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1. Introduction 

According to the International Panel on Climate 

Change (IPCC), road transport represents 11.9% of 

the anthropogenic greenhouse gas emissions 

globally and the introduction of electric vehicles 

(EVs) is seen as a viable path for reducing 

emissions in the sector [1]. Yet, the extent to which 

such integration would represent a burden for the 

power system (both in term of grid stability and 

variation of peak demand) is still an unanswered 

question.  

Energy system modelling is one of the tools that 

must be used to analyse how electric mobility 

affects the energy system. For this kind of method, 

the best time resolution used is hourly [21]. It is 

therefore necessary to study the impact of e-

mobility at an hourly level and then to build hourly 

charging profiles for different types of vehicles and 

for different charging strategies. 

This thesis aims to evaluate the hourly impact of 

electric mobility on the electricity system. In order 

to achieve this, different vehicles categories and 

charging strategies will be considered and their 

impact studied for a regional case study: the South 

Tyrol region.  

There is an abundance of studies and reviews on 

modelling the EV charging demand available in 

the literature.  Muratori et al. [2] proposed a 

Markov chain model to simulate uncontrolled 

vehicle charging, but required extremely specific 

habits data for the US, making it difficult to 

applicate the same methods in other contexts. 

Gruosso et al. [3] used the same Markov chain 

approach to simulate a fleet of vehicles used for car 

sharing, limiting the possibility to extend this 

method to private passenger cars. O’Mahony et al. 

[4] proposed instead a Monte Carlo approach to 

simulate mobility and charging patterns, even if 

this approach is simpler if compared to Markov 

chain, the model only works for 2 weeks, not 

capturing seasonal effect. Due to the limitations of 

these two types of approaches, two open source 

tools for the definition of the electricity 

consumption of the vehicles have been published, 

with the aim of providing a more flexible and user-

friendly approach for the definition of EVs 

electricity demand: emobpy [6] and RAMP-

mobility [5], the former is based on the definition 

of chain of events but is grounded on probability 

distribution of mobility patterns, the latter is 

instead based on a stochastic approach to define 

the mobility pattern and the charging availability. 



Table 1.1- Literature review regarding the electric vehicles modelling 

Table 1.2 – Literature review regarding the modelling of Smart Charges and Vehicle-to-grid for electric 

passenger cars charging

However, like most of the other studies in the 

literature, also the studies developed using these  

tools focus almost exclusively on the passenger car 

sector, as it is responsible for 43% of emissions 

within the transport sector and is also the most 

utilized passenger transport mode [5]. 

Dallapiccola et al. [7] and Lubello et al. [8] utilized 

RAMP-mobility to calculate electric passenger cars 

consumptions in small residential areas, similar  

studies were developed by Corinaldesi et al. [9] 

and Joklekar et al. [10], using the emobpy tool 

instead. Although these studies represent a 

fundamental first step in assessing future 

scenarios, in order to achieve the targets set by the 

European Union of a 90% reduction in emissions in 

the transport sector [10], the electrification process 

will necessarily include other vehicle types. In this 

direction, policies at national or European level 

have begun to extend the subjects of their 

directives to include buses and light and heavy 

transport (i.e. the “Fit for 55” package, which 

regulates the electrification of passenger cars and 

light-duty vehicles in the EU [11]). Hence, this 

thesis aims to evaluate the increase in electricity 

demand on the grid as a result of the electrification 

of these categories of vehicles, highlighting the 

different recharging methodology, both in terms of 

power and the strategy used, in order to study the 

potential impact on the electricity grid in terms of 

increased peak demand. 

Another shortcoming of previous studies is the 

limited understanding of how to sustainably 

integrate EVs with current renewable energy 

generation technologies. To reduce the emissions 

of greenhouse gas and fulfill the 1.5 °C objective 

proposed by the IPCC, the power generation sector 

Author Ref Vehicles Considered 
Spatial 

Configuration 
Method Used 

Muratori et al. [2] Passenger Cars District Markov Chain 

Gruosso et al. [3] Passenger Cars Municipality Markov Chain 

O'Mahony et al. [4] Passenger Cars Regional Monte Carlo 

Dallapiccola et al. [7] Passenger Cars District 
Ramp-

Mobility 

Lubello et al. [8] Passenger Cars District 
Ramp-

Mobility 

Corinaldesi et al. [9] Passenger Cars District Emobpy 

Joglekar et al. [10] Passenger Cars District Emobpy 

Approach proposed by this 

thesis 

Passenger Cars, Public Bus, 

Commercial Vans, Heavy Truck 
Regional Emobpy 

Author Ref 
Optimization 

method 

Spatial 

Configuration 

Tools used Strategies 

considered 

Richardson et al. [12] Separated Municipality 
MATLAB, 

digsilent 
DUMB, SC 

Ioakimidis et al. [13] Separated District MATLAB DUMB, SC 

Ivanova et al.,  [14] Separated Municipality 
MATLAB, IBM 

ILOG CPLEX 
DUMB, SC 

Wu et al. [15] Separated District CVX MATLAB DUMB, V2H 

Cai et al. [16] Integrated District unknown DUMB, SC 

O'Neill et al. [17] Integrated District unknown DUMB, V2G 

Approach proposed by this 

thesis 
Integrated Regional cbc 

DUMB, 

SMART, V2G 
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will be increasingly dependent on renewable 

energy sources, intermittent or not. It is therefore 

necessary to verify that the increase in energy 

demand can always be met, thus ensuring balance 

in the power grid. In this regard, EVs (and 

especially passenger cars) can provide key 

flexibility for the power system, thanks to the 

implementation of smart charging strategies that 

make also possible the bi-directional exchange of 

energy between vehicle batteries and the electricity 

grid as a function of renewable generation patterns 

(defined as “vehicle-to-grid technologies”). The 

use of a smart strategy could make it possible to 

make greater use of moments of overproduction of 

renewable energy sources, while the further 

implementation of vehicle-to-grid technology 

would allow the car fleet to act as a battery, 

supplying energy to the grid whenever a reduction 

in production from renewable energy sources 

occurs. Most of the studies regarding the 

implementation of smart strategies utilizes a 

“separated” approach, in which, starting from a 

timeseries of the electricity demand, the 

production of the power sector and the EV 

demand, the model provides an optimal charging 

solution. Richardson et al. [12] analyzed the 

implementation of smart charge for a small fleet of 

vehicles, but the simulation is limited to only 24 

hours and with the only aim of maximizing the 

power provided to the EVs within a randomized 

number of hours available. Ioakimis et al. [13] 

starting from data of EV consumption, PV power 

generation and dwell time in a parking lot, 

modelled a smart charge behaviour to reduce the 

demand of a nearby building, but without 

considering the V2G technology. Ivanova et al. [14] 

proposed an optimization problem to minimizing 

the operational cost of a PV rooftop plant, 

comparing the revenues from selling the electricity 

to the grid or providing it to the EVs load, the 

seasonality effect is considered but only on the PV 

production side and not also in the variation of EV 

consumption. This analysis doesn’t include 

another demand that needs to be fulfilled, causing 

no need to implement a V2G technology. 

Wu et al. [15] analyzed instead the possibility for 

the EVs to give back the energy absorbed during 

charging sessions, but even if the results show a 

reduction of the charging cost, the study is applied 

only for one EV (linked with a single family house) 

to reduce the domestic electricity demand without 

the possibility to provide electricity to the grid. Cai 

et al. [16] proposed an optimization problem 

considering a wider range of energy mix (i.e. wind, 

PV, and gas turbines) in a microgrid, in which 

however the EVs charging is the only load, and so 

the V2G is never exploited. O’Neill et al.  [17] 

instead proposed an “integrated” approach using 

the microgrid modelling software openCEM. A 

residential area in Australia is considered, linked 

with its electricity demand, its power production 

sector (composed by wind, PV, and diesel plants) 

and also coupled with the electricity demand of 

EVs. This study provides an important step 

towards the evaluation of the benefits of V2G 

technology within a more effective coupling 

between the transport sector and the power 

production, allowing an higher flexibility for the 

system behaviour. However, this analysis is still 

applied to a small-size single-node case study due 

to the limitation of the tool utilized. In order to 

better assess the consequences of future EV 

penetration scenarios it is necessary to define 

multi-node systems, at least at regional level, like 

the one considered in this thesis. 

 

The novelty and unique contributions of this study 

are listed below: 

• Extend the categories of vehicles 

considered inside the future electrification 

of the road transport sector (i.e. buses, 

commercial vans and heavy trucks) in 

order to evaluate their impact on grid 

demand in future scenarios. 

• Investigate the impact of smart charge and 

V2G, gradually being adopted by owners 

of electric passenger cars, as methods of 

providing flexibility to the electricity grid 

in scenarios of high dependency on 

renewable energy sources. 

 

The paper is structured as follows. Section 2 

describes the methodology of this study. Section 3 

presents the case study considered for the 

assessment of future scenarios regarding e-

mobility. Section 4 enlist the results and 

discussions for the simulations considered and 

Section 5 presents concluding remarks. 

2. Materials & Methods 

For modelling the consumption of electric vehicles, 

and thus their electrical energy demand for 

recharging, two of the most promising recent tools 
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presented within the scientific literature were 

compared: RAMP-Mobility [5] and emobpy [6]. 

After comparing the two programs in terms of 

flexibility, input data and accuracy of the output 

provided, emobpy was identified as the most 

suitable tool for extending the analysis of the 

electrification of vehicles to buses, commercial 

vans and heavy trucks.  

The main advantages of emobpy are: 

• More precise description of the movement 

during the day from a spatial point of 

view, with the possibility to define 

location-specific probabilities for the 

charging infrastructure availability. In this 

way the distinction between the “home 

wallbox” and the public charging stations 

can be easily implemented. 

• Greater amount of charging strategy 

available: immediate (charge at maximum 

power as soon as an available charging 

station is found), balanced (charge at a 

reduced power such that the battery is full 

when the next trip will begin), only at 

home or only during the night 

• Possibility to implement an ad-hoc set of 

rules to model the vehicles’ movements 

through the day, allowing a definition of 

the mobility patterns closer to real-data 

available. 

Emobpy uses a sampling approach to create 

profiles of BEVs based on customizable 

assumptions, physical properties of vehicles and 

on empirical mobility statistics, relying on data 

provided by German institutions. A BEV profile is 

composed by four consequential time series: 

• Vehicle mobility: contains the location of 

the vehicle at each time step and the time 

steps during which the vehicle is driving 

with information of the distance traveled. 

• Driving electricity consumption: specifies 

how much electricity the vehicle consumes 

for driving in each time step. 

• BEV grid availability: provides 

information whether and with which 

power a BEV is connected to the electricity 

grid for each timestep. 

• BEV grid electricity demand: provides 

information on how much electricity a 

vehicle demands from the electricity grid 

in a time step, according to the chosen 

charging strategy. 

The integrations of vehicles different from 

passenger cars required a simplified definition of 

the daily mobility pattern: for the public transport, 

the possible locations are the “Headquarters” 

(corresponding to the bus terminal) and the generic 

“End of the ride”, aggregating all the intermediate 

stops of the bus lines. For light and heavy freight, 

the locations are restricted to the “Headquarters” 

(corresponding to the main distribution center) 

and a generic “Delivery point”, aggregating all the 

possible destinations of a trip). In both cases, a 

continuous “back and forth” is assumed, 

aggregating all the intermediated stops of the bus 

lines or the multiple deliveries done especially for 

the light freight sector. For the evaluation of the 

four time-series, the probability distribution of 

travel times is obtained from previous studies 

regarding mobility patterns of traditional fossil-

fuelled models of commercial vans [18] and heavy 

truck [19], for public bus, those values are 

reasonably assumed. The vehicle consumptions 

are achieved starting from vehicle information in 

terms of dimensions, driving performance and 

electrical components, obtained from the 

datasheets provided by the manufacturers. The 

availability and nominal capacity of the charging 

infrastructure are defined starting from real data of 

the territory considered.  

 

While for the passenger cars, a more conservative 

“immediate” strategy is chosen, for buses and 

light/heavy freight, a “balanced” strategy is 

considered, assuming that the public transport or 

delivery company knows in advance the daily 

vehicle movement. Hence, when a vehicle starts 

recharging, it is known when the next trip will 

begin. 

 

Once the energy demand of the electric vehicle 

fleet has been assessed (aggregating all the grid 

electricity demands time-series provided by 

emobpy), the Oemof framework has been selected 

as the energy system framework for this analysis. 

Oemof is a set of tools to model different aspects of 

energy supply systems which are written in 

python programming language and published 

under an open-source license [20]. To model future 

scenarios, a generic dispatch/operational 

optimization problem is considered, which aims at 

finding the optimal use of resources to satisfy the 

demand at least costs. Equation 1.1 expresses the 

objective function and the total cost of generation 
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as the sum of the variable costs 𝒗𝒄𝒏,𝒖,𝒕 [€/MWh] of 

generation unit 𝑢, node 𝑛 at time 𝑡 and its electricity 

generation value, 𝑬𝒏,𝒖,𝒕. Variable costs take into 

account O&M costs and fuel costs. 

 

 min [∑ ∑ ∑ 𝐸𝑛,𝑢,𝑡 ∗ 𝑣𝑐𝑛,𝑢,𝑡

𝑇

𝑡

𝑈

𝑢

𝑁

𝑛

] (1.1) 

 

The smart charge and the vehicle to grid 

technology have been implemented within oemof 

through the definition of a fictitious region, called 

R_BEV. Inside the “main” region R, in addition to 

the corresponding energy production sectors, is 

assigned the load of electricity that will be satisfied 

through dumb charge. Within the fictitious region 

R_BEV, in addition to a fictitious storage  

representing the set of batteries of electric vehicles 

connected to the grid, is instead assigned the share 

of BEV electricity demand that can be satisfied 

according to a strategy "smart charge". 

In fact, if the "dumb" load present in the R region 

must be satisfied instantaneously through the 

production of electricity on site, the share of 

"smart" demand, within the fictitious region 

R_BEV, will be satisfied primarily at times when 

the R region has a period of overproduction or 

secondarily by discharging the R_BEV storage. 

 

In this way, for each timestep the final value of the 

grid electricity demand related to electric vehicles, 

will be equal to the sum of the demand satisfied by 

dumb charge plus the part of electricity needed for 

smart charging, which corresponds to the amount 

of electricity that is transferred from Region R to 

Region R_BEV over the period considered. 

 

 𝑷𝒆𝒗,𝒕 = 𝑷𝑩𝑬𝑽,𝒅𝒖𝒎𝒃,𝒕 + 𝑷𝑹 𝒕𝒐 𝑹𝑩𝑬𝑽,𝒕 (1.2) 

 

As for the further implementation of the V2G 

technology, the assumptions will be the same, 

except for the fictitious power line connecting the 

R and R_BEV regions, which in this case will be bi-

directional. In this way, if the R region could not 

satisfy its demand, the electric vehicles 

(represented through the fictitious storage present 

in the R_BEV region), could give back their energy. 

However, the nominal capacity of the powerline 

connecting each node R with the corresponding 

node R_BEV is equal to the number of vehicles, 

multiplied by an assumed value of 3 kW, 

multiplied by the percentage amount of electric 

passenger cars that are connected to the electricity 

grid in the timestep t, expressed by the percentage 

value %𝒗𝒄𝒕. 

 

𝑷(𝑹𝑩𝑬𝑽 𝒕𝒐 𝑹),𝒎𝒂𝒙,𝒕 = #𝒗𝒆𝒉𝒊𝒄𝒍𝒆𝒔 ∗ 𝟑𝒌𝑾 ∗ %𝒗𝒄𝒕 (1.3) 

 

3. Case Study 

For the evaluation of the impact of the 

electrification of the transport sector, the South 

Tyrol region is considered, a region with a power 

generation sector almost entirely composed of 

renewable energy sources. 

This region is split in six sub-areas, as exposed in 

Figure 3.1. This multi-node approach is relevant as 

variable renewable energy sources (VRES) 

modelling is largely affected by the underlying 

spatial resolution and it is also possible to include 

the major transmission lines between nodes 

 

From a time perspective, three different scenarios  

Figure 3.1 - Multi-node representation of the South-Tyrol 

region, as defined inside the Oemof tool 

Figure 2.1 - Schematic representation of the fictitious region  

“R_BEV” definition in Oemof for the gradual implementation 

of Smart Charge and V2G 
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are considered: two mid-term scenarios (both 

having 2030 as the reference year) and one long-

term scenario (which is instead referred to 2050).  

ACTUAL scenario (2030): scenario in which 

current trends, local directives and European 

directives are considered, in terms of reduction of 

emissions in the transport sector. The most 

relevant measures implemented in this scenario 

are: 

• Ban on endothermic engines by 2035 for cars. 

• The number of zero-emission buses in public 

service by 2030 rises to 200 (equal to almost 

25% of the total fleet). 

• Ban on endothermic engines by 2040 for light 

commercial vehicles. 

• 30% reduction in emissions by 2030 for heavy 

commercial vehicles. 

IPCC scenario (2030): scenario that includes 

further measures to reach the 1.5 °C objective 

proposed by the IPCC (agreed at COP26 in 

Glasgow) which calls for a 45% reduction in 

emissions by 2030, compared to 2010 data. The 

main measures implemented in this scenario are: 

• For the car fleet, 80% of new vehicles sold are 

assumed to be zero-emission in 2030. 

• For public transport, this scenario assumes a 

complete conversion to zero-emission buses in 

2030, i.e. 750 buses making up the total public 

service fleet. 

• For light transport, 65% of new vehicles sold in 

2030 are assumed to be zero-emission. 

• For heavy transport, it is assumed that 45% of 

new vehicles will be zero-emission in 2030. 

ZEV scenario (2050): Since most of the directives 

considered are intended to regulate new sales and 

not vehicles on the road, it is crucial to consider a 

long-term scenario in order to more correctly 

assess the impact of these directives, with which a 

completely zero-emission vehicle fleet can be 

achieved only in 2050. 

4. Results 

The Figure 4.1 shows the values of the normalised 

electricity demand profiles for the four vehicle 

types considered. It can thus be emphasised that 

each vehicle is indeed characterised by its own 

demand curve, which depends on the mobility 

pattern and the type of strategy considered. 

 

The pattern related to passengers cars is marked by 

two main aspects: on one hand the reduction of 

electricity demand at night-time, when vehicles 

that are charging at home use a lower rated 

capacity than public columns. During the day, on 

the other hand, the profiles show a greater 

irregularity, resulting from the use of an 

"immediate" strategy, in which BEVs recharge as 

soon as possible and at the maximum possible 

power. For the bus category, there is a clear 

distinction between day-time charges (at higher 

power during short breaks in the day) and night-

time charges (at reduced power and spread over a 

greater number of hours). For the light transport 

sector, the higher amount spent at the 

headquarters between each delivery allows a 

smoother charge also during day-time. For the 

heavy transport sector, all the trucks will recharge 

during the morning, once they return to base after 

completing their expedition during the night. 

 

Following the modelling of the three scenarios in 

the medium and long term, the one that has the 

greatest impact on the energy system of South 

Tyrol is the ZEV scenario, set in 2050. Although 

electricity production in South Tyrol currently 

exceeds more than double its demand, the total 

electrification of the vehicle fleet would lead to a 

sharp increase in electricity demand, not even the 

import of energy from other nodes would be 

sufficient, and it would therefore be necessary to 

import energy from neighbouring countries. This 

phenomenon is highlighted in Figure 4.2 (top 

graph), which analyses a winter week within the 

R3 region considering only dumb charge. In the 

middle of the day, the production of hydroelectric, 

solar, chp and import from other nodes are not 

Figure 4.1 - Normalized electricity demand for an average 

winter and summer day, distinguished between workday and 

weekend 
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enough to meet the increased demand for 

electricity.  

In this case, the implementation of smart charge or 

vehicle to grid should provide a positive effect to 

the grid. 

In Figure 4.2 (two graphs in the middle) is reported 

the same region in the same time frame, first 

including a 50% percentage of vehicles following a 

smart charge, and then a 50% percentage of 

vehicles that is willing to use vehicle to grid 

technology. 

The implementation of a smart charge technology 

allows to partially reduce the dependence on 

import from abroad. The “smart” charging of 

vehicles takes place mainly at night, where there is  

an overproduction of electricity thanks to the 

hydroelectric systems present in the territory.  

However, electricity production is still not 

sufficient during the day and it is still necessary to 

import energy from abroad. 

 

By implementing instead the V2G technology 

(Figure 4.2, two bottom graphs), this aspect can be 

solved. During the night the energy produced by 

hydroelectric is not wasted and even more directed 

to the charging of electric vehicles, which during 

the daytime hours, can instead give back part of the 

energy in their batteries to the grid. In this way it is 

no longer necessary to import from abroad during 

the day. 

 

It is also reported the trend of the normalized grid 

electricity demand (aggregating the share of dumb 

and smart charge and referring it to the main 

region R, as presented in Equation 1.2.) for the 

region R3, to better highlight how the demand of 

the EVs changes according to the strategy 

considered. In Figure 4.3 four day-types are 

considered, considering an average day of the 

whole week previously showed. 

Figure 4.3 – Normalized grid electricity demand for the 

charging of passenger cars for the node R3 in winter (top) and 

summer (bottom), considering the different strategies and 

technologies implemented 

Figure 4.2 - Electricity generation and demand of the R3 node 

for a week in winter, considering Dumb charge (top), Smart 

Charge (two graphs in the middle) and V2G (two graphs in the 

bottom part). 
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It can be seen how, from the point of view of the 

electricity grid, the switch from a dumb strategy to 

a smart strategy allows the demand for electricity 

to be more correctly matched with the power 

generation sector. More specifically through a 

smart strategy, during working days the peak 

recharging of vehicles takes place during the night, 

when there is an overproduction of 

hydroelectricity, while at the same time being able 

to reduce the demand during daylight hours. This 

phenomenon does not occur at weekends, where, 

since demand can always be met, the region 

decides to recharge vehicles as soon as this is 

possible anyway (in that case, the smart and dumb 

profiles coincide). 

When using vehicle-to-grid technology, the 

electricity demand tends to increase furtherly. This 

is due to the fact that in this case the battery can be 

discharged not only to recharge the vehicles in the 

R_BEV region, but also to provide energy to the R 

region, so the fictitious battery in the R_BEV region 

needs more energy to recharge itself, hence the 

increase in electricity demand during the night. 

5. Conclusions 

Policy decisions pertaining to the mass-scale 

deployment of electric vehicles for integration with 

the power system are currently slowed down by 

unanswered questions concerning the impact that 

such a deployment would have on electricity 

demand and the potential of smart charging 

mechanisms to mitigate it. To this end, this thesis 

provides a further step towards a better 

clarification of these uncertainties. 

After identifying emobpy as the most suitable tool 

for the purposes of this thesis, due to its more 

precise spatial description of the mobility patterns 

and the charging events of the vehicles during the 

day and the better definition of different charging 

strategies, a new approach is proposed to calculate 

the electricity demand of other types of vehicles 

which will be part of the electrification process of 

upcoming years (i.e. buses for public transport and 

vehicles for the light and heavy freight). This is 

achieved from studies regarding the mobility 

patterns of fossil-fuelled versions of those vehicles 

and real data on the charging infrastructure in the 

South Tyrol case study.  

To evaluate the impact on the grid of an increasing 

electrification process due to local and European 

directives, two mid-term and one long-term 

scenarios have been introduced. The electricity 

demand of the transport sector thus calculated is 

later integrated with the other aspects of the energy 

supply system (i.e. power generation, heat and 

electricity demand) using the Oemof tool. Using 

this tool, through a multi-node representation of 

South Tyrol, it was possible to assess whether the 

current production sector could meet the new 

demand for electricity. The implementation of the 

long-term scenario set in 2050 has shown that, even 

in a region with high and constant electricity 

generation from renewable sources like South 

Tyrol (currently double the electricity demand), an 

almost complete electrification of the transport 

sector would significantly increase the energy 

import from abroad to meet the new energy 

demand, with risk of providing grid congestion 

problems.  

To partially overcome this problem, as final part of 

this thesis, a methodology to implement “Smart 

Charge” and “Vehicle-to-grid” technology within 

the Oemof tool is proposed. Even considering just 

a partial adoption of those two strategies among 

the passenger cars’ owners, the switch to a 

“controlled” charging strategy showed a potential 

benefit for the congestion problems, with vehicles 

being recharged mainly at times when there is 

overproduction from renewable energy sources. 

Furthermore, the implementation of V2G could 

effectively substitute the energy import from 

abroad, with energy provided by the EVs 

connected to the grid when the energy produced 

by on-site plants is not sufficient. 
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