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Abstract

Graphs are a powerful way to represent data. They can be seen as a collection of objects
(nodes) and the relationships between them (edges or links). The power of this structure
has its intrinsic value in the relationship between data points that can even provide more
information than the data properties. An important type of graph is Knowledge Graphs
in which each node and edge has a type associated. Often graph data is incomplete and
in this case, it is not possible to retrieve useful information. Link prediction, also known
as knowledge graph completion, is the task of inferring if there are missing edges or nodes
in a graph. Models of different types, including Machine Learning-based, Rule-based, and
Neural Network-based models have been developed to address this problem. The goal
of this research is to understand how link prediction methods perform in a real use-case
scenario. Therefore, multiple models have been compared on different accuracy metrics
and production case requirements on a microservice tracing dataset. Models have been
trained and tested on two different knowledge graphs obtained from the data, one that
takes into account the temporal information, and the other that does not. Moreover, the
prediction of the models has been evaluated with what is usually done in the literature,
and also mimicking a real use-case scenario. The comparison showed that too complex
models cannot be used when the time, at training, and/or inference phase, is critical. The
best model for traditional prediction has been RotatE which usually doubled the score of
the second-best model. Considering the use-case scenario, RotatE was tied with QuatE,
which required a lot more time for training and predicting. They scored 20% to 40%
better than the third-best performing model, depending on the case. Moreover, most
of the models required less than a millisecond for predicting a triplet, with NodePiece
that was the fastest, beating ConvE by a 4% margin. For the training time, NodePiece
beats AnyBURL by 40%. Considering the memory usage, again NodePiece is the best,
by an order of magnitude of at least 10 when compared to most of the other models.
RotatE has been considered the best model overall because it had the best accuracy and
an above-average performance on the other requirements. Additionally, a simulation of
the integration of RotatE with a dynamic sampling tracing tool has been carried out,
showing similar results to the ones previously obtained. Lastly, a thorough analysis of the
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results and suggestions for future work are presented.

Keywords: Knowledge Graphs, Link Prediction, Machine Learning, Microservice Trac-
ing
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Abstract in lingua italiana

I grafi sono un approccio efficace per rappresentare i dati. Possono essere visti come una
collezione di oggetti (nodi) e le relazioni tra di essi (archi o collegamenti). L’efficacia
di questa struttura risiede nel valore intrinseco delle relazioni tra i punti dati, che pos-
sono fornire informazioni anche più significative delle proprietà dei dati stessi. Un tipo
importante di grafo è il Knowledge Graph, in cui a ciascun nodo e arco è associato un
tipo. Spesso i dati del grafo sono incompleti e, in questo caso, non è possibile recuper-
are informazioni utili. La predizione dei collegamenti, nota anche come completamento
del knowledge graph, consiste nel compito di inferire se ci sono archi o nodi mancanti
in un grafo. Sono stati sviluppati modelli di diversi tipi, tra cui modelli basati su ap-
prendimento automatico, basati su regole e basati su reti neurali, per affrontare questo
problema. L’obiettivo di questa ricerca è comprendere come i metodi di previsione dei col-
legamenti si comportano in uno scenario di utilizzo reale. Pertanto, sono stati confrontati
più modelli su diverse metriche di accuratezza e requisiti relativi a production-level use-
cases su un dataset di tracciamento di microservizi. I modelli sono stati allenati e testati
su due diversi knowledge graph ottenuti dalla modellazione dei dati, uno che tiene conto
delle informazioni temporali e l’altro che non le tiene in considerazione. Inoltre, le predi-
zioni dei modelli sono state valutate sia come di consueto nella letteratura, sia simulando
uno scenario di utilizzo reale. Il confronto ha mostrato che modelli troppo complessi non
possono essere utilizzati quando il tempo durante la fase di allenamento e/o inferenza è
critico. Il miglior modello per la predizione tradizionale è stato RotatE, che di solito ha
raddoppiato il punteggio del secondo miglior modello. Considerando la predizione nello
use-case, RotatE è stato pari a QuatE, che richiedeva molto più tempo per l’allenamento
e la previsione. Hanno ottenuto punteggi migliori del 20% al 40% rispetto al terzo miglior
modello, a seconda del caso. Inoltre, la maggior parte dei modelli ha richiesto meno di
un millisecondo per prevedere una tripletta, con NodePiece che è stato il più veloce, su-
perando ConvE di un margine del 4%. Considernado il tempo di training, NodePiece batte
AnyBURL del 40%. Considerando l’utilizzo della memoria, ancora una volta NodePiece
è il migliore, con un ordine di grandezza almeno 10 volte superiore rispetto alla maggior
parte degli altri modelli. RotatE è stato considerato il miglior modello complessivo perché
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aveva la migliore accuratezza e una prestazione sopra la media sugli altri requisiti. Inoltre,
è stata effettuata una simulazione dell’integrazione di RotatE con un tool di tracciamento
di campionamento dinamico, mostrando risultati simili a quelli ottenuti in precedenza.
Infine, vengono presentati un’analisi approfondita dei risultati e suggerimenti per i lavori
futuri.

Parole chiave: Knowledge Graphs, Link Prediction, Machine Learning, Microservice
Tracing
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1| Introduction

This chapter provides a general introduction to the research area of the degree project.
It gives an overview of the background and its main topics: Knowledge Graphs, Link
Prediction, and Microservices. It explains why these fields are very interesting, as knowl-
edge graphs have been applied in various fields such as recommender systems [64], drug
side-effect discovery [70], and search engines like Google Knowledge Graph [20], while the
microservice architecture is also attractive since it is used by many tech giants includ-
ing Microsoft, Google, Amazon [38], and Netflix [54]. It presents the problem addressed
in these areas and explains the objectives of the thesis. In particular, it describes how
requirements of low inference time, training time, and memory usage are critical for
both knowledge graphs link prediction and microservice-based applications. Therefore
it presents how using link prediction methods to integrate a tracing tool such as Jaeger
[23], seems an optimal case study since link prediction methods may solve the perfor-
mance degradation problem caused by tracing tools. Moreover, it explores the ethics and
sustainability aspects of the thesis, showing that achieving good results on the timing
requirements can have a positive impact on the environment. Furthermore, the method-
ology followed for the comparison of the chosen models and the main delimitations are
presented. Lastly, the last section describes the outline of the following chapter of the
thesis.

1.1. Background

The scope of the thesis lies in the areas of Knowledge Graphs Link Prediction, and
Microservices which will be explored in the following subsections.

1.1.1. Knowledge Graphs

Data can be represented through graphs. A graph G = (V,E) is a set of nodes V and a set
of edges E between these nodes [17]. When data is represented in this way, connections
between entities may be more meaningful than entities’ features [17]. Following this
direction, Knowledge Graphs (KGs) are able to achieve more complex representations by
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having different types of edges. KGs are useful for modelling heterogeneous interactions
and therefore have a wide range of applications, including recommender systems [64], drug
side-effect discovery [70], and search engines like Google Knowledge Graph [20].

1.1.2. Link Prediction

It is known that knowledge graphs are often incomplete [29]. The most famous example
is Freebase [6], in which 71% of people have no known place of birth, and 75% have no
known nationality [10].

Link Prediction or Knowledge Graph Completion is the task of solving this problem by
inferring missing edges to the graph.

Several approaches have been used to solve this problem. Traditional topology-based algo-
rithms look at the graph structure to see if two nodes are likely to be connected through
an edge [34].

Logical Rules can also be applied to this problem. Approaches like AnyBURL [35] showed
that it is possible to use ”if-then” rules, in the form of implication as shown in Equation
1.1, also for large knowledge graphs :

X → Y (if X then Y) (1.1)

Machine Learning approaches focused on finding the embedding, a good representation of
the nodes and edges in a lower dimensional space. Meaningful approaches are TransE [7]
that modelled relations as translations in the learnt embedding space, DistMult [63] that
uses cosine similarity of the embeddings for making predictions, ComplEx [55] that, as
the name suggests, uses complex embeddings to model different types of relations. Mod-
ern approaches in this area are RotatE [52] which represents nodes as complex vectors
and edges as rotations in complex vector space, QuatE [67] that uses quaternion hyper-
complex as embedding space, and TuckER [4] which is a tensor method based on Tucker
decomposition [56].

Neural Networks (NNs) have been applied to graphs, they are used to create deep embed-
dings. ConvE [9] is a Convolutional Neural Network (CNN) that concatenates entities
and relations to use a 2D Convolutional layer. R-GCN [48] is a Recurrent Graph Neural
Network (RecGNN) which has been specifically developed for Knowledge Graphs. It is
based on the message-passing framework. NodePiece [14] uses tokenization to learn a vo-
cabulary and therefore it is suitable for inductive link prediction, which differently from
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transductive link prediction, allows unseen entities at the inference phase.

1.1.3. Microservices

Current large-scale applications are developed using the microservice architecture. A
microservice is a small application that can be developed and managed independently
[54]. Multiple microservices interact with each other to create the application. They are
used by many tech giants including Microsoft, Google, Amazon [38], and Netflix [54].
Nevertheless, this architecture is not easy to maintain. For this reason, tracing tools such
as Dapper [50], Jaeger [23], Zipkin [41], and OpenTelemetry [40] have been developed to
create a microservice tracing graph. A microservice tracing graph is used to track the user
request path inside the system. Requests are monitored by attaching relevant contextual
metadata along with them during their execution [49], allowing developers to analyse
their applications. Common tasks are improving performance by bottleneck/critical path
detection, request time measurement, root cause analysis, and automatic scaling.

Still, this approach has a big drawback in performance degradation since an overhead on
the messages exchanged between microservices is required to create such a graph. Link
prediction methods may be a way to solve this problem.

Why Microservices?

To the best of my knowledge, previous studies that compared link prediction methods,
used often the same dataset like FB15k [7], WN18 [7], YAGO3-10 [9], etc, and focused
mainly on accuracy. They usually did not take into account inference time, training
time, and memory usage, which are requirements that have been identified according to
open problems pointed out from previous studies [19, 38, 45], but are also seen as crucial
challenges in microservice-based application [45, 66, 68]. In particular:

• Inference time is considered a critical requirement for applications that make use
of microservices graphs, such as CRISP [68] that performs critical path analysis, or
DeepTraLog [66] that perform anomaly detection.

• Training time is an essential requirement for the same reasons.

• Memory usage has been considered fundamental by applications that use microser-
vices knowledge graphs to perform root cause analysis [45].

Therefore this work will focus on knowledge graph link prediction in the microservices
area since it is an optimal use case to explore the requirements stated before.
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Nevertheless, microservice graphs are a bit different from the ones usually explored in
the literature. Famous KGs used in the literature such as FB15k [7], WN18 [15], and
YAGO3-10 [33] are very large in the number of entities, relations, and triplets. Having
such data, models are trained on a big single graph where some links have been removed.
Instead, microservices call graphs are completely different, since they are multiple small
graphs corresponding to the different traces. Consequently, it is necessary to develop a
different approach to understand how models perform in a real use-case scenario.

1.2. Problem

As previously stated, past research focused mainly on the accuracy performance of link
prediction models and did not focus on other metrics that are considered equally important
[19, 38, 45]. Therefore it is not clear how the above-mentioned models will perform in
a real use-case scenario where there are also other requirements such as training time,
inference time, and memory usage are relevant. Moreover, a comprehensive analysis of
the microservice use case has not been performed yet.

1.2.1. Related Work

This section includes both comparison or survey papers on Knowledge Graph Link Pre-
diction and studies that apply graph theory to different domains including antiviral drugs,
and microservices. However, this work is unique, since to the best of my knowledge, there
is no previous research that applied link prediction techniques to incomplete microservice
graphs.

Rossi et al. [29] carried out a comprehensive comparison of several Machine Learning (ML)
and NNs link prediction methods. The paper is well-written and very detailed. Moreover,
it classifies models into different categories. It compares their performance on known
datasets already used in research, therefore it does not analyse their behaviour in a real
use case. Moreover, it does not take into account newer models like QuatE [67], and
NodePiece [14]. Even though the training time has been compared, it does not seem
to be a fair comparison. In particular, for different methods, different optimizers and
different loss functions have been used, moreover, the early stopping technique has not
been used, and therefore the training time depends on the arbitrary choice of the training
epochs.

MDistMult [59] proposes a new model to perform link prediction on antiviral drugs knowl-
edge graphs. They also compare with state-of-the-art models including RotatE [52],
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TuckER [4], QuatE [67], ConvE [9], etc. It is an interesting research since it shows how
Knowledge Graph (KG) link prediction can be applied to an important domain. However,
it does not take into account metrics other than accuracy, differently from this thesis.

Qiu et al. [45] modelled the microservice tracing graph as a knowledge graph and then
applied a causal search algorithm for the root cause analysis problem. Their work, how-
ever, is different from the one in this thesis since they use as nodes not only microservices,
but also other software such as middleware, databases, containers, etc, and also hardware
such as hard disks, virtual machines, clusters, etc. In this work, instead, the nodes will be
solely microservices. Therefore also the relations that they use are different. Moreover,
they do not apply link prediction to reconstruct the graph, as it happens in this thesis,
but they build it from logs and traces.

B-MEG [3] is an approach to find bottlenecks in microservices graphs. The graph is made
by RPC between microservices. The nodes of the call graph are RPCs of microservices
and the edges correspond to an invocation of RPC from an upstream microservice to a
downstream microservice. It performs graph classification on a trace to understand if it
is anomalous, and then it performs node classification on the trace to understand if it is
a bottleneck. However, it applies Graph Neural Networks (GNNs) but it does not model
the graph as a knowledge graph.

It appears obvious that research focused mainly on the accuracy performance of link pre-
diction models, and therefore it is not clear how the above-mentioned models will perform
in a real use-case scenario where there are also other requirements. Furthermore, when
the previously mentioned methods have been proposed they did not take into account the
computational complexity or the memory usage, like for R-GCN [48], and ConvE [9], and
if they did like for QuatE[67], and TuckER [4], they just gave a mathematical bound that
does not give meaningful information.

For these reasons, this project aims to address these problems.

1.3. Purpose

The thesis project aims to compare different link prediction models on microservices
knowledge graphs. The comparison will be performed according to accuracy, but also on
metrics specific to the use case previously mentioned in Section 1.2. To summarize, the
research question would be the following:

How do state-of-the-art link prediction methods compare when it comes to accuracy, in-
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ference time, training time, and memory usage?

1.4. Goal

The goal of the degree project is to understand how link prediction methods perform in
a real use-case scenario where also other metrics than accuracy are used.
To do so, the following steps are carried out:

1. Identification of key requirements in the knowledge graph link prediction area;

2. Identification of state-of-the-art link prediction methods;

3. Identification of an appropriate type of data (microservice traces);

4. Defining appropriate ways to build the knowledge graph;

5. Train the selected models;

6. Measure the accuracy performance from a Data Science perspective;

7. Understand how to measure the performance from a use-case perspective, and mea-
sure it;

8. As an additional step, use the best model to simulate the performance of a real-case
scenario.

1.5. Benefits, Ethics and Sustainability

All the areas that model data as KG will be the beneficiaries of this project. In particu-
lar, the analysis of the timing constraint will have a positive effect on the sustainability
side. According to the work of Patterson et al [43], the carbon emission of a machine
learning model is directly proportional to the time required at training and prediction
phase. Therefore, by performing a comparison using the same configuration, it is possible
to have a relative comparison of the carbon emission of the models. Nevertheless, the
models used are small, so their carbon emission is not expected to be excessive. However,
understanding if the use of machine learning models is more energy efficient than the use
of tracing sampling tools is outside of the scope of this thesis.

Considering the ethics aspect, there are no evident concerns, since the data used does not
contain personal information.
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1.6. Methodology

For this thesis, following the framework of Håkansson [16], it has been decided to perform
a quantitative research with a deductive approach and an experimental strategy. However,
the final comparison followed a qualitative approach to choose the best model.

The Knowledge Graph has been obtained from the data by using two different modelling
approaches: the static modelling approach and the IO modelling approach. In the former
scenario, the selected models will be compared on link prediction both in transductive
and inductive settings. Moreover, in addition to the usual comparison that is done in
the literature, the model will be compared also in a way that simulates a real use-case
scenario prediction. Therefore there will be two different prediction scopes, as explained
in Section 4.1.

As a result, it will be possible to understand how the models perform on the requirements
mentioned in Section 1.2 and how they would perform in a real production-level use case.

1.7. Delimitations

There are multiple delimitations that affected this research. A delimitation is the imple-
mentation of methods on Python libraries that can address the KG link prediction task
since the goal of this thesis is to compare the methods and not to develop new ones.
Similarly, due to obvious time limitations, it has not been possible to perform hyperpa-
rameter tuning and therefore find the best configuration for all the models. Therefore,
the hyperparameters have been chosen as the default ones in the Python implementation
or the ones suggested by their authors. Moreover, some features of the data, such as
timestamps have not been used, since the chosen class of models does not support them.
For the same reason, it has not been possible to discuss online training or dynamic graph
ingestion.

1.8. Outline

The following chapters will go more in-depth into the research. In particular, Chapter
2 describes in detail graph theory, link prediction methods, and the challenges of this
research area. Chapter 3 explains the research method, and Chapter 4 shows its applica-
tion. Chapter 5 presents the artefacts. Chapter 6 describes the experimental results, and
Chapter 7 presents the conclusion.
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2| Theoretical Background

In this chapter, I talk about the theoretical background on which the thesis is founded.

2.1. Graph Theory

This section deepens into graph theory, presenting what graphs are and one particular
type called Knowledge Graphs.

2.1.1. Graphs

From a mathematical point of view, a graph G = (V,E) is a set of nodes V and a set
of edges E between these nodes [17]. In the literature, graphs are often called networks,
nodes are called entities or vertices, and edges are called relations or links. In this work,
these terms will be used interchangeably.

Graphs can be represented in two ways: Using the Adjacency Matrix or using the Adja-
cency List [5]. The adjacency matrix A ∈ R|V |×|V |, is a matrix in which a 1 in position
i,j means that there is an edge between node i and node j. The adjacency list, instead, is
a list of elements where each of them is a pair of nodes (i, j) that are connected through
an edge. The two representations are interchangeable, and the choice of which to use
depends on the use case. Both representations can be seen in Figure 2.1.

There are various types of graphs based on the characteristics of nodes and edges. Edges
can be directed, which means that they can be traversed according to one direction or
undirected, which means that they can be traversed in both directions. Edges can be
weighted, or there can be multiple edges between two nodes.

Graphs are a powerful way to represent data, The power of this structure has its intrinsic
value in the relationship between data points that can even provide more information
than the data properties [17]. In some cases, such as the internet or social networks, a
graph representation arises naturally from the data structure. In other cases, like citation
networks, using a graph structure is still useful to get important insight.
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(a) Graph.

(b) Adjacency matrix. (c) Adjacency list.

Figure 2.1: Marriage graph of aristocratic Florentine families from the 15 th century [42]
(drawn using newtworkx).

Centrality measures are fundamental for topology-based methods, which will be seen in
Section 2.2.1. They answer to the question "Which are the most important or central
vertices in a network?" [36]. A simple example is node degree which is the number of
edges that a vertex has. The degree is occasionally called degree centrality, and despite its
simplicity, it can be enlightening. In a social network, it is reasonable to think that entities
with a high degree centrality might have more influence, more access to information, and
more prestige than those that have a lower number of links [36]. A famous example is the
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marriage graph of aristocratic Florentine families from the 15th century [42] which can be
seen in Figure 2.1.

Analysing data represented as a graph, it is possible to discover that the Medici family had
a high centrality value and therefore the following prosperity is not a surprise [22]. There
are several centrality measures and they do not give always the same results. However,
their description is not in the scope of this thesis.

Graphs mentioned so far are called simple graphs [17]. However, multiple types of graphs.
Multi-relational graphs or KGs have edges of different types [17]. Heterogeneous graphs
have also nodes of multiple types [17], while Multiplex graphs assume that a graph can be
decomposed in a set of k layers where each node belongs to a single layer and each layer
represents a unique relation [17]. The focus of this research is on KGs. For this reason,
the next section is dedicated to describing them in more detail.

2.1.2. Knowledge Graphs

Knowledge Graphs or Multi-Relational Graphs are a particular type of graph where edges
can have types [17]. As a result, the adjacency matrix A is now a multi-dimensional
matrix, A ∈ R|V |×|V |×|T |, where |T| is the total number of edge types. Thanks to this
improvement, knowledge graphs can be used to represent a more complex interaction
between data points. In particular, knowledge graphs are able to represent those data in
which connections have different meanings, and some types of connections are not possible
between all nodes. Considering the previous example with the Florentine families of the
15 th century, it is possible to have a more rich representation when taking into account
other relations than the marriage. The result of considering also trade and real estate
partnership can be seen in Figure 2.2. Examples of the application of KGs are drug side-
effect discovery [70] where each side-effect is a link of a different type, and search engines
like Google Knowledge Graph [20].

2.2. Link Prediction

It is known that knowledge graphs are often incomplete [29]. The most famous example
is Freebase [6], in which 71% of people have no known place of birth, and 75% have no
known nationality [10].

Link Prediction or Knowledge Graph Completion is the task of solving this problem by
inferring missing edges to the graph. It can be split into two subtasks: entity prediction,
and relation prediction [58]. Furthermore, entity prediction is called in two different ways
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Figure 2.2: Relationship knowledge graph of aristocratic Florentine families from the 15
th century [42] (drawn using newtworkx).

depending on which entity we want to predict [58]. In particular, given a triplet fact of a
KG, ⟨h, r, t⟩, where h is the head entity, r is the relation, and t is the tail entity, we have:

• head prediction, when the head entity is missing: ⟨?, r, t⟩

• tail prediction, when the tail entity is missing: ⟨h, r, ?⟩

• relation prediction, when the relation is missing: ⟨h, ?, t⟩

More generally, the known entity is called source entity, and the missing one target entity
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[29]. In particular, the scope of a model is to define a scoring function ϕ(h, r, t) that gives
the plausibility of a given fact. [29].

In the past years, various approaches have been developed over time to tackle this problem.
They can be split into four categories according to the type of algorithm that they use.

2.2.1. Traditional approaches

In this scenario, there are two ways of seeing a missing edge: the first one, and the
more obvious, is simply assuming that the graph is incomplete and it needs to be filled.
The second one, instead, assumes that the network is evolving over time and we need
to predict the new links for the next time stamps. Traditional approaches focused on
the second definition of the problem [34]. The traditional topology-based approach has
as a key assumption the fact that if two nodes are similar enough, for example, if they
have enough neighbours in common, sooner or later they will be connected [32, 34]. A
concrete example would be about two people that do not know each other but they have
many friends in common, it is easy to think that sooner or later they will become friends
too. In this case, our task is called Neighbour Overlap Detection [17]. However, there are
different ways to express the likelihood to be connected based on the neighbourhood, and
there are also different ways of defining the neighbourhood. Usually, the node degree is
taken into account for these metrics: dx is the number of nodes connected to the node x.

The simpler local neighbour overlap technique is the number of common neighbours. How-
ever, since high-degree nodes tend to be connected to more nodes, different ways of coping
with this bias have been developed. Sørensen index [51] divides the number of common
neighbours by the sum of the degree of the two nodes. Salton index [46], instead, normal-
izes the number of common neighbours by using the squared root of the product of the
nodes’ degrees. Jaccard index [21] minimized the effect due to node degree by normalizing
by the size of the union of the two neighbourhoods, but without duplicates. Resource
Allocation index [69], and Adamic-Adar index [1] use a different approach since they
take into account the importance of each common neighbour. Local neighbour overlap
techniques are reported in Table 2.1.

The main global neighbour overlap techniques, which can be seen in Table 2.2, are Katz
index [25], which counts the path of all lengths between two nodes, it uses a parameter β
to change the importance of long and short paths, and LHN index [30] that can be seen
as a normalized version of Katz [25] index since it is not biased on node degree. In the
formula, m is the total number of edges in the graph, λ1 is the largest eigenvalue of the
identity matrix A, I is a |V |× |V | identity matrix indexed in a consistent manner with A.
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Table 2.1: Local Neighbour Overlap techniques.

Name Formula

Number of common neighbours [32] S(x, y) = |N(x) ∩N(y)|

Sørensen index [51] S(x, y) = 2|N(x)∩N(y)|
dx+dy

Salton index [46] S(x, y) = |N(x)∩N(y)|√
dx×dy

Jaccard index [21] S(x, y) = |N(x)∩N(y)|
|N(x)∪N(y)|

Resource Allocation index [69] S(x, y) =
∑

u∈N(x)∩N(y)
1
du

Adamic-Adar index [1] S(x, y) =
∑

u∈N(x)∩N(y)
1

log(du)

Table 2.2: Global Neighbour Overlap techniques.

Name Formula

Katz index [25] S(x, y) =
∑∞

i=1 β
iAi[x, y]

LHN index [30] S(x, y) = I[x, y] +
2m
dxdy

∑∞
i=0 β

iλi−1
1 Ai[x, y]

2.2.2. Logical Rules

Knowledge graph completion has been addressed also by rule-based methods. A notewor-
thy approach is AnyBURL [35]. The proposed model is a bottom-up technique developed
to efficiently learn logical rules from large knowledge graphs. The rules learnt are in the
form of Equation 2.1:

h(c0, c1)← b1(c1, c2), ..., bn(cn, cn+1) (2.1)

where on the left side there is the head of the rule and on the right side there is the body
of the rule. The rule previously showed is an ”if-then” rule in the form of implication as
shown in Equation 2.2:

X → Y (if X then Y) (2.2)

The learning algorithm is shown in Figure 2.3. Starting from n = 2, the algorithm learns
rules of length n − 1. Then n is increased when the ratio between the number of rules
found in the current iteration that were also found in previous iterations and the total
number of rules found in the current iteration is above a certain threshold sat such as
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Figure 2.3: AnyBURL rules generation [35].

99%. The algorithm stops after a previously established time ts, a good value can be 100
seconds. Rules are stored if they are above a certain threshold confidence Q that can be
also very low like 0.0001. At the prediction phase, triplets are ranked according to the
confidence of the rules that support them. If there are ties, the comparison is performed
between the rules with the second largest confidence that support the triplets and so
on, until there is a winner. The authors claim that this method achieves state-of-the-art
performance despite not being based on ML and having a short time to train.

2.2.3. Machine Learning

ML focused on learning a low dimensional representation of a node, the embedding. These
methods usually adopt an encoder-decoder architecture using shallow encoding [17]. In
this case, the encoder is simply a lookup table that maps a node to a vector. The decoder,
instead, uses the embedding to reconstruct some graph statistics. In the use case of link
prediction, the decoder may want to reconstruct some close nodes that could be candidates
for a connection. The objective of the training is to find an embedding that is able to
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give the right output when the decoding is applied.

ML multi-relational decoders can be characterized by their capability to represent different
logical patterns on relations [17]. Considering nodes h, and t, a relation r, and E the set
of facts in the form h, r, t, we can have four types of relations:

• Symmetric relation: (h, r, t) ∈ E ⇐⇒ (t, r, h) ∈ E.

• Anti-symmetric relation: (h, r, t) ∈ E =⇒ (t, r, h) /∈ E.

• Inverse relation: (h, r, t) ∈ E ⇐⇒ (t, r̂, h) ∈ E.

• Composed relation: (h, r1, t) ∈ E ∧ (t, r2, x) ∈ E =⇒ (h, r3, x) ∈ E

Different ML models are able to express different logical patterns. Below, some meaningful
decoder methods are described.

TransE and early approaches

A model which is imperative to mention is TransE [7] which is one of the first decoders
developed. The idea behind this method is that relations are translations in the embedding
space. This method learns a low-dimensional vector for nodes and links. When applied for
tail prediction, after having learnt the embedding h for a head node, and the embedding
r for a relation, it computes the tail node t = h+ r, as seen in Figure 2.4, and, as result,
nodes whose embedding is close to t are candidates for a relationship. This method is
transductive and therefore cannot be applied to nodes that are not present in the training
set, moreover, it cannot model symmetric relations. The number of parameters used is
O(nek + nrk), where ne is the number of entities in the graph, nr is the number of relations
and k is the embedding size. TransE [7] can be considered the pioneering approach to
representation learning since it showed how powerful embedding-based approaches could
be.

Figure 2.4: Example of a fact modelled by TransE.
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Another important model is DistMult [63] which uses an n-hot feature vector to represent
embeddings and cosine similarity between h · r and t as scoring function. It outperforms
TransE [7], and it is able to use a similar number of parameters since it forces embeddings
to be diagonal matrices. The drawback is that it treats all relations as symmetric, therefore
it cannot model anti-symmetric, inverse, and composed relations [17].

ComplEx [55] is a tensor factorization model for link prediction that uses complex em-
beddings to solve the expressivity problems of previous models like DistMult [63]. In
particular, the imaginary part of the embedding allows ComplEx to represent also anti-
symmetric relations. The only logical pattern that it cannot represent is composition [17].
As a result, it achieves better performance at link prediction when compared with TransE
[7], and DistMult [63].

RotatE

RotatE [52] is a knowledge graph embedding method which represents nodes as complex
vectors and edges as rotations in complex vector space. It focuses on tail prediction. More
formally, the model structure is shown in Equation 2.3 and represented in Figure 2.5:

t = h ◦ r (2.3)

where h, t, r ∈ Ck are the embedding, respectively of the head node, the tail node, and
of the relation, while ◦ is the Hadamard (element-wise) product, and k is the size of the
embedding space. If compared with TransE [7], RotatE is also able to model antisymme-
try, inversion, and composition, but also symmetric relations. This is possible by using
an arbitrary vector r, that satisfies ri = ±1. The space and time complexity are linear in
the size of the embedding of entities and relations [29, 67]. It is considered the baseline
model for transductive link prediction [14].

QuatE

QuatE [67] embeddings lie in the quaternion hypercomplex plane. As a result, relations
are quaternion rotations that have two planes of rotations. While the concept of geometric
rotation is similar to the one of RotatE [52], QuatE is a semantic matching model, while
RotatE is a translational model, however, it also focuses on tail prediction. It can be seen
as a generalisation of ComplEx [55], and DistMult [63]. Quaternions allow avoiding the
gimbal lock (loss of one degree of freedom) and are more stable and efficient than rotation
matrices. QuatE method has two steps. First, the head quaternion is rotated using the
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Figure 2.5: RotatE models r as rotation in complex plane, adapted from [52], using
Florentine families from the 15 th century [42] data.

unit relation quaternion as can be seen in Equation 2.4:

Q’
h = Qh ⊗W<

r (2.4)

where ⊗ is the Hamilton product, Qh is the quaternion embedding of the head calculated
as in Equation 2.5:

Qh = {ah + bhi + chj + dhk : ah, bh, ch, dh ∈ Rk} (2.5)

with k that is the size of the embedding vector, and W<
r is the normalized quaternion of

the relation calculated as in Equation 2.6:

W<
r =

Wr

|Wr|
=
ar + bri + crj + drk√
a2r + b2r + c2r + d2r

(2.6)

The second step consists in tackling the link prediction problem as a classification task.
The scoring function is shown in Equation 2.7:

ϕ(h, r, t) = Q’
h ·Qt = ⟨a’

h, at⟩+ ⟨b’h, bt⟩+ ⟨c’h, ct⟩+ ⟨d’
h, dt⟩ (2.7)

which is the quaternion inner dot product between the embedding of the tail and the
rotated embedding of the head obtained as explained before in Equation 2.4. During the
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training process, the head relation is rotated to maximize or minimize the dot product
with the tail, depending on the existence of the relation in the dataset. Its time complexity
is linear in the size of the embedding. QuatE can represent symmetric, antisymmetric
and inversion relations, but it cannot represent composition. However, the authors argue
that it is intended since multiple composition patterns might exist in the same knowledge
graph. QuatE achieves state-of-the-art performance if compared with previous shallow
embedding models.

TuckER

This method [4] is based on Tucker Decomposition [56]. A tensor can be decomposed into
a smaller tensor and a set of matrices as shown in Equation 2.8:

X ≈ Z ×1 A×2 B ×3 C (2.8)

having Z ∈ RP×Q×R, X ∈ RI×J×K , A ∈ RI×P , B ∈ RJ×Q, and C ∈ RK×R. The idea is to
have the same embedding matrix E for object and subject identity as shown in Equation
2.9:

E = A = C ∈ Rne×de (2.9)

and having a relation embedding matrix as shown in Equation 2.10:

R = B ∈ Rnr×dr (2.10)

where ne is the number of entities, nr is the number of relations, de is the dimensionality
of the embedding of the entities, and dr is the dimensionality of the embedding of the
relations. The probability of a triple being true is calculated as in Equation 2.11:

S(ϕ(h, r, t)) (2.11)

where S is the logistic sigmoid function: S(x) = 1
1+e−x , while the scoring function is shown

in Equation 2.12:

ϕ(h, r, t) = W ×1 eh ×2 rr ×3 et (2.12)

with eh, rr, and et that are the rows of the entity matrix of the entities h and t and the row
of the relation matrix of the relation r. While W ∈ Rde×dr×de is the core tensor. TuckER
is fully expressive and the number of parameters is linear in the size of the dimensionality
of the entities and relations embeddings. At link prediction, it outperforms some shallow
embedding models, including DistMult [63], ComplEx [55], RotatE [52], TransE [7], but
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also neural network models, including ConvE [9], and R-GCN [48].

2.2.4. Neural Networks

Recent years have been a golden age for Deep Learning. This area showed superior perfor-
mance compared with traditional Machine Learning models in different fields, including
computer vision and natural language processing [61].

There are various types of GNNs, and to distinguish them in this work, the taxonomy
of Wu et al. [61] will be followed. The first GNNs developed are called Recurrent Graph
Neural Networks (RecGNNs) [61]. The Graph Neural Network model (GNN) [47] has been
the early approach in this area. This method is a generalisation of previously developed
Recursive Neural Networks [12, 47]. The idea is to attach a state to each node, consisting
of neighbourhood information, like the other connected nodes.

Another type of GNNs are called Convolutional Graph Neural Networks (ConvGNNs)
[61]. They are further divided into two categories: spectral-based and spatial-based [61].

Spectral-based approaches define the convolutional operation from the signal processing
perspective, in the sense that the convolutional operation can be interpreted as denoising
graph signals [61]. Spectral-based methods assume a fixed graph and generalize poorly
on new graphs [61]. One noteworthy model is Graph Convolutional Network (GCN)
[28]. It uses convolutional layers to approximate localized spectral filters on graphs. The
convolutional operation scales better on large graphs with high node degree distribution
if compared to GNNs.

Spatial-based ConvGNNs inherit ideas from RecGNNs to define graph convolution by
information propagation [61]. Basically, the idea is to neighbourhood information using a
message-passing algorithm. These methods are usually inductive, which means that are
able to generalize well on unseen nodes. A famous model is GraphSAGE [18]. Basically,
the idea is to train a set of aggregator functions that learn to aggregate feature information
from a node’s local neighbourhood. As the name suggests (SAmple and aggreGatE),
the node embedding is created in two steps. The first step is to sample a fixed size of
neighbours that are connected to the current node representation. Then an aggregation
function is applied to the current node representation hn−1

v and the previously collected
representations of the nodes in the neighbourhood. After the aggregation function, a
non-linearity σ is applied through a fully connected layer, and the result is the new
node representation hnv . The algorithm can be seen in Figure 2.6. The idea is that by
stacking more layers, the embedding of a node will have more and more information on a
larger neighbourhood. GraphSAGE [18] proposes different types of aggregation functions,
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Figure 2.6: GraphSAGE embedding generation [18].

including Mean aggregator, LSTM aggregator and Max-Pooling aggregator. This model
can be seen as a continuous approximation of the Wesfeiler-Lehman (WL) Isomorphism
Test [8, 18]. Research continued in this direction, and it pointed out that GNNs like
GraphSage [18] have limited discriminative power [62]. Graph Isomorphism Network
(GIN) [62], and later Identity Aware GNNs (ID-GNN) [65] were proposed to solve this
problem, however such innovative GNNs are out of scope since they cannot be applied to
KGs.

2.2.5. Application of Neural Networks to Knowledge Graphs

Neural networks described so far cannot be applied directly to Knowledge Graphs since
they use node features to create embeddings and they do not take into account relation
types. However, research adapted some of those models also for this use case. Here I
mention the state-of-the-art NNs-based models that can be applied to KGs.

Naïve approaches to Knowledge Graphs: R-GCN

One of the first ConvGNNs applied to Knowledge Graphs is R-GCN [48]. This model is
an extension of GCN [28]. The idea is to create an autoencoder that uses as encoder a
ConvGNNs to produce latent feature representations of entities and a tensor factorization
model as a decoder to be used for link prediction. The authors used as decoder DistMult
[63]. GCN [28] can be also seen as a special case of a differentiable message-passing
framework whose propagation model can be expressed as in Equation 2.13:

hl+1
i = σ(

∑
m∈Mi

gm(h
l
i, h

l
j)) (2.13)
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where hli ∈ Rd(l) is the hidden state of the node vi in the l-th layer of the Neural Network
(NN), while d(l) is the dimensionality of this layer representation, σ(·) is an element-wise
activation function like ReLU, and gm is a message aggregation function that can be a
neural network like function or a linear transformation in the form of Equation 2.14:

gm(hi, hj) = Whj (2.14)

Therefore, the proposed R-GCN adapts the message-passing framework showed in Equa-
tion 2.13 as described in Equation 2.15:

hl+1
i = σ(

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i ) (2.15)

where N r
i is the set of neighbour indices of node i under relation r ∈ R, ci,r is a problem-

specific normalization constant that can be learned or chosen a priori, e.g. ci,r = |N r
i |.

The idea is to accumulate transformed feature vectors of neighbouring nodes through a
normalized sum. At the end of each layer, each node has a special self-connection to
be informed of the previous representation updates. A representation of a layer can be
seen in Figure 2.7. This architecture allows stacking multiple layers to model dependencies
between different relational steps. The input of the first layer can be a one-hot encoding for
each node of the graph if no other features are present. This approach has problems since
there is a large growth in the number of parameters when there are many relation types.
Such a problem has been addressed by applying basis and block-diagonal decomposition
to the weight matrices [28]. On link prediction, an R-GCN encoder with a DistMult [63]
decoder outperforms machine learning models such as TransE [7], and ComplEx [55].

ConvE

ConvE [9] is a CNN that can create deep node embeddings and can be used for Knowledge
Graph Link prediction. Its inference process is shown in Figure 2.8. In particular, this
model reshapes and concatenates entity and relation embeddings in order to create an
"image". In this way, 2D Convolutional layers can be applied. The resulting feature map
tensor is then projected into a fully connected layer of embedding dimension k. Then after
a Matrix multiplication with an entity matrix, a Logistic sigmoid is applied to perform
the prediction. Formally, the architecture’s scoring function is shown in Equation 2.16:

ψr(es, eo) = f(vec(f [ēs; r̄r] ∗ ω))W )eo (2.16)
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Figure 2.7: A single R-GCN layer, adapted from [48], using Florentine families from the
15 th century [42] data.

where rr ∈ Rk is a relation parameter depending on r, ēs and r̄r are the 2D reshaping of
es and rr, while es, and eo are the embedding of the entities s and o, and the non-linearity
f used is the ReLU. Then after the score, the logistic sigmoid function is applied and the
probabilities of links are obtained as in Equation 2.17:

p = σ(ψr(es, eo)) (2.17)

Moreover, Batch Normalization is used after each layer to increase the convergence rate,
and dropout is used for regularization. It is applied on the embeddings, on the feature
maps obtained by the convolution, and also on the fully connected layer. ConvE achieves
better or similar performance than previous models like R-GCN [48], DistMult [63], and,
ComplEx [55] while using fewer parameters.

Modern approaches to Knowledge Graphs: NodePiece

Inspired from Natural Language Processing (NLP), NodePiece [14] is an encoder that
uses tokenization to reduce parameter complexity, increase generalization capability, and
represent new entities using the learnt vocabulary. The idea is to have a set of atoms made
by anchor nodes and all relation types to construct the embedding of a node. NodePiece
tokenization strategy is represented in Figure 2.9, and works as follows: a target node
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Figure 2.8: ConvE inference process, adapted from Dettmers et al. [9], using Florentine
families from the 15 th century [42] data.

is tokenized into a hash of the k anchors, which can be the k closest one or k anchors
chosen using a random strategy, their shortest path distance from the target node, and
the outgoing relations form the target node. This means that if a node has an incoming
edge, it will be modelled using the inverse relation. Formally, the embedding is obtained
as showed in Equation 2.18:

hash(n) = [{ai}k, {zkai}, {rj}
m] = [an + zan , rn] = [ân, rn] ∈ R(k+m)×d (2.18)

with m that is the size of the relational context, an and rn that are taken from the
vocabulary, and anchor distance zan from Z ∈ R(diameter(G)+1)×d. d, instead, is the size
of the embedding vector. Then an encoding function is applied to obtain the embedded
vector as in Equation 2.19:

enc = R(k+m)×d → Rd (2.19)

The vocabulary is made by anchor nodes and relation types as described in Equation 2.20:

V ∈ R|V |×d = A+R (2.20)

while the anchor nodes are a subset of the total nodes A ⊂ N , the relation types are the
entire set of relations R since usually the total number of relation types is much lower
than the total number of nodes |R| ≪ |N |. The dencoding function can be a Multi
Layer Perceptron (MLP) [53] or a Transformer that uses the attention mechanism [57].
NodePiece achieves very good performance on inductive link prediction.
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Figure 2.9: NodePiece tokenization strategy, adapted from [14], using Florentine families
from the 15 th century [42] data.

2.3. Microservices

Modern web applications are getting bigger and bigger. As a result, they are not easy to
maintain. To solve this problem, applications have been split into smaller applications that
can be deployed, scaled, and tested independently and have a single responsibility. These
small applications are called microservices [54] where each service performs a specific
function and communicates with other services through APIs.

Microservices have been widely adopted as architecture by many tech giants including
Microsoft, Google, Amazon [38], and Netflix [54]. Since each service is independent and
can be developed and deployed separately, it allows to speed up development cycles and
enables teams to respond to changes more quickly. However, for the same reason, there
is an additional layer of complexity. In particular, when considering large-scale applica-
tions, it is not easy to understand how the microservice architecture will behave a priori.
Therefore tracing tools have been developed to analyse the application’s structure. Fa-
mous examples are: Dapper [50], Jaeger [23], Zipkin [41], and OpenTelemetry [40]. The
aim of the tracing operation is to build a microservice tracing graph. An example can be
seen in Figure 2.10. Useful applications are improving performance by bottleneck/critical
path detection, request time measurement, root cause analysis, and automatic scaling.

2.3.1. Tracing Tools

A microservice tracing graph is used to track the user request path inside the system.
Nevertheless, messages exchanged between microservices require overheads in order to
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Figure 2.10: Example of a microservice graph sampled from https://gitlab.mpi-
sws.org/cld/trace-datasets/deathstarbench_traces (drawn using newtworkx).

create these graphs. In particular, the requests are monitored by attaching relevant
contextual metadata along with them during their execution [49]. The overhead results
in performance degradation. Therefore, tracking many requests on massively distributed
applications seems unreasonable, leading to the creation of incomplete graphs. Often
sampling is used to reduce the overhead, however, when this technique is applied, obtained
traces are less representative [50].

There are two ways to perform sampling, namely head -based, and tail -based sampling
[49]. When using head -based sampling, as it happens for Dapper [50], and Jaeger [23],
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the decision of collecting a trace or not is performed when the front-end web service
receives a request from the user. This means that a trace is sampled as a whole or not
sampled at all. Therefore it is possible to reduce the overhead, by simply reducing the
probability of a request being tracked. Tail -based sampling, instead, registers the path
of each trace, and when they are complete it chooses if storing them or not. It can be
useful to track specific cases such as traces with errors, or traces that exceed a certain
threshold latency. Nevertheless, it results in a higher overhead than head -based sampling.
Tail -based sampling is supported by OpenTelemetry [40].

As a result, it is not possible to have a low overhead and high representative samples at
the same time. For this reason, this project explores the use of link prediction tools to
solve this problem.
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In this chapter, I describe the research methodology and methods that are used in the
degree project.

3.1. Comparative Analysis

The main task of the degree project consists of a comparison of different methods for link
prediction. The models compared are RotatE [52], QuatE [67], TuckER [4], ConvE [9],
R-GCN [48], NodePiece [14], and AnyBURL [35]. The metrics used are Mean Reciprocal
Rank (MRR), Hits@K (H@K) with k equals to 1, 3, 5, and 10, in the filtered scenario,
and using max, average, and min policies, and also training time, inference time per trace,
and memory usage. In the case of AnyBURL [35], since its custom implementation, it
will be evaluated only on both prediction, using min policy, and will be visualized only in
the averaged both prediction case.

A more detailed explanation will be performed in the following sections.

3.2. Choice of the Research Method

For this thesis, following the framework of Håkansson [16], it has been decided to perform
a quantitative research with a deductive approach and an experimental strategy.

This choice is supported by the fact that previous studies that focused on comparing link
prediction methods, including Rossi et al. [29] followed the same methodology. Moreover,
a quantitative analysis is a standard in the ML area. Additionally, by adopting a quan-
titative research approach, the thesis aims to provide objective and measurable results.
This allows for a systematic evaluation of different link prediction methods, enabling com-
parisons and drawing reliable conclusions. Furthermore, the chosen methodology ensures
that the experiment can be replicated by other researchers, enhancing the transparency
and credibility of the findings. Lastly, the framework of the thesis lies in the quantitative
area, since data is collected through experiments.
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However, while comparing the performance of the specific metrics has been performed
objectively by looking at the best value, it has not been the case when considering the
overall performance. In particular, in a subjective manner, a model has been considered
to be suitable to be the best if its performance on the additional requirements of train-
ing time, memory usage, and inference time were at least average and better than the
threshold if present. Then the models have been compared on the prediction accuracy.
It seems a good trade-off because although the main quality of a model is the reliability
of its predictions, it is necessary for an application to fulfil some service level agreement
and therefore a minimum value of performance on the additional requirements.

Moreover, in the overall comparison, a qualitative comparison is necessary, otherwise, it
would be needed to perform a quantitative comparison on many datasets, and it is out of
the scope of this thesis due to the limited time available.

3.3. Metrics

In the prediction phase, when we have an incomplete triple ⟨h, r, ?⟩ and we want to predict
the missing tail, or vice versa when we want to predict a missing head, we chose the node
that results in the highest score computed as in Equation 3.1:

t = argmax
n∈N

ϕ(n, r, t) where N is the set of nodes (3.1)

To do so, we compute the score for each node and relation, and based on the relative
score, we associate a rank Q to each of them.

In this thesis, to assess the accuracy of the prediction the framework described by Rossi
et al. [29] will be followed. The two metrics presented are MRR and H@K.

• MRR = 1
|Q|

∑
q∈Q

1
q
∈ [0, 1], the higher the better. It is the average of the inverse

ranks.

• H@K = |{q∈Q : q≤K}
|Q| ∈ [0, 1], the higher the better. It is the fraction of prediction

ranks that are equal to or below a certain threshold K. Common values for K are
1, 3, 5, and 10.

Moreover, there are different settings in which the rank can be computed:

• Raw Scenario: valid entities outscoring the target are considered mistakes, and they
do contribute to the ranking.

• Filtered Scenario: valid entities outscoring the target are not considered mistakes
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and they do not contribute to the ranking.

Furthermore, there are different tie-breaking policies that are used when multiple entities
have the same score as the target one:

• min: the target is given the lowest, and therefore best, rank among all entities. It
may result in artificially boosting the benchmark.

• average: the average rank is assigned to the target.

• random: a random rank chosen among the tied entities is assigned to the target,
with a large number of measurements it is equivalent to average.

• max : the highest, and therefore worst, rank among all entities is given to the target.

Metrics can be computed for head prediction or tail prediction only, but their results can
be averaged to obtain the both prediction score.

The previously mentioned metrics will be used to compute the accuracy of the models
that will be compared in this thesis. To have a more detailed comparison, both MRR and
H@K will be used. Instead, only Filtered scenario will be taken into consideration due
to software limitations. Max, average, and min will be used as tie-breaking policies when
allowed by the software, in order to have a complete overview of the performance of the
models.

3.4. Model Selection Rationale

As reported in Chapter 2, many models have been developed for link prediction, neverthe-
less, as previously stated, the comparison will be performed between RotatE [52], QuatE
[67], TuckER [4], ConvE [9], R-GCN [48], NodePiece [14], and AnyBURL [35].

The rationale behind this choice is that the comparison should be performed between
state-of-the-art models that claim to fulfil the requirements, and it should include repre-
sentatives of different approaches. However, it is important to say that the comparison is
limited to models implemented in modern Python packages since the goal of this thesis is
to compare the methods and not to develop new ones.

• RotatE [52] has been chosen since it is considered a transductive link prediction
baseline [14].

• QuatE [67] has been chosen since it is a new method among ML models, it is based
on hypercomplex embedding which is unprecedented in this area and still achieves
linear inference time in the embedding size.
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• TuckER [4] has been chosen since it is a tensor decomposition model based on Tucker
factorization [56] and for its optimal performance.

• ConvE [9] has been chosen as representative of Convolutional Neural Networks
(CNNs).

• R-GCN [48] has been chosen as representative of GNNs.

• NodePiece [14] has been chosen for its peculiar anchor-based approach, moreover,
it will be used as the baseline for inductive link prediction for its inherent inductive
nature.

• Anyburl [35] has been chosen as representative of rule-based methods and for its
fast training time.

Other models have been the subject of a preliminary literature study, but have not been
selected for comparison since they did not fulfil the criteria. In particular, ConvKB [37]
has not been selected since it is a CNN based method but it is outperformed by ConvE
[9]. ComplEx [55] despite its good reputation has not been selected since it is generalised
by QuatE [67], and TuckER [4]. DistMult [63] and HolE [39] are surpassed by many
other models developed including QuatE [67], and the others ML models selected for the
comparison. Therefore they cannot be considered state-of-the-art models. TransE [7] has
not been selected for the comparison, because despite being famous, it is one of the first
models developed, and now its performance is not good as newer models one. TransH [60]
and TransD [24] are both part of the initial current derived from TransE [7] and are not
state-of-the-art models. SimplE [26] has not been selected for the comparison, because
despite its premises of using few parameters, it is actually outperformed on this field by
TuckER [4].
Moreover, all topology-based methods described in Section 2.2.1 will be used for the
comparison, despite they are not expected to lead to good results.

3.5. Additional Metrics and Requirements

As previously stated, an important part of this thesis project is comparing the models on
metrics other than accuracy, since they have often been neglected from research. In par-
ticular, both training time and inference time will be measured. Moreover, the inference
time per triplet could be considered a proxy for the computational cost. The memory
usage instead will be measured through the size of the parameters. These requirements
have been identified according to open problems pointed out from previous studies [19,
38, 45]. The additional requirements have been monitored in the same way regardless of
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the modelling case.

Testing time per trace has been monitored in the traditional prediction approach since
having more samples would lead to a more robust result.

Memory usage has been measured just once when all the models have been instantiated
for the first time. Since it is measured through the size of the parameters it does not
change depending on the approach used or the size of the train set. Moreover, also the
number of parameters has been monitored, to understand better what the models are
learning.

The training time has been measured on the entire dataset and on a subset which ac-
counted for 29% of the total size, to have some understanding of the scalability of the
models. The subset training time has been monitored only for the static modelling sce-
nario since it was not possible to create a dataset with the same percentage size without
breaking up the different traces.
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4| Method Application

This chapter contains what was actually done for the degree project and a practical
description of how the method was applied.

4.1. Training and Testing

This section explains how training and testing have been performed. In particular, it
describes the training settings including the hyperparameters, and the different scenarios
investigated. Chiefly, it describes how the problem has been modelled using a static, and
IO modelling, and how in both cases the prediction scope has been differentiated using
the traditional and the trace-based prediction approaches. Moreover, it illustrates the
transductive, and inductive settings used in the traditional prediction scenario.

4.1.1. Training Settings

All models have been trained in the same setting when possible, in particular, the loss
function used is Self Adversarial Negative Sampling (NSSA) loss proposed with RotatE
[52], and also used by NodePiece [14]. The dimension of the embedding space has been
set accordingly to the papers that presented the models [4, 9, 14, 67]. The learning rate
has been set in order to obtain a reasonable training process, in particular, the starting
value was 0.01 since it was the default value on pykeen. Higher learning rates have been
used when lower learning rates were too low to make the models learn, and they remained
stuck with the same loss value. The early stopping patience, defined as the number of
training epochs without a decrease in validation error before stopping the training, has
been chosen arbitrarily. The batch size of ConvE [9] has been chosen arbitrarily. The
number of tokens for NodePiece [14] which is the number of nodes used to represent each
entity has been chosen according to Galkin et al. [14]. The same reasoning has been
followed when choosing the aggregation, which is the decoder used by NodePiece [14]
after the generation of the embeddings. However, its exact structure is the default one
of Pykeen. All the other settings are the default ones of pykeen. The RAM usage of
AnyBURL [35] has been set to 1 GB since it was the smallest value possible, and the



36 4| Method Application

training time has been set to 100 seconds since according to its paper it was enough time
to obtain good results, and using more time would have lead to the generation of more
rule and therefore would have increased also the inference time [35]. Thus, having a graph
not too large, 100 seconds of training time is a good choice. The training settings are
shown in Table 4.1.

Table 4.1: Training setting

Hyperparameter Value Affected Models

Loss Function NSSA [52] All models except for AnyBURL [35]

Embedding space dimen-
sion

200 All models except for AnyBURL [35]

Optimizer Adam [27] All models except for AnyBURL [35]

Learning rate
0.001
0.01
0.05

ConvE [9], and NodePiece [14]
TuckER [4]
RotatE [52], QuatE [67], and R-GCN [48]

Batch size 512 ConvE [9]

Number of tokens 20 NodePiece [14]

Aggregation MLP NodePiece [14]

Maximum train epochs 2000 All models except for AnyBURL [35]

Early stopping patience 20 All models except for AnyBURL [35]

Training time 100 seconds AnyBURL [35]

RAM usage 1 GB AnyBURL [35]

All other values Pykeen de-
fault

All models except for AnyBURL [35]

4.1.2. Building the Graph

An important step has been understanding how to build the Knowledge Graph from the
available data. In this thesis two different areas of modelling have been identified, the
first one focuses on the temporal information of the relations and the second one focuses
on the scope of the prediction. For both cases, two different options have been explored.
Moreover, the dataset has been split between training, validation, and testing, using two
different settings.
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Temporal information of relations

The problem addressed here is whether and how to represent the fact that microservice
calls follow a certain temporal order. In particular, two different modelling approaches
have been developed to understand if the temporal information is relevant or not for
making predictions. Since the problem has been modelled as a knowledge graph, it made
sense to focus on the relation types.
Therefore, inspired by Qiu et al. [44], data has been modelled in two differed ways:

• Static modelling: the temporal information is not taken into consideration at all,
nodes are microservices and relations are simply the type of the Remote Procedure
Call (RPC) used.

• IO modelling: the number of relation types is increased since for each call, it is
specified if the call is an output call (request), or an input call (answer).

A comparison of the two approaches is shown in Figure 4.1.

Scope of prediction

Two different approaches have been followed since assessing the performance of a model
simulating a real use-case scenario cannot be done by evaluating the results as it is usually
done in the literature. Famous KGs used in the literature such as FB15k [7], WN18 [15],
and YAGO3-10 [33] have from thousands to ten of thousands of entities, tens of thousands
to hundreds of thousands triplets, and a variable number of relations which can go up to
few hundred and in some cases even more. Having such data, models are trained on a
part of the graph where some links are missing. The missing relations are used in the test
set to assess the performance of the models. Therefore methods need to be trained and
evaluated on a single graph. However, microservices call graphs are completely different,
since they are multiple small graphs corresponding to the different traces. Consequently,
it is necessary to develop a different approach to understand how models perform in a
real use-case scenario.
Thus, two different approaches have been followed: traditional prediction and trace-based
prediction.

Traditional prediction All the multiple traces have been joined in order to create a
single big graph to be used for training and testing, as it is usually done in the literature.
Basically, the dataset has been considered as a big graph where it is required to predict
the missing links present in the validation and testing set. The case of graph composition
when having a dataset with just two traces is represented in Figure 4.2. The validation
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(a) Graph modelled using the static approach.

(b) Graph modelled using IO approach.

Figure 4.1: Same data modelled using the two different approaches.

set has been used for the early stopping.

Data splitting for traditional prediction The dataset has been split into train,
validation and testing. In the case of traditional prediction, the splitting was performed
according to two different settings: transductive, and fully inductive [13].

• Transductive setting: the dataset has been split at triplets level in the following
way: train set with 64% of the data, validation set with 16% of the data, and test
set with 20% of the data. In this case, all the entities and relation types of validation
and testing are present also in the training set. An example of the splitting can be
seen in Figure 4.3.

• Fully Inductive setting: the entities of the training, validation and test set are not
overlapping. As a result, the dataset has been divided at the entity level using the
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(a) Example of a trace represented as a tree. (b) Example of a trace represented as a tree.

(c) Resulting graph. Relations have been omitted to improve readability.

Figure 4.2: Visualization of the creation process of the graph used for training and testing
the model according to the traditional prediction approach. A, B, C, D, E, and F are
microservices, in figure a, a user submits a request through microservice A and it is then
propagated to B, C, and D. Instead in figure b, a user submits a different request through
microservice E, and it is then propagated to B, F, and D. Figure c shows the resulting
graph obtained by joining the traces on common microservices B, and D.

same proportions of the transductive case. However, to guarantee the fully inductive
property, 46% of the total triplets have been discarded for the static modelling
and 55% for the IO modelling. In the fully inductive setting, only NodePiece [14]
have been used, since the other models are inherently transductive and cannot
generalize on unseen graph nodes. R-GCN [48] should have worked in this scenario,
but unfortunately, PyKeen supported only its transductive implementation. An
example of the splitting can be seen in Figure 4.4.

Trace-based prediction The models are still trained as it happens for the previous
case, but at the prediction phase, their output is restricted to the entities and relations
that are known that are belonging to a specific trace. The final performance is then
obtained by averaging the single performance of each trace. As will be explained in
Section 5.2, there is a certain difference between the structure of the graph and the
subgraphs which is attributable to the use case. The reason is that while usually in KGs
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Figure 4.3: Representation of graph seen in Figure 4.2 split in training, validation and
testing according to the transductive setting following the traditional approach. Links
are labelled according to the dataset to which they belong.

Figure 4.4: Representation of graph seen in Figure 4.2 split in training, and testing
according to the fully inductive setting following the traditional approach. Links are
labelled according to the dataset to which they belong. One link has been removed to
ensure the fully inductive setting, therefore nodes A, and C are never seen by the models
during training. The validation set has been omitted for simplicity

all nodes could be linked with each other, it is not the case with microservices calls. In
fact, some microservices may not be linked with each other since they are associated
with different web services. For example, two functionalities offered by a web app may
not share logic at all, and therefore may not have microservices in common. Therefore
assessing the performance of a model using the classic approach is not relevant to the
use case, especially considering the fact that traces have usually just a few entities and
relations.

While the training in approach remains the same as presented in the traditional prediction
approach, the testing works as follows:

• For each trace that constitutes the transductive test set, a train-trace set and a test-
trace set are built. The train-trace set is the smallest "transductive" set considering
only the triplets of the trace. It may or may not be overlapping with the traditional



4| Method Application 41

train set.

• The test-trace set is the remaining part that needs to be predicted. It may or may
not be overlapping with the traditional train set.

• At the prediction phase, the model output is restricted to consider only the entities
and relations present in the train-trace set, and it is evaluated the results on the
test-trace set.

The idea is that the models are tested at trace level in the transductive setting, and the
output is reduced to the traces and entities already seen in the training part. Therefore,
since the result space is restricted to a single web service, it is not possible to predict a
link to a node that is not associated with that trace. For the same reason, this approach
cannot be used in the inductive scenario. An example of this approach can be seen in
Figure 4.5.

Figure 4.5: Example of a trace split in train-trace set and test-trace set. Links are labelled
according to the set to which they belong.

4.2. Dataset Choice

The dataset used to build the knowledge graphs contains microservice traces since the
previously stated requirements are also seen as crucial challenges in microservice-based
application [45, 66, 68]. In particular:

• Inference time is considered a critical requirement for applications that make use
of microservices graphs, such as CRISP [68] that performs critical path analysis, or
DeepTraLog [66] that perform anomaly detection.

• Training time is an essential requirement for the same reasons.

• Memory usage has been considered fundamental by applications that use microser-
vices knowledge graphs to perform root cause analysis [45].
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4.3. Platform

Both data exploration and the model comparison have been performed using Python.
Data exploration has been performed on my laptop and on Google Cloud Platform (GCP)
virtual machines provided by Research Institutes of Sweden (RISE). Instead, the plat-
form used for training and testing the models has been provided by National Academic
Infrastructure for Supercomputing in Sweden (NAISS). In the comparison, the computer
had as CPU a Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz with 32 cores, 100 GB
of RAM, and a Nvidia Tesla T4 as GPU. The ML library used for link prediction was
Pykeen. AnyBURL [35], instead, has been developed as a Java application.
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5| Artefacts

In this chapter, the artefacts of the thesis are presented. They include managing and
exploring the dataset. Moreover, also some statistics have been computed, in order to
have a better understanding of how to model the problem.

5.1. Understanding the dataset

The dataset chosen is Alibaba Cluster Trace v2021 [2]. It contains the detailed run-
time metrics of nearly twenty thousand microservices. They are collected from Alibaba
production clusters of over ten thousand bare-metal nodes over twelve hours in 2021.

The dataset is made of multiple subgraphs that correspond to different traces. Each trace
starts with a user web request to the entering microservice that triggers multiple calls
between related microservices.

Each call is between an Upstream Microservice (UM) and a Downstream Microservice
(DM). Each entry of the dataset is a call between two microservices. Each call has
associated a timestamp, a trace id, an rpc id, the UM id, the DM id, an rpc type, the DM
interface id, and the response time of the call. An example of the dataset can be seen in
Figure 5.1.

Following the approach explained in Section 4.1, triplets in the form <head, rel, tail>
have been created in the following way:

• Static modelling: <DM, rpc type, UM>;

• IO modelling:

– <DM, rpc type in, UM> if the response time (rt in the table) is positive;

– <DM, rpc type out, UM> if the response time is negative.

An example of the resulting traces for the static modelling can be seen in Figure 5.2.
Since a response time lower than 1 ms has been reported as 0 ms, it was not always
clear whether a call was an inbound or outbound call, therefore those triplets have been
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Figure 5.1: Example of Alibaba dataset.

skipped. Other features have not been used since they were not relevant to the problem.

5.2. Data Analysis

Data has been analysed at a higher level, focusing on the number of unique entities,
relations, and triplets and on the duration of the response time of each call, but also
at the trace level, considering the number of entities and relations per trace. Later, the
dataset was processed and prepared to be used properly for training and testing.

5.2.1. Graph level analysis

The dataset was split into several parts and together occupied more than 200 GBs, there-
fore not a little effort was required to analyse and gather all the data, in fact, the analysis
took several hours. Despite this, since not all features were used, and duplicate triplets
were removed, since it made no sense to model the problem as a multigraph, the number
of total calls has been drastically reduced. In particular, the composition of the final
dataset is shown in Table 5.1.

The timing analysis has been performed using the response time of each call and can be
seen in Table 5.2. Its results will be used as the baseline for the inference time.
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Figure 5.2: Example of an Alibaba trace plotted as a tree.

Table 5.1: Final dataset composition.

Modelling
type

Number
of unique
triplets

Number of
unique en-
tities

Number of
unique re-
lations

Static 55562 16657 6

IO 64870 16444 8

5.2.2. Trace level analysis

The analysis at the trace level has been performed on a single part of the dataset which
accounted for around 0.7% of the entire dataset and around 29% of the total number
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Table 5.2: Timing analysis on calls response time.

Mean re-
sponse
time per
call (ms)

Standard
deviation
(ms)

Median
response
time per
call (ms)

10.60 63.34 1.0

of unique triplets and had more than 5 million rows. It took more than 9 hours of
computation. The result is shown in Tables 5.3, and 5.4, and visualized in Figure 5.3.

Table 5.3: Analysis on calls at trace level.

Mean num-
ber of calls
per trace

Standard
deviation

Median
number of
calls per
trace

40.48 126.40 10.0

Table 5.4: Analysis on entities at trace level.

Mean num-
ber of
entities per
trace

Standard
deviation

Median
number of
entities per
trace

11.42 14.67 7.0

Figure 5.3: Visualization of the analysis on calls at trace level.
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While the graph has many triplets and entities, the structure of the subgraphs, the traces,
is completely different. The traces have a very low number of calls and touch a low number
of entities. These differences are highly related to the use case and will be addressed at
the testing phase as explained in Section 4.1.
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6| Experimental Results

In this chapter, the results of the thesis are presented. They include the accuracy per-
formance of the models with static modelling, and IO modelling, on both traditional
and trace-based prediction scenarios that have been previously described in Section 4.1.
Moreover, the performance of the additional training time requirements, inference time
per triplet and memory usage will be shown.

The interpretation and discussion of the results will be presented in Chapter 7.

6.1. Case 1: Static Modelling

In this section, the results of static modelling are reported. They include the traditional,
and trace-based prediction approach.

6.1.1. Approach 1.1: Traditional prediction

Here are presented the results divided on the type of prediction: head, and tail, moreover
they are also offered as aggregated in both prediction. Further division is based on the
type of tie-breaking policy used.

Head Prediction

The results of head prediction under the traditional prediction approach can be seen in
Figure 6.1. In this case the metrics include MRR and H@K with k = 1, 3, 5, 10.

All models achieve the same performance in the different scenarios, except for NodePiece
[14]. In fact, both transductive and inductive versions achieve better results when min
policy is used. All models significantly improve the H@K metric when k increases. How-
ever, the performance of NodePiece [14] despite improving, achieves only slightly better
performance.

According to all metrics, the best models are NodePiece [14] in the inductive version,
followed by its transductive version and from RotatE [52] with min policy. Instead, with
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avg, and max policies, the best model is RotatE [52], followed by TuckER [4] and QuatE
[67].

(a) Models’ head prediction
performance on min policy.

(b) Models’ head prediction
performance on avg policy.

(c) Models’ head prediction
performance on max policy.

Figure 6.1: Models’ head prediction performance on static modelling.
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Tail Prediction

The results of tail prediction under the traditional prediction approach can be seen in
Figure 6.2. In this case, the metrics include MRR and H@K with k = 1, 3, 5, 10, as it is
for head prediction.

According to all metrics and policies, the best model is RotatE [52], followed by TuckER
[4] and QuatE [67].

All models significantly improve the H@K metric when k increases. Usually, their relative
score remains the same, but with the min policy, NodePiece [14] surpasses the transductive
version when k increases.

Moreover, the performance of NodePiece [14] is the only one that changes according to the
policy. In particular, the performance of the inductive version performs slightly worse on
avg, and max policy if compared with min policy, while the transductive version, follows
the same pattern, but the drop in performance is much larger.
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(a) Models’ tail prediction per-
formance on min policy.

(b) Models’ tail prediction per-
formance on avg policy.

(c) Models’ tail prediction per-
formance on max policy.

Figure 6.2: Models’ tail prediction performance on static modelling.

Both Prediction

The results of both predictions under the traditional prediction approach can be seen
in Figure 6.3. In this case, the metrics include MRR and H@K with k = 1, 3, 5, 10, for
avg and max policy, while H@5 is not present when using min policy, since the custom
software implementation of AnyBURL [35] did not support it. Moreover, AnyBURL
performance, which where not showed before, are present only when using min policy for
the same reason.

As expected, the results of both predictions are the average of head and tail predictions.
Therefore all the previous considerations on the increase of performance with k and the
behaviour of the models are the same. In particular, NodePiece achieves good performance
with min policy and gets worse when using other policies, with its transductive version
that has a bigger downfall.
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For avg, and max policies, and all metrics the best model is RotatE [52], followed by
TuckER [4], and QuatE [67]. Moreover, the relative positions remain the same across all
metrics.

The situation on min policy is a bit different. AnyBURL [35] achieve the best results on
all metrics, except for Hits@1, where it is outperformed by NodePiece [14] Inductive, and
it is slightly better than the transductive version. However, AnyBURL [35] is the best in
this setting among the transductive models. According to all other metrics, the second
best model is RotatE [52].

(a) Models’ both prediction
performance on min policy.

(b) Models’ both prediction
performance on avg policy.

(c) Models’ both prediction
performance on max policy.

Figure 6.3: Models’ both prediction performance on static modelling.
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6.1.2. Approach 1.2: Trace-based prediction

The performance of the trace-based prediction approach can be seen in Figure 6.4. In this
case, the metrics include MRR and H@K with k = 1, 3, 5, 10, for avg and max policy, while
H@5 is not present when using min policy, since the custom software implementation of
AnyBURL [35] did not support it. Moreover, the results are not split according to head,
and tail prediction as did before, but they are aggregated due to Pykeen limitations.

In this case, when using the min policy, the relative positions of the models change based
on the metric used. According to MRR and Hits@1 the best model is QuatE [67], followed
by RotatE [52], and NodePiece [14], and the worst performing model is R-GCN [48].
According to Hits@3, the best-performing model is RotatE [52], followed by QuatE [67],
and the worst-performing model is AnyBURL [35].
On Hits@10, the situation is very similar, but the second place is taken by TuckER [4],
however, all the performances of the top 5 models are comparable.

When using the avg, and max policies the results are the same, with the exception of
NodePiece [14] which is always the worst-performing model.

Lastly, there are the results of topology-based methods described in Chapter 2: Common
Neighbours [32], Sorensen Index [51], Salton Index [46], Jaccard Index [21], Resource
Allocation [69], Adamic Adar [1], Katz Index [25], and LHN Index [30]. As expected,
their performance is bad. They all achieve the same result.

Table 6.1: Topology-based methods’ use-case performance on min policy and static mod-
elling.

Models MRR Hits@1 Hits@3 Hits@5 Hits@10

All investigated models 0.019873 0.0 0.0 0.029211 0.047712
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(a) Models’ use-case perfor-
mance on min policy.

(b) Models’ use-case perfor-
mance on avg policy.

(c) Models’ use-case perfor-
mance on max policy.

Figure 6.4: Models’ use-case performance on static modelling.

6.2. Case 2: IO Modelling

In this section, the results of IO modelling are reported. They include the traditional, and
trace-based prediction approach. The results obtained are similar, but slightly different
from the static modelling case. Therefore, general considerations are the same and will
not be repeated, but relative positions may change.

6.2.1. Approach 2.1: Traditional prediction

Here are presented the results divided on the type of prediction: head, and tail, moreover
they are also offered as aggregated in both prediction. Further division is based on the
type of tie-breaking policy used.

Head prediction

The results of head prediction under the traditional prediction approach can be seen in
Figure 6.5. In this case the metrics include MRR and H@K with k = 1, 3, 5, 10.

RotatE [52] is the best model on avg, and max policies on all metrics, followed by QuatE
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[67], and ConvE [9]. Instead, on min policy, the best models are NodePiece [14] in the
inductive version, followed by its transductive version and from RotatE [52], however
according to H@10, the RotatE [52] is able to achieve the best performance.

(a) Models’ head prediction
performance on min policy.

(b) Models’ head prediction
performance on avg policy.

(c) Models’ head prediction
performance on max policy.

Figure 6.5: Models’ head prediction performance on IO modelling.
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Tail prediction

The results of tail prediction under the traditional prediction approach can be seen in
Figure 6.6. In this case, the metrics include MRR and H@K with k = 1, 3, 5, 10, as it is
for head prediction.

According to all metrics and policies, the best model is RotatE [52], followed by QuatE
[67], and ConvE [9].

Moreover, the performance of NodePiece [14] is the only one that has a peek when using
min policy.

(a) Models’ tail prediction per-
formance on min policy.

(b) Models’ tail prediction per-
formance on avg policy.

(c) Models’ tail prediction per-
formance on max policy.

Figure 6.6: Models’ tail prediction performance on IO modelling.
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Both prediction

The results of both predictions under the traditional prediction approach can be seen
in Figure 6.7. In this case, the metrics include MRR and H@K with k = 1, 3, 5, 10, for
avg and max policy, while H@5 is not present when using min policy, since the custom
software implementation of AnyBURL [35] did not support it. Moreover, AnyBURL
performance, which where not showed before, is present only when using min policy for
the same reason.

For avg, and max policies, and all metrics the best model is RotatE [52], followed by
QuatE [67], and ConvE [9].

On min policy, AnyBURL [35] achieves the best results on all metrics. According to all
metrics, the second-best model is RotatE [52]. The third-best model is NodePiece [14],
in all metrics but H@10, where it is outperformed by QuatE [67].

(a) Models’ both prediction
performance on min policy.

(b) Models’ both prediction
performance on avg policy.

(c) Models’ both prediction
performance on max policy.

Figure 6.7: Models’ both prediction performance on IO modelling.
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6.2.2. Approach 2.2: Trace-based prediction

The performance of the trace-based prediction approach can be seen in Figure 6.8. The
results of Topology based methods have not been computed since they do not take into
account the relation type, and therefore their behaviour is not affected by the modelling
type. In this case, the metrics include MRR and H@K with k = 1, 3, 5, 10, for avg and
max policy, while H@5 is not present when using min policy, since the custom software
implementation of AnyBURL [35] did not support it. Moreover, the results are not split
according to head, and tail prediction as did before, but they are aggregated due to Pykeen
limitations.

The relative position of the models remains the same regardless of the policy used. Ac-
cording to all metrics, except for H@1, the best model is QuatE [67], followed by RotatE
[52], and [9]. Considering H@1, the position of QuatE[67], and RotatE [52] is swapped.

(a) Models’ use-case perfor-
mance on min policy.

(b) Models’ use-case perfor-
mance on avg policy.

(c) Models’ use-case perfor-
mance on max policy.

Figure 6.8: Models’ use-case performance on IO modelling.
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6.3. Additional Requirements

In this section, the requirements of inference time, memory usage, and training time have
been reported.

6.3.1. Case 1: Static Modelling

The performance of the models on the additional requirements of inference time per trace
and memory usage are shown in Figure 6.9. The number of parameters can be seen in
Figure 6.10b. The training time when using the entire dataset and when using the 29%
of the train data can be seen in Figure 6.10a.

The best model for inference time is the inductive version of NodePiece [14], followed by
ConvE [9]. AnyBURL [35], QuatE [67], and TuckER [4] take more time for prediction
than the median response time of the request threshold. However, it is important to state
that AnyBURL [35] runs on Java, and therefore it is not really comparable with the other
models.

The transductive version of NodePiece [14] is the model that uses less memory, followed
by its inductive version, which uses 10 times more memory, which in turn, is followed by
all the other models that use 10 times more memory. An exception is AnyBURL [35],
which uses a lot more memory since 1 GB of RAM is the smallest amount of ram that
can be used according to the proprietary program.

Except for AnyBURL [35], the number of parameters of the model is proportional to the
memory usage with NodePiece [14] being the ones that have fewer parameters and QuatE
[67] being the one that has most.

The best model per training duration is NodePiece inductive [14], followed by AnyBURL
[35], and ConvE [9]. The worst-performing model according to this metric si QuatE [67],
which took more than double the amount of time to train the second worst-performing
model.
When using just a subset of the entire data, the relative position of some close models
changed, in particular, R-GCN [48] and NodePiece [14] significantly decrease their training
time, and outperform ConvE [9]. However, when considering the extremes, the results
are the same. Nevertheless, slower models have an increase in the training time which is
more than linear.
AnyBURL [35] training time did not change since it is a hyperparameter that can be
specified.
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(a) Models’ inference time per triplet. (b) Models’ memory usage in bytes.

Figure 6.9: Additional requirements performance on static modelling.

(a) Models’ training time. (b) Models’ number of parameters.

Figure 6.10: Additional requirements on static modelling.
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6.3.2. Case 2: IO Modelling

The performance of the models on the additional requirements of are shown in Figure
6.11. All the considerations done for the static modelling case, still hold. The difference
is not significant, but the results are reported for correctness.
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(a) Models’ inference time per triplet. (b) Models’ memory usage in bytes.

(c) Models’ training time. (d) Models’ number of parameters.

Figure 6.11: Additional requirements performance on IO modelling.
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6.4. Dynamic Sampling

The last step of this work is a simulation of an application of the results of this thesis. It
is an additional step that does not directly answers the research question.

The example chosen for this research is the integration of a link prediction method with a
dynamic sampling microservice tool. The idea is that a tracing tool can assign a different
sample rate to different microservices by using some criteria such as priority or time
complexity. For example, when considering the latter scenario, traces related to light web
services would be collected with higher probability, while more complex microservices
would be reconstructed using the investigated methods. In this way, it would be possible
to reduce the tracing overhead.

The model chosen for the simulation is RotatE [52], as will be motivated in Chapter 7.

The tracing tool assigns sample rates as follows:

• The sample rate is assigned independently to each microservice m, and it is the
probability of sampling or not an outgoing RPC from the microservice m.

• When a microservice has not been sampled yet, its associated probability is 1. In
this way, the transductive property is ensured.

• When a microservice has been sampled for the first time, its associated probability
changes, and it is taken from a uniform distribution U(0, 01; 0, 1)

The model is trained following the static modelling, and it is tested with the trace-based
prediction since some calls would be missed otherwise. Due to the sampling, the final
dataset had just 41384 triplets, which is 25.5% smaller than the final dataset under static
modelling without sampling. Therefore the training has been affected. However, the
dataset used for evaluating the trace-based prediction is the same as the not sampled
comparison.

6.4.1. Results

The accuracy performance of trace-based prediction on avg policy of RotatE [52] simu-
lating a dynamic sampling scenario is shown in Table 6.2. The additional requirements
performance are shown in Table 6.3. They are very similar to the ones obtained in the
main comparison.
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Table 6.2: Dynamic Sampling trace-based prediction performance on average policy

MRR Hits@1 Hits@3 Hits@5 Hits@10

0.70 0.52 0.87 0.96 0.99

Table 6.3: Dynamic Sampling additional requirements

Training
time

Inference
time per
trace

Memory
usage

Number of
parameters

942.81 s 0.00098 s 26.66 MB 6665200
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This chapter describes in more detail and discusses the findings of the master thesis
project. Moreover, it includes suggestions for future work. Lastly, there are also some
final words.

7.1. Discussion

Here there are the considerations of the results presented in the previous chapter. They
are divided based on the modelling type used and the prediction scope approach used.
The additional requirements considerations are valid for both approaches since the results
are almost identical.

7.1.1. Case 1: Static Modelling

This section presents the considerations on the static modelling case.

Approach 1.1: Traditional prediction

While RotatE [52], QuatE [67], TuckER [4], ConvE [9], and R-GCN have coherent per-
formance in the different settings and under different policies, and it is easy to state that
RotatE is the best model, it is not immediate to draw a conclusion when comparing with
NodePiece [14], and AnyBURL [35], due to their different behaviour.

In particular, NodePiece [14] is heavily influenced by the prediction policy used. Its
optimal results on min policy may lead to unnecessary praise. The min or optimal policy
assigns the lower rank when there are ties. Therefore a trivial model that gives the same
score to all available triplets will have a perfect score. According to this consideration
and the below par results achieved by NodePiece [14] in the other policies, it is clear that
the model does not have good accuracy and it is not able to rank properly the results.
However, while it may seem that the results obtained are in contradiction with previous
studies, it may not be the case. In particular, the results obtained by Galkin et al. [14]
are similar to the ones obtained when using the min policy. Moreover, it is possible that
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using different hyperparameters would have led to better results.

For the same reason, and due to the fact that the results are available only when using
the optimal policy in both prediction, it is not possible to understand properly how is the
performance of AnyBURL [35] when compared with other methods.

The outcome of this analysis is in contradiction with previous studies. In particular,
according to Rossi et al. [29], and Balazevic et al. [4], TuckER [4] outperforms RotatE
[52] in most of the cases; according to Zhang et al. QuatE [67] outperforms RotatE [52].
However, the difference in the performance according to the previously mentioned papers
has been minimal, and therefore the results obtained by this research could be explained
by the usage of a different dataset. In particular, the dataset used in this thesis is smaller
from all perspectives (number of entities, number of relation types, and number of triplets)
by a factor of 10 than the ones used in the literature such as FB15k [7], WN18 [15], and
YAGO3-10 [33].

Approach 1.2: Trace-based prediction

In this case, the metrics have generally a higher value, since the number of output entities
is constrained to the ones that are actually in the trace. In particular, Hits@10 is very
high since there is a finite number of combinations among the available entities.

For this reason, MRR, and Hits@K with low k values are more meaningful than the other
metrics. Therefore the best model in the use-case scenario is QuatE [67]. It may be due
to the fact that its rich embedding with a high number of parameters allows for better
discrimination among the single traces.

The previous consideration still holds when considering the avg policy, which is, arguably,
the more relevant policy for a conclusive comparison, as explained by the previous con-
sideration for NodePiece [14], and supported by Rossi et al. [29].

Topology-based methods achieve very poor results even with min policy since they need
that two nodes are already connected through a path, in order to predict an edge between
them. Therefore it is not possible to predict a link to a microservice that has not been
called yet. Moreover, the reason they achieve the same results is probably due to the fact
that there are very few traces that have just one connected component, and in those cases,
they are able to identify properly the missing link since it may be the only option and
the score assigned to a possible triplet is always proportional of the common neighbours
of the two nodes involved.

The results obtained in this case cannot be compared with previous studies since the
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output has been constrained, in order to have a meaningful result for the use case.

7.1.2. Case 2: IO Modelling

The results obtained are very similar to the static modelling case, therefore most of the
considerations, in particular the general ones still hold.

Approach 2.1: Traditional prediction

The main difference with the static modelling case is that TuckER [4] is not performing
well, in fact, it is one of the worst-performing models. However, it is not clear why this
happens. Moreover, QuatE [67] seems to have improved performance, and it is coherent
with the previous considerations. However, it makes sense that a more complex model is
able to work better when there is more complexity in the data.

Approach 2.2: Trace-based prediction

Following the same reasoning as before, and therefore giving more importance to MRR,
and H@1, it is not clear which is the best model between RotatE [52], and QuatE [67].
However, despite having slightly different results from the static modelling scenario, they
both make sense, since the difference in accuracy between the two models is very low.
Therefore it is possible that based on the subset of data used, or based on the way the
problem is modelled, one model outperforms the other by a low delta.

7.1.3. Additional Requirements

When considering memory usage, it is not possible to compare AnyBURL [35] with other
models since it is not clear how much memory the model actually needs. Since its memory
usage value is an outlier, it is likely that it does not need the entire amount of space
reserved. However, it is reasonable to think that the amount of memory required is higher
than the other models since it is storing rules and not a shallow embedded representation.

The other models, instead, have a smaller memory usage, that has a more similar order of
magnitude. However, there are still some differences despite having the same embedding
size. It is possible to understand the reason by looking at the number of parameters per
model. In particular, QuatE [67], and TuckER [4] achieve the worst results among shallow
embedding models, and it is due to the fact that they learn a very rich representation
and therefore have a large number of parameters. On the other hand, NNs based models
are the ones that use less memory and have a lower number of parameters. In particular,
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NodePiece is the best model and it makes sense since it is an inductive model, and it does
not need to store a representation for each entity, but it relies on the anchors.

Considering the inference time per trace, the three models that are above the threshold
are TuckER [4], QuatE [67], and AnyBURL [35]. While it is reasonable to expect a long
inference time for the latter model, it is surprising that a rule-based method is still faster
than an embedding-based method. However, they have been monitored on two different
platforms, therefore it is not possible to compare them. While it is true that the slower
models are the ones with a more rich entity representation, it is not always true that
having a simpler representation makes faster predictions. In particular R-GCN [48], and
NodePiece [14] transductive are slower than ConvE despite having a lower memory usage.
This could be caused by the structure of the models, it is not surprising that a naive
model such as R-GCN [48] is not very fast.

The results of the training time seem to be strictly related to the ones of inference time,
therefore the same considerations apply. However, the relative difference between training
times in the two sets seems to follow a relation which is more than linear.

Compared with previous studies such as Rossi et al. [29], the results of the training are
a bit different since they did not use early stopping. In particular, according to Rossi
et al. [29] TuckER [4] has been generally faster to train than ConvE [9], and RotatE
[52]. However, the results obtained by this thesis show that the use of early stopping
seems a better way to assess the training time, and does not have a negative impact on
performance. In fact, RotatE [52] trained faster than TuckER [4] and had better accuracy.

Moreover, the results show that despite Zhang et al. [67] claim that QuatE [67] inference
time is linear in the size of the embedding space as it is for RotatE [52], the actual time
required for prediction may be so different that the model cannot be used in scenarios
where the inference time is critical.

7.2. Final Comparison

This section aims to answer the research question by summarizing the findings for each
model investigated:

• RotatE [52] can be considered the best model since it has optimal performance
from an accuracy perspective and good enough performance when considering the
additional requirements. In particular, its inference time per trace is lower than the
threshold. It is well suited for an application.
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• QuatE [67] has often achieved good accuracy performance, but it achieved the worst
performance in training time, and inference time per trace, moreover it is the second
worst performing model when considering the memory usage. Therefore it does not
seem particularly well suited for an application.

• TuckER [4] has an accuracy performance that is comparable with QuatE [67] and it
achieves slightly better performance on the additional requirements. Therefore the
conclusion is the same as QuatE [67].

• ConvE [9] was at most the third best model when considering the accuracy, however,
there was a large gap from the best model. The additional requirements performance
have been really good. Therefore, if the model had better accuracy performance,
which could potentially be achieved by hyperparameter tuning it would be perfect
for an application.

• R-GCN [48] accuracy performance where below par, and its additional requirements
performance where average. Therefore it does not seem particularly well suited for
an application.

• NodePiece [14] has often been the best model when considering the additional re-
quirements, but it has achieved below-par performance when considering the accu-
racy. Therefore it does not seem particularly well suited for this use case, but since
it is very fast, it could be used for a problem where its accuracy performance is
better.

• Anyburl [35] has achieved peculiar performance from the additional requirement
perspective, in particular, it had a low training time, but a high inference time
and memory usage. Moreover, as previously explained, it is not possible to really
compare its accuracy performance with the other models. Therefore it is not really
possible to draw a conclusion and and this model requires further investigation.

7.3. Dynamic Sampling

RotatE [52] seemed to be the optimal choice for the additional simulation considering the
accuracy performance in both modelling approaches, an inference time per trace lower
than the threshold, low memory usage and good scores with the additional requirements.

The results obtained are very similar to the ones of the main analysis despite using 25.5%

less data. They show that an approach like this can be used for a real-case scenario.
However, it is important to adjust the sampling probability in order to collect all entities
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to ensure the transductive property. This is the bigger limitation since it may require
sampling for a long time before obtaining all the required data.

7.4. Future Work

This study raises several intriguing questions that could be addressed in future research.

In particular, the two prediction scope approaches have been necessary since models are
trained and tested on a big single graph, while it would be interesting to develop new
models that can learn on multiple small graphs.

Another direction could be studying according to the same metrics models that take into
account time dependency, such as HyTE [31], and TAGCN [11].

Moreover, it could be interesting to develop a Python-based version of AnyBURL [35], and
assess its performance according to the settings and policies that could not be addressed.

Furthermore, performing hyperparameter tuning is definitely a good idea for future work,
since it may lead to better results.

Lastly, the results of this research can lay the foundation for the integration of link
prediction methods in microservice tracing applications. An idea could be to model the
data following the IO approach or in a different way and see which are the results.

7.5. Final Words

This thesis compared RotatE [52], QuatE [67], TuckER [4], ConvE [9], R-GCN [48],
NodePiece [14], and AnyBURL [35] on link prediction, using as accuracy metrics MRR,
and H@K. Moreover, also the training time, the inference time and the memory usage
were compared. From the available data, two different knowledge graphs have been built:
the static model, and the IO model. The former did not take into account the temporal
information, while the latter did. Moreover, the models have been evaluated on two
different prediction scopes: the classic approach that followed standard results in the
literature, and the use-case approach that mimicked a real-case scenario.

The main takeout of this analysis is that rich embeddings models such as QuatE [67],
and TuckER [4], have a long inference time, and training time, moreover, they have a
high memory usage. Therefore, they cannot be used in a real-case scenario, where time is
important. Instead, a model like RotatE [52], is able to achieve good performance from
an accuracy perspective and it is also able to achieve average results in the previously
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defined requirements. Therefore it is an appropriate choice to build an application on.

Furthermore, methods that do not learn an embedding for each entity, such NodePiece
[14] while having generally a fast inference time, seem to not achieve good accuracy
performance when compared to other methods. In particular, when considering NodePiece
[14], it is true that its inductive version performed generally better than the transductive
one, however, its performance was worse than the other transductive model. Therefore,
in the microservice scenario, it seems better to use a transductive approach.

Moreover, the way the problem is modelled may have a big impact on the accuracy per-
formance of the models, as it happens for TuckER [4]. Therefore, building the knowledge
graph in the proper way has a significant effect on the performance of the application.

Lastly, the dynamic sampling simulation shows that the results obtained are similar to
the trace-based prediction case, and therefore the work is going to the right direction and
can be used to reduce the overhead caused by tracing tools.
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