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1. Introduction
Developing kinetic mechanisms that can de-
scribe how different fuels undergo oxidation
and pyrolysis is crucial in creating more ef-
ficient combustion techniques, which aim to
reduce environmental impact, diversify energy
sources, and utilize them in a sustainable
manner. In the past two years, the sci-
entific community has focused on developing
new synthetic fuels, or e-fuels, to store ex-
cess energy from renewable sources, which
are intermittent in nature. Among these e-
fuels, dimethoxymethane (DMM) and higher
oxymethylene ethers (OMEs) have emerged as
potential alternatives to traditional fuels in
diesel engines. Combustion involves a complex
network of reactions with hundreds of species,
and their kinetic mechanisms rely on rate con-
stants as parameters, together with thermody-
namic and transport properties associated with
the species. These rate constants can be deter-
mined experimentally, calculated using quantum
chemistry tools, or estimated based on analo-
gies with similar compounds. Recent advances
have led to more sophisticated theoretical meth-
ods for determining rate constants, but simply
adopting the "best" parameters may not re-

sult in better model performance. This is due
to multiple reasons, not least the fact that in
the majority of the models, the rate parame-
ters were estimated through analogy rules and
semi-empirical correlations for the estimation of
the thermodynamics and transport properties.
Performing a sensitivity analysis on rate param-
eters allows choosing the important rate con-
stants needing properly tuned. The tuning of
the rate constants can be done manually or au-
tomatically, but recent frameworks have been
developed to automate this process. However,
current frameworks perturb each parameter in-
dependently and do not consider the underly-
ing consistency between reaction classes. In
this work, an optimization technique based on
reaction classes was utilized, whereby the ki-
netic constant of each reaction class was cali-
brated instead of adjusting each parameter sep-
arately. This guarantees to obtain a more con-
sistent and physically sound model. The over-
all optimization process has been implemented
as an extended capability of OptiSMOKE++ [1].
The methodology presented has been applied,
as a case study, to the optimization of the
OME1-4 model, selecting as the optimization
targets different classes of reaction. After the
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optimization, a validation over a wide range
of experimental conditions has been automati-
cally performed by exploiting a data ecosystem,
SciExpeM [2], as a framework.

2. Methodology
2.1. Reaction Classes and Rate Rules
Chemical kinetics has a long-standing tradition
of using reaction classes and rate rules. In
fact, identifying the primary reaction classes
and their corresponding kinetic parameters in
the combustion mechanism of a fuel is crucial
for two purposes: i) developing a comprehen-
sive mechanism, and ii) potentially extending
the reaction subset and kinetic parameters to
molecules with analogous chemical structures.
Species that share reactive moieties and func-
tional groups involved in the reaction and have
a resemblance in their structure are considered
molecules “with similar structures”. For exam-
ple, both 1-butene and 1-pentene may be sub-
ject to C-C bond fission, resulting in the ejec-
tion of a C2H3 radical. The expansion of a re-
action set to include “similar” molecules can be
systematically and consistently achieved using
rate rules. These rules involve assigning ref-
erence kinetic parameters to a particular reac-
tion type and incorporating correction factors
that account for energetic, entropic, and struc-
tural effects. Depending on the work, approxi-
mately 15-30 reaction classes were identified to
depict the high- and low-temperature oxidation
of the fuel and its primary decomposition prod-
ucts, which include fuel alkyl radicals and corre-
sponding alkenes, RO2, QOOH, O2QOOH rad-
icals, and cyclic ethers. The reaction classifi-
cation in these studies focused on two primary
aspects, which are clarified below:
• Each reaction class is generally identified by

the type of species and the class type cor-
responding to an elementary reaction.

• Within each reaction class, different re-
action types identify specific reactions as-
sociated with reference kinetic parameters
which may be extended via analogy or rate
rules. As an example, in the reaction class,
“H-atom abstraction” by a given radical the
reaction types are distinguished on the basis
of the abstraction site, primary, secondary,
or tertiary.

2.2. Kinetic Modeling
The kinetic mechanism describing the oxidation
and pyrolysis of DMM and higher OMEs was
built up following the principles of hierarchy
and modularity, starting from the CRECK kinetic
framework. The modules referred to H2/O2 and
C1-C2 had been adopted and subsequently im-
proved. Then the module referred to C3 has
been added too. The final kinetic mechanism
examined in this work was taken from the sub-
mechanism proposed by Cai et al. [3]. These
were generated by adopting a reaction class-
based methodology with the principle of hier-
archy, in order to obtain an automatic genera-
tion process for the reactions and their kinetic
parameters started from a previous work based
on DMM. The detailed model finally obtained
consists of 282 species and 2657 reactions.The
detailed model underwent an automatic lump-
ing procedure, obtaining a mechanism with 176
species and 2486 reactions.

2.3. Numerical optimization
The lumped mechanism, obtained as ex-
plained above, underwent a reaction class-
based optimization, which was implemented in
OptiSMOKE++ [1].
The OptiSMOKE++ toolbox applies heuristic op-
timization strategies to iteratively calibrate ki-
netic parameters. The optimization can be per-
formed against experimental measurements in
ideal reactors (ST, JSR or PFR) and 1-D lam-
inar flames, by selecting different targets as
well as against artificially generated data. The
numerical routines employed are performed by
OpenSMOKE++, while the DAKOTA toolkit handles
different optimization algorithms. The objec-
tive function in optimizing a kinetic scheme is
highly non-linear, which makes it difficult to
use gradient-based algorithms due to the non-
linearity of each kinetic constant. As a result,
according to the work of several authors, a Ge-
netic Algorithm has been applied to address the
issue. OptiSMOKE++ exploits the CurveMatch-
ing framework [4] as the objective function for
the minimization problem. The CurveMatching
framework handles model predictions and ex-
perimental as functional data, by interpolating
them with B-Splines with roughness penalty on
the second derivative. The agreement is then
quantified using the mean of the extended L2-
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norm, as well as Pearson correlations in order
to compare the shape of the curves and those
of their first derivatives. In such a way 4 indices
are defined, bound between 0 and 1, respectively
indicating the worst and best similarity with ex-
perimental data.
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where ||f || =
√∫ b

a f(x)2 dx, and D is the in-
tersection between the domains of the two func-
tions. For each dissimilarity measure, the min-
imum value is zero, indicating minimal dissimi-
larity between f and g. In order to set the max-
imum value of the two dissimilarity measure to
1, f and g are divided by the maximum value
of the experimental curve f and f

′ and g
′ by the

maximum value of the first derivative of the ex-
perimental curve f

′ .
Moreover, in order to take into account the ex-
perimental uncertainty, when available, it is pos-
sible to adopt a bootstrap evaluation procedure.
Thus a synthetic score index of the CurveMatch-
ing will be computed as reported in Equation 5
and the global objective function assumes the
form reported in Equation 6.
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4
∈ (0, 1) (5)
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The original toolbox proposed by Furst et al. [1]
treats all the parameters of the selected rate con-
stants according to the modified Arrhenius ex-
pression where the logarithmic form is adopted.

ln(k) = ln(A) + βln(T )− Ea

R

1

T
(7)

Hence to each rate is assigned an uncertainty
factor (fr) in the form of:

fr =
kmax − k0
ln(10)

=
k0 − kmin

ln(10)
(8)

The parameters undergoing the optimization are
the pre-exponential factor A, temperature expo-
nent β, and the activation energy Ea. They are
considered continuous random variables, usu-
ally assumed to be uniformly or normally dis-
tributed. Furthermore, during the optimization,
they are subjected to non-linear constraints de-
rived from Equation 8. Sets of Arrhenius pa-
rameters violating the constraints are excluded
by applying a penalty function.
Leveraging the fact that all the reactions belong-
ing to a specific class of reaction share a common
reference parameter, the idea is to optimize only
the three Arrhenius parameters for the reference
kinetic and after that scale the reaction rate of
the other reactions belonging to the same class
accordingly. So after the optimization of kinetic
parameters for the reference reaction of the class,
the parameters for the other reactions belonging
to the same class are scaled by employing the
following rules:

fA
scaling =

ln(Aopt)

ln(Aref )
(9)

fβ
scaling = βopt − βref (10)

f
E
R
scaling =

(
E

R

)
opt

−
(
E

R

)
ref

(11)

The Equations above reflect the idea that if
there is a relationship between the reference ki-
netic parameter and the parameter of a reaction
belonging to a reaction class by a factor of two,
then once the reference kinetic parameter is op-
timized this proportion must be retained, and
this must be true for all the three Arrhenius pa-
rameters. Moreover, it is worth underlying that
the scaling factors are assigned apriori since they
are specifically conceived by the kinetic modeler
and so they have to remain constant.

3. Results and Discussion
In this section, the optimization of the selected
reaction classes is applied to the lumped mecha-
nism for the combustion of OME1-4, obtained as
explained in section 2.2. The optimization was
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Figure 1: Times chosen for the local sensitivity
analysis for DMM ϕ = 1, P = 10atm, T =
600K.

carried out against ignition delay time experi-
ments from the works of Gillespie [5] and Cai et
al. [3]. Then, the performances of the optimized
mechanism were tested against the lumped and
the detailed mechanism with respect to the ex-
perimental data. All the validation was done
exploiting SciExpeM [2] as a framework and the
CurveMatching for assessing the performances.

3.1. Selection of the classes
The proposed methodology for mechanisms op-
timization aims at improving the reference pa-
rameters for the selected classes of reaction con-
sidering all target datasets and parameters, si-
multaneously.
In order to perform the optimization, the classes
of reactions have been identified by perform-
ing a local sensitivity analysis at different times
based on the DMM conversion in a ST reac-
tor. The range examined is ϕ = 1, P = 10atm,
T = 600− 1300K. After performing local sensi-
tivity analyses at each temperature, the indexes
are normalized and the highest absolute value
of each reaction is selected to avoid duplicates.
This summary of the sensitivity analysis is then
provided by PySMOKEPostProcessor (see Figure
2). In order to avoid altering the lumped species,
only the most sensitive reactions involving DMM
as a reactant have been selected. From this anal-
ysis seven H-abstraction reactions by different
radicals have emerged as the most sensitive ones
(see Figure 1 and 2). A summary of the reac-
tion classes optimized in this work is reported in
Table 1.

R2124: CH3O2+DMM=>CH3O2H+DMM-R  (-1.0000)
R2146: OH+DMM=>H2O+DMM-R  (-1.0000)
R2160: DMM-RO2=>DMM-QOOH  (-1.0000)
R2214: O2+DMM-QOOH=>DMM-O2QOOH  (-1.0000)
R2114(inf): DMM(+M)=>CH3+CH3OH+HCO(+M)  (-1.0000)
R2144: CH3+DMM=>CH4+DMM-R  (-0.9850)

R2161: DMM-QOOH=>DMM-RO2  (0.8839)
R2122: HO2+DMM=>H2O2+DMM-R  (-0.7484)
R2224: DMM-OQOOH=>OH+DMM-ketRO  (-0.6548)
R2115(inf): DMM(+M)=CH2O+CH3OCH3(+M)  (-0.4982)
R2112(inf): DMM(+M)=CH3+CH3OCH2O(+M)  (-0.4776)

R2213: DMM-QOOH=>OH+CH2O+CH3OCHO  (0.4325)
R2112: DMM(+M)=CH3+CH3OCH2O(+M)  (-0.3666)
R2113(inf): DMM(+M)=CH3O+CH3OCH2(+M)  (-0.3016)
R2118: O2+DMM=>HO2+DMM-R  (-0.2811)
R2142: H+DMM=>H2+DMM-R  (-0.2492)
R2152: O2+DMM-R=>DMM-RO2  (-0.2487)

R2148: DMM-R=>CH2O+CH3OCH2  (0.2292)
R2153: DMM-RO2=>O2+DMM-R  (0.2210)

R2126: CH3O+DMM=>CH3OH+DMM-R  (-0.1223)
R2218: DMM-O2QOOH=>DMM-R2OOH  (-0.1170)

R2167: 2DMM-RO2=>O2+2DMM-RO  (0.1001)

Summary Sensitivity local Analysis

Figure 2: Summary of the local sensitivity anal-
ysis for DMM ϕ = 1, P = 10atm, T = 600 −
1300K.

3.2. Model Optimization and Valida-
tion

All mechanisms were finally validated against a
wide range of experiments, including IDTs in
STs, speciations in JSRs and Plug Flow Reac-
tors, and LFSs. Figure 3 shows the compari-
son between the detailed, lumped and optimized
model against the experimental measurements
for OME1 from the work of Gillespie [5]. It
is clear from the plot that the optimized model
has better performance than the lumped one, re-
covering the error introduced by the latter with
respect to the detailed model itself. The two
datasets with equivalence ratios equal to 0.5 and
1 were not employed during the optimization.
However, the model still reproduces quite rea-
sonably the trends and its performances are still
good. The DMM rates were consistently used
as the reference kinetic parameters throughout
the process. To validate the proposed proce-
dure, Figure 4 displays three distinct datasets
for OME2 as a fuel, each at a pressure of 20bar
and varying equivalence ratios. The datasets for
equivalence ratios of 0.5 and 1 were not utilized
in the optimization process. Although the model
performs well overall, the set at ϕ = 1 exhibits
some inaccuracies, likely attributable to the lim-
ited number of experimental datasets used dur-
ing optimization. More rigorous constraints on
the process would undoubtedly improve the re-
sults. Similarly, Figure 5 illustrates the same
considerations for OME3. For this specie two
datasets were utilized as optimization targets,
specifically IDT at P = 10 − 20 bar and ϕ = 1.
When examining the results obtained at ϕ = 2,
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Reaction Class Summary
H-abstraction by OH OH +OMEn → H2O +OMEn −R
H-abstraction by H H +OMEn → H2 +OMEn −R
H-abstraction by O O +OMEn → OH +OMEn −R
H-abstraction by HO2 HO2 +OMEn → H2O2 +OMEn −R
H-abstraction by O2 O2 +OMEn → HO2 +OMEn −R
H-abstraction by CH3 CH3 +OMEn → CH4 +OMEn −R
H-abstraction by CH3O2 CH3O2 +OMEn → CH3O2H +OMEn −R

Table 1: Summary of the H-abstraction reaction classes used within the optimization.

it was observed that the overestimation in the
medium temperature range was partially recov-
ered, and the underestimation introduced by the
lumped mechanism was significantly corrected.
Given the lack of experimental data, the opti-
mization target was the experimental dataset of
OME4 at ϕ = 1. Despite this constraint, the op-
timized model surpasses the detailed model (as
seen in Figure 6).
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Figure 3: IDTs of DMM at P = 3.5bar and
ϕ = 0.5 − 2. DMM and O2 are diluted in 99%
Ar.
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Figure 4: IDTs of OME2 at P = 20bar and ϕ =
0.5− 2. OME2 is diluted in Air.
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Figure 5: IDTs of OME3 at P = 20bar and ϕ =
0.5− 2. OME3 is diluted in Air.
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Figure 6: IDTs of OME4 at P = 10− 20bar and
ϕ = 1. OME4 is diluted in Air.
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Lumped Optimized
Class Species A β Eatt/R A β Eatt/R
H-abstraction by OH OME1 8.52·102 3.21 -1860.85 4.58·102 3.17 -1866.21

OME2 2.91·102 3.33 -2002.62 1.58·102 3.29 -2149.56
OME3 5.20·102 3.27 -1926.05 2.76·102 3.23 -2008.48
OME4 8.22·102 3.22 -1870.32 4.40·102 3.18 -1891.45

H-abstraction by H OME1 1.30·106 2.44 4826.49 4.11·106 2.38 4570.93
OME2 1.57·106 2.31 4915.92 4.56·106 2.25 4719.35
OME3 4.55·106 2.20 4986.44 1.33·107 2.15 4863.01
OME4 8.26·106 2.15 5010.74 2.68·107 2.09 4858.39

Table 2: Kinetic constant parameters for H-abstraction by OH and H, for the nominal mechanism and
the optimized one.

4. Conclusions
In this work, an optimization methodology was
applied to calibrate the reaction rate of differ-
ent classes of reaction. The presented method
resulted in a kinetic mechanism consistent with
the underlying chemistry, while also achieving
good agreement with experimental data, includ-
ing data points not included in the optimiza-
tion process. The methodology largely reduces
the number of parameters to be considered and
therefore it is applicable even in the case where a
large number of important reactions are present.
The methodology allows the discovery and cali-
bration of parameters that are difficult to obtain
with computational chemistry tools or experi-
mental measurements, or which have not been
studied yet. The optimization results are sum-
marized in Figure 7 in terms of CM index per
each model and each fuel. Some refinements
can be envisioned in the next future: first of
all, the optimization can be extended to the re-
maining reaction classes of OMEs, thus extend-
ing the number of degrees of freedom of the sys-
tem. The scaling factors are the crucial element
for both optimization and generation. By uti-
lizing the sensitivity analysis method proposed,
the most sensitive reactions can be identified,
and the mechanism can be appropriately cate-
gorized.
————————————————————
—
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