
POLITECNICO DI MILANO
Master of Science in Computer Science and Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

Using Functional Dependencies to

discover Data Bias

Supervisor: Prof.ssa Letizia Tanca

Co-supervisor: Dr. Fabio Azzalini

M.Sc. Thesis by:

Chiara Criscuolo, 928714

Academic Year 2019-2020

To all my family and friends, nothing could be done without you.

Abstract

Computers and algorithms have become essential tools that pervade all

aspects of our daily lives and, since this technology is based on data, for it to

be reliable we have to make sure the data on which it is based on is fair and

without bias. As a consequence, Fairness has become an important topic of

interest within the field of Data Science Ethics, and in general in Data Science.

Today’s applications should therefore be associated with tools to discover

bias in data, in order to avoid (possibly unintentional) unethical behavior and

consequences; therefore, technologies that accurately discover discrimination

and bias to obtain fair databases are badly needed.

There are already emerging technologies that detect biases and discover

discrimination in datasets. In this thesis, we propose a novel solution, called

FAIR-DB (FunctionAl dependencIes to discoveR Data Bias), that exploits

the notion of Functional Dependency, a particular type of constraint on

the data. The proposed solution is implemented as a framework that focuses

on the mining of such dependencies, also proposing some new metrics for

evaluating the bias found in the input dataset.

By means of data mining techniques, our tool can identify the groups

that are discriminated and the groups that verify various fairness measures

in the dataset; moreover, based on special aspects of these metrics and

the intrinsic nature of dependencies, the framework also checks group and

subgroup fairness, obtaining more insight about the already existing bias in

dataset than other tools.

Finally, our system also suggests possible future steps, by indicating the

most appropriate (already existing) algorithms to correct the dataset on the

basis of the computed results.

I

Sommario

Computer e algoritmi sono diventati pervasivi in tutti gli aspetti della nostra

vita quotidiana, e dato che la tecnologia in generale è basata sui dati, ed essa

è affidabile solamente se i dati sui quali essa è costruita sono etici e senza

alcun tipo di bias.

Ne consegue quindi, che il concetto di Fairness, in modo approssimativo

tradotto come equità, è diventato un argomento di interesse rilevante nell’area

del Data Science Ethics e in generale nella Data Science.

Ci sono già tecnologie emergenti che riconoscono bias e discriminazioni

all’interno dei dataset.

In questa tesi proponiamo una soluzione nuova, chiamata FAIR-DB (acron-

imo di FunctionAl dependencIes to discoveR Data Bias), basata sulle

Dipendenze Funzionali, le quali sono un particulare tipo di vincolo es-

istente nei dati. La soluzione proposta è un framework che si focalizza

sull’estrazione di tali dipendenze, proponendo nuove metriche che possono

valutare i bias trovati in suddetti dataset.

Grazie alle tecniche di Data Mining, il nostro sistema è in grado di

identificare nei dati i gruppi maggiormente discriminati e anche quelli invece

che verificano i controlli di equità; inoltre, grazie alla particolarità delle

metriche e alla innata natura delle dipendenze, il nostro sistema riesce ad

eseguire controlli di group and subgroup fairness, ottendendo maggiori infor-

mazioni su i bias già presenti nei data, rispetto ad altri strumenti già esistenti.

In conclusione, il nostro sistema suggerisce anche possibili passi da eseguire

al termine della ricerca; indichiamo alcuni algoritmi già esistenti che, a partire

dai risultati finali del nostro sistema, risolvono i bias nei dati.

III

Acknowledgements

I begin saying that this thesis is for me a first concrete realization in the

Computer Science Engineering field. A work that really interested me, that

has certainly barriers and difficulties, but that has given to me many joys.

For this reason, the acknowledgements are even more necessary and they

originate directly from my soul.

Firstly, I want to express my gratitude to my supervisor, prof. Letizia

Tanca. Collaborating with her is really a pleasure. She has followed me

constantly and her contribute is fundamental to improve the realisation of

the thesis. Her strong passion, humanity and professionalism is so clear and

evident from the first meeting, that it motivated me. Together with my

supervisor, I want to thank my assistant supervisor, Fabio Azzalini. They

both supported me during this work much more than what I would have

ever expected and their advice are very precious.

To my family and friends, they are not only the basement of my life, but

they give me the motivation, the support and the encouragement to finish

the university and in particular, this thesis.

I want to thank in particular my two grandmothers, Olga and Immacolata,

they are not only part of my name, but they are also the inspiring women

that are more important for me.

I thank my siblings that assist me every day and my parents that give me

not only the financial resources to study in Politecnico di Milano, but most

important, the faith and the love.

To all my friends, they are a lot, but each of them has a special part in this

work. Each of them is irreplaceable and vital. I thank all of you.

V

Contents

Abstract I

Sommario III

Acknowledgements V

1 Introduction 1

1.1 Motivation and Context . 1

1.2 Using Functional Dependencies to discover Data Bias 2

1.3 Structure of the thesis . 3

2 Data Science Ethics 5

2.1 Ethics . 5

2.2 Data Bias . 6

2.3 Fairness . 7

2.4 Discrimination . 8

2.5 Invisibility Factor . 9

2.5.1 Invisibility of abuse 10

2.5.2 Invisibility of programming values 11

2.5.3 Invisibility of complex calculation 11

2.5.4 Strengths and solutions of the invisibility factor 12

3 Preliminaries 15

3.1 Relational Databases . 15

3.2 Functional Dependencies . 17

3.2.1 Relaxed Functional Dependencies 19

3.2.2 Approximated Functional Dependencies 20

3.2.3 Conditional Functional Dependencies 21

3.2.4 Approximate Conditional Functional Dependencies . . 22

3.3 Data Mining and Association Rules 23

3.4 Evaluation Metrics . 25

VII

4 Literature Review 27

4.1 Machine Learning and Ethics 27

4.2 Fairness notions in Classification 28

4.3 Machine Learning studies for Data Science 30

5 Methodology 33

5.1 Introduction . 33

5.2 Our framework . 33

5.3 Running Example: U.S. Census Adult Dataset 37

5.3.1 Data Preparation and Exploration 39

5.3.2 Running example: Data Preparation 43

5.3.3 Migrants study . 46

5.3.4 Running example: Data Exploration 48

5.3.5 CFDDiscovery . 50

5.3.6 Running Example: Apply CFDDiscovery algorithm . . 53

5.3.7 ACFDs Filtering . 55

5.3.8 Running Example: ACFDs Filtering 56

5.3.9 ACFDs Selection . 59

5.3.10 Running Example: ACFDs Selection 64

5.3.11 ACFDs Completion 67

5.3.12 Running Example: ACFDs Completion 69

5.3.13 ACFDs Ranking . 71

5.3.14 Running Example: ACFDs Ranking 73

5.3.15 ACFDs User Selection and Scoring 74

5.3.16 Running example: ACFDs User Selection and Scoring 75

5.4 Minorities study . 77

5.4.1 Running Example: Minority study 78

5.5 Titanic study . 82

5.5.1 Data Preparation and Exploration 83

5.5.2 CFDDiscovery . 87

5.5.3 ACFDs Filtering . 88

5.5.4 ACFDs Selection . 89

5.5.5 ACFDs Completion and ACFDs Ranking 90

5.5.6 ACFDs User Selection and Scoring 92

6 Experimental Results 95

6.1 Introduction . 95

6.2 Ranking Facts Basics . 95

6.3 Ranking Facts Tool . 96

6.4 Ranking Facts Experiment . 97

VIII

6.4.1 U.S. Census Adult dataset 97

6.4.2 Titanic dataset . 101

6.5 Ranking Facts Comparison 104

7 Conclusions and Future Works 107

7.1 Conclusive Summary . 107

7.2 Future Works . 108

References 109

A User Manual 115

A.1 Pseudo-code of FAIR-DB . 115

IX

X

Chapter 1

Introduction

1.1 Motivation and Context

The research area in which this thesis focuses on is Data Science Ethics,

a new branch of Ethics that studies and evaluates moral problems related

to data, algorithms and corresponding practices, in order to formulate and

support morally good solutions.

Another area related to this research is the Functional Dependencies field and

consequently the Databases area. This thesis is also related to the sub-areas

of Data Mining and Machine learning studies on Data Science Ethics.

The scenario that motivates this research is characterized by the presence

of bias and unfairness in data that affect the technology nowadays.

In recent years, fairness has become an important topic of interest in Data

Science Ethics. Algorithms and computers have been pervasive in all aspects

of our daily lives as they have become essential tools based on data. It is

therefore of societal and ethical importance to ask whether data and datasets,

that are the starting points of every activity, are fair or not.

Mainly, the necessity of Data Science Ethics arises to avoid bias and

discrimination in Machine Learning tasks.

In fact, the application domain of Machine Learning is pervasive and can

influence different spheres, and real world problems, thus these algorithms

received more attention also for the ethical consequences of applications.

For example, recent breakthroughs in justice, as discrimination against black

people, reveal just how much the discovery of data bias is urgent. Technology

is based on data, and technology is reliable only if the data on which it is

based on is fair and without bias. This is critically important.

Applications nowadays need the discovery of bias in data to avoid uninten-

tional behaviours and unethical consequences, so the presence of technologies

that detect biases and accurately discover discrimination to obtain fair

databases is more and more necessary.

1.2 Using Functional Dependencies to discover Data

Bias

To obtain fair databases there are emerging technologies that detect biases

and discover discrimination.

In the Machine Learning field, there are statistical tests to check fairness

in data, computed combining the real data and predictions based on data

models.

Nowadays, there are many implementations of most of the techniques based

on the statistical tests.

Our approach it is not based on statistical tests, but it is based on a

particular type of constraint on data: Functional Dependencies. In a

Functional Dependency the values of some attributes of a tuple uniquely (i.e.

functionally) determine the values of other attributes of that tuple.

Specifically, the database designer needs to specify constraints to correctly

model the real world, but it could happen that some Functional Dependencies,

that are not imposed in the design phase, are actually satisfied by the data

itself. We will see later that, we can relax this notion obtaining various kinds

of dependencies.

Our framework, called FAIR-DB (FunctionAl dependencIes to dis-

coveR Data Bias), extracting a specific type of dependencies from data, can

analyze bias already present in the dataset and consequently check fairness.

Our research is based on a systematic literature review over the main

Machine Learning studies in Data Science Ethics area. From these surveys,

we formulate hypothesis, and through the usage of an already existing algo-

rithm that finds Functional Dependencies [34], we are able to check them.

This iterative development focuses on the mining of dependencies and on

the metric study: some measures already existed, others are derived from

mathematical reasoning. The obtained framework is also tested simulating

experiments with two real world datasets.

2

At the end, we compare our framework with another very well-known one

[37], evaluating the results and drawing conclusion from this comparison.

1.3 Structure of the thesis

Here, we provide a brief description for each chapter that follows this intro-

duction.

• Chapter 2: Data Science Ethics. In this section we define the area

in which our work is located: the Data Science Ethics. Starting from

the notion of Ethics and Computer Ethics, we explain what Fairness,

Data Bias and Discrimination mean. Finally, we propose a theory that

explains the origin of unfairness in data, the Invisibility Factor.

• Chapter 3: Preliminaries. In this section we define all the theoretical

tools and concepts that we considered for our research. In the first part,

we start from the notion of Relational Databases and we explain in

details what is a Functional Dependency. In the second part, we present

the Data Mining area and its connection with Functional Dependencies,

concluding with a final overview of the most used metrics.

• Chapter 4: Literature Review. In this section we start presenting

a comprehensive summary of all the fairness definitions analyzing

previous researches done in the area of Data Science Ethics, especially

in the Machine Learning context. Finally, we give an overview of the

most important works and applications that aim to solve the problem

of discovering data bias.

• Chapter 5: Methodology. In this section we will provide a description

of the methodology on which our framework to discover already existing

bias in data is based. For each phase, we proposed a running example,

from the U.S. Census Adult dataset, on which we present how the

framework works. Then, we propose a workflow over other two datasets:

a minority study of the U.S. Census Adult dataset and a workflow over

the Titanic dataset.

• Chapter 6: Experimental Results. In this section we present a

comparison between our framework and the one presented in paper

“Nutritional Labels for Data and Models” [37]. We start presenting

this tool, then with two concrete examples, we enumerate the main

differences and similarities between this work and our framework.

3

• Chapter 7: Conclusions and Future Works. In this section we draw

the conclusions of our work and we suggest possible future research

directions.

4

Chapter 2

Data Science Ethics

In this section we will define the area in which our work is located: the Data

Science Ethics. Starting from the notion of Ethics and Computer Ethics, we

will define the objectives of this discipline.

We will explain what Fairness means, starting from the notion of Data Bias,

in order to understand the different types of fairness. We will discuss when a

dataset can be said unfair, biased or discriminatory. In this section we

present the definitions of Data Bias, Fairness and Discrimination not only

in Data Science, but also in psychology and philosophy.

In our opinion, mapping the terrain of the philosophical debate with Data

Science issues and locating those definitions provide helpful clarifications for

this type of research on fairness, and it can raise relevant questions which

have yet to be considered.

Finally, we propose a theory that explains the origin of unfairness in data,

the Invisibility Factor. The following definitions create the substratum

of Data Science Ethics, bringing the reader in this huge area, in order to

understand why the definition of “database without bias” is not so rigorous

as one could expect.

2.1 Ethics

There is not a common definition of Ethics. In general, it is a branch of

knowledge dealing with moral principles and it is the set of rules that help

in distinguish between good and wrong.

Ethics is the systematic reflection on what is moral, it is not a manual

with answers, but it is a process for searching the right kind of morality.

The first definition of Ethics in the world of computer technology is Com-

puter Ethics. Defined by James Moor in 1985, Computer Ethics is the

analysis of the nature and social impact of computer technology and the

corresponding formulation and justification of policies for the ethical use of

such technology [29, p.266].

From his notion, understanding the social and ethical implications of our

choices about computers and information technologies, studying the present

technologies and steering the development of future ones in a direction that

is good for humanity appear essential and necessary.

Data Science Ethics is a new branch of Ethics that studies and evaluates

moral problems related to data, algorithms and corresponding practices, in

order to formulate and support morally good solutions [15, p.1]. Data Ethics

is built on the foundation provided by Computer Ethics, but, at the same

time, it refines the approach endorsed so far in this research field, by shifting

the level of abstraction of ethical enquiries, to being data-centric.

Data Science Ethics highlights the need for ethical analyses to concentrate

on the content and nature of computational operations, the interactions

among hardware, software, and data, rather than on the variety of digital

technologies that enables them. Furthermore, it emphasises the complexity

of the ethical challenges posed by Data Science.

In particular, for our research there are concepts that are necessary to explain

before entering in this huge area, so we will define the notion of Data Bias,

Fairness and Discrimination.

2.2 Data Bias

Bias is a broad concept that has been studied across many disciplines,

such as social science, cognitive psychology or law. In statistics, a Data

Bias is a systematic distortion in the sampled data that compromises its

representativeness [33, p.6]. The representativeness is related to the scope of

the activity. In the majority of the cases, the samples should be representative

of a larger population of interest, and should also well represent the content

being produced by different groups.

To clarify better the concept of data bias, we report two basic definitions in

the context of decision-making:

• A Historical bias is an already existing bias caused by socio-technical

issues in the world [38].

• An Algorithmic bias is when the bias is not present in the input

data and is added purely by the algorithm [17].

6

2.3 Fairness

There is no universal definition of Fairness, especially because it is a wide

concept that intersects different scenarios. For instance, philosophers have

been debating about various definitions of fairness for centuries and psychol-

ogists have been trying to measure how people perceive fairness for decades.

Now, along come the computer scientists, attempting to make computing

and algorithmic decision making systems fair.

For philosophers, Fairness is usually related to the concept of justice. It

involves what is right and equal and it can be interpreted as being equal in

provision, in opportunity or in result [35].

In psychology, there are manly three ideas related to fairness [20]:

1. Sameness: the fairness where everything is equal. It means ensuring

that everyone gets the same things with respect to others, so no one

has more than another. For example, in a generic shop everyone pays

a fixed price for the same item.

2. Deservedness: in this notion of fairness you get what you deserve.

One case could be employees that in a company, do not divide resources

equally between individuals, but adopt divisions based on merit.

3. Need: this idea of fairness is that those who have more to give should

give a greater percentage of what they have to help others who are

unable to contribute much, if anything at all. Fairness here takes into

account the facts that humans have obligations to one another, and

the more one has, the more is demanded of that person to contribute

to the common good. For example, in Italy, taxes and medical health

care costs are applied with this criterion.

Philosophy and psychology have tried to define the concept of fairness long

before computer science started exploring it.

It’s interesting that, from these ideas of fairness that come from other fields,

computer scientists shaped their definitions that fall under three different

types [28]:

1. Individual Fairness: Give similar predictions to similar individuals.

It follows the idea of Sameness.

2. Group Fairness: Treat different groups equally. It is related to

the idea of Deservedness and Sameness. In fact, given a company

and dividing employees into two groups “Male” and “Female”, group

fairness implies the same average salary for both.

7

3. Subgroup Fairness: Subgroup fairness intends to obtain the best

properties of the group and individual notions of fairness. It takes

the idea of Deservedness, but analyzing it more in deep. Taking the

previous example, subgroup fairness means that men and women take

the same salary, if they do the same task in the company.

Given all these three main groups, we can build more than twenty no-

tions of fairness according to specific needs. Although, the Chouldechova’s

Impossibility Theorem [6] states that we can choose any three notions and

reach the impossibility result. In fact, it is not possible to guarantee in a

dataset that more than two definitions of fairness are satisfied simultaneously.

To summarize, in the context of decision-making, Fairness is the absence

of any prejudice or favoritism toward an individual or a group based on their

inherent or acquired characteristics [36, p.100].

In order to understand how we can have so many definitions of fairness and

select the more appropriate, it is also crucial to understand the different

kinds of discrimination that can occur.

2.4 Discrimination

For the Stanford Encyclopedia of Philosophy [2], Discrimination are ac-

tions, practices, or policies that are “in some appropriate sense” based on the

(perceived) social group to which those discriminated against belong and that

the relevant groups must be socially salient in that they structure interaction

in important social contexts.

Discrimination against people, then, is necessarily oriented toward them

based on their membership in a certain type of social group.

To deal with discrimination in Data Science Ethics, there emerged the no-

tion of protected attribute that is a characteristic for which non-discrimination

should be established, like age, race, sex, etc.

From this notion, in Data Science Ethics there are many types of discrimina-

tion, and here we report the most common ones:

• Direct discrimination happens when protected attributes of individ-

uals explicitly result in non-favorable outcomes toward them [42].

• In Indirect discrimination, individuals appear to be treated based

on seemingly neutral and non-protected attributes; however, protected

8

groups or individuals still get to be treated unjustly as a result of

implicit effects from their protected attributes [42].

• Systemic discrimination refers to policies, customs, or behaviors

that are a part of the culture or structure of an organization that may

perpetuate discrimination against certain subgroups of the population

[9].

We present some examples of these types of discrimination in the next para-

graph, so that the reader can understand the differences between one another

and why they are so important.

The fact that no universal definition of fairness exists and there is still no

clear agreement on which definition is better, shows the difficulty of giving a

definition of unfair dataset.

To conclude, fairness is an incredibly desirable quality in society, and how

many datasets are fair in real life? If unfairness is present in data and

applications, it is necessary to go in deep and analyze the origin of this

behaviour to possibly correct and solve this issue. We provide some examples

of unfairness in data and present a theory that explains the causes of this

problem.

2.5 Invisibility Factor

A possible cause of unfairness in data is described by the theory of James Moor

on the Invisibility Factor [29]. This notion is presented in the discussion

over the meaning and the responsibility of Computer Ethics presented in the

previous section.

To support the importance of Computer Ethics, the author proposed the

Invisibility Factor as central concept. The invisibility factor expresses the

idea that computer operations are invisible, so often generates policy vacuum,

because we could be dimly aware of the internal processing in computers.

The author presents three different types of invisibility factor which can have

ethical significance:

• Invisibility of abuse: it can be caused by an algorithm that, through

intentional unfair decisions and not transparent processes, can conduct

in a obscured way, to unmoral actions.

• Invisibility of programming values: invisible programming values

are those values which are embedded in a computer program. Not

9

paying attention to them can cause intentional or unintentional biases

performing unethical conducts.

• Invisibility of complex calculation: due to calculations that are

too complex for human inspection and understanding, it is difficult to

justify the model and the computations done, so that the behaviour of

the application could be not moral.

To better discuss all these three types of invisibility, we present the three

definitions in details. For each one of them, we propose an example presented

by Moor in the original paper of the specific type of invisibility together with

a contemporary case in Data Science, to show how this theory is actual and

strong.

2.5.1 Invisibility of abuse

As defined before the first type of invisibility factor, the invisibility of abuse,

implies the intention of unethical decisions and possibly the generation of

biases. So, due to this specific kind of invisibility, people can suffer illegal

actions done with a computer.

Moor presents a classical example for this type on invisibility, that is a

programmer that intentionally steals excess interest from a bank with

a computer. This is an ordinary stealing, but involves Computer Ethics.

Indeed, this behaviour shows that new type of abuses are possible thanks to

technology and that they need to be detected and prevented.

In real world there are many cases of invisibility of abuse behaviours,

and we present one coming from ProPublica to support the strengths of this

theory in Data Science Ethics [21].

This journal reports that, the social network Facebook allows advertisers to

put ads that exclude people based on race, gender and other sensitive factors

that are prohibited by federal law in housing and employment. Excluding

specific groups from some ads is discriminatory and illegal. The privacy

and public policy manager at Facebook said: “It’s important for advertisers

to have the ability to both include and exclude groups as they test how

their marketing performs.”. Facebook assigns to members an Ethnic Affinity

based on pages and posts they have liked or engaged with on Facebook.

Facebook’s micro-targeting is particularly helpful for advertisers looking to

reach niche audiences [21].

In conclusion, this kind of abuse was caused by algorithmic biases that

invalidate individual and group fairness. In fact, this evident example

10

of direct discrimination against various groups of people reveals the

intentional choice of unethical decisions made with computers, based on a

business model that get money from this data, allowing to perform illegal

actions.

2.5.2 Invisibility of programming values

The second type of invisibility involves programming values which are embed-

ded in a computer program that can cause intentional or unintentional

biases.

Moor says that sometimes invisible programming values are so invisible that

even the programmers are unaware of them. Programs may have bugs or may

be based on implicit assumption which do not become obvious until there is a

crisis [29, p.273].

The author cited a famous example: a computerized airline reservation

suggests always first one company with respect to others, even if it does

not show the best flight available. There may be a difference between how

a programmer of a reservation service intends its program and how it is

actually used. How the airlines are listed will build certain values into the

program and may bring to this kind of invisibility.

In Data Science, this kind of invisibility is presented with an example of

discrimination against black people in American justice [22]. ProPublica

explains that a software used across the United States to predict future

criminals is biased against black people. In fact, the scores that express

the risk of recidivism of white people are lower than the ones of black people.

It is not clear today why the software gives these results and if the intent

of its programmer was to discriminate black people or not. Moreover, we

cannot state if it is an example of direct or indirect discrimination.

ProPublica analysis shows that the protected attribute Race seems quite

predictive of a higher score [19], so, probably, the programmer did not

pay the right attention to the creation of these programming values during

the development of this software introducing algorithmic biases. To con-

clude, in this case, group and in particular subgroup fairness was not checked.

2.5.3 Invisibility of complex calculation

The invisibility of complex calculations can bring to unfairness due to the

difficulties in understanding the model and the context, because they are

too hard to analyze or even beyond the human comprehension. The author

says that computers today are capable of enormous calculations, so often

11

they are too complex for human inspection and understanding [29, p.273].

Moor presents an example that is a program that solved the problem of the

four color conjecture. It showed that four colors are sufficient to color a

map so that no adjacent areas have the same color. Programmed computers

proved the four color conjecture and the mathematical proof of it is known

and examined, but is too enormous for human to completely understand it.

Going back to Data Science, there is very interesting a study by Carnegie

Mellon University on ads [10]. It tests how online user behaviors and interac-

tion with Google’s Ad Settings would impact ads displayed, in particular,

setting the user profile gender to female results in getting fewer instances of

an ad related to high paying jobs than setting it to male [10]. However, the

authors of the study admit that the gender discrimination shown is difficult

to pin to one factor, due to the complexity of not only Google’s profiling

systems, but also of the way advertisers buy and target their adverts using

Google.

So, in this last case is very hard to understand the model and the complex

calculations and all the programming values that bring to gender discrimi-

nation. The type discrimination is indirect and probably systemic due

to the complexity of the environment, so there is a possible historical and

algorithmic bias. Again, group fairness was not respected also in this case.

Given all these examples, in the next section we analyze the justifica-

tions of the theory of the invisibility factor and the possible questions that

can arise from it.

2.5.4 Strengths and solutions of the invisibility factor

The invisibility factor explained by James Moor seems a very strong theory

because presents all possible causes of unfairness in data. So, why it is so

reliable? We present the last part of Moor’s article with the strengths of his

theory and a possible solution to the invisibility factor.

In Moor’s paper, the invisibility factor has two strong consequences [29]:

• On one hand, the invisibility factor makes us happy, because we do

not inspect every transaction or computation making processes more

efficient,

• On other hand, it makes us vulnerable, because the policy vacuums

created by these types of invisibility have an not neutral impact on our

lives.

12

We think that these two points are true as the cases aforementioned con-

firmed.

Facebook example [21] shows on one hand, the efficiency as the central part

of a business model and on other one, the reality of the vulnerability. Com-

puters have made our lives efficient and easier, but the price to pay for it is

the presence of discrimination and unfairness in many fields, from justice

to hiring and in many other areas. Indeed, it is necessary to decide when

we can trust the invisible calculations and programming values and when not.

As a possible framework to solve the invisibility problem, Moor introduces

the concept of policy. Policies, that could be strategies and actions, are

necessary to identify and prevent abuses caused by invisibility, in particular

in a sensitive area as Data Science. An example of policy could be to check

the possible types of discrimination and fairness in a dataset to avoid un-

ethical conducts. So, a central task is to formulate and justify such policies

according to the definitions of fairness, bias and discrimination that we

have mentioned in the first section. Without a clear and precise terminology,

we are not able to prevent and detect abuses with the right policy in every

possible case.

There are many emerging technologies that detect biases and accu-

rately promote fairness. To create policies with these tools, it is necessary

to be conscious of the notions of fairness and apply the proper one to the

specific case.

In our research we propose a specific type of policy, and associated framework,

in which we detect bias and discrimination in dataset through a particular

type of constraints: Functional Dependencies.

Before introducing our framework, in the next section we will present the

preliminaries that are the necessary basics to understand the database area

and the relative constraints.

13

14

Chapter 3

Preliminaries

In this section we will define all the theoretical tools and concepts that we

considered for our research.

In the first part, we will start from the notion of Relational Databases and

we will explain in details what is a Functional Dependency. In this section

we present a comprehensive summary of previous researches on a Functional

Dependencies and all relative techniques used to mine the different types of

dependencies.

In the second part, we will present Data Mining with particular attention

on Association Rules and its connection with Functional Dependencies. We

conclude this section with an overview of the metrics used to evaluate diverse

types of dependencies.

3.1 Relational Databases

When we talk about computers, one of their main uses is to manage infor-

mation, which in some cases involves simply holding data or exploit them to

retrieve interesting information.

A large amount of data stored in a computer is called a database. Database,

also called electronic database, is any collection of data, or information,

that is specially organized for rapid search and retrieval by a computer [32].

Databases are structured to facilitate the storage, retrieval, modification,

and deletion of data in conjunction with various data-processing operations.

Database systems can be viewed as mediators between human beings who

want to use data and physical devices that hold it. A database model provides

the means for specifying particular data structures, for constraining the data

sets associated with these structures, and for manipulating the data [1].

A Relational Database is a digital database based on the relational model

of data, as proposed by E. F. Codd in 1970 [7]. The term relational model has

come to refer to databases models that are based on the concept of relation

table as the fundamental data structure that incorporates some or all of the

query capabilities, update capabilities, and integrity constraints (i.e., prop-

erties that are supposed to be satisfied by all instances of a database schema).

Because of its simplicity, the relational model has provided an excellent

framework for the first generation of theoretical research into the properties

of databases. In a relational database, the data is represented in tables in

which each row gives data about a specific object or set of objects, and rows

with uniform structure and intended meaning are grouped into tables.

Play Tennis

Outlook Temperature Humidity Wind Play

sunny hot high false don’t

sunny hot high true don’t

overcast hot high false play

rain mild high false play

rain cool normal false play

rain cool normal true don’t

overcast cool normal true play

sunny mild high false don’t

sunny cool normal false play

rain mild normal false play

sunny mild normal true play

overcast mild high true play

overcast hot normal false play

rain mild high true don’t

Table 3.1: Relational table or relation: it presents the decision to whether to play tennis

or not according to the weather

Each table is called a Relation and it has a name (e.g. in table 3.1 the

title is Play Tennis). The columns also have names, called Attributes (e.g,

Outlook, Temperature, Humidity, Wild, Play). Each line in a table is a

Tuple (or record). The entries of tuples are taken from sets of constants,

called Domains.

16

Finally, we distinguish between the database schema, which specifies the

structure of the database; and the database instance, which specifies its

actual content.

If for example, we observe the table 3.1, the dataset contains the possible

weather conditions and for each one of them, the column Play says if it is

possible to play tennis or not.

Furthermore, in table 3.2 we present all the symbols that will be used to

explain Functional Dependencies.

Symbol Description

R relation schema

X,Y sets of attributes

A,B attributes

a,b attribute values

πX projection on X

Table 3.2: Symbol Table

To be more clear we make the connections between table 3.1 and Table

3.2:

• R is the relation schema, so the table Play Tennis without the values.

• X represents the set attributes {Outlook, Temperature,Humidity,Wind};
Y represents the set of attributes, in this example Y is composed only

by the class attribute {Play}.

• A could represent any component of X, and B any component of Y.

• a,b represent any value given respectively by A,B.

• πX means select some tuples of set of attribute X, for example:

πOutlook(PlayTennis) = {sunny, overcast, rainy}.

3.2 Functional Dependencies

Starting from integrity constraints, that are the properties that are supposed

to be satisfied by all instances of a database schema, the study of more

restricted classes of constraints, called dependencies, has become more and

more interesting in last years.

The fundamental motivation for the study of constraints is to incorporate

17

more semantics into the relational model.

A Dependency is a constraint that applies to or defines the relationship

between attributes. It occurs in a database when information stored in the

same database table uniquely determines other information stored in the

same table.

In practise, the database designer needs to specify integrity constraints to

correctly model the real world, but there could be constraints, as dependen-

cies, that are not imposed in the design phase, but that are already satisfied

by the data itself.

A broad theory of dependencies has been developed for the relational model.

In a Functional Dependency the values of some attributes of a tuple

uniquely or functionally determine the values of other attributes of that tuple.

A Functional Dependency

R : X → Y

can be simply denoted by X → Y , and it stands for ’X uniquely determines

Y’, where X and Y are attribute sets. X is called antecedent or left-hand-side

(LHS) and Y consequent or right-hand-side (RHS). A relation I satisfies

a functional dependency X → Y (i.e. I |= X → Y) if for each pair s,t of

tuples in I,

πX (s) = πX (t) implies πY (s) = πY (t)

where π is a “vertical” operator that can be used to delete and/or

permutate columns of a relation. In particular:

πx1,...,xn (I) = {〈t(x1), ..t(xn)〉 | t ∈ I} .

Given table 3.1, we provide an example of Functional Dependency:

(Wind,−) , (Temperature,−) , (Outlook,−)→ (Play,−)

that could be written as: “given the attributes Wind, Temperature and

Outlook and their corresponding values, we can uniquely determine the at-

tribute value of Play”.

The constraints that Functional Dependencies (for brevity FDs) impose

are often too strict for real world datasets since they must hold for all the

values of the attribute sets X and Y.

For this reason, researchers have begun to study generalizations of FDs,

called Relaxed Functional Dependencies, which relax one or more constraints

of canonical FDs.

18

3.2.1 Relaxed Functional Dependencies

Relaxed Functional Dependencies, or RFDs, are FDs where some con-

straints are deleted.

To have an overview of the possible types of Functional Dependencies,

it is fundamental the work “Relaxed Functional Dependencies - A Survey

of Approaches” by Caruccio, Deufemia and Polese [5] in which the authors

presented and enumerate the possible types of Relaxed Functional Depen-

dencies (or RFDs).

The authors analyzed 35 different RFDs studying the application domain

and their characteristics.

There are two main categories on which Functional Dependencies can be

relaxed: on extend or on attribute comparison [5].

Relaxing on the extent parameter means that the FD holds on “al-

most” all tuples or on a subset of them. In fact, FDs might not hold for

some tuples due to errors, missing values, or different data formats, but

also to the possibility for some application domains to admit outliers. An

example of this type of dependencies is Approximate Functional Dependencies.

Relaxing FDs on the attribute comparison means using approximate

matching paradigms to compare the attribute values on the Left Hand Side

of the rule (LHS) and the implied attribute values on the Right Hand Side

of the rule (RHS). An example of this type of dependencies is Conditional

Functional Dependencies.

We cite (among others) four types of Relaxed Functional Dependencies

that are interesting for our research:

• Approximate Functional Dependencies (AFDs) which are FDs which

almost hold on a given relation,

• Conditional Functional Dependencies (CFDs) that are dependencies

which holds on instances of the relations,

• Approximate Conditional Functional Dependencies (ACFDs) that are

dependencies that combine together AFDs and CFDs,

• Association Rules (ARs) which are dependencies almost holding on

particular values of attributes.

19

For our research, we are interested in these types of dependencies, so in

next sections, we will present them with formal definitions, analyzing more

in deep and proposing related examples. At the end of each section, for each

type of dependency, we will also suggest the main algorithms that find each

specific type of dependency.

3.2.2 Approximated Functional Dependencies

Approximate Functional Dependencies (for brevity AFDs) are FDs

holding on almost all tuples [5, p.5].

In order to quantify how an AFD “almost” holds, several measures have

been proposed and studied [16], such as the g3 error measure or an informa-

tion dependency measure.

In our research we focused on g3 error, that is defined as “the (normalized)

minimum number of tuples that need to be removed from a relation instance

R in order for an FD to hold” [5, p.6].

Note that, normalized g3 error ranges from 0 to 1 and it is equal to zero

exactly when the rule is a FD.

An example related to table 3.1:

(Outlook,−) , (Wind,−)→ (Play,−)

In fact, for almost all values of the attributes Wind and Outlook it determines

the value of attribute Play, but this is not true, for example, for:

(Wind, false) , (Outlook, sunny)→ (Play,−)

because the value of attribute Play in two cases is don’t and in one case is play.

With this type of dependencies we are able to catch more interesting

patterns in data, especially the ones that are not “valid” for all tuples.

Many algorithms have been designed to find Functional Dependencies,

and in particular, Approximate Functional Dependencies.

• More than 20 years ago, Huhtala et al. [18] proposed TANE, an

algorithm that finds Functional Dependencies based on a level-wise

research of rules through a continuous pruning from an initial set of

attributes.

• Wyss et al. proposed a different type of algorithm called FastFD

[41]. This method was based on a depth-first, heuristic-driven research

instead of a level-wise research.

20

These algorithms can be relaxed on the extent, so that they can find both

FDs and AFDs. Throw the setting of the g3 error, that in practise is the

confidence level, the programs mine the data to find the relaxed rules.

3.2.3 Conditional Functional Dependencies

Conditional Functional Dependencies (or CFDs) are a specific type of

FDs that use conditions to specify the subset of tuples on which a dependency

holds.

In particular, a CFD is a pair (X → A, tp), where:

• X is a set of attributes in A

• X → A is a standard functional dependency

• tp is a pattern tuple with attributes in X and A, where for each B in

X ∪A, tp[B] is a constant ‘b’ in dom(B), or an unnamed variable ‘-’.

If a CFD (X → A, tp), has tp[A] = ‘-’ is called variable, otherwise is

constant.

With this type of dependencies we can catch particular and concrete patterns

in the dataset, in fact we are able to analyze precise values of the tuples and

be more specific.

An example related to table 3.1 is:

(Wind, false) , (Outlook, rain)→ (Play, don’t)

that can be interpreted as: “when attribute Wind has value false and attribute

Outlook has value rain the attribute value of Play is don’t”.

The first algorithms developed for the discovery of Functional Dependen-

cies were the basis for many future works involving the research of Conditional

Functional Dependencies.

There are different implementations of CFDs discovery algorithms and many

of them are based on the research of Fan et al. [13].

Mainly three algorithms of CFD discovery are adopted:

• CFDMiner, which focuses especially on the research of constant CFDs

through a mining of closed itemsets. Given a relation R, an itemset is

defined as a pair (X, tp), where X is a set of attributes from R and tp
is a constant pattern over X containing only constant values.

An itemset (X, tp) is closed if there exists no more general itemset

21

(Y, sp) such that Y ⊆ X and with the same support as (X, tp) for a

certain instance r of R. The support of an itemset (X, tp) for a certain

instance r is denoted as supp (X, tp, r), and it represents the number

of tuples that match with tp on the set X.

• CTane, a level-wise extension of TANE for the research of general

CFDs. It takes advantage of k-frequent itemsets, which are itemsets

whose support is greater than k. In this case, the pattern tp can include

also the unnamed variable ’-’.

• FastCFD, an extension of FastFD which keeps its depth-first research,

but also mines closed itemsets. As CTane, it leverages k-frequent

itemsets.

3.2.4 Approximate Conditional Functional Dependencies

Approximate Conditional Functional Dependencies called also ACFDs,

are Functional Dependencies that relax on both criteria: the extend and the

attribute comparison.

It is Conditional Functional Dependency, as defined before, but that relax

also on the extend, so the g3 error could be less than 1.

An example taken from table 3.1 could be:

(Wind, false) , (Humidity,normal)→ (Play, play)

that can be interpreted as: “when attribute Wind has value false and attribute

Humidity has value normal the attribute value of Play is play if we delete a

maximum number of tuples N”.

Thus, this rule specifies the attribute values on which it holds and it is true

for all tuples less that N tuples in the dataset.

ACFDs represent the most general type of FDs and they will be the

most important tool for our research because they catch the most interesting

aspects in a dataset. Unifying these two relaxation criteria, we can detect

specific and not exact rules that can show anomalies or unexpected patterns

in the database.

More difficult is to find algorithms that implement both relaxation criteria

on extent and contemporary on attribute comparison. In fact, finding Approx-

imate Conditional Functional Dependencies is more complex than searching

FDs or CFDs because ACFDs relax on both criteria simultaneously allowing

22

a less number of constraints contemporary, increasing the problem complexity.

An algorithm created to discover ACFDs is CFDDiscovery [34].

It was created for database cleaning and repair, and it can relax on both

criteria. It is based on the previous AFDs and CFDs discovery algorithms, in

fact it supports 10 distinct approaches, belonging to three different general

methodologies used in other works:

• Integrated, uses a depth-first implementation of the CTane algorithm

• Itemset-First, uses a breadth-first version of Eclat for the itemset

mining step and a depth-first TANE implementation for the FD dis-

covery step

• FD-First uses both a depth-first TANE step and depth-first itemset

mining.

In next section, we will present Association Rules that are another type

of dependencies, but that belong to the Data Mining area.

3.3 Data Mining and Association Rules

Data Mining is the non-trivial process of discovering valid, novel, poten-

tially useful and understandable patterns in large data sets involving several

different methods as classification, regression, association rule mining, clus-

tering etc [39].

It emerged in the late 1980s and it is based on Statistics, Machine Learning

and Database Technology. Data Mining has evolved over time thanks to

Big Data and to the pressing needs for the automated analysis of massive data.

Data Mining tasks need an input data to start the process, usually in

tabular form. If a data mining task uses a relational table as for example,

table 3.1, the tuples are also called instances, the attributes are also called

variables and the last attribute is usually named class or target attribute (e.g.

Play). It is a column that has a special content inside the data, because it

has a symbolic meaning.

The Data Mining tasks that are strictly correlated to our work are Clas-

sification and Association Rule Mining [39].

Classification is the problem of identifying to which of a set of categories a

new observation belongs, on the basis of a set of data containing observations

23

or instances, whose category membership is known.

There are many interesting studies in classification that are related to our

research and we will analyze them in later chapters.

In Association Rule Mining, the goal, given a set of transactions, is

to find rules that predict the occurrence of an item based on the occurrences

of other items in the transaction. Given a data structure the process finds

frequent patterns, associations, correlations or causal structure among the

sets of objects in the dataset.

The rule found are in the form: X → Y with X, Y defined in the same way

as for Functional Dependencies.

Thus, Approximate Conditional Functional Dependencies are present

also in the context of Data Mining and they are called Association Rules.

ACFDs can be seen as a kind of Association Rules. In particular, Asso-

ciation Rules and Approximate Conditional Functional Dependencies are

two different concepts that came from different areas (the first came from

Data Mining and the second was born in the Database field) but, practically,

finding ARs means finding ACFDs and vice-versa. An in-depth discussion

that connects the notions FDs, CFDs, and ARs can be found in [27]. The

authors show that all those dependencies are indeed structurally the same

and can be unified into a single hierarchy of dependencies.

For this reason we will use the term rule as synonym of dependency, aware

about the conceptual difference and conscious of the concrete sameness.

A benefit of this hierarchy is that existing algorithms which discover

ARs could be adapted to discover any kind of dependencies and, moreover,

generate a reduced set of dependencies. To discover Association Rules

there are mainly three different algorithms:

• A-priori uses breadth-first search and proceeds by identifying the

frequent individual items in the database and extending them to larger

and larger item sets as long as those item sets appear sufficiently often

in the database.

• Eclat is a depth-first search algorithm based on set intersection. It works

on the same principle of A-priori, but it optimizes the computation of

the support by using a vertical database that makes more efficient the

frequency computation.

• FP-growth, where FP stands for frequent pattern. The algorithm starts

24

compressing a large database into a compact, FP-tree structure avoid-

ing costly database scan. It uses a divide-and-conquer methodology

avoiding candidates generation.

Using these algorithms we can also discover ACFDs.

Knowledge discovery and data mining, database management, reverse

engineering and query optimization are among the main applications benefit-

ing from efficient dependencies discovery algorithms.

It is interesting that, from our searches, none of these presented algorithms,

and in particular, the Functional Dependencies, are used to discovery bias

or discrimination in data. The main function for which FDs and RFDs are

discovered is for Data Cleaning and Data Repair.

In the next paragraph, we will specify the metrics used for Association

Rules that are also measures used to analyze Functional Dependencies.

3.4 Evaluation Metrics

In this section, we provide the definitions of the main evaluation metrics

used to evaluate Functional Dependencies and Association Rules.

The most common ones are Support, Confidence and Lift.

• Support

Support(X → Y) = sup(X,Y) =
#(X,Y)

all − tuples

where #(X,Y) is the count of how many times X and Y appears

together in the dataset and all-tuples is the total number of tuples in

the table.

The support is the percentage of the samples in the dataset that verifies

the dependency X → Y and it can assume values in the range [0, 1].

We can notice that support is a symmetric relationship, in fact the

support of X → Y is equal to Y → X.

This metric allows the user to take advantage of her domain knowledge

about the dataset dimensions and the cardinality of its attributes in

order to define how many samples should be seen in order to consider

a dependency as a valid one. This is highly application specific, and

it usually used minimum support threshold of 2
#samples and it can be

adapted according to the application needs.

25

• Confidence

Confidence(X → Y) = conf(X,Y) =
sup(X,Y)

sup(X)

It shows how frequently the dependency (X → Y) is verified knowing

that the rule body X is verified. It can assume values in the range [0,

1].

If we want only exact and valid rules the confidence must be set to 1. If

we are interested in rules that are not valid on all dataset, so we want ot

relax on the extend, we can decrease the confidence keeping attention

to the fact that the higher this value is, higher is the probability that

the dependency is verified.

The confidence can be seen as the same concept of the g3 error previ-

ously defined.

• Lift

Lift(X → Y) =
sup(X,Y)

sup(X) ∗ sup(Y)

Lift is the ratio of the observed support of X → Y to that expected

if X and Y were independent. This metric allowed us to take into

account also the degree of independence of the components of the rules

and it can assume values in the range [0, +∞].

Lift values similar to 1 suggest that X and Y are independent, while

lift values greater than 1 suggest that X and Y are dependent. Our

desired case is the second one since we want to find highly correlated

instances.

Furthermore, lift is a symmetric relationship, so it considers only

statistical co-occurrence of the components and does not provide any

information about the actual implication between them.

Given the basis of Functional Dependencies, in next section we will focus

on the main studies done in Data Science Ethics that are related to our

framework.

26

Chapter 4

Literature Review

In this section we start presenting a comprehensive summary of all the

fairness definitions in classification context. We will continue analyzing

previous researches done in the area of Data Science Ethics, especially in

the Machine Learning context. Finally, we give an overview of the most

important works and applications that solve the problem of “unfair dataset”.

4.1 Machine Learning and Ethics

As already said in Chapter 2, applications nowadays need the discovery of

bias in data to avoid unintentional behaviours and unethical consequences, so

the presence technologies that detect biases and accurately discover discrimi-

nation to obtain fair databases is more and more necessary. For this reason,

we present the main researches done in Data Science Ethics, in particular in

Machine Learning area.

Machine Learning is the study of computer algorithms that improve

automatically through experience. In this huge area there are a variety of

tasks that can be performed as model description or prediction.

In this context, the necessity of Data Science Ethics arises to avoid bias and

discrimination in Machine Learning tasks.

The application domain of Machine Learning is pervasive and can influence

different spheres, so from real world problems algorithms received more

attention also for the ethical consequences of applications.

Recent breakthroughs justice, as discrimination against black people in Amer-

ica, or in computer vision, specifically object recognition, reveal just how

much pattern-discovery can achieve.

Machine learning aims to solve the “fairness problem” by abandoning

the attempt to teach a computer through explicit instruction in favor of a

process of learning by example.

However, there are serious risks in learning from examples; learning is not a

process of simply committing examples to memory.

This means that reliably generalizing from historical examples to future cases

requires that we provide the computer with good examples: a sufficiently

large number of examples to uncover subtle patterns; a sufficiently diverse

set of examples to showcase the many different types of appearances that

objects might take; a sufficiently well-annotated set of examples to furnish

machine learning with reliable ground truth; and so on.

A learning system needs data that are not biases, even if bias come from

the world. Thus, data have to satisfy three requirements:

• Diversity: there be enough representation of even small protected

groups so that they are not ignored.

• Coverage: is simply the count of elements in a given group. It is

another mathematical definition of diversity and it is used when there

are multiple criteria on which fairness should be guaranteed.

• Stability: it ensures that the results will not change if the model

parameters are changed slightly. Without stability the results can be

very different with small changes to model parameters.

Thus, evidence-based decision-making is only as reliable as the evidence

on which it is based, and high quality examples are critically important to

Machine Learning [3]. The fact that machine learning is “evidence-based” by

no means ensures that it will lead to accurate, reliable, or fair decisions.

4.2 Fairness notions in Classification

In machine learning, defining Fairness is strictly related to a Classification

task. Classification, as already said in Chapter 2, is the problem of identify-

ing to which of a set of categories a new observation belongs, on the basis of a

set of data containing observations or instances, whose category membership

is known.

In the context of binary classification task (that means that there are only

two possible classes: positive/negative) there are various Fairness definitions.

28

The possible definitions are presented in “Fairness Definitions Explained”

by Verma and Rubin. [40].

The notions are based on statistical measures in which the algorithm

imports the data, then it computes a classifier, it associates the class prediction

of an unseen value and it compares the result with the actual value.

The first step consists in computing the Confusion Matrix that is a table

composed by four indicators:

• True Positive: for brevity TP, the amount of data in which the

predicted value and the actual value are positive.

• False Positive: for brevity FP, the amount of data in which the

predicted class is positive, but the actual one is negative.

• False Negative: for brevity FN, the amount of data in which the

predicted class is negative, but the actual one is positive.

• True Negative: for brevity TN, the amount of data in which the

predicted value and the actual value are negative.

From this table, we can combine these numbers to obtain some interesting

measure, the most used are:

• TPR or True Positive Rate, that indicates the fraction of positive

cases correctly predicted to be in the positive class out of all actual

positive cases; TPR = TP
TP+FN .

• FPR or False Positive Rate, the fraction of negative cases incorrectly

predicted to be in the positive class out of all actual negative; FPR =
FP

FP+TN .

• TNR or True Negative Rate, the fraction of negative cases correctly

predicted to be in the negative class out of all actual negative; TNR =
TN

FP+TN .

• FNR or False Negative Rate, the fraction of positive cases incorrectly

predicted to be in the negative class out of all actual positive cases

FNR = FN
FN+TP .

Next, we list the Statistical definitions of fairness that are based on

these metrics. Fairness definitions can be based on three different criteria

[40]:

29

• Definitions based on Predicted Outcome: they represent the

simplest and most intuitive notion of fairness as the Group Fairness

and Conditional Statistical Parity.

A classifier satisfies Group Fairness if subjects in both protected and

unprotected groups have equal probability of being assigned to the

positive predicted class.

Conditional Statistical Parity extends the previous one by permitting

a set of legitimate attributes to affect the outcome.

• Definitions based on Predicted and Actual Outcomes: they

not only consider the predicted outcome, but also compare it to the

actual outcome recorded in the dataset. Some examples could be:

Predictive Parity and Equalized Odds. A classifier satisfies Predictive

Parity if both protected and unprotected groups have equal probability

of a subject with positive predictive value to truly belong to the positive

class.

A classifier satisfies Equalized Odds if protected and unprotected groups

have equal TPR and equal FPR.

• Definitions based on Predicted Probabilities and Actual Out-

comes: they are used when the classifier is probabilistic, that means

that the prediction is a probabilistic score. An example is Test-Fairness.

A classifier satisfies Test-Fairness if for any predicted probability score

S, subjects in both protected and unprotected groups have equal prob-

ability to truly belong to the positive class. This definition is similar to

predictive parity except that it considers the fraction of correct positive

predictions for any value of S.

There are also Similarity-Based measures [40], that take into account

not only the sensitive attribute as in previous definitions, but all the attributes

of the classified subject. Some of this notions are: Causal discrimination,

Fairness through unawareness and Fairness through awareness.

The Data Science Ethics studies done in Machine Learning are based

on these fairness definitions, so in the next paragraph we present the main

works and framework to solve the fairness problem.

4.3 Machine Learning studies for Data Science

In general, in Machine Learning area, three are the possible branches of

techniques that try to avoid unfairness:

30

• Preprocessing techniques: procedures that before the application

of the algorithm make data fair.

• Inprocessing techniques: that are methods used during the algo-

rithm to detect and avoid bias.

• Postprocessing techniques: in this branch there are all the se-

quences of actions needed to correct the obtained results in order to

be fair.

The first category of methods is the more similar to the scope of Func-

tional Dependencies research that aims to display biases in data. Thus, we

concentrate in this huge branch, in which the main techniques, are mainly

developed for classification task.

The main preprocessing methods are:

• Suppression of Sensitive Attribute: remove the attributes that

highly correlate with sensitive attribute to avoid discriminatory results.

• Massaging the dataset: change the label of some tuples in the data

in order to minimize the discrimination. For example, change the target

label of some data in the minority group to avoid biases, or change a

target label from the majority group to create fairness.

• Reweighting: instead of changing the labels, each tuple in the data

is assigned with a weight.

• Resampling: calculate the sample size for each group-value combina-

tion.

All these data transformations done in preprocessing can control discrimina-

tion and limit the distortion in data.

A paper that presents the implementation of most of these techniques [4] by

Bellamy et Al. in which they introduce a new open source toolkit to reach

algorithmic fairness. In their work, there are techniques that belong to all

branches; in the preprocessing methods, there are four different algorithms

implemented in their toolkit:

• Reweighing generates weights in each (group, label) combination to

ensure fairness before classification [23].

• Optimized Preprocessing learns a probabilistic transformation that

edits the features and the labels to ensure fairness [11].

31

• Learning Fair representations finds a latent representation that

encodes the data well but obfuscates information about protected

attributes [24].

• Disparate Impact Remover edits feature values to increase group

fairness while preserving rank-ordering within groups [14] (also this

one is used manly in classification).

This platform enables experiment over the dataset and allows to contribute

with other algorithms and dataset.

There are a lot of algorithms and metrics among which the user can choose.

All the methods in the paper do not require user interaction, so the software

repairs the “unfair dataset” and the user retrieves the dataset without bias

according to the chosen fairness definition.

Another interesting work on fairness in Machine Learning is by Stoy-

anovich and Howe [37]. The authors proposed to develop interpretability and

transparency tools based on the concept of a Nutritional Labels, draw-

ing an analogy to the food industry, where simple, standard labels convey

information about the ingredients and production processes. Nutritional

labels are derived automatically or semi-automatically as part of the complex

process that gave rise to the data or model they describe, embodying the

paradigm of interpretability-by-design.

Fairness measures are based on a generative process for rankings that meet

a particular fairness criterion and are drawn from a dataset with a given

proportion of members of a binary protected group. The final system is

called Ranking Facts and it automatically derives nutritional labels for

rankings.

As said before, the majority of the notions are related to classification

task and they can be computed only with a classifier previously built on data.

The main difference between these approaches and our research is that our

policy does not need a classifier, because it is based on finding constraints

that are already present in the dataset. Furthermore, building a classifier to

solve the fairness problem imposes to the policy to be application oriented

and need a choice over the possible fairness definitions.

In next section we introduce our framework based on the discovery

of various kinds of Functional Dependencies. Without being application

oriented, our methodology will lead to detect bias already existing in data

with a list of dependencies that show possible discrimination.

32

Chapter 5

Methodology

5.1 Introduction

In previous sections we have analyzed the area of Data Science Ethics and in

particular the Machine Learning studies in the solution of “unfair datasets”.

Our research wants to use a particular type of constraints, that are Functional

Dependencies, to give a general overview of the data, showing, if present,

bias and discrimination. Our system needs, as input, only the dataset that

we want to analyze, then, the framework is applied as a technique to obtain

a list of unethical dependencies ordered by importance.

In this section, we will provide a description of the methodology that we

followed in order to develop our tool to discover already existing bias in data.

For this reason, we introduce the framework and we apply it to a running

example showing the obtained results. Finally, we focus on two different

studies in which we present a practical unified flow of the framework with

two different datasets.

5.2 Our framework

Our framework is called FAIR-DB that stands for FunctionAl Depen-

dencIes to discoveR Data Bias. It is based on the discovery and analysis

of Approximate Conditional Functional Dependencies or ACFDs, that are

Functional Dependencies (FDs) that hold on almost all tuples, and that use

conditions to specify the subset of tuples on which they hold.

As already said in chap. 3.3, ACFDs can be seen as a kind of Associa-

tion Rules. In particular, Association Rules and Approximate Conditional

Functional Dependencies are two different concepts that came from different

areas (the first came from Data Mining and the second was born in the

Database field) but, practically, finding ARs means finding ACFDs and vice-

versa. For this reason, we will use the term rule as synonym of dependency,

aware about the conceptual difference and conscious of the concrete sameness.

Figure 5.1 represents the workflow with the main phases. The framework

is divided in six main steps:

1. Data Preparation and Exploration: in this phase we import the

data, we perform data integration and we apply all the data prepro-

cessing steps needed (solve missing values, apply discretization etc) to

clean and prepare the data. During this phase, we also visualize the

attribute distributions using different Data Visualization techniques.

2. CFDDiscovery: taken the prepared dataset and fixed the input

parameters that are support, confidence and a maximum size, we apply

CFDDiscovery algorithm (presented in chap. 3.2.4) to extract the

dependencies from the dataset.

3. ACFDs Filtering: from the output of CFDDiscovery, we discard the

Approximate Functional Dependencies, for brevity AFDs, from the

output list and we create a dictionary for ACFDs. In this phase, we

apply also other constraints and we rewrite the rules into a more easy

and understandable form to optimize the future computations.

4. ACFDs Selection: for each rule, we compute the metrics that show

the ethical aspect of the dependency, in particular the Difference

metric and for each protected attribute p we compute the p-Difference.

According to values of the metrics, we select the most interesting rules.

5. ACFDs Completion: given the list of interesting rules, for each one

of them, we compute all the possible combinations over the protected

attributes and class variable; this process may add also rules that do

not show bias.

6. ACFDs Ranking: analyzing all the resulting rules, we select the

ones that show the unethical aspect. After that, we build a ranking

composed by the ACFDs put in descending order of importance with

their relative metrics.

7. ACFDs User Selection and Scoring: from the ranking, the user

selects N ACFDs, then, we present the ranked selected dependencies

34

and the summarizing metrics that give a final score about the unfairness

of the dataset.

Obviously according to the obtained results the process can restart tuning

differently the parameters and selecting other rules, so that the user can

restart the process until she is satisfied with the results.

In next paragraphs we will describe every phase more in depth explaining

the details of our framework, in particular, for each step we apply it to the

running example.

35

1. Data Preparation and Exploration:

Data Preprocessing and Visualization

2. CFDDiscovery:

Apply CFDDiscovery algorithm

3. ACFDs Filtering:

filter and organize the ACFDs

4. ACFDs Selection:

according to metrics, select the unethical ACFDs

5. ACFDs Completion:

for each rule compute all possible combinations

6. ACFDs Ranking:

select the unethical ACFDs and build a ranking

7. ACFDs User Selection and Scoring:

user selects N ACFDs and

presentation of final metrics about the dataset

Take the prepared dataset

Analyze the dependencies

Using the filtered ACFDs

With the most interesting rules

Evaluate the obtained ACFDs

Apply a user selection

Restart if results

are not satisfying

Figure 5.1: FAIR-DB schema
36

5.3 Running Example: U.S. Census Adult Dataset

Firstly, we describe the dataset that we used and that is significant for

our research. We apply preprocessing operations to prepare the dataset

accordingly to domain knowledge and optimization, then we apply the steps

of our framework to extract the various types of Functional Dependencies to

recognize bias and discriminatory behaviours.

The running example that we used is UCI Machine Learning Reposi-

tory Adult1 [12] a dataset containing the census information of U.S. people.

This dataset relates people income to social factors such as age, education,

race etc.

The U.S. Census Adult Income dataset was extracted by Barry Becker from

the 1994 U.S. Census Database. The dataset consists of anonymous informa-

tion such as occupation, age, native country, race, capital gain, capital loss,

education, workclass and more.

The version that we considered contains 32561 tuples and 13 attributes, 5

of which are numerical and 8 are categorical, including the target variable

‘Income’. The main task for which this dataset is used for is to predict if a

person earns more or less than 50,000 dollars/year, based on other features

like the degree of education and the age.

We now provide a brief description of the attributes. We highlight that

we refer to the values actually contained in this specific dataset, without any

further assumption.

• Age: a numerical variable representing the age of a person. The values

belong to the range [17,90].

• Workclass: a categorical variable representing the workclass of a

person. Examples are Private and Federal-gov.

• Education: a categorical variable representing the educational degree.

Examples are HS-grad, Bachelors and Doctorate. There are 16 distinct

values.

• Education-num: a numerical variable representing a numeric encod-

ing of the attribute education. The values range from 1 to 16 and

examples of encoding with education are Bachelors: 13 and HS-grad:

9.

1https://archive.ics.uci.edu/ml/datasets/Adult

37

• Marital-status: A categorical variable representing the marital status

of a person. Examples are Married-civ-spouse and Divorced. There are

7 distinct values.

• Occupation: a categorical variable representing the type of job. Ex-

amples are Sales and Tech-support. There are 14 distinct values.

• Relationship: a categorical variable representing the family status.

Examples are Husband, Wife and Not-in-family. There are 6 distinct

values.

• Race: a categorical variable representing the race of a person. Exam-

ples are White and Black. There are 5 distinct values.

• Sex: a binary categorical variable representing the sex of a person.

There are only the values Female and Male.

• Capital-gain: a numerical variable representing the capital gain of a

person. It is the profit one earns on the sale of an asset like stocks,

bonds or real estate. The values belong to the range [0, 99999]. The

value 0 is the most frequent (95.27%).

• Capital-loss: a numerical variable representing the capital loss of a

person. It arises when the cost price of stocks, bonds or real estate is

higher than the selling price. The values belong to the range [0, 4356].

The value 0 is the most frequent (91.59%).

• Hours-per-week: a numerical variable representing how many hours

a person work during each week. The values belong to the range [1,

99].

• Native-country: a categorical variable representing the country of

origin. The most frequent value is United-States (91.19%), examples

of other values are Mexico, Philippines and Germany. There are 41

distinct values.

• Income: a binary categorical variable representing if the annual income

of a person is greater or less than 50’000 dollars/year. This is the

target variable of the problem and it can assume the following values:

> 50K and ≤ 50K.

Figure 5.2 presents the first five tuples of the U.S. Census Adult dataset.

38

Figure 5.2: U.S. Census Adult dataset

5.3.1 Data Preparation and Exploration

Firstly, Data Preparation starts with Data Acquisition, in this phase the

user gathers one or more datasets that she will use in the research.

After Data Acquisition, Summary Statistics operation is usually per-

formed. Summary statistics consist in quantities, as mean for example, that

capture various characteristics of a potentially large set of values with a

single number or a small set of numbers[39, p.98]. Summary Statistics are

usually computed for the attributes of the dataset, for each of them we

compute the relevant statistics presented in tabular form. This primary

phase gives a general idea of the dataset and during this step, we can hypoth-

esize the protected columns and we can identify (if present) the target variable.

Data Cleaning, that means solving data errors, is an operation that

should be performed as soon as data is available, follows before any integration

procedure. During the development of our framework, we considered the

following assumptions:

• The user needs to clean a single data source.

• The dataset is in a relational form.

After Data Cleaning phase we apply Data Integration. In this step, mul-

tiple datasets are merged into a single one. It is important to notice that

poor data quality from the singular sources will lead to poor quality even in

the final dataset. Moreover, the user should be aware that Data Integration,

also when the singular sources are clean, can lead to errors in the final dataset.

Data Preparation is a very important phase before performing any algo-

rithm or application, in particular Data Cleaning. Poor data quality could

lead to wrong or incomplete results. It is very unlikely to automatically

resolve all the conflicts within a dataset. This is due to the fact that several

39

types of errors may be present and it is difficult software wise to correctly

recognize all of them.

In [30], Data Errors are classified under three main categories:

• Syntactical Anomalies: they involve the format and the values

which are used in order to represent real entities. In this category we

find Lexical Errors, Domain Format Errors and Irregularities.

• Semantic Anomalies: they limit the capability of the data samples of

being a comprehensive representation of the real world. This category

includes Integrity Constraints Violations, Contradictions, Duplicates

and Invalid Tuples.

• Coverage Anomalies: they limit the amount of information that can

be represented in the recorded data. Errors of this type are Missing

Values and Missing Tuples.

Depending on the dataset that we are considering, we may need to face

several different error types. On top of that, the type of the error strongly

influences the cleaning procedure.

We decided to solve primarily the problem of missing values because they

can be easily identified and the loss of information that they introduce leads

to worse results for the analysis which is being carried out.

In general, to solve missing values data analysts use imputation, so, if the

suggestion of an imputation is accurate enough the replacement is automati-

cally performed. However, it has to be noticed that there may be missing

values that are valuable information [30] to take into consideration for the

analysis, for example a person may have refused to fill a certain field in a

survey and we may wonder why she chose to do so.

The dataset that we used during this thesis contains missing values that

in general do not express valuable information, but there could be other

cases that can lead to different considerations during the workflow of the

framework. Moreover, applying imputation is not a good choice in all cases,

in fact, substituting missing values could may change bias in data.

After Data Cleaning and Data Integration we may need to perform other

steps as: Feature Selection, Data reduction and Discretization [39].

Feature selection refers to choosing the set of features to use that is

appropriate for the subsequent analysis. The goal of feature selection is to

40

come up with the smallest set of features that best captures the charac-

teristics of the problem being addressed [39]. The smaller the number of

features used, the simpler the analysis will be. Of course, the set of features

used must include all features relevant to the problem. So, there must be a

balance between expressiveness and compactness of the feature set. There

are several methods to consider when selecting features: new features can be

added, some features can be removed, features can be re-coded or features

can be combined. All these operations affect the final set of features that

will be used for analysis. Of course, some features can be kept as is as well

or new features can be derived from existing features.

Irrelevant features are those that contain no information that is useful for the

analysis task and they should be removed. Good understanding of the do-

main application is essential in deciding which features to add, drop or modify.

A dataset could have a large number of attributes: this is what is called

highly dimensional data [39]. Most of these dimensions may or may not

matter in the context of our application with the questions we are asking.

Reducing such high dimensions to a more manageable set of related and

useful variables improves the performance and accuracy of our analysis. As

the dimensionality increases, the complexity increases. As the space grows,

data becomes increasingly sparse, this is called Curse of Dimensionality. To

avoid the curse of dimensionality, you want to reduce the dimensionality of

your data. Reducing the dimensionality means finding a smaller subset of

features that can effectively capture the characteristics of your data.

To apply dimensionality reduction there are many techniques, the most

famous are Principal Component Analysis, t-Distributed Stochastic Neighbor

Embedding and Singular Value Decomposition. All these methods are use-

ful to reduce the dimensionality of your data, but they can also make the

resulting analysis models more difficult to interpret. The original features

in the dataset have specific meanings such as income, age and occupation.

By mapping the data to a new coordinate system, the dimensions in trans-

formed data no longer have natural meanings. For this reason, we suggest to

not apply dimensionality reduction, but instead perform a manual feature

elimination to reduce dimensionality.

Another important step is Discretization, that means transforming

data from numeric to nominal data type [39, p.57]. There are important

effects of discretization among which smooth things of data, reducing noise,

reducing data size etc.

For our purpose, Discretization is necessary in many cases, because Functional

41

Dependencies built on numerical attributes that have many different values

are very precise, but they do not give an overview over the attribute values.

For example, if there is a rule that contains a specific value of attribute

‘age’ (let us assume that it is 18) we do not know if the rule could be valid

also for values near to 18, like 20 or 16; furthermore, the rule could be not

useful if involves only 18-years old people. For this reason, we suggest to use

Discretization for numerical attributes that have many different values.

Discretization methods include manual methods or supervised and automatic

methods or unsupervised [39]. If we have some domain knowledge is better to

use the supervised approach in which we create the bins accordingly to what

we know. If we do not have any domain knowledge, we can use the previously

plotted distribution of the attributes values to create the bins. Equal-width

binning, equal-depth binning, regression analysis, cluster analysis, natural

partitioning would all be possible methods for discretization.

• For equal-width binning, given a range of values min, max, we divide

in intervals of approximately same width.

• The equal-depth binning refers to having the same number of rows

in each bin. Thus, given again a range of values min and max, we place,

approximately, the same number of instances, in each bin, by dividing

the total number of samples, by the desired number of samples in each

bin.

Once you have the bins, if you want to smooth your data, you can replace

the values in a bin by statistical indicator, such as the average or the median

for numerical data and, for categorical data, we can use the mode. We will

not use this technique that may eliminate existing bias, that are our main

focus.

When we have created the different bins for the variables, it could be inter-

esting to apply clustering to original data and afterwards decision trees to

each cluster to analyze the obtained groups. If we have a target class we can

delete it from the data before clustering and use it when we apply decision

trees to analyze the goodness of the obtained groups.

During of Data Preparation steps, we can go through Data Visualization

[39]. Data Visualization is the technique of conversion of data into a

visual or tabular format, in this way the characteristics of the data and the

relationships among data items and attributes can be analyzed. Humans

have a well-developed ability to analyze large amounts of information that is

presented visually, so they can detect general or unusual patterns.

42

For numerical attributes the techniques that are usually adopted are

Histograms [39]. They are a graphical representation of the distribution of

data and they are representation of tabulated frequencies erected or discrete

intervals. They can also show a density function, a curve that simply sum-

marizes over the individuals.

Instead, to plot categorical columns Bar Plots are used [39]. They compare

categories and they can also be grouped by class, so that every attribute can

be plotted with the target one leading to useful considerations.

Another useful technique to plot continuous variables is Box Plot [39]. It is

another way of displaying the distribution of data and it gives an idea of the

skeweness of the population.

This first data exploration phase is very important because the user un-

derstands from the plots if there are groups in the dataset and if there is

majority class and, if present, how many are the small groups.

Data Visualization can continue more in deep using other plots as

Heatmaps and Clustermaps [39]. Both techniques are used to see more

dimensions at once projecting data into a smaller space. These two methods

show the correlation between all attributes or a specific subset of them. In

particular, Clustermap is an Heatmap that adds clustering algorithm on

attribute values to see which ones are more correlated using clustering.

5.3.2 Running example: Data Preparation

Before being able to gather useful insights from running example of U.S.

Census Adult dataset, we have to perform some preprocessing operations as

Data Cleaning, Feature Selection and Discretization.

Before starting, it is interesting to perform Summary Statistics. Figure

5.3 displays the resulting statistics applied to numerical attributes and figure

5.4 to categorical ones.

For numerical attributes the table presents:

• Count: that is the frequency of the attribute.

• Mean and Standard Deviation.

• Minimum and Maximum values of every attribute.

• The most interesting Percentiles.

43

From the table values we can see that ‘Capital-gain’ and ‘Capital-loss’ at-

tributes are skewed and their values are very different from other variables.

For categorical variables the figure 5.4 displays four values:

• Count: it represents the frequency of the column.

• Unique: it presents how many unique values are present for every

attribute.

• Top: it indicates the mode of the attribute.

• Freq: it shows how many times appears the mode of every attribute.

Looking at values of ‘Race’ and ‘Native-country’ we can easily detect a

majority class composed by ‘White’ and ‘United-States’ people. Furthermore,

more than an half of the dataset represents people having ‘Male’ sex and

also more people gain ‘≤ 50K’ dollars/year.

Figure 5.3: Summary Statistics Numerical Variables

Figure 5.4: Summary Statistics Categorical Variables

44

After that, we compute the missing ratio to understand how many

columns have missing values and for each one how much it is. The columns

that are not too relevant in the search of ethical bias could be deleted. The

attributes with a missing ratio too high are also removed. If a column (that

is not a protected attribute) has a very little missing ratio, the missing values

can be imputed, for example, by substituting them with the mode if the

attribute is categorical, or using the median if the attribute is numerical. We

do not suggest to use imputation or other methods with protected attributes

because they can change the original biases obtaining wrong results.

We noticed that three attributes contained some missing values, reported

as ‘?’. In particular, there were 1836 missing values for the attribute workclass,

1843 for the attribute occupation and 583 for the attribute native-country, for

a total of 4262 missing values (less than 1% of the total number of cells). The

total number of rows, containing at least one missing value, were 2399 (about

7.4% of the total number of samples). Therefore, we decided to remove the

columns that are not interesting in this research from an ethical point of

view and then delete also the rows that contain missing values. The deleted

columns are: ‘Marital-status’, ‘Occupation’, ‘Relationship’, ‘Capital-gain’,

‘Capital-loss’ that are not meaningful from an ethical point of view. In this

way, computations of Functional Dependencies become faster, results are

easier to read and analyze because they will only show relations between

relevant attributes discarding uninteresting patterns. Hence, the dataset

that we actually used for our analysis contained 30169 samples.

We noticed that two of the columns, ‘Education’ and ‘Education-num’,

represented the same information. The latter was simply obtained through

a numerical encoding of the first one. It was clear that a Functional De-

pendency linked these two attributes, therefore we decided to remove the

‘Education’.

Furthermore, we group by ‘Education-num’ using 8 bins and transforming

the numbers into categorical values to optimize computations and make re-

sults more readable. The bins are: ‘Preschool’, ‘Elementary’, ‘MiddleSchool’,

‘HS-College’, ‘Assoc’, ‘Bach’, ‘Mast‘, ‘Postmaster‘.

To extract Functional Dependencies that do not depend on specific values

of an attribute, it is useful to group into bins the values of an attribute to

obtain relevant rules. In particular we created five bins for ‘Hours-per-week’

attribute that are: ‘0-20’, ‘21-40’, ‘41-60’, ‘61-80’, ‘81-100’.

45

Reasoning over ‘Race’ and ‘Native-country’ attributes is more difficult

than other attributes because there are factors, as migrations, that make it

more difficult.

5.3.3 Migrants study

What is Race?

The data on attribute ‘Race’ were derived from answers to the question

on race that was asked of individuals in the United States. The Census

Bureau collects racial data in accordance with guidelines provided by the

U.S. Office of Management and Budget (OMB2), and these data are based

on self-identification.

The racial categories included in the census questionnaire generally reflect

a social definition of race recognized in this country and not an attempt to

define race biologically, anthropologically, or genetically. In addition, it is

recognized that the categories of the race item include racial and national

origin or socio-cultural groups. People may choose to report more than

one race to indicate their racial mixture, such as “American Indian” and

“White.” People who identify their origin as Hispanic, Latino, or Spanish

may be of any race.

OMB requires five minimum categories: White, Black or African American,

American Indian or Alaska Native, Asian, and Native Hawaiian or Other

Pacific Islander.

According to the U.S. Census Bureau, every race has some native country as:

• Race: Hispanic. Native countries: Mexico, Cuba, Dominican Repub-

lic, El Salvador, Guatemala, Central America, Argentina, Colombia,

Ecuador, Peru, South America, Spain.

• Race: Non-Hispanic White. Native countries: Canada, France, Ger-

many, Greece, Ireland, Italy, Netherlands, Poland, Portugal, USSR,

United Kingdom, Yugoslavia, Other Europe, Iran, Israel, Other Middle

East, Australia.

• Race: Black. Native countries: Haiti, Jamaica, Trinidad and Tobago,

Africa.

• Race: Asian and Pacific Islander. Native countries: China, India,

Japan, Korea, Philippines, Other South and East Asia, Other Oceania.

2https://www.census.gov/topics/population/race/about.html

46

So according to the list, attribute ‘Race’ is strictly correlated to ‘Native-

country’.

Grouping these attributes into bins is not easy, in fact there are some

measurement issues related to the Ambiguity of the Race [8].

Race has and may continue to have different meanings for different groups,

sometimes overlapping and sometimes not. For instance, some Hispanics,

who can be of any race in the OMB classification system, identify themselves

primarily by ethnic or national origin (e.g., Mexican, Cuban, or Puerto

Rican). In contrast, other Hispanics consider Hispanic or Latino to be a race

on a par with Black, White, Asian, and American Indian.

Thus, there is research evidence that many Latin American and Latin

Caribbean immigrants who come to the United States see themselves as

being of mixed origin, most commonly European and American Indian or

European and African.

Furthermore, it happens what is called Inconsistent Reporting. Popu-

lation groups and individuals vary in their consistency of reporting race when

comparing surveys across time and with each other [8, p.34]. In particular,

there has always been considerable confusion regarding the responses of Latin

American and Caribbean groups to the separate race question used in the

census and surveys. Many Latin Americans and Caribbeans reject the racial

categories on the census, select “other race,” and write in a word that to

them best describes their racial identity.

To conclude, there is no single concept of race. Rather, race is a

complex concept, best viewed for social science purposes as a subjective social

construct based on observed or ascribed characteristics that have acquired

socially significant meaning [8, p.37]. Indeed, for the purpose of measur-

ing racial discrimination, a social–cognitive concept of race is integral to

meaningful analysis. For the purpose of understanding and measuring racial

discrimination, race should be viewed as a social construct that evolves over

time.

Given all these considerations we decided to keep both ‘Race’ and ‘Native-

country’ attributes because they are correlated, but not in all cases, for

example the offspring of migrants have the same race of their parents, but

different native country because in many cases they may be born in U.S..

To have readable and more effective Functional Dependencies, we keep the

attribute ‘Race’ as it is in the original dataset and we group the values of

47

the attribute ‘Native-country’ using 4 different values:

• NC-White: in this value we place people coming from United-States.

• NC-Hispanic: in this value we insert people coming from Mexico,

Cuba, Dominican Republic, El Salvador, Guatemala, Other North and

Central America, Colombia, Ecuador, Peru, Argentina, Other South

America, Spain.

• NC-Non-Hisp-White: in this value we place people coming from

Canada, France, Germany, Greece, Ireland, Italy, Netherlands, Poland,

Portugal, USSR, United Kingdom, Yugoslavia, Other Europe, Iran,

Israel, Other Middle East, Australia.

• NC-Asian-Pacific: in this value we insert people coming from China,

India, Japan, Korea, Philippines, Other South and East Asia, Other

Oceania.

We report in figure 5.5 how dataset appears after all the preprocessing

steps done in this paragraph.

After the preprocessing section, we will describe some techniques that we

Figure 5.5: Data after the preprocessing phase

have used to perform Data Exploration in order to have a general overview

of the values contained in the dataset and their distribution.

5.3.4 Running example: Data Exploration

After having performed the preprocessing phase that comprehends the re-

search and the deletion of missing values and having applied the feature

selection, before running our framework it could be very useful to perform

Data Exploration through Data Visualization to our dataset.

48

In our example, after the preprocessing phase, we deal only with categor-

ical attributes that are: ‘workclass’, ‘race’, ‘sex’, ‘hours-per-week’, ‘native-

country’, ‘age-range’, ‘education-degree’, ‘income’. For this type of attribute

it is usual to use Bar Plots. Bar plot can also group attribute values by

class, in this dataset every attribute can be grouped by the target variable

that is ‘income’.

For example, in figure 5.6 the majority of people gain less than 50K dol-

lars/year and the majority of people that gain this amount is composed by

“Male” people. We can easily see that in proportion the female category gains

less that the men category.

Another technique that we suggest is the usage of Clustermaps. In figure

Figure 5.6: Bar Plot of “Income” and “Sex” attributes

Figure 5.7: ClusterMap Plot of “Income” and “Sex” attributes

49

5.7 we can detect the same relationship between Sex and Income attributes

that we have already seen in the Figure 5.6. The ClusterMap make the

values ‘Female’ and ‘Income ≤ 50K’ in the same cluster, and the values

‘Male’ and ‘Income > 50K’ in another one. This means that men gain in

proportion more than women.

We suggest to apply these techniques comparing each protected attribute

with the target class, in this way the user can build some ideas on the possible

discrimination and bias that could be in the dataset.

5.3.5 CFDDiscovery

After data preparation, in this paragraph we will explain how to extract

Approximate Conditional Functional Dependencies (ACFDs) from data using

CFDDiscovery algorithm [34].

In previous section 3.2.1, we presented several algorithms to discover As-

sociation Rules (ARs) and consequently also ACFDs, as A-priori, Eclat or

FP-growth.

We said that these algorithms could be slightly changed to discover ACFDs,

but with several complications.

The algorithms that discover ARs are based on the central idea of finding

Frequent Itemsets. An itemset is said to be frequent if its elements have

support greater than a minimum support threshold. Finding correct frequent

itemsets implies that all the attribute domains contain different values.

This constraint is due to the fact that, the algorithms that find ARs take

into account only the value losing the reference to the attribute. Specifically,

if two columns contain the same value, that value has not the same meaning

in the two cases. For this reason, all the possible values of all the columns

must be different one from the other.

For example, if the attribute “Age” has values in the domain [15-80] and

attribute “Hours-per-week” has values in the domain [0-60], the algorithms

that find ARs are not able to distinguish between the values of the two

attributes, so this is true for all the values between [15-60], and this issue

could generate wrong or puzzling dependencies.

We can divide the process in two steps:

1. Establish the protected attributes and the target variable.

2. Tune the parameters: minSupport, minConfidence and maxSize.

50

Firstly, according to the application needs, we suggest to memorize all

protected attributes in a structure to save them and detect the target class.

This first step is usually done also in Data Preparation and Exploration

phase, but if the prepared dataset is imported, then the user has to detect

and save these attributes.

Afterwards, it is central to extract the appropriate number of dependencies

from the dataset, so tuning the CFDDiscovery parameters is crucial. The

algorithm takes four mandatory arguments and one optional as input:

• A dataset in csv format.

• minSupport : the minimum support threshold, it represents the mini-

mum number of tuples that verifies the dependency.

• minConfidence: the confidence leeway threshold, that represents how

frequently the dependency is verified knowing that the LHS of the

dependency is verified.

• maxSize: the maximum antecedent size of the discovered dependency,

so the maximum number of attributes that can compare in LHS of the

dependency.

• [Optional] The algorithm/implementation to be used.

Given an instance D of a schema R, support threshold δ, confidence

leeway threshold ε, and maximum antecedent size α, the approximate CFDs

discovery problem is to find all ACFDs φ: (X → Y, tp) over R with:

• support(φ,D) ≥ δ

• confidence(φ,D) ≥ ε

• |X| ≥ α.

The obtained rules are in this form:

(lhsAttr1 = valueLhsAttr1, ..., lhsAttrN = valueLhsAttrN)→ (rhsAttr = valueRhsAttr).

A possible example could be:

(native− country = “NC −Hispanic”)→ (income = “ 6 50K”).

The algorithm prints all the dependencies that respect all the aforemen-

tioned criteria, but we report some notable considerations:

51

• All the rules have only one item on the RHS of the dependency.

• It can happen that there are dependencies that are true, but they

do not involve any protected attribute or class variable in the

rule.

• The algorithm produces both AFDs and ACFDs, so there could be

dependencies in which one or more attribute values are not specified.

We have to be aware of these considerations to perform next operations, as

the filtering phase and the creation a of a structure that will contain all the

interesting ACFDs.

The CFDDiscovery step should also be guided by the Data Exploration

phase. In fact, plotting every attribute separately helps the user to detect

the different groups in the dataset. With the detection of the groups and

their frequency, we can establish a good minimum support threshold. In

fact, setting a minimum support threshold it is not an easy task: if it is too

high we lose information about small groups, if it is too low we have too

many dependencies to analyze. According to the cardinality of the groups

present in the dataset, the support parameter can be set approximately as the

cardinality of the smallest group that is interesting for the user. The user can

repeat this step decreasing minSupport, then she looks at the rules printed

out and stops the process when the dependencies involve the meaningful

groups.

The minConfidence is computed as the ratio between the frequency of

the dependency over the frequency of the LHS of the rule. We suggest to

put this parameter very high, almost 1, and then, repeat, only this step, or

all the process, decreasing it a little at every round. In this way, we obtain

more and more dependencies at every round and we can stop decreasing

when we are satisfied with the quality and the number of rules. Obviously

the lower is this parameter, the more dependencies are generated at each

round increasing the computational complexity.

The maxSize is the cardinality of the LHS of the dependency. This

parameter should be set according to the total number of attributes in the

dataset and to the desired complexity of the resulting rules. If the user wants

to see the relationship between few attributes, this parameter should be set

as 2 or 3. If the user is interested in the correlation between more attributes,

she can increase this parameter keeping in mind that this will lead to an

52

higher computational complexity.

Finally, the software allows the choice of different algorithm implementa-

tions to be used to extract the dependencies from the dataset. As already

said in chap. 4, there are three different approaches: Integrated, Item-First

and FD-First.

According to the paper section related to the experiments [34], the FD-

First option scales better when the number of tuples in the dataset increases,

so it is faster with respect to other methods. Furthermore, decreasing the

minimum support and increasing the maximum antecedent size, FD-First

outperforms the other approaches. Thus, according to our research, we

decide to take the last approach, the FD-First.

An alternative to CFDDiscovery algorithm could be using the technique

proposed by [25], that finds rules involving interesting infrequent itemsets and

also leads to the discovery of negative association rules (NARs). Small groups

can be seen as infrequent itemsets because they have a small support, while

negative association rules are rules in which some couples “attribute-value”

can compare negated. As already explained before, dealing with Association

Rules introduces some issues, so for this reason, we have chosen an algorithm

that finds Functional Dependencies instead of Association Rules.

5.3.6 Running Example: Apply CFDDiscovery algorithm

In this section we apply the CFDDiscovery algorithm to our dataset. After

Data Preparation and Exploration, we import the dataset and we save three

important variables:

1. all-tuples: this variable contains the cardinality of the dataset. In

this specific example it has value 30169.

2. protected-attributes: this is an array that contains all the protected

attributes comparing in the dataset. For the U.S. Census Adult dataset,

we identified as protected attributes: ‘Race’, ‘Sex’ and ‘Native-country’.

3. target-class: this variable saves the target attribute of the dataset,

in this specific case it is ‘Income’.

At this point, we can apply the CFDDiscovery algorithm, establishing

the input parameters.

1. We save the path of the prepared dataset in csv format.

53

2. We fixed the minSupport, that is the minimum number of tuples that

verifies the dependency, so that is considered valid. The algorithm

needs this parameter as a count, not as a percentage. We fixed it at

900, so the minSupport has value 900
30169 = 0.03.

3. We fixed the minConfidence, that is the frequency of dependency given

that the LHS of the rule is valid; it is fixed at 0.86.

4. For the algorithm option, by default, the FD-First implementation is

chosen by the software, as it is typically the fastest.

We append an additional constraint to the command of the algorithm, that

imposes to the each dependency to contain the target class (could be either

on the LHS or on the RHS of the rule), in this way we can already discard

the not interesting dependencies.

The algorithm, given these inputs, finds 118 dependencies from the U.S.

Census Adult dataset, both AFDs and ACFDs. In figure 5.8 there are the

first 12 dependencies.

Figure 5.8: CFDDiscovery output, first 12 rules found

We can easily detect the AFDs, for example dependency number 10:

φ10 : (education− degree, income => 50K)→ (native− country)

is an Approximate Functional Dependency because the rule does not specify

the values of attributes ‘education-degree’ and ‘native-country’. The other

dependencies are ACFDs and all have only one item on the RHS of the rule.

As the user can notice, there could also be rules that should be removed

54

from the list because they do not contain any protected attribute. We will

solve all these aspects in the next section, the ACFDs Filtering.

5.3.7 ACFDs Filtering

In previous paragraph we have seen the CFDDiscovery output: it is a simply

list of strings, so, for our research, we need a structure in which organize and

save the strings as a list of dependencies.

For this reason we use a Dictionary, that is a collection which is unordered,

changeable and indexed. Dictionaries are structures having keys and corre-

sponding values associated to that keys.

We can divide the ACFDs Filtering step in three main phases:

1. Create a parser: given the list of rules, the parser splits the list

extracting every dependency. Then, from each dependency we divide

the LHS and the RHS of the rule. From these two parts, we extract

every couple of “attribute-value” and we save them in a structure.

2. Filter the ACFDs: for each rule, we check each couple of “attribute-

value”; if at least one value is missing, the rule is a AFD, so, we can

discard it. In this way, we keep only the ACFDs. Then, for each

rule, we also check if at least one protected attribute and the class

variable appear. If the attributes in the dependency do not respect the

constraint, we discard such dependency.

3. Create the dictionary: given all these ACFDs we build a dictionary

that is a list of rules in which there are two distinct fields: ‘lhs’ and

‘rhs’. Every field contains a list of one or more couples “attribute-value”,

in which each attribute is the key and the relative value associated to

the key is the corresponding attribute value.

In the first step, the creation of the parser, is important to correctly

interpret the list of strings, in particular extract each dependency is essential.

Using the CFDDiscovery algorithm, the output list already contains in each

position one different dependency. After that, the parser detect the LHS and

the RHS of the dependency using the value ‘→’ to split the two parts of the

rule.

In the second step, we filter the rules discarding the ones that do not

satisfy both the following two constraints:

55

1. all the attributes in the dependency must have the corresponding value

(otherwise we deal with AFDs),

2. there must be at least one protected attribute and the target variable in

the dependency, so that the resulting ACFDs could show bias regarding

protected attributes.

To check the first constraint we analyze each side of the dependency, then we

detect the couples “attribute-value” (they are simply divided by a comma)

and, for each couple, we search for the ‘=’ symbol that indicates that the

attribute has a corresponding value. Applying the first constraint we filter

the dependencies obtaining only ACFDs; with the second check we filter the

ACFDs obtaining rules that could be biased on the protected attributes and

the target class. To accomplish the second constraint we simply check all

the attributes comparing in each dependency.

The third stage simply organizes these filtered ACFDs in a more adequate

structure that is the dictionary, that appears as a list of rules.

During the ACFDs Filtering phase, the user can also add some constraints:

• Decide which values must appear in the rules. An example could

be setting that all the dependencies must involve only the ‘Female’

people, because the researcher is interested only in peculiar aspects of

women.

• Decide which values must not appear in the rules. For example,

some age ranges could be not interesting for the research, or the user

could want to discard rules that interest a specific group.

If the user is interested in studying small groups, we do not suggest to

use these constraints. In next sections, we will describe more in details how

to study small groups more in deep.

5.3.8 Running Example: ACFDs Filtering

Given the output of the algorithm that discovers the ACFDs we have the

following steps:

1. Use the parser,

2. Filter the ACFDs,

3. Create the dictionary.

56

Firstly, we analyze each string of the output and we analyze the dependency.

We start the process by removing the useless characters as parenthesis, then

we split the LHS from the RHS of the dependency. After that, we detect the

AFDs and we discard them keeping only the ACFDs. In figure 5.9 there is

the output of this first process.

Figure 5.9: First split, dividing each rule into RHS and LHS.

Figure 5.10: Creating the LHS and RHS of each dependency.

After that we divide each couple “attribute-value” contained in the LHS

and RHS of the dependency, and we create a structure in which save the two

dependency sides and the relative couples of “attribute-value”. Figure 5.10

displays the result of this step.

Lastly we discard the dependencies that do not contain protected at-

tributes or the target class, then we build the dictionary of all the ACFDs

57

Figure 5.11: Dictionary with only interesting ACFDs

that respect the constraint.

We can notice that some rules disappeared from figure 5.10 to figure 5.11.

The first six rules present in figure 5.10 do not involve any protected attribute,

so they are not interesting and they are omitted. In fact, the original total

number of dependencies was 100, and after this step, we keep only 84 ACFDs.

58

5.3.9 ACFDs Selection

After the ACFDs Filtering phase we obtain a dictionary that contains all

the ACFDs, thus, in this phase, we start investigating on the dependencies,

in particular on the “ethical” aspect.

In the dictionary appear the ACFDs that satisfy the CFDDiscovery con-

straints and the other two constraints that we have previously established,

but they could show bias in the dataset or not. So, the next step consists in

the selection of the dependencies that reveal unfairness in the dataset.

Before performing the selection, we build a table containing all the

dependencies and the relative metrics.

The table is composed by different columns:

• Rule: it simply contains the rule.

• Support: it contains the percentage of the samples in the dataset that

verifies the dependency, it indicates how much the rule is “pervasive”;

a high support expresses a big number of tuples involved, so the rule is

more “universal”.

• Confidence: it shows how frequently the dependency is verified know-

ing that the LHS part is verified. A high confidence demonstrates that,

the rule is verified in almost all cases in which the LHS of the rule is

verified, so there are few tuples that should be removed in order for

the dependency to hold.

• Difference: it indicates how much a dependency is “ethical”. The

more this metric is high, the more the CFD shows a behaviour that is

not in line the general one.

• ProtectedAttributeDifference: it consists in a different column for

each protected attribute; it indicates how much the rule shows bias,

but paying attention to the specific value of the protected attribute.

The more this value is high, the more the rule is discriminatory with

respect to the specific protected attribute value.

We decide to focus on these metrics because an ACFD has importance

according to three main aspects: the coverage or pervasiveness, the fairness

index and the discrimination due to the protected attribute. These aspects

could be expressed by three metrics:

• Support that is the percentage of tuples that verifies the dependency.

It indicates the pervasiveness of the ACFD.

59

• Difference that express the group fairness, so it can be seen as fairness

index of the dependency.

• Protected Attribute Difference that is a disparity measure, related

to the protected attribute. It can be seen as protected attribute fairness

index.

We already defined in chap. 3 the Support metric and it is computed

for the rule X → Y as:

Support(X → Y) = sup(X,Y) =
#(X,Y)

all − tuples
,

where #(X,Y) is the count of how many times X and Y appears together in

the dataset and all-tuples is the total number of tuples in the dataset.

The support is the percentage of the samples in the dataset that verifies the

dependency X → Y . For this reason we can say that the support indicates

the pervasiveness of the ACFD.

For each rule, we define the Difference metric, that is the difference

between the rule confidence and the confidence computed without the pro-

tected attributes of the LHS of the ACFD.

Given a dependency in the form:

φ : (X → Y)

X represent the LHS of the rule, Y the RHS of the rule and we define Z as

Z = (X − {ProtectedAttributes}) so is the LHS of the dependency without

the couples “protected attribute-value”.

We define the Difference as:

Difference = Confidence−NoProtectedAttributeConfidence

where

Confidence(X → Y) = Conf(φ) =
sup(X,Y)

sup(X)

and

NoProtectedAttributeConfidence(X → Y) = NoProtAttrConf(φ) =
sup(Z, Y)

sup(Z)
.

So, the Difference becomes:

Difference(X → Y) = Diff(φ) =
sup(X,Y)

sup(X)
− sup(Z, Y)

sup(Z).

60

if Z is the empty set the Difference becomes:

Difference(X → Y) = Diff(φ) =
sup(X,Y)

sup(X)
− sup(Y).

The Difference metric indicates how much the dependency respects the global

behaviour.

If the Confidence is high, the rule is valid in almost all the cases in which

the LHS of the dependency holds. If the No-Protected Attributes Confidence

is low, there are few tuples that contains the both the LHS part without

protected attributes and the RHS.

The difference between these two confidence measures can be seen as the

difference between two distributions.

Let us propose an example of a possible rule to explain more in detail this

concept:

φ1 : (sex = Female, workclass = Private)→ (income =≤ 50K)

The confidence is:

Conf(φ1) =
sup(sex = Female, workclass = Private, income =≤ 50K)

sup(sex = Female, workclass = Private)

and No-Protected Attribute Confidence is computed as:

NoProtAttrConf(φ1) =
sup(workclass = Private, income =≤ 50K,)

sup(workclass = Private)

So, the Difference becomes:

Diff(φ1) : Conf(φ1)−NoProtAttrConf(φ1)

The Difference value represents the distance between two distributions.

The first element is the confidence, so it is the support of all the female

people that work by themselves and gain less than 50K dollars/year divided

by the support of all the female people that work by themselves. The second

element is the No-Protected Attribute Confidence that is the support of all

the people that work privately and gain less than 50K dollars/year divided

by the support of all the population that work privately.

• If the two distributions are almost equal, the Difference is almost

zero and fairness is respected. In fact, in this case the group fairness

is guaranteed because the group is treated equally with respect to the

elements of the population that have the same characteristics without

specifying the protected attribute.

61

• If the first element of the difference is greater than the second one, the

Difference is positive. In this case, group and subgroup fairness are

no more guaranteed. Taking into account the aforementioned example,

if there are more women that work privately and gain less than 50K

dollars/year with respect to all people that work privately and gain

less than 50K dollars/year, this means that the “female” group is not

treated equally.

• If the second element is greater than the first one, the Difference is

negative. Looking at the example, in this case the “female” group has

a better treatment. In fact, women that work privately and gain less

than 50K dollars/year are in proportion less than all the people that

work privately and gain less than 50K dollars/year, demonstrating a

bias in the other way.

Moreover, a dependency could contain on the LHS more than one pro-

tected attribute at the same time. For this reason, we introduce the last

metric: the Protected Attribute Difference. The Protected Attribute

Difference is very similar to the Difference measure, but it is computed for

each protected attribute p considering only p as protected at each time.

Let us define this metric starting from a general rule in the form:

φ : (X → Y).

We define W as W = (X −{p}) so W is the LHS of the dependency without

the couple: “protected attribute p-value”.

We define the Protected Attribute Difference, shortly, p-Difference, as:

pDifference = Confidence−NoPConfidence

where the confidence is computed as conventional:

Confidence(X → Y) = Conf(φ) =
sup(X,Y)

sup(X)

and the No-P Confidence is the confidence metrics in which φ does not

contain the protected attribute p:

NoPConfidence(X → Y) = NoPConf(φ) =
sup(W,Y)

sup(W)
.

So the p-Difference becomes:

pDifference(X → Y) = pDiff(φ) =
sup(X,Y)

sup(X)
− sup(W,Y)

sup(W).

62

Looking at the example:

φ2 : (sex = Female, race = Black)→ (income =≤ 50K)

The Difference is computed as:

Diff(φ2) = Conf(φ2)−NoProtAttrConf(φ2)

where:

Conf(φ2) =
sup(sex = Female, race = Black, income =≤ 50K)

sup(sex = Female, race = Black)

and

NoProtAttrConf(φ2) = sup(income =≤ 50K)

If we compute the Difference respect to the protected attribute ‘Sex’, we

compute the difference metric assuming that only ‘Sex’ is protected. Thus,

the Sex-Difference is:

SexDiff(φ2) = Conf(φ2)−NoSexConf(φ2)

where the confidence is the same as before and No-Sex Confidence is:

NoSexConf(φ2) =
sup(race = Black, income =≤ 50K)

sup(race = Black)
.

In this case, even if ‘Race’ is protected, in the Sex-Difference computation,

we do not consider it protected.

Similar, the Race-Difference is computed as:

RaceDiff(φ2) = Conf(φ2)−NoRaceConf(φ2)

where the confidence is the same as before and No-Race Confidence is:

NoRaceConf(φ2) =
sup(sex = Female, income =≤ 50K)

sup(sex = Female)

To recap, the ‘Protected Attribute Difference’ of p is the Difference com-

putation in which we perform a difference between the confidence and the

confidence computed using the LHS of the dependency in which we remove

63

only the protected attribute p. This value indicates how much the depen-

dency shows bias on the protected attribute p domain.

The reader can notice that in the computation of the p-Difference, the pro-

tected attributes that are different from p are not considered as protected

ones. This choice is due to the fact that computing the p-Difference means

computing fairness only looking at p, instead the general difference metric

checks the fairness with respect to all the population considering all the

protected attributes. Obviously, the p-Difference is computed only when p

appears in the dependency.

Given the table, we want to find ACFDs that demonstrate discrimination,

so, to obtain an initial subset of interesting dependencies, we select all ACFDs

that have:

Difference > minThreshold.

In this way, we can select all the rules in which the difference metric is

relevant.

In our research the difference metric is our definition of fairness based on

the notions of group and subgroup fairness.

In fact, when the difference is above the minimum threshold, there is a

significant inequality between the group involved by the ACFD and the

general behaviour of the population.

Obviously, the minThreshold parameter is set according to the research needs.

According to the value of the parameter, the quality and the number of the

ACFDs change.

When the ‘unethical” dependencies are selected, we can build again the

table that contains all the rules and for each one of them report all the

relevant information. This table contains the dependencies and the relative

metrics.

5.3.10 Running Example: ACFDs Selection

In this step, we analyze each Approximate Conditional Functional Depen-

dency and we compute the relative metrics, then we select the ones that are

interesting from the ethics point of view.

Figure 5.12 displays the first 12 rows of table with the ACFDs and

the relative metrics. In this step, we analyze the ACFDs contained in the

dictionary previously computed, and for each rule we compute the support,

the confidence, the difference and for each protected attribute, if present,

64

also the protected attribute difference.

Then we apply the selection constraint: Difference > minThreshold where

the minThreshold = 0.1.

Figure 5.12: Table with ACFDs and relative metrics

As it can be noticed from the table 5.12, there are many rules that should

be removed because they do not satisfy the constraint, as rule number 2:

(income =≤ 50K)→ (native− country = NC −White).

This rule is a valid ACFD, but its difference is negative, so the “NC-White”

group is treated better with respect to the rest of the population. Thus, this

rule shows discrimination in a puzzling way and not a direct bias. In fact,

the corresponding “discriminatory” ACFD is the rule number 1:

(income => 50K)→ (native− country = NC −White)

that has small positive difference.

The table 5.13 is a filtered version of the previous table where the ACFDs

are chosen if they satisfy the criterion:

Difference > minThreshold,

and we established the minThreshold = 0.1. The starting length of the

dictionary was 84, after this phase the selected ACFDs are in total 17.

From the figure 5.13, we want to highlight some interesting rules:

φ0 : (native− country = NC −Hispanic)→ (income =≤ 50K)

65

Figure 5.13: First table with selected ACFDs

φ26 : (sex = Female)→ (income =≤ 50K)

φ44 : (race = Black)→ (income =≤ 50K)

φ68 : (sex = Female, race = Black)→ (income =≤ 50K).

At the end of this step, the user can already have an overview of the bias

present in the dataset, looking at the obtained ACFDs.

For example, “Hispanic”,“Female” and “Black” groups suffer from discrimi-

nation with respect to the rest of the population, in fact, people that belong

to one or more of these groups have an income that is below the 50’000

dollars/year because of the nationality, the sex or the race.

We want to highlight the fact that rule φ68 is not a direct consequence of

ACFDs φ26 and φ44. From these last two dependencies, the user can state

that the “Female” and “Black” groups suffer from discrimination, but it could

be not true that the subgroup “Female-Black” suffers from discrimination.

Let us introduce two additional hypothetical ACFDs:

β : (race = Other)→ (income =≤ 50K).

γ : (sex = Female, race = Other)→ (income =≤ 50K).

If φ26 and β are verified, so the Difference > minThreshold, this means

that these ACFDs show bias in the “Female” and “Other” groups, we can

not state that also γ is true. In fact in the “Other” group, women could be

treated better than men, so γ could be not verified.

The framework works with ACFDs, and due to the “Approximate” term, we

can not infer γ from φ26 and β; only is γ has Difference > minThreshold

we can say that this rule shows discrimination to the “Female-Other” group.

66

Moreover, looking at the figure, we can analyze ACFD number 38:

φ38 : (sex = Male, native−country = NC−Hispanic)→ (income =≤ 50K).

From this ACFD, the reader could think that, in the Hispanic group, men

are treated worse than women. Although, the difference computed with

respect to attribute ‘Sex’ is not positive. This means that, in the Hispanic

minorities, men are not treated worse women.

Actually, if we recall again rule number 68:

φ68 : (sex = Female, race = Black)→ (income =≤ 50K)

in this case the “Sex-Difference” is slightly positive, so in the black race

group, women are treated worse than men.

We could be satisfied with these results, but continuing the research could

lead to some other interesting results, so in the next paragraph we analyze

more in depth the dependencies.

5.3.11 ACFDs Completion

At this step of the framework, we use the table containing all the interesting

ACFDs and we analyze them to discover other meaningful dependencies.

One alternative is that the user could stop the research and save the most

interesting dependencies from the table. In the other alternative, the user

could continue the research analyzing more in deep the selected ACFDs.

The last part of the framework is composed by three main steps:

1. For each rule, compute the possible combinations over the protected

attributes and the target class.

2. Select the obtained rules and rank them.

3. Let the user select the most meaningful rules and compute a final

overview of the rules with a summarizing scoring about the fairness of

the dataset.

In this paragraph we concentrate on the first step, the computation of the

possible combinations for the ACFDs.

We start extracting from each rule the protected attributes and the

target variable. Then, we compute the Cartesian product between all these

67

attribute domain values. For each combination we create a new ACFD.

Given a generic rule:

φ : (X → Y),

we define A as A = (p1, p2, .., pN) that is the set of all protected attributes

appearing in X, andDp = (Dp1 , Dp2 , .., DpN) that is composed by the domains

of the protected attributes in A.

The framework computes all possible combinations of values in the domains

of all the protected attributes and the target variable. We define D =

(Dp1 , Dp2 , .., DpN , DY) where D contains all the domains of all protected

attributes and the target variable. From D we compute all the possible

combinations:

C = (Dp1 ×Dp2 × ..×DpN ×DY).

Recalling again the example:

φ1 : (sex = Female)→ (income =≤ 50K).

Assuming that φ1 is a selected rule, at this step the framework computes

all its possible combinations of values in the domains of all the protected

attributes and target variable present. In the example, there is only one

protected attribute “Sex”, so A = {Sex}, and the target class is “Income”,

so Y = {Income}.
For the attribute “Sex” the domain contains only two values: “Female” and

“Male”; for class variable “Income” the domain is composed by values:“≤ 50K”

and “> 50K”, so D = {(Female,Male), (≤ 50K,> 50K)}.
All the possible combinations are:

C = {(Female,≤ 50K), (Female,> 50K), (Male,≤ 50K), (Male,> 50K)}.

So, from φ1, the framework generates four rules:

φ1 : (sex = Female)→ (income =≤ 50K)

φ2 : (sex = Female)→ (income => 50K)

φ3 : (sex = Male)→ (income =≤ 50K)

φ4 : (sex = Male)→ (income => 50K).

To recap, given the selected ACFDs, the framework computes all the

possible combinations for each rule. This computation allows the user to

study all the domain of the protected attributes and of the target class,

allowing the ACFDs completion and bringing to some considerations.

68

• If an original rule is chosen , it is because it shows discrimination, as

for example φ1. From this dependency we understand that female

people in proportion gain less than 50’000 dollars/year with the rest

of population. So, in the population there should be a group that

is treated better than women, so that in proportion, gain more than

50’000 dollars/year. From φ1, it seems intuitive to study also φ2, φ3
and φ4, from which we expect to be valid only φ4.

• With the completion phase, the combination computation allows to

study also small groups that could be not studied. For example, if men

are fewer than women φ3 and φ4 would not be studied.

The support of dependencies obtained by the combination process

could be lower than the ‘minSupport’ established for CFDDiscovery

algorithm. Thus, the obtained ACFDs could interest a small number of

tuples as for a group that contains few elements. Analyzing the domain

of the protected attributes, we can discover more specific dependencies.

On one side, with the completion process, we increase the total number

of rules, but on the other side we expect to see bias and discrimination

in small groups.

After that, for each obtained ACFD we compute metrics and we build again

the table with all ACFDs to analyze the resulting dependencies.

5.3.12 Running Example: ACFDs Completion

Coming back to our example, the starting ACFDs are 17. At this step, we

compute all the possible combinations over the protected attributes and the

target class, and then, we build the table with all the ACFDs and the relative

metrics.

In figure 5.14 there are all the possible combinations computed from the first

dependency.

From the original 17 ACFDs, after the completion process, we obtain

a list of 224 rules. Figure 5.15 displays the first 12 dependencies and the

relative metrics.

At this phase, we do not have to check if the ACFDs contain a protected

attribute and the target, because the obtained dependencies are combinations

of already checked rules.

69

Figure 5.14: Combination output of a ACFD

Figure 5.15: Table with ACFDs after the completion process

As the reader can notice, the support and the confidence of some de-

pendencies are very low. For example, rules that involve “NC-Hisp-White”

group or “NC-Asian-Pacific” group, have low support and sometimes low

confidence. These rules are obtained with the completion process and they

could be obtained from the CFDDiscovery algorithm only if we decrease the

input parameters. Thus, the combination process allows us to detect rules

that are not directly output of the CFDDiscovery algorithm.

Observing the table 5.15 and analyzing the first eight ACFDs, we can

compare the dependencies that involve one group at a time and we select

the ones that have positive difference metric:

φ1 : (native− country = NC −White)→ (income => 50K)

φ2 : (native− country = NC −Hispanic)→ (income =≤ 50K)

70

φ5 : (native−country = NC−Non−Hispanic−White)→ (income => 50K)

φ7 : (native− country = NC −Asian− Pacific)→ (income => 50K).

The ACFDs can be relevant on two aspect:

1. the ACFD has a high support metric, so it involves a large number of

tuples, as for example rule φ1;

2. the ACFD has a high difference metric, so it shows relevant bias and

discrimination, as for example rules φ2.

All these ACFDs have positive difference metrics, so they are meaningful

from an “ethical” point of view. The “native-country” group that is more

discriminated in terms of “income” is composed by Hispanic people; in fact,

for the other groups, the dependencies show that they gain more than 50’000

dollars/year on average.

Looking at the groups that are different from “NC-Hispanic”, we can

notice that they have diverse positive Difference metrics, in particular, the

“NC-White” group has the smallest positive difference. We know that “NC-

White” is the group composed only by people coming from United States.

Looking at its difference value, we can suppose that people that were born in

U.S. are treated, in terms of income, worse than “NC-Non-Hispanic-White”

group or “NC-Asian-Pacific” group.

This is true, but we have to notice that, in this dataset, people that were born

in United States compose the majority group. “NC-White” is composed by

people of various races, thus people coming from U. S. do not correspond to

white people, but there are people of various races, for example the offspring

of migrants that are born in United States.

Thus, in general, the “NC-White” group is treated worse with respect to “NC-

Non-Hispanic-White” people or “NC-Asian-Pacific” people, but we cannot

say that this is true for each race subgroup that was born in United States.

5.3.13 ACFDs Ranking

The ACFDs Ranking is the step of the framework that starts from the

selection of the meaningful ACFDs, and, finally, it shows a ranking of the

dependencies ordered by a criterion chosen by the user.

For the selection phase we use again the previous criterion:

Difference > minThreshold.

71

Thus, the framework discards the rules that have difference below the thresh-

old, so that do not exhibit discrimination.

According to the user needs, she can decide to use the same value for the

threshold parameter of the previous selection or to modify it.

Next, the user can order the obtained rules according to one of these

three different criteria:

• Support option: means sorting the ACFDs in decreasing order of

support. The support metric indicates the number of tuples involved

by the dependency, so the higher is the number, the more tuples are

involved by the ACFD. Ordering dependencies by support highlights

the pervasiveness of the rule.

• Difference option: means sorting the ACFDs using the Difference

metric. Using this criterion implies that the dependencies that show

higher difference are put first in the ranking. This method highlights

the ethical aspect of the rules.

• Mean option: for each ACFD, the mean is computed as the mean of

the support and the difference metric of the rule. This method tries to

combine both aspects of the dependency: the ethical perspective and

the pervasiveness of it. Sorting using this criterion means putting first

the dependencies that have the best trade-off between difference and

support.

At this point the user can choose one of these criteria to sort the ACFDs

and she obtains the ranking.

Let us express the importance of the ranking.

In a real world large dataset, the ACFDs mined at this step could be many,

in order of thousands. For the user, looking at all these dependencies is an

impossible task and a waste of time. In a concrete scenario, this phase has a

cost that is proportional to the number of tuples that the user has to look

and choose. Thus, for the user is necessary to have the rules ordered by

a criterion, so that the selection process speeds up and the cost could be

maintained low.

Furthermore, the criterion should fit the user necessities, for this reason we

have created three different criteria, so that the user can choose the most

adequate one.

72

5.3.14 Running Example: ACFDs Ranking

This step of the framework is composed by two phases:

1. Select the interesting rules with the Difference criterion.

2. Presents the ranking with selected ACFDs and metrics.

As output of the previous phase we have a list of all the combinations of

the ACFDs, and they could be “unethical” or not. From this list, we perform

a selection using the criterion:

Difference > minThreshold.

We decided to keep the same minimum threshold as before, so it has value

0.1. The total number of dependencies derived from the completion process

is 224, after the selection phase the obtained ACFDs are 64.

After that, the user can select a method to order the ACFDs using the

Support or the Difference or the Mean option. We decide to create the

ranking using the “Mean” preference, so the dependencies are ordered using

the mean between the support and the difference metric. Figure 5.16 shows

the first 12 rules in the ranking.

Figure 5.16: Ranking of first 12 ACFDs after first selection with “Mean” criterion

73

5.3.15 ACFDs User Selection and Scoring

In this last phase of the process, the user selects N dependencies from the

ranking list, that are interesting for the research needs. Using only the N

selected ACFDs, the framework computes a final scoring outline that is

composed by three measures that are:

• Cumulative Support: is the percentage of tuples of the dataset

involved by the selected ACFDs. The more this value is similar to 1,

the more rules have covered the dataset.

• Difference Mean: is the mean of all the ‘Difference’ columns of the

selected ACFDs. It indicates how much the dataset is ethical according

to rules selected. Greater is the value, more the ACFDs have detected

greater bias in the dataset.

• Protected Attribute Difference Mean: for each protected at-

tribute p, it is the mean of p-Difference over all the selected ACFDs.

It indicates how much the dataset is ethical over p according to de-

pendencies selected. Greater is the value, more ACFDs have detected

greater bias regarding the protected attribute in the dataset.

We decide to focus on these summarizing metrics because, as already

explained in previous paragraphs, an ACFD has importance according to

three main aspects: Support, Difference and Protected Attribute Difference.

For these three aspects, using ACFDs selected by the user, we compute the

mean value; thus, the Cumulative Support gives the pervasiveness of all the

list of ACFDs, the Difference Mean gives a general overview over the fairness,

and the Protected Attribute Difference Mean is the measure of fairness with

respect to the protected attribute.

These summarizing metrics entirely depend on the specific ACFDs se-

lected by the user, so the metrics could change according to the chosen

dependencies and so, on the user needs.

Thus, according to the selected rules, the user can highlight different aspects

of the dataset and leading to different conclusions.

Lastly, the user can see some examples of the tuples more involved by

the selected ACFDs.

To extract these “problematic tuples” the framework performs some op-

erations. During the computation of the metrics, we add to the original

dataset an additional column “marked” for each tuple, that indicates how

74

many ACFDs are verified by the tuple. Thus, to select the “problematic

tuples” we select the ones that are verified for more than M ACFDs, so that

marked > M .

In the future, the user could correct the dataset according to the rules and

the tuples more involved by the ACFDs. There are already developed tech-

niques to solve bias in dataset based on the discovery of CFDs as [26], so

our framework could be applied before this repair passage.

5.3.16 Running example: ACFDs User Selection and Scor-

ing

Given the ranking in figure 5.16, in this last step, the user chooses N rules

that are interesting according to her needs. In the running example, we

choose N = 15 ACFDs over the total number that is 64.

Figure 5.17 displays the final table composed by the chosen dependencies

and a final scoring outline.

The total number of tuples involved by the ACFDs is 13296 and the total

number of tuples in the dataset is 30169; this means that the Cumulative

Support is 0.44. The 44% of the dataset is covered by the chosen dependen-

cies, so almost half of the dataset.

Looking at the Difference metrics: the Difference Mean is 0.16 that is mean-

ingful, in fact, we can notice for all ACFDs the difference is above 0.1 and

there are some dependencies that have difference metric above 0.2. These

last rules have a meaningful difference, but their support is very low, so the

tuples involved by them are few.

Finally, the p-Difference Mean metrics are pretty low, because there are

many ACFDs with low or negative values.

As the table reports and looking also at the ACFDs mentioned in previous

sections, the groups more discriminated are: ‘Female’, ‘Black’, ‘NC-Hispanic’

and from this last ranking also ‘Amer-Indian-Eskimo’. Instead, the groups

that have more privileges are: ‘Male’, ‘White’, ‘NC-White’, ‘NC-Asian-

Pacific’, ‘NC-Non-Hisp-White’.

Finally, the user could also see tuple examples involved by the dependen-

cies. She can decide only the most problematic ones or see all of them, in

order to correct the dataset in the future.

To select the “problematic” tuples we choose the ones that are verified for

more than M=3 ACFDs. Figure 5.18 displays the total number of tuples

75

Figure 5.17: Table with chosen final rules

involved by more than 3 ACFDs, and the first five tuples as example.

Figure 5.18: Table with some problematic tuples of the dataset

76

5.4 Minorities study

In this section we propose an additional workflow that could be done after the

aforementioned process to examine more in deep the dataset, in particular

when data contains different groups.

It is difficult to study the nature of imbalanced data. Imbalanced data

typically refers to a problem (usually in classification tasks) where the classes

are not represented equally. It means that the target class contains a much

smaller number of instances of one class than the other classes, and this can

deeply influence the application performance.

Looking at our framework, we use the CFDDiscovery algorithm that

needs three parameters: support, confidence and maxSize. These parameters,

in particular support and confidence are difficult to be tuned in order to

catch the dependencies that deal with imbalanced data.

In fact, datasets could have a lot of groups, in particular minorities. A

minority is a group with low cardinality, so by definition the user must

set low support and low confidence to extract dependencies that involve

them. Decreasing these two parameters usually implies a result that is com-

posed by a lot of rules involving the majority group and, in some cases, by

other rules involving the different minorities. The quality and the number of

the ACFDs that affect the minorities depend only on the dataset distribution.

There are mainly two classes of methods to solve the problem of imbal-

anced data: Data level preprocessing methods (that rely on transforming

the original data to change the distribution of classes) and methods modi-

fying the algorithms [31, p.564].

The first strategy consists in transforming the data distribution, but

in our research this means also changing the bias in the dataset, making

impossible the detection of unfairness and discrimination.

According to the second branch of techniques, we could use another software,

for example the one that finds rules involving infrequent datasets [25] cited

in previous section 5.3.5.

We introduce another technique to solve the imbalanced problem that con-

sists in using a modified version of the dataset and continuing using the

framework and the CFDDiscovery algorithm as before.

We propose to analyze the relevant minorities separately, one at a time.

The work [31] is very important to guide the research of minorities. To

77

verify whether minority examples can be observed in real-world datasets, the

authors used visualization methods, which project multi-dimensional data

points into the low-dimensional space such that the structural properties of

the data are preserved.

In our research, projecting multi-dimensional data points to a low-

dimensional space means changing the data, and thus might change the

bias. Instead, the extraction of the groups can be done during the preprocess-

ing phase. In fact, in the Data Exploration part, we recommended to plot

the attribute values for every column, especially for the protected ones. The

user can fix a minimum support threshold which establishes a minimum

cardinality for a group to be studied as minority or not.

Obviously according to the precision that the user wants to achieve, she

should decide if it is reasonable to study such minority or not.

In the next paragraph, we will present the results of our framework

applied to a minority of the U.S. Census Adult dataset to observe possible

dependencies and to examine more in deep the entire process.

5.4.1 Running Example: Minority study

Continuing the study with the U.S. Census Adult dataset, we present an

example of a study on a small group and we present the dependencies that

we obtained from such group.

We will present the study on the Black people minority.

To start the research, we apply Data Visualization to the entire dataset

computing Bar plots and Histograms, so that we are able to detect the

meaningful minorities.

Figure 5.19 displays a Bar plot that displays the race distribution of the

population. There is one majority group composed by ‘White’ people and

four minorities that are ‘Black’, ‘Asian-Pac-Islander’, ‘Other’ and ‘Amer-

Indian-Eskimo’ people.

According to the cardinality of the groups we can establish to study all the

minorities that contain at least 2500 tuples, so we can concentrate on the

black and white population.

After the Data Preparation and Exploration, we decide to analyze only

the black group, so we extract all the people that have the attribute “Race”

equal to “Black”. We suggest to perform Data Exploration also to the new

78

Figure 5.19: Bar Plot of “Race” attribute

dataset in order to build new hypothesis on the dataset.

We save the protected attributes and the target class, then we applied

the CFDDiscovery algorithm with minimum support count = 200, so the

minimum support is computed as 200
2819 = 0.07, the minimum confidence has

value 0.86 and maximum antecedent size is equal to 2.

The output is composed by 86 dependencies, but only 74 are ACFDs, of

which 52 are ACFDs that include at least one protected attribute and the

target class.

Figure 5.20: First Selection phase

At this point, we apply the selection criterionDifference > minThreshold,

where the minimum threshold has value 0.05, obtaining 9 dependencies

79

present in figure 5.20.

From these 9 ACFDs we apply the combination process, then we perform

again the selection phase using the criterion Difference > minThreshold,

where the minimum threshold has the previous value, so it is 0.05, obtaining

23 ACFDs.

At this point, we select N=7 ACFDs. Figure 5.21 displays the final ranking.

Figure 5.21: Final Ranking, Black Minority

The total number of tuples involved by the dependencies is 1596, the

total number of tuples analyzed is 2819, so the Cumulative Support is 0.57,

that means that more than half of the dataset of black population is affected

by discrimination. The Difference Mean has value of 0.11; in the p-Difference

Mean metrics, the one relative to ‘Sex’, is above 0.1, meaning that the

inequality between women and men is high also in the black group.

Let us highlight some ACFDs:

φ1 : (sex = Female)→ (income =≤ 50K).

φ2 : (sex = Male)→ (income => 50K).

It is meaningful that also in the black group the women gain less than

50’000 dollars/year with respect to men. Clearly group fairness is no respected

in this group and also general subgroup fairness.

If we analyze more in deep the ACFDs, we see that also subgroup fairness

80

in this minority is not respected. In fact, also if women and men reach the

same education degree the dependencies do not change:

φ1 : (sex = Female, education− degree = Assoc)→ (income =≤ 50K)

φ2 : (sex = Male, education− degree = Assoc)→ (income => 50K).

Another consideration can be formalized by looking at these dependencies:

φ36 : (sex = Male, native−country = NC−Non−Hisp−White)→ (income => 50K)

φ38 : (sex = Male, native−country = NC−Asian−Pacific)→ (income => 50K).

The ACFDs involving “NC-Non-Hisp-White” group and “NC-Asian-

Pacific” group have low support, but they show again the same type of bias

as one found in the analysis done for the general dataset, highlighting again

these privileges with respect to other groups.

Finally, figure 5.21 presents the some “problematic tuples” that are valid

for more than M=2 rules.

Figure 5.22: Problematic Tuples

81

5.5 Titanic study

This section presents an overview of the framework applied to another dataset:

the Titanic3. This dataset presents a list of passengers on Titanic, a British

passenger liner operated by the ‘White Star Line’ that sank in the North

Atlantic Ocean in the early morning hours of 15 April 1912, after striking an

iceberg during her maiden voyage from Southampton to New York City.

Of the estimated 2,224 passengers and crew aboard, more than 1,500 died,

making the sinking one of modern history’s deadliest peacetime commercial

marine disasters.

The version that we considered contains 891 samples and 12 attributes, 8

of which are categorical and 4 are numerical. The target variable ‘Survived’

is a binary categorical variable. The main task for which this dataset is used

for is to predict if a person survived the famous disaster, based on other

features like sex and age and whether the passenger travelled alone or not.

We now provide a brief description of the attributes. We highlight that we

refer to the values actually contained in this specific dataset, without any

further assumption.

• PassengerId: a categorical variable representing the Id of the passen-

ger.

• Survived: a categorical binary variable representing if the passenger

survived (1) or not (0).

• Pclass: a categorical variable representing if the passenger was in the

first class (1), in the second class (2) or in the third class (3).

• Name: a categorical variable containing the title and the name of a

person.

• Sex: a categorical variable representing the sex of the passenger. The

only possible values are male and female.

• Age: a numerical variable representing the age of the passenger. The

values belong to the range [0.42,80.0]. It has to be noticed that the

age of children with less than one year was reported as a float number

instead of an integer.

3https://www.kaggle.com/c/titanic

82

• SibSp: a numerical variable representing the number of siblings and

eventually the spouse who embarked with the passenger. The values

belong to the range [0,8].

• Parch: a numerical variable representing the number of parents and

children who embarked with the passenger. The values belong to the

range [0,6].

• Ticket: a categorical variable representing the ticket code of the

passenger.

• Fare: a numerical variable representing the price of the ticket owned

by the passenger. The values belong to the range [0.0,512.3292].

• Cabin: a categorical variable representing the cabin of the passenger.

Many of them refer to similar sections of the ship.

• Embarked: a categorical variable representing the port of embarkation

of the passenger. The domain of the attribute contains the three values:

S = Southampton (72%), C = Cherbourg (18.9%) and Q = Queenstown

(9.1%).

Figure 5.23 displays the first tuples of the dataset.

Figure 5.23: Titanic Dataset

5.5.1 Data Preparation and Exploration

Before being able to gather useful insights from this dataset we had to

perform some preprocessing operations.

After Data Acquisition, because there is only one source we do not need to

perform Data Integration and so we can focus on Data Cleaning.

As we can notice from Summary Statistics (figures 5.24 and 5.4), three

attributes contain some missing values. In particular, there are 177 missing

83

Figure 5.24: Titanic Summary Statistics Numerical Attributes

Figure 5.25: Titanic Summary Statistics Categorical Attributes

values for the attribute ‘Age’, 687 for the attribute ‘Cabin’ and 2 for the

attribute ‘Embarked’, for a total of 866 missing values (8% of the total

number of cells). The total number of rows containing at least one missing

value is 708 (about 79.5% of the total number of samples). This percentage

is extremely high, hence we choose to perform the following operations.

Since it would not have been wise to research dependencies on the full dataset

with so many missing information we choose to remove ‘Age’ and ‘Cabin’

columns from our analysis.

For the ‘Embarked’ column, since the missing values are fewer, we decide

to use the mode to substitute the missing values, so we impute the missing

values substituting the most frequent value that is ‘S’ (Southampton).

In Feature Selection phase, we notice that the attributes ‘PassengerId’,

‘Name’ and ‘Ticket’ don not provide useful information, hence we choose to

remove them, reducing Data Dimensionality.

Moreover, there are 15 rows that contain people that paid 0 dollar; they

represent people that are in the Titanic crew or assistant of people of first

class. To not change bias in resulting dependencies, we decide to remove

these rows.

Therefore, our final dataset contains 876 rows and 7 features.

After that, we perform Data Discretization on the numerical attribute

84

‘Fare’, grouping it into 5 bins: ‘0-8’,‘9-20’,‘21-40’,‘41-80’,‘81-500’.

Finally, from the dataset, we can easily understand that ‘Fare’, ‘Class’ and

‘Embarked’ are correlated. The user can also delete two of these attributes

to avoid obvious rules, we decided to keep them in order to understand the

relation between these attributes and the other ones in the dataset.

Figure 5.26 displays the dataset after the preprocessing phase.

Figure 5.26: Titanic Dataset after Preprocesssing phase

During this phase we also perform Data Visualization.

Figure 5.27 displays the distribution of the target class ‘Survived’, and, as

we can notice, the majority of people did not survived.

Figure 5.27: ‘Survived’ attribute BarPlot

Figure 5.28 presents the people distribution over the three classes: the

first class, the second class and the third class. It is interesting to see that

the second class has fewer people than the first one, and the third class hosts

the majority of people.

85

Figure 5.28: ‘Pclass’ attribute BarPlot

In last plot 5.29, we present the attributes ‘Pclass’ and ‘Survived’. From

this figure, we can notice that in the third class the majority of people did

not survived, instead in the first class more than half people survived.

Figure 5.29: ‘Pclass’ and ‘Survived’ attributes BarPlot

It is also interesting to see the relation between the attributes ‘Fare’ and

‘Embarked’. The figure 5.30 indicates the port from which people depart: ‘S’

stays for Southampton, ‘C’ is Cherbourg, ‘Q’ is Queenstown. It is interesting

that from the city of Queenstown people paid the lowest rates. In fact, if

we see figure 5.31, we can easily see that almost none of the people coming

from Queenstown is in first class.

86

Figure 5.30: ‘Fare’ and ‘Embarked’ attributes BarPlot

Figure 5.31: ‘Fare’ and ‘Pclass’ attributes BarPlot

5.5.2 CFDDiscovery

At this stage, we establish the protected attributes ‘Pclass’, ‘Sex’ and ‘Em-

barked’ and the target class ‘Survived’. We choose as protected attribute

‘Embarked’ instead of ‘Fare’, because ‘Fare’ is strictly correlated to attribute

‘Pclass’, so analyzing the last attribute, we also evaluate the attribute ‘Fare’.

Furthermore, ‘Pclass’ and ‘Embarked’ are less correlated to each other than

‘Embarked’ and ‘Fare’, so decided to keep ‘Embarked’ and to not consider

‘Fare’ as protected.

Figure 5.32 displays some dependencies extracted from the prepared

Titanic dataset ‘D’. The figure reports the first ACFDs in which two of them

are AFDs and the others are ACFDs.

To obtain such rules we set the parameters as:

• minSupport threshold: δ = 0.09

87

• minConfidence threshold ε = 0.85

• maxSize or maximum antecedent size α = 2

All the obtained ACFDs φ: (X → Y, tp) satisfy these constraints:

• support(φ,D) ≥ δ = 0.09

• confidence(φ,D) ≥ ε = 0.85

• |X| ≥ α = 2.

The total number of obtained rules in this step is 18.

Figure 5.32: CFDDiscovery Output

5.5.3 ACFDs Filtering

Given the list of dependencies, in this step we filter the ACFDs and we create

a structure in which organize and save the dependencies. The main phases

are:

1. The use of the parser to divide every dependency extracting the

LHS and RHS and then each couple of attribute-value.

2. Filter the ACFDs. Discard all the approximate FDs and keep only

the approximate CFDs. Furthermore, check if in each rule appears at

least one protected attribute and the class variable.

3. Given the parsed ACFDs, build the dictionary that contains all the

dependencies.

In figure 5.33 we present the final appearance of the first ACFDs in the

dictionary. The dictionary contains a total of 14 ACFDs.

88

Figure 5.33: Dictionary Output

5.5.4 ACFDs Selection

After the dictionary creation, we can start investigating on the ACFDs. In

the list appears all rules that satisfy the aforementioned criteria, so we have

to select the ones that show discrimination and bias.

We start by computing a table that contains all the ACFDs and the metrics.

After that, we select all the rules that have the difference metric above the

minimum threshold fixed as 0.1, obtaining 12 dependencies.

From this first selection, we can build table 5.34 that contains the 12 ACFDs

ordered by “Mean” option.

For each dependency we compute the support, confidence, difference and,

for each protected attribute p, the p-Difference.

Figure 5.34: Table ordered using ‘Mean’ option

89

This first table is very useful to get an idea of which are the dependencies

that show bias.

At this point, the user could select the ACFDs that show bias according to

her needs or she could continue the process going to the last phases of the

framework.

We suggest to continue the research computing all the possible combinations.

5.5.5 ACFDs Completion and ACFDs Ranking

In the last part of the framework, there are three main steps:

1. For each dependency, compute the possible combinations over the

protected attributes and the target class.

2. Select the obtained rules and rank them.

3. Let the user selecting the most interesting rules and compute final

metrics.

Figure 5.35 displays for one example rule, all the possible combinations.

Figure 5.35: CFD combination process

The total number of obtained combinations from all the ACFDs is 110.

For each combination rule, we compute the metrics and we select the inter-

esting ones using the previous constraint: Difference > minThreshold.

We decided to keep the same value of previous step for the minimum thresh-

old that is 0.1 and we obtain 39 ACFDs.

After that, we rank the rules using the ‘Mean’ criterion ordering the ACFDs

in decreasing order. Figure 5.36 displays the first part of the ranking list of

90

the selected combination rules.

Figure 5.36: Ranking of ACFDs after combination process ordered by ‘Mean’ option

91

5.5.6 ACFDs User Selection and Scoring

Last step consists in performing a selection of the N most interesting rules.

We select N=6 dependencies and figure 5.37 displays the final ranking.

Figure 5.37: Final ranking of user selected ACFDs ordered by “Mean”

From the table 5.37 we choose some meaningful dependencies:

φ93 : (Pclass = 1, Sex = Female)→ (Survived = 1)

φ97 : (Pclass = 2, Sex = Female)→ (Survived = 1)

φ77 : (Survived = 0, Sex = Female)→ (Pclass = 3).

From the first two ACFDs and, in particular looking at the Sex-Difference

metric, we can tell that women have a larger probability of surviving with

respect to men, but this is partly true until the class changes. From ACFD

number 77 we can infer that if a woman did not survive, she is in third class

with 0.88 value of confidence. The difference metric is pretty high, it has

values 0.33, so the dependency shows a relevant discrimination in the dataset.

Analyzing other ACFDs as:

φ86 : (Pclass = 3, Sex = Male)→ (Survived = 0)

φ81 : (Survived = 1, Sex = Male)→ (Pclass = 1)

we can understand that previous consideration about the classes for women

could be valid also for men. If a man is in the third class with a confidence

92

of 0.86 he will not survive, instead if he is in the first class he has an higher

probability of surviving.

From these ACFDs and from the final metrics we can state that the Titanic

does not respect group fairness between women and men, and also the sub-

group fairness with respect to classes.

Finally, in figure 5.38 there are some examples of tuples that are prob-

lematic, in the sense that at least one dependency verifies it.

Figure 5.38: Problematic tuples

93

94

Chapter 6

Experimental Results

6.1 Introduction

In this section we present a comparison between our framework, FAIR-DB

and the one presented in paper “Nutritional Labels for Data and Models” [37]

called Ranking Facts. We start presenting this tool, then with two concrete

examples, we enumerate the main differences and similarities between this

work and our framework.

6.2 Ranking Facts Basics

In paper “Nutritional Labels for Data and Models” [37] the authors J. Stoy-

anovich and B. Howe developed a tool based on the concept of a Nutritional

Labels, drawing an analogy to the food industry, where simple, standard

labels convey information about the ingredients and production processes.

Nutritional labels are derived, automatically or semi-automatically, as part

of the complex process that gave rise to the data or model they describe,

embodying the paradigm of interpretability-by-design.

Fairness measures are based on a generative process for rankings, sorted

lists of items, that meet a particular fairness criterion and are drawn from a

dataset with a given proportion of members of a binary protected group.

The final developed system is called Ranking Facts and it automatically

derives nutritional labels for rankings.

The tool is based on the idea of algorithmic ranker that takes a collection

of items as input and produce a ranking as output. The simplest kind

of ranker is a score-based ranker which computes a score for each item

independently and then sorts the items according to their scores. The concept

of fairness is related to rankers because these tools can discriminate against

individuals and protected groups. Furthermore, ranked results are often

unstable, that means that small changes in the input may lead to drastic

changes in the output.

The authors developed this tool based on the concept of nutritional labels,

in which labels convey information about the algorithm chosen and the

attributes that are involved by it.

6.3 Ranking Facts Tool

Ranking Facts is a collection of visual widgets that are based on stability,

fairness and diversity concepts.

The tool needs numerical attributes to compute the score-based ranker, and

so to compute the widgets.

The two starting widgets that explain the ranking methodology are: the

Recipe and the Ingredients.

The Recipe widget describes the ranking algorithm while the Ingredients

widget lists attributes used in ranking in order of importance.

The following widget is the Stability that explains whether the ranking

methodology is robust on the particular chosen dataset.

Fairness widget quantifies whether the ranked output exhibit statistical

parity (a particular definition of group fairness very similar to subgroup

fairness cited in chap. 4.2) with respect to one or more protected attributes.

The notion of fairness is defined specifically for rankings and it can be com-

puted comparing only binary categorical attributes.

The last widget is Diversity and it ensures that different kinds of objects

are represented in the output of the algorithmic process.

Stability and Diversity can be analyzed from two different aspects: top-10

and over-all. Applying the first aspect, the tool shows the results analyzing

only the first 10 items of the ranking, instead using the second one, the result

is computed using all items appearing in the ranking.

96

6.4 Ranking Facts Experiment

6.4.1 U.S. Census Adult dataset

In this paragraph, Ranking Facts is applied to the U.S. Census Adult dataset.

We do not use the online demo because the dataset has too many tuples

(more than 30’000) and the demo would return a time-out error, thus, we opt

for the notebook version4 using a similar version of the U.S. Census Adult

dataset.

In this version, very similar to the one used in our previous analysis, we do

not discretize attributes ‘Age’, ‘Education-num’ and ‘Hours-per-week’, so

that the algorithm could use these attributes to compute the score-based

ranker. Thus, to specify the ranking function we choose the numerical

attributes: ‘Age’, ‘Education-num’ and ‘Hours-per-week’.

For the fairness check the algorithm needs at least one binary attribute,

so we choose ‘Sex’.

For the diversity check we choose three categorical attributes that are

‘Sex’, ‘Race’ and ‘Native-country’.

After having established the input parameters, we apply the algorithm

to the dataset. Using the notebook version we do not have all the widgets,

but we can still present a meaningful analysis.

Firstly, we create the ranking function using the three numerical at-

tributes: ‘Age’, ‘Education-num’ and ‘Hours-per-week’. After that, we

analyze the Stability of the ranking function as figure 6.1 reports.

The plot displays an unstable ranking, so slight changes to the data (e.g., due

to uncertainty and noise), or to the methodology (e.g., by slightly adjusting

the weights in a score-based ranker) could lead to a significant change in the

output.

The second point of the analysis is centered on Fairness.

Fairness measures analyze one binary attribute at the time, computing a

statistical test to verify the group fairness with three different definitions:

FA*IR, pairwise comparison and proportion.

A ranking is considered unfair when the p-value of the corresponding statis-

tical test falls below 0.05.

Firstly, we compute the fairness measure using the binary attribute ‘Sex’.

For both three measures, the result indicates that group fairness is verified

4https://github.com/DataResponsibly/RankingFacts

97

Figure 6.1: Stability plot

for ‘Male’ group and it is not verified for ‘Female’ group. Figure 6.2 shows

the result of this check for the first measure of fairness (FA*IR), similar

outcomes are printed for the pairwise comparison and proportion notions.

This result on group fairness over the attribute ‘Sex’ was also confirmed by

our framework analysis using the U.S. Census Adult dataset.

Figure 6.2: ‘Sex’ Fairness test

In the analysis of this dataset with our framework, we computed fairness

measures for other two categorical attributes: ‘Race’ and ‘Native-country’.

These two attributes are not binary, so to perform the fairness check with

Ranking Facts is necessary Data Preprocessing. After that, we apply the

tool on these two attributes obtaining the following results.

Figure 6.3: ‘Race’ Fairness test

Figure 6.3 and 6.4 display the outputs of the pairwise comparison analyz-

ing respectively the attributes ‘Race’ and ‘Native-country’. Similar results

98

Figure 6.4: ‘Native-country’ Fairness test

can be derived also for the other two measures of fairness.

As before, for these two attributes, the results obtained with Ranking Facts

are in accordance to the ones obtained with our framework.

Finally, the last aspect that this tool analyzes is the Diversity. We

compute it for three categorical attributes: ‘Sex’, ‘Race’ and ‘Native-country’.

We report for each one the diversity check at top-10 level.

Figure 6.5: ‘Sex’ Diversity widget

The figures 6.5, 6.6 and 6.7 confirmed the aforementioned fairness results.

Analyzing the plot 6.5, the ‘Male’ group is predominant in the ranking, in

fact the women did not pass the fairness check.

Figure 6.6: ‘Race’ Diversity widget

In the ‘Race’ Diversity widget the main groups are ‘White’ and ‘Asian-

Pac-Islander’, so the ‘Black’, ‘Other’ and ‘Amer-Indian-Eskimo’ are discrim-

99

Figure 6.7: ‘Native-country’ Diversity widget

inated.

Finally, in figure 6.7 the ‘NC-White’ group is predominant over the ‘NC-

Hispanic’ group.

To compare the results, we present the final outcome of our framework ap-

plied to the U.S. Census Adult dataset. In figure 6.8, the more discriminated

groups are: ‘Female’, ‘Black’, ‘NC-Hispanic’ and also ‘Amer-Indian-Eskimo’.

Instead, the groups that have more privileges are: ‘Male’, ‘White’, ‘NC-

White’, ‘NC-Asian-Pacific’, ‘NC-Non-Hisp-White’.

Figure 6.8: U.S. Census Adult dataset FAIR-DB outcome

To conclude, analyzing the U.S. Census Adult dataset, the results obtained

100

with our framework and Ranking Facts notebook are in completely accordance

on the fairness aspect.

6.4.2 Titanic dataset

In this paragraph, we apply Ranking Facts to another dataset that we studied

with our framework: the Titanic dataset.

In this case, the dataset has a smaller number of tuples (876 tuples) so we

can use the online demo5 uploading a similar version of Titanic that we

used with our framework. In particular, in this version, we do not discretize

the attribute ‘Fare’, so that this attribute could be used to compute the

score-based ranker.

In fact, to specify the ranking function we must choose only numerical

attributes, thus we opt for ‘Fare’, ‘SibSp’ and ‘Parch’.

For fairness check the algorithm needs at least one binary attribute, so we

choose only ‘Sex’, because ‘Pclass’ is not binary.

For the diversity check we choose two categorical attributes: ‘Pclass’ and

‘Embarked’.

After having established the input parameters, we apply the algorithm to

the dataset. For each widget, we present the obtained results.

In figure 6.9, the first two widgets Recipe and Ingredients are pre-

sented.

Figure 6.9: Recipe and Ingredient widgets

5http://demo.dataresponsibly.com/rankingfacts

101

The first widget specifies the attributes that we used to create the ranking

function and their relative weight.

The Ingredients widget lists the attributes in order of importance, so clearly

the target variable ’Survived’ has the maximum importance, ‘SibSp’ attribute

follows with a value of 0.7 and then ‘Pclass’ attribute takes the third position.

The figure 6.10 presents the following two widgets: Stability and Fair-

ness.

Figure 6.10: Stability and Fairness widgets

The Stability widget indicates that the ranking created is stable at both

two level: top-10 and over-all. Thus, the ranking methodology is robust on

the Titanic dataset.

The Fairness widget analyzes the binary attribute ‘Sex’ using three different

fairness measures. A ranking is considered unfair when the p-value of the

corresponding statistical test falls below 0.05. This widget displays that the

‘Male’ group is discriminated with respect to ‘Female’ group, in fact ana-

lyzing the tests more in details, they return p−value = 0 for the ‘Male’ group.

The result obtained with Ranking Facts is very similar to our result, in

fact the Titanic dataset more women than men survived.

Because ‘Pclass’ attribute is not binary, we can not analyze it with the

fairness widget without a Data Preprocessing, but we can study it with the

diversity aspect.

Figure 6.11 displays the Diversity plots for the attributes ‘Pclass’ and

‘Embarked’.

Analyzing the widget at top-10 level, we can easily detect that the first

102

Figure 6.11: Diversity widget

10 elements of the ranking consist in people coming only from first class.

Moreover, there are people embarked from ports S = Southampton or C =

Cherbourg, but not from Q = Queenstown.

Analyzing the over-all situation, the plot regarding the class is more dis-

tributed over the three classes. For the attribute ‘Embarked’, there are

elements coming from Queenstown, but they are still few.

We present the final outcome of our framework, FAIR-DB, applied to

the Titanic dataset (figure 6.12), and the groups more discriminated that

are: men and people in the third class. Instead, the groups that have more

privileges are: women and people coming from the first or the second classes.

Note that, in our framework, we did not choose ACFDs that involve the

‘Embarked’ attribute, so nothing can be said about this attribute.

We can conclude that, also for this dataset, the results obtained with our

framework and Ranking Facts demo are very similar and comparable.

103

Figure 6.12: Titanic dataset FAIR-DB outcome

6.5 Ranking Facts Comparison

In this section we focus on the main aspects of both tools: our system

FAIR-DB and Ranking Facts; in particular we highlight similarities and

differences to present a final comparison between them.

Starting from our framework, FAIR-DB, the most important strengths

are:

• the tool generates a list of rules semi-automatically; in the final

phase, user interaction is required to select the appropriate depen-

dencies according to the research scopes;

• the resulting rules are clear, explicit and are self-explanatory, in

particular they give many insights about bias in dataset;

• given the final ranking the user can solve the bias in the dataset

applying techniques based on dependency-repair methods.

Instead, the main properties of Ranking Facts are [37]:

• the tool generates labels/widgets automatically or semi-automatically;

• the information that it gives is comprehensible because it is short,

simple and clear;

• the resulting labels are not only metadata, but they could be consul-

tative providing actionable information.

104

Analyzing the main properties in common, both tools have comparable

features and some of them are also related. Although, the main differences

between FAIR-DB and Ranking Facts are:

1. Ranking Facts requires numerical attributes to build the score-based

ranker and binary categorical variables to compute the fairness mea-

sures. FAIR-DB has no constraints on the attributes types, we can

both check fairness or numerical or categorical attributes.

2. FAIR-DB requires Data Preprocessing, in particular it is important

to solve missing values and apply discretization. Ranking Facts requires

that the input dataset is complete, so without missing values and, in

some cases, data preprocessing for the attribute types.

3. Ranking Facts is based on the paradigm of interpretability-by-

design using widgets and plots that are are very intuitive and clear;

FAIR-DB visualizes a ranking in tabular form with all the dependencies

and the related metrics. Our ranking reports the ACFDs in meaningful

way, because the user has the possibility to choose the ordering option.

4. In Ranking Facts only the Ingredient widget can partially catch the

relationship between attributes. In FAIR-DB, the ACFDs report the

correlation between the attributes and visualize it in a concise way.

5. Our tool discovers ACFDs that could involve more than one group

at a time and can report information about subgroups. For example,

one rule can consider both women and black minority, obtaining more

insights about bias in the dataset. The Fairness widget in Ranking

Facts can check fairness only between one attribute domain each time,

so the results do not contain information about the existing bias in

subgroups or in the minorities.

6. FAIR-DB promotes user interaction allowing customization and

stimulating the user by the choice of parameters and the final selection of

the dependency. Ranking Facts uses automated pipelines, so it requires

a user communication only for establishing the input parameters.

7. Our tool is not based on statistical definitions of fairness or statis-

tical test that involve a classifier previously computed on the dataset,

but only on the distribution analysis. Ranking Facts is based on group

fairness checks that need the computation of statistical test.

8. FAIR-DB is scalable, it can analyze dataset with more that 30’000

tuples; the Ranking Fact demo can handle fewer tuples than our

105

framework (because of the time-out error), although the notebook

version has not this limit.

To conclude, both approaches, Ranking Facts and FAIR-DB, analyze

fairness and discover bias in datasets. They are both in accordance with the

results showing similarities and common aspects as the comprehensibility

and the consultative form of data, but also differences as the user interaction

or the customization aspect that show the uniqueness of each approach.

106

Chapter 7

Conclusions and Future

Works

7.1 Conclusive Summary

We developed a novel framework, FAIR-DB , that, through the extraction

of a particular type of Functional Dependencies, it discovers already existing

bias and discrimination in datasets.

We used this framework in order to retrieve the dependencies among the

attributes of two well known datasets (U.S. Census Adult dataset and Titanic

dataset) after some preprocessing operations on the datasets.

We applied filtering and selection operations to the discovered dependencies,

aiming to extract only the unethical ones. The tool pipeline continued by

performing a completion process and it encouraged user communication:

the user chooses the dependencies that are more interesting for her type of

research and we show a final ranking with summarizing scoring measures.

These last metrics allow to understand how much the dataset is fair and

favours the detection of groups in the dataset that are discriminated. Lastly,

regarding the groups that suffer from bias, we reported some tuple examples.

In this research, we also focused on small groups, named minorities, and we

proposed an additional workflow to analyze the already existing bias when

the dataset contains minorities.

Moreover, we compared our results with an already existing tool Ranking

Facts [37] in order to evaluate the main differences and similarities between

the two tools.

FAIR-DB proved to be able to identify the groups that verifies fairness/unfairness

checks, and also analyze the subgroup fairness thanks to the metrics.

Our tool also suggests possible future steps, by showing the tuples of the

dataset more involved by the dependencies. In fact, the user could correct the

dataset by using some already existing algorithm as, for example, automatic

tools of CFD-repair [26].

7.2 Future Works

As we highlighted during the previous sections of this thesis, the discovery of

data bias thought Functional Dependencies is organized into several phases

and involves many complications and limits.

First of all, we focused on missing values as our main source of data errors,

but in real world datasets there could be different types of data errors.

Another relevant limitation of our work is the focus on relational databases

only. However, there are other tools that can perform the transformation

from non relational to relational database, hence we believe that our frame-

work may be integrated with them in order to function properly.

Future works based on this thesis may deepen these aspects.

An interesting topic that may be addressed in the future is the evalua-

tion of different metrics for the fairness check of the dependencies, like the

statistical tests or similarity measures.

Furthermore, it would be beneficial to perform a CFD-repair algorithm [26]

after the application of our framework to further evaluations.

On a final note, we believe that it would be beneficial to integrate FAIR-

DB with other tools of Data Science Ethics, like Ranking Facts [37], whose

focus is on different notions and other aspects of fairness. This would lead

to an increase of the overall efficiency and completeness of the systems and

it would allow us to tackle a broader variety of data bias and discrimination

problems.

108

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] Andrew Altman. Discrimination. In Edward N. Zalta, editor, The Stan-

ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford

University, summer 2020 edition, 2020.

[3] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and

Machine Learning. fairmlbook.org, 2019.

[4] Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman,

Stephanie Houde, Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino,

Sameep Mehta, Aleksandra Mojsilovic, Seema Nagar, Karthikeyan Nate-

san Ramamurthy, John T. Richards, Diptikalyan Saha, Prasanna Sat-

tigeri, Moninder Singh, Kush R. Varshney, and Yunfeng Zhang. AI

fairness 360: An extensible toolkit for detecting and mitigating algorith-

mic bias. IBM J. Res. Dev., 63(4/5):4:1–4:15, 2019.

[5] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. Relaxed

functional dependencies - A survey of approaches. IEEE Trans. Knowl.

Data Eng., 28(1):147–165, 2016.

[6] Alexandra Chouldechova. Fair prediction with disparate impact: A study

of bias in recidivism prediction instruments. Big Data, 5(2):153–163,

2017.

[7] E. F. Codd. A relational model of data for large shared data banks.

Commun. ACM, 13(6):377–387, 1970.

[8] National Research Council. Measuring Racial Discrimination. The

National Academies Press, Washington, DC, 2004.

[9] Brian d’Alessandro, Cathy O’Neil, and Tom LaGatta. Conscientious clas-

sification: A data scientist’s guide to discrimination-aware classification.

CoRR, abs/1907.09013, 2019.

109

[10] Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated

experiments on ad privacy settings: A tale of opacity, choice, and

discrimination. CoRR, abs/1408.6491, 2014.

[11] Flávio du Pin Calmon, Dennis Wei, Bhanukiran Vinzamuri,

Karthikeyan Natesan Ramamurthy, and Kush R. Varshney. Optimized

pre-processing for discrimination prevention. In Isabelle Guyon, Ulrike

von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.

Vishwanathan, and Roman Garnett, editors, Advances in Neural In-

formation Processing Systems 30: Annual Conference on Neural Infor-

mation Processing Systems 2017, 4-9 December 2017, Long Beach, CA,

USA, pages 3992–4001, 2017.

[12] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[13] Wenfei Fan, Floris Geerts, and Jef Wijsen. Determining the currency of

data. In Maurizio Lenzerini and Thomas Schwentick, editors, Proceedings

of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems, PODS 2011, June 12-16, 2011, Athens, Greece,

pages 71–82. ACM, 2011.

[14] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger,

and Suresh Venkatasubramanian. Certifying and removing disparate im-

pact. In Longbing Cao, Chengqi Zhang, Thorsten Joachims, Geoffrey I.

Webb, Dragos D. Margineantu, and Graham Williams, editors, Proceed-

ings of the 21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Sydney, NSW, Australia, August 10-13,

2015, pages 259–268. ACM, 2015.

[15] Luciano Floridi and Mariarosaria Taddeo. What is data ethics? Philo-

sophical Transactions of The Royal Society A Mathematical Physical

and Engineering Sciences, 374:1–9, 12 2016.

[16] Chris Giannella and Edward L. Robertson. On approximation measures

for functional dependencies. Inf. Syst., 29(6):483–507, 2004.

[17] Sara Hajian, Francesco Bonchi, and Carlos Castillo. Algorithmic bias:

From discrimination discovery to fairness-aware data mining. In Balaji

Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,

Dou Shen, and Rajeev Rastogi, editors, Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, San Francisco, CA, USA, August 13-17, 2016, pages 2125–2126.

ACM, 2016.

110

[18] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen.

TANE: an efficient algorithm for discovering functional and approximate

dependencies. Comput. J., 42(2):100–111, 1999.

[19] Lauren Kirchner Jeff Larson, Surya Mattu and Julia Angwin. How we

analyzed the compas recidivism algorithm, 2016.

[20] Jolanda Jetten and Kim Peters. The Social Psychology of Inequality.

Springer International Publishing, 01 2019.

[21] Ariana Tobin Julia Angwin and Madeleine Varner. Machine Bias:

facebook (still) letting housing advertisers exclude users by race, 2017.

[22] Surya Mattu Julia Angwin, Jeff Larson and Lauren Kirchner. Machine

Bias: there’s software used across the country to predict future criminals.

and it’s biased against blacks., 2016.

[23] Faisal Kamiran and Toon Calders. Data preprocessing techniques for

classification without discrimination. Knowl. Inf. Syst., 33(1):1–33,

2011.

[24] David Madras, Elliot Creager, Toniann Pitassi, and Richard S. Zemel.

Learning adversarially fair and transferable representations. In Jen-

nifer G. Dy and Andreas Krause, editors, Proceedings of the 35th Interna-

tional Conference on Machine Learning, ICML 2018, Stockholmsmässan,

Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Ma-

chine Learning Research, pages 3381–3390. PMLR, 2018.

[25] Sajid Mahmood, Muhammad Shahbaz, and Aziz Guergachi. Negative

and positive association rules mining from text using frequent and

infrequent itemsets. The Scientific World Journal, 2014, 05 2014.

[26] Mirjana Mazuran, Elisa Quintarelli, Letizia Tanca, and Stefania Ugolini.

Semi-automatic support for evolving functional dependencies. In

Evaggelia Pitoura, Sofian Maabout, Georgia Koutrika, Amélie Mar-

ian, Letizia Tanca, Ioana Manolescu, and Kostas Stefanidis, editors,

Proceedings of the 19th International Conference on Extending Database

Technology, EDBT 2016, Bordeaux, France, March 15-16, 2016, Bor-

deaux, France, March 15-16, 2016, pages 293–304. OpenProceedings.org,

2016.

[27] Raoul Medina and Lhouari Nourine. A unified hierarchy for functional

dependencies, conditional functional dependencies and association rules.

In Sébastien Ferré and Sebastian Rudolph, editors, Formal Concept

111

Analysis, 7th International Conference, ICFCA 2009, Darmstadt, Ger-

many, May 21-24, 2009, Proceedings, volume 5548 of Lecture Notes in

Computer Science, pages 98–113. Springer, 2009.

[28] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman,

and Aram Galstyan. A survey on bias and fairness in machine learning.

CoRR, abs/1908.09635, 2019.

[29] James Moor. What is computer ethics? Metaphilosophy, 16:266 – 275,

08 1985.

[30] Heiko Müller and Johann-Christoph Freytag. Problems, methods, and

challenges in comprehensive data cleansing. pages 6–7, 01 2003.

[31] Krystyna Napierala and Jerzy Stefanowski. Types of minority class

examples and their influence on learning classifiers from imbalanced

data. J. Intell. Inf. Syst., 46(3):563–597, 2016.

[32] The Editors of Encyclopaedia Britannica. Database. In Edward N.

Zalta, editor, Encyclopædia Britannica. May 18, 2020 edition, 2020.

[33] Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Emre Kiciman.

Social data: Biases, methodological pitfalls, and ethical boundaries.

Frontiers Big Data, 2:13, 2019.

[34] Joeri Rammelaere and Floris Geerts. Revisiting conditional functional

dependency discovery: Splitting the ”c” from the ”fd”. In Michele

Berlingerio, Francesco Bonchi, Thomas Gärtner, Neil Hurley, and Geor-

giana Ifrim, editors, Machine Learning and Knowledge Discovery in

Databases - European Conference, ECML PKDD 2018, Dublin, Ireland,

September 10-14, 2018, Proceedings, Part II, volume 11052 of Lecture

Notes in Computer Science, pages 552–568. Springer, 2018.

[35] John Rawls. Justice as fairness: Political not metaphysical. Philosophy

and Public Affairs, 14(3):223–251, 1985.

[36] Nripsuta Ani Saxena, Karen Huang, Evan DeFilippis, Goran Radanovic,

David C. Parkes, and Yang Liu. How do fairness definitions fare? testing

public attitudes towards three algorithmic definitions of fairness in loan

allocations. Artif. Intell., 283:103238, 2020.

[37] Julia Stoyanovich and Bill Howe. Nutritional labels for data and models.

IEEE Data Eng. Bull., 42(3):13–23, 2019.

112

7.2. Future Works 113

[38] Harini Suresh and John V. Guttag. A framework for understanding

unintended consequences of machine learning. CoRR, abs/1901.10002,

2019.

[39] Pang-Ning Tan, Michael S. Steinbach, and Vipin Kumar. Introduction

to Data Mining. Addison-Wesley, 2005.

[40] Sahil Verma and Julia Rubin. Fairness definitions explained. In Yuriy

Brun, Brittany Johnson, and Alexandra Meliou, editors, Proceedings

of the International Workshop on Software Fairness, FairWare@ICSE

2018, Gothenburg, Sweden, May 29, 2018, pages 1–7. ACM, 2018.

[41] Catharine M. Wyss, Chris Giannella, and Edward L. Robertson. Fastfds:

A heuristic-driven, depth-first algorithm for mining functional dependen-

cies from relation instances - extended abstract. In Yahiko Kambayashi,

Werner Winiwarter, and Masatoshi Arikawa, editors, Data Warehousing

and Knowledge Discovery, Third International Conference, DaWaK

2001, Munich, Germany, September 5-7, 2001, Proceedings, volume

2114 of Lecture Notes in Computer Science, pages 101–110. Springer,

2001.

[42] Lu Zhang, Yongkai Wu, and Xintao Wu. A causal framework for discov-

ering and removing direct and indirect discrimination. In Carles Sierra,

editor, Proceedings of the Twenty-Sixth International Joint Conference

on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August

19-25, 2017, pages 3929–3935. ijcai.org, 2017.

114 Chapter 7. Conclusions and Future Works

Appendix A

User Manual

A.1 Pseudo-code of FAIR-DB

In this section we present the pseudocode of the algorithm on which is based

our framework, FAIR-DB.

Algorithm 1 FAIR-DB Algorithm

1: df ← dataset . import dataset

2: dependencies← CFDDiscovery(df,minSupp,minConf,maxSize)

3: ACFDs← removeAFDs(dependencies, df)

4: ACFDs← filterACFDs(ACFDs, df)

5: ACFDsTable← computeMetrics(ACFDs, df)

6: selectedACFDs← filterByDifference(ACFDsTable,minThreshold1)

7: combinedACFDs← computeCombinations(selectedACFDs, df)

8: completionACFDsTable← computeMetrics(combinedACFDss, df)

9: selectedACFDs← filterByDifference(completionACFDsTable,minThreshold2)

10: rankedACFDs← rankACFDs(selectedACFDs, option)

11: finalACFDs← selectByIndexes(rankedACFDs, ruleIndexes)

12: cumulativeSupp, differenceMean← computeMean(finalACFDs)

13: for p in protectedAttributes(df) do

14: pDifferenceMean← computeMean(finalACFDs, p)

15: [Optional:] problematicTuples← extractProblematicTuples(df, finalACFDs,M)

Here, there is the explanation for all the functions of the framework:

• CFDDiscovery is a given algorithm that mines the dependencies

from the dataset given a minSupport, minConfidence and maxSize.

• removeAFDs is a function that given the dataset and the dependen-

cies, removes the rules that have at least one attribute without the

116 Appendix A. User Manual

corresponding value.

• filterACFDs is a function that, given the dataset as input, filters the

ACFDs returning only the ones that contain at least one protected

attribute and the target class.

• computeMetrics is a function that, given the ACFDs and the dataset,

for each dependency computes the metrics: support, confidence, differ-

ence and, for each protected attribute p the pDifference. After that, it

returns the ACFDs and the metrics as a table.

• filterByDifference is a function that simply filters the rules that have

difference > minThreshold.

• computeCombination is a function that given the ACFDs and the

dataset, it computes all the possible combinations over the protected

attributes and the target class.

• rankACFDs is a function that given the selected ACFDs and an

option (Support, Difference or Mean), it builds the ranking ordering

using the chosen option.

• selectByIndexes is a function that given the ranked ACFDs and the

indexes of the rules chosen by the user, it returns the final ranking

composed by the selected ACFDs.

• protectedAttributes, given the dataset as input, it returns all the

protected attributes.

• computeMean, it is function that given the final ACFDs, in one case,

it computes:

– the cumulativeSupport that is the percentage of tuples involved

by the selected dependencies;

– the differenceMean that is the mean of all the difference metrics;

in the second case, it takes as input also the protected attribute p and

it computes the mean of the pDifference of all the rules returning the

pDifferenceMean.

• extractProblematicTuples is a function that given the dataset, the

final ACFDs and a number M, it returns all the tuples in the dataset

that are verified for more than M rules.

A.1. Pseudo-code of FAIR-DB 117

Algorithm computeMetrics for each ACFD compute metrics and return

the table

1: procedure computeMetrics(ACFDs, df)

2: for ACFD in ACFDs do

3: ACFDsTable . create the table

4: support, confidence← computeSupport(ACFD, df)

5: noProtAttrConf ← computeNoProtectedAttrConf(ACFD, df)

6: difference← confidence−NoProtAttrConf
7: append ACFD, support, confidence, difference to ACFDsTable

8: for p in protectedAttributes(df) do

9: noPConf ← computeNoPConf(ACFD, p, df)

10: pDifference = confidence− noPConf
11: append pDifference to ACFDsTable

12: return ACFDsTable

Algorithm computeSupport for each ACFD compute support and confi-

dence

1: procedure computeSupport(ACFD, df)

2: LHS ← getLHS(ACFD)

3: RHS ← getRHS(ACFD)

4: X,Y,XY ← 0

5: for tuple in df do

6: LHSFlag,RHSFlag ← False

7: if (LHS in tuple) then

8: X ← X + 1

9: LHSFlag ← True

10: if (RHS in tuple) then

11: Y ← Y + 1

12: RHSFlag ← True

13: if (RHSFlag and LHSFlag) then

14: XY ← XY + 1

15: allTuples← len(df)

16: support← XY
allTuples

17: confidence← XY
X

18: return support, confidence

118 Appendix A. User Manual

Algorithm computeNoProtectedAttrConf for each ACFD compute the

noProtectedAttributeConfidence

1: procedure computeNpProtectedAttrConf(ACFD, df)

2: noProtAttrLHS ← getNoProtectedAttrLHS(ACFD)

3: RHS ← getRHS(ACFD)

4: noProtAttrInX, noProtAttrInXY ← 0

5: for (tuple in df) do

6: noProtAttrLHSFlag,RHSFlag ← False

7: if (noProtAttrLHS in tuple) then

8: noProtAttrInX ← noProtAttrInX + 1

9: noProtAttrLHSFlag ← True

10: if (RHS in tuple) then

11: RHSFlag ← True

12: if (RHSFlag and noProtAttrLHSFlag) then

13: noProtAttrInXY ← noProtAttrInXY + 1

14: allTuples← len(df)

15: noProtectedAttrConf ← noProtAttrinXY
noProtAttrinX

16: return noProtectedAttrConf

