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Abstract

In recent years, the growing number of satellite launches increased the risk of in-orbit
collision. Mitigation approaches, as Collision Avoidance Manoeuvre, require accurate
prediction of the conjunction event to avoid the occurrence of catastrophic fragmentations
such as the Iridium-33/Cosmos-2251 event, where no action was taken due to outdated
information. The possibility to perform these operations directly onboard would allow a
substantial reduction of the burden on ground infrastructure, improving the sustainability
of the space environment.

In this thesis, a Low Earth Orbit satellite, based on the real COSMO-SkyMed 4, is
equipped with an optical sensor and a statistical analysis is carried out to evaluate the
camera performance in terms of visibility, with respect to a catalogue of potentially haz-
ardous targets, in a realistic scenario simulated with SOPAC (Space Object PAss Cal-
culator). Conjunction events are then identified and measurements generated for the
relative Orbit Determination (OD) process. The filter is based on the analytical Least
Squares, providing results directly at the nominal Time of Closest Approach, without
the need to further propagate the solution. The reference trajectory is computed with
SGP4 to achieve higher accuracy with lower computational time, suitable for a space-
based solution. A classic Unscented Kalman Filter is then used to validate the results,
with observations coming from a set of three ground stations part of the EU SST (EU
Space Surveillance and Tracking) sensor network.

Overall, the proposed method allows for accurate conjunction analysis directly onboard,
in a fraction of the time typically required for refined OD algorithms. In future, it could
provide fully autonomous threat detection and initial orbit determination, greatly im-
proving safety and efficiency of space activities.

Keywords: Relative orbit determination, Optical sensor, Batch filter, Space Surveil-
lance and Tracking, Conjunction analysis, B-plane, SGP4





Sommario

Negli ultimi anni, il crescente numero di lanci di satelliti ha aumentato il rischio di collisioni
in orbita. Metodi di mitigazione, come le manovre anti-collisione, richiedono un’accurata
previsione della congiunzione per evitare il ripetersi di frammentazioni catastrofiche come
l’evento Iridium-33/Cosmo-2251, in cui non è stata intrapresa alcuna azione a causa di
informazioni non aggiornate. La possibilità di effettuare queste operazioni direttamente a
bordo permetterebbe di ridurre notevolmente l’onere delle infrastrutture di terra, miglio-
rando la sostenibilità dell’ambiente spaziale.

In questa tesi, un satellite in orbita bassa, basato su COSMO-SkyMed 4, è equipaggiato
con un sensore ottico e un’analisi statistica viene realizzata per determinare le prestazioni
della camera di bordo in termini di visibilità, rispetto a un catalogo di bersagli poten-
zialmente pericolosi, in uno scenario realistico simulato con SOPAC (Space Object PAss
Calculator). Vengono quindi identificate le congiunzioni e generate le misure per il pro-
cesso di determinazione orbitale relativa. Il filtro è basato sul metodo dei minimi quadrati
analitico, che fornisce risultati direttamente al tempo di minima distanza nominale, senza
la necessità di propagare ulteriormente la soluzione. La traiettoria di riferimento è cal-
colata con SGP4 per ottenere una maggiore accuratezza con un tempo computazionale
inferiore, adatto a un sistema satellitare. Per validare i risultati è stato quindi utiliz-
zato un classico filtro di Kalman Unscented, con osservazioni ottenute da una serie di tre
stazioni di terra parte della rete di sensori EU SST (EU Space Surveillance and Tracking).

Complessivamente, il metodo proposto consente un’accurata analisi delle congiunzioni di-
rettamente a bordo in una frazione del tempo tipicamente richiesto da algoritmi di OD
di tipo refined. In futuro, potrebbe garantire il rilevamento delle minacce e la determi-
nazione orbitale iniziale in modo completamente autonomo, miglirando notevolmente la
sicurezza e l’efficienza delle attività spaziali.

Parole chiave: Determinazione orbitale relativa, Sensore ottico, Filtro batch, Sorveg-
lianza e Tracciamento Spaziale, Analisi della congiunzione, B-plane, SGP4
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1| Introduction

Since the beginning of space race in 1957, human-made satellites and debris, generally
called Resident Space Objects (RSOs), have accumulated in Earth orbit and now pose a
potential threat to any space activity. Today the sector is dominated by scientific and
commercial mission operated directly by an increasing number of private companies. All
the activities left traces not only in the form of active or decommissioned satellites, but also
spent upper stages, fragments generated by lost of mechanical integrity due to the space
environment or anti-satellite tests, alone responsible for thousands of debris. According to
the latest Space Environment Report published by the European Space Agency in 2022,
there are more than 30000 orbiting objects bigger than 10 cm, the majority of which
lying in Low Earth Orbit (LEO) and Geosynchronous Equatorial Orbit (GEO) [8]. Debris
ranging from 1 mm to 1 cm are estimated in hundreds of millions. Due to the high relative
velocities, even smaller objects can cause critical damages to operational satellites, leading
to premature mission ending, or pose actual hazards to human spaceflight missions. Even
worse, bigger debris collisions can be catastrophic events generating clouds of thousands
of smaller objects; one example is the collision between Iridium-33 and Cosmos 2251 that
produced more than 2300 tracked objects in 2009. The evolution of space objects in
all orbits is highlighted in Figure 1.1, where the consequences of these events are clearly
visible. Debris distribution is higher in LEO and GEO orbits, where the majority of Earth
observation and telecommunication satellites typically operate.

In the last 20 years, an average of 11.7 non-deliberate fragmentations occurred every year,
which is reduced to 2.6 if the lifetime of the generated fragments is considered a relevant
factor. Still, the increase in satellite launches poses a significant conjunction risk and,
in absence of serious mitigation approaches, the number of collisions will rise leading in
the long term, to the “Kessler Syndrome” [19]. The number of RSOs would become so
high that any collision would result in a cascade effect further increasing the likelihood
of fragmentations and leading to completely unavailable orbit regions; on this regard,
Figure 1.2 is quite emblematic.
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Figure 1.1: Evolution of number of RSOs in geocentric orbit by object class: UI (Uniden-
tified), RM (Rocket Mission Related Object), RD (Rocket Debris), RF (Rocket Fragmen-
tation Debris), RB (Rocket Body), PM (Payload Mission Related Object), PD (Payload
Debris), PF (Payload Fragmentation Debris), PL (Payload) [8]

Figure 1.2: Number of cumulative collisions in LEO for long-term environment evolution
[8]

Therefore, to mitigate the growth of space objects three solutions have been identified,
involving active debris removal, post mission disposal and Collision Avoidance Manoeuvre
(CAM). While the former is only at study level, the last two are both effective methods
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becoming more and more necessary with the increase of satellite launches. In particular,
CAMs require accurate information about the motion of the potentially hazardous debris
and this is nowadays done thanks to ground stations tracking and observation.

1.1. Motivation and goals

Considering that even impacts from smaller objects can cause serious damage to an oper-
ational satellite, it is of the utmost importance to prevent fragmentation events occurring
from bigger debris collisions. To avoid potentially catastrophic close encounters the or-
bital motion of these objects is frequently updated through Two-Line Element sets (TLE).
A TLE provides a list of orbital elements at a given epoch which can be used to propagate
the object state typically using the simplified perturbation models, SGP4 or SDP4. The
former is the preferred method for LEO trajectories, with orbital period lower than 225
minutes, thanks to a more accurate drag effect implementation.

The probability of collision is the main parameter used to describe a conjunction event and
decide whether a CAM is required. Thus, the value must be estimated with the highest
possible accuracy to avoid a recurrence of events such as the Iridium-Cosmos collision
described before, where the minimum distance predicted by CeleStrak was more than
500 meters and a manoeuvre was deemed unnecessary. This kind of conjunctions occur
numerous times every day and accurate orbit determination processes are more and more
required. With the increasingly high number of satellites in orbit, the burden on ground
infrastructure may lead to slower update rate for the estimated motion and higher risk of
collision. For this reason, in the last years efforts have focused on autonomous satellite
navigation, capable of performing observations and computing the probability of collision
directly onboard. Ground infrastructure would still be responsible of the asset motion
determination, while the satellite could receive the TLEs, detect potential threat and
more accurately analyze the conjunctions.

The goal of this research is thus to understand the performance of an onboard optical
sensor in terms of target visibility in a given region of space. The expected outcome
is a statistical analysis covering various parameters to identify the advantages and the
limitations of space-based observations with respect to typical ground stations. Once
the nominal close encounters are identified, measurements are simulated and the pro-
posed algorithm is used to perform refined orbit determination (ROD) and conjunction
analysis; the objective is to accurately estimate target state and probability of collision,
comparable to the results provided by a typical ground-based network in a fraction of the
computational time.
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1.2. State of the art

The assessment of a sensor suite performance are not always evaluated from real data and,
in case of new design solutions, the possibility to accurately simulate the space environ-
ment along with measuring instruments is extremely valuable. At European level, three
different tools have been developed to provide data for Space Surveillance and Tracking
(SST) services: BAS3E (Banc d’Analyse et de Simulation d’un Systeme de Surveillance de
l’Espace - Simulation and Analysis Bench for Space Surveillance System), S3TOC (Span-
ish Space Surveillance and Tracking Operations Center) and SENSIT (Space Surveillance
Sensor Network Simulation Tool). The first one is a complete SST framework developed
by CNES (Centre Nationale d’études spatiales) implementing both ground and space-
based sensors with object detection, tracking, orbit determination and maintenance of
debris catalogue [23]. Similarly, S3TOC provides objects catalogue maintenance from
SST observations obtained through the Spanish Space Surveillance and Tracking Sensor
Network S3TSN with sensor planning and fragmentation messages [12]. Finally, SENSIT
is an Italian software developed by Politecnico di Milano in collaboration with the Italian
Space Agency and SpaceDyS company, providing similar functionalities for the modeling
of sensor networks and catalogue build-up and maintenance; G. Purpura et al. provided
an overview of the three software with a focus on SENSIT [26].

The knowledge of debris motion requires the implementation of filtering algorithms, which
process measurements to obtain position and velocity estimates. Various methods have
been developed in the last two centuries, with the Least Squares being one of the oldest
and most famous technique. The first exposition was published by Legendre in 1805, while
the application for calculating celestial bodies orbits was done by Gauss in 1809 (though
he claimed to have already developed it in 1795) [14]. The other big family of filters is
called sequential, allowing to process observations in real-time. The first mathematical
description was done by R.E. Kalman in 1960 and was soon adopted in space missions
as the Apollo program, with different variants developed in the following years, the most
famous being the Extended Kalman Filter (EKF) [33]. Tapley et al. made a quite com-
prehensive research on the argument, along with typical reference systems and orbital
motion modeling [27]. If a satellite is equipped with one or more navigation sensors it can
directly take measurements and solve the orbit determination problem onboard, as done
by J.S. Ardaens and G. Gaias as part of the AVANTI experiment (Autonomous Vision
Approach Navigation and Target Identification). A technological demonstrator was con-
ducted in 2016 successfully showing the validity of the proposed algorithm implemented
on the Earth observation satellite BIROS. AVANTI adopted a Least Square method for
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the filtering of angles-only measurements provided by the onboard camera [17].

Eventually, the analysis of a close encounter between two objects is done through a bi-
dimension reference frame, defined only by two positional coordinates and typically re-
ferred to as b-plane; the mathematical description is provided by Valsecchi et al. for
asteroids or comets, though it is perfectly valid also for non-massive objects, like satellites
and debris [31]. The computation of the probability of collision is extremely complex if
an exact value is required, taking into account the two objects shapes and appendages.
Chan provided an elegant solution approximating the satellite as spheres, greatly simpli-
fying the probability calculations with sufficiently accurate results for most preliminary
analysis [3].

In this thesis, the space-based optical sensor is realistically simulated with SOPAC (Space
Object PAss Calculator), a Python library developed as a core the SENSIT software for
the computation of target passages over a given sensor network. A statistical analysis is
then carried out to evaluate the performance of the onboard camera with respect to a cat-
alogue of hazardous objects; this would provide an important insight on the observational
opportunities and target visibility of space-based systems. A batch filter, similar to the
one adopted for the AVANTI experiment, is thus implemented to perform relative OD
and conjunction analysis, computing the probability of collision directly onto the B-plane
at the TCA.

1.3. Thesis outline

The research is divided in four main parts. In Chapter 2 the fundamental concepts and
the main formulas needed for the addressed problem are described. The first section is
devoted to the orbit determination problem, where the typical measurement systems and
reference frames are presented, along with the filtering methods used in this thesis; Section
2 provides a mathematical description of conjunction analysis and collision probability.
The first part of the simulation is shown in Chapter 3, where the scenario is defined and the
optical sensor performance are evaluated in the subsequent sensitivity analysis, allowing
to determine any possible correlation with respect to the considered object catalogue.
The results of the statistics can be used to identify closer conjunction events, for which it
is deemed necessary to perform onboard orbit determination. The adopted methodology
is fully described in Chapter 4 with the required assumption and mathematical models,
while in Chapter 5 the results of the relative orbit determination and conjunction analysis
are shown and discussed; a similar ground-based scenario is also defined to validate the
onboard simulation and compare the two solutions in terms of computational time and



6 1| Introduction

estimation accuracy. Eventually, work conclusions and possible future outcomes and
developments are drawn in Chapter 6. In Appendix A the Unscented Transform is briefly
presented to deepen the UKF concepts, while in Appendix B a more detailed description
of orbital motion modeling is presented, to gain further insight on the main perturbations,
how they can be modeled and affect the performance of an estimation algorithm.
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2| Fundamentals

Here are presented the fundamentals of orbit determination and conjunction analysis,
needed for the specific methodology developed in this thesis and described in Chapter 4.
The orbit determination (also referred as OD) is the problem of estimating the state of
an object by means of measurements acquired from one or more sensors. However, the
mathematical model adopted for the reference trajectory propagation does not represent
exactly the true motion, mainly due to unmodeled forces and approximated physical
constants. Moreover, also measurements are affected by random and systematic errors.
The result is a statistical optimization problem, which aims at estimating the state of a
spacecraft at a given epoch with a non-zero covariance matrix. The typical measurements
are nonlinear functions of the state and are generally classified according to the sensor
type. Radars can measure two angles, azimuth and elevation, in addition to the range and
range-rate. On the contrary, optical sensors provide angles-only measurements, namely
right ascension and declination; the description and mathematical models are detailed
in Section 2.1.1. The ability to more accurately determine the motion of an orbiting
objects is fundamental when dealing with satellite conjunctions, where the probability
of collision becomes non-negligible. It is thus necessary to perform OD to achieve a
more accurate knowledge of the relative position and determine if a collision avoidance
manoeuvre (CAM) is actually needed. In a conjunction analysis, the two spacecrafts are
represented in a specific bi-dimensional frame, defined B-plane, which allows to describe
the event with only two positional coordinates. This method is widely used thanks to the
lower computational cost required for CAM design when dealing with a reduced object
state.

2.1. Orbit determination

If the state X0 of a spacecraft orbiting the Earth is known at a certain epoch t0, the equa-
tions of motion can be integrated to determine the state at an arbitrary time t. However,
as mentioned above, both the initial state, the physical constants and the forces specifica-
tion of the differential equation system, are never exactly known. The resulting predicted
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trajectory will diverge from the actual motion, as shown in Figure 2.1. Therefore, the
spacecraft is tracked and observed to gather enough measurements and compute a more
accurate estimation of the state. Considering the nonlinearities described above, a typical
approach is based on linearization and consequent estimation of the displacement with
respect to the reference state.

Figure 2.1: Error evolution with respect to the unperturbed orbit due to a 1 meter radial
perturbation at t = 0. The three components are radial (R), tangential (T) and normal
to the orbit plane (N) [27].

2.1.1. Measurements

The most common tracking stations available to date are based on radar or optical sensors.
They differ mainly on the type of measurements and the specific reference frames used
for their description, briefly outlined below.

Optical sensors

Optical telescopes measure the angular position of a spacecraft in an inertial frame, typi-
cally the Earth Centered Inertial, or simply ECI. The ECI is a fixed frame with respect to
the stars, with zero acceleration of its origin, located in the center of the Earth. A com-
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mon coordinate system for Earth orbiting objects is the J2000, also known as EME2000
or ICRF (International Celestial Reference Frame)1 [25]. The x − y plane lies on the
equator, with the x axis directed towards the intersection between the equator and the
ecliptic plane, called Vernal equinox. The z axis is normal to the mean equator at epoch
J2000 TDB (Barycentric Dynamical Time)2. This is approximately coincident with the
Earth’s spin axis orientation at that specific epoch. Eventually, the y axis complete the
right-handed frame as the cross product between z and x.

Given the celestial sphere, the celestial equator and the projection of the spacecraft on
the sphere, two angles can be defined to describe the position vector in the inertial J2000
frame, Right Ascension and Declination (also referred to RADEC ):

• Right Ascension, α: Angle measured from the Vernal point to the hour circle, along
the equator, defined from 0 to 360 degrees.

• Declination, δ: Angle measured along the hour circle, positive towards the z axis,
defined from -90 to 90 degrees.

Figure 2.2 shows the adopted convention for the definition of the RADEC.

Figure 2.2: Right Ascension and Declination definition [5]

1Actually the ICRF is defined by the adopted locations of 295 radio source and it is therefore slightly
different from the J2000 by a very small rotation of less than 0.1 arc-seconds. This variation is often
considered negligible, and the two systems are in fact regarded as identical.

2The TDB is related to the International Atomic Time (TAI), a time scale based on cesium atomic
clocks. Coordinated Universal Time (UTC) is derived from TAI with the main difference being the
introduction of leap seconds to maintain synchronization. For further details on time definitions, cross-
reference to [27]
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Optical sensors can operate in two possible modes:

• Staring, where the telescope compensate for the rotation of the Earth. As a result,
stars are seen as fixed dots, while spacecrafts as small segments, called tracklets.

• Tracking, where the telescope follows the orbiting object, which is now seen as a
dot.

The angular information is gathered by comparing the image with the RADEC of known
stars taken from a catalogue (astrometric reduction). Since the camera image has not
infinite resolution there is uncertainty regarding the exact values of the angles associated
to a certain star. Moreover, measurements are provided at specific epochs, but the size
of the tracklet is linked to the camera exposure time, which leads to uncertainty on the
exact epoch to be assigned. Overall, typical errors for optical sensors are still extremely
low, in the range of few arcseconds. Their high accuracy, coupled with the low power
consumption and high detection range, makes them widely used both for ground and
space-based navigation.

Radar sensors

Radar sensors are based on the transmission of a highly directional signal towards the
spacecraft and its reception with a sufficiently high power, or SNR (Signal to Noise Ratio),
to be effectively detected. Once the signal is correctly received, the object is assigned with
the pointing angles of the radar. However, it is not possible to distinguish the direction
inside the Field of View (FoV) which, albeit small, is always greater than zero. This leads
to an important source of error in the angular measurement, in the order of 0.1 degrees
or more.

Due to the peculiar working principle, radar measurements are often described in local,
non inertial frames, also called topocentric. A topocentric reference frame is a coordinate
system attached to a point on the surface of the Earth and it is thus useful in the descrip-
tion of satellite motion from a ground-based observer. A typical, earth fixed, non-inertial
topocentric frame is shown in Figure 2.3 and defined as follows:

• zt along the local vertical direction, positive outwards

• xt positive eastwards

• yt positive northwards
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Figure 2.3: Topocentric coordinates xt, yt, zt. rs is the vector identifying the origin of
the coordinate system [27]

The position of a satellite expressed in this topocentric system as (x, y, z)t can be related to
two angular measurements, the most common being Azimuth and Elevation, as expressed
in Equation (2.1).



sin(El) =
zt
rt
, −90◦ ⩽ El ⩽ 90◦

sin(Az) =
xt

rxy
, 0◦ ⩽ Az ⩽ 360◦

cos(Az) =
yt
rxy

.

(2.1)

where rxy =
√
x2
t + y2t . Azimuth is measured from North in a eastward direction, while

Elevation is measured from the local horizon, (x, y)t, plane. Despite their lower accuracy,
radars can provide two additional measurements, range and range-rate. The former is
simply the distance between the station and the spacecraft at a given epoch, while the
second if given by the first derivative of range. Hence, they are both scalar functions of
the state and are generally computed as in Equation (2.2), where subscript I refers to
instrument position and velocity.



12 2| Fundamentals


ρ = ((r − rI) · (r − rI))

1/2

ρ̇ =
(v − vI) · (r − rI)

ρ
.

(2.2)

Accuracy on these quantities is generally much higher, respectively less than 50 m and
about 1 m/s, partly offsetting the lower angular resolution. Still, radars have limited
range capabilities and high power consumption, which makes them less suitable for a
space-based platform. The relation above refers to the particular case of one-way range,
such that the ground stations operates as transmitter while the spacecraft is equipped
with a receiver (or vice versa). For the more general two-way range the radar can be
defined as mono-static or bi-static. In the former, both transmitter and receiver (TX
and RX) locations are coincident, and the measured range is twice the effective distance.
On the other hand, for a bi-static radar, TX and RX have different locations and the
measured range is given by the summation of the distance transmitter-spacecraft and
spacecraft-receiver.

2.1.2. The linear navigation problem

As shown in the previous section, the nature of the measurements and the spacecraft
dynamics inevitably introduce nonlinear relationships, written in general form in Equation
(2.3).


Ẋ = F (X, t), X(tk) = Xk

Yi = G(Xi, ti) + ϵi, with i = 1, ..., l

(2.3)

where Xk is the unknown state vector at epoch tk of dimension n, while Yi for i = 1, ..., l,
is a p-dimensional vector of observations and ϵ represent the observational error. The
total number of measurements is thus m = p × l >> n and they are used to compute
the best estimate of Xk. Note that in general, at each observation time, there are fewer
measurements than the state unknown dimension. The solution to the OD problem under
these considerations is often referred to nonlinear navigation problem.

However, if the relation between the state and the observation vectors can be linearized,
then the estimation process is greatly simplified and become more suited for a low com-
putational cost algorithm. Given a reference trajectory X∗(t) sufficiently close to the
real trajectory X(t), it is possible to expand the actual motion through a Taylor series
about the reference. Truncating to the first order, the state deviation from the nominal
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can be described by a set of linear Ordinary Differential Equations (ODEs) with time-
dependent coefficients. Similarly, expanding the observational equation, it is possible to
obtain a linear relation also between measurement and the state deviations. As a result,
the navigation problem becomes linear and its solution is given by the deviation between
the desired true state and the known reference one.

The resulting procedure is described hereafter, defining the state and observation devia-
tions as: 

δx = X −X∗,

δyi = Yi − Y ∗
i

(2.4)

Expanding both Equations (2.3) in Taylor series and truncating to the first order, one
gets:


Ẋ(t) = F (X, t) ≈ F (X∗, t) +

[
∂F (t)

∂X(t)

]∗
(X(t)−X∗(t))

Yi = G(Xi, ti) + ϵi ≈ G(X∗
i , ti) +

[
∂G)

∂X

]∗
i

(X(ti)−X∗(ti))

(2.5)

The term
[
∂F (t)

∂X(t)

]∗
represent the jacobian evaluated along the nominal trajectory. Con-

sidering the reference dynamics as Ẋ∗ = F (X∗, t) it is possible to write the first equation
in the form of deviations. The same procedure is applied to the second relation to obtain
the final linear expression of the navigation problem, as shown in Equation (2.6).


δẋ(t) = A(t)δx(t)

δyi = H̃iδxi + ϵi, i = 1, ..., l

(2.6)

where A(t) =

[
∂F (t)

∂X(t)

]∗
and H̃i =

[
∂G

∂X

]∗
i

.

The general solution to the first equation is typically expressed as:

δx(t) = Φ(t, tk)δxk, with δxk = δx(tk) (2.7)

The matrix Φ(t, tk) is called State Transition Matrix, or STM and it will be treated
separately in the next section.
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2.1.3. The State Transition Matrix

The general spacecraft dynamics shown in Equation (2.3) allows to compute the state
at any given epoch with its knowledge at a time tk. However, the initial condition may
be affected by uncertainties and perturbations, which are then propagated through the
integration process. In this scenario, the solution at time t is given by the flow of the
ODE, generally expressed as Equation (2.8).

X(t) = ϕ(X0, t0; t) (2.8)

However, the analytical solution to the spacecraft equations of motion exist only for
keplerian orbits in implicit form. In general, the computation of the flow is particularly
difficult and the ODEs are integrated numerically. When dealing with perturbed motion,
this solution is highly inefficient as dynamics is integrated for all the perturbed initial
conditions.

A possible alternative is represented by linearization about the unperturbed motion and
can be applied if the displaced trajectory is “close enough” to the reference, which trans-
lates to:

• Avoiding highly nonlinear dynamics

• Small initial displacements

• Short term propagations.

Let’s consider the flow of the perturbed motion as:

X(t) + δx(t) = ϕ(X0 + δx0, t0; t) (2.9)

Expanding to the first order with respect to δx0:

ϕ(X0 + δx0, t0; t) ≈ ϕ(X0, t0; t) +
∂ϕ

∂x0

(X0, t0; t)δx0 (2.10)

Equation (2.10) is then substituted in (2.9), to obtain:

X(t) + δx ≈ ϕ(X0, t0; t) +
∂ϕ

∂x0

(X0, t0; t)δx0 (2.11)

By definition X(t) = ϕ(X0, t0; t) and the first terms of the left and right hand side of
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Equation (2.11) cancel out, leading the final expression shown in Equation (2.12).

δx =
∂ϕ

∂x0

(X0, t0; t)δx0 (2.12)

The term
∂ϕ

∂x0

(X0, t0; t) is the jacobian of the flow and it is simply called State Transition

Matrix, expressed as Φ(X0, t0; t) or simply Φ(t0, t). Although it is only an approximated
solution, the STM is a linear analytical map between small displacements at two given
epochs. Therefore, it allows to easily compute the final displacement from a reference
trajectory, given an initial perturbation, without the need to fully integrate the nonlinear
dynamic ODEs. Given an initial state X̃0 displaced with respect to the nominal solution,
the process is easily exemplified:

• Compute δx0 = X̃0 −X0

• Use the linear map of the STM δx = Φ(t0, t)δx0

• Get the displaced solution as X̃ = X + δx

Finally, applying the map at t = t0 it is possible to find the value of Φ(t0, t0), which is
simply equal to a 6× 6 identity matrix.

Computation of the STM

The State Transition Matrix can be computed according to two different method: finite
differences and variational approach. The latter is here presented.

Given the linearized dynamics expression shown in the first Equation (2.6), the general
solution will have the form:

δx(t) = Φ(t0, t)δx0 (2.13)

Computing the first derivative of Equation (2.13) and rearranging:

Φ̇(t0, t)δx0 = δẋ(t) (2.14)

Substituting δẋ(t) from the linearized equation of motion and recalling the general solu-
tion shown in Equation (2.13), it is possible to write:

Φ̇(t0, t)δx0 = A(t)Φ(t0, t)δx0 (2.15)

Since this must held true for any initial displacement δx0, the final expression of the STM
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dynamics becomes:

Φ̇(t0, t) = A(t)Φ(t0, t) (2.16)

with initial condition Φ(t0, t0) = I6×6, leading to a system of 36 ODEs.

However, to integrate the above system, the jacobian A(t) must be computed along the
reference trajectory. Therefore, the complete system requires the integration of the space-
craft nominal motion, as shown in Equation (2.17).

Ẋ(t) = F (X, t)

Φ̇(t0, t) = A(t)Φ(t0, t)

with initial conditions:

X(t0) = X∗
0

Φ(t0, t0) = I6x6

(2.17)

The result is thus a system of 42 scalar ODEs.

Although the variational approach provides the exact STM, it needs the computation of
the jacobian (performed through symbolic manipulators) and it can’t be applied with a
discontinuous dynamics with respect to the state.

Properties of the STM

The most useful properties of the State Transition Matrix are stated below and derived
directly from Equation (2.13) and (2.14).

• Φ(tk, tk) = I6×6

• Φ(ti, tk) = Φ(ti, tj)Φ(tj, tk)

• Φ(ti, tk) = Φ−1(tk, ti)

If the matrix A(t) can be written in partitioned form as shown in Equation (2.18), then
the following properties hold true for the submatrices: AT

1 = −A4, A
T
2 = A2 and AT

3 = A3.

A(t) =

[
A1 A2

A3 A4

]
(2.18)
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Then also the STM can be similarly partitioned and its inverse can be written as:

Φ−1(tk, t) =

[
ΦT

4 −ΦT
2

−ΦT
3 ΦT

1

]
(2.19)

Application of the STM to the linear navigation problem

From Equation (2.6) it is clear that for each observation correspond an unknown state
deviation δx at time ti. It is thus desirable to relate each measurement to the state at a
single epoch by means of the STM. This allows to reduce the number of unknowns form
l × n to just n. Therefore, remembering the linear map of Equation (2.13), it is possible
to substitute δxi = Φ(tk, ti)δxk into the measurement equation. The result, for each
observation, takes the form: 

δy1 = H̃1Φ(tk, t1)δxk + ϵ1

δy2 = H̃2Φ(tk, t2)δxk + ϵ2

...

δyl = H̃lΦ(tk, tl)δxk + ϵl

(2.20)

Overall, there are m = p× l measurements and only δxk as unknown, with dimension n.

Equation (2.20) can be written in a more convenient form defining:

δy =


δy1

...
δyl

 ; H =


H̃1Φ(tk, t1)

...
H̃lΦ(tk, tl)

 ; ϵ =


ϵ1
...
ϵl

 (2.21)

Equation (2.22) is a system of m equations in n + m unknowns, due to the presence of
the error vector ϵ. Indeed, δy is a m× 1 vector, δxk n× 1 and H m× n. Remembering
that m = p × l the total number of unknowns is actually n state components plus m

observation errors. The Least Squares method presented in Section 2.1.4 provides the
condition on this last unknown to find a solution for state deviation at time tk.

δy = Hδxk + ϵ (2.22)
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2.1.4. The Least Squares solution

The Least Square method is part of the family of OD filters that process an entire mea-
surement batch to find the spacecraft state at a specific epoch. They are opposed to
the well-known sequential filters that process observations sequentially, providing the es-
timated state at each step; they will be described in more details in the next section.

The Least Square solution aims at finding the value of the state x̂k that minimizes the sum
of the squares of the observation residuals, as shown in Equation (2.23). Mathematically,
the problem can be expressed with the following statement:

find x̂k that minimize J =
1

2
ϵTϵ (2.23)

The choice of the sum of the squares allows to have an always positive J unless each
observation error is equal to zero.

Substituting ϵ from Equation (2.22), the performance index becomes:

J(x) =
1

2
(δy −Hδxk)

T (δy −Hδxk) (2.24)

J is now a quadratic function of x and a unique minima exists only if:

∂J

∂xk

= 0, and δxT
k

∂2J

∂x2
k

δxk > 0 for all δxk ̸= 0 (2.25)

Imposing the first derivative equal to zero allows to find the value of the best estimate of
the state deviation, written as δx̂k:

(HTH)δx̂k = HT δy (2.26)

The Least Square solution to the navigation problem can be written by inverting the
matrix HTH, called normal matrix, as shown in Equation (2.27). The invertibility condi-
tion is found imposing the second requirement of Equation (2.25), which implies that the
second derivative of J with respect to the unknown state is symmetric and positive defi-
nite. In particular, it can be found that ∂2J

∂x2
k
= HTH. Matrix HTH is a n× n symmetric

matrix and it satisfies the requirement only if it is full rank, thus at least n independent
observations are needed.

δx̂k = (HTH)−1HT δy (2.27)

Finally, it can be noted that the matrix (HTH)−1HT is actually the pseudo-inverse of H.
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The above solution lacks any statistical information regarding the measurements errors.
The minimum variance estimate here presented allows to overcome this limitation and
compute the covariance associated to the state estimate.

Minimum variance estimate

The minimum variance estimate is based on the main assumption that the observation
error ϵ is a random vector with zero mean and assigned covariance.

E[ϵ] =


E[ϵ1]

...
E[ϵl]

 = 0, E[ϵϵT ] =


R11 R12 . . . R1l

RT
12 R22 . . . R2l

... . . . ...
RT

1l . . . Rll

 = R (2.28)

In general diagonal terms of R are coincident, while off-diagonal terms are set to to zero,
though this is not a necessary condition, as Rij ̸= 0 (i ̸= j) may be associated to time-
correlated observation errors (measurement at ti is affected by measurement at tj).

Given the measurement equation (2.22), the problem statement requires finding the linear,
minimum variance estimate δx̂k of δxk.

From the first requirement, the solution must be a linear combination of the observation
vector:

δx̂k = Mδy (2.29)

Moreover, the solution must be valid also for the ideal case of perfect measurements,
ϵ = 0, and perfect knowledge of δxk. Under this consideration, the system can be written
as: 

δy = Hδxk

δxk = Mδy

(2.30)

Substituting δy in the second equation leads to the constraint shown in Equation (2.31).

MH = I (2.31)

Therefore, the problem now requires to find M that minimize the variance of the spacecraft
state xk.

Pk = E[(δxk − δx̂k)(δxk − δx̂k)
T ] (2.32)
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The resulting performance index is expressed in Equation (2.33), with the constraint
MH = I enforced through the matrix of Lagrange multiplier Λ.

J =
1

2
E[(δxk)− δx̂k)(δxk)− δx̂k)

T ] + Λ(I −MH) (2.33)

The previous equation is generally written as a scalar function by imposing the minimiza-
tion of the variance trace.

From the general Equation (2.22) substituted in (2.29), one gets:

δx̂k = MHδxk +Mϵ (2.34)

which is then replaced in the expression of Pk shown in Equation (2.32) to obtain the
relation for the variance matrix:

Pk = MRMT (2.35)

Therefore, the final expression of the index J is given by Equation (2.36).

J =
1

2
tr[MRMT ] + tr[Λ(I −MH)] (2.36)

with the necessary condition for the minimization of J being:

•
∂J

∂M
= 0

•
∂J

∂Λ
= 0

Which leads to the set of Equations (2.37), applying simple matricial algebra.
MR− ΛTHT = 0

I −MH = 0

(2.37)

Substituting the first in the second and rearranging conveniently, the final expression of
M is shown in Equation (2.38).

M = (HTR−1H)−1HTR−1 (2.38)

Reminding Equation (2.29), the minimum variance solution and the estimated state co-
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variance are expressed as: 
δx̂k = (HTR−1H)−1HTR−1δy

Pk = (HTR−1H)−1

(2.39)

It may happen that an estimate of the spacecraft state and covariance are available at a
previous time tj and they can be used to improve the Least Square solution. The problem
of a priori information is reduced to the already analyzed minimum variance considering
the previous state as an observation of δxk with noise Rk = P−

k . The augmented variables
are shown in Equation (2.40).

δye =

(
δy

δx̂−
k

)
, ϵe =

(
ϵ

ηk

)
, He =

[
H

I

]
, Re =

[
R 0

0 P−
k

]
(2.40)

where δx̂−
k is the a priori state deviation, ηk the unknown error vector and P−

k the a priori
covariance.

Therefore, the problem can be written in the classic form as shown by Equation (2.41):

δye = Heδxk + ϵe (2.41)

Recalling the minimum variance estimate, the a posteriori state deviation and covariance
matrix is expressed in Equation (2.42).

δx̂+
k = (HTR−1H + (P−

k )−1)−1(HTR−1δy + (P−
k )−1δx̂−

k )

P+
k = (HTR−1H + (P−

k )−1)−1

(2.42)

It is interesting to notice that there are two limiting cases to this solution:

• Very poor a priori information, leading to P−
k → ∞

• Very poor measurements, leading to R → ∞

In the first case (P−
k )−1 will tend to zero and the solution will be the one shown in

Equation (2.39). On the contrary, if the measurements are affected by large errors, with
R−1 → 0, the solution becomes equal to the a priori estimate.
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2.1.5. Sequential filters

In sequential filters measurements are processed as soon as they are received. For a generic
step tk−1 to tk, two passages are performed:

• prediction: uncertainty propagation from k − 1 to k. The covariance enlarges

• update: computation of covariance P+
k , smaller than P−

k .

The more measurements are available, the closer to zero the covariance gets, as shown in
Figure 2.4.

Figure 2.4: Typical covariance trace trend in a sequential filter.

The most famous sequential filter is the Kalman filter, first developed in 1960. Since
then, many variations were provided to offer improved performance and accuracy. The Un-
scented Kalman Filter (UKF) here presented, compared to the popular Extended Kalman
Filter (EKF), provides greater accuracy in estimating the mean and covariance and better
convergence performance. Nevertheless, the UKF is more computationally expensive and
is therefore used for the orbit determination process performed by ground stations.

Unscented Kalman Filter

The UKF is based on the Unscented Transform (again, UT for simplicity) to predict
mean and covariance of the state and of the measurements. The UT allows to abandon
the linear method in order to achieve a greater prediction accuracy, without resorting to
a highly expensive Monte Carlo simulation. An important difference with respect to a
classic Kalman filter lies in the computation of the measurements mean and covariance,
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as they can’t be derived from the nonlinear relation (2.43) and are rather computed from
the propagated sigma points.

ŷk = G(x̂k, tk) (2.43)

A more detailed description of the Unscented Transform is presented in Appendix A.
For a generic step tk−1 → tk, the UKF is summarized in Algorithm 2.1, given a priori
information x̂+

k−1, P
+
k−1, measurements yk and matrix Rk.

Algorithm 2.1 Unscented Kalman Filter

1: Compute sigma points χi,k−1 and the associated weights W
(m)
i and W

(c)
i

2: Prediction steps: ↓
3: for each sigma point do
4: Propagate the sigma point to time tk: χ̇i,k = F (χi,k, tk)

5: Compute the sigma points of the predicted measurements: Yi,k = G(χi,k)

6: end for
7: Compute the a priori mean state: x̂−

k =
∑2n

i=0W
(m)
i χi,k with n the state dimension

8: Compute the a priori state covariance: P−
k =

∑2n
i=0 W

(c)
i [χi,k − x̂−

k ][χi,k − x̂−
k ]

T +Qk

9: Compute the a priori measurements mean: ŷ−
k =

∑2n
i=0W

(m)
i Yi,k

10: Update step: ↓
11: Compute measurement covariance: Pyy,k =

∑2n
i=0W

(c)
i [Yi,k − ŷ−

k ][Yi,k − ŷ−
k ]

T +Rk

12: Compute cross-covariance: Pxy,k =
∑2n

i=0 W
(c)
i [χi,k − x̂−

k ][Yi,k − ŷ−
k ]

T

13: Compute Kalman gain: Kk = Pxy,kP
−1
yy,k

14: Compute a posteriori mean and covariance:
x̂+
k = x̂−

k +Kk(yk − ŷ−
k )

P+
k = P−

k −KkPyy,kK
T
k

Qk is the process noise and is implemented to take into account the difference between
the adopted dynamical model and the real motion. Indeed, the more observations are
available, the closer to zero the covariance gets (as in Figure 2.4); in the limiting case,
the kalman gain tends to zero and the estimation becomes insensitive to any new mea-
surement. If the process noise is considered as a white Gaussian noise then it is possible
to directly sum it to the compute covariance P−

k [11].

As mentioned at the beginning of this chapter, the orbit determination problem is never
solved exactly, due to the mathematical model, observation errors, numerical accuracy and
so on. Therefore, it may be advantageous to simply neglect unknown (or poorly known)
model parameters to reduce the computational cost and avoid observability problems
when trying to estimate their value. In this thesis, the primary spacecraft motion cannot
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be estimated with the linearized model proposed in Chapter 4, and it is thus considered
to be fully known. This is a strong assumption that must be considered in the post-
processing of the results. A possible technique to deal with this problem is thus presented
in the next section.

2.1.6. The Consider Covariance Analysis

The Consider Covariance Analysis (CCA) aims at assessing the impact of non-estimated
parameters, neglected during the filtering process. The state vector is thus estimated with-
out considering those parameters and their uncertainty is then included in the covariance
matrix [27].

Let’s consider a generalized state vector z and resulting mapping matrix H:

δz =

(
δx

c

)
, H = [Hx|Hc] (2.44)

δx is the n× 1 vector of the secondary spacecraft state deviations, while c if the vector of
uncertain parameters that will not be estimated. For the case at study, c is the primary
spacecraft state deviation from the reference.

The measurement model can thus be written as:

y = Hxδx+Hcc+ ϵ (2.45)

Assuming that a priori estimates δx̄ and c̄ are available, it follows:

δx̄ = δx+ η, c̄ = c+ β (2.46)

The statistical properties of the errors η and β are presented in Equation (2.47).



E[η] = E[β] = 0,

E[ηηT ] = P̄x,

E[ββT ] = P̄cc,

E[ηϵT ] = E[βϵT ] = 0,

E[ηβT ] = P̄xc.

(2.47a)

(2.47b)

(2.47c)

(2.47d)

(2.47e)

where P̄x and P̄cc are the a priori covariances of the state and the parameter, while P̄xc is
the a priori cross-correlation covariance.
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The observation error now includes both β and η, while the augmented measurements
vector ỹ contains the a priori estimates of δx and c. It is therefore possible to find z with
a classic Least Squares method, as shown in Equation (2.48).

z = (HT
z R̃

−1Hz)
−1HT

z R̃
−1ỹ (2.48)

where:

R̃−1 =

R
−1 0 0

0 M̄xx M̄xc

0 M̄cx M̄cc

 (2.49)

The submatrices are then computed as in Equation (2.50).


M̄xx = (P̄x − P̄xcP̄

−1
cc P̄ T

xc)
−1,

M̄cc = (P̄cc − P̄ T
xcP̄

−1
x P̄xc)

−1,

M̄xc = −M̄xxP̄xcP̄
−1
cc .

(2.50a)

(2.50b)

(2.50c)

The solution provided by Equation (2.48) allows to compute both ĉ and Pcc. The consider
estimate is obtained by fixing them to their a priori values c̄ and P̄cc. The Algorithm 2.2
shows the required passages for the implementation of the Consider Covariance Analysis
with the Least Squares filter described before.

Algorithm 2.2 Consider Covariance
1: Mxx = HT

x WHx + M̄xx

2: Mxc = HT
x WHc + M̄xc

3: Mcc = HT
c WHc + M̄cc

4: Px = M−1
xx

5: Sxc = −PxMxc

6: Nx = HT
x Wδy + P̄xδx̄

7: δx̂ = M−1
xx Nx −M−1

xx Mxcc̄

8: Pxx = Px + SxcP̄ccS
T
xc

Defining:

• W diagonal weight matrix for the Least Square filter, given by the inverse of the
sensor accuracy squared

• Px covariance matrix resulting from the Least Squares filter
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• δx̄ a priori spacecraft state estimate

• c̄ a priori consider estimate

• δx̂ the estimate including the consider parameter

• M−1
xx Nx the solution of the Least Squares, not including c̄

Generally, the a priori cross-covariance P̄xc can be set to zero, allowing to slightly simplify
the analysis. Pxx is the augmented target covariance and, by definition of Sxc, is always
greater than Px.

2.2. Conjunction Analysis

A conjunction is a close encounter event between two orbiting objects, in general an oper-
ative spacecraft called primary and an uncooperative one called secondary. As described
in the previous sections, the state of a spacecraft is never exactly known and this leads
to uncertainty in the true relative position. Therefore it is necessary to analyze each
conjunction event and determine the possible hazard in terms of probability of collision.
If the computed value is higher than a given threshold, a collision avoidance manoeuvre
is performed.

2.2.1. B-plane definition

This thesis focus on Low Earth Orbit spacecrafts, where the relative velocities are suffi-
ciently high to consider the encounter as short-term. The duration is expressed as:

tc =
2ση

∥vp − vs∥
(2.51)

where ση is the covariance along the relative velocity vector, vp and vs the primary and
secondary velocity vectors in ECI coordinates. A conjunction is defined as short-term if
the encounter duration is much smaller than the primary orbit period Tp, as shown in
Equation (2.52).

ε =
tc
Tp

≪ 1 ≈ 10−3 (2.52)

Under this assumption, the two spacecrafts motion can be approximated as uniform rec-
tilinear, allowing to simplify the expression of the collision probability.

To further streamline the computation, a different conjunction coordinate system can be
defined, embedding both satellites at the Time of Closest Approach (TCA) and centered
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on the secondary, as shown in Equation (2.53) and Figure 2.5.

uξ =
vs × vp

∥vs × vp∥
, uη =

vp − vs

∥vp − vs∥
, uζ = uξ × uη. (2.53)

The (ξ, ζ) plane is typically referred to as B-plane, with rotation matrix from ECI defined
as:

Rb,2D = [uξ, uζ ]
T (2.54)

Figure 2.5: B-plane definition and encounter geometry at TCA [4]

The position of the primary spacecraft is then described by the position vector in B-plane
coordinates as b = [ξ, ζ]T [4].

2.2.2. Collision probability

The approach analyzed in [3] allows to obtain an approximated analytical expression of
the bi-dimensional collision probability. The two objects are assumed to be spherical, with
a hard-body radius given by the sum of the two. The collision occurs when the distance
between the two spacecrafts is smaller than rA = rp + rs.

The probability density function (simply called pdf ) of the relative position vector is ex-
pressed as a three-dimensional Gaussian distribution function of the combined covariance
C as shown in Equation (2.55). C is simply computed as the summation of the primary



28 2| Fundamentals

and secondary covariances defined at the TCA in the B-plane reference frame.

f3(ξ, η, ζ) =
1√

(2π)3∥C∥
e−1/2rTCr (2.55)

with r the relative position, again, in B-plane coordinates.

The probability of collision of then given by integral of the pdf in the volume swept by the
sphere of radius rA centered at the primary. With the short-term encounter hypothesis,
the motion can be assumed to be uniform rectilinear for several standard deviations
along the relative velocity direction. The volume swept is then considered as a cylinder
extending from −∞ to +∞ and the probability of collision can be computed as the double
integral of the bi-dimensional pdf over the cross-sectional area of radius rA (expressed in
Equation (2.56)).

f2(ξ, ζ) =
1

2πσξσζ

√
1− ρ2ξζ

e
−

[(
ξ
σξ

)2
−2ρξζ

(
ξ
σξ

)(
ζ
σζ

)
+

(
ζ
σζ

)2
]

2(1−ρ2
ξζ) (2.56)

Being the combined covariance matrix written as:

C =

[
σ2
ξ ρξζσζσξ

ρξζσζσξ σ2
ζ

]
(2.57)

Choosing a new reference frame aligned with the major and minor axis of the error ellipse
allows to write the covariance matrix C as diagonal and simplify the expression of f2.

C ′ =

[
σ2
x′ 0

0 σ2
y′

]
(2.58)

From the invariance of the matrix determinant:

σx′σy′ =
√
1− ρ2ξζσξσζ (2.59)

A second change of coordinates is shown in Equation (2.60) to transform the pdf into an
isotropic function mapping the ellipses of constant pdf into circles.

x” =
σz′

σx′
x′

z” = z′
(2.60)
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Finally, the elliptical cross section can be approximated to a circular one, allowing to
write the bi-dimensional isotropic Gaussian pdf into a one-dimensional Rician integral
computed with the following convergent series:

Pc(u, v) = e−v/2

∞∑
m=0

vm

2mm!

[
1− e−u/2

m∑
k=0

uk

2kk!

]
(2.61)

where u is the ratio of the impact cross-sectional area to the area of the 1σ covariance
ellipse in B-plane coordinates.

u =
r2A

σζσξ

√
1− ρ2ξζ

(2.62)

v is the squared Mahalanobis distance, computed as v = bTC−1b, with b the B-plane
relative position vector and its norm defined as the miss distance [4]. In this thesis,
the probability of collision is computed truncating Equation (2.61) to third order, with
m = 3.
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3| Simulation design

In this chapter the simulation scenario is described. In the first section, an overview of
the main parameters and adopted design tools is presented, while Section 3.2 contains
the statistical analysis necessary to infer the onboard optical sensor performance. This
chapter covers the first 8 days of simulation and the results are then used in Chapter 5 to
perform relative orbit determination and conjunction analysis for the identified targets.

Figure 3.1: COSMO-SkyMed 4 satellite. Credit: Telespazio

3.1. Scenario definition

The simulated scenario consists of an asset and a certain number of objects identified as
potentially dangerous. The primary spacecraft is based on the real COSMO-SkyMed 4, a
dual purpose, civil-military satellite operated since 2010 by the Italian Space Agency (ASI)
[1] and depicted in Figure 3.1. It is located in a sun-synchronous orbit at approximately
600 km of altitude, as shown in Table 3.1.

a [km] e [-] i [deg] Ω [deg] ω [deg]

6990.5 0.0026 98.01 69.18 72.95

Table 3.1: Cosmo-Skymed 4 keplerian parameters
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To select only the threatening targets orbiting in the same region of space, the Advanced
CAT Tool of AGI’s STK (System Tool Kit) has been exploited. Setting the desired time
window, ellipsoid distance threshold of 20 km and a apogee-perigee filter of 30 km allowed
to select 425 different satellites/debris/rocket bodies, each with the expected minimum
distance and TCA. Given the NORAD ID, the Two-Line Element sets are retrieved using
the ELSET Search available from Space Track1.

The high number of objects orbiting in this region of space allows to have a significant sta-
tistical analysis and a sufficient number of conjunction events. In particular, the scenario
here presented is simulated from midnight 1st to the midnight 8th September 2022. The
spacecraft is equipped with an optical sensor with a limiting magnitude of 15, capable of
seeing objects as small as 10 cm up to 6000 km, according to the formulae presented in
Equation (3.1) and the resulting Figure 3.2, showing the apparent magnitude as function
of the range for spherical object of different radii2 [24]. In general, even though a radar
can provide accurate relative range measurements, it is characterized by a higher power
consumption, limited range capabilities and low angular resolution. Therefore, the choice
of an optical sensor is preferable for a versatile space-based solution and the onboard
camera is the only instrument adopted for the statistical analysis and the subsequent
measurement simulation.

Figure 3.2: Apparent magnitude with relative distance for different target dimensions

1The Space Track information can be retrieved free of charge on the official website www.space-track.org
26000 km is the maximum geometric visibility range for objects of similar semi-major axis. Spacecrafts

with higher eccentricity values may be visible from greater distances, as pictured in Figure 3.2
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M = m− 15 + 5 log10(ρ)− 2.5 log10(F (φ))

M = −26.78− 2.5 log10

(
AζF (φ)

ρ2

) (3.1)

with F (φ) = (π − φ) cos(φ) + sin(φ) and φ the phase angle3. m is the target intrinsic
magnitude and it is a function of the cross section A (expressed in km2) and ζ the
object albedo (set at 0.2 for an Aluminum plate) [24]. Finally, ρ is the relative range
between the observer and the target satellite. Both equations above allows to compute
the apparent magnitude and they can be merged to obtain a relation between m and the
target dimension, as shown in Equation (3.2).

m = −8.854− 2.5 log10(Aζ) (3.2)

Information regarding the satellites cross section are retrieved from a 2008 catalogue, cov-
ering up to Norad ID 40000 and providing the Radar Cross Section (RCS), here assumed
to be identical to the effective area. All the non-available objects are estimated consid-
ering a normal distribution with mean and variance computed from the catalogue values
and written in Table 3.2.

RCS mean [m2] 0.956

RCS standard deviation [m2] 2.291

Table 3.2: Catalogued objects RCS mean and standard deviation

Apart from the geometric constraint given by the presence of the Earth over the line of
sight, space-based optical sensors have two additional requirements that must be enforced
during the simulation, minimum Sun separation and target illumination. The former is
generally valid for every type of sensor due to the impossibility to gather measurements
when the angle between the Sun direction and the sensor axis is below a given threshold4.
This limit is set at 30◦ for the selected onboard camera. On the contrary, the illumination
requirement is specific to optical telescopes, as the target must reflect sunlight in order to
be visible. Moon separation is not considered for the onboard sensor, though is generally
defined for optical ground stations; minimum Radar Cross Section (RCS) and maximum

3The phase angle is defined as the angle between the direction of the observer and the direction of the
Sun as seen from the target spacecraft

4Being the Sun the most important radio source in the Solar System, also radar sensors are subject
to this limit
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slant range are instead specific requirements of radar instruments. Table 3.3 provides a
summary of the possible limitations for ground and space-based sensors. It is important
to notice that there are other possible constraints as maximum and minimum RADEC
or Azimuth and Elevation, not included in this analysis, as more related to the sensor-
satellite interface rather than the specific sensor type. The camera frame is inertially
defined, without any attitude information, pointing towards the expected direction of the
target at the beginning of each visibility window, with a total Field of View of 30 degrees.

Limits Radar Optical Space-based optical

Illumination - × ×
Sun separation × × ×

Moon separation - × -
Min RCS × - -

Max Slant range × - -

Limiting magnitude - × ×

Table 3.3: Possible limitations for ground-based and space-based optical and radar sen-
sors.

The visibility of targets with respect to the sensor is computed through SOPAC (Space
Object PAss Calculator) a python library developed by Politecnico di Milano as a core
of the SENSIT software suite to compute all the possible observation opportunities on
the defined sensor network [9, 26]. The library makes use of NAIF’s SPICE Toolkit to
perform computations related to the simulation geometry. The sensor is characterized by
the limits defined above and set to tracking mode, according to the chosen camera frame,
as summarized in Table 3.4. The output of SOPAC analysis is a list of windows, for each
target, with the starting and ending epoch of visibility. The library takes as input the
satellites kernels generated from the provided TLEs with the estimated values of bright-
ness (given by Equation (3.2)) and propagated using the SGP4 simplified perturbations
model, allowing to have a sufficiently accurate simulation over the analyzed time win-
dow. Moreover, SGP4 computations are much more efficient than a dedicated propagator
and the total computational time is kept under two hours. The algorithm employs the
bisection method to identify the exact epochs of visibility based on the defined limits,
depending on the sensor type. Furthermore, specific forbidden region can be specified
to account for areas of the celestial sphere that are not observable or physical mounting
limitations.



3| Simulation design 35

Sensor type Optical

Sensor mode Tracking

Min Sun separation [deg] 30

Limiting magnitude 15

Table 3.4: Optical sensor limits

3.2. Statistical Analysis

The statistical analysis requires the identification of different parameters deemed signif-
icant to infer on the visibility of an orbiting object. The selected parameters are as
follows:

• Visibility windows: total number of windows identified by SOPAC, for each target

• Visibility time: total time in which the object is actually visible

• Uniformity index: parameter identifying the uniformity of observations along the
asset orbit

• Non-visible objects: number of targets not visible in the whole time window

• Maximum visibility range

• Revisit time: minimum, maximum and mean time between two consecutive visibility
windows

These are then compared to the mere number of objects, their main keplerian elements, the
type of sensor limits or compared with each other, to seek for possible cross-correlations.

Visibility windows

The visibility in terms of total number of windows is here analyzed. In Figure 3.3 the
first correlation is presented, considering only the geometrical limit, without illumination,
magnitude and Sun separation requirements. Three main orbit parameters are identified
as potentially significant: semi-major axis, inclination and right ascension of the ascending
node (RAAN from now on). Eccentricity and argument of perigee are not represented.
Indeed, the filter provided by STK enforces a maximum difference between the perigee
and apogee of target and observer and the information about the eccentricity is already
embedded in the semi-major axis. The argument of perigee does not have any influence
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on the visibility.
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Figure 3.3: Total visibility windows as function of semi-major axis, inclination and RAAN.
Only the geometric constraint is applied

The first consideration comes from the maximum value of the visibility windows, at about
200. This is actually expected as the total number of orbits (with a period of about 90/100
minutes) in the considered time window is around 120. As shown in the revisit time
graphs, the average time between two windows is rarely less than half a orbit, resulting
in a theoretical maximum number just over 200. Moreover, it tends to decrease with
increasing semi-major axis, probably due to the higher orbit period (and thus a higher
revisit time). The inclination plot does not show any correlation but still highlights that
satellites operate in specific orbits and in particular the Sun-synchronous (typically called
SSO) are the most populated. Finally, an important correlation is clearly visible in the
third graph, where objects with RAAN between 200 and 300 degrees are almost constant
at 200 visibility windows. The reason may lie in the difference with respect to COSMO-
SkyMed which is approximately 180 degrees apart; this means that the encounters are
mostly “head-on”, with velocity vectors having opposite orientations. This feature will be
further analyzed in the next sections.

The Figure 3.4 reports the percentage of objects with at least the reported number of
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visibility windows, for different sensor limits. The blue bar refers to the complete sen-
sor simulation, with illumination, sun separation and limiting magnitude. The red bar
contains only the illumination requirement, to verify the impact of the specific sensor
characteristics described in Section 3.1 on the number of windows. Finally, the green bar
refers to the pure geometrical limitation, allowing to determine the effects of the Earth
shadow and thus effects of mounting an optical sensor instead of a radar.
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Figure 3.4: Total visibility windows for three different sensor limits: pure geometry, only
illumination and full sensor limits

As expected, without limits the number of visibility windows is much closer to the the-
oretical limit, with about 40% of the objects having more than 200 windows. On the
contrary, the blue and red bars are relatively similar with very few percentages above 140,
suggesting that the main hindrance to the number of windows is given by the illumination
condition, while the limiting magnitude may affect only particularly small objects.

Visibility time

Figure 3.5 shows the total visibility time in hours with respect to semi-major axis, inclina-
tion and RAAN. Again only the geometrical limit is enforced to better highlight potential
correlations, thus similar remarks to Figure 3.3 can be made. The time is sensibly higher
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for the two satellites with a > 9500 km, due to the longer period of geometrical visibility,
though the sample is too limited for a significant correlation. The RAAN presents two
peaks at around 60◦ and 250◦, as expected. The former is more scattered, highlighting
that only certain objects are effectively visible for longer periods of time. Indeed, satellites
with similar RAAN and similar periods end up chasing each other constantly, leading to
a visibility time strongly dependent on the initial relative position.
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Figure 3.5: Total visibility time, expressed in hours as function of semi-major axis, incli-
nation and RAAN. Only the geometric constraint is applied

The visibility time is then analyzed with the three sensor limits, as done above. Figure 3.6
indicates that both the blue and the red bars are limited to relatively low total times
(below 25 hours), while the absence of sensor limitations allows to greatly increase it up
to 50 hours.
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Figure 3.6: Total visibility time (in hours) for three different sensor limits: pure geometry,
only illumination and full sensor limits

Uniformity index

The first Figure 3.7 allows to correlate both the number of windows and the uniformity
index, with respect to the RAAN, the keplerian parameter with the highest influence on
visibility, as illustrated above. The uniformity index is computed dividing the asset orbit
in 36 sections (each covering 10◦ in true anomaly) and counting how many contains at
least one potential observation. The index is normalized over the number of sectors to
have a value between 0 and 1, resulting in the simple relation U = n/36, where n is the
number of visible sections. Therefore, it is an indication of the quality of the observations
that can be performed for the specific target, as more uniformly distributed measurements
provide more accurate result and higher scheduling flexibility. The graph shows a high
uniformity index for practically all the object between 200 and 300 degrees of RAAN,
enhancing the results above. Again, only geometrical limits are enforced.
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Figure 3.7: Total visibility windows and RAAN as function of the uniformity index. Only
the geometric constraint is applied

It is important to notice that the objects with similar RAAN to COSMO are characterized
by a lower value of visibility windows, but not necessarily of uniformity. Once again, the
same relation is sought with the total visibility time, highlighting very high uniformity
when RAAN is around 60 and 250 degrees.

Finally, the distribution of the uniformity index with the three sensor limits is reported
in Figure 3.9. When the illumination requirement is enforced, observation uniformity is
strongly reduced due to some region of the target orbit being not illuminated; the index
worsen with the addition of specific sensor limits caused by a too high relative range with
particularly small objects.
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Figure 3.8: Total visibility time expressed in hours and RAAN as function of the unifor-
mity index. Only the geometric constraint is applied
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Figure 3.9: Uniformity index for three different sensor limits: pure geometry, only illumi-
nation and full sensor limits
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Sun-synchronous orbit

A Sun-synchronous orbit (SSO) is one the most used orbits for Earth science missions.
It is a near polar orbit where the nodal precession rate is matched to the Earth’s mean
orbital rate around the Sun. The resulting effect is a fixed orbit geometry with respect
to the Sun, with approximately the same lighting condition along the ground track, such
that the satellite passes over any given point of the Earth’s surface at about the same local
mean solar time [2]. Most of these satellites lie between 95 and 100 degrees of inclination,
in Low Earth Orbit; from Figures 3.3 and 3.5 above, it is clear that they are the majority
of objects for the considered catalogue. Therefore, it is important to seek for correlations
with this particular region of space, being COSMO-SkyMed 4 part of this population.

The first Figure 3.10 shows the classic visibility windows, time and uniformity index as
function of RAAN, the only keplerian parameter that truly differentiate SSO orbits.
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Figure 3.10: Total visibility windows, time and uniformity index as function of RAAN for
objects in SSO. Only the geometric constraint is applied

Compared to the results of the complete catalogue, no significant difference is evident, with
points following a similar trend to the one of Figures 3.3 and 3.5. Hence, an additional
graph is shown in Figure 3.11, with the uniformity index distribution with respect to
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non-SSO objects. Although very similar, there are slightly less Sun-synchronous satellites
with high index values.
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Figure 3.11: Distribution of uniformity index for SSO and non-SSO objects

Non-visible objects

From the figures above one thing is immediately glaring: some objects are never visible,
even when no limits are considered. This deserves its own separate analysis, presented
in Figure 3.12, where RAAN and inclination are plotted as function of the sensor limit
considered. Here, the green diamonds indicate those objects not visible due to geometrical
limitations; these satellites can’t be seen independently of the type of sensor adopted. The
red squares instead, refers to objects that are not visible due to Earth shadow, so objects
that only optical sensors cannot see, regardless of the actual camera performance. Finally,
the blue dots relates to those satellites not visible by the specific sensor used, that is, not
visible due to the limiting magnitude being too low to actually see the satellite at any
distance5.

An important consideration comes once again from the distribution with respect to
RAAN. Between 200 and 300 degrees all objects are actually visible, especially from

5Referring to Figure 3.2 this is true for all the objects smaller than 1 cm approximately.
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a geometrical point of view, proving the importance of this orbital parameter in defining
visibility performance. Concerning inclination, on the contrary, there seems to be no clear
correlation, apart from the lack of objects with inclination below 50 degrees; however, this
could simply result from a lower number of objects orbiting closer to the equator in the
considered catalogue.

0 50 100 150 200 250 300 350

RAAN [deg]

40

50

60

70

80

90

100

110

In
c
lin

a
ti
o

n
 [

d
e

g
]

COSMO-Skymed 4

Pure geometry

Illumination limit

Full sensor limits

Figure 3.12: RAAN and inclination for non-visible objects with three limits: pure geom-
etry, only illumination and full sensor limits

Out of 425 objects, 25 are never visible, 7 are visible only with radar sensors, while 11
can be seen by selecting a different and more powerful optical sensor.

Maximum visibility range

The maximum visibility range is important to determine the effectiveness of optical sensors
with respect to radars. The latter are highly limited, especially for onboard low-power
instruments, though they can measure directly the relative distance with high accuracy.
Figure 3.13 shows the maximum range for the classic three sensor limits already analyzed
before. As expected in this case, the illumination requirement is not particularly relevant
and the reduction in the maximum range is determined mainly by the sensor limiting
magnitude. For the case at study, even with the chosen camera, the range is still closer
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to the geometrical limit, despite some smaller objects that can be seen only when closer
than 5000 km. Nevertheless, an onboard radar would be limited to the lower part of the
figure, especially with smaller Radar Cross Section targets [29]. Moreover, the geometrical
maximum range is never lower than 6000 km (and possibly higher for high eccentricity
orbits), thus an optical sensor allows to better optimize the visibility windows, with more
time available for the measurement campaign.
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Figure 3.13: Maximum range with three limits: pure geometry, only illumination and full
sensor limits

Revisit time

The last correlation analyzed concerns the time between two consecutive passages. As
already mentioned above, the scheduling of observation is extremely important when deal-
ing with multiple targets. Therefore, a faster revisit allows to pile up more measurements
in less time and thus account additional time to the observation of other possible targets.
The first graph, in Figure 3.14, highlights the minimum and maximum revisit time in
logarithmic scale as function of RAAN, when only geometry is considered. The former is
characterized by an interesting behaviour, which will be further analyzed later, in which
objects with RAAN between 200 and 300 degrees have almost constant minimum revisit
time, but sensibly higher than objects with RAAN between 0 and 100 degrees, where the
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dots are more uniformly distributed in the given range. Similar considerations can be
made on the maximum revisit time. Once again, objects with RAAN around 250 degrees
seems to be confined in the lower part, with almost no dots above 3000 seconds.
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Figure 3.14: Maximum and minimum revisit time in logarithmic scale. Only the geometric
constraint is applied

To better understand this behaviour, Figure 3.15 shows a magnification of the minimum
and maximum revisit time between 0 and 3000 seconds. The correlation with RAAN is
now clearly visible; the two values tend to coincide at about 250 degrees and 2100 seconds,
while the blue dots are much closer to zero when RAAN is around the COSMO vertical
line. On the contrary, the maximum time reaches a systematic minimum at 250 degrees,
whereas for other RAAN it is more sparse, with values reaching more than 105 seconds,
more than 1 day without observations.

These results are pictured in Figure 3.16, where the minimum revisit time is represented
as function of RAAN and inclination, with a colorbar referred to the maximum time, in
a scale between 2000 and 3000 seconds. As expected, the behaviour described before is
completely independent on the inclination values, with the lowest maximum revisit again
centered at 250 degrees RAAN.
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Figure 3.15: Maximum and minimum revisit time zoomed in. Only the geometric con-
straint is applied
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Figure 3.16: Minimum and maximum revisit time as function of RAAN and inclination.
Only the geometric constraint is applied
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Eventually, the mean revisit time distribution is pictured in Figure 3.17 for the three cases
of pure geometry, only illumination and full sensor limits. In the first case, the major-
ity of objects (about 60%) has an average of 2000-2500 seconds, with a 10% lower and
the remaining distributed between 2500 and 7500 seconds. Since the selected catalogue
contains mainly LEO objects, they are characterized by a period around 95-100 minutes,
so below 6000 seconds; hence, it makes sense that the mean revisit time is centered at
slightly before half a orbit, when only the geometrical constraint is considered. If the
optical sensor limits are fully enforced, the time is shifted on the right part of the figure
more or less uniformly between 2500 and 6000 seconds, with a peak at more than 7000.
The result is similar when only the target illumination is required, suggesting that this
last constraint is responsible for lack of visibility when the target is in the shadow cone,
leading to an increase in mean time.
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Figure 3.17: Mean revisit time with pure geometry, only illumination and full sensor limits

3.3. Overview

The results of the statistical analysis are here summarized in order to get an insight
on the performance of the sensor used against the catalogue of potentially hazardous
satellites. Both the visibility windows and the visibility time are strongly reduced by the
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illumination requirement, while the limiting magnitude plays an important role only for
extremely small objects, reducing the effective maximum range, but not the number of
windows.

Concerning the keplerian parameters, no remarkable relations have been identified for
inclination and argument of perigee. Greater semi-major axis may grant a lower number
of windows and higher visibility time, yet a larger sample is required for a more significative
inference. Right ascension of the ascending node is the only element showing interesting
behaviour for the analyzed parameters, especially for values between 200 and 300 degrees:

• Higher number of visibility windows, close to the theoretical maximum

• Higher visibility time

• Higher uniformity index, at more than 0.6

• No unseen objects in the considered time window

• Higher minimum revisit time, confined around 2000 seconds

• Lower maximum revisit time, between 2000 and 3000 seconds

For the specific objects in Sun-Synchronous orbits, no significant trend is identified with
respect to the general case, though there are fewer satellites with uniformity index above
0.55.

In the analyzed scenario, the influence of Sun separation seems to be negligible and
limited to very few windows, likely due to the considered time window near the Autumn
equinox and the asset orbit almost perpendicular to the Sun direction. In Figure 3.18
is highlighted the distribution of the angular distance between Sun-sensor and sensor-
target vectors at the beginning of each visibility window for each satellite. According to
the inertial definition of the camera frame, if the value is greater than the required 30◦,
the satellite is visible over the entire field of view. Only a limited number of potential
observation opportunities are hindered by this specific limitation.
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Figure 3.18: Distribution of Sun separation at the beginning of each window for all the
catalogued satellites.

Finally, it is important to linger on the maximum values of the uniformity index, never
above 0.67. Regardless of the type of sensor, the limits considered and the target under
consideration, the observations cover at most about two-thirds of the asset’s orbit. The
reason probably lies in the very nature of satellites relative motion in the specific simulated
scenario; that said, it is possible that a longer time window could lead to an increase in
this index.
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In this chapter the methodology adopted for the second part of the simulation is pre-
sented, while the results of the relative orbit determination and conjunction analysis are
shown in Chapter 5. Firstly, the minima research is described in Section 4.1, in order to
identify the targets with a close conjunction, determined by a minimum distance below
5 km. Consequently, the reference trajectory propagation and selected filtering technique
are shown and compared to a ground-based analysis, developed to validate the onboard
computation. The orbit determination process described here is typically called refined
(so, ROD), as the input of the filter is the output of an already performed initial OD
(or IOD), where the state and covariance at epoch t0 are computed without any a priori
information, using only the available measurements. As in Figure 4.1, the result of an
IOD is in general not sufficiently accurate to analyze a conjunction, and ROD is thus
needed to increase estimation accuracy, compute probability of collision and asses the
need to perform a collision avoidance manoeuvre.

Figure 4.1: Conjunction event, example of IOD (left) and ROD (right) results comparison
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4.1. Simulation time and minima research

The conjunction events are searched in the 8 days after the statistical analysis, from the
8th to the 16th September 2022. As specified in Chapter 3, the SOPAC library makes use
of SGP4 to propagate objects trajectories and TLEs must be provided. However, these
are typically accurate up to a 7-day computation and thus they require frequent update
for a realistic analysis. For this reason, the minima research is performed by updating
the TLEs every two days, such that at least one set is retrieved for each satellite and
the propagation is kept under a week. Moreover, due to the high relative velocities, the
distance must be refined through a minimization process to find the effective TCA. During
a conjunction, the relative radial velocity reaches zero at the corresponding minimum, thus
a root finding can be adopted to validate the result of the relative range minimization,
with the corresponding expressions in Equation (4.1). The algorithm is implemented
directly in Python, exploiting scipy libraries minimize and root scalar.

ρ(t) = ∥r2 − r1∥

∆vr(t) =
(r2 − r1) · (v2 − v1)

ρ

(4.1)

Overall, in the analyzed time window, six conjunctions are identified and summarized in
Table 4.1. The closest encounter occurs during the first sub-window with a Falcon 1 upper
stage launched in 2009, with a minimum distance of less than 1 km. Once the objects
requiring a conjunction analysis are identified, measurements can be properly simulated
as described in the next section.

Object NORAD ID Launch date Time window TCA Distance

[km]

Elektron 1 00746 01-1964 08/09 - 10/09 09/09 13:29 2.75

Falcon 1 (r/b) 35579 07-2009 08/09 - 10/09 09/09 20:05 0.88

Fengyun 1C (deb) 31540 05-1999 10/09 - 12/09 10/09 03:51 2.85

Cosmos 1408 (deb) 50457 09-1982 12/09 - 14/09 13/09 04:41 4.69

Fengyun 1C (deb) 29866 05-1999 14/09 - 16/09 14/09 01:13 4.21

Cosmos 2252 (deb) 33804 06-1993 14/09 - 16/09 14/09 06:45 4.89

Table 4.1: Identified nominal conjunction events. Acronyms r/b and deb refers respec-
tively to rocket body and debris.
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4.1.1. Measurement simulation

Observations are taken for each object since the TLE epoch up to the day before the
conjunction, so that time can be set aside for computation and scheduling of a potential
collision avoidance manoeuvre. The optical sensor provides right ascension and declina-
tion every 60 seconds, obtained through SPICE’s recrad1, to which is summed a Gaussian
noise of zero mean and variance given by the sensor accuracy squared. For a ground-based
telescope, this can be as low as 1/2 arcseconds, or 0.00028◦; considering the lower per-
formance of an onboard optical camera in terms of sensor dimensions and computational
power, along with possible mounting errors, the angular accuracy is set at 0.01 degrees
for both measurements.

Hence, Equation (4.2) presents the model upon which the simulation of real observations
is predicated. 

α = α∗ + ηα, with ηα ∼ (0, 0.012)

δ = δ∗ + ηδ, with ηδ ∼ (0, 0.012)

(4.2)

with α∗ and δ∗ the nominal values and ηi the error Gaussian distributions. No cross-
correlations are considered and the observation error matrix is diagonal, as given by
Equation 4.3.

R =

[
0.012 0

0 0.012

]
(4.3)

4.2. Nominal trajectory computation

Once the dangerous targets are identified and measurements are correctly simulated, the
main variables are exported to MATLAB® for the OD and conjunction analysis. The
adopted filtering technique has already been described in Chapter 2 and it is based on
the linear minimum variance Least Squares, analytically solved with a single iteration
to reduce computational time; therefore, it is firstly necessary to compute the reference
trajectory with respect to which the deviations obtained with the filtering process are
calculated. It is important that the reference is close enough to the real motion as too
large errors may lead to biased outputs, especially when considering a linear navigation
problem. The most significant perturbation for a LEO object results from the fact the
Earth is not perfectly spherical. The main contribution to the non-sphericity gravity field
comes from Earth oblateness, that is, the difference in radius between the equator and the

1recrad allows to convert rectangular positional coordinates in right ascension, declination and range,
as defined in Section 2.1.1. The latter is clearly discarded as not obtainable with an optical sensor.
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poles. This perturbation is often called J2 and a propagator including this effect alone
greatly improve the accuracy of the OD with respect to a simple keplerian motion [20].
As shown in Figure 4.2, for a 600 km orbit, the other relevant perturbations are still due
to non-spherical effects (J3, J4 and J5 ); Lunar and Solar gravity fields, Solar Radiation
Pressure (SRP) and drag all have a significant smaller impact.

Figure 4.2: Comparison of different disturbing accelerations in LEO [22]

The components of the J2 acceleration can be expressed directly in ECI reference frame,
as in Equation (4.4). 
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(4.4)

In particular, matrix H̃ is calculated using the relative position, which is strongly in-
fluenced by the adopted model; indeed, considering a simple J2 propagation is often
not sufficient as the relative state error becomes non-negligible in longer simulations, as
highlighted in Figure 4.3 for the first conjunction event, involving Elektron 1 satellite.
However, a high fidelity propagator is also much more computationally demanding, which
is particularly relevant for onboard calculations. Hence, the best compromise is found
by propagating directly from the TLEs using SGP4. This solution grants lower com-
putational time and sufficient accuracy for the considered time window [30, 35]; a more
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comprehensive description of satellite dynamics is provided in Appendix B. The relative
motion is thus given by the difference between primary and secondary states and the
consequent relative measurements can be computed also for the nominal trajectories.
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Figure 4.3: Relative position error between SGP4 and J2 propagations for COSMO-
SkyMed 4 and Elektron 1 satellites

Considering the selected filtering method, it is necessary to derive as well the State Transi-
tion Matrix for each observation, for both satellites: the primary STM is indeed required
for the consider covariance analysis, as shown in the next section. STM also requires
certain accuracy to correctly map the state at TCA to the observational epoch. Nonethe-
less, it is much less sensitive to simplified dynamical models and only J2 perturbation
can be included without excessively diminishing the estimation accuracy, while keeping a
low computational cost. The STM is computed with the variational approach described
in Section 2.1.3 and the expression of the jacobian matrix is obtained through symbolic
manipulator, to integrate a more accurate, analytical equation.

The B-plane is defined with the reference states at the nominal TCA. This is also the
main drawback of the solution presented in this thesis: it is not possible to determine
the real epoch of conjunction as typically done with a sequential filter. Indeed, the Least
Square presented in the next section compute the expected target state at the reference
TCA, which must be known with a sufficiently high accuracy.
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4.3. Onboard relative orbit determination

The relative nominal trajectory described above allows to compute the relative measure-
ments and the corresponding deviations with respect to the real ones, imported from
Python. The main idea behind the proposed method is based on the property of the
STM to map the state at each observational instant, to the state at TCA. In this way,
orbit determination can be made directly at the time of conjunction, without the need to
propagate the results, which would cause an increase in the estimation error and compu-
tational time. The strongest assumption concerns the perfect knowledge of the state of
the asset at each measurement epoch and equal to the reference trajectory. This allows
to make an important consideration: the relative state deviations are equal to the target
absolute state deviations. As a direct consequence, it is possible to map the measurements
and relative positions directly with the target state transition matrix, greatly simplifying
the computation. The concept can be visualized in Figure 4.4.

Figure 4.4: Relative and absolute state deviations at TCA, identified respectively by ρ

and ri. Subscripts 1 and 2 refer to primary and secondary objects, while the star apex
refers to the reference absolute and relative position vectors.

Defining s the relative state, and recalling Equation (2.6):

δyi = H̃i(s
∗
i )δsi + ϵi, with i = 1, ..., l (4.5)

where the vector s∗ refers to the quantity evaluated on the nominal trajectory. As de-
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scribed in Chapter 2, the measurements are then related to the deviation at a specified
epoch (the conjunction epoch), as shown in Equation (4.6).

δy = H̃Φt(tTCA, t)δsTCA + ϵ (4.6)

Φt is the target STM, computed as described in the previous section whilst, based on the
assumption of perfectly known asset motion, δsTCA can be substituted by δxTCA, the
target absolute state deviation.

The implementation requires the linearization of the observational model along the nom-
inal motion; Equation (4.7) shows the expression of right ascension and declination for a
general space-based sensor in an inertial reference frame [21].

α = tan−1

(
yt − y

xt − x

)
δ = tan−1

(
zt − z√

(xt − x)2 + (yt − y)2

) (4.7)

where (x, y, z) refer to the components of the asset spacecraft, while (xt, yt, zt) to the
considered target. Calling (s1, s2, s3) the component of the relative position vector in the
same inertial frame , it is possible to derive the above equations and compute the matrix
H̃, as expressed in Equation (4.8).

H̃ =

[
∂G

∂X

]∗
i

=

[
∂α
∂s1

∂α
∂s2

∂α
∂s3

0 0 0
∂δ
∂s1

∂δ
∂s2

∂δ
∂s3

0 0 0

]
=

 − s2
s2xy

s1
s2xy

0 0 0 0

− s1s3
sxys2

− s2s3
sxys2

sxy
s2

0 0 0

 (4.8)

where s2xy = s21 + s22 and s2 = s21 + s22 + s23.

H̃ is function directly of the relative position and thus it is identical for both the primary
and the secondary objects.

Overall, the product between H̃ and the STM is the matrix H that maps each mea-
surement to the target state at the conjunction. The asset spacecraft can be tracked
by ground-based stations to provide accurate orbit determination at any desired epoch.
However, its motion is still affected by uncertainties, which must be included in the Least
Square result. Therefore, the idea is to exploit the concept of consider covariance analysis
to obtain a greater target covariance that embeds the primary spacecraft uncertainty.
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4.3.1. Application of the consider covariance analysis

The theoretical concepts and the resulting algorithm of the CCA have been already intro-
duced in Chapter 2. For the specific case at study, the consider parameter is the primary
spacecraft state deviation at the time of closest approach, with its a priori value set to
zero2. Similarly, the matrix P̄cc is the a priori covariance, expressed in terms of standard
deviations in the UVW reference frame in Equation (4.9); the considered values are es-
pecially small as the primary spacecraft motion is assumed to be constantly updated by
accurate ground sensors.


σr = [10, 30, 10] [m]

σv = [0.5, 2, 0.2] [m/s]

(4.9)

To properly exploit the CCA it is necessary to compute matrix H also for the asset satel-
lite, as the product between H̃ (equal for both objects) and the primary STM, computed
with a simple J2 effect. The end results are made explicit in Equation (4.10) for the target
state deviation and covariance at TCA.

δx̂CCA = δx̂

PxCCA
= Px + SxcP̄ccSxc

(4.10)

with Sxc as defined in Algorithm 2.2, where Hx = H̃Φx for the target and Hc = H̃Φc for
the asset. If the a priori primary state deviation is set to zero, the neglected uncertain-
ties influence only the covariance, which is given by the summation of two semi-definite
matrices. Hence, the output of the CCA is a greater target covariance, with unchanged
deviation from the reference trajectory.

With the estimated target state and covariance at the minimum distance epoch, it is now
possible to analyze the conjunction in the B-plane, in terms of probability of collision.

2This is equal to saying that the expected value of the a priori state, given by a ground-based IOD, is
the nominal one. The results shown are still valid for the generic case of c̄ ̸= 0
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4.3.2. Conjunction analysis

Firstly, the absolute target state is computed by adding to the nominal value the result
of the OD filter, as reported in Equation (4.11).

x̂ = x∗ + δx̂ (4.11)

The B-plane is defined from the reference trajectory according to Equation (2.53). The
positional components of the primary and secondary covariances and the relative state are
projected onto the newly defined bi-dimensional frame, in order to apply the simplified
equation for the probability of collision (see Equation (2.61)). From Section 2.2.2 it is
necessary to compute the combined covariance C as the summation of the two objects
covariances, already projected onto the B-plane, as seen from Equations (4.12) and (4.13).
As already mentioned, the primary covariance at TCA is not estimated directly onboard
and is provided by a ground-based OD, performed with a UKF and described in the next
section.

C = PxCCAb,2D
+ Pccb,2D (4.12)

Here Pcc is the asset covariance. The subscript b, 2D refers to the quantity expressed in
B-plane coordinates; defining Rb,2D the bi-dimensional rotation matrix, it is possible to
project both the covariances and the state, as follow:

x̂b,2D = Rb,2Dx̂

Pib,2D = Rb,2DPiR
T
b,2D

(4.13)

Finally, a hard-body radius of ten meters is considered to be sufficiently conservative to
compute the approximated collision probability truncated to the third order, as shown in
Equation (2.61)3.

4.4. Ground-based analysis

A ground-based ROD and conjunction analysis is needed only for validation purposes, so
the results can be compared with the onboard counterpart to verify performance, differ-
ences and drawbacks of both solutions. For this reason, SOPAC is not used for passages
computation and a simple geometrical constraint is enforced; the filter is initialized with

3Remembering that the hard-body radius is the summation of the approximated spherical satellites
radii.
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the covariance of Equation (4.9) and state equal to the reference.

The implemented ground stations, two radars (S3TSR and MFDR) and one optical
(Cassini), are part of the EU SST sensor network (EU Space Surveillance and Track-
ing) and located in Spain and Italy [10]. Both S3TSR (Spanish Space Surveillance and
Tracking Radar) and MFDR (Multi-Frequency Radar Doppler) are monostatic sensors
for tracking and ranging of LEO objects; Cassini is a 152 cm telescope located in Italy for
satellites up to MEO and GEO orbits [13, 32]. The main characteristics are available in
Table 4.2 and for visibility computation, a minimum elevation of 20 degrees is considered.

S3TSR MFDR Cassini

Latitude 37◦09′59”N 39◦38′30”N 44◦15′33”N

Longitude 5◦35′28”W 9◦38′27”E 11◦20′04”E

Altitude [km] 0.142 0.259 0.780

Range accuracy [m] 30 50 -

Angular accuracy 0.5◦ 1◦ 2”

Table 4.2: Ground-based sensor network performance and characteristics

Real measurements are thus simulated by propagating with SGP4, to have comparable
results with the space-based analysis. The orbit determination algorithm is based on the
sequential filter UKF, providing absolute state and covariance at each observation epoch;
this allows to have a real-time estimation which can be propagated to the computed TCA.
In particular, since both objects are tracked and processed, it is possible to compute the
best estimate of the conjunction epoch, which is generally slightly different than the
nominal one.

Both the filter and the consequent state and covariance propagation are based on the
Unscented Transform, with the following parameters derived from [11]:

• 10−4 ≤ α ≥ 1

• β = 2

• k = 0

where α is set at 10−2 and β is generally two if a normal distribution of sigma points is
considered.

Finally, similarly to the space-based analysis, the dynamical model must be accurate
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enough to provide smaller covariance and avoid possible divergent behaviour. However,
since the reality simulation is based on SGP4, implementing a high fidelity orbit propa-
gator may lead to a wrong minimum distance and conjunction epoch, due to neglected
perturbations in SGP4 itself, possibly invalidating the comparison with the onboard anal-
ysis. Therefore, the model has been tuned to produce similar results to the reference,
though a deviation is inevitable and higher accuracy is certainly achievable in a real case
scenario (at the expense of an even higher computational cost). The propagator consisted
of a degree-two, order-two geopotential model with Sun and Moon gravitational effects,
Solar Radiation Pressure and drag. For the asset spacecraft the mass is set at 1000 kg,
with five squared meters of effective area for both SRP and drag, while the respective co-
efficients are equal to 1 and 2.2. The conjunction analysis is performed for the two objects
with the lowest minimum distance, where the propagation model is based on the same
perturbations with area and mass modified accordingly, keeping the same coefficients: 2.7
m2 and 3 m2 for cross section, 300 kg and 500 kg for mass.

The dynamics inaccuracies require the addition of process noise as described in Section
2.1.5. In general, process noise is defined at each filter step, though a constant value is
used in the algorithm as more accurate solutions are beyond the purpose of this research,
as detailed in Equation (4.14). Moreover, due to model and SGP4 discrepancies, both
the error and covariance are not further propagated to the TCA as it would inevitably
produce larger deviations; hence, the results of the OD should actually be slightly worse
when compared to the Least Square solution. The primary spacecraft uncertainty at TCA
is considered equal to the value of the last measurement epoch.

Q =
[
(2)2, (2)2, (2)2, (0.01)2, (0.01)2, (0.01)2

]
[m2,m2/s2] (4.14)
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The results of the relative orbit determination and conjunction analysis are presented
in this Chapter for the two closest conjunction events, involving Elektron 1 and Falcon
1 rocket body. In Section 5.1 the results are shown in terms of covariance and error
with respect to the nominal trajectory, and compared to the ones obtained from a more
accurate ground-based analysis in Seciton 5.2 and 5.3.

5.1. Onboard analysis

The objective of the refined relative orbit determination implemented and described in
the previous chapter is to more accurately determine the position of a target satellite
at the time of closest approach, with the smallest possible error with respect to the
reference trajectory and the smallest covariance matrix. Indeed, the output of an IOD
would be a non-negligible probability of collision, requiring further observations to actually
determine the possible hazard posed by the considered target object. Therefore, the
expected results from the proposed method would be a strong uncertainty reduction and
a probability closer to zero, with the filtered minimum distance much greater than the
computed covariance.

5.1.1. Elektron 1 conjunction

Elektron 1 was part of the first multiple satellite program developed by the Soviet Union
since 1964. The main objective of the four satellites was the study of lower and upper Van
Allen radiation belts and their orbit was thus highly eccentric. The spacecraft has a mass
of about 329 kilograms, with a diameter of 3.25 meters and was launched on January 30,
1964, with an initial orbit between 406 km and 7110 km and inclination of 61 degrees.
Of the four satellites, only Elektron 1 and Elektron 3 are still in orbit to date [28]; their
main structure is pictured in Figure 5.1.
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Figure 5.1: Elektron 1 satellite. Credits: Wikipedia Commons

From the statistical analysis of Chapter 3, the most important orbit parameter is the
longitude of the ascending node, or RAAN. Since the satellite is no more operative, its
orbit is constantly drifting and the results shown are referred to the first ten days of
September 2022. From the TLE of the 2nd of September, Elektron 1 RAAN was about
256 degrees, right in the middle of the high visibility range analyzed before. Indeed, with
122 available windows, a total visibility time of 47 hours and 0.67 uniformity index, it is
one the most visible objects of the considered catalogue. Moreover, given the large radar
cross section of 2.7 squared meters, the specific sensor does not influence the visibility;
removing the illumination requirement, instead, the number of windows and the total
time increase to 167 and 67 hours. Furthermore, given the RAAN value, the geometric
revisit time oscillates between 1800 and 2400 seconds, with the maximum reaching 5800
when optical sensor limits are enforced; still, this performance greatly simplify object
measurements scheduling, resulting in 786 available observations.
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Conjunction: 2.75 km

Figure 5.2: Relative distance between COSMO-Skymed 4 and Elektron 1 between a day
earlier and an orbit after the conjunction event

Figure 5.2 shows the relative distance with respect to the asset spacecraft over the con-
sidered time window, up to a period after the conjunction epoch. The resulting orbit at
TCA is thus displayed in Figure 5.3. For the Least Square filter, the a priori state is set
equal to the reference, while the covariance is expressed in Equation (5.1).

Figure 5.3: COSMO-Skymed 4 and Elektron 1 orbits during the conjunction event. The
arrows represent the two objects velocity vectors.



66 5| Simulation results


σr = [1, 3, 1] [km]

σv = [0.005, 0.02, 0.002] [km/s]

(5.1)

The results are evaluated in terms of norm of the error with respect to the reference
and square root of the trace of the covariance matrix. The former is not affected by
the consider covariance analysis and, for Elektron 1, it is equal to 40 meters, with an
estimated distance from COSMO of 2.748 kilometers. The target positional covariance
trace is 270 meters, to which 39 m are summed to take into account primary uncertainties,
as shown in Equation (4.12). The combined covariance is thus obtained summing the
result the UKF output described below, with a final value of C = 88 m, already in
B-plane coordinates. The conjunction is then plotted on the B-plane as in Figure 5.4.
Considering the miss distance of 2.75 km and the computed covariance, the probability
of collision is actually zero, and no collision avoidance manoeuvre is deemed necessary.
Still, the output uncertainty is not particularly small, suggesting that a more accurate
STM model or additional iterations may be required if the expected minimum distance
between the two objects was smaller.
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Figure 5.4: COSMO-SkyMed 4 and Elektron 1 projected onto the B-plane at the con-
junction epoch. The combined covariance is centered at the target.
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These results refer to the processing of the whole measurement batch, up to one day before
the conjunction. However, it is still possible to consider only a smaller set of observations,
for instance, to allocate more time to mission related tasks or to optimize scheduling of
multiple objects tracking. Hence, the square root of the LSQ covariance trace is plotted
in Figure 5.5 for an increasing number of target passages, starting from only two visibility
windows, or 22 measurements; the filter performance are still more than satisfactory, with
the curve reaching the final value of 270 m after approximately 40 passages.
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Figure 5.5: Elektron 1 covariance trend with increasing number of passages

5.1.2. Falcon 1 conjunction

Falcon 1 was the first fully private liquid-fueled launch vehicle developed by SpaceX and
operated from 2006 and 2009, capable of carrying up to 470 kilograms in low Earth orbit.
All flights were launched form Omelek Island in Kwajalein Atoll, a near equatorial launch
site, where orbit inclinations as low as 9 degrees can be achieved. Being a two-stage
rocket, the second stage did not reentered the atmosphere and the rocket body from the
last launch in July 2009 still orbits in a quasi-equatorial orbit at around 650 km of altitude
[7]. The full vehicle, with its upper stage, is sketched in Figure 5.6.
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Figure 5.6: Falcon 1 small-lift launch vehicle. Credits: SpaceX

The debris is quite large, with a radar cross section of more than four squared meters and
a highly different orbit with respect to Elektron 1. At the observations epoch, RAAN and
inclination are about 329 and 9 degrees respectively, while eccentricity is closer to zero.
Considering the statistical analysis, the object is characterized by a higher number of
windows at 165, and visibility time of only 16 hours, increasing to 22 without the specific
sensor limits and 56 when no limits at all are considered; given the high RCS, the value is
probably increased by a greater phase angle, responsible for a reduction of the apparent
magnitude. Due to the relative orbit inclination, the uniformity index is particularly low
at 0.25 (though it reaches 0.5 without limits). As a consequence, much less observations
can be processed, but still a more than sufficient number of 284. Though the RAAN is
outside the 200-300 degrees range, the revisit time is still almost constant just below 2000
seconds, with the maximum increasing at 5500 when sensor limits are enforced.

Similarly, the relative distance and the orbit at the conjunction epoch are shown in Fig-
ures 5.7 and 5.8.
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Figure 5.7: Relative distance between COSMO-Skymed 4 and Falcon 1 r/b, between a
day earlier and an orbit after the conjunction event

Figure 5.8: COSMO-SkyMed 4 and Falcon 1 orbits during the conjunction event. The
arrows represent the two objects velocity vectors.

Considering the same a priori information as the Elektron 1 results, the error norm at the
nominal TCA is only 23 meters, with a combined covariance of 131 m (already projected),
of which 76 m are derived from the Least Squares and 120 m from the CCA. Given a
miss distance of 871 meters, the probability of collision is once again effectively equal to
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zero. The primary OD results are actually the same given the similar time window of
the simulation. The estimated distance is now much closer to the expected value, despite
the poorer target visibility. Therefore, the results difference can be explained mainly by
the different orbits; given its higher eccentricity, Elektron 1 is much more affected by
third body perturbations, solar radiation pressure and drag1. On the contrary, Falcon 1
lies in a circular orbit at 650 km, where these effects are much smaller, if not negligible,
for the considered time windows. The results in B-plane coordinates are thus shown in
Figure 5.9.
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Figure 5.9: COSMO-SkyMed 4 and Falcon 1 projected onto the B-plane at the conjunction
epoch. The combined covariance is centered at the target.

Similar to the previous event, the covariance trend is reported in Figure 5.10 as function
of the number of visibility windows, starting from the second passage, with only 8 mea-
surements. Due to an overall shorter window duration, the covariance reaches the final
value of 76 meters after more than 100 passages, though only 20 are actually needed to
match the performance obtained with the Elektron 1 conjunction.

1The perigee is in fact at only 400 km and the atmospheric perturbation is no longer negligible.
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Figure 5.10: Falcon 1 covariance trend with increasing number of passages

5.2. Ground-based analysis

The validation of the onboard OD and conjunction analysis is performed against a ground-
based simulation, performed for both targets, with an Unscented Kalman Filter. The
measurement campaign of each sensor is identified by a simple geometrical limit, enforced
by computing the elevation with respect to the minimum value of 20 degrees, as in Fig-
ure 5.11 for COSMO-SkyMed satellite and the three stations. However, Falcon 1 cannot
be observed for the considered ground stations due to the low orbit inclination of only 9
degrees; therefore, a fourth sensor located in French Guyana and identical to S3TSR is
considered, for this specific case only.
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Figure 5.11: Elevation of COSMO-SkyMed 4 with respect to Cassini (above), S3TSR
(middle) and MFDR (below) for the first four days of simulation. The minimum elevation
line is set at 20 degrees for all the sensors.

Measurements are taken up to the last available before the nominal TCA as the sequential
filter allows to process observations in real-time, potentially providing a constant update
on the conjunction event. However, since the last measurement, it is generally required to
propagate state and covariance up to the TCA, resulting in a greater final error and larger
covariance for longer propagations. The asset spacecraft is characterized by very accurate
a priori information, with the state equal to the reference and covariance as described
in Equation (4.9). Thus, as in Figure 5.12, both the positional error and the trace have
already reached steady state behaviour, at around 23 and 33 meters respectively, with a
total of 211 measurements. It is worth noting that the error is lower than the 3σ line
proving the validity of the chosen process noise and dynamical model.

Elektron 1 elevation for the three stations is thus reported in Figure 5.13. Thanks to
a longer orbit period, the satellite visibility is higher, granting more measurements and
potentially greater estimation accuracy. Similarly, Falcon 1 is highlighted in Figure 5.14,
with the difference that S3TSR sensor is now located much nearer to the equator, allowing
to have visibility from at least one station.
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Figure 5.12: Covariance and error for COSMO-SkyMed 4 function of the processed mea-
surements. The former is expressed in terms of 3σ, where σ is the square root of the trace
of the positional component only.
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Figure 5.13: Elevation of Elektron 1 with respect to Cassini (above), S3TSR (middle) and
MFDR (below). The minimum elevation line is set at 20 degrees for all the sensors.
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Figure 5.14: Elevation of Falcon 1 with respect to Cassini (above), S3TSR (middle) and
MFDR (below). The minimum elevation line is set at 20 degrees for all the sensors.

The trends of the square root of the covariance trace and positional error norm for Elektron
1 and Falcon 1 are presented in Figures 5.15 and 5.16. As expected by the elevation
graph, the former is characterized by a large number of 2356 measurements, which results
in generally better performance. The covariance trace square root is only 27 meters,
with an error of 22 m, despite the worse a priori information with respect to the asset
spacecraft. On the contrary, Falcon 1 results are overall worse, notwithstanding the 438
available observations coming from a single station. The final value of the trace square
root and positional error are approximately 110 and 120 meters respectively, though they
lie in correspondence of a spike; looking at the general trend, the result is more similar to
COSMO-SkyMed, with the covariance around 33 meters.

In principle, it is possible to improve the results adopting ground stations more spread in
latitude and longitude, allowing to fill the visibility gaps and thus to obtain a smoother
estimate process.
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Figure 5.15: Covariance and error for Elektron 1 satellite function of the processed mea-
surements. The former is expressed in terms of 3σ.
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Figure 5.16: Covariance and error for Falcon 1 r/b function of the processed measure-
ments. The former is expressed in terms of 3σ.
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5.3. Overview and comparison

The proposed filter technique provides very good results especially for low eccentricity
LEO objects, where the effects of perturbations are mainly due to non-spherical gravity
field. The ground-based results are in general better in terms of covariance, thanks to
higher sensor accuracy and filter performance, with the added possibility to determine the
exact conjunction epoch2. However, this advantage comes at the cost of a more complex
algorithm, with higher computational cost and reduced flexibility. The possibility to
directly estimate state and covariance at TCA allows to have a much faster code, where
the nominal trajectory propagation is performed only once thanks to the single iteration
solution of the Least Squares. Moreover, the space-based sensor is definitely more flexible,
capable of seeing objects of very different orbits with an overall better target visibility
with respect to the multiple ground stations required, in particular for observation of low
orbit inclination objects. Finally, even though the UKF results are better, they must
be further propagated to the conjunction epoch in order to compute the probability of
collision, which leads to greater error and covariance. For particularly long propagations,
the result may be actually worse than the onboard Least Square. On the other hand,
the latter needs a sufficiently accurate reference trajectory to provide consistent results,
and the proposed SGP4 solution is not well suited for very long time windows, as the
error grows by approximately 1-3 km per day. Moreover, also the STM computed at each
observational epoch requires to consider orbital perturbations, although for the case at
study the J2 effect alone provides a sufficiently accurate solution. Overall, the onboard
analysis results are summarized in Table 5.1 for both objects. Computational times are
in the order of a few seconds for the onboard analysis, increasing to approximately half
an hour for the ground-based UKF, requiring the implementation of high precision orbit
propagator producing similar results to SGP4. It is possible to greatly reduce the required
time by adopting a simpler model based on J2 only at the cost of lower accuracy with
respect to the space-based analysis.

2More correctly, the best estimate of the conjunction epoch, as the exact TCA is never fully known
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Elektron 1 Falcon 1

Object spherical radius [m] 0.91 1.19

Observations 786 284

Positional Error [m] 40 23

LSQ covariance trace (positional) [m] 270 76.2

CCA covariance trace (positional) [m] 39 120

Minimum distance [km] 2.748 0.871

RAAN [deg] 256 329

Visibility windows (with limits) 122 165

Visibility time (with limits) [h] 47 16

Uniformity index (with limits) 0.67 0.25

Mean revisit time (with limits) [min] 59.6 55.5

Table 5.1: Onboard results for Elektron 1 and Falcon 1 r/b





79

6| Conclusions and future

developments

This work provided a statistical analysis of an onboard optical sensor with respect to a
catalogue of potentially dangerous targets, focusing on the possible observation oppor-
tunities as part of an autonomous, space-based conjunction analysis. It was possible to
determine various parameters deemed relevant to draw appropriate conclusions regard-
ing the objects observability, with progressively increasing the specific limitations of the
adopted sensor. The base limit refers to pure geometrical visibility and the target is con-
sidered observable if the line of sight is above the Earth horizon; the second limit imposed
is the sun illumination of the object, as only passive targets have been considered1. This
requirement is the first differentiation between optical and radar sensors. The last limit
is specific to the simulated scenario: an optical camera, with given limiting magnitude of
15 and minimum Sun separation of 30 degrees. Target visibility did worsen, but only for
smaller objects, in particular with an equivalent sphere radius lower than 10 cm or phase
angle close to 180◦; on the contrary, Sun separation did not have significant impact on
the visibility, probably due to the specific asset orbit and Sun-Earth relative position.

Different orbital parameters have been considered and the main correlation regarded the
longitude of the ascending node, with the highest visibility for satellites with RAAN
ranging between 200 and 300 degrees, a sensible value considering that the asset is about
70 degrees. When dealing with space-based observations, an important parameter is found
in the measurement uniformity along the observer orbit; for the considered scenario, a
maximum index of 0.67 was computed, independently of targets orbit; this value is easily
reached for satellites with RAAN around 250 degrees, also when limitations are applied.
The last important parameter characterized by relevant correlations is the revisit time
between two observations. In this case, some objects have a maximum value higher
than one day, while the minimum is generally limited to approximately 3000 seconds.
Nonetheless, when RAAN is between 200◦ and 300◦ both the revisit times tends to become

1There is in fact the possibility to have an active source of light on the observed satellite to take
measurements also when in Earth shadow.
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constant at around 2000/2500 seconds. This behaviour was found to be independent on
the specific orbit inclination.

Even when only the geometric constraint is enforced, about 5% of the 425 considered
objects are never visible in the simulation time window. This is an important factor in
evaluating the performance of a space-based sensor for observation of potentially haz-
ardous targets. Despite this, satellites with RAAN between 200 and 300 degrees are
always visible.

Thanks to the first part of the simulation, it was then possible to determine any close en-
counter occurring in the week after the scenario time window. Six different conjunctions
were found, with one below 1 km. Relative orbit determination and consequent conjunc-
tion analysis was thus performed for the two closest approaches, involving Elektron 1
decommissioned satellite and Falcon 1 rocket body. The single iteration Least Squares
filter, adopted for the onboard computation, provided very good results for both objects,
with limited positional errors and covariances, even when only a smaller set of measure-
ments was considered. On the other hand, Elektron 1 was characterized by slightly worse
values, probably due to lower accuracy of the J2-propagated STM when dealing with a
low perigee and high eccentricity target orbit.

The results have been compared to a canonical analysis based on three different ground
stations and Unscented Kalman Filter, modeled with a high precision orbit propagator.
Although a sequential algorithm cannot compute state and covariance estimates directly
at the TCA, the provided results were slightly closer to the nominal motion, at the expense
of a much higher computational cost.

Overall, the proposed filtering method allowed to compute accurate state estimation in a
fraction of time with respect to a typical ground-based analysis. Moreover, a space-based
sensor is characterized by a greater target visibility, mainly thanks to its higher altitude
and faster revisit time with respect to a ground station, whose performance are strongly
influenced by the specific object orbit.

Future developments

This research is only a first step towards a more generalized autonomous collision avoid-
ance system, capable of performing relative orbit determination and conjunction analysis
with higher accuracy also for orbits characterized by stronger perturbative effects. Yet,
a more accurate scenario should be based on real measurements in order to better un-
derstand the effects of the chosen model on the estimation accuracy. Another important
addition to this research would come from the implementation of observations schedul-
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ing, allowing to expand the statistical analysis with a more realistic sensor simulation;
this can be further improved by adding satellite attitude dynamics and the required slew
manoeuvres needed to correctly point the target objects. Finally, through additional op-
timization, the proposed linearized OD method could be dropped in favour of a more
accurate non-linear sequential filter used to directly solve relative navigation without any
ground support for asset motion estimation. Combined with an initial orbit determina-
tion process, the end result is a satellite capable of identifying and tracking any potential
threat and autonomously determine the need to perform collision avoidance.
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A| Unscented Transform

Let’s consider an initial statistics at time t0 correctly represented by mean and covariance.
For nonlinear dynamics, uncertainty propagation would result in biased and incorrect sam-
ples distribution if a linear map is adopted; the error is larger for long term propagation.
Therefore, the idea of the Unscented Transformation (or UT) is to choose a set of points,
called sigma points and directly propagate them through the nonlinear function as exem-
plified in Figure A.1; the statistics of the transformed points is then computed to estimate
the resulting mean and covariance.

Figure A.1: Comparison between the true uncertainty propagation on the left, linearized
method based on the STM in the middle and Unscented Transformation principle on the
right [34]

Contrary to a particle filter, the sigma points are not selected at random, rather they are
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deterministically chosen in order to exhibit specific properties and result in a high-order
information about the distribution that can be captured with very few samples, through
which the pdf is properly parameterized. The choice of the points is not unique and they
can be conveniently weighted as long as they correctly represent the initial statistics [18].

Given the non linear transformation, with the initial mean x̂ and covariance Px:

y = g(x) (A.1)

The general formulation of the sigma points can be expressed as:
χ0 = x̂

χi = x̂+
(√

(n+ λ)Px

)
i
, with i = 1, ..., n

χi = x̂−
(√

(n+ λ)Px

)
i
, with i = n+ 1, ..., 2n

(A.2)

λ is a scaling parameter, defined in Equation (A.3).

λ = α2(n+ k)− n (A.3)

With α determining the points spreading and typically defined between 10−4 and 1, while
k usually depends on the state vector dimension n and set equal to zero for an OD
problem. Hence, the weights can be computed as in Equation (A.4), where β is generally
equal to 2 for a Gaussian distribution [11].

W
(m)
0 =

λ

n+ λ

W
(c)
0 =

λ

n+ λ
+ (1− α2 + β)

W
(m)
i = W c

i =
1

2(n+ λ)
, with i = n+ 1, ..., 2n

(A.4)

superscripts (m) and (c) indicate affiliation to the mean and covariance, respectively.

Each sigma point is then propagated through the nonlinear function defined above.

Yi = g(χi), i = 0, ..., 2n (A.5)



A| Unscented Transform 89

Finally, in Equation (A.6) the weighted sample mean and covariance is computed.
ŷ =

∑2n
i=0W

m
i Yi

Py =
∑2n

i=0 [Yi − ŷ] [Yi − ŷ]T
(A.6)
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The first mathematical description of the orbital motion of two objects was done by Isaac
Newton, from the analysis of the work of Kepler and his famous three law of planetary
motion. The deduced Law of Gravitation states that the mutual force of gravitational
attraction between two point masses is:

F =
GuM1M2

r2
(B.1)

with Gu the Universal Constant of Gravitation equal to 6.67 × 10−11 Nm2/kg2, r the
distance between masses M1 and M2. This equation is the basis of the Two-Body Problem,
the building block of any mathematical description of orbital mechanics.

The strongest assumption of this model is the approximation of the planet as a point
mass, which is gravitationally equivalent to considering a perfectly spherical body with
uniform mass distribution. This is clearly not true, but still sufficiently close to reality to
provide accurate results for shorter propagations. From Equation (B.1) it is easily shown
that the equations of motion are:

r̈ = −µr

r3
(B.2)

For an artificial satellite, the mass can be considered negligible with respect to the Earth
and µ is the standard gravitational parameter, computed as the product GuM and equal
to 398600 km3/s2 for the Earth. The resulting trajectory is a simple geometrical figure,
ellipse, parabola or hyperbola, depending on the initial conditions. However, this is an
idealization of a true satellite orbit, obtained assuming that only the planet gravitational
force exists.

When lower propagation errors are required, the simple two-body problem hypothesis
must be dropped in favour of more accurate modeling of the forces acting on a orbiting
object. Nevertheless, dynamics is still Newtonian and the acceleration is given by the
ratio between the force and the mass.

r̈ =
F

m
(B.3)
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The force is thus computed summing all the contributions, coming from the Earth gravity
field, the influence of other celestial objects, Solar and Earth radiation pressure, ocean
tides, drag and relativity (implemented as a correction factor) [27].

In general, these effects can be divided into gravitational and non-gravitational, with the
most important contributions briefly described in the following sections.

B.1. Gravitational Perturbations

Earth gravity model

Given the two masses M1 and M2, the gravitational potential can be expressed as:

U =
GuM1M2

r
(B.4)

The resulting force acting on M2 is simply derived as the gradient of U .

F = ∇U = −GuM1M2r

r3
(B.5)

with r the position vector of M2 with respect to M1. If the body mass distribution is not
uniform, the potential is expressed as the integral over the entire object volume, as shown
in Equation (B.6).

U = M2

∫ ∫ ∫
Guγdxdydz

ρ
(B.6)

γ is the mass density associated to an infinitesimal element of mass dm, dxdydz is the
infinitesimal volume and ρ the distance between M2 and dm.

Taking M2 = 1 for convenience and integrating over the mass of M1:

U =

∫
M

GuM

ρ
(B.7)

This expression shows that a constant density sphere is gravitationally equivalent to a
point mass. It is possible to expand Equation (B.7) into an infinite series of spherical
harmonics with the terms related to the mass distribution collected into coefficients.

U =
µ

r
+−µ∗

r

∞∑
l=1

(ae
r

)l
Pl sinϕJl +

µ∗

r

∞∑
l=1

l∑
m=1

(ae
r

)l
Plm sinϕ [Clm cosmλ+ Sml sinmλ]

(B.8)
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The position of M2 is now expressed in spherical coordinates (r, ϕ, λ), ϕ the geocentric
latitude and λ the longitude. µ∗ = GuM

∗ and ae are scale factors involving a reference
mass and a reference distance introduced to adimensionalize the mass property coefficients
Clm and Slm [27]; in general, M∗ is the mass of the body and ae its mean equatorial radius.
Plm are Legendre’s Associated Functions of degree l and order m. The spherical harmonics
coefficients Jl, Clm and Slm represent the mass properties of the body. The former is
typically referred to as zonal harmonics, related to Clm by the expression Jl = −Cl,0; Clm

and Slm are called sectoral if l = m, tesseral if l ̸= m, as visualized in Figure B.1. The
Legendre functions for high degree are characterized by large numerical values with very
small coefficients, hence the potential is generally formulated using normalized Legendre
polynomials.

Figure B.1: Visualization of spherical harmonics: tesseral (left), sectoral (middle) and
zonal (right) [16]

If the Earth is approximated as an ellipsoid of revolution of constant mass density, there
is no longitudinal dependency of the mass distribution and both Clm and Slm are zero for
all nonzero m; moreover, due to the symmetry with respect to the equator, there are no
odd-degree zonal harmonics. Therefore, other than the point mass term, approximately
95% of the gravitational force is derived from the degree-two term J2 [27].

Overall, for an artificial satellite, the acceleration due to the Earth gravity field is given
by the term of Equation (B.2) for a uniform mass distribution, plus the contribution of
the non-spherical terms of U for the chosen degree and order.

Third-body effects

Although in Earth orbit, a satellite is subject to the gravitational effect of any massive
object in the solar system, with the main contribution coming from Sun and Moon. This is
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accounted as a perturbative force added to the two-body equations of motion, as expressed
in Equation (B.9).

f3B =

np∑
j=1

µj

(
∆j

∆3
j

− rj
r3j

)
(B.9)

np is the number of bodies, ∆ is the position vector of the body with respect to the
satellite and r with respect to the Earth; hence, the two terms are often referred to as
direct and indirect effects respectively. This equation is still based on the assumption of
uniform mass distribution for any additional body and the expression would be much more
complex if the full gravitational potential is considered; nevertheless, such a high accuracy
is in general not needed for these kind of perturbative effects. For particular applications,
it is possible to include the interaction between Earth oblateness and the third body, also
called indirect oblateness, as the main contribution from the Earth potential model [27].

Other gravitational effects

The mass property coefficients, Clm and Slm are constant only if the mass distribution
of the body is constant over time. However, all the celestial objects tend to deform and
redistribute their mass, leading to a change in the coefficients. The Earth is also subject
to this phenomenon, in the form of ocean tides and deformations due to gravitational
perturbations of the Sun and Moon. The most relevant effect is a temporal change
in degree two coefficients, and in particular J2. The magnitude of ∆J2 is about 10−8,
compared to the 10−3 of the Earth oblateness term.

For high accuracy applications, a Newtonian dynamics is often not sufficiently accurate
and additional terms must be introduced to account for relativistic effects. The main
perturbation is an advance, albeit small, of the argument of perigee, of approximately
10 arcseconds per year. The resulting acceleration is thus expressed in Equation (B.10),
where c is the speed of light, while β and γ are parameters in the isotropic Parameterized
Post-Newtoninan metric, equal to one in General Relativity [27].

fg =
µ

c2r3

{[
2(β + γ)

µ

r
− γ(ṙ · ṙ)

]
r + 2(1 + γ)(r · ṙ)ṙ

}
(B.10)

B.2. Non-gravitational Perturbations

Atmospheric drag

Drag can be the most important perturbative force for low altitude satellite. Contrary
to the gravitational effects, it is a dissipative force acting opposite with respect to the
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relative velocity between the spacecraft and the atmosphere. The resulting acceleration
is derived from aerodynamics considerations and takes the famous form:

fDrag = −1

2
ρ

(
CDA

m

)
VrVr (B.11)

The term in brackets is the inverse of the ballistic coefficient and it is an indication of the
drag acting on the object with respect to its mass. In SGP4 the drag contribution is taken
directly from TLEs as BSTAR, computed as ρ0B

2
, with ρ0 the reference air density equal

to 0.1570 kg/(m2 REarth) [15]. This allows to reduce the expression of the acceleration to:

fDrag =
ρ

ρ0
B∗V 2 (B.12)

Figure B.2: Qualitative density profiles of Earth’s atmosphere shown with the approxi-
mate orbital altitudes of some accelerometer’s carrying satellites. Note the high variability
exhibited under different environmental conditions [6]

Being a dissipative force, drag reduces the orbit energy, resulting in a semi-major axis
and eccentricity decaying. When the altitude is particularly low, the higher atmospheric
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density causes a strong increase in the heat flux, resulting in possible destruction of the
satellite, starting from solar panels and appendages.

As highlighted in Figure B.2, even though density is known to exhibit an approximately
exponential reduction with altitude, very accurate modeling is extremely difficult, due to
the influence of day-night cycle, the location of the subsolar point, seasonal variations,
solar and geomagnetic activities; over an orbital revolution, a satellite can experience up
to an order of magnitude change in density.

Solar Radiation Pressure

SRP is the other most relevant non-gravitational perturbation, along with drag. It results
from the transfer of momentum due to impact, reflection, absorption and re-emission of
photons; its contribution to the equations of motion is given by the expression:

fSRP = −P
νA

m
CRu (B.13)

P is the momentum flux from the Sun, A is the cross-sectional area normal to the Sun, u
the unit vector from the satellite in the direction of the Sun, CR the reflectivity coefficient
(approximately equal to one) and ν the eclipse factor. The satellite is in shadow when
ν = 0 and in sunlight for ν = 1. The value of P at about one Astronomical Unit is
approximately 4.56× 10−6 N/m2.

Considering the reflected and emitted radiation, also the Earth is a source of this pertur-
bation and for high accuracy requirements, the simple model given by Equation (B.13)
may be inadequate [27].

Other non-gravitational perturbations

There are many possible source of perturbations of non-gravitational nature, which may
affect a satellite’s orbit in different and complex ways. If the spacecraft has an electric
charge, then the presence of the planet magnetic field generates forces due to the high
relative velocity. Furthermore, heating by the Sun and the Earth, as well as internal heat
sources, produce asymmetrical thermal distribution generating a thermal force responsible
of drag-like effects. There are also satellite-dependent perturbations, for instance due to
brief mass expulsions, producing a thrust force extremely difficult to model due to the
uncertainties regarding the time and magnitude of the phenomenon. Eventually, empirical
forces can be added to take into account perturbations of unknown origin or errors due
to inaccurate forces modeling.
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