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1. Introduction

Humans in history have always tried to increase
their quality of life, thus their lifespan. An in-
crease in a human lifetime duration usually co-
incides with a breakthrough in medicine: for ex-
ample the discovery of a new treatment against
a disease. Drug discovery is the identification
process of suitable new treatments against a dis-
ease. Before computers, this process was done
by researchers in vitro and in vivo: researchers
were testing compounds that are likely to have
effects on disease. This is a very long and costly
process [1]. Part of this process can be an-
ticipated and simulated with an in-silico stage
named virtual screening, which aims at find-
ing small molecules named ligands, that have
a strong interaction with a target protein, usu-
ally named receptor. Ligands can be an ion or a
molecule composed of tens of atoms. Receptors
are a class of proteins that can bind to ligand
molecules. Upon binding, ligand and receptor
will change their conformations. Domain ex-
perts expect a beneficial effect from this interac-
tion. Since this stage can be simulated in-silico,
the number of evaluated ligands is limited only
by the computational power.

Compounds, that are selected by the whole

virtual screening pipeline, are passed to later
stages of the drug discovery process, for fur-
ther analysis. A virtual screening pipeline is
usually executed on a supercomputer. Since a
higher throughput leads to a greater number of
screened ligands. In this way, a virtual screen-
ing pipeline execution is feasible in a reasonable
amount of time [2]. The first studies for antivi-
rals against HIV and Influenza were limited to
testing a number of 100 compounds in a reason-
able time frame. In the 90s the power of super-
computers has increased that number to roughly
a million compounds tested in a reasonable time
frame [2]. One of the most recent successes in
the application of the virtual screening pipeline
for drug discovery has been done on the Summit
IBM supercomputer: researchers have been able
to perform exhaustive docking of one billion lig-
ands in under 24 hours [2]. Similar results have
been obtained in europe with the Exscalate4Cov
project [3].

In the last decades, the number of available com-
pounds in a dataset of ligands is increased dra-
matically, requiring more computational power
to test these ligands against a target. Increas-
ing the throughput of virtual screening pipelines
has become crucial to meet those requirements.



Up to now the miniaturization of computer com-
ponents has led to an increase in the available
computational power and efficiency while reduc-
ing costs. The decline of Moore’s law has led
researchers to think differently and to pursue
new solutions. Approximate computing is used
to trade computational complexity, thus com-
puting time, with the accuracy of the results.
Approximated computing can take advantage of
some statistical properties of the data, to reduce
the complexity. This thesis studies the possi-
bility of increasing the number of compounds
tested in the same amount of time, by using
approximation techniques. In particular, the
idea is to use approximate results as hints to
drive the computation effort in a virtual screen-
ing pipeline.

The structure of this document starts with a
brief introduction to the concepts required to
understand the work done. It continues with
the state of the art, which shows how oth-
ers have approached similar problems. After
that the proposed methodology for the solu-
tion is explained: the thesis has made use of
precision scaling and memoization to increase
the throughput of a virtual screening pipeline.
Precision scaling reduces the size of the inputs
space, making it feasible to make an exhaus-
tive search in it. While memoization allows
us to move most of the computation at pre-
computation time, making the stages of the
virtual screening pipeline less computationally
heavy. Once a solution has been identified the
thesis explains how I've proceeded in imple-
menting such a solution in a specific virtual
screening pipeline, and the collected results I've
obtained while designing the solution to validate
the approach.

2. Background & State of the
Art

The molecule is not a rigid body: a subset of the
bonds between the atoms enable the molecule
to change shape, without altering its physics-
chemical properties. These bonds are named
rotatable bonds. Since ligands are placed into
a 3D space they have 6 degrees of freedom (3
translations, 3 rotations) and r degrees of free-
dom based on the number of rotatable bonds in
it. A ligand’s conformation can change in space,
this is called a pose: each ligand can have mul-
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Figure 1: Virtual screening Pipeline

tiple poses.

This thesis focuses its attention on Virtual High-
Throughput Screening which uses computer-
generated models to evaluate how a ligand binds
to a receptor. Figure 1 shows a virtual screening
pipeline. Among the virtual screening stages,
the most important ones are docking and scor-
ing. Docking analyzes the whole search space
for all the possible orientations and conforma-
tions of the ligand and the receptor upon bind-
ing by using heuristic and docking techniques.
The scoring stage instead scores the conforma-
tions obtained by the sampling stage. The high-
est scored poses might be selected as leads com-
pounds for further analysis. The evaluations
given to the poses are called scoring. The higher
the score, the more stable the complex and the
bond strength, will be. We would like to stress
the fact that the number of poses scored by a
scoring function is lower than the sampled ones.
If we consider its implementation the inputs are
the ligand and the protein. These inputs are
passed to a molecular docking algorithm, which
produces as output a set of ligands’ conforma-
tion, also called poses. These poses will be eval-
uated by a scoring function, and based on the
scores the poses are ranked. The rank will be
the output of this pipeline. From the top-scored
poses in the output, we can retrieve the lead
compounds for further analysis in the drug dis-
COVEry process.

We have chosen to apply our proposed solu-
tion to the LiGen pipeline, which is proprietary
software owned by Dompe, used in the Exsca-
latedCov project. E4C aims at using the EU’s
computing resources, to respond much faster to
international pandemics.

Since docking algorithms produce as output a
set of ligand poses, a metric that evaluates the
goodness of a pose is needed. Different types
of scoring functions exist based on how they
consider the interactions between atoms. XS-
CORE [4] is the scoring function we have further
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pre-filtering implementation architecture.

analyzed.

3. Proposed Methodology

The problem we are facing in this thesis consists
in accelerating the virtual screening pipeline by
applying approximated computing. To do so
we have to move most of the scoring compu-
tation before the ligand is docked onto the re-
ceptor. Through a process of space gridification,
the idea is to use fast lookup tables, which con-
tain pre-computed values, to reduce the com-
putation time of the pipeline’s scoring stage.
The first approximation technique we have ap-
plied is precision scaling to an atom’s coordi-
nates. Figure 2 shows how with precision scal-
ing I've discretized the input space. In this way,
I've obtained a finite number of input combi-
nations. Figure 3 propose a modified version
of the pipeline from Figure 1, highlighting the
modification to the pipeline proposed in this
work. Before launching the virtual screening
pipeline, the pre-computation stage takes the
protein’s structure and computes the grids re-
quired by the filtering stage. The filtering stage
takes the ligand’s poses produced by the dock-
ing algorithm, and it evaluates them according
to the approximated scoring function based on
the pre-computation stage. We used this ap-
proximated score to select which are the poses
of the molecule that needs to be re-scored using
the original scoring function.

The implemented application has been designed
with a multi-CPU and multi-GPU approach.
The typical HPC infrastructure has a heteroge-
neous architecture with multiple-node, and with
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Figure 4: Distribution of the XSCORE errors
with quantized space. On the y-axis the relative
difference between the original values and the
quantized ones are reported. While on the x-
axis there are different grid resolution.

accelerators on each node (usually GPUs). In
our case, we have targeted NVIDIA’s GPUs as
accelerators, so the adoption of CUDA to pro-
gram is mandatory. While for the node commu-
nications we have used OpenMPI.

4. Scoring Approximations

4.1. Scoring Function Analysis

As anticipated we used a well known scoring
function for the purposes of this document. The
disassembling of XSCORE becomes essential, to
find how we can pre-compute each of its com-
ponents. The computation of the Van der Walls
interactions, the hydrophobic contact term, and
the hydrophobic matching term show dependen-
cies on the atoms’ radiuses and on the atom’s
coordinates. Hydrogen Bond computation re-
quires the atoms’ coordinates, atomic type, and
the atoms’ root coordinates. The root of an
atom is at the geometric center of all its non-
hydrogen neighboring atoms. The deformation
effect computation requires the knowledge of
the atom’s rotatable bonds, also called rotors.
While the hydrophobic surface term computa-
tion requires the identification of the solvent ac-
cessible surface (SAS).

Therefore, the information from the actual lig-
and required for the computation of XSCORE
factors is the following: atom’s radiuses, atom’s
coordinates, and atom’s types. The atom’s type
refers both to the atom’s element (nitrogen, hy-
drogen, etc.) and to the atom’s capacity of ac-
cepting or donating an electron (donor, accep-
tor, donor-acceptor). The combined action of
precision scaling and memoization led to the de-



cision of structuring pre-computed data in mem-
ory as grids. For each XSCORE component, a
grid is pre-computed. Each XSCORE’s compo-
nent computation depends on different factors
(atoms radiuses, types, coordinates). Grids are
a 3D matrix in which each cell represents a po-
sition of the space, in which we place an atom
probe for evaluating a function return value.
Each point of the grid stores multiple results of
the same function, based on the atom’s probe
properties. Atom’s properties can change, in
our case atom probe can change radius, type,
or both. Since radiuses are a real value, they
are discretized along with the atom probe posi-
tion in space. The grids’ dimensions are defined
by the receptor bounding box, while the grids’
spacing has to be choose based on the desired re-
sults’ accuracy. Using lower spacing values will
not reduce much the approximation error, while
the memory requirements will be higher since
the number of grids’ points is higher.

4.2. XSCORE Approximations

Now that the approximations strategies used
are defined, and the XSCORE implementation
has been described, is time that we analyze
how each XSCORE’s components have been ap-
proximated. Precision scaling and memoization
should be combined, to make feasible the pre-
computation stage, since it is required to re-
duce the time-to-solution of the pipeline. On
the Van der Waals interactions, the hydropho-
bic contact term, and the hydrophobic match-
ing term I've applied precision scaling on the
atoms’ coordinates and radiuses, and on all the
possible inputs combinations I’ve computed the
value of these factors and stored them in mem-
ory for later lookup. Hydrogen bond term can-
not be pre-computed since the quantization of
the atoms’ root is not feasible, and the inputs
space is too big for applying memoization. To
resolve this problem I've instead used the hydro-
gen bond factor computation of the Autodock
scoring function [5], which does not consider the
atoms’ root. The hydrophobic surface term can-
not also be pre-computed because it requires
the computation of the ligand’s SAS, which is
unavailable during this phase. Since a deeper
analysis has shown how the hydrophobic sur-
face term accounts for only 4% on the final score,
I’ve disabled its computation, with also the SAS
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Figure 5: Relative error on VDW, HB, HP, HM,
HS, RT when using precision scaling. The y-axis
reports the relative errors. While on the x-axis
there are the box plots of the single component.

computation. In this way, the scoring time is
reduced by about 35%. Also, the deformation
effect term has been disabled, because it is the
same among all the poses of the same ligand,
so it is the same as adding a constant factor to
each score.

5. Results

The implementation of the proposed approxima-
tions has the purpose of increasing the through-
put of a virtual screening pipeline. This section
reviews the results collected while designing the
proposed implementation. The objective is to
demonstrate from the results how the proposed
solution can approximate the functionalities of
a scoring function, in terms of RMSD and scor-
ing time. At first, the analysis is done by con-
sidering the approximated scoring function as a
stand-alone module to compare against the orig-
inal. Then, this section will evaluate the module
as integrated into a virtual screening pipeline.

The first step in the development of the so-
lution was to analyze the impact of precision
scaling on XSCORE’s factors. After analyzing
the results obtained with different grid resolu-
tions, going from 0.1 to 1.0 A, we have decided
to approximate each atom’s coordinates using a
grid spacing of 0.5 A, since we have seen it is
the best tradeoff between accuracy, memory re-
quirements, and computational time, as shown
by Figure 4. The analysis I’ve done shows that
the number of radiuses clusters, which should be
used is 5, since using more ranges will not reduce
the approximation error, while it will increase
memory requirements. Figure 5 shows the im-
pact of precision scaling on the single compo-
nents’ values. Each box plot shows the distri-
bution of differences between the original com-
ponent’s value and the approximated one. We
want to remark the sensibility of HB to approxi-
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Figure 6: XSCORE wvalues approximations
when all the proposed approximations of Sec-
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Figure 7: The relationship between the RMSD
and scoring time, between the original and the
approximated XSCORE versions.

mations on atoms’ coordinates. In fact, is worth
noticing that HB computation depends also on
the atoms’ root. not only on the distances. This
analysis demonstrates that the sensibility of XS-
CORE to precision scaling is very limited. The
approximation error is usually lower than 2%.
The final considerations about the errors intro-
duced are reported in Figure 6, which shows the
relative errors of the original XSCORE value
with the approximated one. It is possible to
notice how the low error can be used to select
the poses to evaluate with the original scoring
function.

Indeed the next step is the analysis of the filter
when deployed in a virtual screening pipeline.
The next analysis aims at demonstrating how
approximated computing techniques reduce the
required scoring time, while will maintain an ac-
ceptable RMSD with XSCORE. Figure 7 high-
lights with bars the RMSDs between the golden
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Figure 8: Speedups obtained when using the
GPU version of the solution with respect to the
original only CPU XSCORE version.

reference and, the best possible pose obtained
from a docking algorithm, the best-scored pose
with the original XSCORE version, and the
best-scored pose with the approximated version
of XSCORE. On the x-axis, there is the num-
ber of scored poses. For the original version,
each value X on the x-axis is the number of
poses taken from the docking’s output, passed
to XSCORE, then we compute the RMSD using
the best-scored pose. For the proposed filter all
the docking’s output poses are scored then we
select the first X poses, and we have reported
the best RMSD among the first X poses. The
lines instead compare the scoring time between
the original and the approximated version of
XSCORE. The lines refer to the scoring time,
and they show how the approximated version is
much faster than the original version. The ap-
proximated filter is much faster than XSCORE,
it can be used to analyze all the poses in a frac-
tion of the time, in this way also with a small
value of X we can identify almost immediately
the poses with the lowest RMSD. For example
with X=1, we can see that in the same amount
of time the approximated version can get a poses
with the lowest RMSD, because it is able to scan
the whole output of the docking stage, while the
original version was able to score only one ele-
ment.

Moreover, this section shows the speedup ob-
tained with the usage of MPI and CUDA for
parallelizing the proposed solution. Figure 8
has on the y-axis the number of occurrences of



Protein Name Only Scoring Filtering+Scoring Speedup
Time(ms) | Best RMSD(A) | Time(ms) | Best RMSD(A)
1la0q 3076 3.04 240 3.04 12.8
1a0t 3588 5.6 312 5.6 115
lalb 5322 10.6 401 10.6 13.2
la3e 13065 7.27 1315 7.27 9.93
ladh 5926 1.3 598 1.08 9.9
la5g 7025 2.99 690 2.99 10.4
la5h 4726 2.6 399 2.6 11.8
1a07 4748 5.7 381 5.7 12.4
la7x 10832 2.85 2124 2.85 5.09
1a08 5925 10.7 438 10.7 13.5

Table 1: The table reports the comparison be-
tween the RMSD and scoring time when using
the LiGen pipeline with and without the filter-
ing stage with the proposed approximations (it
selects 15 poses).

the speedup on the x-axis, for different ligand-
receptor pairs. The performance improvement
is very consistent: on average the approximated
version of XSCORE gets a 26x speedup with
respect to the original only CPU version of XS-
CORE in a single node.

In this thesis, I wanted to demonstrate that ap-
proximated computing can be used in a virtual
screening pipeline with acceptable errors in the
results. When used as pose filter, the average
approximations are around 2%, which is an ac-
ceptable value concerning the speedup of 26x,
as shown in Figure 8.

5.1. LiGen Integration

The analysis of the proposed approximations as
stand-alone module is now integrated with its
analysis when integrated into a real-world vir-
tual screening pipeline, like the LiGen one. In
Table 1 I've reported the results obtained with
the filtering stage I’ve proposed in the LiGen
pipeline. For each of the proteins, I've regis-
tered the RMSD of the golden reference with
respect to the best pose obtained, in two differ-
ent cases: in one case the filter has been placed
in between the docking stage and the scoring
stage (XSCORE) of the LiGen pipeline (Filter-
ing+Scoring), in the other case the filter is not
placed in between the two stages (Only Scor-
ing). The filter will select the best 15 poses
coming from the docking stage, and it will pass
them to the scoring stage. I've also recorded
the scoring time of each version. The last col-
umn reports the speedup obtained when using
the modified pipeline. Table 1 shows how the
modified version with the filtering module, with

the proposed approximation before the scoring
is much more efficient: the average speedup is
equal to 11x, and the RMSD of the best pose is
almost the same between the two versions.

6. Conclusions

The objective of this thesis was to analyze how
to increase the throughput of a virtual screening
pipeline for drug discovery. The thesis adopted
precision scaling and memoization to approxi-
mate the scoring stage of the virtual screening
pipeline. The results experimental results ob-
tained with the integration of the approximated
module inside a virtual screening pipeline, have
demonstrated how this approach is feasible and
leads to great results. Future developments
on this topic concern a deeper optimization of
the pre-computation and filtering stage, along
with a deeper analysis of the advantages of
the streams used in the CUDA implementation.
Another interesting expansion of this work can
be the analysis of the impact of the proposed
methodology when processing different proteins
at the same time, since the current proposed so-
lution stress the memory a lot.
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