next sections will be devoted to removing the
aforementioned simplifying assumptions and to obtain estimates of the ion-
ization probability for selected configurations, and ultimately to estimating
the mass utilization efficiency.

8.3 DSMC simulations

A comprehensive estimation of the neutral dynamics in the chamber can
be obtained by solving the Boltzmann equation with the Direct Simula-
tion Monte Carlo (DSMC) method. The simplifying assumptions of the
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previous section are removed: monoenergetic injection is substituted by in-
jection from a Maxwellian distribution with a finite temperature, gas-phase
collisions are enabled, and the simple specular reflection scattering kernel
is replaced by more reasonable diffuse reflections (with accommodation
coefficient of 1) with the effect of reducing the mobility along the channel.

Figure 8.2: Domain and boundary conditions for the DSMC simulations of the neutrals
injection.

The simulations shown in this section are obtained using the SPARTA
DSMC software [225]. The simulated geometry is axisymmetric and con-
sists in a slice of an SPT-100 thruster in the radial-axial plane (R− z), and
is shown in Fig. 8.2. Xenon atoms are simulated, and the mass flow rate is
fixed to 5 mg/s (see for example [88,89]), equivalent to≈ 50 sccmXe. Dif-
ferent injection configurations are simulated. A direct injection is tested by
feeding the propellant either uniformly from the anode surface (case A1) ,
or from a slit of 1 mm located on the anode at the channel centerline (case
A2). Reversed injection is considered in the test cases labeled by “B”: the
propellant is introduced in the chamber an angle θ with respect to the axial
direction (θ = 90◦ is a radial injection) from a slit located on the internal
wall at position zs. Cases B30_1, B60_1 and B90_1 consider angles of
θ = 30◦, 60◦ and 90◦ respectively, and the slit is located near the exit plane.
Cases B30_2, B30_3 and B30_4 retain the angle θ = 30◦ and investigate
the effect of moving the slit inwards, towards the anode.
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zs = 22.5 mm 18.5 15.5 12.5
θ = 30◦ B30_1 B30_2 B30_3 B30_4
θ = 60◦ B60_1 - - -
θ = 90◦ B90_1 - - -

Table 8.1: Test cases for the reversed injection configuration.

As previously mentioned, no electrons and ions will be accounted for,
but only neutrals are simulated. However, it is crucial to consider a reason-
able anode temperature, whose value affects the thruster efficiency [226,
227]. The anode temperature strongly depends on the operating conditions
and may require some hours to reach a steady state [228, 229]. For these
reasons, all simulations are repeated using two different anode tempera-
tures of Ta = 300 K and Ta = 1000 K. The walls temperature is kept at
Tw = 300 K for simplicity.

The injection velocity, temperature and density are selected as follows.
For the case A1 (uniform injection), the anode temperature is used, and in-
jection happens uniformly fromR = 35 mm to 50 mm, with a zero average
velocity. The inlet flux is thus completely thermal, and the number density
of the injection Maxwellian is selected as to result in the required mass flux
of 5 mg/s. For the slit-injection cases, the choice is less trivial. Indeed, the
boundary conditions to reproduce an orifice expansion should be carefully
selected (see for example [230]) and ultimately depend on the structure of
the gas feed. We consider here a slit size of 1 mm (both for case A2 and all
B cases), and assume sonic injection for simplicity, at the anode tempera-
ture for case A2 and at the walls temperature for the B cases. The average
velocity is thus 177.91 m/s for the 300 K temperature and 323.81 m/s for
the 1000 K injection. The number density is chosen accordingly, as to give
the required mass flux. The average velocity vector has an angle θ for the
B cases.

A grid composed by 280 × 280 cells proved adequate to resolve the lo-
cal mean free path, and the time step was set to 1 µs as to resolve the mean
free time. At steady state, the simulation reaches roughly 150 000 simu-
lated particles, ensuring sufficient resolution inside the channel and the first
part of the plume. A VSS collision model is chosen, with parameters taken
from [129]: a reference diameter dref = 5.65 × 10−10 m at the reference
temperature of Tref = 273.15 K, a viscosity index of ω = 0.85 and scatter-
ing parameter α = 1.44. Each simulation takes approximately 15 minutes
on a laptop (Intel i5 processor, single core computation).

The resulting density and velocity fields are shown in Fig. 8.3, where the
profiles at the channel centerline are shown in the Left and Center columns,
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Figure 8.3: DSMC simulations. Left and Center: density and velocity at the channel
centerline. A1, A2: direct injection. B: reversed injection. Right column: number
density contours for cases A1, B30_1 and B30_4, cold anode.

and some 2D density fields are shown in the Right column. As one may ex-
pect, the anode temperature can be seen to decrease the density and increase
the average velocity. The reversed injection also appears to have a strong
impact on these moments, leveling the average velocity inside the chamber
and lowering the average velocity to zero. In particular, the highest density
is obtained with an injection angle of θ = 30◦. The results showing a low
(zero) average velocity suggest that the reversed injection could increase
the residence time of neutrals in the ionization region, as desired. However,
it should be considered that the average fields offer only a marginal picture
of the problem, due to the strong rarefaction. A more in-depth analysis will
be performed in Section 8.5.

From Fig. 8.3-Right, one can see that the θ = 30◦ density contour shows
an injection jet directed at an angle closer to 45◦. This apparent inconsis-
tency can be explained by considering that, at such rarefaction conditions,
the velocity field is an average of (1) the population of injected particles
(at an actual average angle of 30◦) and (2) the particles that after having
collided with the wall are now directed towards the exit. At collisions with
an angle θ → 0◦, we may expect the latter effect to become particularly
important, as roughly 50% of the particles would collide with the internal
wall immediately after injection.

The effect of the slit position is shown in Fig. 8.3-Bottom. By shifting
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the slit towards the anode, the density and velocity profiles approach the
uniform injection case A1, as one may expect. Only the warm anode case
is shown, as the results for the cold anode case are qualitatively analogous.

From the DSMC simulations, it is possible to gain an even deeper in-
sight by analyzing directly the particle data, in place of only considering
the averages. This gives the possibility to reconstruct the VDF at different
locations and times, and beyond that, this would also allow us to reconstruct
the history of individual simulated particles. From such data, it is possible
to calculate how much time the particles spend inside the ionization re-
gion, and thus estimate the ionization probabilities. The simplest way to
obtain this information is to embed a “timer” variable to the particle object,
and update such timer whenever the particle resides in a requested region.
However, these features are often not included in standard software and
would require some ad-hoc modification. Instead, in the following section
we shall employ a test-particle Monte Carlo algorithm for this purpose.

8.4 Test-particle Monte Carlo simulations: the method

As mentioned, the average fields shown in the previous section only provide
a marginal view of the problem. Rather than the average velocity, we aim at
obtaining the distribution of residence times of neutral particles inside the
ionization region. From such information, one can compute the ionization
probability and ultimately the thruster efficiency.

A possible alternative to DSMC consists in test-particle Monte Carlo
(TPMC) algorithms, see for example [231]. In this section, we discuss a
TPMC algorithm that tracks single particles inside a pre-computed back-
ground. The procedure goes as follows. First, a baseline DSMC simula-
tion is run, resulting in the average density, velocity and temperature fields;
then, the TPMC algorithm is started:

1. A test particle is injected from the gas feed, with velocity sampled
from a Maxwellian distribution at the injection conditions;

2. The particle is advected ballistically for a time step, and wall collisions
are performed, if any;

3. After the translation step, gas-phase collisions are performed with a
probability that depends on the local density and temperature of the
background;

4. When the particle eventually leaves the domain, the particle is de-
stroyed and a new particle is simulated.
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A “timer” variable is attached to each particle, and is updated at each time
step whenever the particle is inside the ionization region. When the particle
leaves the domain and is destroyed, such variable is saved into an array. At
the end of the simulation, this array allows us to compute the distribution of
residence times. The domain simulated by the TPMC algorithm is shown
in Fig. 8.4 for the direct and backward injection cases.

Figure 8.4: Computational domain for the test-particle Monte Carlo algorithm, for the
direct injection (left) and the reversed injection configurations (right). Blue box: ex-
ternal domain. Red box: ionization region. Red thick line: injection points.

This scheme can be seen as a simplified version of the DSMC method,
where particles collide with a prescribed background. This results in an
embarassingly parallelizable algorithm, that requires no communication
or particle re-ordering. The procedure is particularly well suited to free-
molecular flows, where one simply removes the gas-phase collision phase,
and no baseline DSMC computation would be required. Such case is of in-
terest whenever lower mass flow rates are considered, or for smaller thrusters
that show an increased surface-to-volume ratio. Also, for the free-molecular
flow cases, results scale linearly with the dimension of the thruster and can
thus be extrapolated to scaled geometries. Residence times can be expected
to scale with the square root of the surface temperature, with higher tem-
peratures causing higher thermal velocities and thus lower residence times.
This scaling is now trivial though, as one should consider that the anode
and wall temperatures may be different.

Since collisions are performed with a background (and not among sim-
ulated particles), this method conserves energy only at a statistical level (as
happens for instance to the Nanbu’s algorithm [232]). This is not a prob-
lem for the present case though, since the domain is open and new fresh
particles are constantly re-injected.
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Figure 8.5: Cartesian and cylindrical reference systems for the test-particle Monte Carlo
simulations.

Advection step

Fig. 8.5 shows the reference system employed by the TPMC simulations,
mapped on the Hall thruster channel. The simulation is 2D axysimmetric.
Advection is however performed in the three directions (x1, x2, x3), but af-
ter every time step the particle position is rotated back on the (x1, x3) plane,
thus imposing axial symmetry. This is done as follows: the cylindrical co-
ordinates are found as 

R = [x2
1 + x2

3]
1/2
,

β ≡ atan(x2/x1) ,

z ≡ x3 ,

(8.4)

and the new particle position isx
′
1

x′2
x′3

 =

R0
x3

 . (8.5)

The velocity is rotated by the same angle β,v
′
1

v′2
v′3

 =

cos β sin β 0

sin β cos β 0

0 0 1


v1

v2

v3

 . (8.6)

When a particle crosses the wall, a wall-collision is detected. Then, (1)
the position at which the surface was crossed is recorded, (2) the particle
velocity is discarded and sampled from a Maxwellian normalized distri-
bution with zero average velocity and the surface temperature, and (3) the
particle is advected for the remaining of the time step.

184



8.4. Test-particle Monte Carlo simulations: the method

Collision step

In case gas-phase collisions are also to be accounted for, a collision routine
is called after the advection phase. The density, velocity and temperature
fields are imported as a 2D matrix from the baseline simulation, in theR−z
plane (example fields are shown in Fig. 8.6).

Figure 8.6: Baseline density and temperature profiles for case B30_1, with warm anode,
extracted for a strip of the DSMC simulations.

Figure 8.7: Schematic of the bilinear interpolation procedure.

These quantities are computed at the particle location using a bilinear
interpolation, as shown in Fig. 8.7. Given the particle position (zp, Rp), the
four neighboring points are located, with subscripts i and j for the axial and
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radial locations respectively. The areas A,B,C and D are then defined as

A = [zp − zi][Rp −Rj] (8.7a)
B = [zp − zi][Rj+1 −Rp] (8.7b)
C = [zi+1 − zp][Rj+1 −Rp] (8.7c)
D = [zi+1 − zp][Rp −Rj] , (8.7d)

and the interpolated value of the field fp = f(zp, Rp) reads

fp ≈
Afi+1,j+1 +B fi+1,j + C fi,j +Dfi,j+1

A+B + C +D
. (8.8)

For example, referring to Fig. 8.7, it can be seen that in the limiting case
of (zp, Rp) → (zi+1, Rj+1), the area A becomes the leading term, and
Eq. (8.8) rightfully returns fi+1,j+1. In such way, one samples the back-
ground density nBG, velocity vBG and temperature TBG at the particle loca-
tion. The relative velocity between the particle and the average background
velocity is g ≡ |v − vBG|.

Collisions are evaluated using a hard-sphere (HS) model, for simplicity.
For a Maxwellian background, the velocity-dependent collision frequency
ν for the HS potential reads [81]

ν(g) =
σnBG
π

√
2πkBTBG

m
ψ

(
g

√
m

2kBTBG

)
, (8.9)

with σ = 1.0351× 10−18 m2 is the xenon HS cross-section from [129], m
the mass of xenon particles and the function ψ reads

ψ(x) ≡ e−x
2

+

(
2x+

1

x

) √
π

2
erf(x) . (8.10)

In place of the HS model, one should in principle employ the VHS or the
VSS collision models, for consistency with the previous DSMC simula-
tions. However, the expression for the velocity-dependent collision fre-
quency is not trivial in such case, and one should employ a numerical esti-
mate instead. Nonetheless, by running such computations, we have verified
that the results do not change considerably for the considered conditions.
We therefore only consider HS collisions. Once the collision frequency
is known, the probability that the test particle collides with another back-
ground neutral during the time step ∆t is

Pc = 1− exp(−ν(g)∆t) . (8.11)
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Notice that the time step must ensure that Pc � 1. Not respecting
such conditions would result in a practical under-estimation of the collision
frequency. Since ν = ν(g) depends on the velocity of the test particle and
also on the local collisions, one should ensure this condition all along the
simulation. In order to perform a collision, a random number R ∈ (0, 1)
is sampled, and the collision is performed if R < Pc. If this is the case, a
colliding pair is created by sampling from a Maxwellian distribution at the
local conditions, and the collision is performed by random rotation of the
relative velocity vector [233]. After the collision, the colliding pair particle
is discarded.

Numerical implementation

As to exploit the embarrassingly parallelizable nature of the algorithm, a
GPGPU version of the TPMC algorithm was implemented in CUDA For-
tran and is available at [234] (also see Appendix A). Since all particles are
independent, the parallel implementation allows for an optimal speed-up.
Speed-ups of 1600 times were obtained while simulating 106 particles on
an NVidia GTX 760 GPU (compute capability 3.0), with respect to a se-
rial implementation running on an Intel CORE i5 processor with 12 GB of
RAM. The parallel simulations for 106 particles require just a few seconds.

8.5 Test-particle Monte Carlo simulations: results

The algorithm introduced in the previous section is here applied to the anal-
ysis of residence times inside the ionization region. In this section, we as-
sume the ionization region is a square block located at x ∈ [13, 18] mm
(see [90]), as depicted in Fig. 8.4.

8.5.1 Preliminary analysis in the free-molecular limit

To start, we consider in this section a simplified case that allows us to gain
an insight on the dynamics of neutral particles. We assume free-molecular
conditions and neglect all gas-phase collisions. The cases A1, A2 and all
B cases of Table 8.1 are simulated, for both the cold and warm anode case.
In such simulations, the residence time of each neutral particle in the whole
channel is tracked.

The results are shown in Fig. 8.8, where the distribution of logarithms
of residence times is shown, for clarity. The distribution appears rather
simple for the uniform injection case A1. On the other hand, the direct
injection from a slit (case A2) shows a bimodal distribution: the low-times
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Figure 8.8: Normalized distribution for the logarithm of residence times of neutral par-
ticles in the whole channel, in the free-molecular limit. Left: effect of the injection
angle. Right: effect of the slit position.

peak is constituted by particles that, being injected from the slit at a higher
velocity, leave the channel without colliding with walls. This confirms the
intuitive criterion that velocity should be kept as low as possible, in order to
increase the residence time. The high-times peak on the other hand is due to
particles that suffered a wall collision and are thus slowed-down. The anode
temperature is seen to increase this effect, due to the even higher thermal
velocity at the injection point. Indeed, for a sonic injection at 300 K, the
average velocity is uz = 177.91 m/s and particles take roughly 1.4×10−4 s
to reach the channel exit, while for the warm anode case Ta = 1000 K,
uz = 324.8 m/s and the time is reduced to 7.7× 10−5 s. This qualitatively
matches the low-residence-times peaks in Fig. 8.8. Rightfully, the high-
times peak is unchanged by the anode temperature, as the walls are kept at
Tw = 300 K in all simulations.

In the reversed injection simulations, a bimodal distribution is also ob-
served. In this case, the low-residence-time peak is caused by the finite
injection temperature: despite the inward injection angle, some particles
may have a positive initial velocity and thus reach the exit prematurely,
being effectively wasted. This effect is clearly the largest for the 90◦ in-
jection case. For this reason, the injection strategy proposed by Garrigues
et al. [224] may be sub-optimal unless the injection position is carefully
selected, as discussed in the following. We also note that, as expected, the
low-residence-times peak does not depend on the anode temperature.

188



8.5. Test-particle Monte Carlo simulations: results

An analysis of Fig. 8.8-Left shows that all cases perform worse than the
direct injection case A1, but the B30_1 case, with θ = 30◦ appears to be
the least worst option. The performance can be improved by shifting the
slit position inwards, thus reducing the number of wasted particles. This is
shown in Fig. 8.8-Right, for a fixed value of the injection angle θ = 30◦

and a slit position zs progressively approaching the anode. As mentioned
in Section 8.3, in the limiting case of zs → 0 one expects to retrieve a
result similar to the direct injection case A1, as the injected particles would
collide on the anode and be scattered towards the exit.

Note that the mass flow rate has no effect on the collisionless results
of this section, and that the residence times scale linearly with the thruster
size.

8.5.2 Collisional case and residence time in the ionization region

In order to identify the best configuration, we repeat the simulations of the
previous section by including gas-phase collisions. From the previous sec-
tion, the 30◦ case showed to be the most promising candidate, as it allowed
us to minimize the fraction of lost particles. Therefore, in this section, only
the B30 cases are considered. This time, the residence time will be com-
puted in the ionization region, allowing for a computation of the ionization
probabilities. A distribution of residence times is not shown in this section.
Indeed, since only the ionization region is considered, all particles leaving
the channel prematurely would not be accounted for, making a comparison
of the results less intuitive.

Figure 8.9: Average residence time of neutral particles in the ionization region for dif-
ferent slit positions and anode temperatures. The vertical lines identify the ionization
region.

We start by performing a parametric analysis, computing the average
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residence time at different slit positions. This is done both assuming colli-
sionless conditions and including gas-phase collisions. In the latter case, a
number of additional baseline DSMC simulations were needed. The results
are shown in Fig. 8.9. One can clearly see that moving the slit very close
to the anode results in a plateau, and the average residence time retrieves
the uniform injection case, as mentioned in the previous sections. All parti-
cles injected too early would bounce on the anode and cross the ionization
region only once. On the other hand, placing the slit too close to the exit re-
sults in a large number of particles to be lost. The best results are obtained
by centering the 1 mm slit at zs ≈ 16.5 mm, in the second half of the ion-
ization region. In such case, the maximum gain is (∆τ/τdir)% ≈ 28% for
the collisional case, and about 40% for the collisionless case.

Fig. 8.10 shows two sample trajectories in the (z,R) plane, extracted
from the collisional TPMC simulations. Some trajectories appear curved,
due to the azimuthal motion out of the plane. The rarefaction conditions
appear evident, as the mean free path is comparable to the channel width.

Figure 8.10: Trajectories of two test particles for the axisymmetric simulations of case
B30_3. The red line marks the injection slit.

8.5.3 Estimation of the mass utilization efficiency

Finally, from the simulations of the previous section, we are in the posi-
tion of estimating the ionization probability and thus the mass utilization
efficiency of a thruster. We assume that, while inside the ionization region,
a neutral particle i may be ionized by effect of an electron collision with
probability Piz,i. As seen in Eq. (8.2), Piz,i depends on the residence time
τi and is thus different for each considered particle. Slow-moving particles
will spend more time in the ionization region and are thus more likely to
be hit by a fast electron, and the opposite stands for fast-moving neutrals.
The mass utilization efficiency ηm describes the fraction of ionized particles
over the total injected ones, and can therefore be estimated from:

ηm =
1

Ns

Ns∑
i=1

Piz,i =
Ns∑
i=1

1− exp(−νiz τi)

Ns

(8.12)
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whereNs is the total number of simulated particles and
∑

i=1,Ns
Piz,i = Niz,

the number of ionized particles. In the present chapter, electrons are not
being simulated, and a value of νiz is a priori unknown. However, our aim
is not to determine the efficiency of the reversed injection per se, but instead
to determine the efficiency increase with respect to a direct injection case.
We therefore employ the following strategy:

1. First, a standard-injection configuration is considered for a given thruster,
with direct efficiency ηdir

m . This may be for example ηdir
m = 0.95 for

the SPT-100, or lower for smaller thrusters;

2. After running the TPMC algorithm on such configuration, we obtain
an array of simulated values τi;

3. We then plug τi and ηdir
m into Eq. (8.12) and invert it numerically, re-

sulting into an estimate for νiz. This value represents an average, or
anyway an effective value over the ionization region;

4. Finally, a reversed injection configuration is considered: a TPMC sim-
ulation is run, and a value of ηrev

m is computed, using the previously
found value of νiz.

This strategy allows us to find the efficiency of the reversed configuration
as a function of the initial direct-injection efficiency. Note that in the most
general scenario, νdir

iz 6= νrev
iz , since different neutral profiles have a differ-

ent influence on the electron mobility and thus on their space profile. Also,
if the reversed injection would increase the ionization efficiency, more ions
would be produced, resulting in some additional ion-neutral collisionality.
Our simplified analysis completely neglects all these phenomena. Nonethe-
less, this assumption allows for a simple analysis of the problem and per-
mits to easily compute maps of the effectiveness of the reversed injection,
without the need of a full (and much more expensive) PIC model of the
problem. Given the tightly coupled nature of the plasma problem and the
large number of uncertainties involved in the determination of the electrons
mobility in Hall thruster channels (such as the wall conductivity and vari-
ous types of instabilities), we believe that the present analysis is a valuable
preliminary investigation tool.

Fig. 8.11 shows the maps of the mass utilization efficiency, computed
as 100(ηrev

m − ηdir
m )/ηdir

m , for an injection at 30◦ and different slit positions,
in the cold and warm anode cases (left and right columns). The collisional
cases (bottom) are obtained for a mass flow rate of ṁ = 5 mg/s. The col-
lisionless cases on the other hand are completely independent on the mass
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Figure 8.11: Percent gain for different locations of the slit center zs at different values of
ηdir. Injection angle θ = 30◦. Left columns: cold anode. Right: warm anode.

flow rate (as discussed in Section 8.5.1), and can thus be directly applied to
scaled-down or scaled-up thruster geometries. Considering thrusters with
a high initial efficiency ηdir > 0.8, the computations suggest that a maxi-
mum gain of 15% can be achieved, while for lower-efficiency thrusters (say,
ηdir ≈ 0.5), the improve can reach 20–30%. Finally, it should be noted that
the gain is referred to the uniform injection case, that is an idealized config-
uration. Real gas feeds do not provide a uniform injection along the anode
but most likely expand the propellant, causing some acceleration and thus
a (at least slight) degradation of the performance. Considering such cases
in place of an ideal uniform injection would result in a higher gain of the
reversed injection strategy.

8.6 Conclusions

In this chapter, the dynamics of the propellant injection and evolution inside
the channel of an SPT-100 thruster was studied numerically, for different
gas feed configurations, and neglecting plasma species. The density and ve-
locity fields were seen to depend markedly on the details of the gas injector,
ultimately influencing the mass utilization efficiency. An alternative injec-
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tion strategy was then proposed, where the propellant is injected backwards,
from a slit located near the exit plane, and is directed towards the anode.
A comparison of the distribution of residence times of neutrals in the ion-
ization region, obtained from DSMC and TPMC simulations, showed that
the proposed reversed-injection configuration could improve the mass uti-
lization efficiency from 5–10% up to 20–30%, according to the efficiency
of the baseline thruster.

A number of simplifying assumptions were introduced in this section.
Most notably, the analyses are run for a switched-off thruster, neglecting
all interaction between neutrals and electrons or ions. The only considered
plasma effect was an increased temperature of the anode. A suggested fu-
ture work activity would consist in repeating the simulations including at
least neutral-ion momentum exchange and charge exchange interactions.
After verifying the influence of such effects on the final efficiency maps,
a next step would be performing a fully coupled simulation, as to retrieve
self-consistently the ionization region and electron transport.
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Conclusions and future work

This work aimed at investigating the modeling of low-temperature plasmas
using moment methods. In particular, Hall thruster plasmas were consid-
ered. In such device, ions are collisionless, to a first approximation. The
acceleration is achieved by creating a region of higher electron density,
trapping them via a radial magnetic field. The axial electric field, combined
with the radial magnetic field, makes electrons drift in the E×B direction.
Together with the low pressure, all such effects are strong sources of non-
equilibrium.

This work investigated kinetic and fluid strategies for modeling these sit-
uations, through a selection of simple test cases. In particular, the order-4
maximum-entropy moment methods showed an excellent potential for de-
scribing the mentioned non-equilibrium, often offering a solution as accu-
rate as the kinetic method, but at a lower computational cost, as discussed
in the following. The maximum-entropy methods employed in this work
are the 14-moment system, together with the 5-moment system, describing
a particle with a single translational degree of freedom.

Developing the maximum-entropy method

Applying the maximum-entropy methods required first of all to develop
such systems for profitably dealing with the conditions of ions and elec-
trons. In particular, the following results were needed:

• Achieving an affordable computational cost;

• Ensuring a profitable treatment of collisionless conditions;
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• Developing electromagnetic source terms;

• Developing sources for the collisions of warm electrons with cold and
slow neutrals.

An affordable computational cost is particularly important in plasmas, where
the tiny time scales associated to plasma waves, and the refined grids aris-
ing from the need to resolve the Debye length, often make the system par-
ticularly stiff. In the current state-of-the-art, the 14-moment system is al-
ready much more affordable than traditional maximum-entropy formula-
tions, thanks to the development of approximated solutions of the entropy-
maximisation problem. However, a significant part of the remaining com-
putational cost was seen to be the approximation of the system eigenvalues.
From the analysis that we performed, traditional approximations for the
maximum and minimum wave speeds of the 14-moment system appeared
to bring an excessive degree of diffusion when strong non-equilibrium situ-
ations are considered. For this reason, part of this work was devoted to the
development of approximated formulas, that allow us to retrieve an accu-
rate estimate of the system wave speeds, without the need of numerically
computing the fluxes Jacobian2 and its eigenvalues at each iteration.

Among the drawbacks of the method, we should certainly cite the com-
putational cost. Through the rarefied test cases, it was seen that the method
can be somewhere between 7 and 100 times more expensive than the Euler
equations (less for continuum conditions, more when strong non-equilib-
rium appears). However, these figures of merit were obtained with simple
explicit time integration strategies, that make the solution completely de-
pendent on the system eigenvalues, through the CFL conditions. Among
the strategies to mitigate this problem, we shall cite for example precondi-
tioning [235].

The crossing of the Junk line, in some test cases, requires a careful
selection of the numerical schemes. For continuum conditions, the fre-
quently employed HLL fluxes work faultlessly, but in rarefied simulations,
they showed to cause strong oscillations, especially in the higher order mo-
ments. The Rusanov fluxes appear to introduce sufficient diffusion to solve
the issue, and thus allow us to apply reconstructions (such as in van Leer’s
MUSCL scheme) that allow us to reach higher orders in space.

Electric and magnetic source terms were developed for the 5-moment
and the 14-moment systems, starting from the generalized moment equa-
tion, and were employed for the study of plasma waves. The dispersion
relations showed to retrieve the expected fluid behavior for small values

2It should be recalled that, for the 14-moment system, the Jacobian is a 14× 14 matrix.
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of the wave number k, and asymptote to the convective eigenvalues when
kλDe � 1. Also, it was noted that some regions of the moment space are
associated so unstable eigenvalues, which may be associated to the pres-
ence of micro-instabilities, and will be suggested as a future work activity.

Regarding collisional source terms, only simplified formulations were
attempted, and merely for electron-neutral interactions, being the most im-
portant collisional phenomena in Hall thrusters. The formulations were
based on the BGK collision operator, where the effect of a large electron-
neutral mass disparity was embedded.

Applying the maximum-entropy method to plasma systems

The aforementioned developments allowed us to apply the 14 and 5-moment
systems to the modeling of ions and electrons. A set of test cases was iden-
tified, describing individual non-equilibrium effects arising in Hall thruster
plasmas. The aim of such test cases was to compare the accuracy at which
the fluid and moment methods can reproduce the kinetic features. For this
reason, in all test cases, an individual species was studied. The effect of the
other species was embedded by prescribing the electric field. The investi-
gated problems are therefore not self-consistent from the plasma point of
view. However, this allows to perform a detailed comparison of the results
from each method, overruling all inaccuracies associated to the modeling
of the other species. A coupling of the models for the different species will
be suggested as a future work activity.

Ions

Regarding ions, the first problem considered consists in the 1-dimensional
collisionless acceleration in a Hall thruster-like channel. For this problem,
we have investigated an analytical solution of the kinetic equation, and then
developed an ad-hoc fluid model that includes only the lower three mo-
ments of the distribution function, but retrieves non-equilibrium through a
non-Fourier closure for the heat flux. These models appeared very accurate
if compared to fully kinetic simulations, and at least reasonable when com-
pared to experimental results. Further test cases were then developed for
investigating the accuracy of the maximum-entropy closure in such con-
dition. In most test cases, the maximum-entropy method allowed us to
reproduce the kinetic results to a very good accuracy.

The most notable exception consists in the study of charged particles in
a closed system, and in presence of an imposed sinusoidal electric field.
Such test case results in a progressively increasing non-equilibrium, show-
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ing filamentation in phase space. The maximum-entropy method appeared
to reproduce very closely the first instants of the simulation (much better
than the simpler Euler system) but eventually breaks apart for long times.
Such test case was chosen as to reproduce the ion wave trapping, appearing
in Hall thrusters due to the presence of azimuthal instabilities.

In terms of application to Hall thrusters however, the situation is less
dramatic: once this case was extended in two dimension, the axial accel-
eration showed to be a crucial factor, limiting the permanence of ions in
the region of azimuthal travelling waves. The resulting non-equilibrium
conditions appear to be reproduced with high accuracy by the 14-moment
system, confirming the quality of such approximation.

Electrons

Finally, regarding electrons, the presence of a magnetic field introduces fur-
ther non-equilibrium features, where ring-like, asymmetric and anisotropic
distribution functions appear. For this problem, the 14-moment approxi-
mation appeared to be an ideal approach, as the 14-parameter maximum-
entropy distribution function is able to naturally reproduce such features.
A comparison of the analytical and maximum-entropy velocity distribution
functions showed very promising results (yet not exact), while the energy
distribution function appeared to reproduce the analytical results extremely
closely. Analogously, space-homogeneous time relaxation problems, as
well as the study of a 1-dimensional test case confirmed the quality of the
maximum-entropy formulation for this problem.

For what concerns electron modeling, the main disadvantage of the max-
imum-entropy formulation consists in source terms. Indeed, unless one
solves the full costly entropy-maximisation problem, the shape of the dis-
tribution function is not known from its moments. Such knowledge would
be needed if one is to formulate accurate non-equilibrium (both elastic and
inelastic) collision terms that embed non-linear cross-sections. At the mo-
ment, this is an open problem that will be suggested as a future research
activity.

Other results

To conclude, we should mention a couple of further activities performed in
the framework of this thesis.

First, a study of the dynamics of neutral particles was conducted with
Direct Simulation Monte Carlo and test-particle Monte Carlo methods. In
this study, we have proposed an alternative gas feed strategy, that could
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allow one to increase significantly the residence time of neutral particles
in the ionization region. The expected gains in mass utilization efficiency
range from 5–10% to 20–30% for the less efficient thrusters. Such analysis
is however approximated, as it neglects all interactions between neutrals
and the charged species. This is equivalent to considering the efficiency of
a switched-off thruster, except that different anode temperatures have been
considered.

Finally, we should cite a further activity, uncorrelated to neutrals, but
aimed instead at approximating the maximum and minimum wave speeds
of the maximum-entropy systems by use of artificial neural networks. This
work is preliminary, and is thus confined to an appendix. Nonetheless, this
strategy is quite interesting, as it could be easily generalized to whatever
system.

Future work

Based on this work, a number of future research activities are suggested.

Numerical solution of the 14-moment method

A number of developments will be in order for increasing the accessibility
and effectiveness of the 14-moment solution. In particular,

• Developing higher-accuracy numerical fluxes, extending existing for-
mulations based on the Euler/Navier-Stokes equations (such as the
AUSM family of schemes), or investigating kinetic fluxes;

• Improving the empirical wave speeds approximation formulated in
this work, embedding more physical considerations and removing the
questionable assumptions;

• Investigating pre-conditioners and implicit methods, in order to lower
the spread in computational cost if compared to fluid simulations.

Maximum-entropy system for plasma modeling

The most compelling developments for what concerns running plasma sim-
ulations are

• Developing non-equilibrium collisional source terms for the 14-moment
equations, especially regarding electron-neutral collisions, but also
charge and momentum exchange ion-neutral collisions. In particular,
we suggest a comparison of such collision models agains PIC-MCC
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algorithms and other moment methods, starting from 0-dimensional
reactor configurations;

• Investigating fully coupled problems, employing a multi-fluid formu-
lation and the Poisson’s equation for the description of the electric
field.

Moreover, a number of further analyses are possible. We shall cite for
example:

• Extending the study of the dispersion relation for plasma waves, and
investigating how the maximum-entropy systems can develop micro-
instabilities;

• Extending the affordable interpolative closure to higher order maxi-
mum-entropy systems, that could reproduce even stronger non-equi-
librium situations;

• Comparing hybrid methods (kinetic ions and fluid electrons) to a mo-
ment – fluid approach, where ions are modeled with the 14-moment
system and electrons are fluid. For Hall thruster problems, this could
give analogous accuracies to the hybrid method, but at a lower com-
putational cost, and with a simpler data structure, since electron and
ion quantities will be known at the same grid points.

The methods developed in this thesis may find a direct application to a num-
ber of other plasma configurations, such as the study of the Hall thruster
plume. Besides the important problem of the plume-spacecraft interaction,
an electric propulsion device can be used as a particle flow generator for the
ground simulaton of satellites in low Earth orbit conditions, and for inves-
tigating air-breathing electric propulsion configurations [236–238]. Cur-
rently, a new rarefied facility is being built at the von Karman Institute for
Fluid Dynamics, targeted to such problems, and numerical tools are be-
ing developed for the characterization of the facility. Together with such
tools, the developments of this thesis may prove useful, for example, for
the simulation of the chamber operating conditions and of the plume non-
equilibrium, allowing us to ensure that the required testing specifications
are met.
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APPENDIXA
Notes on the GPU implementation

In this work, graphics cards were used to accelerate the 2-dimensional fi-
nite volume computations of crossing rarefied jets (Section 4.4), ions in
travelling electric fields (Section 6.6), as well as the test-particle Monte
Carlo computations of the neutral injection, in Chapter 8. This appendix
briefly reviews the caveats of such GPU implementation, and is based on
the NVidia GTX760 (compute capability 3.0) and the Tesla K20X (com-
pute capability 3.5). The implementations are based on CUDA Fortran (see
for example [239]).

At a simplistic level, the GPU is composed by a large number of pro-
cessors that can be run in parallel. All processes have direct access to the
GPU memory, that is composed by a global memory (typically the largest),
and various levels of smaller (but faster) memories, as shown in Fig. A.1.
For storing the physical constants, one can employ the constant memory,
that has a fast access but cannot be modified during the execution. The
texture memory has some peculiar interpolation features, but was not em-
ployed in this work. Since the memory is dedicated, the access via CPU
is a rather slow operation, showing an important latency. For this reason,
provided that the GPU memory is sufficient to hold all necessary data for
the simulation, one typically tries to follow the strategy:
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Figure A.1: Schematic of the memory organization of a typical GPU.

1. Initialize the data on the host (for simplicity);

2. Copy the data to the GPU;

3. Perform all computations on the GPU;

4. Only in the end, download the data.

Parallel implementation for the test-particle Monte Carlo simulations

The test-particle Monte Carlo algorithm of Chapter 8 is easily parallelized,
since every particle is run independently from the others. Our implemen-
tation is freely available at [234]. At the beginning of the simulation, the
background density, velocity and temperature fields are loaded in the global
memory as 2D matrices. The number of particles to be simulated is then
decided, and each particle is mapped to a different thread. When a particle
leaves the domain, the process for such thread is concluded.

Unfortunately, each particle follows a different path, due to the random
injection and collisions. Therefore, all threads need to execute different
code operations. This is known to be a non-optimal situation, since some
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groups of threads (warps) potentially have the possibility to run exactly con-
currently in a branchless program. However, the fact that all particles are
independent and that no communication with the host is necessary during
the computation, makes our simple GPU parallelization extremely efficient,
reaching a speed-up of above 1600 times, on the GTX760.

2D finite volume solver

The implementation of the 2D finite volume scheme requires some addi-
tional care, and one needs to ensure that the quantities have been updated
in each cell before the solver moves to the next step.

Every cell in the 2D grid is mapped to one thread, and a number of
Nx×Ny threads forms a block, for a maximum of 1024 threads. The GPU
contains a number of multiprocessors (MP, 14 for case the Tesla K20X),
each one being mapped to a grid block. When a GPU function or “kernel”
is launched, it is executed in parallel on each multiprocessor, and therefore
the code is executed for MP grid blocks in parallel. Once the execution is
done, the device moves to the successive MP blocks, and so on until the
kernel is over.

This behavior is to be carefully considered when designing the solver.
For example, considering the forward Euler time integrator (discussed in
Chapter 3),

Un+1 = Un +
∑
i

∆t

Li
F n
i · n̂i + ∆tGn , (A.1)

one needs to ensure that all fluxes are properly computed before the solution
is updated. This can be ensured by breaking the solver into separate kernel
calls, ensuring that a given operation is run on all blocks before the program
moves on. As a practical example, Fig. A.2 shows the outcome of a wrong
implementation, where the program is solving 14 MPs (and thus blocks) at
a time, each composed by 32 × 32 threads (one for each cell) and is not
waiting for the kernel to be launched on other blocks before updating the
solution.

Historically, GPUs are single precision devices, whereas most current
GPUs also support double precision, many of them even natively. The solu-
tion of the maximum-entropy 14-moment system showed some issues with
single precision, with every test case performed. The issues seemed to be
mostly attributable to the computation of the closing moments, especially
in the inversion of the matrix Bij . Employing double precision removed all
such issues.

Another issue appears when trying to solve the 14-moment system on
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Figure A.2: Density field from a test simulation. Example of a numerical artefact due to
improper implementation of the time integrator.

the GPU. With respect to the Euler equations, the closing moments of the
14-moment system are numerous, and their computation from the interpola-
tive approximation requires to define a number of local working variables.
As a result, one may run out of registers, and this forces one to run on less
threads per block. In the present implementation, the Euler computations
were easily run on 32× 32 threads per block, while for the 14-moment sys-
tem this needed to be reduced to 16 × 16 or even 16 × 8 (for rectangular
grids).

Figure A.3: Schematic of the finite volume 2D Cartesian grid. The black thick line delimits
the actual computational domain. Green boxes are ghost cells.

To remove the need to store a grid in the GPU memory, a (structured)
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Cartesian grid is employed, as shown in Fig A.3, where cells numbering
starts from 1 as custom in Fortran implementations. Two layers of ghost
cells are employed at each side of the domain, simplifying the numerical
implementation of second order accuracy at the boundaries. Four “dead
cells” are present in each corner: these are kept in the arrays for simplicity,
but are not taken into account during the actual computations.

The present implementation is based on a single GPU and is rather
simplistic. More advanced strategies could be employed, exploiting var-
ious features of the GPU (for example, leveraging on shared memory) and
multiple-GPU configurations (see for example [240, 241]).
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APPENDIXB
Time integration error for accelerated gases

The discretization error intrinsic to time integration methods may play an
important role in numerical simulations, when closed systems are to be
described or the long-time behavior is of interest. This appendix is based
on the conservative form of the governing equations. When the equations
are written in primitive variables, this analysis does not hold anymore as
some errors disappear.

Considering a uniform slab of gas subject to a uniform and constant
force F , the mass, momentum and energy equations give

dρ

dt
= 0 ,

d

dt
(ρu) = F ,

d

dt
(ρE) = Fu . (B.1)

The density is therefore constant, while the velocity grows linearly in time:

u(t) = u(0) + F t/ρ , (B.2)

and the energy changes quadratically:

(ρE)(t) = (ρE)(0)+

ˆ t

0

Fu(t)dt = (ρE)(0)+

ˆ t

0

F (u(0) + F t/ρ) dt ,

= (ρE)(0) + Fu(0)t+ F 2t2ρ . (B.3)
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For a time integrator to behave properly, we expect this basic feature to
be retrieved, but this is not the case for most schemes. The simple forward
Euler integrator for example evaluates the source terms at time n and thus
gives a linear estimate in time of both velocity and energy:{

un+1 = un + ∆t F/ρ ,

(ρE)n+1 = (ρE)n + ∆tFun/ρ .
(B.4)

This situation is depicted in Fig. B.1-Left and -Center and leads to under-
predicting the total energy. When the temperature is reconstructed by re-
moving the velocity squared (that is integrated exactly) from the total en-
ergy ρE (that contains the integration error), one obtains a progressive cool-
ing down (or heating up) of the gas, which may eventually lead to negative
temperatures. Increasing the order of the method does increase the accu-
racy, but does not necessarily solve the problem.

Figure B.1: Analytical and discrete velocity (Left) and total energy (Center). Right:
source term for the energy equation, evaluated at the initial time n or at the midpoint
(n+ 1/2).

Remedy: the Midpoint Euler scheme

Given the structure of the sources, if one would account for the linear evo-
lution of the velocity, the source term for the energy equation would be
correctly reproduced. The simple Midpoint Euler scheme (see Chapter 3)
solves the problem by employing such strategy. By performing a half time
step, the velocity is integrated exactly to the midpoint value, and this is
enough for integrating correctly the source term for the energy equation,
Q = Fu, as shown in Fig. B.1-Right.

A numerical example

As a numerical example, we solve Eqs. (B.1) for F = nqE, with n0 =
1015 m−3 the initial number density, q = 1.602 × 10−19 C the particles
charge, with the imposed field E = 10 kV/m, particle mass m = 2.18 ×
10−25 kg and initial temperature T0 = 100 K. Figure B.2 compares the
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temperature, using the forward Euler, the Heun, Runge-Kutta 4 and the
midpoint Euler methods. As expected, the higher order methods behaves
better than the forward Euler scheme, but still fail to predict the expected
constant temperature at larger time steps. The midpoint Euler, despite being
only second order, solves this problem exactly, to numerical accuracy.

Figure B.2: Temperature of a gas under uniform and constant accelerating field, as pre-
dicted by different integration schemes. The forward Euler method is not shown in the
Right figure, as it is not stable for the large time step.
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APPENDIXC
Wave speeds approximation via Artificial

Neural Networks

In Section 4.2, approximated expressions for the wave speeds of the 6 and
14-moment maximum-entropy systems were formulated. Before finding
these approximations, an alternative approach based on Artificial Neural
Networks was initially attempted. Such approach will be discussed in this
appendix. Many important observations of Section 4.2, such as the depen-
dence of the wave speeds on σ−1, were not initially accounted for. Doing
so would surely improve the quality of the present appendix. Nonetheless,
the approach outlined here is useful as it outlines the procedure and the
accuracy that can be expected.

In this work, we are interested in obtaining the wave speedsw by feeding
the gas state U to the artificial neural network (ANN). Roughly speaking:

(wmin, wmax) = ANN(U) . (C.1)

To do that, the actual procedure is as follows:

1) From the gas state U , move in the reference frame with zero velocity
and compute dimensionless variables;
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2) Scale dimensionless variables with proper functions, as to highlight the
equilibrium region;

3) Scale the data to unit range;

4) Apply the artificial neural network and obtain the wave speeds;

5) Scale back the wave speeds to dimensional units.

Points 1 and 4 were detailed in Chapter 2.

Feedforward Artificial Neural Networks (ANN)

We consider feedforward artificial neural networks (ANN), and employ the
TensorFlow [242] and Theano [243] implementations, with the Keras API
[244]. For a complete introduction, the reader is referred to [245].

ANNs are composed by one input layer, a number of hidden layers, and
an output layer. The k–th layer takes as input the values of the layer k − 1
and predicts an output as a linear combination, further processed by a non-
linear activation function a(),

uk = a
(
Wkuk−1 + bk

)
, (C.2)

where u is the vector of node values, W are the weight coefficients and b
is the “bias” vector. The weights and biases are determined by the training
process, and are chosen as to represent best the desired output. In this
work, we consider a tanh activation function for internal layers, while a
linear activation function is chosen for the output layer [246].

Creating the data for training the ANNs

The ANN approximation is investigated for the parameters σ ∈ [10−5, 1],
and for the non-dimensional heat flux q? ∈ [−70, 70]. The latter allows
us to represent shock waves up to Mach number M = 100, as shown in
Fig. C.1.

For the 5-moment system, q?,σ completely define the dimensionless
wave speeds. A plot of the maximum wave speed in such plane is shown
in Fig. C.2-a), where a logarithmic scaling of the wave speed is introduced
as to make the plot intelligible. As studied in Section 4.2, the wave speeds
span many orders of magnitude for σ → 0. Moreover, one may be inter-
ested in reproducing well the equilibrium region. However, representing
such a complicated and widely varying function is a difficult task for an
ANN. We decide therefore to transform the data, as to make the job sim-
pler to the ANN. First, as mentioned, a logarithmic scaling (subscript “s”)
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Figure C.1: Shock wave structure in the q? − σ plane, as predicted from the 5-moment
system, for Mach numbers M = 10,50 and 100. Left: linear space. Right: scaled
variables ξ = log10(σ) and θ = asinh(Aq?), with A = 10 000.

is introduced on the wave speeds, observing that in the reference frame of
the bulk velocity, wmax and wmin are always positive and negative respec-
tively: {

wsmax = log10(wmax + 1) ,

wsmin = − log10(−wmin + 1) .
(C.3)

Then, in order to attribute more importance to the equilibrium region,
σ is scaled by introducing the quantity ξ = log10(σ), such that for σ ∈
[10−5, 1], ξ ∈ [−5, 0]. The heat flux is scaled using a sigmoid function, that
is steep in the origin as to emphasize such region,{

θ = asinh(Aq?) ,

A = 10 000 .
(C.4)

The data after all the scalings is shown in Fig. C.2-c). As mentioned,
by embedding the considerations of Section 4.2 one can probably obtain a
more rigorous scaling.

The training data is generated by sampling points randomly in the ξ, θ
plane. At first, a uniform sampling was attempted, but this provided a good
fit in the smooth regions and a poor-quality near equilibrium. Therefore,
we decided to divide the plane in patches and sampling a various amounts
of points, as detailed in Table C.1. A total of roughly 4 × 106 points was
employed. Increasing this number further did not appear to improve the
results.
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Figure C.2: Maximum Wave speed of the 5-moment system, scaled for a more accurate
representation with ANNs. a) logarithmic scaling of the wave speed; a1) magnification
near the origin (equilibrium point); b) logarithmic scaling of σ; c) sigmoid scaling of
q?.

ANN architecture and training

The most suitable architectures for ANNs are typically defined empiri-
cally, by training different layouts and analyzing the accuracy. In terms
of CFD applications, small ANNs are better, as they can be evaluated with
fewer computational resources. We discuss here a selection of the analysis
performed. Some possible three-hidden-layer architectures are shown in
Fig. C.3.

Before feeding the data to the ANN, a unit scaling is employed to both
the input quantities (ξ and θ), and the resulting scaled wave speeds,

h(1,−1) = 2
h−min(h)

max(h)−min(h)
− 1 . (C.5)

with h the quantity to be scaled. Scaling the data to [0, 1] provided anal-
ogous final accuracies. Note that the values min(h) and max(h) of the
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Number of points σ range q? range
640 000

[
10−5, 1

]
[−70, 70]

160 000
[
10−5, 10−4

] [
−10−3, 10−3

]
160 000

[
10−5, 5× 10−5

] [
−5× 10−5, 5× 10−5

]
900 000 [0.7, 1] [−70, 70]
600 000 [0.95, 1] [−70,−10]
600 000 [0.95, 1] [10, 70]
900 000

[
10−4, 10−5

]
[−70, 70]

Table C.1: Patches in the (ξ, θ) plane for creating training data. The equivalent values of
σ and q? are shown for clarity.

Figure C.3: Examples of ANNs with three hidden layers. The inputs are two for the 5-
moment system, and should be three for the 6-moment system. The outputs are two:
the maximum and minimum wave speeds.

training data are to be stored, as they are needed for evaluating the ANN,
during CFD computations.

Given the training data and the ANN architecture, training is performed
by selecting a number of 800 epochs and a batch size of 1000. The con-
vergence history suggests that this is enough for reaching a satisfactory
convergence. Training points are fed in random order by the algorithm.
The wave speed predictions obtained from the training process are shown
in Fig. C.4.

The quality of a trained ANN is then analyzed, by considering the er-
ror. Figure C.4 appears to give an accurate match, with negligible error.
However, what really matters in terms of CFD computations is the error in
the full non-scaled wave speeds: indeed, a small error for ws = log10(w)
is amplified once we compute the exponential to retrieve w. The error is
defined as

E =
wmax − wNN

max

wmax

, (C.6)

and is evaluated on a uniform grid in the σ − q? plane, and is shown
in Fig. C.5. Additionally, the error is evaluated on a set of 50 000 ran-
dom points, and the average error and 95th percentile are given in Ta-
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Figure C.4: Predicted maximum wave speed from a 5-10-5 hidden layers architecture
(surface plot) and exact values (red symbols), in the scaled variables domain, with
additional unit-scaling.

ble C.2. Slightly different results may be obtained in different runs due
to the stochastic nature of the training.

Architecture µ(|E|) P95%(|E|)
5-10-5 2.312 % 6.127 %
5-10-10 2.761 % 6.527 %
10-10-5 2.189 % 4.303 %

5-10-10-5 2.202 % 3.889 %
8-20-15-8 2.076 % 3.144 %

15-20-15-10 2.110 % 2.939 %

Table C.2: Error for different tested ANN architectures, computed on 50 000 random
points. µ(|E|) and P95%(|E|) indicate the average of the absolute error and the 95th

percentile.

From an analysis of the reported results, we propose the following:

• If a rough reproduction of the wave speeds is sufficient, with an error
below ±10% in the whole domain, we propose to employ the three-
layer 5-10-5 architecture. The 5-10-10 and 10-10-5 architectures in-
crease the complexity without increasing significantly the accuracy;

• If a lower error is required, a 15-20-15-10 architecture allows for a
prediction within ±3% in most of the domain and in any case below
±5%, but at the cost of operating with larger matrix.

Further analysis could allow one to identify simpler network layouts with
analogous or higher accuracies, but this is beyond the scope of the present
work.
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Figure C.5: Relative error in the full-scale wave speeds from Eq. (C.6). The error is
plotted against the θ axis, and the error for different values of σ is superimposed.

6-moment system

We then consider the 6-moment system [67], where the fitting is to be done
on three dimensionless variables instead of two, including the dimension-
less pressure P ?

xx. In this section, we arbitrarily decide to nondimensional-
ize variables using the quantity trPij . With this choice, at equilibrium we
have P ?

xx = 1/3, and in the limit of Pyy = Pzz → 0, the 5-moment system
is retrieved, with P ?

xx = 1.
The closing moments (and thus ultimately the fluxes Jacobian and its

eigenvalues) are obtained from the interpolative closure [67]. This closure,
when applied to the 6-moment and 14-moment system, is known to embed
some small regions of slight non-hyperbolicity, where eigenvalues take a
small imaginary part. This is shown in Fig. C.6. On practical grounds, this
fact does not constitute a difficulty, and in the present work we circum-
vent this by considering only the magnitude of the wave speeds, properly
multiplied by the sign of the real part,

w̃ = sign(Re(w))
√

Re(w)2 + Im(w)2 , (C.7)

Regarding the magnitude of the maximum wave speed in the qσx−σ, one
can see a qualitatively similarity with respect to the 5-moment system, but
also a strong influence of the pressure.

For the 6-moment system, the wave speeds show much steeper gradients
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Figure C.6: Left: Hyperbolicity region for 6-moment system. The region enclosed in the
contour has an imaginary part larger than 0.001. Right: Maximum dimensionless
eigenvalue for the 6-moment system.

near equilibrium. Therefore, the scaling for the heat flux is modified to

θ = asinh(50 000 q?x) . (C.8)

We then define ξ = log10(σ) as before, and the wave speeds are also scaled
as for the 5-moment system. By inspection of different P ?

xx − σ planes for
different values of q?x, the wave speeds appear to be smooth with respect to
P ?
xx, except in the limit of P ?

xx → 0, where the wave speeds quickly drop to
zero. To alleviate this, a scaling ζ =

√
P ?
xx is introduced for the pressure.

At equilibrium we have ζ =
√

1/3. The maximum wave speeds after this
scaling are shown in Fig. C.7 for some slices in the (P ?

xx, q
?
x, σ) space.

Figure C.7: Maximum wave speed of the 6-moment system. Slices in the P ?xx, q
?
x, σ space

for different values of q?x. Symbol ? identifies thermodynamic equilibrium.
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The range for the training data is chosen to be

P ?
xx ∈ [10−3, 1] , q?x ∈ [−70, 70] and σ ∈ [10−5, 1] . (C.9)

The choice P ?
xx = 10−3 implies a rather high degree of pressures anisotropy,

P ?
rr/P

?
xx ≈ 1000, which we repute to be enough for the purpose of the

present work.
The training data for the 5-10-5 and 5-5-5-5-5-5 ANNs was generated

as follows. As a first step, 2 000 000 points were randomly seeded into
the whole 3D domain. Then, 1.5 million additional points were seeded on
two slices of the 3D domain, as to provide additional importance to the
equilibrium. A schematic is shown in Fig. C.8. On such planes, the seeding
is performed by patches, in an analogous manner to the 5-moment case.
This proved enough for converging the smaller nets, while for more data is
needed for the 15-20-15-10 ANN: for such case we keep the same seeding
strategy, but increase the total number of points to 8.5 millions.

Figure C.8: Slices of the θ− σ − ξ space for the selection of training points, and patches
for refined seeding.

Estimating the accuracy of the ANN fits is not trivial, due to the three
dimensions involved, and since different regions of moment space bear dif-
ferent importance. For example, it is desirable to obtain good accuracy in
the equilibrium plane, while a somewhat higher error could be accepted for
extreme conditions of non-equilibrium. We report in Table C.3 an indica-
tion of the average error and its 95th percentile, obtained from Eq. (C.6),
computed on 50 000 random points. The error is shown both for the whole
moment space, by sampling points randomly in the whole domain, and also
for equilibrium values of the pressure components, P ?

xx = 1/3, by probing
the error on the qx − σ plane only. For all cases, the choice of seeding ad-

219



Appendix C. Wave speeds approximation via Artificial Neural Networks

ditional training points on the plane P ?
xx = 1/3 has the desirable effect of

reducing the error in such region.

The error introduced by the simplest ANNs appears rather large, espe-
cially out of the equilibrium planes, where as indicated by the 95th per-
centile, one easily has oscillations of 100% roughly. Yet, this is a strong
gain over the simplified expression “w = u ± ka”, where the error could
reach some orders of magnitude. By analysis of the results, it appears that
the maximum errors arise for situations of extremely high non-equilibrium,
often for very low pressures P ?

xx ≈ 0.001. It is possible to alleviate this
error by seeding additional data specifically in such region of low P ?

xx, or
to attempt different weightings of the seeding space. However, this goes
beyond the scope of the present work. Also notice that special attention
should be payed to the high-q?x region for low values of σ, as the numerical
computation of eigenvalues gets stiffer and could fail certain algorithms.

Architecture µ(|E|) P95%(|E|) µ(|E|); Peq P95%(|E|); Peq Np
5-10-5 26.27 % 111.8 % 6.043 % 17.70 % 3.5× 106

5-5-5-5-5-5 36.71 % 175.6 % 2.615% 8.847 % 3.5× 106

15-20-15-10 15.83 % 71.60 % 0.421 % 1.350 % 8.5× 106

Table C.3: Error for different tested neural network architectures. µ(|E|) and P95%(|E|)
indicate the average of the absolute error and the 95th percentile. Symbol Peq indi-
cates that the error is computed on a slice of moment space where the pressure tensor
is isotropic. Np is the approximated number of training points.

A further representation is given in Fig. C.9, where we show the errors
of some nets, on a slice of the 3D moment space, with P ?

xx = 1/3. For
rough estimations, the 5-10-5 ANN still provides a viable option, if one can
accept a solution which is reasonable near equilibrium, but can introduce
some error far from it (still reproducing the correct order of magnitude).
The 5-5-5-5-5-5 ANN has the same total number of nodes as the 5-10-5,
but is split in more stages. The training shows a better performance on the
equilibrium plane, but a worse performance overall. The 15-20-15-10 ANN
provides a much better accuracy, if the additional computational cost can
be afforded.
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Figure C.9: Error in the predicted maximum wave speed for some ANN architectures, on
the plane P ?xx = 1/3, for different values of σ.

Concluding notes

To conclude, we resume here the procedure for applying the trained ANNs.
For the 5-moment system:

ρ

u

P

q

r

→
(
q?

σ

)
→

(
θs

ξs

)
→ ANN(θs, ξs)→

(
log10(w

?
max + 1)

− log10(−w?
min + 1)

)
→

(
wmin

wmax

)
.

(C.10)

The computational efficiency of employing the proposed ANNs archi-
tectures, in place of computing the eigenvalues numerically appears evident
from the numerical simulations. The results are given in Fig. C.10, that
compares the computational times of the 6-moment system in three cases:
a) computing the eigenvalues from a finite-difference approximation of the
Jacobian; b) computing the eigenvalues from the analytical Jacobian (that
is available for the 6-moment system); and c) computing the wave speeds
using the 5-10-5 ANN.

Figure C.10: Computational efficiency of the whole finite volume program (ms per time
step) for 5000 grid cells: a) eigenvalues of numerical finite-difference Jacobian; b)
eigenvalues of analytical Jacobian; c) neural nets approximation.

The analysis reported in this appendix can be extended to further mo-
ment systems, at the price of including additional unknowns. Regarding
order-4 maximum-entropy systems, we suggest that a scaling based on σ−1
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is employed in further simulations, as this would most likely improve the
accuracy of the ANN training.
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APPENDIXD
Implementation of the 14-moment wave

speeds

We provide here an Octave/MATLAB script for the approximation of the
wave speeds of the 14-moment system, as described in Section 4.2.3.

function [ws_max, ws_min] = ws_max_min_14mom(s, qx, qy_tilde, Pxx)

% s = sigma is a SCALAR.
% qx: (array of) DIMENSIONLESS heat fluxes along the considered direction
% qy_tilde: (array of) DIMENSIONLESS transversal heat flux
% Pxx: (SCALAR) DIMENSIONLESS pressure, Pxx/P

% Rename for convenience:
qy = qy_tilde;

% Approximated wave speeds
E = 8/10*sqrt((3 - 3*s)*Pxx);
C = sqrt((3 - 3*s)*Pxx);
B = 5 - 4*sqrt(s) + sqrt(10 - 16*sqrt(s) + 6*s);
Y = B + E^2 - 2*sqrt(B)*E;

a = 1.4*(Pxx^1.1)*exp(-Pxx^2);
b = 0.9*Pxx*exp(-1/2*Pxx^1.4);

% MAXIMUM WAVE SPEED
a_2 = 0.6;
a_1 = -0.38;
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a_0 = 0.35;
qx_hat = qx + sqrt(qy.^2)*(a_2*Pxx^2 + a_1*Pxx + a_0);
ws_max = (a*s + b)/(2*s)*(qx_hat + sqrt(qx_hat.^2 ...

-4/5*qx_hat*s*C + 4*s^2*Y + qy.^2/10)) + E;

% MINIMUM WAVE SPEED
qx_hat = -qx_hat;
ws_min = -( (a*s + b)/(2*s)*(qx_hat + sqrt(qx_hat.^2 ...

-4/5*qx_hat*s*C + 4*s^2*Y + qy.^2/10)) + E );
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