
POLITECNICO DI MILANO

&

ÉCOLE CENTRALESUPÉLEC

Radiation damage in mono-atomic and bi-atomic

materials: Simulation of neutron irradiation by ion

irradiation

Julien Bouix

Materials Engineering and Nanotechnology

DEPARTMENT OF MATERIALS ENGINEERING

September 2021

Laurea Magistrale

Abstract

The direct simulation of the neutron irradiation damage during the whole
lifespan of the in-core components in a nuclear facility can be time-consuming.
The literature being quite rare in this field, we investigated the possibility to
simulate this neutron irradiation damage with ion irradiation that can cause
similar damage in a reduced duration. Conditions for their possible equivalence
will be defined through the projectile energy loss distribution between phonon
generation, ionization dissipation and future stored energy. Python codes
working in symbiosis with the renown TRIM software were developed in order
to simulate the neutron path inside any mono and bi-atomic materials. The
interest of this master thesis is mainly focused on the creation of the defects
(vacancies and interstitials), their spacial distribution and the energy loss of
the neutron or ion projectiles. The recovery processes will not be considered
and their modelization and programming with molecular dynamic codes can
constitute an excellent second step to couple with the codes created in the
present.

3

1 Estratto
Al fine di valutare il danno arrecato a un materiale da una data fluenza di irradi-
azione di neutroni in un impianto nucleare, gli esperimenti di laboratorio possono
richiedere anni per fornire informazioni pertinenti. L’idea alla base di questa tesi è
di prevedere se l’irradiazione ionica in laboratorio può causare danni simili a quelli
dell’irradiazione di neutroni. In effetti, il tempo tipico impiegato per gli esperi-
menti sugli ioni tende ad essere molto inferiore a quello per i neutroni (da anni a
settimane). Uno dei miei obiettivi era quantificare la riduzione del tempo o, in un
approccio leggermente diverso, determinare la fluenza dell’irradiazione ionica richi-
esta, con ioni a una data energia e massa, al fine di ottenere una generazione di
danno simile a una data fluenza di neutroni irradiazione.

Ho utilizzato il rinomato programma TRIM sviluppato da James F.Ziegler per
effettuare il calcolo del percorso ionico eseguito all’interno del materiale e per deter-
minare i difetti creati come i vuoti. Tuttavia, TRIM non può valutare il percorso in
caso di irradiazione di neutroni. Un codice di neutroni non era prontamente disponi-
bile e mi servivano solo le geometrie più semplici, quindi decisi di sviluppare da solo
un codice di neutroni, sul quale avrei potuto avere il controllo completo. Affinché i
lettori possano comprendere il mio lavoro nel modo più efficiente, descriverò prima
i presupposti fisici e i calcoli utilizzati in questo lavoro e solo dopo descriverò in
modo approfondito cosa sta facendo il mio codice e come ho cercato di raggiungere
i miei obiettivi utilizzando principalmente il calcolatore TRIM e i file di output da
esso generati. Sono stati creati quattro codici per utilizzare TRIM in modo autom-
atizzato. Sono stati creati due codici distinti per l’irradiazione di ioni e neutroni e
questi due codici sono ulteriormente suddivisi per analizzare separatamente i mate-
riali bersaglio monoatomici e biatomici.

Le analisi dell’output di TRIM sono state effettuate, principalmente, leggendo
il file COLLISION.txt generato da TRIM. Questo file è l’output più completo e
dettagliato di TRIM. Ecco perché ci ho dedicato del tempo cercando di districare il
suo prezioso ma complesso contenuto. Questo file può contenere centinaia di migliaia
di righe che riportano tutte le collisioni avvenute nel materiale per uno e un solo
proiettile. È suddiviso, per comprensibili ragioni, in tabelle. Ogni "Primary Knock-
on Atom", definito più avanti nella tesi, ha una tabella corrispondente nella quale
sono riportate tutte le collisioni che si sono verificate a causa dell’attuale Primary
Knock-on Atom (PKA) e delle sue sotto cascate. La suddivisione non va oltre quel
punto. È stato fatto un grande sforzo per cercare di analizzare correttamente il
file COLLISION.txt, non sono ancora riuscito a trovare un algoritmo di validità
del tutto generale in grado di districare, dal file COLLISION, l’intero, spesso molto
ramificato, albero delle collisioni. Sono stati sviluppati e testati un totale di tre
algoritmi, basati su metodi diversi. Sono chiamati algoritmo per lunghezza, per
intero ordinamento a cascata e per fononi.

Uno sforzo particolare è stato posto nel tentativo di ricostruire la struttura
dell’albero delle collisioni, attraverso l’"algoritmo per ordinamento a cascata intero",
utilizzando il file COLLISION.txt per poi ricalcolare le diverse perdite energetiche
di interesse. Avrebbe dato risultati molto accurati, ma nonostante la persistenza e
la determinazione che ho dovuto estrarre questa architettura di sistema di ramifi-
cazione dal file COLLISION.txt, purtroppo non sono riuscito a riuscirci. Il problema

4

era principalmente il modo in cui TRIM sceglieva di visualizzare le diverse righe nel
file. Le analisi ei test sono comunque riportati sia nella sezione 6 che in 7. La
sezione 6 offre addirittura un possibile inquadramento teorico, con notazioni sicura-
mente perfettibili, che potrebbe essere utilizzato per affrontare un complesso sistema
di ramificazione con architettura ad albero.

Poiché l’algoritmo quasi perfetto non sarebbe stato creato, ho dovuto sviluppare
altri metodi e approssimazioni per analizzare la distribuzione della perdita di ener-
gia del proiettile all’interno del materiale bersaglio. Sebbene contengano approssi-
mazioni in alcuni casi discutibili, consentono sempre di ottenere la distribuzione
delle perdite di energia che qui interessa. Alla fine, l’algoritmo che ho usato per
tutte le irradiazioni era l’algoritmo per lunghezza. Anche se i valori assoluti potreb-
bero essere criticati, ci si aspetta che almeno i valori relativi siano significativi, il
che rende più o meno valido l’approccio comparativo.

Alla fine, i risultati e la loro interpretazione saranno considerati e descritti. Gli
irraggiamenti di neutroni e ioni su diversi materiali sonno stati studiati. Le caratter-
istiche di irraggiamento neutronico sono accuratamente dettagliate nel quadro fisico.
Gli ioni considerati in questa tesi di laurea sono Ni a 4 MeV e Au a 12 MeV perché
questi ioni a queste energie specifiche possono essere prodotti in alcune strutture e
sono già stati studiati [3]. Viene preso in considerazione anche il caso significativa-
mente diverso dell’irradiazione da parte dei protoni. Per quanto riguarda i materiali
da indagare, abbiamo scelto con il mio relatore di tesi di laurea il ferro puro come
bersaglio monoatomico e tre diversi ossidi, vale a dire Al2O3, ZrO2 e Y2O3 per la loro
popolarità e l’ampia varietà di applicazioni. Abbiamo considerato al massimo mate-
riali bi-atomici ma il mio codice potrebbe essere generalizzato a qualsiasi materiale
n-atomico.

Il mio lavoro è stato incentrato sulla creazione dei difetti dovuti all’irradiazione.
L’evoluzione dei difetti nel materiale non sarà studiata. Ciò include le importanti
nozioni di mobilità dei difetti, annientamento tra un posto vacante e un interstiziale,
coalescenza dei difetti (nella creazione di faglie impilate per esempio). L’intera
analisi dei processi di ripristino non verrà eseguita poiché richiederebbe una grande
quantità di lavoro extra e codice dinamico molecolare che è molto impegnativo in
termini di risorse di calcolo.

Saranno realizzate tabelle per confrontare diverse variabili tra le diverse combi-
nazioni di materiale bersaglio e particella incidente. Indagheremo la produzione di
difetti nei materiali per le diverse irradiazioni. Verranno studiate le perdite di energia
della particella incidente e determinata la loro distribuzione tra energia immagazzi-
nata, generazione di fononi e dissipazione di ionizzazione. L’energia immagazzinata
considerata è costituita solo dall’energia di distorsione attorno ai difetti interstiziali
e verranno fornite le giustificazioni. La dissipazione di ionizzazione è l’energia persa
agli elettroni (potenza di arresto elettronico). Il legame, ma non l’equivalenza, tra
la generazione di fononi e la perdita di energia al nucleo (potere di arresto nucleare)
verrà spiegato più in dettaglio. Concluderò dando alcuni spunti e idee per sviluppare
potenzialmente ulteriormente questo progetto. Inoltre, in appendice sono riportate
informazioni dettagliate su due dei quattro codici sviluppati per questa tesi. Questi
codici sorgente potrebbero essere riutilizzati per ulteriori lavori.

5

Contents
1 Estratto 4

2 Introduction 8

3 Physical framework 10
3.1 The neutron irradiation . 10
3.2 The ion irradiation . 12

4 The neutron Code 14
4.1 Description of the physics behind the code for single neutron 14
4.2 Description of the physics behind the code for multiple neutrons . . . 19

5 Requirements and modalities for the execution of TRIM 22

6 Collection and analyses of the data provided by TRIM simulations 25
6.1 The content of the COLLISION.txt file 25
6.2 Interpretation of the data contained in the output files of TRIM . . . 25
6.3 Determination of the respective contribution of ionization, phonons

and stored energy for the energy losses distribution 29
6.3.1 In all the subcascades generated by PKA 29
6.3.2 In the primary cascade . 32
6.3.3 The issue of the algorithm complexity related to the method

of calculus of the energy loss to electron 33
6.3.4 A first attempt to sort out theoretically the cascade branching

system . 35
6.3.5 Further attempts to sort out theoretically the cascade branch-

ing system . 40

7 The creation, implementation and rightness of the algorithms 45
7.0.1 The initial case of mono-atomic materials 46
7.0.2 The more complex case of multi component materials 46

7.1 The algorithm by length . 47
7.1.1 For a mono-atomic target . 47
7.1.2 For a diatomic target . 48

7.2 The algorithm by whole cascade sorting 49
7.3 The algorithm using the phonons. 51

8 Results of the neutron and ion codes 53
8.1 Details on the strategy to assess the damage comparison between the

two types of irradiation . 53
8.2 The special case of hydrogen ions irradiation 54
8.3 Results and comparison . 56

8.3.1 Qualitative time reduction assessment 56
8.3.2 Energy loss distribution results 57

9 Conclusion and future work 62

10 Acknowledgements 63

6

11 References 64

12 Appendix 65
12.1 The ion code for mono-atomic targets 65
12.2 The neutron code for bi-atomic targets 76

7

2 Introduction

In order to assess the damage done to a material by a given fluence of neutron
irradiation in a nuclear facility, the laboratory experiments may take years to give
relevant information. The idea behind this thesis is to predict whether or not ion
irradiation in laboratory can give similar damage as neutron irradiation. In fact,
the typical time taken for ion experiments tend to be much lower than the ones for
neutron (from years to weeks) [1][5] One of my goal was to quantify the time reduc-
tion or, in a slightly different approach, to determine the fluence of ion irradiation
required, with ions at a given energy and mass, in order to get a similar damage
generation as a given fluence of neutron irradiation.

I used the renown TRIM program developed by James F.Ziegler to make the
calculation of the ion path taken inside the material and to determine the defects
created such as vacancies. Yet, TRIM cannot assess the path in the case of neutron
irradiation. A neutron code was not readily available and I needed only the simplest
geometries, I therefore decided to develop by myself a neutron code, on which I could
have complete control. For the readers to understand my work in the most efficient
manner, I will first describe the physical assumptions and calculations used in this
work and only then will I described in depth what my code is doing and how I tried
to reach my goals by using mainly the TRIM calculator and output files generated
by it. Four codes were created in order to use TRIM in an automated way. Two
distinct codes were created for the ion and neutron irradiation and these two codes
are further divided in order to analyse separately mono-atomic and bi-atomic target
materials.

The analyses of the TRIM output were done, mostly, by reading the COLLI-
SION.txt file generated by TRIM. This file is the most complete and detailed out-
put of TRIM. That is why I spent time on it trying to disentangle its valuable but
complex content. This file can contain hundreds of thousands of lines reporting
all collisions that happened in the material for one and only one projectile. It is
divided, for understandable reasons, in tables. Each "Primary Knock-on Atom",
defined later in the thesis, has a corresponding table in which are reported all the
collisions that aroused due to the current Primary Knock-on Atom (PKA) and its
sub cascades. The subdivision does not go beyond that point. A great effort was
invested into trying to analyse correctly the COLLISION.txt file, I was yet unable to
find an algorithm of completely general validity able to disentangle, from the COL-
LISION file, the whole, often highly branched, tree of collisions.. A total of three
algorithms, based on different methods, were developed and tested (see section 7).
They are called algorithm by length, by whole cascade sorting and by phonons.

A particular effort was put into trying to reconstruct through the "algorithm
by whole cascade sorting" the structure of the collision tree by using the COLLI-
SION.txt file in order to then recalculate the different energy losses of interest. It
would have given very accurate results but despite the persistence and determination
I had to extract this branching system architecture from the COLLISION.txt file,
I could unfortunately not succeed. The problem mainly was the way TRIM chose
to display the different lines in the file. The analyses and the tests are nonetheless
reported in both section 6 and 7. The section 6 even offers a possible theoretical
framework, with surely perfectible notations, that could be used in order to approach

8

a complex branching system with a tree architecture.

Since the close-to-perfect algorithm would not be created, I had to develop other
methods and approximations to analyse the energy loss distribution of the projectile
inside the target material. Although they contain approximations which are in some
cases questionable, they always allow to obtain the distribution of the energy losses
which are of interest here. In the end, the algorithm I used for all irradiations was
the algorithm by length. Even if the absolute values could be criticized, at least the
relative values are expected to be meaningful which makes the comparative approach
more or less valid.

Eventually, the results and their interpretation will be considered and described.
Neutron and ion irradiations on different materials will be studied. The neutron ir-
radiation characteristics are thoroughly detailed in the physical framework. The ions
considered in this master thesis are Ni at 4 MeV and Au at 12 MeV because these
ions at these specific energies can be produced in some facilities and were already
studied [3]. The significantly different case of irradiation by protons is also consid-
ered. Concerning the materials to be investigated, we chose with my master thesis
supervisor pure iron as a mono-atomic target and three different oxides, namely
Al2O3, ZrO2 and Y2O3 due to their popularity and wide variety of applications. We
considered at maximum bi-atomic materials but my code could be generalized to
any n-atomic material.

My work is focused on the creation of the defects due to irradiation. The evolu-
tion of the defects in the material will not be studied. This includes the important
notions of defects mobility, annihilation between a vacancy and an interstitial, co-
alescence of defects (in the creation of stacking faults for instance). The whole
recovery processes analysis will not be performed since it would require a great
amount of extra work and molecular dynamic code that are very demanding in term
of computation resources.

Tables will be made in order to compare several variables between the differ-
ent combinations of target material and incident particle. We will investigate the
production of defects in the materials for the different irradiations. The energy
losses of the incident particle will be studied and their distribution between stored
energy, phonons generation and ionization dissipation determined. The stored en-
ergy considered consists only of the distortion energy around interstitial defects and
the justifications will be given. The ionization dissipation is the energy lost to the
electrons (electronic stopping power). The link, but not equivalence, between the
phonon generation and the energy loss to nucleus (nuclear stopping power) will be
explained in more detail. I will conclude by giving some hints and ideas to po-
tentially further develop this project. Furthermore, in the appendix are reported
detailed information on two of the four codes developed for this thesis. These source
codes could be used again for further work.

9

3 Physical framework

3.1 The neutron irradiation

We consider a material of thickness d, typically pure iron at the beginning for it will
become difficult with compounds, submitted to an irradiation of neutron as we can
find in a nuclear reactor. The material is in the right half-space (x≥0) and projectiles
are always incident at the (0,0,0) coordinates. The first consideration to make is
that the neutron beam is not collimated because the flux of neutron in a nuclear
reactor typically is isotropic. The neutron will enter the material with a random
angle α ∈ [0, π

2
] with the vector normal of the surface ~ns and an angle β ∈ [0, 2π]

around the same ~ns with, for β = 0, the vector of the neutron velocity before impact
being in the plane formed by the ~ns and ~eY . The set of vector (~eX , ~eY , ~eZ) being the
orthogonal basis of reference with ~eX pointing towards the depth of the material.
Then, unlike the monoenergetical flux of ions in a laboratory, the neutrons will
have a spectrum with different energies. I considered for my thesis a distribution of
Maxwell-Boltzmann type with a most probable energy of 1MeV and an average of
2MeV (Figure 1) [6]. This is a simple way to approximate the spectrum of neutrons
generated by the fission of uranium but will be a sufficient entry for the development
of the codes. The neutron spectrum can be modified by the user at the beginning
of the code leaving its core unaltered.

Figure 1: Probability density function of a Maxwell-Boltzmann type with a param-
eter a=

√
Ep

mn

10

Once the incoming neutron flux and energy spectrum are dealt with, we need to
consider what happens inside the target material. Unlike the case of ions in which we
considered both electronic and nuclear stopping power for both primary and recoil
cascades, for neutron irradiation, only recoils cascades contains electronic stopping
power because the neutron itself do not interact with the electronic cloud. The
neutrons are only stopped due to the successive losses of energy through collisions
with nucleus. That is why the primary cascade only contains nuclear stopping
power as opposed to the recoil cascades (in the current case: cascades caused by
ions thus respecting the physical mechanisms described in the subsection "The ion
irradiation").

A major difference between ion and neutron irradiation is the fact that the
probability of interaction between ions and target atoms is much greater than for
neutron, phenomena due mainly to their respective size. The mean free path for
neutrons inside a material is of the order of centimeters while for ions it is closer to
the nanometer scale. This means that for ion irradiation, the damage is clustered
near the surface at a depth at the micrometer scale, like in the example shown
above for Ni ions at 4 MeV. But for neutron irradiation, around each location where
collisions between the neutron and the set of PKA occured, we will have a localized
cluster of damage. The PKA (Primary Knock-on Atom) are the set of atom initially
at a lattice position that are ejected from it directly by the projectile itself (the set
of PKA are the vertices drawing the approximate path of the projectile inside the
target material). More details are given on the PKA definition later on in the report
in section 6. These clusters are spaced from a typical distance of centimeters while
the cluster size is closer to the nanometer to micrometer scale depending on the
energy transferred to the corresponding PKA. This is a consideration to keep in
mind when comparing the number of vacancies later on because defects will have
an inherent different distribution between the two cases, a concentrated one at the
near surface for ion irradiation and a more diffuse on for the neutron irradiation.

These probabilities of interaction between the neutron and any target nucleus is
usually referred to as "cross section". The microscopic cross section σ, expressed in
terms of surface, usually barns (1b = 10-24cm2) represents the effective target area
of one and only one nucleus. The greater its value, the greater its size and obviously
the greater the probability of interaction with the incident neutron. The micro-
scopic cross-section, despite its easy understanding, is not relevant at a greater scale
because we also consider the number density of targets which multiplies the micro-
scopic cross section in order to give the macroscopic cross section Σt. This formula
is based on the assumption that shadowing effects are negligible. The commonly
used Σt, expressed in terms of cm-1, can be understood like a linear attenuation
coefficient, it considers the whole effective target area of all the nuclei in the mate-
rial thickness. In fact, a collimated neutron beam intensity I0 inside a mono-atomic
material is attenuated following an exponential decreasing function with the coeffi-
cient of attenuation being Σt, with x being the penetration depth inside the target
material [8][9]:

I(x) = I0e
-Σtx (1)

The obtained profile represents the flux of particles which have not yet interacted.
It coincides with the actual flux only if interaction implies absorption. Otherwise,

11

the actual flux includes scattered particles, not accounted for by Eq. 1. More
precisely, in our case, we consider elastic scattering only so the neutron does not
stop its path upon the first collision by absorption but it will bounce to a certain
direction defined later on in this report. This means that the equation 1 will be
used in order to determine probabilistically the distance of travel before the next
collision on the axis of motion of the neutron, which is not necessarily the X-axis.
That point is really important and is the fundamental basis of the later developed
neutron code. This code, written using the Python language, is available to the
reader in the second part of the Appendix.

3.2 The ion irradiation

The ion irradiation is directly computed with the TRIM program. We consider
the same material as in the case of neutron irradiation but this time submitted to
irradiation of an ion specimen that can be produced in a laboratory. Some commonly
used ions in the field of irradiated material science in laboratory are Ni ions at 4
MeV and Au ions at 12 MeV. In laboratory, the ion beam is collimated and I assume
that the angle between the axis of irradiation and the normal of the material surface
is null, which is not the case for neutrons as we will see.

As the ion enters inside the material it will collides with atoms and progressively
lose energy due to collisions, it is the so-called nuclear stopping power. Between
these collisions the ion interacts with the electronic cloud of the material and will
give energy to these electrons that will become excited, the ion loses energy due to
this mechanism and it is called the electronic stopping power. Both nuclear and
electronic stopping power may be expressed in eV/A, so in energy in electron-volt
lost per Angstrom travel inside the material, we call it in that case linear stopping
power S = −dE

dx
. The stopping power is highly dependent on the density of the

material in which it happens so a usual variable called mass stopping power may
be defined as SM = S

ρ
in MeV/(mg/cm) and ρ being the density of the material

in mg/cm3. In figure 1. is represented the electronic and nuclear stopping power
(respectively SE and SN) in the case of Au ion inside an Al2O3 compound target.
We see that for ions at high energies, the electronic stopping poser is the main
mechanism of deceleration of the ions. Yet, its importance compared to the nuclear
stopping power diminishes as the ion energy decreases. This is due to the cross
section dependence on the particle energy. When the ion has a high velocity, its
cross section with the target atoms is smaller than at lower velocities. In the latter
case, the probability of interaction with nucleus increases and reaches a peak (0,37
MeV in the example shown at Figure 1.). Then, both decreases to zero, with the
nuclear stopping power remaining dominant.

All the target atoms of the material that undergo a collision with the ion are
called PKA for Primary Knocked-off Atoms, because they are the first to be knocked
off from their respective lattice position. The set of all PKA is the primary cascade.
Yet, because these PKA generally have enough energy to displace other atoms as
they, after the primary collisions, also travel now inside the material. The set of
all atoms being knocked-off by PKA are called SKA for Secondary Knocked-off
Atoms. From here, we can generalize that a nKA is an atom that was knocked-
off from its position due to a collision with a (n-1)KA. For n ≥ 2, we call the

12

Figure 2: Comparison of the electronic and nuclear stopping power in the particular
case of Au ion inside Al2O3

corresponding cascades recoil cascades. For instance, in the image on the left side is
the representation of the path of a Ni ion initially at 4 MeV (entering the material
from the center left). It forms a curve that is a succession of line connecting the
dot of each collision. On the right, with an identical ion, we get a different result
with in white the primary cascade but in green the recoil cascades. The graphs were
computed on SRIM.

13

Figure 3: Primary cascade of a Ni ion
at 4 MeV inside pure iron

Figure 4: Primary cascade and recoil
cascades of a Ni ion at 4 MeV inside
pure iron

4 The neutron Code

This code considers as an input the number of neutrons we want to send into the
target, the material composition and physical properties and the energy spectrum
distribution that every neutron follows. The output needs to be the total number
of vacancies the neutron and recoil cascades created inside the material in order to
assess the extent of the damage.

4.1 Description of the physics behind the code for single neu-
tron

Each neutron are calculated separately, one-by-one, in an independent way, meaning
that the structural defects caused by the nth neutron has no influence on the dam-
age done by the (n+1)th neutron. This approximation arises because TRIM, and
also my code, perform Monte Carlo simulations, in which each projectile is treated
independently, and only the primary damage is considered, the successive evolu-
tion of defects not being modeled. Therefore each projectile impinges on a material
which is in the pristine state. And the incidence position is irrelevant, therefore
all the projectiles impinge in the same position, with either the same direction or
with variable directions. Each neutron will be sent inside the material in a ran-
domly different manner in terms of direction of incidence and energy. In order to
simulate the isotropic flux of neutron inside a nuclear reactor, I considered that the
incoming neutron can come from any direction from the solid angle with θ ∈ [0, π

2
]

and φ ∈ [0, 2π]. The energy will be randomly chosen from a Maxwell-Boltzmann
probability density function f(E) is defined with a most probable energy of Ep = 1
MeV and an average of 2 MeV. f(E) is expressed, considering the latter constraint
as [6]:

f(E) =
2

3
2

√
π

E
√
mn

E
3
2
p

e
− E

Ep (2)

14

The term mn represents the mass of one neutron. In the figure 1 is displayed
f(E) for E ∈ [0, 10MeV]. For now on, let call E0 the initial energy of the neutron
just before colliding with the target material.

The calculation of the macroscopic cross-section is worth mentioning. I took the
data available in [12] of the microscopic cross-section for thermal neutrons (neutrons
at 0.025eV) and neutrons at 1 MeV. In between, a simple linear interpolation was
made and above 1 MeV, the value of the cross section doesn’t change anymore. We
can write the microscopic cross section as:

σ(E) =

{
σ1 + σ2−σ1

E2−E1
(E − E1) ifE < E2

σ2 ifE ≥ E2

(3)

with σ1 and σ2 respectively being the microscopic cross section at E1 = 0.025eV
and E2 = 1MeV . Then for mono compound target, the macroscopic cross section
at a particle energy E is defined as [12] :

Σ(E) =
ρNA

M
σ(E) (4)

with ρ and M respectively being the density and the molar mass of the target in
g/cm3 and g/mol, and NA the Avogadro’s number. For multi compound target, we
need to consider the chemical formula of the compound like Al2O3 and consider the
stoiechiometry by adding a weight in front of the microscopic cross section (2

5
for Al

and 3
5
for O), with Mc being this time the molecular mass of the compound and ρc

the density of the compound:

Σ(E) =
ρcNA

Mc

(
2

5
σAl(E)) +

3

5
σO(E)) (5)

The collision between the neutron and the target nucleus will occur after a path
travelled following a exponential law with the macroscopic cross-section as λ pa-
rameter according to equation (1). The collisions taking place are considered to be
elastic and between hard spheres. Here is displayed in figure 5. as a schematics a
collision between a neutron and a nucleus in the case of hard spheres:

When the distance until the next collision is calculated using the macroscopic
cross section, we now randomly simulate what the impact parameter b∈ [−R1 −
R2, R1 + R2], with R1 and R2 being the respective radii of the neutron and the
target nucleus. I considered a uniform distribution of the neutron center of mass in
the disc of radius R1 + R2. At first, I wanted to take into account the channeling
effect we can observe in a crystallographic material by increasing the probability
of the neutron to collide with the nucleus at its edge by considering a parabolic
distribution probability. I then realized it had no physical sense since the size order
of the neutron is much smaller than the typical spacing between two atoms in a
crystal, that means that there is no such thing as a channeling effect between a
neutron and a crystal. moreover, the distribution of b cannot follow a uniform
distribution since the probability of collision is uniform along the whole area of the
nucleus and not its radius. That is why we consider a crown 2πb*db at each impact

15

Figure 5: Collision between two hard spheres and the main useful distances and
angles to be defined

parameter b. The probability to collide more at the edges of the nucleus is still true
but not for the same reasons.

We consider at this stage an angle β ∈ [0, 2π] located around the axe 1. It means
that the infinitesimal probability that the neutron collides with the nucleus with an
impact parameter b and at an angle β is defined as :

dP = 2πb ∗ dbdβ (6)

We can see that dP increases linearly with b which means that the probability of
having an impact close to the edges of the nucleus is higher than the probability of
having a head-on collision. Once b is determine we can write the equation of energy
and quantity of (linear) momentum conservation in order to express the transmitted
energy and the quantity of momentum pAf and pBf after the collision with the angles
α, Ω and the quantity of momentum of the neutron before impact pAi:{

pAi = pAfcosυ + pBfcosα

0 = pAfsinυ − PBfsinα
(7)

The solution of this system of two equations simply is :
pAf = pAi(cosυ + sinυ

tanα
)−1

pBf =
√

mB

mA

√
p2
Ai − p2

Af

(8)

Some geometrical considerations enables us to determine the expression of α and
υ as function of b, R1 and R2:

16

{
α = sin−1(b

R1+R2
)

υ = π − 2α
(9)

An important fact is also that because the masses involved in the collision are
different, there are some limits is the amount of transferable energy Tmax. In the
context of a two body elastic collision, the equation that governs the amount of
transferred energy Ttransferred to the target particle is written below. In our partic-
ular case, we studied as interaction potential a two body rigid hard spheres. It has
been derived by considering the velocity of the particle in the reference of the lab
and its center of mass and can be found in some lectures like [2].

Ttransferred = EAi
mAmB

(mA +mB)2

1− cosυ
2

(10)

Then my code determine the unit vector that indicates the orientation of the axe
labeled 2 given the axe labeled 1 in Figure 5 respectively being the direction of the
neutron after and before the collision. I will call them axein and axeout.

Because the neutron will cause several collisions in its travel inside the material,
I will define a formalism to better understand how my code is working. Let for the
nth collision call the axein and axeout respectively axen and axen+1. It is enough
because we consider no deviation of the neutron path between the nth and (n+1)th
collisions, making the axeout of the nth collision being the axein of the (n+1)th
collision. For instance, if the beam was collimated with an axe of incidence of - ~nS,
the axein=axe1 would be (1,0,0) in the (~eX , ~eY , ~eZ) reference basis. In the case of
the isotropic flux of neutron, the axe1 is random but still pointing towards the right
half-space but with an random angle. Let call the energy of the neutron after the nth
collision En and the transferred energy to the target nucleus for the same collision
Ttransferred,n:

∀n ≥ 1, En = En−1 − Ttransferred,n (11)

The idea is that between the nth and (n+1)th collision, I compute the macro-
scopic cross section at the energy of the neutron in order to get the exponential
distribution law for the distance traveled before the next impact. Then I run the
collision function described above and we start again until one of the three following
criteria is fulfilled:

1. The neutron energy becomes smaller than the threshold displacement energy
Ed.

2. The neutron is back scattered to negative X.

3. The neutron is transmitted through the thickness L of the material.

Below are depicted in a 3D graph the path taken by the neutron inside an iron
block for the three different cases described above. Each line breaking corresponds
to a collision.

17

Figure 6: Path taken by a neutron inside iron with d=50 cm that ended due to
criteria 1 after 742 collisions.

Figure 7: Path taken by a neutron inside iron with d=30 cm that ended due to
criteria 2 after 46 collisions.

Figure 8: Path taken by a neutron inside iron with d=30 cm that ended due to
criteria 3 after 104 collision. 18

4.2 Description of the physics behind the code for multiple
neutrons

By using the neutron code this way, we only get the simulation of one neutron
traveling inside the material and we also get the list of the atomic displacement
information caused by it. The point now is to use it many time successively to get
statistically relevant information.

We can for instance run the code for N=50000 neutrons and observe the num-
ber of atoms knocked-off from their lattice position (=the number of vacancies NV

created). The result for a 30 cm thick iron block is shown in the figure 9 and Figure
10 (only zoomed in order to see the higher order of collisions) below.

Figure 9: Number of occurence of NV for collisions in Iron and N=50 000 neutrons

We see that the most probable NV is very small, only one or two collisions. It
seems then that the probability of getting more collisions diminishes exponentially.
The extreme peak at low NV correspond to the cases where the neutron is back
scattered (criteria n°2) after only a few collisions. Then as the neutron collides more
and more, it may go deeper inside the material where it will increase its probability
to cause further damage through collisions. Yet, it may still be back scattered even
after a reasonable number of collisions. The opposite, being transmission (criteria
n°3), may also happen if the collisions cause the neutron to travel towards positive X

19

more frequently. The highest NV is usually reached when the neutron lacks energy
to cause further collision (criteria n°1) and its remaining energy is lost as phonons.

Figure 10: Number of occurence of NV for collisions in Iron and N=50 000 neutrons

The most frequent ending mode is back scattering with 90 % of single neutron
simulation. The remaining transmission and neutron lack of energy respectively
happens 9 % and 1% of the cases. The back scattering is overwhelmingly the ma-
jority of the ending mode because there is an high probability for the neutron to.
This mechanism is severely worsen by the random angle α, especially for α close to
π
2
(grazing incidence) Here are some general statistics obtained after analysing the

neutron code for 50 000 neutrons:

1. The average number of collisions exclusively for ending mode with back scat-
tering is about 20 with a standard deviation of 72.

2. The average number of collisions exclusively for ending mode with transmission
is about 45 with a standard deviation of 110.

3. The average number of collisions exclusively for ending mode with lack of
neutron energy is about 291 with a standard deviation of 330.

We notice that the standard deviation is always very large even for a relatively
large number of neutron. The fact is that even by raising the number of neutrons
simulated, we won’t reduce the standard deviations. This is due, for the example of

20

back scattering, to the discrepancy between the neutrons that are directly back scat-
tered only after a few collisions and the ones that go deeper inside the material and
only then are directed back. Yet, the differentiation between the two mechanisms is
not clear because NV stays continuous. But still the values obtained for each of the
ending mode is not convergent so raising even more the number of neutrons to get
smaller standard deviation is pointless. We may still have interesting reasoning for
the two remaining ending modes. For transmission, some neutrons may penetrate
quite directly inside the material without colliding too much, but some may collides
back and forth for some time before reaching X>L. The large standard deviation for
the case of lack of neutron energy is even simpler and its cause also has influence on
both other ending mode great standard deviation; it is the difference of energy due
to the Maxwell-Boltzmann distribution that explains such a discrepancy. Indeed,
in the case where the neutron does not escape by back scattering or transmission,
NV strongly depends on the initial energy of the neutron that may vary from some
eV to several MeV (see figure 1). The higher the energies, the higher the number of
vacancies created.

21

5 Requirements and modalities for the execution of
TRIM

When using directly the TRIM executable without the user interface SRIM, it needs
two file as input, TRIM.IN and TRIM.DAT [15]. The TRIM.IN file contains the
information about the target material, the output file requested and the specification
in the case of ion irradiation. The TRIM.DAT is a file that specify, for each line it
contains, information about the PKA energy, coordinates and direction. This file is
only useful when we want to use TRIM as a recoil cascade calculator and not as a
primary cascade calculator. For instance, the neutron code is only, in the case of
neutron irradiation, a primary cascade calculator that generates a list of PKA. This
list of PKA generated must be written in the TRIM.DAT file by using a text editor
in my code that will communicate with TRIM. An example of such a file is shown
below for neutrons following a Maxwell-Boltzmann distribution in pure iron. We
can see that the first iron atom that the neutron collides with (the first PKA) was
located at the coordinates (290, 100, 7.8)∗105A with a certain direction and energy
for the PKA. And so on until all PKA generated by one and only one neutron are
written in the file. The PKA direction (or Atom Direction) is the unit vector of the
atom after the collision. For this example, it is only a primary cascade of five atoms
that was generated, either the neutron energy was low initially or back scattering
occured quickly.

Figure 11: An example of a TRIM.DAT file generated by the neutron code

Now, we will describe the TRIM.IN file that contains information about the
material, the ion properties in the case of ion irradiation and the plot type and
outputs we want TRIM to display.

1. The third line is only relevant for TRIM in the case of ion irradiation but it will
simply be neglected for neutron irradiation. It describes the atomic number,
the energy and the direction of the ion and the number of ion we want the
simulate. Because I simulate one by one the damage done by either neutron
or ion, this number will always be one.

22

Figure 12: An example of a TRIM.IN file also generated by the neutron code

2. The fifth line contains the mode we want to use TRIM with concerning the
cascade calculation. If we want to use the Kinchin-Pease approximation, or
calculate the entire recoil cascade. If the damage is done by ions or neutrons:

(a) 1: Ion distribution and Quick Calculation of Damade (Kinchin-Pease)

(b) 2: Detailed Calculation with full Damage Cascade

(c) 3: Monolayer Collision Steps / Surface Sputtering (monolayer means that
the ion react with each monolayer it gets through))

(d) 4: Ion with specific energy/ angle/ depth (quick Damage)

(e) 5: Ion with specific energy/ angle/ depth (full cascades)

(f) 6: Recoil cascades with neutrons (full cascades)

(g) 7: Recoil cascades and monolayer steps (full cascades)

(h) 8: Recoil cascades with neutrons (quick damage : Kinchin Pease)

From 4 to the end, it uses the TRIM.DAT file. For the neutron simulation,
I use the number 6 for the calculation of the full cascade and for the ion
simulation, the number 2 to get comparable calculation by TRIM.

3. The seventh line contains the outputs file we want TRIM to create (1 for yes
and 0 for no). I only am interested in the damage done to the material so the
file that is of importance for the thesis is the Collision file with the details of
the recoil cascades.

4. The eleventh line contains information about the plot we want to see, but I
will not use it for the results so this line is not of real importance.

5. The rest of the lines successively describes the material properties like in the
thirteenth and fifteenth line that states the list of the target elements and their
respective stoeichiometry. Then are displayed useful energies like the threshold

23

displacement energy Ed and some lattice and surface binding energies that will
be treated in details in the next section.

24

6 Collection and analyses of the data provided by
TRIM simulations

When running TRIM in batch mode automatically time after time to get as many
simulations as possible, we need to collect the useful information from different files
but a major one is the COLLISION.txt file.

6.1 The content of the COLLISION.txt file

This file can easily reach hundreds of thousands of lines to analyse at the end of
each simulation. We can find in it the whole set of information concerning all useful
collisions of the primary and recoil cascade like the energy of the particle resulting
of these collisions, the coordinates where the collisions occured, the atom of the
target material that undergo each collision and what type of lattice defects it left
behind (a vacancy or a replacement). In fact, even in the most detailed output
file of TRIM, all collisions are not given, only the ones that caused some defect.
All collisions for which the transferred energy to the target atom is not sufficient
enough to permanently displace it from its lattice position is not listed in the file.
A vacancy occurs when both the impinging atom and the target atom have after
impact sufficient energy to leave the lattice position, thus leaving a vacancy behind
them. However, we sometimes witness a replacement event which corresponds to the
fact that the energy transmitted to the target atom during impact is high enough to
let it escape from its lattice position but the incoming atom itself becomes trapped
in this site, due to a lack of energy to escape.

More specifically, two energies are of interest, the threshold displacement energy
Ed and the lattice binding energy Eb. The threshold displacement energy Ed is
of the order of 25eV and is the energy necessary to permanently displace an atom
from its lattice position in the bulk of the material. The lattice binding energy Ebs
is the energy that the atom lose when leaving its atomic position. The threshold
displacement energy Ed is different from the lattice binding energy Ebs because some
energy is lost into phonons as the knocked-off atom needs to push its neighbours to
get out of its position, which makes the mechanism irreversible.

6.2 Interpretation of the data contained in the output files
of TRIM

I could through one of the code I created determine what the number of vacancies
caused by each ion or neutron was. For a given number of neutrons simulated, I
determine the total number of vacancies it caused inside the material and then, while
the ion irradiation is not enough to produce the same damage to the material, I add
one by one an additional ion projectile. Then the code outputs for instance that for
100 neutrons simulated, we need 33.8 Ni ions at 4MeV to get the exact same number
of vacancies, explaining the counter-intuitive decimal for the ion irradiation.

However, this approach does not consider any regeneration of the material like
Frenkel-Pair annihilation, recovery and defects mobility. These considerations may

25

Figure 13: An extract from the COLLISION.txt file for a Ni ion at 4 MeV

have a very significant impact on the effective damage done to the material. Even
more considering that in the case of ion irradiation, defects are concentrated at the
skin surface, making recombination of vacancies and interstitials much more likely
than between diffuse clusters around PKA for neutron irradiation. Yet, among each
cluster, recombination is still possible. The latter phenomenon, as recovery in gen-
eral, occurs when the temperature is raised. In our case, the collision cascade locally
create high vibrational energy (lattice vibration) that can be considered somehow
similar to a local high temperature. Even if temperature is defined as a thermo-
dynamic equilibrium quantity, we still witness a so-called "heat spike" that lasts
some picoseconds before being dissipated to the surrounding lattice through energy
diffusion mechanisms. This short window offers an opportunity for the mobility of
defects to increase and make recombination easier.

In order to assess the difference of defects annihilation between the two type of
irradiation, we will study the distribution of the projectile energy into the mate-
rial. In fact, both for neutron and ion, if we consider that there is no sputtering or
transmission through the material, all the energy of the projectile will be transferred
somehow to the target. The way this energy is distributed between phonons, elec-
tronic excitations and energy necessary to create vacancies and interstitials may be
of interest because phonons and electronic excitation are closely related to heat in
the way that they can convert their respective energy of vibration or excitation into
pure heat, making the local heat spike happen. The only part of energy that may
not be converted into heat is the energy stored necessary to create vacancies and

26

interstitials. More presicely, it can be relieved by annealing and the Wigner effect.
The latter occurs when the material is heated making the mobility increases that
let the annihilation possible between vacancies and interstitials which raises even
more the temperature. It is a dangerous positive loop which makes regular recovery
necessary to avoid the critical build-up of stored energy. Anyway, when a vacancy is
created, the surrounding atoms that where bound to the knocked-off atom will lose
their binding energy and they will need an extra energy to create a local "surface",
this energy will not directly contribute to the raise of temperature.

Above is the figure 13 that contains a small portion of a COLLISION.txt file.
Here is represented the information for the three first recoil cascades (the cascades
caused by the three first PKA). For example, at the column energy and the fifth line,
we can see that the Ni ion initially at 4 MeV lost 10 keV in electronic stopping power
because it collides with the first PKA at 3.99 MeV. The transferred energy from the
ion to the PKA is 38,6 eV. To discover what happened for the corresponding recoil
cascades, we look to the following lines that begin with the symbol "Ù", here the
eighth and ninth lines; only two collisions are caused in this cascade, including the
first one between the Ni ion and the first PKA. The transferred energy from the
Ni ion to the PKA is 38,6 eV but a certain amount of energy will be consumed
because we need to consider the lattice binding energy Eb that the PKA lost after
leaving its lattice position. After this proces, the PKA travels inside the material
losing an energy ELostSE through electronic stopping power (SE defined in section
3.2 justifying its use in the ELostSE notation) throughout a distance L until the next
collision that resulted in a SKA with a kinetic energy of 29,7-Eb eV. It will also
lose energy during its path to interaction wwith atom that are not displaced and
the transferred energy is dissipated as phonons. The coordinates of the collisions
are given on the right of the table which makes the calculation of L possible :
2,27 Angstroms in the case depicted here. The conservation of energy states that
E1=38,6-Eb eV is divided between the energy ELostSE that can be calculated by
solving the following integral, ESKA,r=29,7 eV for the SKA kinetic energy and the
remaining kinetic energy EPKA,r of the PKA after its collision with the SKA. We
solve the following equation for ELostSE, L being reported by TRIM through (x,y,z):

L = −
∫ E1−ELostSE

E1

dE

Se(E)
=

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (12)

When solving numerically this integral in order to find ELostSE, I found that
the energy of the PKA after being submitted to electronic stopping power is close
to 37,7 eV meaning that only an energy of 0,9 eV has been lost. Nonetheless, it
is not an satisfactory argument to dismiss the influence of the electronic stopping
power effects on the recoils cascades because in the example taken for illustration
purposes, the cascades is very small and not energetic so with an attenuated effects
of electrons. Other cascades which include higher transferred energy may display a
greater influence of the electronic stopping power as seen in Figure 2. Because it
is the last line for this recoil cascade, this SKA will not cause any further collision
that results in the creation of a vacancy. In the end we have the PKA and the SKA
that travel inside the material with energies just after the collision of EPKA,r and
ESKA,r, respecting the following law of energy conservation:

27

EPKA,r + ESKA,r = E1 − ELostSE − Eb (13)

Both PKA and SKA will undergo electronic and nuclear stopping power until
they have not enough energy to continue anymore and become trapped as intersti-
tials that required an energy of formation of Efi for each interstitial. Efi is defined as
3Eb and this approximation will be explained later on. The rest of EPKA,r +ESKA,r
is lost to phonons because at low energies, the ratio of nuclear to electronic stopping
power is larger like we saw in the part dedicated to the physical framework. In
order to know what the total energy given to the phonons is, we just substract to
the total energy 41,6 eV the energy corresponding to electrons and stored energy (of
distortion around the defects). We get that:

EPKA,r + ESKA,r = 38, 6− 0, 9− 6− 9 = 22, 7eV (14)
The table below explains how the repartition of energy in eV for this cascade is

considered.

Ionization Phonons Stored Energy
ELostSE EPKA,r + ESKA,r+2Eb 2Efi
= 0,9 eV = EPKA,r + ESKA,r+6 eV = 9 eV
= 0,9 eV = 28,7 eV = 9 eV

Essentially, we are trying to determine the distribution of the energy losses inside
the material among Ionization, phonons and binding energies:

1. Ionization or the electronic energy loss stands for the energy lost to electrons,
particularly important at high velocities.

2. Phonon energy loss corresponds to the energy given from the ion, neutron and
atoms to the vibration of the lattice of the target material. It arises from
collision that are not causing vacancies. For instance, if the moving atom hits
an atom at rest with an energy lower than the displacement energy, the atom
at rest will not be able to escape its lattice position and will dissipate the
transferred energy it received into phonons. An other case might be when the
hitting atom has not enough energy after the collision to escape along with the
hit atom that itself received enough energy, causing a replacement event. The
energy that the hitting atom has left is also dissipated to the phonons [15].

3. With the term binding energy loss, I refer to the energy necessary to create
every interstitials in the material. I do not consider the variation of chemical
binding energies for the production of vacancies because the energy converted
when an atom is struck out for its lattice position is considered to be dissipated
as phonons and is thus already included in the previous section (according
to the TRIM documentation). The conversion of energy can be explained as
follow. When a bond between two atoms is broken, energy has to be consumed
in order to keep the conservation of energy intact. The energy needed to
break the bonds (the binding energies) is provided by the incoming projectiles
and is considered to be dissipated as phonons. The energy considered in the
distribution of energy loss as binding energy (of interstitials) is basically a
stored energy of distortion around interstitial defects and will be called more
precisely stored energy.

28

6.3 Determination of the respective contribution of ioniza-
tion, phonons and stored energy for the energy losses
distribution

6.3.1 In all the subcascades generated by PKA

The code will analyse one recoil cascade at a time and store the respective quantities
of energy losses and then move on to the next recoil cascade until all are analysed.

For each recoil cascade, we will proceed as follow for the determination of the
energy losses distribution. We consider that for a given recoil cascade Cn, with
n ≥ 1, with the PKA transferred energy from the irradiating ion or neutron being
En(0), causing a number of collision Kn. That means that we can generalize the
notation for the transferred energy to the kth displaced atom, with 1 ≤ k ≤ Kn, as
En(k).

1. The easiest available data in the COLLISION.txt file is the number of vacancies
caused by a recoil cascade. We have to sum up all the lines corresponding
to the cascade under study with a "1" at the column "Vac". An other one
directly accessible if we consider the sample thick enough to have no transferred
atoms to the other side is the number of interstitials created. Indeed, for each
vacancy created, the atom previously filling its position is now an interstitial
somewhere else in the material meaning that Ninterstitials = Nvac under the
previously stated asssumption. If we consider known the formation energy of
an interstitial, we know that the energy going in the section "stored energy"
will just be defined as:

Estored = Ninterstitials ∗ Efi (15)

with Efi being the formation energy of one and only one interstitial. Efi is
simply understood as defined in the case of self interstitials but may become
much more difficult to grasp for a compound target because not all intersti-
tial position necessarily require the same amount of energy to be occupied.
Moreover, this energy also depend on the interstitial atom. But for now, the
irradiation of a mono-atomic is assumed for a clear explanation of the method
of resolution.

2. Now that the part of energy stored as binding energies is defined and calculated
we have to evaluate how the remaining PKA energy is distributed among
Ionization and Phonons energies. There are two strategies possible :

(a) The first one is to calculate the Ionization energy first and then deduce
the phonons energy by substracting the Ionization and Stored energies to
the energy of the PKA:

EPhonon = En(0)− EIonization − EStored (16)

The problem to solve now consists on how to calculate the Ionization
energies. SRIM can produce tables of electronic and nuclear stopping
power for a given energy range, an example of the graph we can draw

29

from these graphs is displayed on Figure 2. An example of the stopping
table itself is displayed in Figure 14. The output file of TRIM also show
the coordinates of the collisions so that we can for each displaced atom
calculate the energy loss to electron by using the formula in equation 12
with the Se function being defined by the tables. The stopping power is
expressed in eV lost by the ion to the electron per Angstrom travelled
(for our application, it is the second column that is of interest).

(b) The second option is to first calculate the phonons energy and only then
deducing the Ionization energy with a similar conservation of energy as
previously. In order to do this, we have to summarize what are all the
mode of creating phonons upon irradiation for each recoil cascade. This
method is not a sure option. This is due to the fact that there is a
confusion concerning the presence or not of minor collisions in the COL-
LISION.txt file. TRIM states that for the most precise COLLISION.txt
files, all collisions are reported, not only the collisions resulting in a dis-
placed atom are listed. This displacement can either be a vacancy cre-
ation or a replacement. Yet, it is very rare to encounter a collision for
which the transferred energy is smaller than the displacement energy Ed.
In the doubt, we will firstly consider that TRIM do not display all colli-
sions and then we will come back to that assumption and trust the TRIM
documentation. If all collisions are reported we could work with it. But
a non negligible amount of energy is lost to collisions that do not result
in a displacement and are thus not necessarily displayed by TRIM. We
do not have access to the whole production of phonons and we must, by
lack of choice, work with the first method.

We chose (a) to solve the conservation of energy. The first necessary step is to
create a function that could be able to sort the collisions in cascade and sub-
cascade. In fact, TRIM displays for each recoil cascade a list of all collisions
causing a displacement in a row but when we switch from one cascade to an
other, we should obviously not take into account the ionization between the
localisation of the last collision of the ith and the beginning of the (i+1)th sub-
cascade because the corresponding path does not belong to the same cascade
or any path traveled by any atom. The key variable to assess and sort the
collisions between them in order to sort out the cascade and sub-cascade is
the energy of the knock atom just after impact that is at the third column in
the COLLISION.txt file. While this number is decreasing as we read line after
line, we know that we are at the same branch of a cascade because the energy
decreases collisions after collisions and along the path taken. If, up to a point,
this number rises again, it means that the exploration of the current branch
is over and we jump to the next one, from bottom to up. The expression
"bottom to up" means that we explore all the sub branches of a branch before
exploring the next branch, with this method, no branch is forgotten. But the
drawback with this exploration displayed with a serie of lines is that there is
no clear indication when we jump from one cascade to another and it requires
a method of disentanglement of the data.

30

Figure 14: An extract from the stopping table for Al ions inside Al2O3

31

Once all the cascades within the recoil cascade are identified, we can then
calculate the Ionization energies. We need to determine within each cascade
and between all paths travelled by atoms in this cascade, as in equation (12),
the energy E2 just before the (k + 1)th collision. The energy E1 just after
the kth collision is known as E1=En(k)-Eb. But we need to beware the fact
that some collisions are not reported in the output file as mentioned above.
The E1 energy is not equal to the Ionization energy loss during that path plus
the En(k + 1). There is the missing term of energy lost to phonons for minor
collisions (those that do not result in atomic displacement). Yet, this will not
be an issue because we chose the strategy (a) over the (b) explicitly for that
reason. I mentioned this in order not to be surprised that the conservation of
energy does not seem to be respected in the TRIM output file.

6.3.2 In the primary cascade

In the case of the recoil cascades, the physical reasoning was the same for neutron
irradiation and for ion irradiation. But for the primary cascade, it is different because
we have to analyse the motion and energy losses of a neutron in one case and of an
ion in the second case which will give totally different results due to their respective
interaction type with the medium..

1. In the case of the neutron, it is quite simple, we do not need to consider the
formation energy of an interstitial because a neutron cannot form an interstitial
at the end of its travel inside the target material. it will most probably be
absorbed by an atom. There will also be no Ionization loss for the neutron for it
is a neutral particle. Eventually, the only remaining energy loss is the phonon
and the neutron code communicates with TRIM all the collisions the neutron
caused inside the material and not only the one causing a displacement. At
this point, it is possible to create two versions of the neutron code: One that
considers all collisions and ignores the requirements in terms of Eb and Ed
for the atomic displacements and the other new one that considers only the
collisions that cause a displacement (if the neutron transfers more energy to
the atoms than Ed). The first one seems obsolete now and the new one has
been used starting from here.

2. In the case of ion irradiation, we must consider the tiny contribution of its inter-
stitial formation energy in the target material. We must also more importantly
consider the Ionization energy loss between each collision. The remaining en-
ergy to determine is the one given to atoms and dissipated as phonons for
minor collisions not reported by TRIM :

EIon = ETransferredToPKA + EIonization + EMinorCollisions (17)

with ETransferredToPKA subdivision and calculation being described in the pre-
vious subsubsection 6.3.1 for the recoil cascades. The equation (12) was once
again used to determine the Ionization energy loss.

32

6.3.3 The issue of the algorithm complexity related to the method of
calculus of the energy loss to electron

For each simulation of one neutron for instance is generated the COLLISION.txt file
that can easily reach hundreds of thousands of lines to be analysed. The minority
of these lines are table description to make the file more readable. Yet, the vast
majority of the file is just filled with collisions data, one line for each collision. We
roughly solve for each of these line (see details in the section "In all the subcascades
generated by PKA") the equation (12) to find the ionization energy loss. This
equation is an integral to solve thanks to the electronic stopping function we got by
interpolation (through tables like in Figure 14). If we add to that the reading of
the file plus all the others complex functions I needed to define, the complexity of
the algorithm would be too high and the time needed to finish it is not reasonable
enough for the calculation power of my personal computer to make a significant
amount of experiment. I chose to make an acceptable approximation to reduce the
complexity of the algorithm.

The equation (12) consists in finding the energy of the atom, initially at E1, after
the ionization losses for a traveled distance L by using a Se(E) electronic stopping
function interpolated from a table generated by TRIM. This function is used inside
the integral and changes with the energy, meaning that when the energy of the atom
decreases when losing energy to the electrons, the Se(E) function has a new value to
be calculated and so on. Instead, we could consider Se(E) to be constant and equal
to Se(E1) for the whole travel of the atom up to the next collision. It would over-
estimate the ionization energy loss because the energy loss to electrons diminishes
with decreasing atomic kinetic energy. This method is nonetheless poorly accurate
because the electronic stopping function is sensitive to the variation of energy es-
pecially at low energy. We may be using a step function to find a middle ground
between the extremely demanding calculation of the precise value and the oversim-
plified approach consisting in using the same value of Se(E) for all the distance
traveled between two collisions.

The method with the step function would work in the following way. By knowing
the starting energy just after a collision E1 and the distance L to be traveled until
the next collision, we need to find the energy loss to electrons during this path that
will be segmented in a certain number with each one having an attributed constant
Se(E). If we divide the path in n equal distances, each one being L

n
long, we would

only need to calculate n times the Se(E) corresponding. We need to determine each
energy Ei after a travel of length L

n
to know the Se(E) to attribute. The set of

equations labelled by i we need to solve for Ei+1 is:

∀i ∈ J1;n− 1K,
L

n
=
Ei − Ei+1

Se(Ei)
(18)

Obviously, if n→∞, we would come back to the integral formulation in equation
(12). I just performed a discretization of an integral. So each Ei+1 is determine by
calculating the right side of the following equation :

∀i ∈ J1;n− 1K, Ei+1 = Ei − Se(Ei)
L

n
(19)

33

Figure 15: An extract from the COLLISION.txt file for neutrons

There is an other major issue with the TRIM output that I haven’t mentioned
yet, more precisely in the case of neutron irradiation. Because the neutron traveling
inside the target material have an higher penetration depth than the ions, the co-
ordinates of the collisions will be extended in both three dimensions. In the figure
15, we see that the coordinates are the same for all collisions, here at a depth of
2.7 cm, so the small relative variations of coordinates for the atom cascade (in the
nanometer range) is not able to be displayed with only four digits. The outputs of
TRIM can’t be modified so the use of the neutron code in conjunction with TRIM
is highly compromised.

One way to overcome this issue would be to transfer all PKA generation to
the origin (the point where the irradiating particle enters the material) so that all
cascades induced by the neutron are still within the range of display of TRIM. Yet,
choosing the origin point is not the best idea because some PKA are generated

34

with a velocity pointing towards negative X, and they would consequently leave the
material directly after their generation and their path would not be followed. If
TRIM can only display four digits, the maximum depth for which we still have the
collisions locations with the precision of an Angstrom is 9999 Angstroms. We could
choose the middle point at a depth of 5000 Angstroms for the PKA to be generated.
With this choice, we are expecting that atoms have enough room on both side to
travel and that the data will be correctly collected with no omission.

6.3.4 A first attempt to sort out theoretically the cascade branching
system

In order to understand how to sort the cascade out, let us consider a typical recoil
cascade Cn by considering the same notations defined in section "In all the subcas-
cades generated by PKA". Starting from the list of all energies En(k) after each
collision k, we have to determine what path was taken by what atom in order to
calculate the ionization energies. The TRIM documentation is not precise enough
to explain to what rules the displayed order of recoils obey. The only information
given is that "The first line in this box shows the primary recoil and then the suc-
ceeding recoils. If some of these secondary recoils cause further recoils, the box gets
complicated. But each recoil is followed until it reaches zero energy, and then the
last recoil it caused is tracked, etc. until the first recoil caused by the prime recoil
is tracked", taken from the chapter 9 of the SRIM documentation book [15].

If all recoils are indeed followed until they reach a zero energy, it would mean
that while the successive line are decreasing in energy (the energy displayed is the
transferred energy), we are in the same subcascade. In the example above, the
ion transferred to the PKA an energy of 80 keV and then the following lines only
concern the effect of the PKA to which 80 keV has been transferred. The PKA leave
its lattice position at 80 keV - Eb and then it will travel a certain distance until the
first major collision it will cause. It will lose energy to the electrons and to the
phonons (due to minor collisions) but these energy loses are not explicitly described
in the COLLISION.txt file. The first major collision caused by the PKA is at line 2
for which an energy transfer of 36.7 eV was done to an iron atom. This atom could
cause further recoil but they will not be written directly after because the PKA is
not at zero energy and can still cause further collisions. The second collision caused
by the PKA is at line 3 with a transferred energy of 278 eV. We can continue this
reasoning until the PKA has no energy anymore because all its energy has been
lost to transferred energy (to minor and major collisions) and ionization. The first
question to answer is to know what is the exact last line that describes the last
collision caused by the PKA itself. Then, when this line is determined, according to
the TRIM documentation, the next line describes the last major collision caused by
the last recoil atom hit by the PKA. Let add some formalism to clearly understand
the process of display.

We need to give a name to each major collision in order to be able to make the
reasoning clear. For instance, the first cascade is the cascade displayed is the cascade
caused by the PKA. We can call each of the collision of this cascade K(n1) with
n1 that indicate the index of the collision (the relative position in the concerned
cascade). That means that is the PKA cascade contains N1 collisions, we will call

35

each collision as K(ni) with ni ∈ J1, NK. Then, the second generation of cascade will
be described with K(n1, n2) with n1 that indicates from which collision, in the PKA
cascade, the atom that caused the K(n1, n2) collision come from. The n2 index has a
similar function has the previous case for the PKA cascade and indicates what is the
index of the collision K(n1, n2) inside the current cascade (which is indicated with
the first index n1). The latter current cascade contains N2 collisions so n2 ∈ J1, N2K.
Now, let generalize to the nth generation of subcascade.

Let consider a collision described with the notation K(n1, n2, n3, ..., nm−1, nm).
In order to know where this collision took place in the tree (or graph) of collisions,
we need to read the indexes from left to right. The indexes will indicate what is the
succession of events that caused the current collision. If there is m indexes, we know
that this collision belong to a mth generation of cascade. The {ni}i∈J1,mK indexes
indicate the relative position in each subcascade branch the intermediate collisions
that lead to the K(n1, n2, n3, ..., nm−1, nm) collision. Each intermediate subcascade
contains respectively {Ni}i∈J1,mK collisions which means that :

∀i ∈ J1,mK, 1 ≤ ni ≤ Ni (20)

The first branch that lead to the K(n1, n2, n3, ..., nm−1, nm) collision is the one
that was created by the K(n1) collision in the PKA cascade. Then the relative
position of the collision in the latter cascade that causes a further deviation is a sub
branch is indicated as n2. This second collision in the branching system is K(n1, n2).
And the reasoning is the same until we get to themth generation of cascade where the
current K(n1, n2, n3, ..., nm−1, nm) collision is studied. Eventually, when confronted
with any collision K(n1, n2, n3, ..., nm−1, nm), the path of the m successive colli-
sions that lead to it are K(n1), K(n1, n2), K(n1, n2, n3), ..., K(n1, n2, n3, ..., nm−1),
K(n1, n2, n3, ..., nm−1, nm) or more compactly {K(n1, n2, n3, ..., nj−1, nj)}j∈J1,mK. An-
other important point has to be mentioned, the Ni indexes are dependent on all the
previous indexes {Nj}j∈J1,i−1K. Each cascade may potentially create several sub
cascades with different length (in term of number of collisions belonging to the sub-
cascade). Dependent has to be understood in the following way : an index ni may
cause through its own cascade several ni+1 cascades with different length (different
Ni+1). This is why the collision notation K(n1, n2, n3, ..., nm−1, nm) has to be read
from left to right and not the opposite. Any given ni index cannot be evaluated on
its own but in accordance with all the previous ones. To account for this fact we
should write for any Ni that it depends on all the previous nj with j ≤ i − 1 by
writing Ni(n1, n2, ..., ni) but it would make the notation even more complex.

The cascades themselves could be name accordingly. Previously each PKA cas-
cade where named Cn because we needed to differentiate them between the whole
primary cascade but now, we are only interested in the cascade caused by one
PKA, So calling the PKA cascade CPKA seems clear enough. CPKA contains only
the collisions that were strictly caused by the PKA itself so the set of K(n1) with
n1 ∈ J1, N1K. This cascade CPKA is the only first generation cascade. The second
generation cascades are called C(n1) with n1 ∈ J1, N1K and contains all K(n1, n2)
collisions for each n1 ∈ J1, N1K and each n2 ∈ J1, N2K, with N2 that depends on the
n1 considered like it was explained in the previous paragraph. More generally, let
call C(n1, n2, ..., ni) the (i + 1)th generation cascade that comes from the following
branching system (with the nodes indicated, each node being a collision) :

36

1. The nth1 collision of the CPKA cascade (K(n1)),

2. The nth2 collision of the C(n1) cascade (K(n1, n2)),

3. The nth3 collision of the C(n1, n2) cascade (K(n1, n2, n3)),

4. ...

5. The nthi−1 collision of the C(n1, n2, .., ni−2) cascade (K(n1, n2, ..., ni−1)),

6. The nthi collision of the C(n1, n2, .., ni−1) cascade (K(n1, n2, ..., ni)),

We also stresses out that a collision do not necessarily eject an atom that will
cause another collision. We thus define for each subcascade an index ni,max ∈ J1, NiK
that represents the last recoil of the current sub cascade that will cause further
collision (i.e. that a new branch starts from this collision). The transferred energy
to the knocked-off atom of this current collision is not necessarily enough for it to
cause a major collision afterwards. Only a fraction of each subcascade collisions
will continue the branching and extend the tree by causing a new generation of sub
cascade. We need to take this phenomenon into account by introducing a new set
of notation.

For a given cascade C(n1, n2, ..., ni), the collisions {K(n1, n2, n3, ..., nj−1, nj)}j∈J1,i+1K

are the ones it contained and since there is no ambiguity for the ith first indexes,
only the last index ni+1 is of true interest. We know that 1 ≤ ni+1 ≤ Ni+1 but
only a sub set of J1, Ni+1K indexes correspond to collisions that will cause further
collisions. Let create a list L(C(n1, n2, ..., ni)) ⊂ J1, Ni+1K that contains only the
elements of J1, Ni+1K that do create a new generation of sub cascade. Let call the
elements all this list lj with j ∈ J1, jmaxK. The subscript j describes the index posi-
tion, among the collisions that caused a next generation of cascade. The subscript
jmax could be equal to only 0 since a cascade do not necessarily give rise to a next
generation cascade through its collisions. If, on the other extreme, all collisions in
the C(n1, n2, ..., ni) cascade do create next generation cascade, then ljmax = Ni+1.

Now that the collisions and cascades are explicitly defined, we can continue the
analysis. We consider that the maximum generation of the whole following cascade
caused by a PKA is Gmax ∈ N. It means that the longest path from vertex to vertex
in the tree of collisions is of length Gmax (contains Gmax+1 vertices and Gmax edges,
with one vertex by sub cascade). When we speak of vertices we imagine straight lines
but in this case, it is not necessarily the case in the (x,y,z) space. In fact, a cascade
has not all its collision location aligned. It is called a vertex because it connects
two nodes of interest but has no dimensional signification. Because the cascade
representation is similar to a tree, the vocabulary used is taken from it. All paths
that start from the trunk and finishes at the tip of any branch do not have the same
length, each path being different. In order to know what the generation G of the
last cascade of this current path is, we have to count the number of edges the path
is composed of. Considering that the vague affirmation of the TRIM documentation
stated above is correctly understood, here is the process of display used by the
COLLISION.txt file with the notations defined previously, line after line:

1. The whole PKA cascade CPKA : all K(n1) with n1 ∈ J1, N1K.

37

2. Because TRIM continues with the last recoil, it chooses the last element of
the list L(CPKA), ljmax(CPKA), and considers the cascade this last collision
K(ljmax(CPKA)) caused. This cascade is C(ljmax(CPKA)) and is entirely dis-
played right after the CPKA cascade.

3. Once the recoil atom ejected from its lattice position at the collision
K(ljmax(CPKA)) has no energy anymore, it will stop the cascade and the last
atom it ejected and that caused a third generation cascade is studied. This
cascade is C(ljmax(CPKA), ljmax(C(ljmax(CPKA)))). This notation is complete
but we are only at the third generation and it is already unreadable. Since we
read the position from left to right, there is no need anymore to indicate what
is previous cascade that the lj is taken from. The cascade could be rename
unambiguously C(ljmax, ljmax) and is displayed after the first two steps. The
first CPKA in parenthesis was removed because the atom that caused the cas-
cade C(ljmax) necessarily come from the PKA cascade. Now that this cascade
is known the next generation necessarily comes from it so the C(ljmax(CPKA))
in the second term can also be removed.

4. The pattern repeats and all last recoils are followed until they reach zero
energy like the TRIM documentation says. The next cascade to be dis-
played is C(ljmax, ljmax, ljmax) with the same reasoning as in step 3. One
the first path of the tree is explored up to the end, with the last cascade
being C(ljmax, ljmax, ..., ljmax), with ljmax written G times. All the cascades
C(ljmax, ljmax, ..., ljmax), with ljmax written p times (p ∈ J0, GK), are displayed
in between.

5. The last recoil cascade to be analysed is the C(ljmax, ljmax, ..., ljmax−1) cas-
cade. If the last ljmax of this cascade caused a next generation cascade (with
G>G(C(ljmax, ljmax, ..., ljmax)), we would need to go deep down into that cas-
cade and all the others above (in the tree metaphor) with the same strategy as
the one described now. Once it is done, we study the C(ljmax, ljmax, ..., ljmax−2)
cascade and so on by decreasing the last index until jmax − k reaches 0, with
k ∈ J0, jmaxK.

In the figure 16 is an example of a tree of collision. Each vertex correspond
to a collision. The numbers written on each vertices correspond to its number of
apparition in the list of lines of collisions. The 1 is the collision between the ion (or
neutron) with a PKA. The knocked-off PKA follows the cascade that runs from 1
to 7 and it is the first generation cascade CPKA. Then, because we start from the
last recoil, we go down the tree from the last branch of the CPKA and we notice
that a second generation cascade C(6) is created from the vertex 6 and has only one
vertex in it (number 8). Then the cascade C(5) and C(4) are written. The cascade
C(2) is followed and is made of the vertices from 15 to 18. In this tree, there is only
one third generation cascade and it is the C(2,2). The second index 2 refers to the
relative position inside the cascade C(2) from where the third generation cascade
starts (vertex 16 which is the second collision of the cascade C(2)). In reality, the
trees can contains hundreds of vertices.

The whole point is to find an algorithm able to calculate the ionization energy
by having as input the list of vertices with their corresponding transferred energy

38

Figure 16: An example of a tree of collision

and localisation. We have to connect the vertices in the correct way for a correct
calculation of the ionization energy. In our example, it would make no sense to
calculate the ionization energy from 8 to 9 or from 11 to 12 even if they are displayed
in a row in the list, because no atom traveled the space between the 8th and 9th

collisions. The organization of the list could be done in the following way.

Since we know the transferred energy to the PKA, we know that the first cascade
will stop when the PKA energy is exhausted. The PKA losses energy to phonons
(due to minor collisions) and to electrons (through ionization) on the edges joining
the different vertices of the CPKA. TRIM do not display any information in order
to access the energy lost to phonons between the major collisions. The PKA also
lost energy to the knocked-off atom during major collisions. Theoretically, when the
total energy lost exceeds the transferred energy to the PKA, we know that the last
line we went through is not the last collision of the CPKA but the first collision of the
last second generation cascade caused by the CPKA (index 8 for the example above).
The losses to the transferred energy is directly accessible by reading the file. The
ionization energy is calculable with a certain precision. The issue is the estimation
of the losses to minor collisions between major collisions. An approximation could
be to use the dE

dx nuclear
given alongside the dE

dx ionization
that I already used for the

estimation of the ionization. The document provides the value of energy loss per
unit length for both major and minor collisions combined but I sought only the
one for the minor collisions, so it may cause an overestimation to the losses to the
phonons in the end. At the expense of the computation time, it would be possible
to subtract the transferred energy during major collisions from the nuclear stopping
power provided by TRIM. It would counterbalance, in an approximated way, the
overestimation of the nuclear stopping power when the energy lost is calculated with

39

the use of dE
dx nuclear

in addition with the transferred energy during major collisions
displayed by TRIM.

6.3.5 Further attempts to sort out theoretically the cascade branching
system

By comparing the previous interpretation of the TRIM documentation stated above
with the result, I realized that it was not possible. Let us take the example of the
cascade displayed in the following figure to explain why. The transmitted energy to
the PKA is 12.056 keV. Then in order for the PKA to jump from its initial position
to the position of the second collision at the second line (in our previous model), it
would lost 1.567 keV to electrons and 12.05 keV to minor collisions on the path. It
is impossible since it would lose more energy that it has. If we ignore the energy
loss to minor collisions but take into consideration the transferred energy to major
collisions, the CPKA cascade would be displayed up to the 90th line with a total
energy loss to electrons of 4242 eV and to the major collisions of 7837 eV. The
real answer is in between because in the first case, either the energy loss to minor
collisions is overestimated or TRIM displays differently from what I understood. In
the second case, the existing losses to minor collisions are simply neglected, which is
not a reasonable assumption to make, especially when considering the high nuclear
to electronic stopping power at relatively low energies.

In figure 18 is shown the energy transferred for the same cascade partially dis-
played in figure 17. In abscissa, is the recoil index number given in the column
"Recoil". When the transferred energy is equal to zero, it means that there is a re-
placement collision, it is only a convention of TRIM. We saw previously that, even if
we completely dismiss the minor collisions participation in the loss of kinetic energy
of the PKA, the cascade CPKA would stop at the recoil index 90. We see a peak
in figure 18 at the recoil index 135 that corresponds to a transferred energy at a
collision of 2500 eV that, if we consider the previously explained branching system
notation, would have been made by an other atom different from the PKA itself.
Yet, the PKA has not, even once, transferred more than about 1600 eV before to an
atom. This means that this atom whose transferred energy was 1600 eV could not
has transferred 2500 eV to another atom. The collision at the recoil index 135 was
necessarily done by the PKA itself and question the initial interpretation display
mode of TRIM.

It would seem that TRIM goes through the PKA cascade CPKA and stops when
a recoil atom cause a subcascade and then analyses it before going on to the rest
of the CPKA. Yet, the method of indexes notation inside the secondary cascade
(cascade that are not the CPKA) is the same as in figure 16 for some reasons. In
both cases, the second collision written is still the first collision the PKA caused.
Yet, like we saw in the previous subsubsection, if both minor collisions and ionization
are taken into account, the PKA losses more energy than it has. So an idea to verify
if the second element of the list really is the first collision the PKA caused is to
compare the unit vector direction of the PKA after its collision with the ion (or
neutron) with the normalized vector that goes from the initial position of the PKA
(before being knocked-off) and the second line position. The unit vector of the PKA
velocity is ~uPKA0 =(0.2933 0.4951 0.8178), taken from the TRIM.DAT file and the

40

Figure 17: A random cascade displayed by TRIM on which the reasoning explanation
was done.

41

(a)

(b)

Figure 18: Plot of the transferred energy at each collision indicated with the recoil
index from the COLLISION.txt file taken from Figure 17. The subfigure (b) is the
same as (a) but zoomed in to better see the small variations.

42

Figure 19: The same example of tree as in figure 16, but with a rearranged index
convention.

second vector position is ~v=(7 29 132) (in A). When normalized, the vector ~v is
equal to ~vnorm=(0.0519 0.212 0.978), which makes a angle of about 30° between the
two vectors ~u and ~v. Such an angle does not seem impossible to attain through
minor collisions during a distance of length 135 A. It would represent a deviation
of 0.22 degree per Angstrom traveled. A minor collision is a collision that do not
transfer more than the threshold displacement energy (of about 25 eV) so it will not
deviate the incoming PKA (with kinetic energy in the order of 12 keV) from its path
by a high angle.

Since this method does not discriminate decisively the second element of the
list from the first, we would need a different analyse. In figure 20(a) is plotted
the distance of the PKA of the collision indicated with the recoil index from the
initial lattice position. In figure 20(b) is plotted the distance between two successive
collisions with respect to the recoil indexes. We see that the cascades start quite
far away from the initial position of the PKA but then it tends to come nearer
and nearer. I computed the same graph for different PKA cascade and the overall
shape is the same: high distances at the beginning of the list and more or less
gradual decrease as the list goes on. It is highly unlikely that for several cascade,
the cascade turns around and come back near to its point of origin. It would suggest
that the end of the cascade is displayed first and then the prime recoil. The cascade
branching system notation would be made as in the example in figure 21.

43

(a)

(b)

Figure 20: (a) Plot of the distance of the collision indicated with the recoil index
from the initial position of the PKA. (b) Plot of the variations of distance from one
collision to the other for the data taken from the COLLISION.txt file from figure
17.

44

Figure 21: The same example of tree as in figure 16, but with a third rearranged
index convention.

7 The creation, implementation and rightness of
the algorithms

The whole point to analyse the collision cascades is to analyse the percentage energy
loss to electrons, phonons and stored energy. When TRIM is used manually, it is
possible to get two files called IONIZ.txt and PHONONS.txt that contain exactly the
amount of energy lost to electrons by ionization (for IONIZ.txt) and to phonons (for
PHONONS.txt). Even simpler, the TRIM windows directly displays the percentage
energy loss distribution. TRIM even sorts out the energy loss distribution for the
irradiating ion itself (primary cascade) and the recoils. Yet, when TRIM is used in
a semi-automatic way (I used an auto-clicker software), the files cannot be written,
the only files capable to be generated through the TRIM.IN file are the Ranges,
Backscattered, Transmitted, Sputtered, collision and special EXYZ files. Since a
major part of the project aims at evaluating statistically the percentage energy loss
distribution, hundreds of simulations have to be made and it has to be automated.

Since the easily readable IONIZ.txt and PHONONS.txt files are not usable for
statistical analyses, I had to find ways to estimate as best as possible the values
of energy losses. The previous section had the ambition to describe the collection
and analyses of the data of interest and the cascade description. In this section,
the algorithms used will be described and compared through their performance and
correctness. Because the COLLISION.txt data file is very complex to read, some
approximations will be made in the different algorithms.

45

7.0.1 The initial case of mono-atomic materials

For the comparison of the different algorithm output and the SRIM output, let us
take a 4 MeV nickel ion projected into a 3 µm thick pure iron material. When
computed on SRIM, the result we get for the energy loss is the following :

% Energy Loss Ions Recoils Total
Ionization 44.04 23.9 67.94
Vacancies 0.04 2.89 2.93
Phonons 0.18 28.95 29.13

By "Vacancies", TRIM means the sum of the lattice binding energies lost when
an atom leave its lattice position. Yet, on another documentation, TRIM states
that this energy is considered to be dissipated as phonons, so in my calculations,
the category Vacancies goes into phonons. There also is a stored energy that is
not being considered in the TRIM output that is the sum of energies needed to
create interstitials. This is the energy that is responsible for the hazardous Wigner
effect. In the notation I used, we need to multiply the value of vacancy by the ratio
Efi

Eb
(because TRIM considers that for each vacancies created, we consume Eb and

I consider, which is compatible with TRIM, that for each interstitial created, we
consume an energy Efi).

7.0.2 The more complex case of multi component materials

In the case of the irradiation of a mono-atomic material, the ionization energy is
easily calculable because all atoms in the recoil cascades are the same. More specif-
ically, when we use the Se(E) function, it was always the electronic stopping power
of the atom that the material is made of into the same material. For example, in the
specific case that I studied in depth, namely iron stopping power inside pure iron,
we had no need to invoke, in the recoil cascade calculations, the electronic stopping
power of the ion specie, like nickel, inside iron because it only concerns the primary
cascade that is already sorted out in the collision file through the PKA list. Yet,
for multi-atomic materials, the subcascades needs to be exploited more in depth in
order to know what Se(E) function to use at what time.

The generic multi-atomic materials that were studied are oxides written generally
as XnOm, in which n and m are integers. It means that sometimes X atoms would
be knocked off but some other time it may be O. The paths that they would follow
after the impacts correspond to different electronic stopping powers. We need to
sort the subcascades out by analysing the COLLISION.txt file even further. It
provides for all recoil cascades caused by each PKA in the form of lines containing
all major collisions (those who ends as a displacement creation) information. The
lines contain, as a reminder from the previous sections, the transferred energy to
the knock-off atom before that the lattice binding energy has been consumed, the
nature of the atom (X or O) and the coordinates of the collision described by the
concerned line.

46

7.1 The algorithm by length

7.1.1 For a mono-atomic target

In the figure 20, we see that very sharp variations in term of the distance between
the collisions localisation and the initial PKA lattice position are observable. They
correspond to "jumps" from one cascade to the other. Usually, the distances between
two successive lines in the COLLISION.txt files are of the order of a few angstroms.
When jumps of tens of angstroms are seen, we may expect that a different cascade
is analysed. It may be a SKA cascade or even a higher generation cascade. In the
simplest case, we can consider that sufficiently high changes are due to a analyse of
one SKA cascade to the other with no further subcascade analyse. Then the energy
losses on the path of the PKA can be calculated between the different SKA initial
lattice position.

The first question that needs an answer is about the minimum distance that will
trigger the process of changing from one SKA cascade to an other (inside a PKA
cascade). It cannot be the same for a 10-collision cascade and a 10 000-collision
cascade because in the latter, there would inevitably be variations of the order of
tens if not hundreds of angstrom inside the same SKA cascade that must not be
taken into account. In the first case, a variation of ten angstroms surely represents
a jump from one SKA cascade to an another one and has to be taken into account.
An approximation could be to consider the maximum distance of any collision from
the initial lattice position of the PKA and trigger the change of SKA cascade every
time the variation of distance from one line to the other exceed a fraction dmax

p
of this

maximum distance dmax. The table below shows the result of energy loss percentage
distribution "% Energy Loss" for p taking different values and for the "Recoils"
only:

p 2 3 4 4.5 5 10 15 20
Ionization 21.1 22.4 23.3 23.8 24.2 34.2 40.3 49.9
Phonons 31.2 29.9 29.0 28.5 28.1 18.1 12 2.4
Vacancies 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9

These values only concerns the "Recoils" and do not have to be compared to the
primary cascade ("Ions"). Let us consider the percentage energy loss distribution
for the "Recoils" from the TRIM table which was 23.9% for ionization, 2.89% for
vacancies and 28.95% for phonons. It seems that the best values of p for having
the best approximation of the real calculation of TRIM are between 4 and 5. For
the rest of this section, I will use p=4.5 because it offers a maximum error of 1.5%.
Up to this point, because it is possible to modify and adjust what components are
taken into account in the calculations, I could determine that the nuclear stopping
power does not have to be considered in order to get similar results as the TRIM
output tables. Let us take a look at the common result (the analysis of the primary
cascade is independent on the number p we chose for the model) for "Ions".

% Energy Loss Ions
Ionization 44.7
Vacancies 0.04
Phonons 0.11

47

The result of the ionization I found is close to the one displayed by TRIM.
The method of calculus for calculating the electronic stopping power is confirmed
but slightly overestimated. This is normal due to the fact that the calculation
of the integral in equation 12 was made from above. Yet, even by increasing the
refinement of the calculation, we do not get different results. The ion loses energy
from ionization and collisions. The transferred energy to the atom is not counted in
this step because it will be latter on converted mainly into ionization and phonons.
Ionization is clearly the main source of energy loss while the phonon creation are null
(or almost null). Let us try again this algorithm on another random seed number
generation to see if the results are still close to the one provided by TRIM (on the
left) and by the algorithm by length (on the right):

% Energy Loss Ions Recoils Total
Ionization 55.87 15.06 70.93
Vacancies 0.04 2.61 2.65
Phonons 0.21 26.21 26.42

% Energy Loss Ions Recoils Total Error
Ionization 56.6 15.3 71.9 1.4%
Vacancies 0.04 2.62 2.66 0.3%
Phonons 0.11 25.3 25.4 -3.9%

The relative error of the total energy loss distribution between the TRIM direct
output table and the one obtained by the algorithm by length is at worst 4% and
can therefore represents a very good approximation for medium calculation times.

7.1.2 For a diatomic target

In order to test the algorithm by length for diatomic targets, let us consider the
case of a nickel ion of 4 MeV projected on a target of Al2O3 of 3 µm thick. Here
are the result for the direct TRIM output table on the left and the analysis through
the algorithm by length on the right. The algorithm was of course to be modify to
correctly consider the diatomic nature of the target.

% Energy Loss Ions Recoils Total
Ionization 62.79 18.57 81.36
Vacancies 0.06 1.19 1.25
Phonons 0.34 17.05 17.39

% Energy Loss Ions Recoils Total Error
Ionization 63.5 15.6 79.1 2.8%
Vacancies 0.04 1.19 1.23 -1.6%
Phonons 0.28 19.4 19.68 11.6%

The electronic stopping power considered in each recoil cascade caused by a
PKA was the one of the atom of the PKA for the whole cascade. This is a rough
approximation because an aluminum atom as a PKA could possibly transfer energy
to an oxygen atom that would also lose energy to the electrons. I basically considered
that all collisions that were detected by the algorithm would be caused by the PKA
itself. It has its importance in this case because the ionization energy loss is quite
high (>80% of the total energy loss) and variations of only few percents would have
a large impact on the error concerning the phonon energy loss (=11.6%) because
its value is much smaller (<20% of the total energy loss). But anyway, the order
of magnitude is the same and for a first order approximation, the output of the
algorithm is satisfactory. Let us consider an other example for the same irradiation
conditions and the same target.

48

% Energy Loss Ions Recoils Total
Ionization 54.38 27.93 82.31
Vacancies 0.05 1.13 1.18
Phonons 0.28 16.24 16.52

% Energy Loss Ions Recoils Total Error
Ionization 53.2 26.1 79.3 3.7%
Vacancies 0.03 1.10 1.13 -4.2%
Phonons 0.24 19.3 19.54 15%

The error are higher than in the first case but of the same order. It would seem
that the algorithm by length gives good approximation for mono-atomic targets with
very low error but for diatomic targets, the error percentages are increased but with
a predictable 10% for phonons and 3% for ionization in the case of nickel ions on a
Al2O3 target. We could one last time test the algorithm with a completely different
set-up : Au ion at 12 MeV on a 5 µm thick ZrO2 target.

% Energy Loss Ions Recoils Total
Ionization 42.82 28.61 71.43
Vacancies 0.03 1.76 1.79
Phonons 0.09 26.69 26.78

% Energy Loss Ions Recoils Total Error
Ionization 42.7 40.3 83.0 14%
Vacancies 0.02 1.76 1.78 -0.5%
Phonons 0.14 15.1 15.24 43%

For this case study, the errors are unacceptable. They could be decreased if
we adjust the p variable. It seems that each set of ion and target has its own p
value that best approximates the energy loss distribution. For gold irradiation on
ZrO2, a value of p between 2 and 2.2 gives better approximations. That means that
the algorithm by length could be used but it would need a systematic pre-study to
determine an adequate value of p and only for mono-atomic targets. Yet, the value
of 2 or 2.2 for gold ion on ZrO2 is unstable and works only in that case. This method
is hazardous because it is highly approximative but statistically, a p coefficient of
4.5 gives good results and since it will be the same coefficient for the analysis of
all types of simulation, the error relatively to one to the other should be mitigated.
This algorithm gives only orders of magnitude but has a low complexity and uses
an understandable process.

7.2 The algorithm by whole cascade sorting

The algorithm could obviously not be constructed for each cascade and the algorithm
would not know at the beginning of the analysis how many cascades it contains. We
need to use a recursion algorithm, that consists in calling the function inside the
function itself. The function takes as input the list of energies transferred and
the localisation of the collisions and must output the energy losses to electrons.
The function take the whole energy list as input and would call itself to analyse
the rest of the energy list. The function solves only one cascade at a time. Each
cascade has to be understood in the way defined in the section A first attempt
to sort out theoretically the cascade branching system, which is only the series of
collision with the common atom that caused them. Very unfortunately, the way
TRIM shows the successive collisions like displayed in figure 21 cannot be easily
analysed. The display method used in figure 16 and 19 would be better especially
because the order of appearance in the list follows the cascade from up-to-bottom
and not from bottom-to-up. The principal advantage of a up-to-bottom display is
that the electronic stopping power can be calculated alongside the descent in the

49

Figure 22: The same example of tree display as in figure 21, but with all indexes
being reversed.

cascade because the electronic stopping power depends highly on the energy of the
atom and the energy variation of the recoil atoms changes a lot (from a tens of eV
to occasionally a few Mev). A constant value approximation would be too rough for
an approximation.

An idea to counter this problem is to reverse the whole list after having extracted
it from the TRIM output. The tree we would obtain, if we consider once again the
same tree analysed before, is displayed in figure 22. As we can see, the indexes
are now increasing when the cascade is being analysed deeper and deeper. Yet,
every time a new subcascade is being generated, the indexes will follow it. Once all
subcascades further generated from this branch are explored, the indexes will come
back at the node were the initial new subcascade was generated and it will go down
once again. This is a once again a major problem because the initial energy of the
cascade we are currently exploring is unknown. Let us take the example in figure 22.
At the node one, the energy that is displayed on the corresponding line corresponds
to the transferred energy from the atom knocked out at the node 8 to the atom
that was in the lattice position at the node 1. But the line does not contain any
information on the initial energy transferred to the atom that caused the cascade
under study (here the atom ejected from node 8). That means that the ionization
cannot be computed.

In our case, the cascade is very small and can be analyzed by hand so we know
that the node 8 is at the origin of the cascade C(2). So we could first read the line
number 8 and take the energy transferred to the atom at the collision K(2). But in
the code, with hundreds and sometimes thousands of line, it has to be found starting

50

from the first position 1. We need to calculate through the energy exhaustion method
the index that indicates the start of the current cascade (once all the energy of the
initial kinetic energy of the recoil is consumed, the cascade stops necessarily and the
previous cascade not fully analyzed continues). Here, there is an incompatibility,
we need to find an index value but to do so, we would also need the energy value
it contains. The exact exploitation of the cascade seems impossible due to this
problem.

By continuing to study the algorithm problem through the example of figure
22, a possible method to counter this issue is to find the index 8 from the node 1
without using the energy exhaustion method. The only physical quantity we have
left to analyse the cascade is the distance. Usually when the cascades develop, they
tend to spread and to leave the point of origin. Of course, this is not always true,
the atoms may bounce back and come closer to the point of origin. But we could
make the assumption that in most cases, it will not come back and the distance
may be used to determine what was the node index from which the cascade begun.
If all adjacent collisions are assumed to be closer than 3 A (or any other value),
we could do it. With a while loop that checks for the distance between the first
node and the successive ones. But in the end, the assumptions are too rough and
the code has so many conditions to check that it would be inefficient in addition
to being false. In the end, the complete detailed and exact reconstruction of the
cascades structure from the COLLISION.txt file seems impossible. We will only be
able to approximate the energy loss distribution with algorithm containing more or
less acceptable assumptions.

7.3 The algorithm using the phonons.

Since positioning the collisions and constructing the cascade branching system is
very complex with the limited information given by the TRIM output, I came back
to an interpretation of the TRIM data made previously. Since there are very few
collisions displayed in the COLLISION.txt files for which the transferred energy
is smaller than the displacement energy, I assumed that the minor collisions were
neglected. Yet, when I calculated the nuclear stopping power in addition to the
electronic stopping power for the primary cascade, the energy loss was too high. Due
to this fact, if I neglected the nuclear stopping power between the listed collisions
on the primary cascades, I did the same assumption for the PKA cascades and all
subcascades. On the other hand, all collisions written in these files are associated to
a displacement event. This would imply that some minor collisions might happen
but are not reported.

In this algorithm, I will as before neglect the minor collisions (not listed in the
TRIM output files) but, differently from before, consider the phonon calculation
first and then deduce the ionization for the recoils cascade. The calculation of the
primary cascade is unchanged. The phonon sources are the end of each branches
of the tree of collision, the leaves of a tree to speak metaphorically. The trans-
ferred energy to atoms before the extremities of a branching system will not be
fully converted to phonons since the recoil atoms will lose energy to electrons in the
subcascades they cause. The only energy loss into pure phonons is the transferrerd
energy during minor collisions that are not reported. Yet, at the extremities of the

51

branching system, where the kinetic energy of atoms is small (tens of eV), the elec-
tronic stopping power is negligible as a first approximation compared to the energy
lost to nuclei. This algorithm will simply look in the file for collisions where the
transferred energy is smaller than p*Ed with p being a real number that has to be
determined in order to optimize the results accuracy. For all these collisions, it will
consider that all the transferred energy except the formation energy of intersitital
will go into phonon. For all other collisions that do have a transferred energy higher
than p*Ed, the only energy considered to be added to phonons is the lattice binding
energy (initially stored but dissipated into phonons when an atom leaves its lattice
position) according to the TRIM output. The calculation for the binding energies
do not change and the ionization for the recoils is only calculated as the remaining
energy to reach the initial ion energy for the conservation of energy to be respected.

The result for a 4 MeV nickel ion projected into a 3 µm thick pure iron material
are displayed below. The comparison for recoil cascades for different value of p is
displayed below :

p 2 2.5 2.8 2.89 2.9 3 3.2 3.5
Vacancies 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9
Phonons 19.4 24.6 27.4 28.1 28.2 29.0 30.5 32.5
Ionization 32.9 27.7 24.9 24.1 24.0 23.3 21.8 19.7

The value of p that seems to optimize the accuracy of the algorithm is 2.89. The
results are displayed on the right side with the TRIM output table on the left as
usual for a direct comparison.

% Energy Loss Ions Recoils Total
Vacancies 0.04 2.89 2.93
Phonons 0.18 28.95 29.13
Ionization 44.04 23.9 67.94

% Energy Loss Ions Recoils Total Error
Vacancies 0.04 2.91 2.95 -0.7%
Phonons 0.11 28.11 28.22 3.12%
Ionization 44.69 24.13 68.82 1.28%

The comparison for a diatomic target is made with a Au ion at 12 MeV on a 5
µm thick ZrO2 target with a p coefficient as high as 4. The ionization is once again
overestimated even with a large p coefficient. This algorithm is even worse than
the algorithm by length because it requires a different p for each simulation. That
means that for two different Ni ion at the same initial energy on the same target,
the p coefficient neededd will be different. It was not the case for the algorithm by
length. This algorithm is completely dismissed and cannot be used at all for the
simulations.

% Energy Loss Ions Recoils Total
Ionization 49.49 28.89 78.38
Vacancies 0.03 1.31 1.34
Phonons 0.11 20.18 20.29

% Energy Loss Ions Recoils Total Error
Ionization 49.72 38.56 88.28 11.2%
Vacancies 0.028 1.31 1.34 0%
Phonons 0.14 10.24 10.38 -48.8%

52

8 Results of the neutron and ion codes

8.1 Details on the strategy to assess the damage comparison
between the two types of irradiation

The term "damage" used to compare the ion to neutron irradiation has to be pre-
cised. We consider an arbitrary reference area on which the irradiation is done. This
reference area is common in both cases and is equal to 1 cm² but has no physical
meaning as it will be cancelled in a future ratio. Since the penetration in both cases
is largely different, the reference depth considered will not be the same. The average
penetration for heavy ions in the tens of MeV range in most material tested is in
the order of 5 micrometers whereas a block of approximately 30 centimeters blocks
90 % of the neutron particles according to the results of the neutron code. When
multiplying the reference area by the reference depth, we get a reference volume in
which displacements will take place.

These displacements have to be averaged on the whole reference volume in order
to get a number of displacement per atom (dpa). The neutron and ion codes, for
mono-atomic or diatomic compounds (a total of four codes), will run separately.
The principal output will be the average displacements per atom per projectile.
Each projectile (neutron or ion) will cause a certain number of displacements in
the reference volume but this quantity varies a lot between each simulation and in
order to get statistically relevant results, the codes will test hundreds of projectiles
until the average displacements per atom per projectile stabilizes. The whole graph
representing the average displacements per atom per projectile versus the number
of projectile simulated is a damped oscillation like the one showed in figure 23.
The final value of average displacements per atom per projectile taken is the last
indicated on the far right of each generated graph by the codes.

Figure 23: The average displacement per Au projectile on a ZrO2 target updated
after every simulation traced with the ion index.

An another remark has to be made on the reference volume definition. Since the

53

energy dissipated in the material by ion irradiation is dependent on the depth due to
the presence of the Bragg’s peak, we have to consider that the average value would be
very rough and hide a huge disparity between the energy dissipated at the skin of the
material and at the depth where the Bragg’s peak occur. The average displacements
per atom per projectile we would like needs to represent an average of a more or
less constant, or slightly oscillating, energy dissipation inside the material. That is
why the codes only count the displacements before the beginning of the Bragg peak
for the ion irradiation. This localisation is of course different from one simulation
from another but a matrix has been made that shows, on average, the depth where
the Bragg’s peak starts to occur. It has been determined by running manually,
for each combination of material and ion, 20 simulations and to take more or less
the minimum deposition depth of the ion. By doing this selection of the value we
want, we know that the damage is more or less homogeneous in the whole reference
volume.

For neutron irradiation, a similar selection has to be performed but this time,
there is no such thing as a Bragg’s peak. There is a set of cluster where the damage
is done when the neutron goes deep enough inside the target material. But most of
the cases, the neutrons are backscattered only after a few collisions like it can be
seen in the figure 9. In these condition, the gradient of displacement per slices of
material is too strong. If we want an homogenized distribution of displacements for
a correct comparison, we need to consider only displacements made after a certain
depth (like one centimeter so that we avoid to consider the overpopulated area at
the skin region). An inflated value at the skin would enhance the average in the
whole reference volume and that would overestimate the damages done in the bulk
of the material. Then the code has to consider a second reference depth to know
where stops the reference volume. Since for a slab of iron of 30 centimeter thick,
only 10 % of neutron are transmitted with a relatively low energy compared to their
initial energy, it seems reasonable to assume that the amount of damage done after
a depth of 30 centimeters is negligible compared to the damage done in the reference
volume defined by the reference area between 1 and 30 centimeters. Then the dpa
is averaged over the whole reference volume.

8.2 The special case of hydrogen ions irradiation

It was thought to be a good option to consider proton irradiation to best describe
the neutron irradiation. The first reason was that if an hydrogen atom is sufficiently
accelerated (to about 200 MeV [14]), then the proton would go deep enough (to
about 20 cm inside the target material). This would mean that we could at best get
the typical range for the neutron irradiation by with an ion. That would dismiss
all spacial distribution issues we have with the defects generation comparison. Yet,
when simulating with TRIM the behavior of hydrogen irradiation on any of the
materials studied above, the outcome is totally different in terms of energy loss
distribution and displacements generation. The proton, according to the simulations
on TRIM, lost most of its energy (>99.8%) to ionization due to electronic stopping
power. Moreover, the amount of displacements generated in the COLLISION.txt
file is low compared to the other irradiation. This implies that the hydrogen ion
just travels through the material while being stopped by electrons but without any
significant number of collisions on its path. Despite the appealing penetration depth

54

on the hydrogen irradiation, it creates too different damage to the material to be
able to simulate correctly neutron irradiation.

55

8.3 Results and comparison

8.3.1 Qualitative time reduction assessment

Once every graph are drawn and the average displacements per atom per projectile
determined for all combinations of (Fe, Al2O3, ZrO2 and Y2O3) and (neutron, Ni at 4
MeV and Au at 12 MeV), we can continue the reasoning. The average displacements
per atom per projectile (ADPP) table summary is displayed below :

ADPP Neutrons Ni at 4 MeV Au at 12 MeV
Fe 2.9× 10−21 1.15× 10−15 6× 10−15

Al2O3 7.8× 10−22 5.5× 10−16 2.5× 10−15

ZrO2 1.5× 10−21 5.0× 10−16 6× 10−15

Y2O3 1.25× 10−21 5.0× 10−16 2.5× 10−15

The calculation power of my personal computer being limited, the total numbers
of neutron and ion simulated (thousands for neutrons but only hundreds for ions)
are small compared to the real life application like the fluence encountered in a nu-
clear facility. Since the average displacements per atom per projectile are stabilized
value of the damped oscillations described above, we can use them to predict more
or less accurately that a very high number of neutrons Nhigh will cause an approxi-
mate number Nhigh*ADPPneutron of displacement per atom in the reference volume
considered.

If we completely dismiss the spacial distribution of defects, then the comparison
of the damage between neutron and ion irradiation is quite simple now that the
average displacements per atom per projectile is known. Let us say that the nuclear
department states that the material will be subjected to a fluence of Nn neutrons
during a certain period of time and that they would like to know the fluence of ions
required to get an equivalent amount of displacements without having to spend years
of irradiating the material with neutrons. Since Nn*ADPPn is the approximate
number of dpa caused by the total fluence of neutrons, the fluence Nions needed to
get the same dpa is given by:

Nions = Nn
ADPPn
ADPPions

(21)

The ratio Nions/Nn for all materials if given in the table below. The required
conversion matrix to simulate the neutron irradiation with ions, with the dpa being
the only factor taken into account, is determined. Practically, if we want to know
how many ions we need to get the same dpa as neutron irradiation, we just need
to multiply the Nn by the values in this table. Of course, the result is strongly
dependent on the neutron spectrum considered. For this master thesis, I remind
the readers that a Maxwell-Boltzmann distribution was considered that simulates
the spectrum of fissions neutrons in a reactor. If a different or more precise neutron
spectrum needs to be considered, it can simply be done by substituting the neutron
sampling part (only one line in the code in the section 12)

56

Nions/Nn(∗10−7) Ni at 4 MeV Au at 12 MeV
Fe 25 4.8
Al2O3 14 3.1
ZrO2 30 2.5
Y2O3 25 5.0

All the necessary data was calculated up to this point and we just need calculate
the effective time reduction when simulating neutron damage with ion irradiation. In
the reference [1], a possible and attainable fluence for ions can be 6× 1016ions.cm−2

in only one hour for Ni ions. The reference [13] confirms this ion beam flux or-
der of magnitude but may vary from one device to the other. This is the typical
representative value taken for the ion fluence for the rest of the thesis. Similarly,
the typical neutron fluence in a pressure vessel can be obtained in the reference
[5] as 3.5× 1019neutrons.cm−2 in the entire lifetime of the vessel (40 years in our
case). The flux inside the core of pressure vessel is even larger and can be considered
over the course of 40 years to be approximately equal to 3.5× 1022neutrons.cm−2

[2]. The table below shows the time required for ion irradiation to cause the same
amount of defects as a 40 years exposition to neutron irradiation in the in-core com-
ponents. The first step is to calculate the total number of ions required and then
by dividing by the ion flux, we find the wanted time tions.

tions (in s) Ni at 4 MeV Au at 12 MeV
Fe 5250 1010
Al2O3 2940 650
ZrO2 6300 530
Y2O3 5250 1050

The values given in seconds are quite small and there are several explanations
to this fact. Firstly, tions depends on the values on fluxes taken and they are only
order of magnitude found in articles dealing with ion beam generators but do not
necessarily corresponds to existing devices delivering either Ni at 4 MeV or Au at 12
MeV. Still, the fluxes values are the same for all materials and ion taken meaning that
the relevant parameter is the relative tions between different cells in the table and not
the absolute values. If someone deems my work worthy of being use further, he can
easily modify either the irradiating ion properties or the fluxes. All the parameters
are modifiable at the beginning of the code (see the Appendix for more details). An
user-friendly interface would make it even easier.

8.3.2 Energy loss distribution results

Now, in order to assess how the material reacts to the irradiation, we need to
consider the energy dissipation distribution for the three types of specific irradiations
considered.

For neutrons (in %) Stored Energy Phonons Ionization
Fe 3.19 93.97 2.83
Al2O3 1.22 90.17 8.61
ZrO2 1.64 93.01 5.35
Y2O3 1.19 94.66 4.15

57

For the neutron irradiation, more than 90% of the energy is dissipated as phonons.
This is due to the absence of colombic interactions between the neutrons and the
atoms. The neutron being a neutral particle, it will only collides with nucleus on the
primary cascade with no ionization produced. Only recoil cascades cause ionization
but since the energy transferred to PKA is generally small compared to the initial
neutron energy, the ionization produced in recoil cascades is still small because the
more energetic a particle is, the more ionization it produces in general.

For Ni at 4 MeV (in %) Stored Energy Phonons Ionization
Fe 7.1 19.21 73.68
Al2O3 4.07 13.36 82.57
ZrO2 4.12 18.14 77.74
Y2O3 3.99 17.61 78.40

For Au at 12 MeV (in %) Stored Energy Phonons Ionization
Fe 8.35 21.62 70.03
Al2O3 4.68 13.57 81.75
ZrO2 4.72 21.03 74.25
Y2O3 4.51 20.62 74.87

For ion irradiation, because the colombic interaction exists since the primary
cascade, the ionization is much larger than in the case of neutron irradiation. We
can witness some variation between the materials. For instance, Al2O3 has an even
higher ionization percentage compared to the other materials. ZrO2 and Y2O3 have
similar energy loss distribution and is intermediate between Al2O3 and Fe. In iron,
the ionization energy loss percentage is smaller than for the oxides.

If the goal is to get an energy loss distribution for ions as close as possible to
the neutron irradiation, we have to choose which ion (here, in our limited study,
between Ni and Au) satisfies the best this criterion for each material. Since we need
the higher energy loss into phonons to best simulate the neutron irradiation, it is in
all cases Au at 12 MeV than meets the requirements better than Ni at 4 MeV.

Phonons are collective vibrations of atoms that occur in a crystal with certain
frequencies and has many influence of the material properties like the capability
to propagate heat, electricity and sound. They may has a indirect link to the
temperature since it makes the atoms move from their lattice position like a thermal
vibration of an atom would cause. Phonons may have an influence on the heat. Yet,
what is sure is that ionization energy loss directly goes into electrons and that can
be considered as thermal energy.

Some major incident in the nuclear facilities were attributed to the Wigner effect
like the Windscale fire. The Wigner effect is linked to the release of stored energy at
high temperature, like annealing. Comparing the energy lost to stored energy may
be interesting. For instance if we measure that the stored energy for a ion irradiation
is smaller than the real stored energy with neutron irradiation, it may be an issue
since the possibility of a release of energy is more critical than expected. Yet, it
seems to be a reoccurring fact that the stored energy systematically is higher for

58

ion irradiation compared to neutron irradiation. As a reminder, the stored energy is
the sum of all the distortions around an interstitial atom. This energy is considered
to be, for one interstitial atom, three time the lattice binding energy like detailed in
the previous sections.

Another remark has to be made on the fact that the stored energy is higher
for pure iron than for biatomic oxides and that occurred both for neutron and ion
irradiation. If we take a closer look on the values of displacement and lattice binding
energies shown in the table below, we can see that only oxygen has a different value
for the displacement energy compared to the others. These values are taken from
the TRIM database in order to have the same viable source for all simulation and
not multiply the references that may have different methodology of determination of
the Ed and Eb energies [7]. Yet, they may not be exact since it seems sound to state
that the lattice binding energy depends on the chemical surroundings of the atomic
specie considered. This energy for an gold atom is for instance dependent on the
structure of the material (crystalline, amorphous or in between) and by extension
to its surroundings.

Energies (in eV) Fe Al Zr Y O
Ed 25 25 25 25 28
Eb 3 3 3 3 3

The mean value of Eb and Ed for a Au atom in Au2O3 will be different from
the one in pure gold. This is not taken into account by TRIM but may have a
significant importance. Anyway, in the case of a compound, TRIM correctly takes
into account the effect of the different atomic masses for the transferred energy upon
collisions but it does not consider the different binding energies configuration that
would require more input parameters and a complex analysis (namely molecular
dynamics). I just took the TRIM database without questioning it for two reasons :

1. The evaluation of Eb (a thermodynamic equilibrium value) and Ed (an out-of-
equilibrium quantity) for different atoms in different compounds would require
a great amount of work and would represent a potential thesis by itself.

2. We are interested in the comparison analysis so the homogeneity of the com-
parison basis is more important than its accuracy.

Since the calculation of the stored energy in the code is done for all interstitials
with the assumption that all displacements (vacancy creation events + replacement
events) cause a formation of one interstitials because the materials are considered
thick enough to avoid transmission. More precisely, each knocked-off atom ends as
an interstitial somewhere except if this atom causes a replacement event. Basically,
the stored energy is the total number of displacements minus the total number of
replacements, all multiplied by the formation energy of interstitials for mono-atomic
target like depicted in the following equation.

Es = (Ndisplacements −Nreplacements) ∗ Efi = Nvacancies ∗ Efi (22)

It is slightly more difficult for biatomic targets since we have to select the type
of atom (X or O) that cause the displacements but it is well implemented in the

59

code and everything is taken into account in order to give the good result. Yet,
in the equation 22, there is only Efi = 3Eb that is equal to 3 eV for all atoms.
This means that the discrepancy in the results does not come from the constant
values for each specie but from the total number of Ndisplacements−Nreplacements. One
explanation could be that because the oxygen’s displacement energy is equal to 28
eV instead of 25 eV, the requirement for causing an oxygen atom to displace is more
demanding for the incoming particle and thus, a lower amount of displacement event
are existing. This phenomenon would cause the stored energy to be lower in the case
of irradiation on an oxide compared to on a pure specie with a lower displacement
energy.

In order to deepen the comparison between the behavior of iron and the tested
oxides, it has to be said that the energy loss to phonons are similar for all materials,
except for Al2O3, for a given irradiation. So the energy loss to phonons discrepancy
between iron and oxides is not counterbalanced by more or less phonons but by
more or less ionization as it would appear. This may sound counter intuitive if the
reasoning made in the previous paragraph is correct. In fact, if a collision between
an incoming atom at 26 eV on an oxygen atom cannot cause a displacement because
26<Ed=28 eV, the former would be expected to continue its path and losing the
major part of its remaining energy into phonons since the energy loss to phonons is
generally predominant at lower energies compared to ionization losses as seen in the
theoretical framework. In order to take a closer to the influence of the value of Ed
and the erngy loss distribution, I considered a value for the threshold displacement
energy of iron of 40 eV cited in some sources including [10].

Fe with Ed = 40eV Stored Energy Phonons Ionization
Ni at 4 MeV 4.20 22.4 73.4
Au at 12 MeV 4.95 25.26 69.80

We can see that increasing the threshold displacement energy Ed has the effect
of decreasing the stored energy. When considering furthermore the equation 22, we
can tell that, with Efi remaining unchanged, Nvacancies is necessarily decreased. This
observation is coherent with the reasoning made in the paragraph under the same
equation 22. In other words, all knocked atoms will end up as interstitials (except
if they cause a replacement event) but they may knock other atoms on their path
that could also create interstitials. The phenomenom of knocking-off an atom from
its lattice position is more difficult if Ed is larger. This means lower energy loss
going into stored energy (energy of distortion around interstitials) and more into
phonons, the ionization percentage remains more or less the same (in the case of Ni
at 4 MeV on pure iron : ≈ 73.5 %). Whatever the physical explanation, it remains
sure that the ionization is greater in the case of oxides than for iron for the three
types of irradiation, with the Al2O3 being particularly highly prone to energy losses
into electrons.

Attaining a similar phonon to ionization energy loss ratio seem rather impossible
due to the high energy losses of the ion to the electrons on the primary cascade. The
idea to say that Au at 12 MeV is better than Ni at 4 MeV because the former has 2-3
percent more energy loss distribution to phonons than the latter is not satisfactory.
Even if 21% is closer to 90% than 19%, it is not enough to conclude that using

60

irradiation of Au at 12 MeV is a good simulation of a neutron irradiation. That
is why the study of the stored energy was interesting. This type of energy loss is
greater in the case of ion irradiation. That may be a positive observation since the
experimental conditions are more critical than the real case scenario. In fact, as
explained above, the stored energy may be suddenly released causing catastrophic
failure and is a critical energy loss compared to ionization or phonons whom energies
may be dissipated as heat for example. Stored energy may be released through
annealing or defects mobility. Modelling the evolution of defects is an even more
difficult task than modeling the creation of defects. It is the way in which the defects
evolve (by diffusion, annihilation, coalescence in different ways and/or others) which
determines the evolution of the microstructure and therefore the modifications of
the macroscopic properties. Yet, these phenomenons are beyond the scope of this
master thesis and will not be considered.

61

9 Conclusion and future work

The objectives defined in the introduction were more or less attained and completed.
If we only focus our attention to the creation of defects, it is possible to create
conversion tables between neutron and ion irradiation. We saw that all ions are not
equivalent and some are more suited to simulate neutron irradiation than others in
the limited case of Ni at 4 MeV and Au at 12 MeV. The proton irradiation was
also explored but the difference was too high with the neutron irradiation. One
of the many key concepts used during this work was the Average Displacement Per
Projectile that is the statistical convergence value of the number of displacement the
considered projectile causes on average in the target. This variable is at the basis of
the conversion tables in order to determine the equivalent time required under ion
irradiation to reach the same amount of damage as the neutron irradiation.

A detailed analyse was made in order to determine the energy loss distribution
of the incoming projectile, both for ions and neutrons. This distribution is divided
between the stored energy as the distortion energy around all interstitials created,
the phonons generated and the ionization, which is the energy lost to electrons.
Generally, because the ion interacts with the electronic cloud of a material, the ion
projectile loses more energy to ionization compared to phonons. The opposite holds
true for neutron irradiation with a lot of phonons being generated.

A final point was made on the major importance of the stored energy that could
be released dramatically due to the Wigner effect. The Wigner effect is largely
material dependent since in some materials, the defects are frozen up to a certain
temperature like for graphite [2] causing a dramatic and sudden release of energy
if the temperature is exceeded. For some other materials, the mobility of defects
is increased gradually with the temperature without dramatic jumps. The stored
energy is probably the most important energy loss to consider and study in depth.
Essentially, I considered in my work only the distortion energy around interstitials
but distortion is also present around vacancies but the literature was quite poor on
these topics so I had to make assumptions to be able to develop and finalize my
codes. The values present in the TRIM database for crucial parameters like Eb and
Ed are general and do not necessarily reflect the reality. The structure at the atomic
level is not studied and is not taken into account by TRIM which is one of its major
limitation compared to molecular dynamics codes. TRIM could perhaps perform a
better analysis if we provide it with more accurate values of Eb and Ed.

My master thesis relies on an extensive use of four different codes than treat
mono-atomic and bi-atomic target material generically. They can indeed be adapted
for any wanted ion irradiation, neutron energy spectrum, the property of the target
material, whether it is mono-atomic (like pure iron) or bi-atomic (like oxides but
not exclusively). The codes could even be extended in order to enter any given
number of atom type of the target if we want to study the influence of some alloying
elements.

Many possible improvements and deepenings of my work could be done in ad-
dition to the user interface development. The most obvious one is the consider the
mobility of defects after their generation in order to implement the recovery pro-
cesses and their time dependence. By this formulation, I mean that the time scale of
a pressure vessel structure lifetime (40 years) is much larger than the ion irradiation

62

time calculated. The recovery processes may dynamically take place inside a pres-
sure vessel whereas the time scale is too short for ion irradiation. If such a molecular
dynamic code exists and is available, it could be coupled to my meutron code fruit-
fully. That molecular code require a huge capacity of calculation, especially for slab
of material as thick as 30cm for a so long period of time. All these parameters could
be reflected upon and may also constitute an excellent complement to my work.

It is also worth mentioning that I found out the existence of a code called PySrim
that is a Python code developed by C. Ostrouchov [11] for the automation of the
use of TRIM. This finalized code enables an easy-to-use programming language to
run a multitude of TRIM simulations and plotting through the Python interface. It
however does not contain any neutron code but it may be inserted just before the
use of the PySrim package with the necessary adaptation. To my knowledge, there
is no such thing as a unified code containing both a neutron code and a molecular
dynamic code for the simulation of the damage creation with a clear user-interface.
I tried on my level to build such a code but I hope for my current work to only be a
first step in that direction. TRIM is a renown code but lacks of considering essential
phenomenons like the influence of the material structure. For a finalized version, it
may be better to use a more advanced code for simulating the ion interaction with
the matter than TRIM. My neutron code is statistical and considers an isotropic
non-collimated flux of neutron from a population that follows a Maxwell-Boltzmann
distribution. These parameters may not always be valid and a user interface for
the neutron code itself may be useful for the user to define by himself the type of
neutron irradiation he wants.

10 Acknowledgements

I am most grateful towards Mr Marco Beghi, my master thesis supervisor, for gen-
erously accompanying me in the development of my work. He provided me lots of
useful and interesting information. He always took the necessary time during our
long conversations to explain and discuss thoroughly the topics of discussion. He
made my return in France possible due to the sanitary crisis and was also able to
adapt and follow my work remotely.

I also sincerely thank my family for supporting me during these fluctuating times.
They provided a stable environment in which I could work efficiently.

I address my last gratitude to the institution of Politecnico di Milano for wel-
coming me in their campuses for two years. It has been an enriching experience
despite the sudden sanitary crisis. I learnt a lot in terms of engineering and Italian
culture, with whom I always had an affinity.

63

11 References
[1] C. Abromeit. “Aspects of simulation of neutron damage by ion irradiation”.

In: Journal of Nuclear Materials 216 (Oct 1994), pp. 78–96.

[2] Marco Beghi. “Nuclear physics”. In: Nuclear Engineering lectures at Politecnico
di Milano (2020).

[3] F. García Ferré et al. “Extreme ion irradiation of oxide nanoceramics: influence
of the irradiation spectrum”. In: Acta Materialia. 143rd ser. (2017).

[4] F.Garcia Ferré et al. “Radiation endurance in Al2O3 nanoceramics”. In: Na-
ture. 33478th ser. (Dec 2016).

[5] Areva NP GmbH. “Nuclear Power Plant Borssele Reactor Pressure Vessel
Safety Assessment”. In: NTCM-G0549 (2010).

[6] Archie Harms. Chapter 3 : Neutron Physics of "An introduction to the CANDU
Nuclear Energy Conversion System". McMaster University, 1972.

[7] X. J. Liu et al. “Correlation and size dependence of the lattice strain, binding
energy, elastic modulus, and thermal stability for Au and Ag nanostructures”.
In: Journal of Applied Physics, 074319 109 (2011).

[8] Nuclear-power.com.Macroscopic Cross-Section. url: https://www.nuclear-
power.com/nuclear- power/reactor- physics/nuclear- engineering-
fundamentals/neutron-nuclear-reactions/macroscopic-cross-section/.

[9] Nuclear-power.com. Neutron Cross-Section. url: https://www.nuclear-
power.com/neutron-cross-section/.

[10] P. Olsson, C.S. Becquart, and C. Domain. “Ab initio threshold displacement
energies in iron”. In: Materials Research Letters 4 (2016), pp. 219–225.

[11] Christopher Ostrouchov. PySrim. url: https://pypi.org/project/pysrim/.

[12] P Rinard. “Neutron Interaction with Matter,” in Passive Nondestructive As-
say of Nuclear Materials. U.S. Nuclear Regulatory Commission, NUREG/CR-
5550. ed. by D. Reilly et al., March 1991.

[13] Hiroyuki Sakaida, Naoto Sekimura, and Shiori Ishino. “In-situ observation of
cascade damage in nickel and copper under heavy ion irradiation”. In: Journal
of Nuclear Materials. 179th ser. (1991), pp. 928–930.

[14] G. w. Wheeler et al. "THE BROOKHAVEN 200-MEV PROTON LINEAR
ACCELERATOR". ed. by Brookhaven National Laboratory, Upton, New York
11973, U.S.A., 1979, pp. 1–156.

[15] James F. Ziegler, Jochen P. Biersack, and Matthias D. Ziegler. SRIM : The
Stopping and Range of Ions in Matter. 2008.

64

https://www.nuclear-power.com/nuclear-power/reactor-physics/nuclear-engineering-fundamentals/neutron-nuclear-reactions/macroscopic-cross-section/
https://www.nuclear-power.com/nuclear-power/reactor-physics/nuclear-engineering-fundamentals/neutron-nuclear-reactions/macroscopic-cross-section/
https://www.nuclear-power.com/nuclear-power/reactor-physics/nuclear-engineering-fundamentals/neutron-nuclear-reactions/macroscopic-cross-section/
https://www.nuclear-power.com/neutron-cross-section/
https://www.nuclear-power.com/neutron-cross-section/
https://pypi.org/project/pysrim/

12 Appendix
In this appendix, I will partially describe and include some of the codes written in
Python I created and used for the completion of my master thesis.

In total, more than ten codes were written from the beginning but some revealed
useless up to a point for my purpose. Eventually, I structured the algorithms in order
to make four different codes. Two among them concern the neutron irradiation with
one for mono-atomic target and the other for bi-atomic targets. The other two
concern the ion irradiation with the same distinction between mono-atomic and
bi-atomic targets.

12.1 The ion code for mono-atomic targets

The first one to be presented is the shortest and simplest ion code for mono-atomic
targets. Its purpose is to print the oscillating graph describing the Average Dis-
placement per Ion and write a text file containing information about the energy loss
distribution.

The first part from line 1 to 73 contains the importation of useful packages and
definition of mostly basic functions necessary to the upcoming code. Then up to
the line 143 are the definition of the physical properties to be used with choice to
make. Here a user interface development could be more practical than a manual
modification in the source code. Then down to the line 205 is the importation of
the electronic stopping power from tables already generated by TRIM beforehand
like in the figure 14. Then a big chunk of the code up to the line 345 is the correct
writing of the TRIM.IN and TRIM.DAT files for the actual irradiation under study.
The line 349 starts the execution of TRIM and the following line impose a pause
so tthat TRIM has time to run completely before the further execution of the code.
Then the rest of the code is a lecture and a disentanglement of the COLLISION.txt
file in order to determine the wanted data. From line 515 to the line 520 is the
plotting of the oscillating graph. From line 253 to the end is the generation of a
very simple text file storing the data concerning the energy loss distribution.

1 import os
2 import matp lo t l i b . pyplot as p l t
3 import numpy as np
4 import s c ipy . i n t e g r a t e as i n t e g r a t e
5 import time
6 import random as rd
7 from mpl_toolk i ts import mplot3d
8 from mpl_toolk i ts . mplot3d import axes3d
9 from matp lo t l i b import cm

10 from srim import TRIM, Ion , Layer , Target
11 from srim . output import Resu l t s
12 from s c ipy . i n t e r p o l a t e import i n te rp1d
13
14 def TakeFromLine (l i s t o f l i n e , beg , end) : # return the f l o a t conta ined in

the l i s t o f l i n e between beg and end (NOT inc luded) .
15 l i s t =[l i s t o f l i n e [i] for i in range (beg −1,end−1)]
16 content=’ ’
17 for l in l i s t :

65

18 content += l
19 return f loat (content . r ep l a c e (’ , ’ , ’ . ’))
20
21 def EnergyAfterSPSegment (Sfunct ion , E1 ,L , n) :
22 E=E1
23 for i in range (n) :
24 E −= Sfunct ion (E) ∗L/n
25 return E
26
27 def decimal_round (x) :
28 i f x==0:
29 return 0
30 i f np . int (np . log10 (np . abs (x))) >= 5 :
31 return 0
32 e l i f np . int (np . log10 (np . abs (x))) >= 1 and np . int (np . log10 (np . abs (x)

)) <= 4 :
33 return 1
34 else :
35 return 5
36
37 def a jout (x) :
38 i f x==1 or x==0:
39 return 0
40 e l i f x==−1:
41 return −1
42
43 def meanl i s t (l i s t) :
44 i f len (l i s t)==0:
45 return 0
46 return sum(l i s t) / len (l i s t)
47
48 def ecart_type (l i s t) :
49 i f len (l i s t)==0:
50 return 0
51 mean=mean l i s t (l i s t)
52 return np . sq r t (mean l i s t ([(l−mean) ∗∗2 for l in l i s t]))
53
54 def absmaxl i s t (l i s t) :
55 max=abs (l i s t [0])
56 for r in l i s t :
57 i f abs (r)>max:
58 max=abs (r)
59 return max
60
61 def min l i s t (l i s t) :
62 min=l i s t [0]
63 for e in l i s t :
64 i f e<min :
65 min=e
66 return min
67
68 def c o u n t l i s t (l i s t , e lement) :
69 n=0
70 for e in l i s t :
71 i f e==element :
72 n+=1
73 return n
74

66

75 Nsegment=10
76 a l l i n e =24
77 RN = 8e−6 # Radius o f a neutron (in A)
78 Mneutron = 1.675 e−24 # in g
79 NAvogadro = 6.022 e23 #in /mol
80 ReferenceArea=1 # cm square
81 SumDisplacements=4.2e−21 #to take from the neutron code output
82 NumberOfIons=700
83 XmaxNoScienti f ic=3e9 #in A
84 Xmax = ’ { : . 0 e} ’ . format (XmaxNoScienti f ic)
85
86 ## TARGET MATERIAL
87
88 ElementName = ’Fe ’
89 Name = ’IRON ’
90 CorrectName=’ Iron ’
91 s to i e ch i omet ry=1
92 AtomicNumber=26
93 VolumicMass=7.87 # in g per cub i c cm
94 MolarMass=55.845 # in g/mol−1
95 AtomicMassOfTarget= MolarMass/NAvogadro # mass in g o f a nuc leus
96 NumberDensity=VolumicMass/AtomicMassOfTarget
97 RM=1.3∗1e −5∗((2∗AtomicNumber) ∗∗(1/3)) # approximation in A RM=r0∗

numerofnucleon ∗∗(1/3) wi th r0 =1.3 fm=1.3e(−5)A = 4.85 fm
98 DisplacementEnergy = 40 #eV
99 Latt iceBindingEnergy = 3

100 Format i onEnergyOf In te r s t i t i a l=3∗Latt iceBindingEnergy
101
102
103 time1=time . time ()
104
105
106 # ElementName = ’Zn ’
107 # Name = ’ Zinc ’
108 # sto i e ch i ome t r y=1
109 # AtomicNumber=30
110 # VolumicMass=7.14 # in g per cub i c cm
111 # MolarMass=65.39 # in g/mol−1
112 # AtomicMassOfTarget= MolarMass/NAvogadro # mass in g o f a nuc leus
113 # RM=1.3∗1e−5∗((2∗AtomicNumber) ∗∗(1/3)) # approximation in A RM=r0∗

numerofnucleon ∗∗(1/3) wi th r0 =1.3 fm=1.3e(−5)A = 4.85 fm
114 # DisplacementEnergy = 25 #eV
115 # Latt iceBindingEnergy = 3
116 # Format ionEnergyOf In t e r s t i t i a l=3∗Lat t iceBindingEnergy
117
118 ## Ion in format ion :
119
120 IonElement = ’Ni ’
121 CompleteNameIon=’ Nicke l ’
122 IonEnergy = 4e6 #eV
123 IonAtomicNumber=28
124 AtomicMassIon=58.7 #in amu
125 ReferenceDepth=1000 #A
126
127 # Ion informat ion :
128
129 # IonElement = ’Au ’
130 # CompleteNameIon=’Gold ’

67

131 # IonEnergy = 12e6 #eV
132 # IonAtomicNumber=79
133 # AtomicMassIon=197 #in amu
134 # ReferenceDepth=500 #A
135
136 # Ion informat ion :
137
138 # IonElement = ’H’
139 # CompleteNameIon=’Hydrogen ’
140 # IonEnergy = 200e6 #eV
141 # IonAtomicNumber=1
142 # AtomicMassIon=1.008 #in amu
143 # ReferenceDepth=2.5e9 #A
144
145 eV=1
146 keV=0
147 MeV=0
148 ELIST=[]
149 SELIST=[]
150 SNLIST=[]
151
152 IRON_IN_IRON=open("C: / Users / Ju l i en Bouix/Desktop/SRIM−2013/SRIM Outputs

/{} in {} . txt " . format (Name,Name) , " r ")
153
154 IRON_IN_IRON_lines=IRON_IN_IRON. r e a d l i n e s ()
155 IRON_IN_IRON. c l o s e ()
156
157 NICKEL_IN_IRON=open("C: / Users / Ju l i en Bouix/Desktop/SRIM−2013/SRIM

Outputs /{} in {} . txt " . format (CompleteNameIon ,Name) , " r ")
158
159 NICKEL_IN_IRON_lines=NICKEL_IN_IRON. r e a d l i n e s ()
160 NICKEL_IN_IRON. c l o s e ()
161
162
163 while IRON_IN_IRON_lines [a l l i n e] [0] ! = ’− ’ :
164
165 i f TakeFromLine (IRON_IN_IRON_lines [a l l i n e] , 1 , 8)<TakeFromLine (

IRON_IN_IRON_lines [a l l i n e −1] ,1 ,8) and keV==1:
166 keV=0
167 MeV=1
168 i f TakeFromLine (IRON_IN_IRON_lines [a l l i n e] , 1 , 8) < TakeFromLine (

IRON_IN_IRON_lines [a l l i n e −1] ,1 ,8) and keV==0 and eV==1:
169 keV=1
170 eV=0
171
172 ELIST . append ((MeV∗1 e6+keV∗1 e3+eV) ∗TakeFromLine (IRON_IN_IRON_lines [

a l l i n e] , 1 , 8))
173 SELIST . append (TakeFromLine (IRON_IN_IRON_lines [a l l i n e] , 1 5 , 2 4))
174 SNLIST . append (TakeFromLine (IRON_IN_IRON_lines [a l l i n e] , 2 6 , 3 5))
175
176 a l l i n e+=1
177
178 SEfunct i on I ron in I ron = inte rp1d (ELIST , SELIST , f i l l _ v a l u e=" ex t r apo l a t e ")
179 SNfunct ionI ron in I ron = inte rp1d (ELIST , SNLIST , f i l l _ v a l u e=" ex t r apo l a t e ")
180 a l l i n e =24
181 eV=1
182 keV=0
183 MeV=0

68

184 ELIST=[]
185 SELIST=[]
186 SNLIST=[]
187
188 while NICKEL_IN_IRON_lines [a l l i n e] [0] ! = ’− ’ :
189
190 i f TakeFromLine (NICKEL_IN_IRON_lines [a l l i n e] , 1 , 8)<TakeFromLine (

NICKEL_IN_IRON_lines [a l l i n e −1] ,1 ,8) and keV==1:
191 keV=0
192 MeV=1
193 i f TakeFromLine (NICKEL_IN_IRON_lines [a l l i n e] , 1 , 8) < TakeFromLine (

NICKEL_IN_IRON_lines [a l l i n e −1] ,1 ,8) and keV==0 and eV==1:
194 keV=1
195 eV=0
196
197 ELIST . append ((MeV∗1 e6+keV∗1 e3+eV) ∗TakeFromLine (NICKEL_IN_IRON_lines

[a l l i n e] , 1 , 8))
198 SELIST . append (TakeFromLine (NICKEL_IN_IRON_lines [a l l i n e] , 1 5 , 2 4))
199 SNLIST . append (TakeFromLine (NICKEL_IN_IRON_lines [a l l i n e] , 2 6 , 3 5))
200
201 a l l i n e+=1
202
203 SEfunct i onNicke l in I ron = interp1d (ELIST , SELIST , f i l l _ v a l u e=" ex t r apo l a t e "

)
204 SNfunct ionNicke l in I ron = inte rp1d (ELIST , SNLIST , f i l l _ v a l u e=" ex t r apo l a t e "

)
205
206 CurrentDisplacements=0
207 Lis tOfVacanc ies =[]
208 IonCount=0
209 ListOfDPAPerParticle =[]
210 Lis tOfVacanc ies =[]
211 IONIZATIONListPRIMARY=[]
212 BINDINGListPRIMARY=[]
213 PHONONListPRIMARY=[]
214
215
216 IONIZATIONListNONPRIMARY=[]
217 BINDINGListNONPRIMARY=[]
218 PHONONListNONPRIMARY=[]
219
220 ## EDITING OF THE TRIM. IN FILE
221
222 # We s e l e c t the type o f c a l c u l a t i o n we want :
223 # 1: Ion d i s t r i b u t i o n and Quick Ca l cu l a t i on o f Damade (Kinchin−

Pease) (TYPE A COLLISION. t x t f i l e)
224 # 2: De ta i l ed Ca l cu l a t i on wi th f u l l Damage Cascade (TYPE B

COLLISION. t x t f i l e)
225 # 3: Monolayer Co l l i s i o n Steps / Surface Spu t t e r ing (TYPE B

COLLISION. t x t f i l e) (monolayer means t ha t the ion reac t wi th
each monolayer i t g e t s through))

226 # From 4 to the end , i t uses TRIM.DAT :
227 # 4: Ion with s p e c i f i c energy / ang le / depth (qu i ck Damage)
228 # 5: Ion with s p e c i f i c energy / ang le / depth (f u l l cascades)
229 # 6: Reco i l cascades wi th neutrons (f u l l cascades)
230 # 7: Reco i l cascades and monolayer s t e p s (f u l l cascades) (TYPE B

COLLISION. t x t f i l e)
231 # 8: Reco i l cascades wi th neutrons (qu i ck damage : Kinchin Pease)

69

232 # FOR NOW I TAKE 8
233
234
235 TRIMIN = open("TRIM. IN" , " r ")
236 TRIMINNEW = open("TRIMN. IN" , "w")
237 TRIMINLINES = TRIMIN. r e a d l i n e s ()
238 l i n e=0
239
240
241 while TRIMINLINES [l i n e] [0] != ’C ’ :
242 TRIMINNEW. wr i t e (TRIMINLINES [l i n e])
243 l i n e+=1
244 TRIMINNEW. wr i t e (TRIMINLINES [l i n e])
245 l i n e+=1
246 TRIMINNEW. wr i t e (’ 6

0 0\n ’) # FOR NOW I TAKE 6
247 l i n e+=1
248
249 while TRIMINLINES [l i n e] [0] != ’T ’ :
250 TRIMINNEW. wr i t e (TRIMINLINES [l i n e])
251 l i n e+=1
252 TRIMINNEW. wr i t e (TRIMINLINES [l i n e])
253 l i n e+=1
254 TRIMINNEW. wr i t e (’ "H (10) in to Layer 1 " 1

1\n ’)
255 l i n e+=1
256 TRIMINNEW. wr i t e (TRIMINLINES [l i n e])
257 l i n e+=1
258 TRIMINNEW. wr i t e (’ 0 0 0\n ’)
259 l i n e+=1
260
261 while TRIMINLINES [l i n e] [0] != ’A ’ :
262 TRIMINNEW. wr i t e (TRIMINLINES [l i n e])
263 l i n e+=1
264 TRIMINNEW. wr i t e (’Atom 1 = {} =’ . format (ElementName)+’ ’ ∗(7−(len (Name)

−2))+’ {} ’ . format (AtomicNumber)+’ ’∗(3−np . int (np . log10 (AtomicNumber)
))+’ {}\n ’ . format (MolarMass))

265 l i n e+=1
266
267 lenTRIMIN=len (TRIMINLINES)
268 i f lenTRIMIN>28:
269 beforecompound=1
270 for i in range (lenTRIMIN−28) :
271 l i n e+=1
272
273 TRIMINNEW. wr i t e (’ Layer Layer Name / Width Density

{}({}) \n ’ . format (Name, AtomicNumber))
274 l i n e+=1
275 TRIMINNEW. wr i t e (’Numb. Desc r ip t i on (Ang) (g/cm3)

Sto i ch \n ’)
276 l i n e+=1
277 TRIMINNEW. wr i t e (’ 1 "{}" ’ . format (Name)+’ ’ ∗(21−(len (Name)−4))+Xmax

+’ ’ ∗(2−(len (str (Xmax))−7))+’ {} ’ . format (VolumicMass)+’ ’ ∗(7−(len (
str (VolumicMass))−6))+’ 1\n ’)

278
279 TRIMINNEW. wr i t e (’ 0 Target l ay e r phases (0=Sol id , 1=Gas) \n0 \nTarget

Compound Cor r ec t i ons (Bragg) \n 1\ nInd iv idua l t a r g e t atom
disp lacement en e r g i e s (eV) \n {}\ nInd iv idua l t a r g e t atom

70

l a t t i c e b inding en e r g i e s (eV) \n 3\ nInd iv idua l t a r g e t atom
su r f a c e binding en e r g i e s (eV) \n 4 .34\ nStopping Power Vers ion
(1=2011 , 0=2011)\n 0 ’ . format (DisplacementEnergy))

280
281 TRIMIN. c l o s e ()
282 TRIMINNEW. c l o s e ()
283 os . remove (’TRIM. IN ’)
284 os . rename (’TRIMN. IN ’ , ’TRIM. IN ’)
285
286
287 for nbion in range (NumberOfIons) :
288
289 a lphaang le=(rd . random () −0.5)∗np . p i ∗2∗5/180 # 5 dev i a t i on p o s s i b l e

=5∗np . p i /180
290 betaang le=rd . random () ∗2∗np . p i
291 axe=[np . cos (a lphaang le) , np . s i n (a lphaang le) ∗np . s i n (betaang le) , np . s i n

(a lphaang le) ∗np . cos (betaang le)]
292
293 ## We ed i t the TRIM.DAT fo r c r ea t i n g a sma l l ang l e
294
295 TRIMDAT = open("TRIM.DAT" , " r ")
296 TRIMDATNEW = open("TRIMN.DAT" , "w")
297 TRIMLINES = TRIMDAT. r e a d l i n e s ()
298 l i n e=0
299
300
301 while TRIMLINES[l i n e] [0] != ’ ’ :
302 TRIMDATNEW. wr i t e (TRIMLINES[l i n e])
303 l i n e+=1
304 TRIMDATNEW. wr i t e (’ Reco i l s from {}eV {} ions in {}({})

\n ’ . format (’ { : . 1 e} ’ . format (IonEnergy) ,
IonElement ,Name,Xmax))

305 l i n e+=1
306 TRIMDATNEW. wr i t e (TRIMLINES[l i n e])
307 l i n e+=1
308 TRIMDATNEW. wr i t e (TRIMLINES[l i n e])
309 l i n e+=1
310
311 TRIMDATNEW. wr i t e (’ 1 {} {} 0 0 0 {} {}

{} ’ . format (IonAtomicNumber , ’ { : . 1 e} ’ . format (IonEnergy) ,round(
axe [0] , 4) ,round(axe [1] , 4) ,round(axe [2] , 4)))

312
313 TRIMDAT. c l o s e ()
314 TRIMDATNEW. c l o s e ()
315 os . remove ("TRIM.DAT")
316 os . rename ("TRIMN.DAT" , "TRIM.DAT")
317
318 ## We ed i t the TRIM. IN fo r Random Seed Number
319
320 TRIMIN = open("TRIM. IN" , " r ")
321 TRIMINNEW = open("TRIMI . IN" , "w")
322 TRIMINLINES = TRIMIN. r e a d l i n e s ()
323 l i n e=0
324
325 while TRIMINLINES [l i n e] [0] != ’ I ’ :
326 TRIMINNEW. wr i t e (TRIMINLINES [l i n e])
327 l i n e+=1
328 TRIMINNEW. wr i t e (TRIMINLINES [l i n e])

71

329 l i n e+=1
330 TRIMINNEW. wr i t e (’ {} {} {} 0 {} 1

10000\n ’ . format (IonAtomicNumber , AtomicMassIon , int (IonEnergy
∗10∗∗(−3)) ,1))

331 l i n e+=1
332 TRIMINNEW. wr i t e (’ Cascades (1=No;2= Ful l ;3=Sputt ;4−5=Ions ;6−7=Neutrons

) , Random Number Seed , Reminders\n ’)
333 l i n e+=1
334 TRIMINNEW. wr i t e (’ 5

{} 0\n ’ . format (int
(1000000∗ rd . random ())))

335
336 for l i n in range (l i n e +1, len (TRIMINLINES)) : #the r e s t o f

the f i l e to be copied una l t e r ed
337 i f TRIMINLINES [l i n −1][0]== ’P ’ :
338 TRIMINNEW. wr i t e (’ 0 0

40000\n ’) # the ion ranges deep to 4 um
339 else :
340 TRIMINNEW. wr i t e (TRIMINLINES [l i n])
341
342 TRIMIN. c l o s e ()
343 TRIMINNEW. c l o s e ()
344 os . remove (’TRIM. IN ’)
345 os . rename (’TRIMI . IN ’ , ’TRIM. IN ’)
346
347 ## We execu te
348
349 os . s t a r t f i l e (’C: / Users / Ju l i en Bouix/Desktop/SRIM−2013/TRIM. exe ’)
350 time . s l e e p (25) #25 fo r Ni #46 fo r A
351
352 COLLISION = open("C: / Users / Ju l i en Bouix/Desktop/SRIM−2013/SRIM

Outputs/COLLISION . txt " , " r ")
353 COLLISIONLINES=COLLISION . r e a d l i n e s ()
354 COLLISION . c l o s e ()
355 LengthCOLLISION=len (COLLISIONLINES)
356 PrimaryPhonon =[]
357 ## Here , we co l l e c t the in format ions needed f o r c a l c u l a t i n g the

s topp ing power
358
359 Xpka l i s t =[]
360 Ypka l i s t =[]
361 Zpka l i s t =[]
362
363 IonEnergyBe fo r eCo l l i s i on =[]
364
365 NbOfPKAn=0
366 for i in range (LengthCOLLISION) :
367 i f COLLISIONLINES [i] [0] ==’ ’ :
368 NbOfPKAn +=1
369
370 NbOfPKAn=int (NbOfPKAn/2)
371
372 EnergyTransmittedToPKAn =[]
373
374 ListOfIONIZATION=[]
375 ListOfIONIZATIONPKA=[]
376 ListOfBINDING=[]
377 ListOfBINDINGexceptprimary =[]

72

378 ListOfPHONON=[]
379 Nreplacement =[0]
380 Nvac=[0]
381 c u r r e n t l i n e=23
382
383 for nbpkan in range (NbOfPKAn) :
384
385 IONIZATIONRecoil=[]
386 IONIZATIONRecoilPKA=[]
387 NUCLEARRecoil=[]
388 BINDINGRecoil=0
389 PHONONRecoil=0
390 X l i s t =[]
391 Y l i s t =[]
392 Z l i s t =[]
393 Nreplacement . append (0)
394 Nvac . append (0)
395 Reco i lEnergyLi s t =[]
396 c u r r e n t l i n e +=2
397
398 i f c u r r e n t l i n e==LengthCOLLISION :
399 break
400
401 while COLLISIONLINES [c u r r e n t l i n e] [0] ! = ’ ’ and cu r r en t l i n e <=

LengthCOLLISION−2: #i f no r e c o i l cascade f o r t h i s pka
402 c u r r e n t l i n e+=1
403
404 i f c u r r e n t l i n e==LengthCOLLISION−1:
405 break
406
407 # s t a r t o f a new cascade
408 l i n e c on t en t=COLLISIONLINES [c u r r e n t l i n e]
409
410 try :
411 l i n e c on t en t=COLLISIONLINES [c u r r e n t l i n e]
412 Xpka l i s t . append (TakeFromLine (l i n e con t en t , 18 , 28))
413 Ypka l i s t . append (TakeFromLine (l i n e con t en t , 29 , 39))
414 Zpka l i s t . append (TakeFromLine (l i n e con t en t , 40 , 50))
415 EnergyTransmittedToPKAn . append (TakeFromLine (l i n e con t en t

, 64 , 74))
416 except :
417 c u r r e n t l i n e+=−2
418 l i n e c on t en t=COLLISIONLINES [c u r r e n t l i n e]
419 Xpka l i s t . append (TakeFromLine (l i n e con t en t , 18 , 28))
420 Ypka l i s t . append (TakeFromLine (l i n e con t en t , 29 , 39))
421 Zpka l i s t . append (TakeFromLine (l i n e con t en t , 40 , 50))
422 EnergyTransmittedToPKAn . append (TakeFromLine (l i n e con t en t

, 64 , 74))
423
424 c u r r e n t l i n e+=3
425
426 while COLLISIONLINES [c u r r e n t l i n e] [0] ==’ ’ :
427 l i n e c on t en t=COLLISIONLINES [c u r r e n t l i n e]
428 Reco i lEnergyL i s t . append (TakeFromLine (l i n e con t en t , 1 5 , 25))
429 X l i s t . append (TakeFromLine (l i n e con t en t , 2 6 , 35))
430 Y l i s t . append (TakeFromLine (l i n e con t en t , 3 6 , 46))
431 Z l i s t . append (TakeFromLine (l i n e con t en t , 4 7 , 57))
432 Nvac[−1]+= f loat (COLLISIONLINES [c u r r e n t l i n e] [5 8])

73

433 Nreplacement [−1]+= f loat (COLLISIONLINES [c u r r e n t l i n e] [6 3])
434 c u r r e n t l i n e+=1
435
436 i f COLLISIONLINES [c u r r e n t l i n e] [0] ==’ ’ :
437 c u r r e n t l i n e+=1
438
439 ##ONLY BY READING AND DEDUCING. . . .
440
441 i f len (Reco i lEnergyLi s t)==1:
442 BINDINGRecoil += Format i onEnergyOf In te r s t i t i a l
443 IONIZATIONRecoil . append (0)
444 PrimaryPhonon . append (Reco i lEnergyLi s t [0] −

Format ionEnergyOf In t e r s t i t i a l)
445
446
447 else :
448 lengthLIST=len (X l i s t)
449
450 ## BINDINGS
451
452 ListOfBINDINGexceptprimary . append (int (Nvac[−1]−1−

Nreplacement [−1]) ∗ Format ionEnergyOf In t e r s t i t i a l)
453
454 maxdistance = max([np . s q r t ((X l i s t [i]− Xl i s t [0]) ∗∗2+(Y l i s t [i

]− Yl i s t [0]) ∗∗2+(Z l i s t [i]− Z l i s t [0]) ∗∗2) for i in range (
len (X l i s t))])

455
456 ListofSKAIndexes =[1]
457 L i s tOf In i t i a lK ine t i cEnerg i e sSKA =[Reco i lEnergyL i s t [1]]
458
459 for i in range (2 , len (X l i s t)) :
460 i f np . sq r t ((X l i s t [i]− Xl i s t [i −1])∗∗2+(Y l i s t [i]− Yl i s t [i

−1])∗∗2+(Z l i s t [i]− Z l i s t [i −1]) ∗∗2) > maxdistance /4 .5
:

461 ListofSKAIndexes . append (i)
462 L i s tOf In i t i a lK ine t i cEnerg i e sSKA . append (

Reco i lEnergyLi s t [i])
463
464 ## CALCULATION OF PKA CASCADE
465
466 sumenergy=0
467 ListofSKAIndexes . r e v e r s e ()
468
469 for i in ListofSKAIndexes :
470
471 IONIZATIONRecoilPKA . append (Reco i lEnergyL i s t [0] −

sumenergy−EnergyAfterSPSegment (SEfunct ionI ron inI ron
, Reco i lEnergyL i s t [0] − sumenergy , np . s q r t ((X l i s t [i]−
Xl i s t [i −1])∗∗2+(Y l i s t [i]− Yl i s t [i −1])∗∗2+(Z l i s t [i]−
Z l i s t [i −1]) ∗∗2) ,Nsegment))

472
473 IONIZATIONRecoilPKA2=sum(IONIZATIONRecoilPKA)
474 ListOfIONIZATIONPKA . append (IONIZATIONRecoilPKA2)
475 ListOfIONIZATION . append (sum(IONIZATIONRecoil))
476 ListOfBINDING . append (BINDINGRecoil)
477
478 Pr imaryIon izat ion = [IonEnergy − EnergyAfterSPSegment (

SEfunct ionNicke l in I ron , IonEnergy , np . s q r t (Xpka l i s t [0]∗∗2+

74

Ypka l i s t [0]∗∗2+ Zpka l i s t [0] ∗ ∗ 2) ,Nsegment)]
479
480
481 sumenergyprimary=Pr imaryIon izat ion [0]+EnergyTransmittedToPKAn [0]
482 for i in range (NbOfPKAn−1) :
483
484 Pr imaryIon izat ion . append (IonEnergy−sumenergyprimary−

EnergyAfterSPSegment (SEfunct ionNicke l in I ron , IonEnergy−
sumenergyprimary , np . s q r t ((Xpka l i s t [i]−Xpka l i s t [i +1])∗∗2+(
Ypka l i s t [i]−Ypka l i s t [i +1])∗∗2+(Zpka l i s t [i]− Zpka l i s t [i +1])
∗∗2) ,Nsegment))

485
486
487 sumenergyprimary+=Pr imaryIon izat ion [−1]+EnergyTransmittedToPKAn

[i +1]
488
489 IONIZATIONexceptprimary=sum(ListOfIONIZATION)+sum(

ListOfIONIZATIONPKA)
490
491
492 IONIZATIONListPRIMARY. append (100∗sum(Pr imaryIon izat ion) / IonEnergy)
493 BINDINGListPRIMARY. append (100∗NbOfPKAn∗

Format ionEnergyOf In t e r s t i t i a l / IonEnergy)
494 PHONONListPRIMARY. append (100∗sum(PrimaryPhonon) / IonEnergy)
495
496 tota lp r imary= sum(Pr imaryIon izat ion) / IonEnergy + NbOfPKAn∗

Format ionEnergyOf In t e r s t i t i a l / IonEnergy + sum(PrimaryPhonon) /
IonEnergy

497
498 IONIZATIONListNONPRIMARY. append (100∗ IONIZATIONexceptprimary/

IonEnergy)
499 BINDINGListNONPRIMARY. append (100∗sum(ListOfBINDINGexceptprimary) /

IonEnergy)
500 PHONONListNONPRIMARY. append(100∗(1− tota lpr imary−

IONIZATIONexceptprimary/ IonEnergy−sum(
ListOfBINDINGexceptprimary) / IonEnergy))

501
502
503 ## To know what i s the average vacancy induced by each ion .
504
505 l i s t v a c=0
506 for i in range (NbOfPKAn) :
507
508 i f Xpka l i s t [i] < ReferenceDepth :
509
510 l i s t v a c += Nvac [i]
511 Lis tOfVacanc ies . append (l i s t v a c)
512
513 ListOfDPAPerParticle . append (sum(L i s tOfVacanc ies) / ((nbion+1)∗

ReferenceDepth ∗10∗∗(−8)∗ReferenceArea ∗NumberDensity))
514
515 p l t . ion ()
516 p l t . p l o t ([i for i in range (1 , len (ListOfDPAPerParticle)+1)] ,

ListOfDPAPerParticle)
517 p l t . t i t l e (’The average dpa per ion p r o j e c t i l e in the r e f e r e n c e volume ’)
518 p l t . y l ab e l (’ average dpa per ion p r o j e c t i l e ’)
519 p l t . x l ab e l (’ ion index ’)
520 p l t . show ()

75

521
522
523 r e s u l t f i l e=open("C: / Users / Ju l i en Bouix/Desktop/SRIM−2013/Result Of the

ion Code . txt " , ’w ’)
524 r e s u l t f i l e . wr i t e ("NOW PRIMARY ION\n")
525 r e s u l t f i l e . wr i t e (’ {}\n ’ . format (mean l i s t (BINDINGListPRIMARY)))
526 r e s u l t f i l e . wr i t e (’ {}\n ’ . format (mean l i s t (IONIZATIONListPRIMARY)))
527 r e s u l t f i l e . wr i t e (’ {}\n ’ . format (mean l i s t (PHONONListPRIMARY)))
528 r e s u l t f i l e . wr i t e (’ \n\n ’)
529
530 r e s u l t f i l e . wr i t e ("NOW Reco i l s \n")
531 r e s u l t f i l e . wr i t e (’ {}\n ’ . format (mean l i s t (BINDINGListNONPRIMARY)))
532 r e s u l t f i l e . wr i t e (’ {}\n ’ . format (mean l i s t (IONIZATIONListNONPRIMARY)))
533 r e s u l t f i l e . wr i t e (’ {}\n ’ . format (mean l i s t (PHONONListNONPRIMARY)))
534 r e s u l t f i l e . wr i t e (’ \n\n ’)
535
536 r e s u l t f i l e . wr i t e ("NOW TOTAL\n")
537 r e s u l t f i l e . wr i t e (’ {}\n ’ . format (mean l i s t (BINDINGListNONPRIMARY)+mean l i s t

(BINDINGListPRIMARY)))
538 r e s u l t f i l e . wr i t e (’ {}\n ’ . format (mean l i s t (IONIZATIONListNONPRIMARY)+

mean l i s t (IONIZATIONListPRIMARY)))
539 r e s u l t f i l e . wr i t e (’ {}\n ’ . format (mean l i s t (PHONONListNONPRIMARY)+mean l i s t (

PHONONListPRIMARY)))
540
541 r e s u l t f i l e . c l o s e ()
542
543 time2=time . time ()
544
545 print (time2−time1)

12.2 The neutron code for bi-atomic targets

For the last pages of my master thesis report, I would like to address the most
difficult code among the four previously introduced.

The neutron code for bi-atomic targets contains both the neutron code developed
in the early stage of my work and also the adaptation of the analyse from a mono-
atomic target to a bi-atomic one. Step by step, I will take the time to enumerate
what my code is doing.

1. From line 1 to 14, the code imports all necessary packages.

2. From line 16 to 166, minor functions are defined like the ones from the ion
code for mono-atomic target but also complex functions for the neutron code
like the major COLLISION function defined at the line 39.

3. From line 169 to the line 290 are the physical definition of the constants used
below. Here again, a user interface would make it much more convenient
for a regular use. The line 185 is a very important one since its calculate
the energy profile of a population of neutrons following a Maxwell-Boltzmann
distribution.

4. Then down to the line 360 is the same importation of the various electronic
stopping power functions from pre-generated files. This time the code is

76

adapted for bi-atomic targets. This means files for X and O into X oxides
separately. In the case of ion irradiation (not the case here), we also need to
import teh electronic stopping power files of the considered ion into the oxide.

5. From the line 361 to the line 423 is the generation of the corrected TRIM.IN
file.

6. Then the neutron code is inserted from the line 431 to the line 621. It will be
detailed further down on its own.

7. Down to the line 725 is the editing of the TRIM.DAT file that contains the
data generated by the neutron code. That data is information on the atom
knocked-off by the neutron like its atomic number, its energy, its initial lattice
position and its direction after impact.

8. From the line 726 to the line 934 is the reading of the output file adapted
for bi-atomic targets that is quite complex so it will not be detailed here. To
keep it simple, it acts accordingly to the atomic number read each line of
the COLLISION.txt file. This information is contained in the list ALORO
that is an trace of the beginning of the code development when only Al2O3

was studied (motivated by extending the work of [4] introduced by my master
thesis supervisor Marco Beghi). ALORO stands for "Al or O" but works the
same for any X oxides.

9. The rest of the file is a generation of a more complex text file that contains
information about the neutron code and also the energy loss distribution.

Two particular aspects of the code deserve to be further developed to the reader;
the COLLISION function and the neutron code itself.

1. Starting with the COLLISION function that is written from the line 39 to
79. Its purpose is to calculate values related to the figure 5 and the collision
between two spherical particles of radii and mass R1, m1, R2 and m2 with the
first particle at energy E1 and the second immobile. The collision takes place
with an impact parameter b and the incoming particle axis direction is also
an input of the function ("axein"). Then it calculates the transferred energy
according to the functions defined in the physical framework. The most diffi-
cult part was to determine the axeout of the incoming particle after impact. It
needed a definition of an other vector ~b defined perpendicularly to the axein.
Then, in order to grasp its location in relation to the classical (X,Y,Z) space
definition, a second order equation has to be solved. Many exceptions need to
be considered. The process to find out this process was relatively tricky. Even-
tually, the COLLISION function returns the unit vector direction ("axeout")
of the initial particle after impact and the unit vector direction ("recoilaxe")
of the second particle along with the final energies of both particles and useful
angles. The vectors are defined in the (X,Y,Z) reference system.

2. The neutron code starts at the line 431 and ends at the line 621. The first
"for" loop runs over the total number of neutron specified at the line 178. All
necessary variables are defined at the right time and the code runs while the

77

condition defined at the line 478 holds true. This condition states that while
the neutron simultaneously has enough energy to displace an atom, is not
backscattered and not transmitted, the calculation continues. Then, whether
the atom with which the neutron collides, the line 540 or the line 542 calls
the COLLISION function defined above. the ancient axeout becomes the
new axein and the cycle continues until one condition is broken. Then, the
information are updated and what is required for the TRIM.DAT file is stored
in the TRIMDAT_INPUT file. These information are the position of the
current collision, the axe of the neutron velocity and the transferred energy to
the atoms. The impact parameter are calculated probabilistically in the lines
493 and 494. The condition written in the line 561 is also essential for the
neutron code in the bi-atomic target case. It determines if the next atom to
undergo a collision with the neutron is X or O. This determination is based on
a comparison of the exponential distribution of the macroscopic cross section
between both X and O.

1 import os
2 import time
3 import numpy as np
4 import random as rd
5 import math
6 import time
7 import s c ipy . i n t e g r a t e as i n t e g r a t e
8 import matp lo t l i b . pyplot as p l t
9 from mpl_toolk i ts import mplot3d

10 from mpl_toolk i ts . mplot3d import axes3d
11 from matp lo t l i b import cm
12 from s c ipy . i n t e r p o l a t e import i n te rp1d
13 from s c ipy . s t a t s import expon
14 from s c ipy . s t a t s import uniform
15
16 ## ALL USEFUL FUNCTIONS USED IN THIS CODE.
17
18 def SigmaMicro (S1 , S2 , E1 , E2 ,E) : #Returns the microscopic c ros s s e c t i on

f o r neutrons o f energy E with a l i n e a r approximation between 0.025
eV and 1MeV

19 i f E>E2 :
20 return S2 # a f t e r E2 = 1 MeV, I cons ider the cross−s e c t i on

cons tant .
21 else :
22 return S1+(S2−S1) /(E2−E1) ∗(E−E1)
23
24 def SigmaMacro (Vmass , MolarMass , s to i e ch , S1a , S2a , S1b , S2b , E1 , E2 ,E) : #

Returns the macroscopic c ros s s e c t i on in A∗∗(−1) f o r neutrons o f
energy E

25 return 10∗∗(−32) ∗(Vmass∗NAvogadro/MolarMass) ∗(s t o i e c h ∗SigmaMicro (
S1a , S2a , E1 , E2 ,E)+(1− s t o i e c h) ∗SigmaMicro (S1b , S2b , E1 , E2 ,E))

26
27 def Trans ferredEnergyCoef f (b ,R1 ,R2) :
28 return 0.5∗(1 −np . cos (np . a r c co s (2∗ (b/(R1+R2)) ∗∗2−1)))
29
30 def Angle (axis1 , ax i s 2) :
31 [x1 , x2 , x3] , [y1 , y2 , y3]= axis1 , ax i s 2
32 return np . a r c co s ((x1∗y1+x2∗y2+x3∗y3) /(np . s q r t (x1∗∗2+x2∗∗2+x3 ∗∗2) ∗np

. sq r t (y1∗∗2+y2∗∗2+y3 ∗∗2)))

78

33
34 def Normal izat ion (axe) :
35 [x1 , x2 , x3]=axe
36 modulus=np . sq r t (x1∗∗2+x2∗∗2+x3 ∗∗2)
37 return [x1/modulus , x2/modulus , x3/modulus]
38
39 def COLLISION(axein , b ,R1 ,R2 ,m1,m2, E1) : #COLLISION ca l c u l a t e a l i s t o f

4 e lements : quan t i t y o f movement f i n a l f o r both p a r t i c l e s and the
r e c o i l ang l e and s c a t t e r i n g ang l e . axe i s [cos (X) , cos (Y) , cos (Z)]
a l l incoming . The randomness o f be ta ang l e w i l l be c a l c u l a t e d here .

40
41 alpha=np . a r c s i n (b/(R1+R2))
42 s ca t t e r ing_ang l e=np . pi −2∗alpha
43 E2f=E1∗(m1∗m2) /((m1+m2) ∗∗2) ∗0.5∗(1 −np . cos (s ca t t e r ing_ang l e))
44 E1f=E1−E2f
45
46 # Now, f i n d i n g the axe out :
47 [x1 , x2 , x3]= axe in
48 i f x2 !=0:
49
50 ## Now we need to choose a random uni t b v e c t o r t ha t i s

pe rpend i cu l a r to axe in
51 # Fi r s t f i nd b1 us ing the on ly vec t o r bnominal t h a t i s in the

p lane formed by (Xaxis , axe in)
52 beta = rd . random () ∗2∗np . p i
53 #gamma = Angle ([1 , 0 , 0] , axe in)
54 b1=np . cos (beta) ∗np . sq r t ((1−x1 ∗∗2)∗∗2+x1∗∗2∗x2∗∗2+x1∗∗2∗x3 ∗∗2)
55
56 ## Solve f o r b3 the second order equat ion t ha t a r i s e s from the

cond i t i on o f un i t v e c t o r and s c a l a r product between bvec to r
and axein to be n u l l .

57
58 b3=(−2∗b1∗x1∗x3+2∗np . sq r t (b1∗∗2∗x1∗∗2∗x3∗∗2−(x2∗∗2+x3 ∗∗2) ∗(b1

∗∗2∗(x1∗∗2+x2 ∗∗2)−x2 ∗∗2))) /(2∗ (x2∗∗2+x3 ∗∗2))
59 b2=np . sq r t (1−b1∗∗2−b3 ∗∗2)
60
61 i f x2==0 and x3 !=0:
62 b1=2∗(rd . random () −0.5)
63 b3=−b1∗x1/x3
64 b2=np . sq r t (1−b1∗∗2−b3 ∗∗2)
65
66 i f x2==0 and x3==0:
67 b1=0
68 beta=rd . random () ∗np . p i ∗2
69 b2=np . cos (beta)
70 b3=np . s i n (beta)
71 bvector =[b1 , b2 , b3]
72
73 ##f ind the axeout d i r e c t o r vec t o r :
74 axeout=Normal izat ion ([np . s i n (s ca t t e r ing_ang l e) ∗ bvector [i]+np . cos (

s ca t t e r ing_ang l e) ∗ axe in [i] for i in range (3)]) # axeout i s
expres sed in the or thogona l base (bvec tor , axe in)

75
76 ##f ind the r e c o i l a x e (d i r e c t i o n where the knocked atom goes) :
77
78 r e c o i l a x e=Normal izat ion ([np . s i n (alpha) ∗ bvector [i]+np . cos (alpha) ∗

axe in [i] for i in range (3)]) #re c o i l a x e i s expres sed in the
or thogona l base (bvec tor , axe in)

79

79 return [axeout , r e c o i l a x e , E1f , E2f , alpha , s ca t t e r ing_ang l e]
80
81 def parabol ic_law (a , b , d i f f) : # Returns a random va lue f o l l ow i n g a

pa ra bo l i c law between a and b wi th a maximum p r o b a b i l i t y a t i t s
edge and a d i f f e r e n c e (de f ined as a r a t i o between the p r o b a b i l i t y
a t i t s edge and i t s cen ter (d i f f >1)

82 def PL(x) : # The law i s a lpha ∗ x +be ta ∗x∗gamma
83 alpha=(d i f f −1)/(d i f f ∗ ((a+b) /2)∗∗2−b∗a) /(b−a−((a+b) ∗(b∗∗2−a ∗∗2)

/2−(b∗∗3−a ∗∗3) /3) ∗(d i f f −1)/(d i f f ∗ ((a+b) /2)∗∗2−b∗a))
84 beta=−alpha ∗(b+a)
85 gamma= alpha /((d i f f −1)/(d i f f ∗ ((a+b) /2)∗∗2−b∗a))
86 return alpha ∗x∗∗2+beta ∗x+gamma
87 t=rd . random ()
88 y=a
89 while i n t e g r a t e . quad (PL, a , y) [0] < t :
90 y+=(b−a) /200
91 return min(y , b)
92
93 def LinearCrown (R) : #re turns a random number between 0 and R tha t

f o l l o w s a l i n e a r in c r ea s in g p r o b a b i l i t y d i s t r i b u t i o n func t i on .
94 t= rd . random ()
95 y=0
96 func = lambda b : 2∗b/(R∗∗2)
97 while i n t e g r a t e . quad (func , 0 , y) [0] < t :
98 y += R/200
99 return min(R, y)

100
101 def decimal_round (x) : #CRITICAL: To use as a i nd i c a t o r f o r the python

func t i on round t ha t round number and t h i s f unc t i on d e f i n e s the
number o f dec imals I dec ided to keep .

102 return 0
103
104 def a jout (x) :
105 i f x==1 or x==0:
106 return 0
107 e l i f x==−1:
108 return −1
109
110 def meanl i s t (l i s t) :
111 i f len (l i s t)==0:
112 return 0
113 return sum(l i s t) / len (l i s t)
114
115 def ecart_type (l i s t) :
116 i f len (l i s t)==0:
117 return 0
118 mean=mean l i s t (l i s t)
119 return np . sq r t (mean l i s t ([(l−mean) ∗∗2 for l in l i s t]))
120
121 def absmaxl i s t (l i s t) :
122 max=abs (l i s t [0])
123 for r in l i s t :
124 i f abs (r)>max:
125 max=abs (r)
126 return max
127
128 def min l i s t (l i s t) :
129 min=l i s t [0]

80

130 for e in l i s t :
131 i f e<min :
132 min=e
133 return min
134
135 def c o u n t l i s t (l i s t , e lement) :
136 n=0
137 for e in l i s t :
138 i f e==element :
139 n+=1
140 return n
141
142 def NeutronEnergyDistr (E1) : # re turns a va lue o f energy t ha t f o l l ow a

maxwel l ian d i s t r i b u t i o n and E1 i f the most p robab l e energy
143 t = rd . random ()
144 y=0
145 a=np . sq r t (E1/(Mneutron))
146 def PDF_NEDnonnorma(E) :
147 return np . sq r t (2∗∗3/np . p i) ∗E/(Mneutron∗a ∗∗3) ∗np . exp(−E/E1)
148 def PDF_NED(E) :
149 return PDF_NEDnonnorma(E) / i n t e g r a t e . quad (PDF_NEDnonnorma,0 ,20∗

E1) [0]
150
151 while i n t e g r a t e . quad (PDF_NED,0 , y) [0] < t :
152 y += 20∗E1/200
153 return min(y ,20∗E1)
154
155 def TakeFromLine (l i s t o f l i n e , beg , end) : # return the f l o a t conta ined in

the l i s t o f l i n e between beg and end (NOT inc luded) .
156 l i s t =[l i s t o f l i n e [i] for i in range (beg −1,end−1)]
157 content=’ ’
158 for l in l i s t :
159 content += l
160 return f loat (content . r ep l a c e (’ , ’ , ’ . ’))
161
162 def EnergyAfterSPSegment (Sfunct ion , E1 ,L , n) :
163 E=E1
164 for i in range (n) :
165 E −= Sfunct ion (E) ∗L/n
166 return E
167
168
169 UNIFIED_ATOMIC_MASS = 1.66 e−24 #in g
170 time1= time . time ()
171
172 XmaxNoScienti f ic=3e9 #in A
173 Xmax = ’ { : . 0 e} ’ . format (XmaxNoScienti f ic)
174
175
176 Nsegment=10
177 a l l i n e =24
178 NumberOfNeutrons=50 # How much neutrons we cons ider
179 RN = 8e−6 # Radius o f a neutron (in A)
180 Mneutron = 1.675 e−24 # in g
181 NAvogadro = 6.022 e23 #in /mol
182 ReferenceArea=1 # cm square
183 ReferenceDepth1=1e8
184 ReferenceDepth2=30e8

81

185 ListOfNeutronEnergy=[NeutronEnergyDistr (1 e6) for i in range (
NumberOfNeutrons)] #i f 1MeV i s the most p robab l e

186
187 # IndexOfSimulat ion=1
188
189 ##for Al2O3
190 # VolumicMass = 3.99
191 # CompoundName=’Al2O3 ’ #Ca l l ed g e n e r i c a l l XnOm, element 1 i s X ! !
192 # n=2
193 # m=3
194 # E1 = 0.025
195 # E2 = 1e6
196 # SigmaMicroScatteringONEAtE1 = 1.41 #in barn : 1b = 1e−28 m
197 # SigmaMicroScatteringONEAtE2 = 1.41
198
199 ##for Zro2
200 # VolumicMass = 5.85
201 # CompoundName=’ZrO2 ’ #Cal l ed g e n e r i c a l l XnOm, element 1 i s X ! !
202 # n=1
203 # m=2
204 # E1 = 0.025
205 # E2 = 1e6
206 # SigmaMicroScatteringONEAtE1 = 5.34 #in barn : 1b = 1e−28 m
207 # SigmaMicroScatteringONEAtE2 = 5.34
208
209 ##for Y2O3
210 VolumicMass = 5.03
211 CompoundName=’Y2O3 ’ #Cal l ed g e n e r i c a l l XnOm, element 1 i s X ! !
212 n=2
213 m=3
214 E1 = 0.025
215 E2 = 1e6
216 SigmaMicroScatteringONEAtE1 = 7 .6 #in barn : 1b = 1e−28 m
217 SigmaMicroScatteringONEAtE2 = 7 .6
218
219
220 ##for HfO2
221 # VolumicMass = 9.68
222 # CompoundName=’HfO2 ’ #Ca l l ed g e n e r i c a l l XnOm, element 1 i s X ! !
223 # n=1
224 # m=2
225 # SigmaMicroScatteringONEAtE1 = 14.07−2.56 #in barn : 1b = 1e−28 m
226 # SigmaMicroScatteringONEAtE2 = 5.19−0.003
227
228 #Aluminium
229 # ElementName1 = ’Al ’
230 # CompleteName1=’Aluminum ’
231 # AtomicNumber1=13
232 # MolarMass1=26.982 # in g/mol−1
233 # AtomicMassOfTarget1= MolarMass1/NAvogadro # mass in g o f a nuc leus
234 # NumberDensity1=VolumicMass/AtomicMassOfTarget1
235 # RM1=1.3∗1e−5∗((2∗AtomicNumber1) ∗∗(1/3)) # approximation in A RM=r0∗

numerofnucleon ∗∗(1/3) wi th r0 =1.3 fm=1.3e(−5)A = 4.85 fm
236 # DisplacementEnergy1 = 25 #eV
237 # Latt iceBindingEnergy1 = 3
238 # Format ionEnergyOf In t e r s t i t i a l 1=3∗Lat t iceBindingEnergy1
239
240 #Zirconium

82

241 # ElementName1 = ’Zr ’
242 # CompleteName1=’Zirconium ’
243 # AtomicNumber1=40
244 # MolarMass1=91.22 # in g/mol−1
245 # AtomicMassOfTarget1= MolarMass1/NAvogadro # mass in g o f a nuc leus
246 # NumberDensity1=VolumicMass/AtomicMassOfTarget1
247 # RM1=1.3∗1e−5∗((2∗AtomicNumber1) ∗∗(1/3)) # approximation in A RM=r0∗

numerofnucleon ∗∗(1/3) wi th r0 =1.3 fm=1.3e(−5)A = 4.85 fm
248 # DisplacementEnergy1 = 25 #eV
249 # Latt iceBindingEnergy1 = 3
250 # Format ionEnergyOf In t e r s t i t i a l 1=3∗Lat t iceBindingEnergy1
251
252 # #Yttrium
253 ElementName1 = ’Y ’
254 CompleteName1=’ Yttrium ’
255 AtomicNumber1=39
256 MolarMass1=88.906 # in g/mol−1
257 AtomicMassOfTarget1= MolarMass1/NAvogadro # mass in g o f a nuc leus
258 NumberDensity1=VolumicMass/AtomicMassOfTarget1
259 RM1=1.3∗1e −5∗((2∗AtomicNumber1) ∗∗(1/3)) # approximation in A RM=r0∗

numerofnucleon ∗∗(1/3) wi th r0 =1.3 fm=1.3e(−5)A = 4.85 fm
260 DisplacementEnergy1 = 25 #eV
261 Latt iceBindingEnergy1 = 3
262 Format ionEnergyOf Inte r s t i t i a l 1=3∗Latt iceBindingEnergy1
263
264 #Hafnium
265 # ElementName1 = ’Hf ’
266 # CompleteName1=’Hafnium ’
267 # AtomicNumber1=72
268 # MolarMass1=178.49 # in g/mol−1
269 # AtomicMassOfTarget1= MolarMass1/NAvogadro # mass in g o f a nuc leus
270 # RM1=1.3∗1e−5∗((2∗AtomicNumber1) ∗∗(1/3)) # approximation in A RM=r0∗

numerofnucleon ∗∗(1/3) wi th r0 =1.3 fm=1.3e(−5)A = 4.85 fm
271 # DisplacementEnergy1 = 25 #eV
272 # Latt iceBindingEnergy1 = 3
273 # Format ionEnergyOf In t e r s t i t i a l 1=3∗Lat t iceBindingEnergy1
274
275 #Oxygen
276 ElementName2 = ’O’
277 AtomicNumber2=8
278 MolarMass2=15.999 # in g/mol−1
279 AtomicMassOfTarget2= MolarMass2/NAvogadro # mass in g o f a nuc leus
280 NumberDensity2=VolumicMass/AtomicMassOfTarget2
281 RM2=1.3∗1e −5∗((2∗AtomicNumber2) ∗∗(1/3)) # approximation in A RM=r0∗

numerofnucleon ∗∗(1/3) wi th r0 =1.3 fm=1.3e(−5)A = 4.85 fm
282 DisplacementEnergy2 = 28 #eV
283 Latt iceBindingEnergy2 = 3
284 Format ionEnergyOf Inte r s t i t i a l 2=3∗Latt iceBindingEnergy2
285 SigmaMicroScatteringTWOAtE1 = 3.83 #in barn : 1b = 1e−28 m
286 SigmaMicroScatteringTWOAtE2 = 3.83
287
288 CompoundMolarMass= n∗MolarMass1+m∗MolarMass2
289 s to i e ch i omet ry=n/(n+m)
290 NumberDensity=VolumicMass /(n∗AtomicMassOfTarget1+m∗AtomicMassOfTarget2)

∗(n+m)
291
292 ## for OXYGEN f i r s t :
293

83

294 i f len (ElementName1)==1:
295 OXYGEN_IN_AL2O3=open("C: / Users / Ju l i en Bouix/Desktop/SRIM−2013/SRIM

Outputs/Oxygen in {}− O. txt " . format (ElementName1) , " r ")
296 else :
297 OXYGEN_IN_AL2O3=open("C: / Users / Ju l i en Bouix/Desktop/SRIM−2013/SRIM

Outputs/Oxygen in {}− O. txt " . format (ElementName1) , " r ")
298 O_IN_Al2O3_lines=OXYGEN_IN_AL2O3. r e a d l i n e s ()
299 OXYGEN_IN_AL2O3. c l o s e ()
300
301 a l l i n e =25
302 eV=1
303 keV=0
304 MeV=0
305 ELIST=[]
306 SELIST=[]
307 SNLIST=[]
308
309 while O_IN_Al2O3_lines [a l l i n e] [0] ! = ’− ’ :
310
311 i f TakeFromLine (O_IN_Al2O3_lines [a l l i n e] , 1 , 8)<TakeFromLine (

O_IN_Al2O3_lines [a l l i n e −1] ,1 ,8) and keV==1:
312 keV=0
313 MeV=1
314 i f TakeFromLine (O_IN_Al2O3_lines [a l l i n e] , 1 , 8) < TakeFromLine (

O_IN_Al2O3_lines [a l l i n e −1] ,1 ,8) and keV==0 and eV==1:
315 keV=1
316 eV=0
317
318 ELIST . append ((MeV∗1 e6+keV∗1 e3+eV) ∗TakeFromLine (O_IN_Al2O3_lines [

a l l i n e] , 1 , 8))
319 SELIST . append (TakeFromLine (O_IN_Al2O3_lines [a l l i n e] , 1 5 , 2 4))
320 SNLIST . append (TakeFromLine (O_IN_Al2O3_lines [a l l i n e] , 2 6 , 3 5))
321
322 a l l i n e+=1
323
324 SEfunctionO = interp1d (ELIST , SELIST , f i l l _ v a l u e=" ex t r apo l a t e ")
325 SNfunctionO = interp1d (ELIST , SNLIST , f i l l _ v a l u e=" ex t r apo l a t e ")
326
327 ## for X next :
328
329 i f len (ElementName1)==1:
330 ALUMINIUM_IN_AL2O3=open("C: / Users / Ju l i en Bouix/Desktop/SRIM−2013/

SRIM Outputs /{} in {}− O. txt " . format (CompleteName1 ,
ElementName1) , " r ")

331 else :
332 ALUMINIUM_IN_AL2O3=open("C: / Users / Ju l i en Bouix/Desktop/SRIM−2013/

SRIM Outputs /{} in {}− O. txt " . format (CompleteName1 , ElementName1
) , " r ")

333 Al_IN_Al2O3_lines=ALUMINIUM_IN_AL2O3. r e a d l i n e s ()
334 ALUMINIUM_IN_AL2O3. c l o s e ()
335
336 a l l i n e =25
337 eV=1
338 keV=0
339 MeV=0
340 ELIST=[]
341 SELIST=[]
342 SNLIST=[]

84

343
344 while Al_IN_Al2O3_lines [a l l i n e] [0] ! = ’− ’ :
345
346 i f TakeFromLine (Al_IN_Al2O3_lines [a l l i n e] , 1 , 8)<TakeFromLine (

Al_IN_Al2O3_lines [a l l i n e −1] ,1 ,8) and keV==1:
347 keV=0
348 MeV=1
349 i f TakeFromLine (Al_IN_Al2O3_lines [a l l i n e] , 1 , 8) < TakeFromLine (

Al_IN_Al2O3_lines [a l l i n e −1] ,1 ,8) and keV==0 and eV==1:
350 keV=1
351 eV=0
352
353 ELIST . append ((MeV∗1 e6+keV∗1 e3+eV) ∗TakeFromLine (Al_IN_Al2O3_lines [

a l l i n e] , 1 , 8))
354 SELIST . append (TakeFromLine (Al_IN_Al2O3_lines [a l l i n e] , 1 5 , 2 4))
355 SNLIST . append (TakeFromLine (Al_IN_Al2O3_lines [a l l i n e] , 2 6 , 3 5))
356
357 a l l i n e+=1
358
359 SEfunctionX = interp1d (ELIST , SELIST , f i l l _ v a l u e=" ex t r apo l a t e ")
360 SNfunctionX = interp1d (ELIST , SNLIST , f i l l _ v a l u e=" ex t r apo l a t e ")
361
362 ## EDITING OF THE TRIM. IN FILE
363
364 # We s e l e c t the type o f c a l c u l a t i o n we want :
365 # 1: Ion d i s t r i b u t i o n and Quick Ca l cu l a t i on o f Damade (Kinchin−

Pease) (TYPE A COLLISION. t x t f i l e)
366 # 2: De ta i l ed Ca l cu l a t i on wi th f u l l Damage Cascade (TYPE B

COLLISION. t x t f i l e)
367 # 3: Monolayer Co l l i s i o n Steps / Surface Spu t t e r ing (TYPE B

COLLISION. t x t f i l e) (monolayer means t ha t the ion reac t wi th
each monolayer i t g e t s through))

368 # From 4 to the end , i t uses TRIM.DAT :
369 # 4: Ion with s p e c i f i c energy / ang le / depth (qu i ck Damage)
370 # 5: Ion with s p e c i f i c energy / ang le / depth (f u l l cascades)
371 # 6: Reco i l cascades wi th neutrons (f u l l cascades)
372 # 7: Reco i l cascades and monolayer s t e p s (f u l l cascades) (TYPE B

COLLISION. t x t f i l e)
373 # 8: Reco i l cascades wi th neutrons (qu i ck damage : Kinchin Pease)
374 # FOR NOW I TAKE 8
375
376
377 TRIMIN = open("TRIM. IN" , " r ")
378 TRIMINNEW = open("TRIMN. IN" , "w")
379 TRIMINLINES = TRIMIN. r e a d l i n e s ()
380 l i n e=0
381
382
383 while TRIMINLINES [l i n e] [0] != ’C ’ :
384 TRIMINNEW. wr i t e (TRIMINLINES [l i n e])
385 l i n e+=1
386 TRIMINNEW. wr i t e (TRIMINLINES [l i n e])
387 l i n e+=1
388 TRIMINNEW. wr i t e (’ 6

0 0\n ’) # FOR NOW I TAKE 6
389 l i n e+=1
390
391 while TRIMINLINES [l i n e] [0] != ’T ’ :

85

392 TRIMINNEW. wr i t e (TRIMINLINES [l i n e])
393 l i n e+=1
394 TRIMINNEW. wr i t e (TRIMINLINES [l i n e])
395 l i n e+=1
396 TRIMINNEW. wr i t e (’ "H (10) in to Layer 1 " 2

1\n ’)
397 l i n e+=1
398 TRIMINNEW. wr i t e (’ PlotType (0−5) ; Plot Depths : Xmin , Xmax(Ang .) [=0 0

f o r Viewing Fu l l Target] \n ’)
399 l i n e+=1
400 TRIMINNEW. wr i t e (’ 0 0 0\n ’)
401 l i n e+=1
402
403 while TRIMINLINES [l i n e] [0] != ’A ’ :
404 TRIMINNEW. wr i t e (TRIMINLINES [l i n e])
405 l i n e+=1
406
407 TRIMINNEW. wr i t e (’Atom 1 = {} =’ . format (ElementName1)+’ ’ ∗(7−(len (

ElementName1)−2))+’ {} ’ . format (AtomicNumber1)+’ ’∗(3−np . int (np . log10
(AtomicNumber1)))+’ {}\n ’ . format (MolarMass1))

408 l i n e+=1
409 TRIMINNEW. wr i t e (’Atom 2 = {} =’ . format (ElementName2)+’ ’ ∗(7−(len (

ElementName2)−2))+’ {} ’ . format (AtomicNumber2)+’ ’∗(3−np . int (np . log10
(AtomicNumber2)))+’ {}\n ’ . format (MolarMass2))

410 l i n e+=1
411
412 TRIMINNEW. wr i t e (’ Layer Layer Name / Width Density

{}({}) {}({}) \n ’ . format (ElementName1 , AtomicNumber1 , ElementName2 ,
AtomicNumber2))

413 l i n e+=1
414 TRIMINNEW. wr i t e (’Numb. Desc r ip t i on (Ang) (g/cm3)

Sto i ch \n ’)
415 l i n e+=1
416 TRIMINNEW. wr i t e (’ 1 "Layer 1" {} {} {} {}\n ’ .

format (Xmax, VolumicMass , s to i e ch iometry ,1− s t o i e ch i omet ry))
417
418 TRIMINNEW. wr i t e (’ 0 Target l ay e r phases (0=Sol id , 1=Gas) \n0 \nTarget

Compound Cor r ec t i ons (Bragg) \n 1 \ n Ind iv idua l t a r g e t atom
disp lacement en e r g i e s (eV) \n 25 28\ nInd iv idua l t a r g e t
atom l a t t i c e b inding en e r g i e s (eV) \n 3 3\ nInd iv idua l
t a r g e t atom su r f a c e binding en e r g i e s (eV) \n 3 .36 2\
nStopping Power Vers ion (1=2011 , 0=2011)\n 0\n ’)

419
420 TRIMIN. c l o s e ()
421 TRIMINNEW. c l o s e ()
422 os . remove (’TRIM. IN ’)
423 os . rename (’TRIMN. IN ’ , ’TRIM. IN ’)
424
425
426
427 bmin1 = −RN−RM1
428 bmin2 = −RN−RM2
429 Probab i l i tyB lock = 1.25 # we run s imu la t i on o f c o l l i s i o n wh i l e T_max i s

g r ea t e r than the d i sp lacement energy but then , the impact
parameter d i s t r i b u t i o n w i l l not n e c e s s a r i l y g i v e T_max

430
431 ## FOR EACH NEUTRON INCOMING, WE SIMULATE ITS TRAVEL INSIDE THE

TARGET MATERIAL AND WHAT ATOMS IT WILL KNOCK OFF.

86

432
433 ListOfNumberOfCol l i s ion =[]
434 ListOfFinalEnergyOfNeutron =[]
435 L i s tO fLa t e r a lD i sp e r s i on =[]
436 ListOfDepthPenetrat ion =[]
437 ListOfEndingMode =[] # 1 fo r bac k s ca t t e r i n g , 2 f o r transmiss ion , 3 f o r

l a c k o f energy
438 L i s tOfCo l l i s i onsForBack =[]
439 L i s tO fCo l l i s i on sForTrans =[]
440 L i s tO fCo l l i s i on sForLack =[]
441 Lis tOfVacanc ies =[]
442 ListOfDPAPerParticle =[]
443 ListOfVacanciesForBack =[]
444 ListOfVacanciesForTrans =[]
445 ListOfVacanciesForLack =[]
446 ListOfWhichOne =[] #0 fo r O and 1 f o r X
447
448 #For each primary cascade , we add an element to the f o l l ow i n g l i s t s :
449 IONIZATIONListn=[]
450 BINDINGListn=[]
451 PHONONListn=[]
452
453 i on i z a t i onpe r c en t a g e =[]
454 b ind ingpercentage =[]
455 phononpercentage =[]
456
457 CurrentNeutronIndex=1
458
459 for NEUTRONINDEX in range (NumberOfNeutrons) :
460
461 Xdepth =[]
462 Ein = ListOfNeutronEnergy [NEUTRONINDEX]
463
464 ## In a nuc lear reactor , t h e r e i s no co l l ima t e d beam of neutron , so

I cons ider an i s o t r o p i c neutron d i r e c t i o n impinging on the
t a r g e t

465 a lphaang le=(rd . random () −0.5)∗np . p i
466 betaang le=rd . random () ∗2∗np . p i
467 axe=[np . cos (a lphaang le) , np . s i n (a lphaang le) ∗np . s i n (betaang le) , np . s i n

(a lphaang le) ∗np . cos (betaang le)] #axe i s the [X,Y,Z] un i t
v e c t o r t ha t i n d i c a t e the curren t d i r e c t i o n o f the neutron
i n s i d e the t a r g e t . X +Y +Z =1

468
469 TRIMDAT_INPUT=[]
470 Co l l i s i o n Ind ex=0
471 BACKSCATTERED = False
472 TRANSMITTED = False
473 T_max1 = Ein ∗(Mneutron∗AtomicMassOfTarget1) / ((Mneutron+

AtomicMassOfTarget1) ∗∗2)
474 T_max2 = Ein ∗(Mneutron∗AtomicMassOfTarget2) / ((Mneutron+

AtomicMassOfTarget2) ∗∗2)
475
476
477
478 while (T_max1 > Probab i l i tyB lock ∗DisplacementEnergy1 or T_max2 >

Probab i l i tyB lock ∗DisplacementEnergy2) and BACKSCATTERED==False
and TRANSMITTED==False :

479

87

480 TRIMDAT_INPUT. append ([0 for i in range (8)]) # We prepare the
room fo r the in format ion concerning a new c o l l i s i o n

481
482 ## The s imu la t i on o f the impact parameter b :
483 ## I f i r s t imposed a uniform d i s t r i b u t i o n in he i n t e r v a l [−

RN−RM,RN+RM] but the b a c k s c a t t e r i n g i s too h igh (h igh
p r o b a b i l i t y to h i t the atom at i t s cen te r) and
ph y s i c a l l y , due to channe l ing i s a r e a l c r y s t a l , I
assume tha t most impact w i l l occur wi th a g r ea t e r
p r o b a b i l i t y a t the border o f the atom .

484
485 #impactparameter=rd . uniform (bmin ,−1∗bmin)
486
487 ##To cor r e c t t h i s non uni formity , I t r y to model the impact

parameter d i s t r i b u t i o n wi th a pa ra bo l i c law with a
minimum at i t s cen te r (b=0) and i t s maximum at {−RN−RM,
RN+RM}. But t h i s c o r r e c t i on d r a s t i c a l l y reduces the
t r an s f e r r e d energy to the atoms making none o f them
ene r g e t i c enough to produce a c o l l i s i o n cascade .

488
489 #impactparameter=parabo l ic_law(−RN−RM,RN+RM,DIFF) #d i f f o f 100

i s very s e l e c t i v e : i t means t ha t the pa ra bo l i c law has a
va lue at i t s border 100 t imes g reaa t e r than at i t s cen te r .

490
491 ## Fina l l y I d i smis s the channe l ing due to the huge

r e l a t i v e d i f f e r e n c e o f s i z e between the nuc leus rad ius
and the in t e ra tomic d i s t ance and cons ider a uniform
d i s t r i b u t i o n a long the whole area o f the rad ius so a
i n f i n i t e s im a l area o f 2∗ p i ∗b∗db f o r having an impact
parameter b .

492
493 impactparameter1=LinearCrown(−bmin1)
494 impactparameter2=LinearCrown(−bmin2)
495
496 i f Co l l i s i on Ind ex==0:
497
498 CurrentSigmaMacroScattering1 = SigmaMacro (VolumicMass ,

CompoundMolarMass , 1 , SigmaMicroScatteringONEAtE1 ,
SigmaMicroScatteringONEAtE2 , SigmaMicroScatteringTWOAtE1
, SigmaMicroScatteringTWOAtE2 , E1 , E2 , Ein)

499 D i s tanceUnt i lNex tCo l l i s i on1 = rd . expovar ia te (
CurrentSigmaMacroScattering1)

500
501 CurrentSigmaMacroScattering2 = SigmaMacro (VolumicMass ,

CompoundMolarMass , 0 , SigmaMicroScatteringONEAtE1 ,
SigmaMicroScatteringONEAtE2 , SigmaMicroScatteringTWOAtE1
, SigmaMicroScatteringTWOAtE2 , E1 , E2 , Ein)

502 D i s tanceUnt i lNex tCo l l i s i on2 = rd . expovar ia te (
CurrentSigmaMacroScattering2)

503
504 i f Dis tanceUnt i lNextCo l l i s i on1>=Dis tanceUnt i lNex tCo l l i s i on2

: # then c o l l i s i o n wi th oxygen (2)
505
506 ListOfWhichOne . append (0)
507 Posit ionX=Di s tanceUnt i lNex tCo l l i s i on2 ∗np . cos (Angle (axe

, [1 , 0 , 0]))
508 Latera lPos i t i onY= Di s tanceUnt i lNex tCo l l i s i on2 ∗np . cos (

Angle (axe , [0 , 1 , 0]))

88

509 Late ra lPos i t i onZ= Di s tanceUnt i lNex tCo l l i s i on2 ∗np . cos (
Angle (axe , [0 , 0 , 1]))

510 TransferredEnergy = Trans ferredEnergyCoef f (
impactparameter2 ,RN,RM2) ∗(Ein) ∗(Mneutron∗
AtomicMassOfTarget2) / ((Mneutron+AtomicMassOfTarget2
) ∗∗2)

511
512 else : #then i t i s X
513
514 ListOfWhichOne . append (1)
515 Posit ionX=Di s tanceUnt i lNex tCo l l i s i on1 ∗np . cos (Angle (axe

, [1 , 0 , 0]))
516 Latera lPos i t i onY= Di s tanceUnt i lNex tCo l l i s i on1 ∗np . cos (

Angle (axe , [0 , 1 , 0]))
517 Late ra lPos i t i onZ= Di s tanceUnt i lNex tCo l l i s i on1 ∗np . cos (

Angle (axe , [0 , 0 , 1]))
518 TransferredEnergy = Trans ferredEnergyCoef f (

impactparameter1 ,RN,RM1) ∗(Ein) ∗(Mneutron∗
AtomicMassOfTarget1) / ((Mneutron+AtomicMassOfTarget1
) ∗∗2)

519
520 ## We add the in format ion concerning the l o c a l i s a t i o n o f the

curren t c o l l i s i o n in the TRIM.DAT f i l e
521
522 i f ListOfWhichOne [−1]==1:
523 TRIMDAT_INPUT[Co l l i s i on Ind ex] [0]= AtomicNumber1
524 else :
525 TRIMDAT_INPUT[Co l l i s i on Ind ex] [0]= AtomicNumber2
526
527
528 TRIMDAT_INPUT[Co l l i s i o n Ind ex] [1]= int (TransferredEnergy)#,0

decimal_round (TransferredEnergy))
529
530 # X l o c a l i s a t i o n o f the c o l l i s i o n
531 TRIMDAT_INPUT[Co l l i s i o n Ind ex] [2]= np . int (Posit ionX)
532
533 # Y and Z (La t e ra l Pos i t i on s) l o c a l i s a t i o n o f the c o l l i s i o n :
534 TRIMDAT_INPUT[Co l l i s i o n Ind ex] [3]= np . int (Late ra lPos i t i onY)
535 TRIMDAT_INPUT[Co l l i s i o n Ind ex] [4]= np . int (La t e ra lPos i t i onZ)
536
537 ## We run the s imu la t i on o f the c o l l i s i o n (see above f o r the

d e f i n i t i o n o f COLLISSION func t i on I de f ined .
538
539 i f ListOfWhichOne [−1]==1:
540 [axe , r e c o i l a x e , Ein , TransferredEnergy , alpha , s ca t t e r ing_ang l e

]=COLLISION(axe , impactparameter1 ,RN,RM1, Mneutron ,
AtomicMassOfTarget1 , Ein)

541 else :
542 [axe , r e c o i l a x e , Ein , TransferredEnergy , alpha , s ca t t e r ing_ang l e

]=COLLISION(axe , impactparameter2 ,RN,RM2, Mneutron ,
AtomicMassOfTarget2 , Ein)

543
544 ## We add the in format ion concerning the knocked atom d i r e c t i o n

(cos (X) , cos (Y) and cos (Z)) during the curren t c o l l i s i o n
in the TRIM.DAT f i l e

545
546 # Ion/Atom d i r e c t i o n :
547 TRIMDAT_INPUT[Co l l i s i o n Ind ex] [5]= round(r e c o i l a x e [0] , 4)

89

548 TRIMDAT_INPUT[Co l l i s i o n Ind ex] [6]= round(r e c o i l a x e [1] , 4)
549 TRIMDAT_INPUT[Co l l i s i o n Ind ex] [7]= round(r e c o i l a x e [2] , 4)
550
551 ## What changes f o r the next c o l l i s i o n ?
552
553 T_max1 = Ein ∗(Mneutron∗AtomicMassOfTarget1) / ((Mneutron+

AtomicMassOfTarget1) ∗∗2)
554 CurrentSigmaMacroScattering1 = SigmaMacro (VolumicMass ,

CompoundMolarMass , 1 , SigmaMicroScatteringONEAtE1 ,
SigmaMicroScatteringONEAtE2 , SigmaMicroScatteringTWOAtE1 ,
SigmaMicroScatteringTWOAtE2 , E1 , E2 , Ein)

555 Di s tanceUnt i lNex tCo l l i s i on1 = rd . expovar ia te (
CurrentSigmaMacroScattering1)

556
557 T_max2 = Ein ∗(Mneutron∗AtomicMassOfTarget2) / ((Mneutron+

AtomicMassOfTarget2) ∗∗2)
558 CurrentSigmaMacroScattering2 = SigmaMacro (VolumicMass ,

CompoundMolarMass , 0 , SigmaMicroScatteringONEAtE1 ,
SigmaMicroScatteringONEAtE2 , SigmaMicroScatteringTWOAtE1 ,
SigmaMicroScatteringTWOAtE2 , E1 , E2 , Ein)

559 Di s tanceUnt i lNex tCo l l i s i on2 = rd . expovar ia te (
CurrentSigmaMacroScattering2)

560
561 i f Dis tanceUnt i lNextCo l l i s i on1<=Dis tanceUnt i lNex tCo l l i s i on2 : #

then Al
562 ListOfWhichOne . append (1)
563 Posit ionX += Dis tanceUnt i lNex tCo l l i s i on1 ∗np . cos (Angle (axe

, [1 , 0 , 0]))
564 Late ra lPos i t i onY += Dis tanceUnt i lNex tCo l l i s i on1 ∗np . cos (

Angle (axe , [0 , 1 , 0]))
565 Late ra lPos i t i onZ += Dis tanceUnt i lNex tCo l l i s i on1 ∗np . cos (

Angle (axe , [0 , 0 , 1]))
566
567 else :
568 ListOfWhichOne . append (0)
569 Posit ionX += Dis tanceUnt i lNex tCo l l i s i on2 ∗np . cos (Angle (axe

, [1 , 0 , 0]))
570 Late ra lPos i t i onY += Dis tanceUnt i lNex tCo l l i s i on2 ∗np . cos (

Angle (axe , [0 , 1 , 0]))
571 Late ra lPos i t i onZ += Dis tanceUnt i lNex tCo l l i s i on2 ∗np . cos (

Angle (axe , [0 , 0 , 1]))
572
573 Co l l i s i o n Ind ex +=1
574
575 #pr in t (’ { } : {} ’ . format (CurrentNeutronIndex , Co l l i s i on Ind e x))
576 i f PositionX <0:
577 BACKSCATTERED = True
578 ListOfEndingMode . append (1)
579 #pr in t (’ Back sca t t e r ing occured at a r e l a t i v e neutron energy

{} and a f t e r {} c o l l i s i o n (s) ’ . format (Ein/
EnergyNeutronIn , Co l l i s i on Ind e x))

580
581 i f PositionX>XmaxNoScienti f ic :
582 TRANSMITTED=True
583 ListOfEndingMode . append (2)
584 #pr in t (’ Transmission occured at a r e l a t i v e neutron energy

{} and a f t e r {} c o l l i s i o n (s) ’ . format (Ein/
EnergyNeutronIn , Co l l i s i on Ind e x))

90

585
586 i f T_max1 < Probab i l i tyB lock ∗DisplacementEnergy1 and T_max2 <

Probab i l i tyB lock ∗DisplacementEnergy2 :
587 ListOfEndingMode . append (3)
588 #pr in t (’The neutron has not enough energy to cont inue i t s

t r a v e l i n s i d e the t a r g e t mate r ia l and i s s topped a f t e r
{} c o l l i s i o n s ’ . format (Co l l i s i on Ind e x))

589
590 X=[TRIMDAT_INPUT[i] [2]∗10∗∗ (−8) for i in range (Co l l i s i o n Ind ex)]#

a l l X in cm
591 Y=[TRIMDAT_INPUT[i] [3]∗10∗∗ (−7) for i in range (Co l l i s i o n Ind ex)]
592 Z=[TRIMDAT_INPUT[i] [4]∗10∗∗ (−7) for i in range (Co l l i s i o n Ind ex)]#

a l l Y and Z in mm
593 X0=[0]+X
594 Y0=[0]+Y
595 Z0=[0]+Z
596
597 i f CurrentNeutronIndex/50==int (CurrentNeutronIndex /50) :
598 print (’We are at the {} neutron s imu la t i on ’ . format (

CurrentNeutronIndex))
599 CurrentNeutronIndex+=1
600
601 ListOfDepthPenetrat ion . append (absmaxl i s t (X))
602 L i s tO fLa t e r a lD i sp e r s i on . append (max(absmaxl i s t (Y) , absmaxl i s t (Z)))
603 ListOfNumberOfCol l i s ion . append (Co l l i s i o n Index)
604 ListOfFinalEnergyOfNeutron . append (Ein)
605
606 ## Correct ion o f the TRIM.DAT input to d e l e t e a l l c o l l i s i o n s where

the t r an s f e r r e d energy i s lower than Ed and remove Eb to the
k i n e t i c energy o f the atom :

607
608 I =[]
609 for i in range (len (TRIMDAT_INPUT)) :
610
611 i f TRIMDAT_INPUT[i] [1] >= max(DisplacementEnergy1 ,

DisplacementEnergy2) :
612 I . append (i)
613
614 TRIMDAT_INPUT=[TRIMDAT_INPUT[i] for i in I]
615
616 for i in range (len (TRIMDAT_INPUT)) :
617 i f TRIMDAT_INPUT[i] [0]== AtomicNumber1 :
618 TRIMDAT_INPUT[i] [1] = TRIMDAT_INPUT[i] [1] −

Latt iceBindingEnergy1
619 e l i f TRIMDAT_INPUT[i] [0]== AtomicNumber2 :
620 TRIMDAT_INPUT[i] [1] = TRIMDAT_INPUT[i] [1] −

Latt iceBindingEnergy2
621
622 ## PLOT THE NEUTRON PATH INSIDE THE TARGET MATERIAL :
623 #
624
625 # p l t . ion ()
626 # f i g = p l t . f i g u r e ()
627 # ax = f i g . gca (p r o j e c t i on="3d")
628 # ax . p l o t (X0,Y0, Z0)
629 #
630 # ax . s e t_x l a b e l (’ Depth i n s i d e the t a r g e t mate r ia l in cm ’)
631 # ax . set_xl im (0 , XmaxNoScienti f ic ∗10∗∗(−8))

91

632 # ax . s e t_y l a b e l (’ La t e ra l p o s i t i o n Y in mm’)
633 # ax . set_yl im(−max(ab smax l i s t (Y) ,DiameterOfTheBeam∗10∗∗(−7) /2) , max

(ab smax l i s t (Y) ,DiameterOfTheBeam∗10∗∗(−7) /2))
634 # ax . s e t_ z l a b e l (’ La t e ra l p o s i t i o n Z in mm’)
635 # ax . se t_z l im(−max(ab smax l i s t (Z) ,DiameterOfTheBeam∗10∗∗(−7) /2) , max

(ab smax l i s t (Z) ,DiameterOfTheBeam∗10∗∗(−7) /2))
636
637 ## p l t . show ()
638
639
640 ## EDITING OF THE TRIM.DAT FILE ##For each c o l l i s i o n wi th an atom fo

the l a t t i c e , we add to the TRIM.DAT f i l e the in format ion needed
641
642 # We need as an input f o r the TRIM.DAT the l i s t o f a l l PKA made by the

neutron code with , f o r each one o f them a l i s t con ta in ing t h e i r
atomic number , energy (eV) , depth (A) , l a t e r a l p o s i t i o n (X and Y)
and t h e i r d i r e c t i o n (Cos (X) , cos (Y) and cos (Z)) . The input i s a
l i s t o f l i s t o f 8 e lements .

643
644 TRIMDAT = open("TRIM.DAT" , " r ")
645 TRIMDATNEW = open("TRIMN.DAT" , "w")
646 TRIMLINES = TRIMDAT. r e a d l i n e s ()
647 l i n e=0
648
649
650 ## Due to the i s s u e wi th too h igh depth , I g i v e 0 to Y and Z

and 5000A to X.
651
652 for i in range (len (TRIMDAT_INPUT)) :
653 Xdepth . append (TRIMDAT_INPUT[i] [2])
654 TRIMDAT_INPUT[i] [2]=5000
655 TRIMDAT_INPUT[i] [3]=0
656 TRIMDAT_INPUT[i] [4]=0
657
658 while TRIMLINES[l i n e] [0] != ’ ’ :
659 TRIMDATNEW. wr i t e (TRIMLINES[l i n e])
660 l i n e+=1
661 TRIMDATNEW. wr i t e (’ Reco i l s from neutrons (Maxwell) in

{}({}) \n ’ . format (CompoundName ,Xmax))
662 l i n e+=1
663 TRIMDATNEW. wr i t e (TRIMLINES[l i n e])
664 l i n e+=1
665 TRIMDATNEW. wr i t e (TRIMLINES[l i n e])
666 l i n e+=1
667 IndexIon=1
668
669 for PKA in TRIMDAT_INPUT:
670 i f PKA[1]==0:
671 pass
672 else :
673
674 i f PKA[0] >=10: # According to the atomic number we have

to ad j u s t the spac ing between the event name and the
atomic number

675 TRIMDATNEW. wr i t e (’ {} ’ . format (IndexIon)+’ ’∗(7− len (str (
int (IndexIon)))))

676 else :
677 TRIMDATNEW. wr i t e (’ {} ’ . format (IndexIon)+’ ’∗(8− len (str (

92

int (IndexIon)))))
678
679 # WRITE ATOMIC NUMBER:
680 TRIMDATNEW. wr i t e (str (PKA[0])+’ ’)
681
682 # WRITE ENERGY :
683
684 TRIMDATNEW. wr i t e (str (PKA[1])+’ ’∗(9− len (str (PKA[1]))))
685
686 # WRITE X:
687 X s c i e n t i f i c=’ { : . 1 e} ’ . format (PKA[2])
688 TRIMDATNEW. wr i t e (X s c i e n t i f i c+’ ’∗(9− len (X s c i e n t i f i c)+ajout (

np . s i gn (PKA[3]))))
689
690 # WRITE Y:
691 Y s c i e n t i f i c=’ { : . 0 e} ’ . format (PKA[3])
692 i f PKA[3] >=0:
693 TRIMDATNEW. wr i t e (Y s c i e n t i f i c+’ ’∗(8− len (Y s c i e n t i f i c)+

ajout (np . s i gn (PKA[4]))))
694 else :
695 TRIMDATNEW. wr i t e (Y s c i e n t i f i c+’ ’∗(9− len (Y s c i e n t i f i c)+

ajout (np . s i gn (PKA[4]))))
696
697 # WRITE Z:
698 Z s c i e n t i f i c=’ { : . 1 e} ’ . format (PKA[4])
699 i f PKA[4] >=0:
700 TRIMDATNEW. wr i t e (Z s c i e n t i f i c+’ ’∗(9− len (Z s c i e n t i f i c)+

ajout (np . s i gn (PKA[5]))))
701 else :
702 TRIMDATNEW. wr i t e (Z s c i e n t i f i c+’ ’ ∗(10− len (Z s c i e n t i f i c)+

ajout (np . s i gn (PKA[5]))))
703
704 # WRITE COS(X)
705 i f PKA[5] >=0:
706 TRIMDATNEW. wr i t e (str (PKA[5])+’ ’∗(9− len (str (PKA[5]))+

ajout (np . s i gn (PKA[6]))))
707 else :
708 TRIMDATNEW. wr i t e (str (PKA[5])+’ ’ ∗(10− len (str (PKA[5]))+

ajout (np . s i gn (PKA[6]))))
709
710 # WRITE COS(Y)
711 i f PKA[6] >=0:
712 TRIMDATNEW. wr i t e (str (PKA[6])+’ ’∗(9− len (str (PKA[6]))+

ajout (np . s i gn (PKA[7]))))
713 else :
714 TRIMDATNEW. wr i t e (str (PKA[6])+’ ’ ∗(10− len (str (PKA[6]))+

ajout (np . s i gn (PKA[7]))))
715
716 # WRITE COS(Z)
717 TRIMDATNEW. wr i t e (str (PKA[7])+’ \n ’)
718
719 l i n e+=1
720 IndexIon+=1
721
722 TRIMDAT. c l o s e ()
723 TRIMDATNEW. c l o s e ()
724 os . remove ("TRIM.DAT")
725 os . rename ("TRIMN.DAT" , "TRIM.DAT")

93

726
727
728 ## EXECUTION ?
729 # a windown opens in the case 6 and 8 So t r y to use 7 (Reco i l cascades

and monolayer s t e p s (f u l l cascades)) which i s good . TYPE OF
COLLISION. t x t i s B fo r 7 .

730
731 os . s t a r t f i l e (’C: / Users / Ju l i en Bouix/Desktop/SRIM−2013/TRIM. exe ’)
732 time . s l e e p (15+ Co l l i s i o n Ind ex ∗1/6)
733
734
735 COLLISION = open("C: / Users / Ju l i en Bouix/Desktop/SRIM−2013/SRIM

Outputs/COLLISION . txt " , " r ")
736 COLLISIONLINES=COLLISION . r e a d l i n e s ()
737 COLLISION . c l o s e ()
738 LengthCOLLISION=len (COLLISIONLINES)
739
740 PrimaryPhonon =[]
741
742 Xpka l i s t =[]
743 Ypka l i s t =[]
744 Zpka l i s t =[]
745
746 IonEnergyBe fo r eCo l l i s i on =[]
747
748 NbOfPKAn=0
749 for i in range (LengthCOLLISION) :
750 i f COLLISIONLINES [i] [0] ==’ ’ :
751 NbOfPKAn +=1
752
753 NbOfPKAn=int (NbOfPKAn/2)
754
755 EnergyTransmittedToPKAn =[]
756
757 ListOfIONIZATION=[]
758 ListOfIONIZATIONPKA=[]
759 ListOfBINDING=[]
760 ListOfBINDINGexceptprimary =[]
761 ListOfPHONON=[]
762 Nreplacement =[]
763 Nvac=[]
764 c u r r e n t l i n e=26
765 PKAALORO=[]
766 NbofProblemExcept=0
767
768 for nbpkan in range (NbOfPKAn) :
769
770 IONIZATIONRecoil=[]
771 IONIZATIONRecoilPKA=[]
772 NUCLEARRecoil=[]
773 BINDINGRecoil=0
774 PHONONRecoil=0
775 ALORO=[]
776 X l i s t =[]
777 Y l i s t =[]
778 Z l i s t =[]
779 Nreplacement . append ([0 , 0])
780 Nvac . append ([0 , 0])

94

781 Reco i lEnergyLi s t =[]
782 c u r r e n t l i n e +=2
783
784 i f c u r r e n t l i n e==LengthCOLLISION :
785 break
786
787 while COLLISIONLINES [c u r r e n t l i n e] [0] ! = ’ ’ and cu r r en t l i n e <=

LengthCOLLISION−2: #i f no r e c o i l cascade f o r t h i s pka
788 c u r r e n t l i n e+=1
789
790 i f c u r r e n t l i n e==LengthCOLLISION−1:
791 break
792
793 # s t a r t o f a new cascade
794 l i n e c on t en t=COLLISIONLINES [c u r r e n t l i n e]
795
796 try :
797
798 l i n e c on t en t=COLLISIONLINES [c u r r e n t l i n e]
799 Xpka l i s t . append (TakeFromLine (l i n e con t en t , 18 , 28))
800 Ypka l i s t . append (TakeFromLine (l i n e con t en t , 29 , 39))
801 Zpka l i s t . append (TakeFromLine (l i n e con t en t , 40 , 50))
802 #Se l i s t n . append (TakeFromLine (l i n e con t en t ,51 ,58))
803 EnergyTransmittedToPKAn . append (TakeFromLine (l i n e con t en t

, 64 , 74))
804 except :
805 NbofProblemExcept+=1
806 c u r r e n t l i n e+=+1
807 l i n e c on t en t=COLLISIONLINES [c u r r e n t l i n e]
808 Xpka l i s t . append (TakeFromLine (l i n e con t en t , 18 , 28))
809 Ypka l i s t . append (TakeFromLine (l i n e con t en t , 29 , 39))
810 Zpka l i s t . append (TakeFromLine (l i n e con t en t , 40 , 50))
811 #Se l i s t n . append (TakeFromLine (l i n e con t en t ,51 ,58))
812 EnergyTransmittedToPKAn . append (TakeFromLine (l i n e con t en t

, 64 , 74))
813
814 c u r r e n t l i n e+=3
815 i n s i d e c oun t e r=0
816 while COLLISIONLINES [c u r r e n t l i n e] [0] ==’ ’ :
817 l i n e c on t en t=COLLISIONLINES [c u r r e n t l i n e]
818 i f i n s i d e c oun t e r==0:
819 i f COLLISIONLINES [c u r r e n t l i n e] [1 0]+COLLISIONLINES [

c u r r e n t l i n e] [11]== str (AtomicNumber1) : #i f X
820 PKAALORO. append (0)
821 else :
822 PKAALORO. append (1)
823 i n s i d e c oun t e r+=1
824 i f COLLISIONLINES [c u r r e n t l i n e] [1 0]+COLLISIONLINES [

c u r r e n t l i n e] [11]== str (AtomicNumber1) : #i f X
825
826 ALORO. append (0)
827 Nvac [−1][0]+= f loat (COLLISIONLINES [c u r r e n t l i n e] [5 8])
828 Nreplacement [−1][0]+= f loat (COLLISIONLINES [c u r r e n t l i n e

] [6 3])
829 else :
830 ALORO. append (1)
831 Nvac [−1][1]+= f loat (COLLISIONLINES [c u r r e n t l i n e] [5 8])
832 Nreplacement [−1][1]+= f loat (COLLISIONLINES [c u r r e n t l i n e

95

] [6 3])
833 Reco i lEnergyL i s t . append (TakeFromLine (l i n e con t en t , 1 5 , 25))
834 X l i s t . append (TakeFromLine (l i n e con t en t , 2 6 , 35))
835 Y l i s t . append (TakeFromLine (l i n e con t en t , 3 6 , 46))
836 Z l i s t . append (TakeFromLine (l i n e con t en t , 4 7 , 57))
837 c u r r e n t l i n e+=1
838
839 i f COLLISIONLINES [c u r r e n t l i n e] [0] ==’ ’ :
840
841 ##ONLY BY READING AND DEDUCING. . . .
842
843 i f len (Reco i lEnergyLi s t)==1:
844
845 i f ALORO[0]==1: # i f Oxygen
846
847 BINDINGRecoil += Format ionEnergyOf In te r s t i t i a l 2
848 IONIZATIONRecoil . append (0)
849
850 else :
851
852 BINDINGRecoil += Format ionEnergyOf In te r s t i t i a l 1
853 IONIZATIONRecoil . append (0)
854
855 else :
856
857 lengthLIST=len (X l i s t)
858
859 ## BINDINGS (s t o r ed energy)
860
861 i f ALORO[0]==1:
862
863 ListOfBINDING . append (int (Nvac [−1] [0] − Nreplacement

[− 1] [0]) ∗ Format ionEnergyOf In te r s t i t i a l 1+int (Nvac
[−1][1]−1−Nreplacement [− 1] [1]) ∗
Format ionEnergyOf In te r s t i t i a l 2) # Each c o l l i s i o n
w i l l end up wi th the outgo ing p a r t i c l e as
i n t e r s t i t t i a l or rep lacement (not counted in t h i s
case)

864 else :
865
866 ListOfBINDING . append (int (Nvac[−1][0]−1−Nreplacement

[− 1] [0]) ∗ Format ionEnergyOf In te r s t i t i a l 1+int (Nvac
[−1] [1] − Nreplacement [− 1] [1]) ∗
Format ionEnergyOf In te r s t i t i a l 2)

867
868
869 maxdistance = max([np . s q r t ((X l i s t [i]− Xl i s t [0]) ∗∗2+(Y l i s t [i

]− Yl i s t [0]) ∗∗2+(Z l i s t [i]− Z l i s t [0]) ∗∗2) for i in range (
len (X l i s t))])

870
871 ListofSKAIndexes =[1]
872 L i s tOf In i t i a lK ine t i cEnerg i e sSKA =[Reco i lEnergyL i s t [1]]
873
874 for i in range (2 , len (X l i s t)) :
875 i f np . sq r t ((X l i s t [i]− Xl i s t [i −1])∗∗2+(Y l i s t [i]− Yl i s t [i

−1])∗∗2+(Z l i s t [i]− Z l i s t [i −1]) ∗∗2) > maxdistance
/ 4 . 5 :

876 ListofSKAIndexes . append (i)

96

877 L i s tOf In i t i a lK ine t i cEnerg i e sSKA . append (
Reco i lEnergyLi s t [i])

878
879 ## CALCULATION OF PKA CASCADE
880
881 sumenergy=0
882 ListofSKAIndexes . r e v e r s e ()
883 i f ALORO[0]==1: #i f Oxygen
884 PKAALORO. append (1)
885 for i in ListofSKAIndexes :
886
887 IONIZATIONRecoilPKA . append (Reco i lEnergyLi s t [0] −

sumenergy−EnergyAfterSPSegment (SEfunctionO ,
Reco i lEnergyLi s t [0] − sumenergy , np . s q r t ((X l i s t [i
]− Xl i s t [i −1])∗∗2+(Y l i s t [i]− Yl i s t [i −1])∗∗2+(
Z l i s t [i]− Z l i s t [i −1]) ∗∗2) ,Nsegment))

888
889 else :
890 PKAALORO. append (0)
891 for i in ListofSKAIndexes :
892
893 IONIZATIONRecoilPKA . append (Reco i lEnergyLi s t [0] −

sumenergy−EnergyAfterSPSegment (SEfunctionX ,
Reco i lEnergyLi s t [0] − sumenergy , np . s q r t ((X l i s t [i
]− Xl i s t [i −1])∗∗2+(Y l i s t [i]− Yl i s t [i −1])∗∗2+(
Z l i s t [i]− Z l i s t [i −1]) ∗∗2) ,Nsegment))

894
895 IONIZATIONRecoilPKA2=sum(IONIZATIONRecoilPKA)
896 ListOfIONIZATIONPKA . append (IONIZATIONRecoilPKA2)
897 ListOfIONIZATION . append (sum(IONIZATIONRecoil))
898 ListOfBINDING . append (BINDINGRecoil)
899
900 IONIZATIONListn . append (sum(ListOfIONIZATION)+sum(

ListOfIONIZATIONPKA))
901 BINDINGListn . append (sum(ListOfBINDING))
902 PHONONListn . append (ListOfNeutronEnergy [NEUTRONINDEX]−

IONIZATIONListn[−1]−BINDINGListn [−1])
903
904 l i s t v a c=0
905 for i in range (NbOfPKAn) :
906
907 i f ReferenceDepth1 < Xdepth [i] < ReferenceDepth2 :
908
909 l i s t v a c += Nvac [i] [0]+ Nvac [i] [1]
910 Lis tOfVacanc ies . append (l i s t v a c)
911
912 ListOfDPAPerParticle . append (sum(L i s tOfVacanc ies) / ((NEUTRONINDEX+1)

∗(ReferenceDepth2−ReferenceDepth1) ∗10∗∗(−8)∗ReferenceArea ∗
NumberDensity))

913
914 ##Create an his togram :
915
916 for i in range (NumberOfNeutrons) :
917 i f ListOfEndingMode [i]==1:
918 L i s tOfCo l l i s i onsForBack . append (ListOfNumberOfCol l i s ion [i])
919 ListOfVacanciesForBack . append (Lis tOfVacanc ies [i])
920
921 i f ListOfEndingMode [i]==2:

97

922 L i s tOfCo l l i s i on sForTrans . append (ListOfNumberOfCol l i s ion [i])
923 ListOfVacanciesForTrans . append (Lis tOfVacanc ies [i])
924
925 i f ListOfEndingMode [i]==3:
926 L i s tO fCo l l i s i on sForLack . append (ListOfNumberOfCol l i s ion [i])
927 ListOfVacanciesForLack . append (Lis tOfVacanc ies [i])
928
929 p l t . ion ()
930 p l t . p l o t ([i for i in range (1 , len (ListOfDPAPerParticle)+1)] ,

ListOfDPAPerParticle)
931 p l t . t i t l e (’The average dpa per neutron p r o j e c t i l e in the r e f e r e n c e

volume ’)
932 p l t . y l ab e l (’ average dpa per neutron p r o j e c t i l e ’)
933 p l t . x l ab e l (’ Neutron index ’)
934 p l t . show ()
935
936 SumVacancies = int (sum(L i s tOfVacanc ies))
937 print (’The sum of a l l vacanc i e s caused by {} neutrons i s {} ’ . format (

NumberOfNeutrons , SumVacancies))
938
939 r e s u l t f i l e=open("C: / Users / Ju l i en Bouix/Desktop/SRIM−2013/Result Of the

neutron Code . txt " , ’w ’)
940
941 r e s u l t f i l e . wr i t e (’ FOR {} NEUTRONS FOLLOWING A MAXWELL

DISTRIBUTION FOR ENERGY (1 MeV MOST PROBABLE) TRAVELING INSIDE A {}
CENTIMETERS THICK LAYER OF {} :\n\n ’ . format (NumberOfNeutrons , int

(10∗∗(−8)∗XmaxNoScienti f ic) ,CompoundName))
942
943 r e s u l t f i l e . wr i t e ("−The average energy o f the neutron i s {}eV with a

standard dev i a t i on o f {}eV\n" . format (’ { : . 2 e} ’ . format (mean l i s t (
ListOfNeutronEnergy)) , ’ { : . 2 e} ’ . format (round(ecart_type (
ListOfNeutronEnergy) ,0))))

944 r e s u l t f i l e . wr i t e (’−−−−The maximum energy o f one neutron i s {}\n ’ . format
(’ { : . 2 e} ’ . format (absmaxl i s t (ListOfNeutronEnergy))))

945 r e s u l t f i l e . wr i t e (’−−−−The minimum energy o f one neutron i s {}\n\n ’ .
format (’ { : . 2 e} ’ . format (m in l i s t (ListOfNeutronEnergy))))

946
947 r e s u l t f i l e . wr i t e ("−The average number o f c o l l i s i o n s per neutron i s {}

with a standard dev i a t i on o f {} c o l l i s i o n s \n" . format (np . int (
mean l i s t (ListOfNumberOfCol l i s ion)) ,round(ecart_type (
ListOfNumberOfCol l i s ion) ,0)))

948 r e s u l t f i l e . wr i t e (’−−−−The maximum number o f c o l l i s i o n caused by a
s i n g l e neutron i s {}\n\n ’ . format (absmaxl i s t (ListOfNumberOfCol l i s ion
)))

949
950 r e s u l t f i l e . wr i t e (’−The proce s s ends at {}% due to backsca t t e r ing , {}%

due to t ransmis s ion , {}% due to the lack o f \ nneutrons energy to
d i s p l a c e more atoms\n ’ . format (round(100∗ c o u n t l i s t (ListOfEndingMode
, 1) /NumberOfNeutrons , 0) ,round(100∗ c o u n t l i s t (ListOfEndingMode , 2) /
NumberOfNeutrons , 0) ,round(100∗ c o u n t l i s t (ListOfEndingMode , 3) /
NumberOfNeutrons , 0)))

951
952 r e s u l t f i l e . wr i t e (’−−−−For back s ca t t e r i ng only , the average number o f

c o l l i s i o n i s {} with a standard dev i a t i on o f {}\n ’ . format (int (
mean l i s t (L i s tOfCo l l i s i onsForBack)) , int (ecart_type (
L i s tOfCo l l i s i onsForBack))))

953 r e s u l t f i l e . wr i t e (’−−−−For t ransmi s s i on only , the average number o f
c o l l i s i o n i s {} with a standard dev i a t i on o f {}\n ’ . format (int (

98

meanl i s t (L i s tO fCo l l i s i on sForTrans)) , int (ecart_type (
L i s tO fCo l l i s i on sForTrans))))

954 r e s u l t f i l e . wr i t e (’−−−−For lack o f energy only , the average number o f
c o l l i s i o n i s {} with a standard dev i a t i on o f {}\n\n ’ . format (int (
mean l i s t (L i s tO fCo l l i s i on sForLack)) , int (ecart_type (
L i s tO fCo l l i s i on sForLack))))

955
956 r e s u l t f i l e . wr i t e ("−The average depth pene t ra t i on o f neutrons in the

t a r g e t mate r i a l i s {}cm with a standard dev i a t i on o f {}cm\n" . format
(round(mean l i s t (ListOfDepthPenetrat ion) ,2) ,round(ecart_type (
ListOfDepthPenetrat ion) ,2)))

957 r e s u l t f i l e . wr i t e (’−−−−The maximum pene t ra t i on i s {}cm\n\n ’ . format (round
(absmaxl i s t (ListOfDepthPenetrat ion) ,2)))

958
959 r e s u l t f i l e . wr i t e (’−The average l a t e r a l d i s p e r s i o n i s {}mm with a

standard dev i a t i on o f {}mm\n ’ . format (round(mean l i s t (
L i s tO fLa t e r a lD i sp e r s i on) ,0) ,round(ecart_type (
L i s tO fLa t e r a lD i sp e r s i on) ,0)))

960 r e s u l t f i l e . wr i t e (’−−−−The maximum l a t e r a l d i s p e r s i o n i s {}mm\n\n ’ .
format (round(absmaxl i s t (L i s tO fLa t e r a lD i sp e r s i on) ,2)))

961 r e s u l t f i l e . wr i t e (’−The average remaining r e l a t i v e energy o f the neutron
a f t e r a l l the se c o l l i s i o n s i s {} with a \nstandard dev i a t i on o f {}
\n\n ’ . format (round(mean l i s t ([ListOfFinalEnergyOfNeutron [i] /

ListOfNeutronEnergy [i] for i in range (len (ListOfNeutronEnergy))])
, 4) ,round(ecart_type ([ListOfFinalEnergyOfNeutron [i] /
ListOfNeutronEnergy [i] for i in range (len (ListOfNeutronEnergy))])
, 4)))

962
963 r e s u l t f i l e . wr i t e (’− TRIM output s t a t e s that the average o f [a l l the

vacanc i e s caused by a l l PKA of one neutron] i s {} with a \nstandard
dev i a t i on o f {}\n ’ . format (int (mean l i s t (L i s tOfVacanc ies)) , int (

ecart_type (Li s tOfVacanc ies))))
964 r e s u l t f i l e . wr i t e (’−−−−The sum of a l l vacanc i e s caused by {} neutrons i s

{}\n ’ . format (NumberOfNeutrons , SumVacancies))
965 r e s u l t f i l e . wr i t e (’−−−−−−−−For back s ca t t e r i ng only , the average number

o f [above] i s {} with a standard dev i a t i on o f {}\n ’ . format (int (
mean l i s t (ListOfVacanciesForBack)) , int (ecart_type (
ListOfVacanciesForBack))))

966 r e s u l t f i l e . wr i t e (’−−−−−−−−For t ransmi s s i on only , the average number
o f [above] i s {} with a standard dev i a t i on o f {}\n ’ . format (int (
mean l i s t (ListOfVacanciesForTrans)) , int (ecart_type (
ListOfVacanciesForTrans))))

967 r e s u l t f i l e . wr i t e (’−−−−−−−−For lack o f energy only , the average number
o f [above] i s {} with a standard dev i a t i on o f {}\n\n ’ . format (int (
mean l i s t (ListOfVacanciesForLack)) , int (ecart_type (
ListOfVacanciesForLack))))

968
969 r e s u l t f i l e . wr i t e (’−−−−The maximum average vacanc i e s caused by a l l the

PKA of one neutron i s {}\n ’ . format (int (absmaxl i s t (L i s tOfVacanc ies))
))

970 r e s u l t f i l e . wr i t e (’−−−−The minimum average vacanc i e s caused by a l l the
PKA of one neutron i s {}\n\n ’ . format (int (m in l i s t (L i s tOfVacanc ies)))
)

971
972 r e s u l t f i l e . wr i t e (’−For neutron i r r a d i a t i o n : \ n ’)
973 r e s u l t f i l e . wr i t e (’−−−−The t o t a l energy l o s s to b ind ings per neutron i s

{}eV on average ({} %) with a standard dev i a t i on o f {}eV \n ’ . format
(int (mean l i s t (BINDINGListn)) ,round(100∗sum(BINDINGListn) /sum(

99

ListOfNeutronEnergy) ,2) , int (ecart_type (BINDINGListn))))
974 r e s u l t f i l e . wr i t e (’−−−−The t o t a l energy l o s s to e l e c t r o n s (i o n i z a t i o n)

per neutron i s {}eV on average ({} %) with a standard dev i a t i on o f
{}eV \n ’ . format (int (mean l i s t (IONIZATIONListn)) ,round(100∗sum(
IONIZATIONListn) /sum(ListOfNeutronEnergy) ,2) , int (ecart_type (
IONIZATIONListn))))

975 r e s u l t f i l e . wr i t e (’−−−−The t o t a l energy l o s s to phonons per neutron i s
{}eV on average ({} %) with a standard dev i a t i on o f {}eV\n ’ . format (
int (mean l i s t (PHONONListn)) ,round(100∗sum(PHONONListn) /sum(
ListOfNeutronEnergy) ,2) , int (ecart_type (PHONONListn))))

976 r e s u l t f i l e . c l o s e ()
977
978 time2=time . time ()
979
980 print (time2−time1)

100

	Estratto
	Introduction
	Physical framework
	The neutron irradiation
	The ion irradiation

	The neutron Code
	Description of the physics behind the code for single neutron
	Description of the physics behind the code for multiple neutrons

	Requirements and modalities for the execution of TRIM
	Collection and analyses of the data provided by TRIM simulations
	The content of the COLLISION.txt file
	Interpretation of the data contained in the output files of TRIM
	Determination of the respective contribution of ionization, phonons and stored energy for the energy losses distribution
	In all the subcascades generated by PKA
	In the primary cascade
	The issue of the algorithm complexity related to the method of calculus of the energy loss to electron
	A first attempt to sort out theoretically the cascade branching system
	Further attempts to sort out theoretically the cascade branching system

	The creation, implementation and rightness of the algorithms
	The initial case of mono-atomic materials
	The more complex case of multi component materials

	The algorithm by length
	For a mono-atomic target
	For a diatomic target

	The algorithm by whole cascade sorting
	The algorithm using the phonons.

	Results of the neutron and ion codes
	Details on the strategy to assess the damage comparison between the two types of irradiation
	The special case of hydrogen ions irradiation
	Results and comparison
	Qualitative time reduction assessment
	Energy loss distribution results

	Conclusion and future work
	Acknowledgements
	References
	Appendix
	The ion code for mono-atomic targets
	The neutron code for bi-atomic targets

