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Abstract

Current deep-space missions heavily count on ground-based operations. Although
reliable, ground slots will saturate soon, so hampering the current momentum in
space exploration. EXTREMA is an ERC-funded project enabling self-driving space-
craft, challenging the current paradigm and aiming, among others, at autonomously
engineering ballistic capture. This work presents at first a characterization of
ballistic capture corridors, time-varying manifolds supporting capture that can be
targeted far away from the planet. Then, an autonomous ballistic capture algorithm
is discussed. The aim is to devise an algorithm suitable for interplanetary spacecraft
with limited control authority and onboard resources. The algorithm is applied to
synthesize corridors at Mars. It envisages a novel methodology to construct families
of ballistic capture orbits and compute the backbone of capture sets. Families are
obtained by solving a sequence of well-posed three-point boundary value problems.
The backbone is derived by exploiting a method based on Lagrangian descriptors.
The algorithm performance is assessed and its limitations are discussed.





Sommario

Attualmente le missioni interplanetarie fanno pesantemente uso delle operazioni
da terra. Sebbene affidabili, gli slot a terra verranno presto saturati, ostacolando
l’attuale impulso dell’esplorazione spaziale. EXTREMA è un progetto finanziato
dall’ERC che abilita veicoli spaziali a guida autonoma, sfidando il paradigma attuale
e mirando, tra le altre cose, ad ingegnerizzare la cattura gravitazionale autonoma.
Questo lavoro presenta dapprima una caratterizzazione dei corridoi di cattura
gravitazionale, varietà tempo-varianti che supportano la cattura e che possono
essere bersagliati lontano dal pianeta. Successivamente, viene discusso l’algoritmo
di cattura gravitazionale autonoma. L’obiettivo è quello di concepire un algoritmo
adatto a veicoli spaziali interplanetari con autorità di controllo e risorse di bordo
limitate. L’algoritmo viene applicato per sintetizzare corridoi di cattura a Marte ed
implementa una metodologia innovativa per costruire famiglie di orbite di cattura
gravitazionale e calcolare la struttura portante, denominata backbone, degli insiemi
di cattura. Le famiglie di orbite sono ottenute risolvendo una sequenza di problemi
al contorno a tre punti. La backbone viene ricavata sfruttando un metodo basato
sui descrittori lagrangiani. Le prestazioni dell’algoritmo sono valutate ed i suoi
limiti vengono discussi.
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1

Introduction

The space sector is experiencing a flourishing growth. The space economy is
booming. Integrated, space-based services will soon benefit mankind at unprece-
dented levels. The momentum characterizing the near-Earth space will soon affect
outer space as well. Evidence is mounting that the near future will be characterized
by a large amount of deep-space missions [1–4]. In the last decade, CubeSats
have granted affordable access to space due to their reduced manufacturing costs
compared to traditional missions. At the present-day, most miniaturized space-
craft has thus far been deployed into near-Earth orbits, but soon a multitude of
interplanetary CubeSats will be employed for deep-space missions as well [5, 6].

1.1 Context

The great amount of nano satellite missions recently launched or currently under
study is the most concrete proof of what is expected to be the next CubeSat
revolution. The infographic in Figure 1.1a shows the Agenzia Spaziale Italiana
(ASI)’s CubeSats fleet funded through the recently launched ALCOR programme1.
On the other hand, the European Space Agency (ESA)’s technology CubeSat
fleet funded in General Support Technology Programme (GSTP) Fly Element2 is
proposed in Figure 1.1b. These are just two, non-exhaustive examples. Other space
agencies like the National Aeronautics and Space Administration (NASA) and the
Japan Aerospace Exploration Agency (JAXA), and numerous private companies are
presently operating or designing miniaturized platforms. Advancement in services to
support the thriving small satellite market is ongoing, thereby encouraging formation
of CubeSat fleets for the future massive exploration of the inner solar system.

1https://www.asi.it/2022/05/lagenzia-spaziale-italiana-investe-
sui-nanosatelliti-attraverso-un-nuovo-programma-di-sviluppo-per-
tecnologie-e-missioni-satellitari/ [last accessed Dec 1, 2022].

2https://www.esa.int/Enabling_Support/Space_Engineering_
Technology/Shaping_the_Future/About_the_General_Support_Technology_
Programme_GSTP [last accessed Dec 1, 2022].

https://www.asi.it/2022/05/lagenzia-spaziale-italiana-investe-sui-nanosatelliti-attraverso-un-nuovo-programma-di-sviluppo-per-tecnologie-e-missioni-satellitari/
https://www.asi.it/2022/05/lagenzia-spaziale-italiana-investe-sui-nanosatelliti-attraverso-un-nuovo-programma-di-sviluppo-per-tecnologie-e-missioni-satellitari/
https://www.asi.it/2022/05/lagenzia-spaziale-italiana-investe-sui-nanosatelliti-attraverso-un-nuovo-programma-di-sviluppo-per-tecnologie-e-missioni-satellitari/
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shaping_the_Future/About_the_General_Support_Technology_Programme_GSTP
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shaping_the_Future/About_the_General_Support_Technology_Programme_GSTP
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shaping_the_Future/About_the_General_Support_Technology_Programme_GSTP
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(a) ASI’s CubeSat fleet funded through ALCOR programme. Image credits: ASI.

(b) ESA’s technology CubeSat fleet funded in GSTP Fly Element. Image credits: ESA.

Figure 1.1: Non-exhaustive examples of the multitude of miniaturized probes (e. g., Cube-
Sats) that will soon permeate the inner solar system.

Nevertheless, the current paradigm for deep-space missions strongly relies on
ground-based operations [7]. Although reliable, this approach will rapidly cause
saturation of ground slots, so hampering the current momentum in space exploration.
At the actual pace, human-in-the-loop, flight-related operations for deep-space
missions will soon become unsustainable.
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1.2 EXTREMA

EXTREMA3 (short for Engineering Extremely Rare Events in Astrodynamics for
Deep-Space Missions in Autonomy) enables self-driving spacecraft. By challenging
the current paradigm under which spacecraft are piloted in interplanetary space,
EXTREMA addresses the following big research question (RQ) [5, 6, 8]

EXTREMA big research question

To what extent can we navigate the solar system free of human supervision?

Self-driving spacecraft become the main focus: machines capable of traveling
in deep space and autonomously reaching their destination. These systems are
used to engineer ballistic capture (BC) [9–12], thereby proving the effectiveness
of autonomy in a complex scenario. The project has been awarded a European
Research Council (ERC) Consolidator Grant in 2019.

Successfully freeing deep-space probes from human supervision will significantly
reduce the overall operation costs. The disruptive innovation of EXTREMA is
summarized in the following key aspects [5]:

i) autonomous determination of the spacecraft position is enabled by extracting
information from the surrounding environment;

ii) increased operational risks is facilitated by the rising multitude of miniaturized,
low-cost, deep-space probes.

iii) temporary orbiting about a planet is unlocked by proving the feasibility of
BC for systems characterized by low or no control authority.

A comprehensive overview of EXTREMA is given in Figure 1.2. The project is
erected on three pillars, each one designed to answer a specific operational research
question (ORQ):
• Pillar 1 is about autonomous navigation, so aiming to develop algorithms
and techniques to reconstruct the state of the spacecraft through optical
navigation [13–15];
• Pillar 2 faces autonomous guidance and control, so aiming to develop state-
of-the-art trajectory computing algorithms under a closed-loop guidance
paradigm, in which a new trajectory is re-computed on board whenever
required [16, 17];
• Pillar 3 is the focus of this dissertation and deals with autonomous ballistic

capture (ABC), so aiming to validate algorithms developed in Pillars 1 and 2
in a complex scenario appealing for CubeSats missions.

Three experiments producing intermediate results are foreseen, one within each pillar.
They are instrumental for the EXTREMA simulation hub (ESH), an integrated ex-
perimental facility to perform dynamical simulations of the spacecraft–environment
interaction, so allowing high-fidelity testing of autonomous guidance, navigation,
and control (GNC) systems for interplanetary CubeSats.

3https://dart.polimi.it/extrema-erc/ [last accessed Dec 1, 2022].

https://dart.polimi.it/extrema-erc/
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Impact
Big Research Question: To what extent can we navigate the solar system free of human supervision?

Hypothesis: We can enable deep-space, limited-budget spacecraft to determine their position using information 
embedded in the environment, to plan their trajectory using on-board available computational resources, and to govern 
their motion using on-board low-thrust propulsion, for the duration of an interplanetary mission.

Objective 1: To demonstrate that minor 
bodies in the inner solar system can be 
reached without ground interaction

Objective 3: To simulate the autonomous 
spacecraft orbital motion in deep space 
while still on ground

Objective 2: To prove that spacecraft with 
limited control authority can attain 
temporary orbits about inner planets

Pillar 1: Autonomous navigation
ORQ 1: What information can we extract from the 
environment to estimate spacecraft state in autonomy?

Pillar 2: Autonomous guidance and control
ORQ 2: Given current and target states, how can we plan 
the path to follow and enforce it autonomously?

Pillar 3: Autonomous ballistic capture
ORQ 3: Given the initial state, how to achieve ballistic 
capture at Mars without any a-priori instruction?

Experiment 1

Experiment 2

Experiment 3

Simulation Hub: Spacecraft-Environment

Simulation Hub: 
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Case Study 1:  
Mission to an asteroid

Research 
Output

EXTREMA

Case Study 2: 
Mission to Mars
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Closed-loop 
Guidance

Ballistic capture 
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Figure 1.2: Overview of the EXTREMA project objectives and structure. EXTREMA (short for Engineering Extremely Rare Events in
Astrodynamics for Deep-Space Missions in Autonomy) enables self-driving spacecraft, challenging the current paradigm under which spacecraft
are piloted in interplanetary space. Image credits: EXTREMA team at DART Group [5].
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Figure 1.3: Earth–Mars low-thrust transfer culminating in ballistic capture at Mars.

1.3 Motivation

In EXTREMA, BC is used because it is a desirable solution for limited-control
platforms, which cannot afford to enter into orbits about a planet due to a lack of
significant control authority. The key is to accomplish low-thrust orbits culminating
in BC, as shown in Figure 1.3 [10, 12]. Massive numerical simulations are required
to find the specific conditions supporting capture. In the method shown in [18],
stable sets are computed via grid sampling and propagation. Then, BC orbits with
prescribed features are extracted [19]. Millions of initial conditions are integrated
and classified according to the orbits they generate. Initial conditions (ICs) granting
capture define a capture set, which in turn is used to find ballistic capture corridors
(BCCs) [11]: time-varying manifold supporting capture that can be targeted far
away from the planet.

To grant spacecraft the capability to manipulate stable sets in order to self-
compute a BCC is crucial. Nevertheless, stable sets onboard computation is not
an option. Moreover, these sets depend on both capture epoch and osculating
eccentricity, so they cannot be computed once for all [18]. Thus, the challenge in
EXTREMA Pillar 3 is to develop and validate an algorithm compatible with the
onboard resources.

1.4 Research questions

BC mechanism is suited for limited-control platforms, which cannot afford to enter
into orbits about a planet because of the lack of proper means. In Pillar 3, the
object of study is attaining BC in autonomy. The spacecraft assumed already in
deep space has to acquire BC at Mars without relying on any information provided
from ground. Mars is chosen without loss of generality due to its relevance in the
long-term exploration [5, 6]. This leads to EXTREMA’s third ORQ.
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Operational research question 3

Given the initial state, how can we achieve ballistic capture at Mars without
any a priori instruction?

Starting from the ORQ3, a set of detailed RQs is elaborated to specifically drive the
research presented in this dissertation and provide a proper answer to the ORQ3.

Research questions

i) How can we characterize ballistic capture corridors?
ii) How to synthesize high-fidelity ballistic capture corridors that are com-

putationally inexpensive for onboard usage?
a) How can we generate new ballistic capture orbits on board?
b) To what extent can we exploit Lagrangian indicators to extract

dynamical insight and build ballistic capture corridors?
c) How accurate are ballistic capture corridors constructed on board?

Two research objectives (ROs) related to the RQs are set as well.

Research objectives

i) Characterize ballistic capture corridors.
ii) Develop an autonomous ballistic capture algorithm for inexpensive

synthesis of high-fidelity ballistic capture corridors.

1.5 Dissertation overview

Chapter 1 introduces the context, the motivation, the research questions, and the
objectives of this study. The dynamics, variational equations, and some useful
mathematical tools exploited throughout the work are discussed in Chapter 2.
Chapters 3 and 4 present the state of the art for the ballistic capture mechanism
and Lagrangian coherent structures, respectively. Chapter 4 terminates with a
trade-off among extraction techniques. In Chapter 5, ballistic capture corridors are
characterized to answer research question i) and achieve the associated research
objective. Chapter 6 provides a detailed overview of the autonomous ballistic capture
algorithm. In Chapters 7–9, the core methods implemented in the autonomous
ballistic capture algorithm are covered, one per chapter. The problem statements
associated with each method are established, methodologies are discussed, and
results are presented. Eventually, chapters conclude by summarizing the major
findings. As a whole, Chapters 6–9 answer research question ii). Final remarks and
recommendations for future work are given in Chapter 10.
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1.6 Publications and contribution to the field

During the years of my Philosophiæ Doctor (PhD), I had the chance to present my
work at several conferences and to publish on peer-reviewed journals. I contributed
to several proposals writing. Furthermore, I actively partook in the Phase A study
of the Lunar Meteoroid Impacts Observer (LUMIO) lunar CubeSat mission and I
am a member of the team currently involved in Phase B. Additionally, I conducted
research activity on qualitative analysis of the dynamics in non-autonomous systems
for Centre National d’Études Spatiales (CNES).

LUMIO is a 12U CubeSat that will be placed on a halo orbit at Earth–Moon
L2 to observe, quantify, and characterize meteoroid impacts on the lunar farside
[20, 21]. LUMIO wants to quantify the luminous energy of meteoroid impacts
to the Moon in the equivalent impact kinetic energy range at the Earth from
10−6 to 10−4 kton TNT Equivalent. Additionally, the mission aims to detect new
meteoroid impacts on the Moon in the equivalent kinetic energy range from 10−4

to 10−1 kton TNT Equivalent [22]. The expected temporal distribution of the
detected lunar impact flashes is shown on the left y -axis of Figure 1.4. Figure 1.5
shows the potential scientific contribution of the LUMIO CubeSat compared to
data of previous programmes [23]. The comparison shows how LUMIO will detect
new impacts in the range at higher energy (green background) and will contribute
to refining the knowledge in the lower energetic range (light blue background).
Some of the impacts in the high-energy range cannot be successfully detected by
the LUMIO-Cam (yellow diamonds in the plot). They saturate both detectors due
to their high energy [20].

The research activity funded by CNES and titled “Généralisation du concept
de variétés invariantes at applications à la conception des missions d’exploration
de petits corps” is briefly introduced [24]. The study exploited generalization
of invariant manifolds theory to non-autonomous dynamical systems to perform
a qualitative analysis of the dynamics around small bodies in order to highlight
practical stability regions. The methodology was applied to the case studies of
Martian Moons eXploration (MMX) and Hera missions. My contribution was in
relation to Hera mission. Specifically, a qualitative analysis of the natural motion
about the Didymos binary asteroid system was carried out to compute bounded
orbits useful for the global characterization of the asteroids belonging to the system
and to investigate potential landing trajectories. Results were obtained in the
perturbed bi-elliptic restricted 4-body problem (BER4BP). Figures 1.6 and 1.7 show
the resulting Lagrangian descriptor (LD) scalar fields used to search for islands
of bounded motion. Figure 1.6 focuses on the case of distant retrograde orbits
(DROs), while Figure 1.7 is about Sun-synchronous terminator orbits (SSTOs).
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Figure 1.4: Estimation of the temporal distribution of detected lunar impacts of LUMIO
lunar CubeSat. On the left y -axis, the approximately daily number of impacts in 1 deg
bins of solar longitude. Impact kinetic energy KE≥ 10−6 kton TNT Equivalent, Earth
equivalent. On the right y -axis, the phase angle β.

Figure 1.5: Comparison of the estimated LUMIO lunar CubeSat scientific return with the
scientific return of previous programmes. Logarithmic scale plot. The plot is an elaborated
version of Figure 9 in [23], courtesy of Dr. R. M. Suggs, Dr. D. E. Moser, Dr. W. J. Cooke,
and Dr. R. J. Suggs.
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Figure 1.6: Forward LD scalar field in the spatial perturbed BER4BP. Families of resonant
three-dimensional DROs are computed in the spatial CR3BP.
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Figure 1.7: Levels of LD in the perturbed BER4BP computed while looking for SSTOs.
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Most of the research activity outcome was already presented in various forms
(i. e., papers, presentations, technical reports). The list of contributions to the
field split among journal articles, book chapters, conference papers, and workshop
presentations is provided below.

Journal articles

[J6] Quinci A, Merisio G, et al. “Qualitative study of ballistic capture at Mars
via lagrangian descriptors”. In: Communications in Nonlinear Science and
Numerical Simulation (-). Submitted on April 13, 2022. Under review.

[J5] Raffa S, Merisio G, et al. “Finding regions of bounded motion in binary
asteroid environment using Lagrangian descriptors”. In: Communications in
Nonlinear Science and Numerical Simulation (-). Submitted on March 14,
2022. Under review (3rd round).

[J4] Caleb T, Merisio G, et al. “Stable sets mapping with Taylor differential
algebra with application to ballistic capture orbits around Mars”. In: Celestial
Mechanics and Dynamical Astronomy 134.39 (2022). DOI: 10.1007/
s10569-022-10090-8.

[J3] Cervone A, Topputo F, Speretta S, Menicucci A, Turan E, Di Lizia P,
Massari M, Franzese V, Giordano C, Merisio G, et al. “LUMIO: A CubeSat
for observing and characterizing micro-meteoroid impacts on the lunar far
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actaastro.2022.03.032.

[J2] Merisio G and Topputo F. “Present-day model of lunar meteoroids and
their impact flashes for LUMIO mission”. In: Icarus 389 (2023), p. 115180.
DOI: 10.1016/j.icarus.2022.115180.

[J1] Topputo F, Merisio G, et al. “Meteoroids detection with the LUMIO lunar
CubeSat”. In: Icarus 389 (2023), p. 115213. DOI: 10.1016/j.icarus.
2022.115213.

Book chapters

[B1] Di Domenico G, Andreis E, Morelli AC, Merisio G, et al. “The ERC-funded
EXTREMA project: Achieving self-driving interplanetary CubeSats”. In:
Modeling and Optimization in Space Engineering — New Concepts and
Approaches. Accepted on March 31, 2022. In press. Springer.

Conference papers

[C17] Merisio G and Topputo F. “Backbone of ballistic capture set”. In: 33rd
AAS/AIAA Space Flight Mechanics Meeting (Austin, Texas, USA). 2023,
pp. 1–22.

https://doi.org/10.1007/s10569-022-10090-8
https://doi.org/10.1007/s10569-022-10090-8
https://doi.org/10.1016/j.actaastro.2022.03.032
https://doi.org/10.1016/j.actaastro.2022.03.032
https://doi.org/10.1016/j.icarus.2022.115180
https://doi.org/10.1016/j.icarus.2022.115213
https://doi.org/10.1016/j.icarus.2022.115213
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1.7 Notation and conventions

The notation and conventions used throughout the manuscript are herewith intro-
duced. Scalars are indicated with lower-case letters (e. g., a). Vectors are indicated
with bold lower-case letters (e. g., p = [a b c]>), while their magnitudes with the
same letter but in regular font (e. g., p = ‖p‖). Reference quantities are written
with a hat (e. g., p̂). Small variations are prepended by δ (e. g., δp). Usually, the
position vector is r = [x y z ]>, the velocity vector is v = [ẋ ẏ ż ]>= [vx vy vz ]

>, the
state space vector is x =

[
r> v>

]>, and the angular momentum is h = r×v = [r∧]v,
where the skew-symmetric matrix [r∧] is defined as

[
r∧
]

:=

 0 −z y
z 0 −x
−y x 0

 . (1.1)

Specific notation is introduced contextually on an as-needed basis.

Acknowledgments The work presented in this dissertation has received funding from
the ERC under the European Union’s Horizon 2020 research and innovation programme
(Grant Agreement No. 864697). In Section 1.6, research on the LUMIO CubeSat mission
has been conducted under ESA Contract No. 4000130257/20/NL/AS within the GSTP,
and has received support from the national delegations of Italy (ASI), the Netherlands
(NSO), and Norway (NOSA). The author also acknowledge the members of the LUMIO
team for their support and the ESA experts for reviewing the Phase A design. Research on
project “Généralisation du concept de variétés invariantes at applications à la conception
des missions d’exploration de petits corps” introduced in Section 1.6 has received funding
from the French space agency CNES under the Research and Technology programme
(Contract R-S20/BS-0005-066, Reference DCAS/689/2022). The author would like to
thank the EXTREMA team at the Deep-space Astrodynamics Research & Technology
(DART) Group4, Politecnico di Milano, for the extremely valuable content provided to
write parts of Sections 1.1 and 1.2.

“Che importa il nome dell’autore in copertina? Trasportiamoci col pensiero di
qui a tremila anni. Chissà quali libri della nostra epoca si saranno salvati, e di
chissà quali autori si ricorderà ancora il nome. Ci saranno libri che resteranno
famosi ma che saranno considerati opere anonime come per noi l’epopea
di Ghilgamesh; ci saranno autori di cui sarà sempre famoso il nome ma di
cui non resterà nessuna opera, come è successo a Socrate; o forse tutti libri
superstiti saranno attribuiti a un unico autore misterioso, come Omero.”

Italo Calvino, Se una notte d’inverno un viaggiatore

4https://dart.polimi.it/ [last accessed Dec 1, 2022].
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Following the nomenclature in [25], a target and a primary are defined. The
target is the body around which the ballistic capture is studied. The primary is the
main body around which the target revolves. Target and primary masses are mt

and mp, respectively. The mass ratio of the system is µ = mt/(mt +mp). This
work is focused on ballistic capture having Mars as target and the Sun as primary5.

2.1 Reference frames

The following reference frames are used: J2000, ECLIPJ2000, RTN@ti , and RPF.

J2000. Defined on Earth’s mean equator and equinox, J2000 is an inertial frame
determined from observations of planetary motions, which was realized to coincide
almost exactly with the International Celestial Reference Frame (ICRF) [26]. The
J2000 inertial frame (also known as EMEJ2000) is built-in in SPICE6 [27, 28]. In
SPICE, the ICRF and J2000 frames are considered the same. The origin of the
J2000 can be chosen arbitrarily.

ECLIPJ2000. This is an inertial frame built-in in SPICE, which is defined on
the ecliptic coordinates and based on the J2000 inertial frame. The origin of the
ECLIPJ2000 frame can be chosen arbitrarily.

RTN@ti . The radial-tangential-normal of date frame (RTN@ti) is an inertial
frame frozen at a prescribed epoch ti . The frame is centered at the target. The
x-axis is aligned with the primary–secondary direction, the z-axis is normal to the

5See Table 2 in [25] for a complete list of targets and their primaries.
6SPICE is the information system developed by Navigation and Ancillary Information Facility

(NAIF) to assist NASA scientists and engineers in mission modeling, planning, interpreting
scientific observations, and executing activities. https://naif.jpl.nasa.gov/naif/ [last
accessed Dec 1, 2022]

https://naif.jpl.nasa.gov/naif/
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primary–secondary plane in the direction of their angular momentum, and the y -axis
completes the dextral orthonormal triad.

RPF. The roto-pulsating frame (RPF) is a rotating frame centered at the primary–
target system barycenter. The rotation is such that both the target and the primary
are at rest in the RPF. In this frame, the x-axis points from the primary to the
target, the z-axis is directed as the angular momentum of the system, and the
y -axis completes the dextral orthonormal triad. The transformation from and to
the RPF involves a change of origin, a rotation, and a scaling [29].

2.2 Ephemerides

The precise states of the Sun and the major planets are retrieved from the Jet
Propulsion Laboratory (JPL)’s planetary ephemerides de440s.bsp7 (or DE440s)
[30]. Additionally, the ephemerides mar097.bsp of Mars (the target) and its
moons are employed8. Unless otherwise specified, the following generic leap seconds
kernel (LSK) and planetary constant kernel (PCK) were used: naif0012.tls,
pck00010.tpc, and gm_de440.tpc9.

2.3 Equations of motion

The Equations of motion (EoM) of the restricted n-body problem are considered.
Unless otherwise specified, the gravitational attractions of the Sun, Mercury, Venus,
Earth–Moon (B10), Mars (central body), Jupiter (B), Saturn (B), Uranus (B),
Neptune (B), Pluto (B), Phobos, and Deimos are taken into account. Additionally,
solar radiation pressure (SRP), Mars’ non-spherical gravity (NSG), and relativistic
corrections [31] (Schwarzschild solution, geodesic precession, and Lense–Thirring
precession) are also included in the model. The assumed spacecraft parameters
needed to evaluate the SRP perturbation are collected in Table 2.1. They are
compatible with the parameters of a 12U deep-space CubeSat [32]. Terms of
the infinite series modeling NSG are considered up to degree ndeg = 20 and order
nord = 20 [10]. The coefficients to evaluate the NSG perturbation are retrieved
from the MRO120F gravity field model of Mars. Data are publicly available in
the file jgmro_120f_sha.tab, archived in the Geosciences Node of NASA’s

7Data publicly available at: https://naif.jpl.nasa.gov/pub/naif/generic_
kernels/spk/planets/de440s.bsp [retrieved Dec 1, 2022].

8~/spk/satellites/mar097.bsp [retrieved Dec 1, 2022].
9Data publicly available at: https://naif.jpl.nasa.gov/pub/naif/generic_

kernels/lsk/naif0012.tls, and ~/generic_kernels/pck/pck00010.tpc [re-
trieved Dec 1, 2022]. The gm_de440.tpc PCK kernel was written from scratch, courtesy
of Dr. C. Giordano, because the version consistent with ephemerides DE440s is not released yet.

10Here B stands for barycenter.

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de440s.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de440s.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/mars097.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/naif0012.tls
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/naif0012.tls
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/pck00010.tpc
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Table 2.1: Spacecraft parameters for SRP evaluation [32].

Parameter Unit Value

Mass–SRP area ratio m/A kgm−2 75
Coefficient of reflectivity Cr - 1.3

Planetary Data System11. Far from Mars, when in heliocentric motion, the NSG
perturbation is neglected. EoM are integrated in the J2000 inertial frame.

The EoM in a non-rotating Mars-centered reference frame are [10, 25, 31]

r̈ =− µt

r3
r−∑

i∈P
µi

(
ri

r3
i

+
r− ri

‖r− ri‖3

)
+

QA

m

r− r�

‖r− r�‖3
−Rµt

r2

Λ
R>r

r
−

 J
K
H

+

+
µt

c2 r3

[(
4
µt

r
−v2

)
r+4 (r · ṙ) ṙ

]
+2 (Ω× ṙ)+2

µt

c2 r3

[
3

r2
(r× ṙ)(r ·J)+ (̇r×J)

] (2.1)

where µt is the gravitational parameter of the target body (i. e., Mars in this work);
r and ṙ = v are the position and velocity vectors of the spacecraft with respect to
the target, respectively, being r and v their magnitudes; P is a set of n−2 indexes
(where n concerns the n-body problem) each one referring to the perturbing bodies;
µi and ri are the gravitational parameter and position vector of the i-th body with
respect to the target, respectively; A is the Sun-projected area on the spacecraft
for SRP evaluation; m is the spacecraft mass; r� is the position vector of the Sun
with respect to the target; R is the time-dependent matrix transforming vector
components from the Mars-fixed frame to the non-rotating frame in which the EoM
are written; Λ, J, K , and H are defined as in [33]; c = 299792458ms−1 (from
SPICE [27, 28]) is the speed of light in vacuum; J is the rotating central body’s
angular momentum per unit mass in the J2000 frame. Then, Q = LCr/(4πc) where
Cr is the spacecraft coefficient of reflectivity, and L = S�4πd2

AU is the luminosity
of the Sun. The latter is computed from the solar constant12 S� = 1367.5Wm−2

evaluated at dAU = 1AU. Lastly, Ω = 3
2 ṙ�/t ×

(
−µ�r�/t

)
/
(

c2 r 3
�/t

)
where µ� is

the gravitational parameter of the Sun; r�/t and ṙ�/t = v�/t are the position and
velocity vectors, respectively, of the target body with respect to the Sun, being
r�/t and ṙ�/t = v�/t their magnitudes.

Contributions of individual terms in Eq. (2.1) are compared in Figure 2.1. The
specific force fi in km s−2 associated to each term is plotted as a function of the
distance r from the central body expressed in Mars’ radii. Distances reach up to
twice the semi-major axis of Mars.

11Data publicly available at: https://pds-geosciences.wustl.edu/mro/mro-m-
rss-5-sdp-v1/mrors_1xxx/data/shadr/ [retrieved Dec 1, 2022].

12https://extapps.ksc.nasa.gov/Reliability/Documents/Preferred_
Practices/2301.pdf [last accessed Dec 1, 2022].

https://pds-geosciences.wustl.edu/mro/mro-m-rss-5-sdp-v1/mrors_1xxx/data/shadr/
https://pds-geosciences.wustl.edu/mro/mro-m-rss-5-sdp-v1/mrors_1xxx/data/shadr/
https://extapps.ksc.nasa.gov/Reliability/Documents/Preferred_Practices/2301.pdf
https://extapps.ksc.nasa.gov/Reliability/Documents/Preferred_Practices/2301.pdf
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Figure 2.1: Contributions of individual terms in Eq. (2.1). Specific force fi associated to each term is plotted as a function of distance r from
the central body expressed in Mars’ radii, LU= R♂ = 3396.0km. Dashed lines mark peculiar distances from Mars: Mars SOI, Mars Lagrange
point L2 , 0.1 AU, 1AU, Mars semi-major axis, and 10AU.
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2.4 Variational equations

Given the EoM of a dynamical system, the motion of a particle is described by{
ẋ(t) = f(x, t)

x(t0 ) = x0
(2.2)

with x(t) ∈ Ω ⊆ Rn being the state vector of the system and t ∈ [ta, tb]⊆ R is the
independent variable representing time. Eq. (2.2) is a first-order differential equation
(also referred to as velocity map). In Section 2.3, the dynamics of the system is
described by second-order differential equations, which is then transformed to a
system of first-order differential equations. The transformation implies doubling the
number of equations. When the dynamics f explicitly depend on the independent
variable (typically, but not always, the time t) the system is labeled as non-
autonomous.

Integrating Eq. (2.2) gives the flow map of the system

ϕ
t
t0

: Ω 7→ Ω , x0 7→ ϕ
t
t0
(x0 ) = x(x0 , t0 ; t) (2.3)

which returns the state at time epoch t for each initial state x0 and initial time t0 .
From the flow map, the definition of the state transition matrix (STM) follows [34]

Φ := Φ(x0 , t0 ; t) = Dx0 ϕ
t
t0
(x0 ) = Dx0 x(x0 , t0 ; t) (2.4)

where D is the differential operator. The STM Φ can be propagated through{
Φ̇ = Dxf(x, t)Φ = A(x, t)Φ

Φ(x0 , t0 ; t0 ) = In×n

(2.5)

where A is the Jacobian of the velocity map and In×n is the identity matrix of size
n. Due to the term A(x(t), t) = Dxf(x(t), t) that depends on x(t), the integration
of Eqs. (2.2) and (2.5) must be carried out simultaneously. The joint system of
Eqs. (2.2) and (2.5) characterized by n+n2 relations constitutes what is usually
referred to as variational equations

ẋ(t) = f(x(t), t)

x(t0 ) = x0

Φ̇ = A(x, t)Φ

Φ(x0 , t0 ; t0 ) = In×n

. (2.6)

2.4.1 Analytical derivatives of the velocity map

When referring to dynamical systems, the representation of the state is not unique.
In fact, there is an infinite set of equivalent formulations. In this section, a Cartesian
representation is used, such that

x(t) =

[
r(t)
v(t)

]
=

[
r(t)
ṙ(t)

]
and ẋ(t) = f(x, t) =

[
v(t)

a(r,v, t)

]
=

[
ṙ(t)

r̈(r, ṙ, t)

]
. (2.7)
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The Jacobian of the velocity map is

A(x, t) =
∂ f(x, t)
∂x(t)

=


∂v(t)
∂ r(t)

∂v(t)
∂v(t)

∂a(r,v,t)
∂ r(t)

∂a(r,v,t)
∂v(t)


6×6

=

 03×3 I3×3

∂ r̈(r,̇r,t)
∂ r(t)

∂ r̈(r,̇r,t)
∂ ṙ(t)


6×6

(2.8)

where 03×3 and I3×3 are the null and identity matrices of size 3, respectively. If
r̈(r, t) does not depend on velocity ṙ, then

∂ r̈(r, t)

∂ ṙ(t)
= 03×3 . (2.9)

In this peculiar case, to obtain the Jacobian of the dynamics is therefore necessary
to compute only one term [35], the south-west block of the matrix in Eq. (2.8).
The Jacobian A(x, t) of the velocity field in Eq. (2.8), is computed as the sum of
the following terms, which are then individually derived,

∂ r̈(r, ṙ, t)
∂ r(t)

=
∂ r̈

∂ r

∣∣∣∣
sg

+
∂ r̈

∂ r

∣∣∣∣
3b

+
∂ r̈

∂ r

∣∣∣∣
srp

+
∂ r̈

∂ r

∣∣∣∣
nsg

+
∂ r̈

∂ r

∣∣∣∣
relc

, (2.10)

∂ r̈(r, ṙ, t)
∂ ṙ(t)

=
∂ r̈

∂ ṙ

∣∣∣∣
relc

. (2.11)

Central body spherical gravity field. The contribution arising from the term
associated with the central gravity field of the target body is given by [35]

∂ r̈

∂ r

∣∣∣∣
sg

=−µt

(
1

r 3
I3×3 −3

rr>

r 5

)
(2.12)

where the subscript ‘sg’ stands for ‘spherical gravity’ and rr> represents the dyadic
product, which results in a 3 ×3 matrix and should not be confused with the dot
product r>r = r · r = 〈r,r〉.

Third-body perturbations. The partial derivative of the acceleration generated
by third-body perturbations is given by [35]

∂ r̈

∂ r

∣∣∣∣
3b

=−∑
i∈P
µi

(
1

‖r− ri‖3
I3×3 −3

(r− ri )(r− ri )
T

‖r− ri‖5

)
(2.13)

where the subscript ‘3b’ stands for ‘third-body’.

Solar radiation pressure For the SRP term, the expression of the partial deriva-
tive assumes the following form [35]

∂ r̈

∂ r

∣∣∣∣
srp

=
CRLS

4πc

A

m

(
1

‖r− rs‖3
I3×3 −3(r− rs)

(r− rs)
T

‖r− rs‖5

)
(2.14)

where the subscript ‘srp’ stands for ‘solar radiation pressure’.
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Non-spherical gravity. The partial derivative for the NSG contribution is [33,
35]

∂ r̈

∂ r

∣∣∣∣
nsg

=
µt

r 3

([
R>r/r α

][ F G
G M

][ (
R>r/r

)>
α>

]
+

+
[
R>r/r d

][ 0 −1
−1 0

][ (
R>r/r

)>
d>

]
+

+

 N−Λ −O Q
−O −(N +λ) R
Q R −Λ


(2.15)

where the subscript ‘nsg’ stands for ‘non-spherical gravity’. Terms α , d, F , G , M,
N, O, Q, R , and Λ are defined as in [33].

Relativistic corrections. Partial derivatives of relativistic corrections are13
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where the subscript ‘relc’ stands for ‘relativistic corrections’.

2.5 Cauchy–Green strain tensor

Consider a perturbed state x0 = x̂0 +δx0 at time t0 , the evolution of the infinitesi-
mal perturbation after a time span T is [34]

δx(t0 +T ) = ϕ
t0+T
t0

(x0 )−ϕ
t0+T
t0

(̂x0 ) = Φt0+T
t0

δx0 +O(||δx0 ||2 ) (2.18)

where Φt0+T
t0

= Φ(x0 , t0 ; t0 +T ) is the STM for a finite time t = t0 +T . Thus,
the distance after a time span T due to the initial perturbation is given by the
Euclidean norm of δx(t0 +T )

||δx(t0 +T )||2 = 〈Φt0+T
t0

δx0 ,Φt0+T
t0

δx0 〉= δx>0 [Φ
t0+T
t0

]>Φt0+T
t0

δx0 = δx>0 ∆t0+T
t0

δx0 (2.19)

where ∆(x0 , t0 ; t0 +T ) = [Φt0+T
t0

]>Φt0+T
t0

is the finite-time Cauchy–Green strain
tensor (CGST). ∆t0+T

t0
is a symmetric, positive definite tensor. Its n eigenvalues

13Equations (2.16) and (2.17) are courtesy of Dr. C. Giordano, who derived and implemented
them in GRATIS (see Section 3.7).



22 2. Dynamical model

Figure 2.2: Poincaré map P transforming x into x′ = P(x) onto the Poincaré section S.
Figure from [37].

inform on the stretching magnitude along corresponding eigenvectors directions.
The eigenvalues λi (x0 ) and eigenvectors ξi (x0 ) of ∆t0+T

t0
(x0 ) satisfy [36]

∆t0+T
t0

ξi = λi ξi , and ||ξi ||= 1 , i = 1 , . . . , n. (2.20)

Moreover,
0 < λ1 ≤ ·· · ≤ λn, and ξi ⊥ ξj , i 6= j . (2.21)

The CGST ∆t
t0

quantifies the relative stretching of nearby trajectories for a given
time interval.

2.6 Poincaré and stroboscopic maps

Among dynamical systems mathematical tools, a useful construct is represented by
the Poincaré map (also referred to as first recurrence map) [37]. They are obtained
by intersecting the flow with a lower-dimensional surface, named Poincaré section,
transversal to the flow itself (see Figure 2.2). Stroboscopic maps are special types
of Poincaré maps defined when investigating a non-autonomous periodic dynamics,
so studying the system in intervals of period T time units.
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Figure 2.3: Material surfaceM(t) generated in the extended phase space be the flow
map fromM(t0 ). Figure from [36].

2.7 Material surface

A material surfaceM is a manifold of the phase space Ω× [α,β] generated by the
advection of a (n−1)-dimensional manifoldM(t0 )⊂ Ω by the flow map. Hence,

M(t) := ϕ
t
t0
(M(t0 )). (2.22)

Then, it is the time-t position of the initial surfaceM(t0 ) evolving under the flow.
Since ϕt

t0
(x0 ) is a diffeomorphism, the material surface at time t is as smooth as

the initial surfaceM(t0 ) and it is (n−1)-dimensional ∀t [36] (see Figure 2.3).

2.8 Numerical propagation

The EoM in Eq. (2.1) are integrated with the GRavity TIdal Slide (GRATIS) tool
[38] (see Section 3.7) in their nondimensional form to avoid ill-conditioning [25].
Normalization units are reported in Table 2.2. Numerical integration is carried
out either with MATLAB R©’s ode113 [39] or my_ode78 routines. The former
is a multistep, variable-step, variable-order (VSVO), Adams–Bashforth–Moulton
(ABM), predictor-corrector (PECE) solver of orders 1st to 13th14. The latter

14The highest order used appears to be 12th since a formula of order 13th is used to form the
error estimate and the function does local extrapolation to advance the integration at order 13th.
https://www.mathworks.com/help/matlab/ref/ode113.html [last accessed Dec 1,
2022].

https://www.mathworks.com/help/matlab/ref/ode113.html
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Table 2.2: Nondimensionalization units.

Unit Symbol Value Comment

Gravity parameter MU 42 828.376 km3 s−2 Mars’ gravity parameter µt

Length LU 3396.0000 km Mars’ radius R♂
Time† TU 956.281 42 s (LU3/MU)0.5

Velocity VU 3.551 255 8 km s−1 LU/TU
†
Time unit chosen such that the nondimensional period of a circular orbit of radius LU equals 2π.

implements the Dormand–Prince 8th-order embedded Runge–Kutta (DOPRI8)
propagation scheme [35], also known as RK8(7)13M15. This is an adaptive step,
8th-order Runge–Kutta (RK) integrator with 7th-order error control. Coefficients
were derived by Prince and Dormand [40]. Usually, the dynamics are propagated
with relative and absolute tolerances both set to 10−12 [25].

Two’s a company, three’s a crowd.

Proverb

15The notation RKp(q)sM is used when referring to a RK method of order p, with an embedded
step-size control of qth-order, and a total of s stages [35].
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The ballistic capture
mechanism

Ballistic capture allows a spacecraft to approach a planet and enter a temporary
orbit about it without requiring maneuvers in between. As part of the low-energy
transfers, it is a valuable alternative to Keplerian approaches. Exploiting BC grants
several benefits in terms of both cost reduction [41] and mission versatility [9, 42], in
general at the cost of longer transfer times [43, 44]. In the past, the BC mechanism
was used to rescue Hiten [45], and to design insertion trajectories in lunar missions
like SMART-1 [46] and GRAIL [47]. In the near future, BepiColombo will exploit
BC orbits to be weakly captured by Mercury [48, 49]. BC is an extremely rare
event [50] and requires acquiring a proper state far away from the target planet [9].

BC orbits are characterized by ICs escaping the target when integrated backward
and performing n revolutions about it when propagated forward, neither impacting
or escaping the target. In forward time, particles flying on BC orbits approach the
target coming from outside its sphere of influence (SOI) and remain temporarily
captured about it. After a certain time, the particle escapes if an energy dissipation
mechanism does not take place. To make the capture permanent, either a breaking
maneuver or the target atmosphere (if available) could be used [51, 52].

When searching for BC opportunities, most of the trajectories found are spurious
solutions typically not useful for mission design purposes [25]. Practical solutions
are detected via the regularity index16 S and regularity coefficient ∆S% [54]. The
aim is seeking for ideal orbits that present regular post-capture legs resulting in
n revolutions about the target similar in both orientation and shape. Numerical
experiments showed that high-quality, post-capture orbits are associated to small
regularity index and coefficient [25, 50, 53, 54]. Capture occurrence is quantitatively
measured through the capture ratio RC [50]. Typically, search spaces characterized
by a large capture ratio are desirable when looking for BC orbits.

16In previous works, this was referred to as stability index [25, 50, 53]. However, the adjustment
from stability to regularity index was proposed in [54] to avoid misunderstandings with the periodic
orbit stability index. The same nomenclature introduced in [54] is used in this dissertation.
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3.1 Weak stability boundary

Over the years, the weak stability boundary (WSB) was defined in several different
ways. It was initially identified as a fuzzy boundary region placed at approximately
1.5×106 km from the Earth in the Sun–Earth direction [45, 55]. An algorithmic
definition followed in [56], later extended in [18, 57, 58]. Then, it was interpreted as
the intersection of three sub-sets of the phase space [59, 60]. The WSB being closely
connected to BC [56], a formal definition and a methodology for its derivation from
weakly stable and unstable sets were finally proposed in [19]. The fascinating idea
of extending the WSB concept to the interstellar space including dark matter was
discussed in [61]. To date, despite the effort put in numerous works [57, 59, 60,
62, 63], both WSB and BC are still not completely understood. Nonetheless, a
connection between celestial and quantum mechanics was recently found exploiting
the WSB [64], providing a fresh perspective to tackle the problem.

3.2 Definition of particle stability

A particle stability is inferred using a plane in the three-dimensional physical space
[41]. According to the spatial stability definition provided in [25]. The following
indications are used to classify stability (see [25] for more details):

1) a particle completes a revolution around the target according to Remark 1
and Eq. (5) in [25];

2) a particle escapes from the target according to Remark 2 and Eq. (6) in [25];
3) a particle impacts with the target according to Remark 3 and Eq. (7) in [25].

Variants of Eq. (7) in [25] can be derived to locate impacts with target’s moons.
Based on its dynamical behavior, a propagated trajectory is said to be:
i) weakly stable (sub-set Wi) if the particle performs i complete revolutions

around the target without escaping or impacting with it or its moons;
ii) unstable (sub-set Xi ) if the particle escapes from the target before completing

the ith revolution;
iii) target–crash (sub-set Ki) if the particle impacts with the target before

completing the ith revolution;
iv) moon–crash (sub-set Mi) if the particle impacts with one of the target’s

moons before completing the ith revolution;
v) acrobatic (sub-set Di ) if none of the previous conditions occurs within the

integration time span.
Conditions ii)-v) apply after the particle performs (i −1) revolutions around the
target (see Figure 3.1). The sub-sets are defined for i ∈ Z\{0}, where the sign of
i informs on the propagation direction. When i > 0 (i < 0) the IC is propagated
forward (backward) in time. The overall domain, union of all sub-sets, is defined Ω .
A graph clarifying the relations between sub-sets is shown in Figure 3.2. A capture
set is defined as Cn

−1 :=Wn ∩X−1 . Therefore, it is the intersection between the
stable set in forward time Wn and the unstable set in backward time X−1 [25].
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Figure 3.1: Illustration of particle stability. Weakly stable set Wn in red, unstable set Xn in green, target-crash set Kn in purple, moon-crash set
Mn in blue, and acrobatic set Dn in yellow. Example with n = 1.
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Figure 3.2: Sets relations according to the algorithmic definition of WSB.

3.3 Design of ballistic capture orbits

Currently, two approaches are known for designing BC orbits: the technique
stemmed from invariant manifolds [62, 65], and the method based on stable sets
manipulation [19, 25]. The former gives insights into the dynamics but it is only
applicable to autonomous systems akin to the circular restricted three-body problem
(CR3BP), while the latter can be applied to more representative, non-autonomous
models, although it being computationally expensive [18, 50]. Lately, continuation
from periodic orbits computed in the autonomous case [54], the variational theory
for Lagrangian coherent structures (LCSs) [36, 66], and the Taylor differential
algebra [67] were applied to derive BC orbits and the WSB more efficiently [68, 69].

3.4 The role of solar gravity gradient

Previous works highlight the fundamental role covered by the solar gravity gradient
in the BC mechanism [43, 52]. The solar gravity gradient is computed as the first
order term of the Taylor expansion w.r.t. the position vector about the central
body (secondary) of the Sun (primary) gravitational attraction [43, 52]

δ̈r� ≈−µ�
(

1

‖r�‖3
I3×3 −3

r�r�>

‖r�‖5

)
δr (3.1)

with r� = r�(t) and δr = [x y z ]> since the expansion is computed about the origin
of the Mars-centered frame. In the RPF, it is computed as

δρ̈� ≈−
a3
♂(1 −µ)
‖r�‖3

[
−2 1 1

]
δρ (3.2)

where a♂ = 2.279×108 km is the semi-major axis of the Sun–Mars system, and
δρ = [(X −1 +µ) Y Z ]>.
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Figure 3.3: Capture sets C1
−1 and C6

−1 inspected against solar gravity gradient. Capture
sets and solar gravity gradient computed at capture epoch t0 set to December 9, 2023
at 12:00:00.00 (UTC). Nondimensional coordinates on the orbital plane i0 = Ω0 = 0rad
defined in the Mars-centered RTN@t0 frame.

Depending on where a spacecraft is currently flying, the solar gravity gradient
differently affects the spacecraft velocity. In particular, tangential velocity and solar
gravity field lines [43, 52]:

i) have opposite directions in the I and III quadrants;
ii) have the same directions in the II and IV quadrants.

The further the spacecraft is from Mars, the stronger is the solar gravity gradient.
The strongest effect is in correspondence of osculating apocenters of the orbit,
where the solar gravity gradient slowly raises or reduces the osculating semi-major
axis a of the orbits by small amounts [43]. In light of the considerable time spent
by the spacecraft in the apocenter region, the energy increases or decreases based
on the actual quadrant in which the spacecraft is flying [43].

Figure 3.3 shows an example17 where streamlines of the solar gravity gradient
are plotted on the background of capture sets C1

−1 and C6
−1 . Results are represented

in the Mars-centered RTN@t0 frame. As a consequence, the Sun direction is aligned
with the −x direction. In Figure 3.4, an example C1

−1 trajectory is inspected against
streamlines of the solar gravity gradient in the RPF.

17EoM include gravitational attractions of the Sun, Mercury, Venus, Earth–Moon (B), Mars
(central body), Jupiter (B), Saturn (B), Uranus (B) and Neptune (B), and SRP.
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Figure 3.4: C1
−1 trajectory inspected against the solar gravity gradient. Trajectory capture

epoch t0 set to December 9, 2023 at 12:00:00.00 (UTC). Capture point located in the IV
quadrant. Nondimensional coordinates in the RPF.

3.5 Effect of physical parameters

The influence on the BC phenomenon of the central body eccentricity and true
anomaly, the mass ratio, and the osculating orbital plane orientation of the particle
are herewith summarized based on the results reported in [50, 70].

Target eccentricity. Increasing eccentricity results in higher values of the capture
ratio RC and thus denser capture sets [50]. Moreover, trajectories obtained in the
CR3BP qualitatively differ from those computed in more realistic dynamics like
the elliptic restricted three-body problem (ER3BP) or n-body models. Therefore,
variations in the regularity index S are likely to be observed as well [50].

Target true anomaly. Variations in both RC and S are observed considering
different true anomalies ft of the target body. In particular [50]:

i) RC is maximized (i. e., capture set is larger) when:
a) ft ∈ [π/2 , 3π/2 ] for prograde orbits;
b) ft ∈ [0 , π/2 ] ∨ [3π/2 , 2π] for retrograde orbits;

ii) Smin is minimized (i. e., orbits are more regular) when ft ∈ [0 , π/2 ] for both
prograde and retrograde orbits.
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Mass ratio. The mass ratio µ covers a fundamental role in the capture probability
(quantitatively) and capability (qualitatively). The major findings of the assessment
carried out in [70] are:

i) the larger the mass ratio µ, the easier is the BC manifestation;
ii) for similar mass ratio µ, capture capability may be increased by the primary

and/or secondary having minuscule normalized radii;
iii) capture sets of systems with large mass ratios are structurally different from

those of exhibiting small mass ratios;
iv) post-capture stability with respect to primaries is nearly independent of the

mass ratio µ, but post-capture stability regarding their primaries is not;
v) ranges of Jacobi constant guaranteeing high capture probability and fine

capture capability exist and are obtained by merging results of prograde and
retrograde branches.

Particle osculating orbital plane orientation. The orientation of the plane
associated with the particle IC covers a role too. In particular, according to [50]:
• two inclination ranges maximize the capture ratio: i0 ∈ [40, 70] deg and

i0 ∈ [150, 160] deg, thus the maximum chance for capture does not occur in
the Sun–target plane;
• capture is sensitive to right ascension of the ascending node (RAAN) Ω0 ,

but no distinct pattern is appreciated;
• prograde orbits evolve in more regular post-capture dynamics;
• the minimum regularity index Smin depends on i0 and Ω0 (i. e., on the initial

osculating plane orientation), especially for polar orbits.

3.6 Influence of moons and perturbations

Effects on BC by gravitational attractions of many bodies besides the primaries
and SRP have been investigated in previous works [10, 11, 50, 53], with [11], and
[10] also considering the target NSG perturbations. Compared to the restricted
three-body problem, the restricted n-body model is more adequate for constructing
ballistic capture orbits as proved in [50], with a particle being more easily captured
when considering additional gravitational attractions. The presence of moons
increases the capture ratio RC and improves the regularity of post-capture orbits
while accommodating larger pre-capture energies [53]. In fact, fly-bys of target’s
moons can be exploited to achieve a zero-cost permanent capture [53]. In some
cases, upon completion of the fly-by, the Kepler energy is decreased such that the
particle remains thereafter trapped about the central body. However, to achieve
a significant change in the energy of the particle, the moon should have a strong
enough gravitational influence. Consequently, only large natural satellites such as
the Moon or those orbiting the outer planets are viable options in a real case scenario
[53]. Similarly, SRP may increases the chances of being temporarily captured about
the target and regularizes the post-capture legs [10, 11]. Even if not duly discussed,
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the aforementioned remarks are observed also in the results of this work. Overall,
supplementary terms in the dynamics seem to favor the manifestation of the BC
phenomenon, so increasing capture chances.

To illustrate quantitative and qualitative variations in capture sets when addi-
tional perturbations are considered, ten C6

−1 capture sets are constructed18 following
the methodology discussed in [25]. The search space is chosen to maximize the
capture ratio RC based on the analysis reported in [50]. It is defined in the Mars-
centered RTN@ti reference frame at ten capture epochs t0 uniformly distributed
from January 1, 2030 at 12:00:00.000 (UTC) to February 20, 2032 at 10:32:39.144
(UTC), so covering a complete Earth–Mars synodic period of ≈ 780 days. The
selected plane is defined by inclination i0 and RAAN Ω0 set both equal to 0.2π rad,
so maximizing the capture ratio for Mars (according to Figure 10 in [50]). Sought
trajectories have osculating eccentricity e0 = 0.99 [9], and true anomaly θ0 = 0rad
at initial epochs t0 . Let R♂ be the radius of Mars in km, then the search space
on the plane defined above is a circular crown centered at Mars, from radius
R♂+100km up to radius 11R♂. Hence,

(rp0 ,ω0 ) ∈
[
R♂+100km,11R♂

]
× [0 ,2π) (3.3)

with rp0 the pericenter radius and ω0 the argument of pericenter. The circular
crown is made of Nrp0 = 678 and Nω0 = 360 evenly spaced points of pericenter
radius rp0 and argument of pericenter ω0 , respectively.

Figure 3.5 summarizes the quantitative and qualitative information about all
the ten C6

−1 capture sets computed. Among those shown, the best capture set is
the one having capture epoch t0 at November 25, 2031 at 18:40:49.054 (UTC).
It shows a large capture ratio and it seems regular. In fact, both the minimum
regularity index and coefficient are small. For similar reasons, another valid option
would have been the capture set with capture epoch tCAP occurring at January
1, 2030 at 12:00:00.000 (UTC). The best capture set is compared against a poor
one in Figure 3.6. The plot in Figure 3.6a shows how the poor capture set is
fragmented, unstructured, and irregular when compared to the best one. Results
confirm the knowledge already present in the literature [50].

Data availability The data set supporting the findings of this study are available on
Zenodo19 with the identifier https://doi.org/10.5281/zenodo.5931461.

18EoM include gravitational attractions of the Sun, Mercury, Venus, Earth–Moon (B), Mars
(central body), Jupiter (B), Saturn (B), Uranus (B) and Neptune (B), SRP, Mars’ NSG, and
relativistic corrections.

19https://zenodo.org/ [last accessed Dec 1, 2022].

https://doi.org/10.5281/zenodo.5931461
https://zenodo.org/
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Figure 3.5: Qualitative and quantitative indexes of the ten C6
−1 capture sets as a function of the time past January 1, 2030 at 12:00:00.0 (UTC).

Capture epochs of capture sets also shown. On the left y -axes, capture ratio RC (thick, blue, filled diamonds line), minimum regularity index S
(dashed, purple, filled triangles line), and minimum regularity coefficient ∆S% (dotted, green, filled squares line). On the right y -axis, Mars’ true
anomaly ft (thick, orange line).
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(b) Capture set C6
−1 at t0 = November 25, 2031 at 18:40:49.054 (UTC). In the magnifi-

cation, details close to Mars where a continuous, structured, and regular region of the
capture set is located and from which ICs develop the interior BCC.

Figure 3.6: Capture sets C6
−1 . Branches developing exterior BBCs are colored in gray.

Regularity index of ICs belonging to branches developing interior BCCs. Nondimensional
coordinates on the orbital plane i0 = Ω0 = 0.2π rad defined in the Mars-centered RTN@t0

frame. Mars is the gray circle with black surround.
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3.7 GRATIS

GRATIS, which stands for GRavity TIdal Slide, is a toolkit to search for BC
opportunities. Based on the algorithmic definition of ballistic capture, the software
tool computes, extracts, and manipulates stable sets to derive capture conditions
[38]. The BC mechanism arises in highly sensitive regimes where a particle or
spacecraft approaches a celestial body and starts revolving around it, completely
free of any maneuvers. It being a highly sensitive phenomenon, the implementation
of a high-fidelity model is necessary. Currently, GRATIS features a restricted n-body
problem. Additionally, it takes into account SRP as well as the central body NSG
and relativistic corrections. Essentially, GRATIS can be used to design trajectory
branches exhibiting capture about a celestial body.

Pursuing the answers to the research questions posed in this dissertation and
achieving the goal set, a modification of the original implementation in GRATIS of
the algorithm discussed in [10, 25] was needed. Therefore, to ascertain that GRATIS
achieved its purpose in an ideally error-free way, a verification and validation (V&V)
campaign was carried out (see Appendix A).

Acknowledgments The author would like to thank T. Caleb, E. La Paglia, and A.
Quinci for the extremely valuable content provided to write parts of Chapter 3.

“Everything we see, everyone we meet, is caught up in a great unseen
flow. But it’s bigger than that. It’s the entire world, the entire
universe even. And compared to something as big as that, Al, you
and I are tiny, not even the size of ants. Only one small part within
a much greater flow. Nothing more than a fraction of the whole.
But by putting all those ‘ones’ together, you get one great ‘All’, just
like Teacher said. The flow of this universe follows laws of such
magnitude that you and I can’t even imagine them.” – Edward Elric

Hiromu Arakawa, Fullmetal Alchemist
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Lagrangian coherent
structures

A mathematical tool suited for studying complex, non-linear, non-autonomous
dynamical systems is represented by LCSs [24, 36, 71–78]. The word Lagrangian
highlights the evolution of such structures in the state space throughout time, as
opposed to the Eulerian specification of the flow. The behavior of an autonomous
dynamical system, with respect to its IC, can be completely studied via fixed points.
Unfortunately, this property is lost for non-linear, non-autonomous dynamical
systems linked to complex dynamical phenomena. Nevertheless, LCSs represent a
robust skeleton of special material surfaces distinguishing regions of qualitatively
different dynamics [79].

LCSs can be considered as a generalization of invariant manifolds in non-
autonomous systems with arbitrary time dependence. They are time-evolving
structures in the phase space of a generic dynamical system forming the skeleton
of observed tracer patterns. They are defined on two key properties [36]:
• a LCS should be a material surface, it must have sufficiently high dimension

to have visible impact (i. e., acting as transport barrier) and it must move with
the flow to operate as an observable core of evolving Lagrangian patterns;
• a LCS should exhibit locally the strongest attraction, repulsion or shearing in

the flow, which is essential to distinguish it from all nearby material surfaces.
LCSs can be defined as the point-wise strongest repelling, attracting or shearing
material surfaces in the flow over a finite horizon of interest, as shown in Figure
4.1. In particular, repelling LCSs are the core structures responsible for stretching.
On the other hand, attracting LCSs act as centerpieces of folding. Finally, shear
LCSs delineate swirling and jet-type patterns [66].

From their physical interpretation, LCSs result of very interest for the study
of the dynamics. They separate different dynamics of the flow in space and time,
acting as the most important barriers for material flux across them [66]. LCSs can
be classified following the same rationale used when analyzing invariant manifolds:
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(a) Attracting LCSs. (b) Repelling LCSs.

Figure 4.1: Attracting and repelling LCSs in the extended phase space of a two-dimensional
dynamical system20.

• hyperbolic LCSs are characterized by the strongest attraction or repulsion;
• elliptic LCSs are closed material surfaces;
• parabolic LCSs are structures defined by the strongest shearing.
When considering autonomous dynamical systems, examples of LCSs are stable

and unstable manifolds of fixed points and periodic orbits. The big advantage of
LCSs is that they remain applicable to more complex flows with arbitrary time
dependence or only defined over a finite horizon (computed or measured). In fact,
time-dependent flows admit patterns ruling tracers transport. While in autonomous
systems LCSs correspond to invariant manifolds, they evolve with the flow in
time-dependent ones, so continuing to bound distinct regions of behavior [66].

In the literature, several indicators were successfully applied to the study of
complex, non-linear systems for dynamical structures identification. They are
defined by: the Fourier analysis of the solutions, e. g., frequency map [80, 81]; the
variation of phase-space variables during the motion, e. g., sup-map analysis [82]
and LDs [83]; the solutions of variational equations, e. g., Lyapunov indicators [84],
finite-time Lyapunov exponent (FTLE) [71, 72], mean exponential growth factor
of nearby orbits (MEGNO) [85], and fast Lyapunov indicator (FLI) [86]. Several
comparison papers are available [87–89].

The choice of an indicator is goal oriented. For instance, frequency map
discerns regions of regular and chaotic motion [80, 81]. Similarly, Lyapunov
indicators discriminate between regular and chaotic motions. Additionally, they can
successfully compute stable, unstable, and Lagrangian manifolds [84]. Sup-map
analysis [82] and LDs [83] rely on tailored integral norms computed along the
motion. FLI informs on the precision loss during the numerical integrations [86,
90]. Modified FLIs identify chaotic regions and L1–L2 manifolds when applied to
the three-body problem [91]. Hereafter, selected theories about LCSs and methods
for their identification and computation are presented. They include the FTLE [71,
72, 74, 76], the variational theory for LCS [36, 74, 75, 77, 92], and the LD method
[24, 76, 83, 93].

20Retrieved from Wikiwand, Lagrangian Coherent Structures, https://www.wikiwand.
com/en/Lagrangian_coherent_structure [last accessed Dec 1, 2022].

https://www.wikiwand.com/en/Lagrangian_coherent_structure
https://www.wikiwand.com/en/Lagrangian_coherent_structure
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4.1 Finite-time Lyapunov exponents

In a dynamical system of the form like Eq. (2.2), the local measure of the largest
separation rate between neighboring ICs can be defined as the maximum FTLE.
Essentially, a FTLE is a finite-time average of the maximum expansion rate for
close ICs advected by the flow map. Therefore, the FTLE scalar field can be used
to locate LCSs in the phase space. According to [71], LCSs are ridges of the FTLE
scalar field.

Considering an infinitesimal perturbation δx(t0 ) = δx0 to the trajectory and
propagating it under the linearized flow over the time interval [t0 , t0 +T ], the
largest possible infinitesimal stretching along ϕ

t0+T
t0

(x0 ) at t0 +T is given by the
largest eigenvalue of the STM Φt0+T

t0
(x0 ). Recalling Eq. (2.19), the linearized

evolution of the infinitesimal perturbation δx0 after a finite time T can be analyzed
exploiting the CGST. The maximum stretching occurs when δx0 is aligned with
the eigenvector associated with the maximum eigenvalue λn of the CGST ∆t0+T

t0
.

Then, the associated FTLE is defined as

Λt0+T
t0

(x0 ) =
1

|T |
‖Φt0+T

t0
(x0 )‖=

1

2 |T |
ln(λn) (4.1)

where ‖Φt0+T
t0

(x0 )‖ is the operator norm of the deformation gradient that is equal
to the square root of the maximum eigenvalue λn(x0 , t0 ; t0 +T ) of the CGST.

The finite horizon T = t− t0 can be chosen both positive and negative. In
particular, forward-time integration locates repelling LCSs (i. e., stable manifolds in
autonomous systems), while backward-time propagation locates attracting LCSs
(i. e., unstable manifolds in autonomous systems). Specifically, LCSs are defined
as the ridges of FTLE field that is computed for each point inside the domain of
interest. At time t0 a repelling LCS over [t0 , t] should appear as a ridge of the
FTLE field. Conversely, an attracting LCS over [t0 , t] should be a ridge of the
backward-time field [71, 94]. For instance, consider a generic hyperbolic point and
its stable and unstable manifolds, as shown in Figure 4.2. The two points on either
side of the stable manifold will diverge after a sufficient amount of time. Therefore,
large values of the FTLE field are expected along the stable manifold and, roughly
speaking, as T increases the LCS becomes better resolved [71].

The drawback of relying on the FTLE field is that there are not mathematical
theorems supporting LCSs existence. As a consequence, FTLE ridges may fail in
detecting LCSs, so producing false positives or missing existing LCSs. This even in
simple two-dimensional steady flows [36]. Examples where FTLE ridges indicate
maxima of shear, as opposed to repelling LCSs, exist too. In fact, observed LCSs are
not necessarily FTLE field ridges, and FTLE field ridges are not necessarily hyperbolic
LCSs21 [36]. Nevertheless, the approach is useful for preliminary quick explorations
of the phase space. In a two-dimensional phase space, ridges identification is even
easier because they can be found by visual inspection.

21This because the procedure completely ignores the direction of the eigenvector associated to
the largest eigenvalue and it can be considered only statistically robust [79].
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Figure 4.2: Qualitative behavior of two example points straddling a stable manifold that
diverges after a sufficient amount of time. Figure from [71].

4.2 Variational theory for LCSs

To solve for inconsistencies in LCSs detection when relying on the FTLE ridges, a
variational theory has been developed by Haller [36, 92]. Haller defined hyperbolic
LCSs as locally most repelling or attracting material surfaces [95]. He derived a
variational theory providing sufficient and necessary conditions for hyperbolic LCS
in terms of the CGST invariants.

The variational theory seeks special material surfaces that act as organizing
centers of observed trajectory patterns [36]. Such material surfaces distinguish
themselves by attracting or repelling nearby trajectories at locally the highest rate
in the flow. Consider a material surfaceM(t0 ) that is advected by the flow map
into a time evolving material surfaceM(t) = ϕt

t0
(M(t0 )) (see Figure 4.3). The

time evolving material surfaceM(t) has codimension 1 with respect to the state
vector x. For each point x0 ∈M(t0 ), the evolution of the unit n0 normal to
M(t0 ) advected by the linearized flow map is monitored. The normal repulsion
rate ρt

t0
(x0 ,n0 ) is the length of the surface-normal component of the advected

vector Dx0 ϕt
t0
(x0 )n0 , and quantifies the normal attraction or repulsion ofM(t).

Furthermore, the advected normal also has a tangential component of length
σt

t0
(x0 ,n0 ) (see Figure 4.3). If ρt

t0
(x0 ,n0 )> 1 , then the evolving material surface

exerts net normal repulsion on nearby particles. Conversely, when ρt
t0
(x0 ,n0 )< 1

means that it attracts particles along its normal direction. On the other hand,
σt

t0
(x0 ,n0 )> 0 signals shear exerted byM(t) on nearby elements [66].
The normal repulsion rate can be computed in terms of the CGST as [36]

ρt
t0
(x0 ,n0 ) =

1√
〈n0 , [∆t

t0
(x0 )]−1 n0 〉

. (4.2)

The repulsion ratio νt
t0
(x0 ,n0 ) is defined to assess which effect is dominant between

repulsion and sharing. It is computed as [36]

νt
t0
(x0 ,n0 ) = min

|e0 |=1
e0∈Tx0 M(t0 )

ρt
t0
(x0 ,n0 )√

〈e0 , ∆t
t0
(x0 )e0 〉

, (4.3)
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Figure 4.3: Advection ofM(t0 ),Tx0M(t0 ), and n0 . Figure from [36].

where e0 is a unit tangent vector lying in the tangent space Tx0M(t0 ). If inequality
νt

t0
(x0 ,n0 ) > 1 is verified, then the normal growth is larger than the tangential

one. Under this condition, a repelling (attracting) LCS is a material surfaceM(t)
whose net repulsion ρt

t0
(x0 ,n0 ) is pointwise maximal (minimal) when perturbing

n0 (see Figure 4.4). A shear LCSs is a material surface maximizing the net shear
σt

t0
(x0 ,n0 ) and satisfying νt

t0
(x0 ,n0 )< 1 [66]. Sufficient and necessary conditions

for a material surface to be a repelling LCS were derived in [36].

Theorem 4.2.1. Considering a compact material surfaceM(t)⊂ U ⊂ Rn over a
time interval [t0 , t], it is a repelling LCS over the given time interval if and only if
the following conditions are satisfied ∀x0 ∈M(t0 ):

1. λn−1 (x0 , t0 ; t) 6= λn(x0 , t0 ; t)> 1 ;
2. ξn((x0 , t0 ; t)⊥ Tx0M(t0 );
3. 〈Dx0λn(x0 , t0 ; t), ξn(x0 , t0 ; t)〉= 0 ;
4. L(x0 , t0 ; t) positive definite22 ∀x0 ∈M(t0 ).

with

L =


D2

x0
∆−1 [ξn,ξn,ξn,ξn] 2 λn−λ1

λ1λn
〈ξ1 , Dx0 ξnξn〉 · · · 2

λn−λn−1
λn−1λn

〈ξn−1 , Dx0 ξnξn〉
2 λn−λ1

λ1λn
〈ξ1 , Dx0 ξnξn〉 2λn−λ1

λ1λn
· · · 0

...
...

. . .
...

2
λn−λn−1
λn−1λn

〈ξn−1 , Dx0 ξnξn〉 0 · · · 2λn−λn−1
λn−1λn

 (4.4)

where the first diagonal term in Eq. (4.4) is

D2
x0

∆−1 [ξn,ξn,ξn,ξn] =−
1

λ2
n

〈ξn, D2
x0
λnξn〉+2

n−1

∑
q=1

λn−λq

λnλq
〈ξq , Dx0 ξnξn〉2 . (4.5)

22At the present-day, L(x0 ,t0 ,t) is not associated to any physical meaning.
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(a) Stretching. (b) Folding.

Figure 4.4: The role of coherent structures. Figure from [95].

In Theorem 4.2.1, condition 1 ensures that the normal repulsion rate is larger
than the tangential stretch due to shear along the LCS. Together, conditions
2 and 3 guarantee that repulsion rate attains a local extremum along the LCS
relative to all C 1 -close material surfaces. Finally, condition 4 ensures that this
extremum is a strict local maximum [96]. Theorem 4.2.1 is valid in general for
n-dimensional problems. Conditions of Theorem 4.2.1 are reformulated specializing
the theorem for two-dimensional flows and accounting for numerical sensitivity and
implementation robustness as follows [36, 92, 96]:

A. λ1 (x0 , t0 ; t) 6= λ2 (x0 , t0 ; t)> 1 ;
B. 〈ξ2 (x0 , t0 ; t), D2

x0
λ2 (x0 , t0 ; t)ξ2 (x0 , t0 ; t)〉 ≤ 0 ;

C. ξ1 (x0 , t0 ; t) ‖ M(t0 );
D. λ2 (γ), the average of λ2 over a curve γ, is maximal onM(t0 ) among all

nearby curves γ satisfying γ ‖ ξ1 (x0 , t0 ; t).
According to condition C, repelling LCSs are material curves tangent to ξ1 , the
eigenvector field associated with the smallest eigenvalue of the CGST. Lines tangent
to ξ1 are called strainlines [96]. Numerical algorithms implementing LCSs variational
theory are based on the computation of strainlines constituting LCS candidates set.
Then, effective LCSs are extracted from the candidates set through filtering [96].

To compute an attracting LCSs a similar procedure can be adopted. As
counterparts of strainlines, stretchlines are the curves of the phase space that
exhibit compressing forces and are associated to attracting LCSs. They are material
curves tangent to the ξ2 vector field. Attracting and repelling LCSs can be
constructed from a single forward-time propagation [97].

4.3 Lagrangian descriptors

LDs are heuristic quantities for revealing the underlying template of geometrical
structures that determine transport in phase space for a generic dynamical system
[83]. They are based on the integration of a bounded, positive property of the
trajectory over a finite horizon. The first definition of LDs relied on the computation
of the arc length of particle trajectories as they evolve forward and backward in
time [98]. Later, the method was extended to include other positive quantities.
The methodology found several applications in different scientific areas, such as
ocean currents, atmospheric sciences, and chemistry [83, 98].

LDs provide insight that appears to be linked with the the geometric pattern
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of structures that govern transport in phase space. Their definition and heuristic
arguments explaining why they are effective are presented in [83]. A theoretical
framework is discussed in [93]. However, the connection between LDs and geo-
metric patterns governing the transport in phase space is controversial and largely
disputed in the literature. Indeed, LDs are not derived from mathematically well
defined variational principles, thus their relation to invariant manifolds is unclear
and mathematically not well defined [66, 89]. Moreover, LDs are not objective,
i. e., structures resulting from the scalar field depend on the frame of the observer,
whereas material curves such as periodic orbits are frame-indifferent [99, 100].
Finally, counter-examples to the method of Lagrangian descriptors are discussed
in the literature. Specifically, they face smooth contour lines of LD at invariant
manifolds, singular features of LD at irrelevant points, and failure when dealing
with Hamiltonian systems [99].

Let us consider a general time-dependent vector field on Rn

dx(t)

dt
= f(x, t), with x ∈ Rn, and t ∈ R. (4.6)

Assuming the velocity field C r (r ≥ 1) in x and continuous in t, a unique solution
allowing for linearization exists. Given the initial time t0 and the integration time
span [t0 − τ , t0 + τ ], the Euclidean arc length M̃ of the curve in the phase space
defined by propagating an IC x(t0 ) = x0 through Eq. (4.6) is [83]

M̃(x0 , t0 ,τ) =
∫ t0+τ

t0−τ

√
n

∑
i=1

(dxi (t)

dt

)2
dt =

∫ t0+τ

t0−τ
‖f(x, t)‖dt. (4.7)

Results depend on the finite horizon chosen. M̃ can be computed appending its
integrand to the space state equations with a zero initial value and propagating the
extended dynamics. Trajectories propagated from close ICs remaining close as they
evolve in time are expected to have similar M̃ [83]. Differently, abrupt changes in
the field are associated to separatrices of the dynamics. Such features are expected
to exhibit a discontinuity in the derivative of M̃ along the direction perpendicular
to the separatrix [83, 93].

There exist other positive intrinsic physical or geometrical properties of tra-
jectories that can be integrated to successfully identify geometric patterns. The
general formulation is [83]

M(x0 , t0 ,τ) =
∫ t0+τ

t0−τ
|F(x(t))|γdt for γ ≤ 1

M(x0 , t0 ,τ) =
(∫ t0+τ

t0−τ
|F(x(t))|γdt

) 1
γ

for γ > 1

(4.8)

where γ defines the Lγ norm of the integrand. An extensive class of different LDs
was defined in [83] based on the integrand, the selected norm, and the integration
interval (see Table 4.1). The definition of any function Mi can be broken in a
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Table 4.1: Class of LDs with integrand and norm [83, 93].

LD |F(x(t))| Integrand description Norm

M1 ‖v(t)‖ Magnitude of velocity L1

M2 ‖a(t)‖ Magnitude of acceleration L1

M3 .1 ‖v(t)‖ Magnitude of velocity L1/2

M3 .2 ‖a(t)‖ Magnitude of acceleration L1/2

M4 ‖ȧ(t)‖ Magnitude of acceleration derivative L1

M5 (|κ|+a)−1 Positive quantity related to curvature† L1

M6 ‖x(t)‖ Magnitude of space state L1

M7 ‖x(t)‖ Magnitude of space state L1/2

M8 ∑
n
i=1 |xi (t)|p Sum of p-root terms‡ Lp

†
With κ=

[
(v ·v)(a ·a)− (v ·a)2

]
/v3 and 1 ≤ a≤ 5 to avoid singularities [83].

‡
It is suggested to choose p = 1/τ [93].

natural way into forward and backward integration to obtain LDs M f
i and Mb

i ,
respectively. The forward propagation should highlight stable manifolds of the
dynamical system, while the backward one recovers unstable ones [101]. Their
combination is capable to detect all invariant manifolds simultaneously.

A key property common to all LDs is that they monotonically increase along
a trajectory. Indeed, they are integrals of positive quantities. It being a heuristic
approach, similarly to the FTLE, there is the possibility that they may fail in
identifying LCSs correctly. This is due to the lack of mathematical proofs providing
necessary and/or sufficient conditions supporting LCSs existence.

4.4 Application to ballistic capture

Different studies investigated LCSs applied to the restricted three-body problem
in the frame of BC. In the CR3BP context, FTLE fields reveal intersections of
invariant manifolds of periodic orbits with Poincaré cuts [72]. However, the FTLE
approach becomes helpful when the ER3BP model is considered. The existence of
periodically pulsating LCSs in the phase space of the ER3BP exploiting the FTLE
method was demonstrated in [72]. These pulsating structures proved to be the
time-dependent analogues of invariant manifolds in the circular problem.

WSBs play the role of dynamics separatrices, distinguishing phase space regions
with different global behavior. In previous works, the FTLE field proved to be a
convenient tool to get the shape of the WSB [102, 103]. LCSs extraction from
their variational theory was also applied to the computation and understanding of
BC orbits in the area of stable sets manipulation both in the planar [68, 102, 103]
and spatial [77, 78, 104] ER3BP. Results show that repelling LCSs obtained with
their variational theory match with boundaries of stable sets [68, 78]. However,
correspondence between strainlines and the WSB is not perfect. The reason could
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reside in the high sensitivity of LCSs to different particle dynamics and in the usage
of a fixed finite horizon [68, 103]. Indeed, times of flight in stable sets are not
constant [19, 69].

More recently, a characterization of the ER3BP dynamics in the Mars proximity
based on the LD method was discussed in [105]. Geometrical structures featured by
LD scalar fields were extracted through an edge detection algorithm and inspected
against the WSB derived over similar finite horizons. For a fair comparison, the
particle stability definition was modified to relax the geometrical constraint on the
number of completed revolutions [19, 25]. Eventually, capture sets at Mars were
identified in the intricate plot of separatrices, thereby showing a strong correlation
between extracted separatrices and the WSB.

4.5 LCSs extraction techniques trade-off

The presented approaches identify separate regions in which qualitatively different
dynamical behaviors arise. In non-autonomous dynamical systems (e. g., ER3BP, n-
body problem) families of hyperbolic material surfaces may be leveraged to organize
tracer mixing. Different heuristic approaches can be exploited to highlight material
surfaces, such as FTLEs and LDs. Them being heuristic, these methods could
fail in LCSs detection, underlining false positives or false negatives. Nevertheless,
they are computationally inexpensive tools useful for a qualitative description of
the dynamics. On the other hand, LCSs computation from their variational theory
requires additional effort, but eliminates theoretical inconsistencies. Based on the
trade-off presented in Table 4.2, LDs appears to be the most suited technique
among the three LCS-like methods covered in this chapter.

Acknowledgments The author would like to thank A. Quinci, S. Raffa, and E. Zulli for
the extremely valuable content provided to write parts of Chapter 4.

“See that new color on the dial? There’s a new
portal. It’s a present for you. Come see.” – Howl

Hayao Miyazaki, Howl’s Moving Castle (film)
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Table 4.2: LCS-like methods trade-off.

Method Mathematical
proofs

Act as transport
barriers

Time
information

Difficulty of
generalization
from 2D to nD

Implementation
effort Computational effort

yellow blue blue green blue blue

FTLE field
Weak

(heuristic
arguments)

Not in general
(counterexamples

available)

Forward or
backward† Low Medium

(variational eqs.)

Medium
(n+n2 eqs. to
propagate)

green green blue yellow yellow yellow
Variational
theory for
LCSs

Strong
(theorems
available)

Yes
(mathematically

proved)

Forward or
backward

High
(2D & 3D methods
available, not nD‡)

High
(variational eqs.,
PDEs in nD‡)

High
(Cauchy problem plus
nested propagation)

yellow blue green green green green

Lagrangian
descriptors

Weak
(heuristic
arguments)

Not in general
(counterexamples

available)

Forward and
backward Low Low

(augmented state)

Low
(n+m eqs. to

propagate, m small)

green Excellent blue Good yellow Correctable deficiencies red Unacceptable
†
One could try to use the CGST from t0 −T to t0 +T , then changing into forward and backward. Alternatively, forward and backward FTLEs can be
summed up.

‡
Methods to solve nD issue are available. Maps from 2D to nD and viceversa can be exploited [68]. 3D method based on reduced strainlines and
stretchlines [77, 78, 104]. Alternatively, strainlines (stretchlines) could be constructed along the intersection of a 2D domain and the (n−1) tangent
space perpendicular to the maximum (minimum) stretch direction.
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Characterization of ballistic
capture corridors

This chapter presents the characterization of BCCs, time-varying manifolds
supporting capture. Corridors are mathematically defined, computed via backward
propagation in a high-fidelity model, characterized, and studied.

5.1 Definitions

A trajectory is defined as:

Definition. Let (x0 , t0 ) ∈ R6 ×R and ϕ(x0 , t0 ; t) be the starting point and the
solution at time t, respectively, of the Cauchy problem{

ẋ = f(x, t)
x(t0 ) = x0

(5.1)

where the first relation is the state-space representation of the EoM in Eq. (2.1).
Then, a trajectory γ is defined as

γ(x0 , t0 ) := {ϕ(x0 , t0 ; t) ∀t ∈ R}. (5.2)

Similarly, backward and forward legs γb and γf , respectively, are defined as

γb(x0 , t0 ) := {ϕ(x0 , t0 ; t) ∀t ∈ [t0 −10T♂, t0 ]}, (5.3)
γf (x0 , t0 ) := {ϕ(x0 , t0 ; t) ∀t ∈ [t0 , t0 +10T♂]}, (5.4)

where T♂ = 2π
√

a3
♂/µ� = 687days is the revolution period of Mars, with a♂ =

2.279×108 km and µ�= 1.327×1011 km3 s−2 the semi-major axis of the Sun–Mars
system and the gravitational parameter of the Sun, respectively.
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Sets ΓWn , ΓX−1 , and ΓCn
−1

of trajectories γ(x0 , t0 ) whose ICs (x0 , t0 ) belong to
weakly-stable set Wn, escape set X−1 , and capture set Cn

−1 , respectively, are

ΓWn = {γ(x0 , t0 ) ∀(x0 , t0 ) ∈Wn}, (5.5)
ΓX−1 = {γ(x0 , t0 ) ∀(x0 , t0 ) ∈ X−1}, (5.6)
ΓCn
−1

= {γ(x0 , t0 ) ∀(x0 , t0 ) ∈ Cn
−1}. (5.7)

A corridor is obtained backward propagating ICs belonging to a capture sets Cn
−1 ,

where n > 0 is the number of revolutions after capture. Similarly to a capture set
Cn
−1 , a corridor is designated as B̌n

−1 and it is defined as

B̌n
−1 = {γb(x0 , t0 ) ∀(x0 , t0 ) ∈ Cn

−1}. (5.8)

An exterior corridor Ěn
−1 is a subset of a corridor B̌n

−1 including pre-capture trajec-
tories having heliocentric semi-major axis a� greater than the target body’s one
(i. e., Mars, whose semi-major axis at = a♂ = 1.5237AU). It is defined as

Ěn
−1 = {γb(x0 , t0 ) ∈ B̌n

−1 : a� (ϕ(x0 , t0 ; t))> at ∀t ∈ [t0 −10T♂, t̂]} (5.9)

where t̂ < t0 is a certain time before capture epoch t0 when the escape (or pre-
capture) leg ends in backward time. Contrarily, an interior corridor Ǐn

−1 is the
subset of a corridor B̌n

−1 including all trajectories having semi-major axis smaller
than the central body’s one (i. e., Mars). It is defined as

Ǐn
−1 = {γb(x0 , t0 ) ∈ B̌n

−1 : a� (ϕ(x0 , t0 ; t))< at ∀t ∈ [t0 −10T♂, t̂]}. (5.10)

Consequently, B̌n
−1 = Ěn

−1 ∪Ǐn
−1 . In the context of EXTREMA (see Section 1.2),

the interior corridor is of interest because it extends between Mars and Earth’s
orbits. A subcorridor Šn

−1 , a generic subset of a corridor B̌n
−1 , is defined as

Šn
−1 = {γb(x0 , t0 ) ∀(x0 , t0 ) ∈ Dn

−1}, (5.11)

where the generic domain Dn
−1 is

Dn
−1 = {x0 : x0 ∈ Cn

−1 ∧g(x0 )≤ 0∧h(x0 ) = 0}, (5.12)

with g(x0 ) and h(x0 ) being two sets of m ≥ 0 inequality constraints and n ≥ 0
equality constraints, respectively, with m and p finite. Finally, the envelope ∂ Šn

−1

of a subcorridor Šn
−1 is constructed backward propagating the subcorridor domain

border ∂Dn
−1 . Therefore, it is defined as

∂ Šn
−1 = {γb(x0 , t0 ) ∀(x0 , t0 ) ∈ ∂Dn

−1}. (5.13)

An illustration of prior definitions is proposed in Figure 5.1.
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5.2 Characterization

Two corridors are built and characterized starting from two peculiar capture sets23.
The capture sets are constructed from the same initial grid following the methodol-
ogy discussed in [25]. The search space is chosen to maximize the capture ratio RC
based on the analysis reported in [50]. It is defined in the Mars-centered RTN@ti

reference frame at capture epoch t0 set to December 9, 2023 at 00:45:18.363
(UTC). At this epoch, Mars’ true anomaly with respect to the Sun is equal to
270 deg, maximizing RC [50]. The selected plane is defined by inclination i0 and
RAAN Ω0 set both equal to 0.2π rad, so maximizing the capture ratio (according
to Figure 10 in [50]). At initial epochs t0 , sought Mars-orbiting trajectories have
osculating eccentricity e0 = 0.99 [9], and true anomaly θ0 = 0rad. Let R♂ be
the radius of Mars in km, then the search space on the plane defined above is
a circular crown centered at Mars, from radius R♂+100km up to radius 11R♂.
Hence, (rp0 ,ω0 ) ∈

[
R♂+100km,11R♂

]
× [0 ,2π). The circular crown is made of

Nrp0 = 339 and Nω0 = 360 evenly spaced points of radius of pericenter rp0 and
argument of pericenter ω0 , respectively.

The characterization procedure consists of the following: i) critical analysis of
trends and rates of corridor’s osculating elements when orbiting the Sun; ii) visual-
ization of time snapshots showing corridor’s heliocentric Keplerian elements and
consequent pattern identification; iii) opportunistic selection of a subdomain in the
capture sets to derive the corresponding subcorridor; iv) investigation of subcorridor
dimensions and shape; v) study of Poincaré sections.

5.2.1 Step i) trends and rates of Keplerian elements

The first characterization step provides a first look into the behavior of the corridor
when observed in heliocentric coordinates, which should be that typical of trajectories
designed in non-Keplerian models (e. g., CR3BP). The expectation is to observe
trajectories similar to each other far from the target body. This is expected because
a spacecraft is affected mainly by the Sun’s gravitational attraction when far
from Mars. Consequently, the features of highly irregular trajectories, essential
elements of the BC phenomenon, should not be observed far from the target body.
Additionally, the rate of change of the Keplerian elements is computed using a finite
differences scheme to further confirm how variations of the corridor’s Keplerian
elements are small when far from the central body.

5.2.2 Step ii) time snapshots

The dynamics being non-autonomous, a time snapshot is a collection of states
taken at a fixed time epoch. Based on the considerations made in Section 5.2.1,
time snapshots of a corridor’s heliocentric Keplerian elements are expected to

23EoM include gravitational attractions of the Sun, Mercury, Venus, Earth–Moon (B), Mars
(central body), Jupiter (B), Saturn (B), Uranus (B) and Neptune (B), SRP, and Mars’ NSG.
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show similar patterns. Specifically, the aim of this step is to visualize how states
spread, thereby assessing by visual inspection if clusters of ICs rift apart or remain
connected. Due to the presence of many IC clusters typical of capture sets and
the potential Cantor-like structure claimed in [106], a corridor is expected to be
made of various subsets. However, the major concern is about the possibility to
find holes in their structure, so recognizing such subsets as not continuous entities.

5.2.3 Step iii) opportunistic selection of a corridor subset

A subcorridor Šn
−1 , is investigated in detail. A circular domain within the capture

set is opportunistically chosen to derive the corresponding subcorridor. Location
and size of the domain are selected based on the local value of regularity index S
and regularity coefficient ∆S% of the capture set. They are defined as [54]

S =
tNr − t0

Nr
, S (2b) =

2π
√
µt

(
r0

1 − e0

)3/2

, ∆S% = 100

∣∣∣∣ S

S (2b)
−1

∣∣∣∣ (5.14)

where Nr is the number of forward or backward revolutions, t0 is the initial time,
and tNr is the time required to complete the Nr revolutions. The regularity index
of a Keplerian orbit S (2b) is used as reference. The regularity coefficient ∆S%
measures the distance between S and S (2b), so indicating how far an orbit is from
being Keplerian [54]. The smaller the regularity index and coefficient, the more
regular the post-capture trajectory [50].

5.2.4 Step iv) dimension and shape

Dimensions and shape of the subcorridor (for the sake of conciseness also referred to
as corridor from now on) are investigated as well. This is to study its size variation
with time (i. e., how much the corridor is stretched, compressed, tilted), what shape
it takes on, and shape changes over time. Specifically, two- and three-dimensional
representations of the corridor are plotted to get confidence with its shape and size.
The result is achieved by propagating and visualizing the envelope ∂ Šn

−1 of the
subcorridor Šn

−1 .

5.2.5 Step v) Poincaré sections

Poincaré sections of the subcorridor are computed at prescribed solar longitudes λ�.
The selection of longitude values is performed based on the physical space spanned
by the corridor in the time frame of the backward propagation performed. Therefore,
the corridor is intersected in the physical space by half-planes originating from the
z-axis. The shapes of these cuts in the physical space are derived and plotted for
various solar longitudes. Velocity surfaces corresponding to Poincaré sections are
computed as well. Differently from time snapshots, corridor’s trajectories reach
the Poincaré sections at different time epochs. Poincaré sections are computed
because they are expected to provide precise estimates of corridor dimensions and
a clear insight on its shape.
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Figure 5.2: Capture set C2
−1 . Branches developing exterior ballistic capture corridors

are colored in gray. Nondimensional coordinates on the orbital plane i0 = Ω0 = 0.2π rad
defined in the Mars-centered RTN@t0 frame. Mars is the gray circle with black surround.



5.2. Characterization 53

-10 -5 0 5 10

0
 = r

p0
cos(

0
) [LU]

-10

-5

0

5

0
 =

 r
p
0
s
in

(
0
) 

[L
U

]

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

S
 [

T
U

]

10
4

Branch of

interior corridor

Branch of

exterior corridor
Mars

(a) Regularity index of ICs belonging to interior BCC Ǐ6
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Figure 5.3: Capture set C6
−1 . Branches developing exterior ballistic capture corridors

are colored in gray. Nondimensional coordinates on the orbital plane i0 = Ω0 = 0.2π rad
defined in the Mars-centered RTN@t0 frame. Mars is the gray circle with black surround.



54 5. Characterization of ballistic capture corridors

(a) Corridor B̌2
−1 by capture set C2

−1 . (b) Corridor B̌6
−1 by capture set C6

−1 .

Figure 5.4: BCCs from t0 to t0−600 days. Interior and exterior corridors colored in blue
and yellow, respectively. Nondimensional coordinates in the RPF.

5.3 Results

The peculiar capture sets C2
−1 and C6

−1 from which corridors B̌2
−1 and B̌6

−1 are
developed can be seen in Figures 5.2 and 5.3, respectively. In the capture set C2

−1 ,
four sickle-shaped clusters of ICs are distinguishable. The two of them located in
the half-plane y > 0 , colored in gray, develop the exterior corridor. Differently, the
other two branches develop the interior corridor. On the other hand, the set C6

−1 is
made of by only two clusters. The branch in the bottom half-plane gives rise to
the interior corridor, while the gray one generates the exterior corridor.

In Figure 5.4, corridors B̌2
−1 and B̌6

−1 are shown. Interior and exterior corridors
are colored in blue and yellow, respectively. As expected, B̌2

−1 looks thicker and
more packed than B̌6

−1 [19]. By definition of capture set, Cn
−1 ⊆ Cm

−1 with m and n
both positive, and n >m. Consequently, B̌n

−1 ⊆ B̌m
−1 is verified too, therefore B̌6

−1

is a subset of B̌2
−1 . In general, the same applies to Ǐn

−1 and Ěn
−1 .

5.3.1 Step i) trends and rates of Keplerian elements

Osculating elements of corridors about the Sun in the ECLIPJ2000 frame are
investigated. Figure 5.5 shows the six Keplerian elements from t0 to t0−1000 days
of both B̌2

−1 and B̌6
−1 . In the plots, they are compared to Mars’ orbit Keplerian

elements. Except for initial short transients close to the capture epoch t0 char-
acterized by huge variations, all elements but true anomaly θ stabilize rapidly.
After approximately 300 days in backward time, curves look completely flat. Such
time span is in line with typical times of flight on pre-capture legs belonging to
the unstable set X−1 . After the initial (from the right), strong, short transient,
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true anomaly varies accordingly with Mars’ true anomaly as expected. From plots
showing the trend of semi-major axis a (see top-left corner in Figures 5.5a and 5.5b),
the distinction between interior and exterior corridors is clear. However, the four
peculiar branches of C2

−1 cannot be distinguished within the two bundles of curves.
Claims in Section 5.2.1 are confirmed by results in Figure 5.6 on the yearly

rates of the heliocentric osculating elements. In the plots, they are compared to
the yearly rates of Mars’ orbit (dotted horizontal lines). As expected, the strong,
short transients are characterized by large rates (see right hand sides in Figure 5.6).

5.3.2 Step ii) time snapshots

Two time snapshots at t = t0−600 days are taken. One about B̌2
−1 , found in

Figure 5.7, and the other of B̌6
−1 , visible in Figure 5.8. They show instantaneous

values of Keplerian elements about the Sun of the two corridors, seen in the
ECLIPJ2000 frame 600 days before capture epoch at Mars. They correspond to
states at end points of trajectories in Figure 5.4.

Conversely to Figure 5.5a, in Figure 5.7 the four branches are easily identifiable.
Interior and exterior corridors features are nearly symmetric. Indeed, they almost
exhibit a point symmetry with respect to Mar’s Keplerian elements, marked by red
crosses. In this time snapshot, each branch is well resolved, thin, and relatively long.
This is a peculiarity of the specific corridor and not a common feature. Indeed,
numerical experiments here omitted show that such characteristics are typical of
highly regular capture sets like those presented in this chapter (see Figure 5.2
and Figure 5.3). Differently, less regular capture sets produce corridors whose
time snapshots present poorly resolved, sparse, and large clusters that are hardly
distinguishable to each other. Except that only two clusters are identified, similar
considerations can be done for the time snapshot in Figure 5.8. The other two
branches are lost increasing the number of revolutions n from 2 to 6.

Results in Figures 5.7 and 5.8 are connected with hyperbolic manifolds. Indeed,
relations between the WSB and invariant manifolds were already proved to exist
in the CR3BP [62]. Specifically, trajectories belonging to escape sets in backward
time are responsible for transport phenomena from the secondary (i. e., Mars)
realm either to the primary (i. e., the Sun) realm or to the exterior realm. On the
other hand, trajectories propagated from the WSB reach Lagrange points [62].
However, the latter are trajectories exhibiting in general different Jacobi constants
since they are not obtained starting from the very same periodic orbit. Therefore,
they belong to different stable invariant manifolds. Extending the concept to
the non-autonomous case under study, interior corridors Ǐn

−1 should be a set of
trajectories responsible for transport phenomena from the secondary realm to the
primary realm. Conversely, exterior corridors Ěn

−1 should transport material towards
the exterior realm. Trajectories in both Ǐn

−1 and Ěn
−1 are expected to travel firstly

within stable hyperbolic manifolds and then into unstable hyperbolic manifolds.
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(a) Trends of heliocentric osculating elements of B̌2
−1 .

(b) Trends of heliocentric osculating elements of B̌6
−1 .

Figure 5.5: Trends of heliocentric osculating elements of BCCs in the ECLIPJ2000 frame
from t0 to t0−1000 days. From top-left to bottom-right: semi-major axis a, eccentricity
e, inclination i , RAAN Ω , argument of pericenter ω, and true anomaly θ as a function of
time from capture epoch t0 .
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Figure 5.6: Rates of heliocentric osculating elements for BBCs in the ECLIPJ2000 frame
from t0 to t0−1000 days. Triangles and error bars mark mean rates and their standard
deviations, respectively. Solid lines represent maximum rates, while dotted horizontal lines
indicate rates of Mars’ orbit.
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5.3.3 Step iii) opportunistic selection of a corridor subset

A subcorridor Š6
−1 is built starting from the C6

−1 branch developing the interior
corridor. Specifically, a circular domain within the capture set is selected to
fulfill the purpose. A circle of radius ∆rp = 250 km, and centered in (rc , ωc) =
(R♂+3400km, 250deg) is constructed on the orbital plane of the capture set, as
shown in Figure 5.9a. The circle is placed at the top of the cluster because of
the strong regularity peculiar of that region. Indeed, both regularity index and
coefficient are small as shown by plots in Figure 5.3. A magnification of the red
circle in Figure 5.9a is reported in Figure 5.9b.

5.3.4 Step iv) dimension and shape

The subcorridor dimension and shape are studied backward propagating from t0

to t0−600 days the central point and the 20 ICs uniformly distributed along the
border of the red circular domain in Figure 5.9. The resulting set of trajectories
are used to build the corridor’s envelope ∂ Š6

−1 in the physical space. The corridor
is reported in Figures 5.10 and 5.11 from different points of view and in various
reference frames.

Figure 5.10a shows the corridor, in light blue, from a top view of the xy -plane
in the Sun-centered ECLIPJ2000 frame. The corridor is backward propagated
from capture points, visible in the bottom-left, for 600 days. This is almost a
revolution period of Mars, whose orbit is plotted in black. The corridor remains
closely attached to Mars’ orbit and stretches in backward time. The latter is a
desirable feature, since it eases targeting the corridor for spacecraft with limited
control authority like CubeSats. The corridor being a stream of trajectories, its
characteristics should be similar to what already discovered regarding individual
Earth–Mars transfers relying on BC [9].

The plot in Figure 5.10b offers a three-dimensional representation of the corridor
in the Mars-centered ECLIPJ2000 frame. Far from Mars, the initial tiny circular
region is stretched considerably. The envelope, initially shaped as a relatively small
circle, increases remarkably in size and becomes almost a segment when backward
propagated. That seems to reflect what observed in Figure 5.8, which shows thin
and very long clusters of trajectories. Two-dimensional Mars-centered views of the
corridor are given in Figure 5.11. Specifically, Figure 5.11 collects the three views
of the whole corridor, while Figure 5.12 offers magnifications of the corridor and
post-capture24 envelopes at a closer range from Mars.

24Trajectories of post-capture legs are obtained forward propagating ICs belonging to ∂Dn
−1

from t0 to tf ,W6
(time epoch at which the 6th revolution is achieved).
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Figure 5.10: Representations in the physical space of the subcorridor envelope ∂ Š6
−1 built

from the red circular domain border shown in Figure 5.9. Envelope backward propagated
from t0 to t0−600 days.
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Figure 5.11: Views in the physical space of subcorridor envelope ∂ Š6
−1 far from Mars built

from red circular domain border shown in Figure 5.9. Subcorridor backward propagated
from t0 to t0−600 days. Trajectories plotted in the Mars-centered ECLIPJ2000 frame.
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(b) View xz-plane.
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Figure 5.12: Views in the physical space of subcorridor envelope ∂ Š6
−1 built from red

circular domain border shown in Figure 5.9. Magnifications of subcorridor and post-capture
envelopes at a closer range from Mars. Subcorridor backward propagated from t0 to
t0−600 days. Trajectories plotted in the Mars-centered ECLIPJ2000 frame.
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5.3.5 Step v) Poincaré sections

Poincaré sections at prescribed solar longitudes of corridor’s envelope (grid made
of 100 ICs uniformly distributed along the border of the red circular domain in
Figure 5.9) and center are computed to better understand how the envelope shape
changes over time and to estimate more precisely its characteristic dimensions.
Seven half-planes in the physical space perpendicular to the xy -plane are selected
at corresponding solar longitudes λ� equal to 225 deg, 180 deg, 135 deg, 90 deg,
45 deg, 0 deg, and 315 deg. They are represented in Figure 5.10a as dashed red
segments starting from the origin. The sequence is in accordance with the order
in which the corridor crosses Poincaré sections. Selected longitudes cover almost
uniformly and completely the corridor from t0 to t0−600 days.

Results are shown in plots of Figure 5.13. They display Poincaré sections
of positions and velocities of the envelope ∂ Š6

−1 , marked by blue crosses, with
respect to the corridor Š6

−1 center, represented by the red diamond. Coordinates
are computed in the ECLIPJ2000 frame. The sequence of Poincaré sections about
positions allows visualizing how the envelope changes shape over time. In particular,
its size at λ� = 315 deg is more than one order of magnitude larger than its size at
λ� = 225 deg. At λ� = 90 deg, the envelope twists around itself, while at λ� =
45 deg it takes on a bizarre shape. Numerical experiments here excluded show that
around λ� = 90 deg the corridor twists completely on itself. Differently, at around
λ� = 45 deg the top part of the envelope undergoes a deformation resembling
a wavy movement. The twist lasts approximately from λ� = 105 deg to λ� =
75 deg, while the deformation persists roughly from λ� = 60 deg to λ� = 30 deg.
Likely, such behaviors are the results of the peculiar distribution of Keplerian
elements characterizing the trajectories belonging to the corridor and of how they
geometrically interact in the physical space.

The characteristic dimensions of the envelope are retrieved from charts in
Figure 5.13. Specifically, at λ� = 225 deg, the two characteristic dimensions are ap-
proximately d = 6.1×10−5 AU (i. e., the smaller dimension) and D = 4.6×10−4 AU
(i. e., the larger one). On the other hand, at λ� = 315 deg, d and D are about
2.8×10−4 AU and 1.7×10−2 AU, respectively. In the latter case, d is relatively
large (≈ 4.2×104 km), albeit it being two orders of magnitude smaller than D.
This implies targeting a section perhaps large enough for limited control authority
spacecraft, so verifying that BCC targeting is a viable option for CubeSats [12].

The Sun-centered states of the points belonging to the envelope and shown in
Poincaré sections of Figure 5.13 can be retrieved summing the corresponding states
of the center collected in Tables 5.1 and 5.2 (position and velocities, respectively).
For the sake of completeness, time epochs and time intervals from t0 of when
the center crosses the sections are reported in Table 5.3. The center trajectory
takes 224.76 days to escape from Mars in backward time. At the escape, the solar
longitude is approximately 144 deg.
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(a) Position, λ� = 225deg.
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(b) Velocity, λ� = 225deg.
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(c) Position, λ� = 180deg.
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(d) Velocity, λ� = 180deg.
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(e) Position, λ� = 135deg.
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(f) Velocity, λ� = 135deg.
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(g) Position, λ� = 90deg.
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(h) Velocity, λ� = 90deg.

-3 -2 -1 0 1 2 3

( x2+ y2)0.5 [AU] 10
-4

-5

0

5

z
 [

A
U

]

10
-5

Center

Border 5 5

10
-3

v
y
 [km/s]

0

v
x
 [km/s] 10

-3

0
-5 -5

0

10
-3

v
z
 [
k
m

/s
]

-1 -0.5 0 0.5 1

( x2+ y2)0.5 [AU] 10
-3

-2

0

2

z
 [
A

U
]

10
-4

-5
2 0.020.01

v
y
 [km/s]

10
-3

0

v
x
 [km/s]

0-0.01-2

0

-0.02

v
z
 [
k
m

/s
] 10

-3

5

-3 -2 -1 0 1 2 3 4

( x2+ y2)0.5 [AU] 10
-3

-5

0

5

z
 [
A

U
]

10
-4

0.01 0.05

v
y
 [km/s] v

x
 [km/s]

-4

0 0
-0.01 -0.05

v
z
 [
k
m

/s
] 10

-3

0

-3 -2 -1 0 1 2 3 4

( x2+ y2)0.5 [AU] 10
-3

0

2

4

z
 [
A

U
]

10
-4

0.02 0.1

-0.02

0.05

v
y
 [km/s] v

x
 [km/s]

0 0-0.05-0.02

v
z
 [
k
m

/s
]

0

-1 -0.5 0 0.5 1

( x2+ y2)0.5 [AU] 10
-3

0
5

10
15

z
 [
A

U
]

10
-4

-0.02
0.04 0.10.02 0.05

v
y
 [km/s] v

x
 [km/s]

00 -0.05-0.02 -0.1

v
z
 [
k
m

/s
]

0

-8 -6 -4 -2 0 2 4

( x2+ y2)0.5 [AU] 10
-3

0

10

20

z
 [

A
U

]

10
-4

0.06 0.2

0

0.04

v
y
 [km/s]

0.10.02

v
x
 [km/s]

0 0-0.02 -0.1

10
-3

v
z
 [
k
m

/s
]

4

-15 -10 -5 0 5

( x2+ y2)0.5 [AU] 10
-3

-5
0
5

10

z
 [
A

U
]

10
-4

0.04
0

0.20.02

v
y
 [km/s]

0.1

v
x
 [km/s]

0 0-0.1

v
z
 [
k
m

/s
]

0.02

(i) Position, λ� = 45deg.
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(j) Velocity, λ� = 45deg.
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(k) Position, λ� = 0deg.
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(l) Velocity, λ� = 0deg.
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(m) Position, λ� = 315deg.
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(n) Velocity, λ� = 315deg.

Figure 5.13: Poincaré sections of subcorridor Š6
−1 in the ECLIPJ2000 frame for solar

longitudes λ� shown in Figure 5.10a. Blue crosses represent points sampled on subcorridor
domain border. Center of circular domain identified by the red diamond. On the left,
positions with respect to center. On the right, velocities with respect to center. Center
time epochs, positions, and velocities collected in Tables 5.3, 5.1, and 5.2, respectively.
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Table 5.1: Positions of center in Poincaré sections.

Solar longitude Position

λ� x y z
[deg] [AU] [AU] [AU]

225 −1.102 808 −1.102 808 7.844 357×10−3

180 −1.641 041 1.554 104×10−13 4.293 343×10−2

135 −1.162 058 1.162 058 5.006 461×10−2

90 −6.957 004×10−15 1.557 277 2.662 889×10−2

45 1.020 845 1.020 845 −8.854 905×10−3

0 1.367 875 7.111 910×10−13 −3.521 404×10−2

315 9.624 945×10−1 −9.624 945×10−1 −4.120 283×10−2

Table 5.2: Velocities of center in Poincaré sections.

Solar longitude Velocity

λ� vx vy vz

[deg] [km s−1] [km s−1] [km s−1]

225 1.787 586×101 −1.510 174×101 −8.164 564×10−1

180 8.595 426×10−1 −2.222 691×101 −4.055 608×10−1

135 −1.623 405×101 −1.507 938×101 1.683 084×10−1

90 −2.333 669×101 2.152 594 6.396 673×10−1

45 −1.617 810×101 1.940 766×101 7.479 764×10−1

0 1.080 975 2.655 486×101 4.253 387×10−1

315 1.832 666×101 1.940 964×101 −1.405 752×10−1

Table 5.3: Time epochs t0 and time intervals ∆t at which center crosses Poincaré sections.

Solar longitude Time epoch Time intervals

λ� tc ∆tc = tc − t0

[deg] [UTC] [days]

225 October 28, 2023 at 11:14:06.557 −41.563
180 July 24, 2023 at 08:52:44.062 −137.66
135 April 13, 2023 16:33:00.264 −239.34
90 January 7, 2023 at 05:22:50.146 −335.81
45 October 15, 2022 at 00:19:38.723 −420.02
0 August 2, 2022 at 12:51:56.425 −493.50

315 May 25, 2022 at 11:05:11.527 −562.57
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5.4 Final remarks

Corridors are streams of trajectories [107] guaranteeing capture that can be targeted
far away from the central body [5, 11]. From a different perspective, corridors
are time-varying manifolds supporting capture that are approximately in 1:1 mean-
motion resonance with the target body. After a short transient, corridor heliocentric
Keplerian elements flatten out and their variation, initially characterized by large
rates, decreases rapidly in backward time. Time snapshots highlight symmetries
and patterns in interior and exterior corridor branches. Subcorridors are developed
from specific domains contained in capture sets that are opportunistically selected
to fulfill missions purposes. Domains of various shapes (e. g., circular, elliptic,
square, strip) can be exploited. Targeting of corridors with strongly constrained
platform (e. g., CubeSat) is facilitated by the stretching in backward time. This
translates in a compression of the dynamics when propagated forwardly. Eventually,
characteristic dimensions of corridors range from ≈ 9.0×103-by-6.9×104 km up
to ≈ 4.2×104-by-1.8×106 km over a time span roughly from −40 to −560 days.

Acknowledgments The author would like to thank A. Martinelli for the fruitful sugges-
tions provided in the making of Figure 5.1.

“All men dream – but not equally. Those who dream by night, in
the dusty recesses of their minds, wake in the day to find that it
was vanity. . . But the dreamers of the day are dangerous men,
for they may act their dream with open eyes, to make it possible.
This I did.” – T. E. Lawrence, Seven Pillars of Wisdom

Naughty Dog, Uncharted 3



6

Autonomous ballistic
capture algorithm

The chapter introduces an ABC algorithm tailored for spacecraft with reduced
computational capability and that could potentially see the implementation onboard
of interplanetary autonomous CubeSat. An overview about the ABC algorithm and
the generation of new capture orbits directly onboard are provided. The flowchart
in Figure 6.1 gives the overview of the ABC algorithm. The algorithm is composed
by two major segments. The first is carried out on ground and aims to prepare a
BCC database [11] necessary for the second part of the procedure. The second
segment is carried out on board and foresees the CubeSat (or a spacecraft in
general) computing new BC sets from which desired BCCs are synthesized [11].

6.1 On-ground tasks

The segment carried out on ground has the purpose of preparing a database of BC
orbits to be later used on board as educated guesses for the core algorithm devised
for the onboard computation of capture sets and BCCs. Tasks envisioned in the
on-ground segment can be performed by a calculator (e. g., workstation, cluster)
leveraging on the usual methods for BC design (see Section 3.3). Inputs required
by the on-ground module are:
• maximum number of forward revolutions n;
• list of capture epochs t

(i)
0 ;

• initial eccentricity e0 ;
• initial orbital plane expressed through inclination i0 and RAAN Ω0 ;
• initial true anomaly θ0 (typically ICs are assumed at pericenter, so θ0 = 0);
• search space on the orbital plane as a circular crown expressed in terms of
radius of pericenter rp0 and argument of pericenter ω0 together with the
number of grid points.
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Figure 6.1: ABC algorithm flowchart.

Keplerian elements refer to the RTN@t
(i)
0 frame. The output of the module,

corresponding to the information stored in the BC database, includes:
• capture sets from C1

−1 to Cn
−1 ;

• regularity indices S ;
• regularity coefficients ∆S%;
• separatrices extracted from LD fields (i. e., according to [105]).
Once inputs are provided, the following actions are taken for each given time

epoch t
(i)
0 : i) computation of subsets W , X , and K; ii) derivation of capture sets

from C1
−1 to Cn

−1 through sets manipulation; iii) computation of regularity index
S and coefficient ∆S% for all capture sets; iv) computation of finite horizons τb

(pre-capture leg) and τf (post-capture leg) required for LD method; v) extraction
of separatrices featured by LD fields to bound locations of capture sets in the phase
space; vi) storage of results into the BC database. In step v), separatrices can be
extracted according to the methodology in [105], where LD fields are computed over
finite horizons consistent with revolution periods of post-capture legs. Alternatively,
methods based on LCSs [78], stroboscopic strainlines [68], or Taylor differential
algebra (DA) combined with automatic domain splitting [69] are solid options too.

The quantity of information contained in the database strictly depends on the
number of capture epochs considered and the grid size. A collection of stable sets
ICs plus metadata computed from a grid of 105 ICs requires ≈ 0.12GB of storage.
Assuming to store 10 collections characterized by capture epochs covering a time
window of 300 days by steps of 30 days, which should be enough to properly catch
major variations in the sets about a baseline capture epoch, then the database is
estimated to be≈ 1.2GB. Nevertheless, the exact amount of data included in the
database will depend on the specific mission under design. The detailed flowchart
of the on-ground module is shown in Figure 6.2.
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Figure 6.2: ABC algorithm on-ground tasks.

6.2 Onboard tasks

The final goal of the onboard module is to compute capture sets and synthesize
BCCs on the fly, while autonomously cruising in the interplanetary space and on an
as-needed basis. Inputs required by the algorithm are:
• desired capture epoch t0 (from autonomous guidance and control unit);
• output of the on-ground module (see Section 6.1).

The output, calculated on requests of the autonomous guidance and control unit
[5, 12], includes:
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Figure 6.3: ABC algorithm onboard tasks.

• capture set Cn
−1 ;

• envelope ∂ Šn
−1 ;

• subcorridor Šn
−1 .

All outputs are calculated such that the capture epoch corresponds to the desired
t0 in input. In general, the database available is coarse and it does not store sets
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guaranteeing capture at the desired time t0 .
Given the inputs, the following processes are executed: i) search for the ith

capture set available in the BC database whose capture epoch t
(i)
0 is the closest to

the desired capture epoch t0 ; ii) correction of a good IC stored in the database but
featuring capture at t

(i)
0 into a new IC exhibiting capture at time epoch t0 ; iii) build

of capture set C1
−1 backbone using as educated guess the new IC derived in step ii);

iv) derivation of capture set Cn
−1 (or a portion of it) leveraging on the backbone;

v) computation of regularity index S and coefficient ∆S% for BC orbits belonging to
Cn
−1 found in step iv); vi) selection of sample points for synthesis of a BCC numerical

approximation; vii) derivation of subcorridor envelope ∂ Šn
−1 ; viii) synthesis of a

numerical approximation representative of subcorridor Šn
−1 ; The detailed flowchart

of the onboard segment is presented in Figure 6.3. Steps i)–iv) focus on the
computation of capture sets on the fly. The correction of a known BC orbit into
a new solution in step ii) is of paramount importance. Generation of families of
BC orbits correcting the initial condition is discussed in Chapter 7. The definition,
computation, and exploitation of backbones, which are required to complete steps
iii) and iv), are covered in Chapter 8. The synthesis of the subcorridor Šn

−1 is in
charge of steps v)–viii). Several options are available for BCC synthesis. In this
dissertation, a linear interpolation for a fast and inexpensive evaluation of states
in the BCC is considered (see Chapter 9). Alternatively, techniques typically used
for nonlinear uncertainty propagation like DA [67] or polynomial chaos expansion
(PCE) [108, 109] could be successfully employed as well.

Acknowledgments The suggestion of using DA to synthesize BCCs was proposed by
Dr. A. Morselli and Dr. P. Panicucci during a meeting of the EXTREMA team at DART,
Politecnico di Milano. The suggestion relied on their knowledge and familiarity with DA.
Later, synthesis of BCCs using DA was studied by T. Caleb, G. Merisio, Prof. P. Di Lizia,
and Prof. F. Topputo. Results were satisfactory but they remain unpublished. The concept
of using PCE to synthesize BCCs was conceived by Dr. C. Giordano, supported by his
past experience in working with PCE. The concept is currently under study at DART,
Politecnico di Milano. The investigation is being carried out by M. Liotta, G. Merisio, Dr.
C. Giordano, and Prof. F. Topputo. Preliminary results are promising.

“If you don’t take risks, you can’t
create a future.” – Monkey D. Luffy

Eiichiro Oda, One Piece





7

Generation of ballistic
capture orbit families

In this chapter, a novel methodology to generate families of BC orbits characterized
by succeeding capture epochs is proposed. The problem of finding a new capture
orbit at the desired capture epoch correcting a known reference solution is stated.
The families are built by sequentially correcting ICs of enough regular BC orbits.
New orbits are obtained solving a well-posed three-point boundary value problem
(3PBVP) exhibiting 8 linearized boundary conditions. The problem is solved
for a finite set of variables with the multiple shooting technique. Effort is put
in making the method suitable for autonomous spacecraft with limited onboard
resources (e. g., CubeSats). Details of the correction procedure are provided. The
methodology is applied to generate families of orbits belonging to capture sets C1

−1

and C6
−1 starting from a baseline capture orbit selected for its remarkable regularity.

Performance and limitations of the algorithm are assessed. Finally, results are
inspected against streamlines of the solar gravity gradient to reveal the nature of
corrections applied on reference capture orbits.

7.1 Problem statement

Provided that an enough regular BC orbit is known, then the goal is to derive
a modified IC at a desired capture epoch retaining the dynamical behavior of
the original BC orbit. Thus, the known reference IC (̂x0 ,̂ t0 ) ∈ Cn

−1 is corrected
into a new IC (x0 , t0 ) ∈ Cn

−1 . According to definitions in Section 5.1 and under
the dynamics in Eq. (2.1), orbits γ(̂x0 ,̂ t0 ) and γ(x0 , t0 ) are necessarily different
because the problem is non-autonomous and δt0 = t0 − t̂0 6= 0 . A schematic
representation of the problem is proposed in Figure 7.1. Throughout the chapter,
γ(̂x0 ,̂ t0 ) and (̂x0 ,̂ t0 ) are also referred to as reference BC orbit and IC, respectively.
On the other hand, γ(x0 , t0 ) and (x0 , t0 ) are indicated as corrected or new BC orbit
and IC, respectively. The problem can be thus mathematically stated as follows:
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Figure 7.1: Correction of capture orbit.

Problem. Find a modified initial condition x0 at a given time t0 such that γ(x0 , t0 )
retains the dynamical behavior of γ(̂x0 ,̂ t0 ). In particular, if (̂x0 ,̂ t0 ) ∈ Cn

−1 and
γ(̂x0 ,̂ t0 ) is a ballistic capture orbit, then x̂0 shall be corrected into x0 such that
(x0 , t0 ) ∈ Cn

−1 and γ(x0 , t0 ) is a ballistic capture orbit.

7.2 Methodology

The methodology devised to tackle the problem envisages five steps:
1. expansion of the flow ϕ(x0 , t0 ; tf ) about the reference solution γ(̂x0 ,̂ t0 ) at

final forward time tf > t0 , after the particle has performed n revolutions
about the target, so satisfying condition (x0 , t0 ) ∈Wn;

2. expansion of the flow ϕ(x0 , t0 ; tb) about the reference solution γ(̂x0 ,̂ t0 ) at
final backward time tb < t0 , when the particle escapes from the target, so
satisfying condition (x0 , t0 ) ∈ X−1 ;

3. specification of enough boundary conditions to well-pose the 3PBVP [110];
4. linearization of nonlinear boundary conditions;
5. solution of the 3PBVP through multiple shooting.

This is the core part of a larger algorithm where a number Np of 3PBVPs are
sequentially solved to compute a new family of BC orbits at subsequent capture
epochs. Provided that the time step δt0 is small enough25, the new BC orbit
γ(x0 , t0 ) is expected to be similar to the reference one. Consequently, boundary
conditions are linearized about the reference BC orbit γ(̂x0 ,̂ t0 ). The linearization is
beneficial for two reasons: i) it makes boundary conditions consistent with the flow
expansion; ii) the problem becomes completely linear, so solving the 3PBVP requires

25Numerical experiments here not reported have shown that the maximum time step δt0

granting convergence of the algorithm is approximately the 1% of the target orbital period about
the primary. Therefore, a maximum time step of a few days is suggested when targeting Mars.
Specifically, δt0 < 7days.
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Figure 7.2: Representation of flow expansion.

just a matrix inversion. Throughout the chapter, r0 = r̂0 + δr0 , v0 = v̂0 + δv0 ,
and h0 = ĥ0 + δh0 are the position, velocity, and angular momentum vectors,
respectively. In first approximation, δh = r× δv−v× δr = [r∧]δv− [v∧]δr. Finally,
the 20-dimensional vector z is defined as z =

[
x>0 x>f x>b tf tb

]>.
7.2.1 Flow expansion

The Taylor expansion truncated at the first order of the flow ϕ(x0 , t0 ; tf ) is

ϕ(x0 , t0 ; tf ) = ϕ (̂x0 + δx0 ,̂ t0 + δt0 ;̂ t f + δtf )≈

≈ ϕ (̂x0 ,̂ t0 ;̂ t f )+
∂ϕ

∂x0
δx0 +

∂ϕ

∂ t0
δt0 +

∂ϕ

∂ tf
δtf

(7.1)

where partial derivatives are

∂ϕ

∂x0
= Φ(x0 , t0 ; tf ) = Φtf

t0
, (7.2)

∂ϕ

∂ t0
=−Φtf

t0
f(x0 , t0 ), (7.3)

∂ϕ

∂ tf
= f(xf , tf ). (7.4)

They are evaluated at (̂x0 ,̂ t0 ;̂ t f ). Φ is the STM [111]. The derivative in Eq. (7.3)
is computed according to [112]. Hence, the expansion becomes

δϕf ≈Φt̂f

t̂0
δx0 −Φt̂f

t̂0
f (̂x0 ,̂ t0 )δt0 + f (̂xf ,̂ t f )δtf (7.5)

where δϕf = ϕf − ϕ̂ f = ϕ(x0 , t0 ; tf )−ϕ (̂x0 ,̂ t0 ;̂ t f ). Similarly, the Taylor expansion
truncated at the first order of the flow ϕ(x0 , t0 ; tb) is

δϕb ≈Φt̂b

t̂0
δx0 −Φt̂b

t̂0
f (̂x0 ,̂ t0 )δt0 + f (̂xb ,̂ tb)δtb (7.6)
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where δϕb = ϕb− ϕ̂b = ϕ(x0 , t0 ; tb)−ϕ (̂x0 ,̂ t0 ;̂ tb). Overall, Eqs. (7.5) and (7.6)
provide 12 relations. Given δt0 = t0 − t̂0 , 20 terms still remain unknown. They
are δx0 , δϕf = δxf , δtf , δϕb = δxb, and δtb. Therefore, 8 boundary conditions
must be specified to well-pose the problem. To better clarify, Figure 7.2 proposes
a representation of the flow expansion on the tx-plane. For the sake of simplicity,
the 6-dimensional state space x is represented as 1-dimensional in Figure 7.2. The
Taylor expansion of the flow ϕ(x0 , t0 ; tf |b) may be written more compactly as

δϕf |b = ϕf |b− ϕ̂ f |b ≈Φ
t̂f |b
t̂0
δx0 −Φ

t̂f |b
t̂0

f (̂x0 ,̂ t0 )δt0 + f (̂xf |b ,̂ t f |b)δtf |b (7.7)

where the notation (•|?) means either (•) or (?) shall be used in the overall relation.

7.2.2 Boundary conditions

The necessary 8 boundary conditions are obtained as follows. Firstly, 3 relations
(1 vector and 2 scalar equations) are enforced at capture epoch (i. e., at initial
time t0 ). Then, other 3 are imposed after n revolutions about the target (i. e., at
final forward time tf ). Finally, 1 condition is prescribed at the escape (i. e., at final
backward time tb). They are individually discussed in the next paragraphs.

Boundary condition i0) The IC x0 belongs to a certain orbital plane at t0

(defined in the RTN@t0 frame). It is required that the new IC belongs to the same
plane but defined at time t0 + δt0 . This is to follow Mars in its orbital revolution
about the Sun. h = r×v In mathematical terms

h
RTN@(t0+δt0 )
0 = ĥRTN@t0

0 . (7.8)

Linearizing Eq. (7.8), it is obtained

R1 ĥ0 ×R2 ĥ0 +R1 ĥ0 ×R2δh0 = 0 (7.9)

where R1 = RJ2000→RTN@t0 is the rotation matrix from the J2000 frame to the
RTN@t0 frame, and R2 = RJ2000→RTN@(t0+δt0 ) is the rotation matrix from the
J2000 frame to the RTN@(t0 + δt0 ) frame. The relation is rewritten as[(

R1 ĥ0

)∧]
R2 A0 x0 +a = 0 (7.10)

with A0 = [− [̂v∧0 ] [̂r∧0 ]], and a = R1 ĥ0 ×R2

(
−ĥ0

)
. In a more compact form

M1 z+b1 = 0 (7.11)

with

M1 = P

[[(
R1 ĥ0

)∧]
R2 A0 03×14

]
, b1 = Pa, and P =

[
1 0 0
0 1 0

]
(7.12)

where 0n×m is the null matrix of dimension n×m. The auxiliary matrix P is used to
extract the first 2 rows in Eq. (7.10) because only 2 out of the 3 relations available
are linearly independent.
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Boundary condition ii0) The new IC shall be a pericenter. This means

r0 ·v0 = 0 , (7.13)

a scalar equation that once linearized gives

r̂0 · δv0 + v̂0 · δr0 = b>0 x0 = 0 (7.14)

with b0 =
[̂
v>0 r̂>0

]>. More compactly

m>2 z+b2 = 0 (7.15)

where
m2 =

[
b>0 01×14

]>
, and b2 = 0 . (7.16)

Boundary condition iii0) The new IC is enforced to have osculating orbital
elements with eccentricity e0 = ê0 , so meaning δe0 = 0 . This is done exploiting
the two-body problem orbit equation. Since θ0 = 0 , we can write

‖r0‖=
h0 ·h0

µt(1 + e0 )
=

h0 ·h0

µt(1 + ê0 )
(7.17)

that can be rewritten as

‖r0 ‖̂e0 =
h0 ·h0

µt
−‖r0‖. (7.18)

Once linearized, it provides the following scalar relation

2 ĥ0 · δh0 − ĥ2
0

r̂0 · δr0

r̂ 2
0

= 2 ĥ>0 A0 x0 −
ĥ2

0

r̂ 2
0

c>x0 −3ĥ2
0 = 0 (7.19)

with c =
[̂
r>0 01×3

]>, which is equivalent to

m>3 z+b3 = 0 (7.20)

where

m3 =

[
2 ĥ>0 A0−

ĥ2
0

r̂ 2
0

c> 01×14

]>
, and b3 =−3ĥ2

0 . (7.21)

Boundary condition if) The final state shall perform the nth revolution about
the central body. Mathematically, this is translated into

rf ·v0 = 0 . (7.22)

As it is written, the boundary condition only enforces that a revolution is completed
at epoch tf . Consequently, the boundary condition cannot assure that exactly n
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revolutions are performed. However, the correct number of revolutions is achieved
because the new solution is expected to be similar to the reference one for small
enough δt0 . After linearization, the boundary condition becomes

r̂f · δv0 + v̂0 · δrf = d>
[

x0

xf

]
= 0 (7.23)

with d =
[
01×3 r̂>f v̂>0 01×3

]
. In a more compact form rewritten as

m>4 z+b4 = 0 (7.24)

with
m4 =

[
d> 01×8

]>
, and b4 = 0 (7.25)

Boundary condition iif) The Keplerian energy with respect to the central body
E = v 2/2 −µt/r = v ·v/2 −µt/‖r‖ at final forward time of the new BC orbit shall
be equal to the final Keplerian energy of the reference final state. This is enforced
to preserve capture in forward time, that is (x0 , t0 ) ∈Wn. The condition reads

vf ·vf

2
− µt

‖rf ‖
=

v̂f · v̂f

2
− µt

‖̂rf ‖
, (7.26)

then linearized as

v̂f · δvf +µt
r̂f · δrf

r̂ 3
f

= j>f xf −
(

v̂ 2
f +

µt

r̂ f

)
= 0 (7.27)

with jf =

[
µt

r̂ 3
f

r̂>f v̂>f

]>
. Rearranging terms, the condition can be written as

m>5 z+b5 = 0 (7.28)

where

m5 =
[
01×6 j>f 01×8

]>
, and b5 =−

(
v̂ 2

f +
µt

r̂ f

)
. (7.29)

Boundary condition iiif) The variation on the final eccentricity magnitude
ef = êf + δef shall be null, then δef = 0 . Hence, the condition can be written as

ef ·ef = êf · êf . (7.30)

Substituting e =
v×h

µt
− r

r
and linearizing, the following expression is derived(̂

vf ×ĥf

)
·
(
δvf ×ĥf + v̂f ×δhf

)
µ2

t

+

−

(
δvf ×ĥf

)
·̂rf +(̂vf ×δhf )·̂rf +

(̂
vf ×ĥf

)
·δrf

µt̂r f
+

+

[(̂
vf ×ĥf

)
·̂rf

]
(̂rf ·δrf )

µt̂r 3
f

= q>xf +ν = 0

(7.31)
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with

q =
[
α
>+β

> [̂v∧f ]2 β
>
([̂

h∧f

]
−
[̂
v∧f
] [̂

r∧f
])]>

, α =

(
(κ · r̂f )̂r>f − r̂ 2

f κ>

µt̂r 3
f

)>
,

β =
1

µt

(
r̂>f
r̂ f
− κ>

µt

)>
, ν =

3

µt

(
κ · r̂f

r̂ f
− κ ·κ

µt

)
, and κ = v̂f × ĥf .

(7.32)

More compactly
m>7 z+b7 = 0 (7.33)

where
m7 =

[
01×6 q> 01×8

]>
, and b7 = ν. (7.34)

Boundary condition ib) The Keplerian energy at the final backward time of
the new ballistic capture orbit shall be equal to the final Keplerian energy of the
reference final state. This is enforced to preserve escape in backward time, which
means (x0 , t0 ) ∈ X−1 . Similarly to Eq. (7.26), the condition is expressed as

vb ·vb

2
− µt

‖rb‖
=

v̂b · v̂b

2
− µt

‖̂rb‖
, (7.35)

and once linearized reads

v̂b · δvb +µt
r̂b · δrb

r̂ 3
b

= j>b xb−
(

v̂ 2
b +

µt

r̂ b

)
= 0 (7.36)

with jb =

[
µt

r̂ 3
b

r̂>b v̂>b

]>
. Rearranging terms, the condition becomes

m>6 z+b6 = 0 (7.37)

where

m6 =
[
01×12 j>b 01×2

]>
, and b6 =−

(
v̂ 2

b +
µt

r̂ b

)
. (7.38)

7.2.3 Three-point boundary value problem solved through
multiple shooting

A 3PBVP [113, 114] consists in finding x0 , t ∈ [tb, tf ] with tb ≤ t0 ≤ tf , such that

ẋ = f(x, t), g(x(tb),x(t0 ),x(tf )) = 0. (7.39)

The first equation is the state space representation of Eq. (2.1), while function g
specifies eight boundary conditions needed to well-pose the problem [110]. According
to the multiple shooting approach, the problem presented in Eq. (7.39) can be
solved for a finite set of variables [114, 115].
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In multiple shooting, the solution is discretized over m and l grid points in
forward and backward time, respectively. In forward time, the discretization is
t0 < t1 < · · · < tm−1 = tf , so meaning sj = x(tj) = xj with j = 1 , 2 , . . . , m− 1 .
In backward time, it is tb = t1−l < · · · < t−1 < t0 , that is sk = x(tk) = xk with
k =−1 ,−2 , . . . , 1 − l . The discretized solution at initial time is s0 = x(t0 ) = x0 ,
the one at final forward time is sm−1 = x(tf ) = xf , and that at final backward time
is s1−l = x(tb) = xb. Consequently, m−1 and l−1 segments are defined in forward
and backward time, respectively, in which a 3PBVP is solved by enforcing continuity
of solutions at both ends. Sensitivity is reduced by shortening the duration of the
original problem. Defect vectors are

ζj =ϕ(sj−1 , tj−1 ; tj)−sj , tj = t0+j
tm−1−t0

m−1
,

ζk =ϕ(sk+1 , tk+1 ; tk)−sk , tk = t0−k
t1−l−t0

l −1
,

(7.40)

with j = 1 , . . . , m−1 and k = −1 , . . . , 1 − l . Defects ζj = ζj(sj−1 ,sj , tm−1 ) and
ζk = ζk(sk+1 ,sk , t1−l) depend on tm−1 and t1−l via relations in Eq. (7.40) [112].
The new problem is to determine sj , sk , s0 , tm−1 , and t1−l such that

g(s0 ,sm−1 ,s1−l , tm−1 , t1−l) = 0,
ζj = 0, j = 1 , . . . , m−1 ,
ζk = 0, k =−1 , . . . , 1 − l .

(7.41)

In Eq. (7.41), there are 6(m+ l−1)+2 unknowns and 6(m+ l−2)+8 equations
(8 boundary conditions and 6(m + l − 2) defect constraints). Defects ζj are
expanded as

ζj = ζj(sj−1 ,sj , t0 , tm−1 )≈

≈ ζ̂ j +
∂ζj

∂sj−1
δsj−1 +

∂ζj

∂sj
δsj +

∂ζj

∂ t0
δt0 +

∂ζj

∂ tm−1
δtm−1

(7.42)

where ζ̂ j = 0. Indicating f(sj , tj) = fj , derivatives in Eq. (7.42) are computed as

∂ζj

∂sj−1
= Φ(sj−1 , tj−1 ; tj) = Φj

j−1 (7.43)

∂ζj

∂sj
= I6×6 (7.44)

∂ζj

∂ t0
=−m−j

m−1
Φj

j−1 fj−1 +
m−j−1

m−1
fj (7.45)

∂ζj

∂ tm−1
=− j−1

m−1
Φj

j−1 fj−1 +
j

m−1
fj (7.46)

they are evaluated at (̂sj−1 ,̂sj ,̂ t0 ;̂ tm−1 ). Similarly, defects ζk are expanded as well.
In matrix form, expansions can be written like

ζj |k =
[
Φj |k −I d2 ,j |k

]sj−1 |k+1

sj |k
tm−1 |1−l

+dj |k = 0 (7.47)
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where I is the 6 ×6 identity matrix, and with

Φ
j |k
j−1 |k+1 = Φ(̂sj−1 |k+1 ,̂ t j−1 |k+1 ;̂ t j |k), fj |k = f (̂sj |k ,̂ t j |k),

d1 ,j |k =−(m|l)−|(j |k)|
(m|l)−1

Φ
j |k
j−1 |k+1 fj−1 |k+1 +

(m|l)−|(j |k)|−1

(m|l)−1
fj |k ,

d2 ,j |k =−|(j |k)|−1

(m|l)−1
Φ

j |k
j−1 |k+1 fj−1 |k+1 +

|(j |k)|
(m|l)−1

fj |k , and

dj |k =−Φ
j |k
j−1 |k+1 ŝj−1 |k+1 +d1 ,j |k δt0 −d2 ,j |k t̂m−1 |1−l + Î sj |k

(7.48)

where δt0 is given. Eventually, defects ζj and ζk are expressed in matrix form as

ζ = Ds+bd = 0 (7.49)

where defect, coefficient, variable, and constant matrices are

ζ = [ζ1 · · · ζj · · · ζm−1 ζ−1 · · · ζk · · · ζ1−l ]
> , (7.50)

D =


Df 0nf×nb

d2 ,1
...

d2 ,m−1

0nf×1

Db,(:,1 :6) 0nb×nf
Db,(:,7 :nb) 0nb×1

d2 ,−1
...

d2 ,1−l


, (7.51)

s =
[
s>0 s>1 · · · s>m−1 s>−1 · · · s>1−l tm−1 t1−l

]>
, (7.52)

bd =
[
d>1 · · · d>j · · · d>m−1 d>−1 · · · d>k · · · d>1−l

]>
(7.53)

with nf = 6(m−1), nb = 6(l −1), and

Df |b =



Φ
1 |−1
0 −I 0 · · · 0

0 Φ
2 |−2
1 |−1 −I · · · 0

...
. . . . . .

...
0 · · · Φ

m−2 |2−l
m−3 |3−l −I 0

0 · · · 0 Φ
m−1 |1−l
m−2 |2−l −I


. (7.54)

The complete set of 8 linearized boundary conditions form a linear system that
in matrix form reads

ḡ(z) = Mz+bm = 0 (7.55)

where z is the variable matrix previously defined in Section 7.1. The coefficient
matrix M and constant matrix bm are constructed as follows

M =
[
M>

1 m2 m3 m3 m4 m5 m6 m7

]>
, (7.56)

bm =
[
b>1 b2 b3 b4 b5 b6 b7

]>
. (7.57)
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As previously shown, defects ζj and ζk can be expressed in matrix form as in
Eq. (7.49). Eventually, the full system of 6(m+ l −2)+8 equations is built by
combining Eqs. (7.49) and (7.55). It reads

As = b (7.58)

where the coefficient and constant matrices are

A =

[
D

M(:,1 :6) 0 M(:,7 :12) 0 M(:,13 :20)

]
, (7.59)

b =−
[
b>d b>m

]>
. (7.60)

7.2.4 Generation of ballistic capture orbit family

The algorithm to generate a family of BC orbits is herewith discussed. First of all,
an enough regular BC orbit γ(x∗0 , t∗0 ) ∈ Cn

−1 is chosen. Such orbit is referred to
as baseline and it is used as seed to generate the whole family of new BC orbits.
Then, the desired number of revolutions n, the desired capture epoch increment
δt0 , and the desired sequence length in terms of steps number Np are defined. If
δt0 > 0 (< 0), then the family is built in forward (backward) time. Before solving
the sequence of 3PBVPs, the baseline starting point (x∗0 , t∗0 ) is checked to grant
capture and belong to Cn

−1 .
Next, the sequence of 3PBVPs is solved. The number of forward points m

is set equal to the number of revolutions n about the target plus 1. In this way,
the number of forward segments equals the revolutions. The number of backward
points l is set equal to 2, such that the escape leg is fully covered in one segment.
Later, a loop iterating from 1 to Np is performed. In the first iteration, the reference
solution is set equal to the baseline one. For each iteration, the new capture epoch
is updated to t0 = t̂0 + δt0 , and the coefficient matrix A and constant matrix b
are computed from the current reference solution γ(̂x0 ,̂ t0 ). The linear system in
Eq. (7.58) is solved, and the new BC IC (x0 , t0 ) is extracted from the variable
s. The set of nonlinear boundary conditions i0), ii0), ii0) are enforced on (x0 , t0 ).
This is suggested because boundary conditions may not be exactly satisfied due to
linearization and numerical noise.

If a new BC orbit is found, then results are stored, the current solution becomes
the reference one, and the loop proceeds to the next iteration. Conversely, if the
methodology fails and the current solution is not a capture orbit, then the loop is
stopped. Eventually, results are saved for post-processing. The detailed procedure
to generate a family of BC orbits is found in Algorithm 7.1.
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Algorithm 7.1: Generation of BC orbit family.

Procedure Initialization
Define baseline capture epoch t∗0 ;
Define baseline BC orbit IC x∗0 ;
Define revolutions number n of capture set Cn

−1 ;
Define capture epoch step δt0 ; . if δt0 ≷ 0 ⇒ forw./backw. gen.
Define 3PBVPs sequence number of steps Np;

Procedure Compute first BC orbit
Solve BC problem for (x∗0 , t∗0 ) exploiting WSB [25]; . w/ GRATIS [38]
If (x∗0 , t∗0 ) /∈ Cn

−1 . baseline IC (x∗0 , t∗0 ) not a BC orbit
Return;

End
Procedure Solve sequence of 3PBVPs

Set number of forward points m = n+1 ; . 1 seg. per revolution
Set number of backward points l = 2 ; . only 1 seg. for escape
Set reference starting point (̂x0 ,̂ t0 ) = (x∗0 , t∗0 );
Set counter i = 1 ;
While i ≤ Np

Update new capture epoch t0 = t̂0 + δt0 ;
Build M and bm of linear. bound. conds. ḡ(z) = 0; . see Eq. (7.55)
Build D and bd of defects constraints ζ (s) = 0; . see Eq. (7.49)
Build A and b of multiple shooting; . see Eq. (7.58)
Solve linear system As = b for variable s;
Extract (x0 , t0 ) from variable vector s;
Enforce boundary condition i0) on (x0 , t0 ); . see Eq. (7.8)
Enforce boundary condition ii0) on (x0 , t0 ); . see Eq. (7.13)
Enforce boundary condition iii0) on (x0 , t0 ); . see Eq. (7.17)
Solve BC problem for (x0 , t0 ) exploiting WSB [25]; . w/ GRATIS[38]
If (x0 , t0 ) ∈ Cn

−1 . found new BC orbit, 3PBVP solved

Store results (x(i)0 , t(i)0 ) = (x0 , t0 );
Update reference capture epoch t̂0 = t0 ;
Update reference BC orbit IC x̂0 = x0 ;
Increment loop counter i = i +1 ;

Else . failed to solve current 3PBVP
Break the loop;

End
End
Save number of new orbits computed NBC = i −1 ;
Save results;

Exit
Result: Family of new BC orbits having ICs (x(i)0 , t(i)0 ) ∀ i = 1 , 2 , . . . , NBC.
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7.3 Results

The methodology presented in Section 7.2 is now applied to build two families of
BC orbits26. The first is a family of orbits belonging to C1

−1 while the second to
C6
−1 . Families have been built starting from the same baseline capture orbit. The

procedure in Algorithm 7.1 is carried out twice per family, both in forward and
backward direction. The two resulting families have been unified in a unique, larger
family with two branches stemming from the baseline capture orbit γ(x∗0 , t∗0 ).

7.3.1 Baseline ballistic capture orbit

The baseline BC sets C1
−1 and C6

−1 are defined in the Mars-centered RTN@ti frame
at baseline capture epoch t∗0 = 0 days set to December 9, 2023 at 12:00:00.00
(UTC). At this epoch, Mars’ true anomaly with respect to the Sun is approximately
equal to 270 deg, maximizing Rc [50]. The selected plane is defined by inclination
i∗0 = 0deg, and RAAN Ω∗0 = 0deg. At the initial epoch t∗0 , sought trajectories have
osculating eccentricity e∗0 = 0.99 [9], and true anomaly θ∗0 = 0deg. Let R♂ be the
radius of Mars in km, then the search space on the plane defined above is a circular
crown centered at Mars, from radius R♂+ 100km up to radius 11R♂. Hence,
(r∗p0 ,ω∗0 ) ∈

[
R♂+100 km,11R♂

]
× (0 ,2π] rad and grid size set to [339×360].

The baseline BC orbit has been chosen based on its regularity. By visual
inspection of capture sets C1

−1 and C6
−1 plots, a regular orbit (small regularity index

S) present in both sets has been selected. Such plots are shown in Figure 7.3, where
interior and exterior corridor branches are highlighted too [11]. The baseline BC orbit
is marked with a red triangle and has coordinates (r∗p0 ,ω∗0 ) = (2.35R♂,288deg).
The baseline capture orbit is presented in Figure 7.4. The two orbits shown are
propagated starting from the same IC, however their number of revolutions is
different. In Figure 7.4a, the post-capture leg is limited to the 1st revolution.
Differently, the post-capture leg of the orbit represented in Figure 7.4b goes on up
to the 6th revolution. EoM are written in the three-dimensional space, however
only the xy -plane is shown in Figure 7.3 and no clues are provided about the out
of plane motion. This is done for visualization purposes. The out of plane motion
is small (but not null) in the ECLIPJ2000 frame and top-views allow a better
understanding of the particle motion. The latter remark applies also to next plots.

26EoM include gravitational attractions of the Sun, Mercury, Venus, Earth–Moon (B), Mars
(central body), Jupiter (B), Saturn (B), Uranus (B) and Neptune (B), and SRP. To nondi-
mensionalize EoM, a modified set of normalization units is used to avoid ill-conditioning.
They are: M̄U = 42828.376km3 s−2, L̄U = 1.085772×106 km (i. e., Mars–L2 ,�♂ distance),
T̄U= 5.466913×106 s, and V̄U= 1.986079×10−1 kms−1.
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Figure 7.3: Capture sets at epoch t∗0 = 0 days set to December 9, 2023 at 12:00:00.00
(UTC). Regularity index S of branches developing the interior BCC. In gray, branches
developing the exterior BCC. Nondimensional coordinates on the orbital plane i∗0 = Ω∗0 =
0deg defined in the Mars-centered RTN@t∗0 frame. Selected baseline capture orbit marked
with red triangle.
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Figure 7.4: Baseline BC orbits at capture epoch t∗0 = 0 days set to December 9, 2023 at
12:00:00.00 (UTC). Pre-capture and post-capture legs represented as purple dotted and
blue solid lines, respectively. Nondimensional coordinates in the Mars-centered ECLIPJ2000
frame, xy -plane views. Out of plane motion small but not null.

7.3.2 Families of ballistic capture orbits

The family of BC orbits belonging to C1
−1 is constructed setting n = 1 , δt0 =±5days,

and Np = 30. On the other hand, the family of orbits belonging to C6
−1 is built

setting n = 6 , δt0 =±2days, and Np = 75. The time step of family C6
−1 is smaller

compared to family C6
−1 because of the greater difficulty for the algorithm in

completing the sequences of 3PBVPs as the number of revolutions n increases.
In the best case, the algorithm would return two families covering 300 days, from
t∗0 −150 to t∗0 +150days. Algorithm 7.1 is applied twice per family, both in forward
and backward directions. In doing so, two sequences of orbits are obtained for each
distinct family that are later combined.

Results are shown in Figure 7.5, where the families of BC orbits are drawn.
Forward and backward sequences are represented with black solid and dotted lines,
respectively. They are overlapped on a collection of capture set branches developing
the interior BCC. The plotted sets span capture epoch from t∗0 −150days up to
t∗0 +150days. Information about the regularity of solutions is expressed in terms
of the normalized regularity index Srel represented through color shading. A color
code is used to highlight the generated orbits (marked with triangles) having the
same capture epochs of reported capture sets. To enhance the visualization, close
magnifications to Mars are shown in Figure 7.6.

About family C1
−1 (plot in Figure 7.5a), the methodology successfully completed

27 steps in the forward direction, so reaching 135 days after the baseline capture
epoch t∗0 . In backward direction, the algorithm never failed and completed all
30 steps, so providing solutions up to 150days, before t∗0 . Overall, the baseline
solution is extended for 285 days. The forward sequence failed in correspondence
of the discontinuity located on the edge of the capture set branches characterized
by larger regularity indexes (lighter branches).
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Regarding family C6
−1 (plot in Figure 7.5b), 47 and 16 steps are successfully

completed in the forward and backward directions, respectively. As a result, the
algorithm provided solutions for 126 days, up to 94 days in the forward direction
and −32 days in the backward one.

The algorithm performs better for family C1
−1 than for family C6

−1 , even though
a smaller time step δt0 is used for the second one. The reason could be found
in the shape and size of capture sets. Indeed, sets C1

−1 are wide and dense, while
sets C6

−1 are small and sparse. In particular, the sparsity of sets C6
−1 represents

and harsh obstacle to overcome for the algorithm, so preventing the successful
completion of the full sequence.

Selected BC orbits are plotted in Figure 7.7. They are the members of the
families corresponding to the sets shown in Figure 7.5. The same color code
of Figure 7.5 applies to Figure 7.7. As expected, orbits of the same family are
really similar in shape. They are rotated about the target due to the revolution of
the central body about the Sun. The orbit in purple is the baseline BC orbit in
Figure 7.4. Mars’ SOI is also represented for reference (RSOI = 170R♂).

The families of BC orbits are now studied in detail. In particular, the distance
from the central body and the Keplerian energy are considered of interest. In
Figures 7.8 and 7.9, pre-capture and post-capture legs are drawn as dotted and
solid lines, respectively. The curves are colored as the corresponding capture orbits
shown in Figure 7.7. The color code is that of Figure 7.5.

The distance evolution of the families is presented in Figure 7.8. As clearly
shown by the plots, orbits of both families cross Mars’ SOI multiple times during
the temporary capture. Furthermore, at the escape point, all orbits have already
crossed the SOI. Therefore, the escape from Mars is always triggered by the zero
crossing of the Keplerian energy. Most orbits fly far from the surface and all
orbits shown in Figure 7.8 never cross the Exosphere limit located at an altitude
of 230 km. However, some solutions fly very close to such limit. Specifically, the
ones generated after t∗0 +100days, which are those succeeding the light blue curve
in Figure 7.8a. These are orbits whose ICs are close to the previously mentioned
discontinuity located near the edge in the less regular (ligther) branches of the
capture sets shown in Figure 7.5. The last orbit of the forward sequence is that
performing the closest passage to Mars. At the next step, the algorithm fails
because the computed solution falls in the crash set K1 , thus impacting the target
instead of preserving the weakly stable nature of the reference orbit γ(̂x0 ,̂ t0 ).

The Keplerian energy trend is plotted in Figure 7.9. As already observed while
commenting Figure 7.8, it is the Keplerian energy that triggers the escape. In fact,
the Keplerian energy is always zero at the beginning of all pre-capture legs. Except
for some occasional behaviors, the trend of Keplerian energy is quite similar for all
orbits belonging to the same family, even though they are shifted in time. This is
akin to previous observations on orbit shapes, and distances from target.
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Figure 7.5: Families of BC orbits generated with Algorithm 7.1. Black solid and dotted
lines represent forward and backward sequences, respectively. Families overlapped on a
collection of capture set branches developing the interior BCC and spanning from t∗0 −150
up to t∗0 +150days. Baseline capture epoch t∗0 = 0 set to December 9, 2023 at 12:00:00.00
(UTC). Triangles mark peculiar BC orbits computed at the same epochs of the visualized
capture sets. Correspondence depicted through color code. Normalized regularity index
Srel expressed through color shading. Nondimensional coordinates in the Mars-centered
ECLIPJ2000 frame, xy -plane views. Out of plane contribution small but not null.
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Figure 7.6: Magnifications of BC orbit families shown in Figure 7.5.
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Figure 7.7: BC orbits at peculiar capture epochs. Same color code used in Figure 7.5. Pre-
and post-capture legs represented as dotted and solid lines, respectively. Nondimensional
coordinates in the Mars-centered ECLIPJ2000 frame, xy -plane views. Out of plane motion
small but not null.
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Figure 7.8: Distance from Mars of BC orbit families generated with Algorithm 7.1. Curves
colored as corresponding capture orbits shown in Figure 7.7. Same color code used in
Figure 7.5. Pre- and post-capture legs represented as dotted and solid lines, respectively.
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Figure 7.9: Keplerian energy with respect to Mars of BC orbit families generated with
Algorithm 7.1. Curves colored as corresponding capture orbits shown in Figure 7.7. Same
color code used in Figure 7.5. Pre- and post-capture legs represented as dotted and solid
lines, respectively.
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Figure 7.10: Capture sets C1
−1 and C6

−1 inspected against solar gravity gradient. Capture
sets and solar gravity gradient computed at baseline capture epoch t∗0 = 0days set to
December 9, 2023 at 12:00:00.00 (UTC). Nondimensional coordinates on the orbital plane
i∗0 = Ω∗0 = 0deg defined in the Mars-centered RTN@t∗0 frame.

7.3.3 Inspection against solar gravity gradient

To better understand why a reference solution is corrected into a specific new
capture orbit according to the methodology described in Section 7.2, the families are
inspected against the solar gravity gradient. The solar gravity gradient is computed
according to (see Section 3.4) [43, 52]. Specifically, the first order Taylor expansion
about the origin (corresponding to Mars center) of the Sun gravitational attraction
is evaluated on the domain of interest. The goal of this analysis is to identify some
visible patterns or connections to shed some light on the physical motivation behind
the effectiveness of the method.

Figure 7.10 shows an example of this analysis, where streamlines of the solar
gravity gradient are shown on the background of baseline capture sets C1

−1 and C6
−1 .

Results are represented in the Mars-centered RTN@t∗0 frame. Consequently, the
Sun direction is aligned with the −x direction. In Figure 7.11, solar gravity gradient
streamlines at peculiar capture epochs are compared against the two families of BC
orbits. Results are plotted in the Mars-centered ECLIPJ2000 frame with color code
akin to that in Figure 7.5. Sun directions corresponding to peculiar capture epochs
are also reported near the frame origin. Neither trivial patterns nor connections
between families and streamlines are recognized. Further investigation is necessary
to physically justify how families are constructed along distinctive paths.
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−1 of BC orbits generated with Algorithm 7.1 inspected
against solar gravity gradient fields computed at peculiar capture epochs spanning from
t∗0 − 150days to t∗0 + 150days. Baseline capture epoch t∗0 = 0days set to December 9,
2023 at 12:00:00.00 (UTC). ICs of BC orbits at peculiar epochs marked by triangles.
Same color code used in Figure 7.5. Nondimensional coordinate in the Mars-centered
ECLIPJ2000 frame, xy -plane view. Out of plane contribution small but not null.
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7.4 Final remarks

The problem of correcting the IC initial condition of a reference capture orbit,
which solution is required for the successful application of the algorithm, is stated
and discussed. The approach to tackle the problem is explained. Attention is
given to steps including the flow expansion, the definition of the 8 necessary
boundary conditions, and their linearization. Then, a 3PBVP is formulated and
solved with the multiple shooting technique. As a result, a linear system is
obtained that, once solved, provides the IC of a new BC orbit. Families of capture
orbits are easily generated by solving a sequence of linear systems, so reducing
the computational burden typically required for finding BC orbits via classical
approaches (see Section 3.3).

The algorithm is proven successful in the generation of two families of orbits
belonging to capture sets C1

−1 and C6
−1 . Based on results, the algorithm performs

better when the revolutions number n is small. For n = 1 , the method works
smoothly and long sequences of BC orbits are built even for large time steps δt0 .
Conversely, for many revolutions, the method finds difficult to build long sequences
of orbits due to the smallness and sparsity typical of capture sets exhibiting many
revolutions about the target. The issue is mitigated by using a small time step
δt0 . Nevertheless, the algorithm constructs sequences of solutions spanning more
than 100 days for both families. Shape, distance, and Keplerian energy of orbits are
studied, so proving the method effectiveness in finding solutions really similar to
each other, even over large time spans. The capability of generating wide families
of capture orbits, both for few and many revolutions, and the limited computational
complexity opens the possibility to the onboard implementation of the algorithm,
even for autonomous, limited-capability platforms like CubeSats.

“Fall in love with some activity, and do it! Nobody ever figures
out what life is all about, and it doesn’t matter. Explore the world.
Nearly everything is really interesting if you go into it deeply enough.
Work as hard and as much as you want to on the things you like to
do the best. Don’t think about what you want to be, but what you
want to do. Keep up some kind of a minimum with other things
so that society doesn’t stop you from doing anything at all.”

Richard P. Feynman
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Backbone of capture set

The chapter defines the backbone of a BC set and presents a methodology based
on LDs for its derivation. The method constitutes one of the required building
blocks of the ABC algorithm presented in Chapter 6. The effectiveness of LDs
in extracting dynamical features is studied. The computation of the backbone is
discussed in detail. The performance of the backbone is analyzed.

8.1 Problem statement

The backbone of a capture set is defined as the locus of points in a capture set
C1
−1 also belonging to Cn�1

−1 . This means that ICs constituting the backbone are
expected to perform at least more than one (preferably many) revolution about
the target planet. The advantage of the backbone is that it is computed on the
capture set C1

−1 . This avoid propagating ICs for large final forward times typical of
orbits belonging to capture sets featuring large revolution numbers n. Essentially,
interesting capture solutions are inferred from the dynamical information obtained
on a short finite horizon, so making the technique suitable for implementation on
board spacecraft with limited resources akin to autonomous interplanetary CubeSats.
The problem faced in this chapter can be stated as:

Problem. Find the locus of points in a capture set C1
−1 also belonging to capture

sets Cn�1
−1 . In particular, such locus of points is named backbone of the capture set

and it is of interest because made of initial conditions performing many revolutions
about the central body. A backbone is required to contain solutions belonging at
least to capture sets Cn≥5

−1 .

Firstly, a methodology to derive a backbone must be developed. Secondly, according
to the goal set in the problem statement, a backbone is required to contain solutions
belonging to capture sets completing more than 5 revolutions.
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8.2 Methodology

The approach to tackle the problem follows:
1. definition of LDs integrands suitable for astrodynamics purposes and com-

puted over different forward and backward horizons;
2. computation of stationary points on several 1-dimensional sections of the

forward LD scalar field propagated over a finite horizon comparable with
weakly-stable set W1 and with constant initial pericenter radii rp0 ;

3. construction of the backbone as the parametric curve of stationary points
computed at step 2;

4. inference of capture set Cn�1
−1 from the backbone computed at step 3.

In step 1, techniques capable of extracting dynamical insight about the system
under study are exploited. This because the backbone must embed the qualitative
long-term behavior of the sought Cn�1

−1 capture orbits.
Step 2 is heuristically justified in what follows. From the literature, abrupt

changes in LD scalar fields are known to be separatrices for the dynamics [83,
93]. Conversely, smooth islands in the scalar field appear to feature solutions with
similar qualitative behavior. The latter is supported by the findings of numerical
experiments seeing the LD method applied to two very different scenarios of great
interest for the astrodynamics community. The first is the Didymos binary asteroid
case study [116], while the second is the ballistic capture phenomenon at Mars
[105]. Our claim is that stationary points in 1-dimensional sections of a LD field
correspond to solutions where the qualitative behavior is preserved if longer finite
horizons are considered. Therefore, stationary points are thought to behave in the
opposite way of abrupt changes. Consequently, they identify phase space locations
where trajectories are more prone to retain their dynamical nature over time. To
some extent, such trajectories are expected to be more robust as well.

Speaking of the problem at hand, not all stationary points of a 1-dimensional
LD section are of interest. Indeed, only those confined within capture sets by the
WSB are useful for the backbone computation. By assumption, the backbone
is constructed interpolating a sequence of stationary points computed in the
appropriate place of the phase space. Consequently, the backbone results being a
curve expected to preserve its qualitative behavior on the long-term, so even over
extended horizons. An educated initial guess granting the backbone confinement
within a capture set is required for the success of the procedure.

Once a sequence of stationary points computed on 1-dimensional LD sections
is obtained, the backbone is derived in step 3 as a parametric curve interpolating
the same stationary points. In step 4, ICs belonging to capture sets Cn�1

−1 are
inferred sampling the backbone. Eventually, the performance of the method is
assessed. LDs suitable for astrodynamics purposes and the backbone construction
are explored in what follows.
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Table 8.1: Finite horizons.

Subset Finite horizon

Time [days]

∼W1 τ1 304.11
∼W2 τ2 447.76
∼W3 τ3 597.21
∼W4 τ4 729.39
∼W5 τ5 893.21
∼W6 τ6 1023.82
∼X−1 τ−1 228.68

8.2.1 Lagrangian descriptors suitable for astrodynamics

Several LD integrands are proposed in [83, 93] and reported in Table 4.1. However,
alternative integrand definitions could be specified to address the specific needs
of the problem at hand. Two integrands suitable for astrodynamics problems are
introduced for this purpose. The first is a LD based on the Keplerian energy of the
spacecraft with respect to the target body (i. e., Mars in this dissertation). This is
named27 M9 . The second descriptor, called M10 , considers a metric derived from
the spacecraft angular momentum even in this case referred to the target body. In
mathematical means, they are

M9 (x0 , t0 ,τb,τf ) =
∫ t0

t0−τb

∣∣∣v 2

2
− µt

r

∣∣∣1/τb

dt +
∫ t0+τf

t0

∣∣∣v 2

2
− µt

r

∣∣∣1/τf

dt (8.1)

M10 (x0 , t0 ,τb,τf ) =
∫ t0+τf

t0−τb

‖r×v‖1/2dt (8.2)

where x = [r>v>]> is the state variable; r and v are the magnitudes of position
vector r and velocity vector v, respectively; µt is the gravitational parameter of the
central body; τb and τf are the backward and forward finite horizons, respectively.

The choice of backward and forward finite horizons is key. In fact, extremely
short finite horizons preclude revealing the underlying dynamical template of geo-
metrical structures, so concealing transport patterns in the phase space [93, 105].
Conversely, unreasonably lengthy horizons furnish excessive information to process,
thereby jeopardizing the method and leading to undesired outcomes [105]. Practical
examples are provided and discussed in Section 8.3.1. The finite horizon choice
being critical, a preliminary study is carried out to identify proper time spans for
the LD scalar fields propagation. As a result, backward and forward horizons are
selected as the escape time and aggregate revolution periods, respectively, of a
reference capture orbit.

27Subscripts are assigned in continuity with those used in Table 4.1.
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Figure 8.1: Energy-based
LD fieldM9 (τ−1 ,τ6 ). Finite
horizon comparable to cap-
ture set C6

−1 . Initial time
epoch t0 set to December 9,
2023 at 12:00:00.00 (UTC).
Nondimensional coordinates
on the orbital plane i0 =
Ω0 = 0.2π rad defined in the
Mars-centered RTN@t0 frame.
Mars represented in black.
Features of LD field resem-
ble the typical shape of cap-
ture sets. Separatrices of the
phase space easily recognized
as abrupt changes.

The reference orbit is that belonging to C6
−1 and exhibiting minimum regularity

coefficient ∆S% out of 103 trajectories computed28:
• at capture epoch t0 set to December 9, 2023 at 12:00:00.00 (UTC), so

maximizing Rc [50];
• with orbital plane defined by inclination and RAAN imposed to i0 = Ω0 =

0.2π rad, so maximizing Mars’ capture ratio (see Figure 10 in [50]);
• setting osculating eccentricity e0 = 0.99 [9];
• imposing true anomaly θ0 = 0deg (i. e., assumed at pericenter);
• assuming constant initial pericenter radius rp0 = 2.1LU;
• sampling 103 arguments of pericenter in the range [230, 260]deg.

The resulting reference capture orbit is not representative of the whole capture
sets Cn

−1 with n = 1 , . . . , 6 . In fact, BC orbits generally manifest different times
of flight both for pre- and post-capture legs as detailed in [69] and addressed

28EoM include gravitational attractions of the Sun, Mercury, Venus, Earth–Moon (B), Mars
(central body), Jupiter (B), Saturn (B), Uranus (B) and Neptune (B), and SRP. To nondi-
mensionalize EoM, a modified set of normalization units is used to avoid ill-conditioning.
They are: M̄U = 42828.376km3 s−2, L̄U = 1.085772×106 km (i. e., Mars–L2 ,�♂ distance),
T̄U= 5.466913×106 s, and V̄U= 1.986079×10−1 kms−1.
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Figure 8.2: Energy-based LD fieldM9 (τ−1 ,τ6 ). Finite horizon comparable to capture
set C6

−1 . Initial time epoch t0 set to December 9, 2023 at 12:00:00.00 (UTC). Radius of
pericenter rp0 and argument of pericenter ω0 at capture epoch t0 . Mars represented in
black. Features of LD field resemble the shape of capture sets when represented as in [69].
Separatrices of the phase space easily recognized as abrupt changes.

in [68, 78, 105]. Nevertheless, the reference capture orbit is representative at
least of those trajectories exhibiting high post-capture regularity and performing
a close approach to Mars at an approximate distance of 2.1 LU. These are the
most interesting solutions from operational perspectives. LD fields propagated over
variable finite horizons were investigated in [117]. However, despite this being a
legitimate approach, the resulting advantages did not justify the additional effort
required for its implementation and computation.

Forward and backward finite horizons associated to the reference capture orbit
are collected in Table 8.1. Each finite horizon is representative of a subset whose
propagation time span is comparable to that of the chosen finite horizon itself. An
example LD scalar field is propagated over a finite horizon comparable to capture
set C6

−1 , so using τb = τ−1 and τf = τ6 . For notation purposes, a LD scalar field is
defined asMi (τb,τf ) := {Mi (x0 , t0 ,τb,τf )|(x0 , t0 ) ∈Π}, where Π is the set of ICs
[105]. LD fieldM9 (τ−1 ,τ6 ) is shown in Figure 8.1 in Cartesian coordinates, while
it is represented in Figure 8.2 using Keplerian elements. Patterns in Figure 8.1
resemble the usual shape of capture sets (see Chapters 3, 5, and 7). Differently,
dynamical features highlighted in Figure 8.2 mirror capture sets as plotted in [69]
and resemble the region identified in Figure 13 in [118], so confirming the role of
the third-body perturbation in the BC mechanism.



104 8. Backbone of capture set

Algorithm 8.1: Backbone construction.

Procedure Initialization
Select LD and finite horizon (τb,τf ); . energy-based LD M9

Set first initial pericenter radius rp0 ; . database/corrected IC
Set first initial guess ωG

0 ; . database/corrected IC
Set pericenter radius increment ∆rp0 and stationary points number Npnt;

Procedure Backbone construction
For i = 1 : Npnt

Find stationary point ω∗0 of M = M(x0 (rp0 ,ω0 ),τb,τf ) with fminunc;
If fminunc successful . stationary point found

Store result (r (i)p0 ,ω(i)
0 ) = (rp0 ,ω∗0 );

Else . stationary point not found
Break the loop;

End
Increment initial pericenter radius rp0 = rp0 +∆rp0 ;
Update initial guess ωG

0 = ω∗0 ;
End
Construct backbone from (r

(i)
p0 ,ω(i)

0 ) with cscvn;
Exit
Result: Backbone as parametric variational cubic spline curve.

8.2.2 Backbone construction

The selected LD is propagated over the finite horizon (τb,τf ) = (0 ,τ1 ), so for a
time span comparable to revolution periods for weakly-stable set W1 . Stationary
points ω∗0 are searched between separatrices isolating weakly-stable orbits and
on 1-dimensional sections along the initial argument of pericenter ω0 at fixed
initial pericenter radius rp0 . They are computed with the MATLAB R©’s fminunc
routine implementing a quasi-Newton optimization algorithm29. The optimization
is performed with central finite differences, optimality tolerance set to 10−6, and
step tolerance equal to 10−10. An initial guess ωG

0 is used to initialize the procedure
(e. g., taken from the BC database or belonging to a BC orbits family generated
on board). After getting the first stationary point ω∗0 , next points are computed
solving optimization problems for increasing values of rp0 by steps of ∆rp0 . New
initial guesses are set equal to the last stationary point ω∗0 computed, so numerically
continuing the sequence. Once the desired range of Mars distances is covered
(i. e., enough stationary points are computed), the backbone is built as a parametric
variational cubic spline curve30 [119]. The procedure is detailed in Algorithm 8.1.

29Visit https://www.mathworks.com/help/optim/ug/fminunc.html and https:
//www.mathworks.com/help/optim/ug/choosing-the-algorithm.html for addi-
tional details [last accessed Dec 1, 2022].

30For this purpose, MATLAB R©’s cscvn routine is used, https://www.mathworks.com/
help/curvefit/cscvn.html [last accessed Dec 1, 2022].

https://www.mathworks.com/help/optim/ug/fminunc.html
https://www.mathworks.com/help/optim/ug/choosing-the-algorithm.html
https://www.mathworks.com/help/optim/ug/choosing-the-algorithm.html
https://www.mathworks.com/help/curvefit/cscvn.html
https://www.mathworks.com/help/curvefit/cscvn.html
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8.3 Results

The backbone of the capture set C1
−1 introduced in Section 8.2.1 is herewith

constructed. Specifically, the backbone lying in the capture set portion developing
into the interior subcorridor (see Chapter 5). The backbone is computed after
selecting what appears to be the most suited LD.

8.3.1 Lagrangian descriptor selection

The selection is carried out studying the trends of several 1-dimensional LD sections
propagated over different finite horizons. The investigation is performed fixing the
initial pericenter radius rp0 = 2.1LU and letting the initial argument of pericenter
ω0 vary in [230, 260]deg. The selected finite horizons are (τb,τf ) = (0 ,τ1 ) and
(τb,τf ) = (0 ,τ6 ), therefore those comparable to weakly-stable sets W1 and W6 ,
respectively. Gradients along ω0 computed with central finite differences are
analyzed as well [120]. In Figure 8.3, trends for LDs specified in [83, 93] are shown.
Those for astrodynamics LDs are plotted in Figure 8.4. Both trends (i. e., blue
curves on left y -axes) and gradients (i. e., red curves on right y -axes) are normalized
to their maximum values for a fair comparison. As expected, dynamical features
(e. g., abrupt changes, edges) are not completely developed yet in Figures 8.3a
and 8.4a. This because of the integration interval being insufficiently long [93]. LD
trends are smooth and no remarkable discontinuities are detected in the gradients.
Contrarily, many abrupt changes in the field and related discontinuities in the
gradients are detected in Figures 8.3b and 8.4b.

Among the investigated descriptors, the Keplerian energy-based LD M9 is
preferred over other options for the following reasons. Firstly, M9 seems extremely
smooth when propagated on short horizons. This is a desirable property when
solving optimization problems searching for stationary points. Unfortunately, some
dynamical insight is lost due to the excessively short propagation interval, which is
translated to accuracy loss in determining the exact backbone location. Hopefully,
capture sets Cn�1

−1 can be still inferred from an approximation of the real backbone.
Secondly, M9 stationary points are expected to detect the phase space region
featuring BC orbits with similar energetic behavior. Thirdly, a unique stationary
point (i. e., a maximum) is visually detected31 at ω0 ≈ 250deg, hence close to
where the capture set branch developing the interior subcorridor is located (see
Figure 5.9). Previous claims are confirmed by plots in Figure 8.5 where M9 sections
are inspected against subsets W , X , K, D, and C. In fact, variations in the
selected LD field does not match exactly the WSB (i. e., separatrices between sets).
Nevertheless, the stationary point is correctly found within capture sets C1

−1 and
C6
−1 (i. e., light green background). The stationary point (i. e., dashed vertical

line) shifts to the left from Figure 8.5a to Figure 8.5b, thereby proving the loss of
dynamical insight for excessively short finite horizons. Nevertheless, the backbone
can still be constructed even though some dynamical insight is lost.

31Over finite horizon (τb ,τf ) = (0 ,τ1 ), so ∼W1 , this is true also for LDs M3 .2 , M7 , and M8 .
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(a) Finite horizon (τb,τf ) = (0 ,τ1 ), so comparable to set W1 .
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Figure 8.3: Study of 1-dimensional LD sections at constant initial pericenter radius rp0 = 2.1LU. LDs defined by authors in [83]. LDs Mi (in
blue, left y -axis) and gradients ∂ Mi/∂ω0 (in red, right y -axis) as a function of initial argument of pericenter ω0 , with i = {1,2,3.1,3.2,5,6,7,8}.
LDs Mi and gradients ∂ Mi/∂ω0 both normalized to their maximum values. Dynamical features are more developed for longer finite horizons.



8.3.
R
esults

107

230 240 250 260

0
 [deg]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
L
D

s
 M

i

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

L
D

s
 d

e
ri
v
a
ti
v
e
s
 

M
i/

0

M
9

M
10

M
9
/

0

M
10

/
0

(a) Finite horizon (τb,τf ) = (0 ,τ1 ), so comparable to set W1 .

230 240 250 260

0
 [deg]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
D

s
 M

i

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

L
D

s
 d

e
ri
v
a
ti
v
e
s
 

M
i/

0

M
9

M
10

M
9
/

0

M
10

/
0

(b) Finite horizon (τb,τf ) = (0 ,τ6 ), so comparable to set W6 .

Figure 8.4: Study of 1-dimensional LD sections at constant initial pericenter radius rp0 = 2.1LU. Astrodynamics based LDs. LDs Mi (in blue,
left y -axis) and gradients ∂ Mi/∂ω0 (in red, right y -axis) as a function of initial argument of pericenter ω0 , with i = {9,10}. LDs Mi and
gradients ∂ Mi/∂ω0 both normalized to their maximum values. Dynamical features are more developed for longer finite horizons.
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Figure 8.5: Energy-based LD M9 (in blue, left y -axis) and gradient ∂ M9/∂ω0 (in red,
right y -axis) as a function of initial argument of pericenter ω0 inspected against subsets
W , X , K, D, and C. Phase space 1-dimensional section at constant initial pericenter
radius rp0 = 2.1LU. LD stationary point of interest ω∗0 marked with dashed vertical line.
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8.3.2 Backbone

The backbone is built as a curve of stationary points computed on 1-dimensional
sections of the Lagrangian descriptor M9 . They are computed on a finite horizon
comparable to the revolution period of C1

−1 orbits. Before actually derive the
backbone, some preliminary tests are performed to assure the effectiveness of the
methodology. Specifically, 9 stationary points at various distances from Mars are
computed with MATLAB R©’s fminunc routine. In the peculiar problem under
analysis, stationary points are maxima of 1-dimensional LD sections (see Figure 8.5).
Consequently, the cost function is defined as f (ω0 ) =−Mi (rp0 ,ω0 ,τb,τf ) with rp0

fixed, tb = 0 and τf = τ1 , so transforming stationary points into minima.
Results are shown in Figure 8.6, where the performance of LD M9 is compared

to that of M8 . LD M8 is examined in contrast because of its proved capability of
highlighting dynamical features thanks to the clever choice of setting the integrand
exponent p = 1/τ (see Table 4.1) [93]. In Figure 8.6, stationary points are marked
as colored vertical dashed lines. Sections cover distances from 2 LU up to 6 LU.
Both descriptors M8 and M9 decrease for larger distances from the target. At all
distances, edges are not completely developed because of the short finite horizon
chosen. However, limiting the finite horizon speeds up propagations of LDs and
consequently the solution of the optimization problem. Descriptor M9 behaves
consistently across the various sections, remaining smooth and preserving its trend
(see Figure 8.6b). On the contrary, descriptor M8 changes trend at large distances,
so making difficult the computation of the stationary point. Remarkably, stationary
points exceed the WSB for sections at rp0 = 5.5LU and 6.0LU.

Eventually, starting from the 1-dimensional section at rp0 = 2.1LU, a sequence
of Nopt = 25 optimization problems is solved for increasing rp0 values by steps of
∆rp0 = 103 km. Distances up to ≈ 9.2LU are covered. The resulting backbone
is presented in Figure 8.7, while the complete list of stationary points is reported
in Table 8.2. Scalar fields M9 (τ−1 ,τ1 ) and M9 (τ−1 ,τ6 ) are plotted in the
background of Figures 8.7a, 8.7c and Figures 8.7b, 8.7d, respectively. Results
in Figures 8.7a, 8.7b and Figures 8.7c, 8.7d are represented on the ω0 rp0 -plane
and ξ0η0 -plane, respectively. The former are the initial Keplerian elements in the
RTN@t0 frame, while the latter are the Cartesian coordinates on the orbital plane
defined by inclination and RAAN set to i0 = Ω0 = 0.2π rad.

In all four plots, the backbone remains confined by separatrices visible in the
fields. This confirms how the dynamical information revealed by stationary points
obtained over short finite horizons (i. e., ∼W1 ) embeds insight on the long-term
qualitative behavior of capture orbits. ICs belonging to the backbone preserve their
dynamical peculiarities even after more than 3 times the time span considered to
construct the backbone (i. e., τ6 ≈ 3 .4τ1 , see Table 8.1). Despite the additional
effort in solving the sequence of optimization problems to get the stationary points,
supplementary dynamical knowledge about the future evolution of the system is
extracted from LD fields propagated on relatively short finite horizons. Therefore,
clues on capture sets Cn�1

−1 are supposedly inferable from the backbone.
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Figure 8.6: Stationary points ω∗0 of 1-dimensional LD sections evaluated at various initial
pericenter radii rp0 . Stationary points marked as colored dashed vertical lines. Color code
shown in the legend. Envelope of stationary points drawn as dashed black line. Finite
horizon (τb,τf ) = (0 ,τ1 ), so comparable to weakly-stable set W1 .



8.3. Results 111

240 260 280 300

0
 [deg]

0

1

2

3

4

5

6

7

8

9

10
r p

0
 [

L
U

]

9

9.5

10

10.5

L
D

 M
9

Curve Points

Mars

(a) Finite horizon (τb,τf ) = (τ−1 ,τ1 ), so
∼ C1

−1 ; representation in ω0 rp0 -plane.

240 260 280 300

0
 [deg]

0

1

2

3

4

5

6

7

8

9

10

r p
0
 [

L
U

]
20

21

22

23

24

25

26

L
D

 M
9

Curve Points

Mars

(b) Finite horizon (τb,τf ) = (τ−1 ,τ6 ), so
∼ C6

−1 ; representation in ω0 rp0 -plane.

-2 0 2

0
 [LU]

-10

-8

-6

-4

-2

0

0
 [

L
U

]

9

9.5

10

10.5

11

L
D

 M
9

Curve

Points

Mars

(c) Finite horizon (τb,τf ) = (τ−1 ,τ1 ), so
∼ C1

−1 ; representation in ξ0η0 -plane.

-2 0 2

0
 [LU]

-10

-8

-6

-4

-2

0

0
 [

L
U

]

20

21

22

23

24

25

26

L
D

 M
9

Curve

Points

Mars

(d) Finite horizon (τb,τf ) = (τ−1 ,τ6 ), so
∼ C6

−1 ; representation in ξ0η0 -plane.

Figure 8.7: Backbone (black solid line) inspected against energy-based LD scalar fields
M9 (τ−1 ,τf ) for two values of τf and two coordinate sets. Mars represented as black
rectangle (on top) and black circle (on bottom). Stationary points marked as empty black
circles. Backbone lies within regions confined by dynamic separatrices (abrupt changes)
featured by LD fields propagated over both short (∼ C1

−1 ) and long (∼ C6
−1 ) finite horizons.

Backbone starting from rp0 = 2.1LU, with Npnt = 25 points by steps of ∆rp0 = 103 km.
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Table 8.2: Stationary points of backbone. Capture epoch t0 set to December 9, 2023
at 12:00:00.00 (UTC). Initial Keplerian elements at RTN@t0 : orbital plane defined by
inclination and RAAN set to i0 = Ω0 = 0.2π rad, osculating eccentricity e0 = 0.99, and
initial true anomaly θ0 = 0rad.

Point (i)
Coordinates

r
(i)
p0 [LU] ω

(i)
0 [deg]

1 2.119 250.2
2 2.413 255.2
3 2.708 260.2
4 3.002 264.7
5 3.297 267.6
6 3.591 270.0
7 3.886 272.0
8 4.180 273.7
9 4.474 275.1
10 4.769 276.4
11 5.063 277.4
12 5.358 278.4
13 5.652 279.2
14 5.947 279.9
15 6.241 280.5
16 6.536 281.1
17 6.830 281.6
18 7.125 282.1
19 7.419 282.5
20 7.713 282.9
21 8.008 283.3
22 8.302 283.7
23 8.597 284.0
24 8.891 284.4
25 9.186 284.8
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Table 8.3: Backbone performance. Analysis carried out sampling 103 backbone ICs.

Capture set Cn
−1 Capture orbits

Revolutions n Number Percentage

1 1000 100.0%
2 1000 100.0%
3 678 67.8%
4 446 44.6%
5 433 43.3%
6 337 33.7%
7 313 31.3%
8 304 30.4%
9 253 25.3%
10 199 19.9%

8.3.3 Performance analysis

A performance analysis is carried out to asses whether useful dynamical knowledge
about Cn�1

−1 could be inferred or not from a backbone. Specifically, 103 ICs are
uniformly sampled along the backbone constructed in Section 8.3.2. Then, ICs are
classified with GRATIS into capture sets from C1

−1 up to C10
−1 . The results in terms

of absolute and relative number of BC orbits out of the whole sample are shown in
Table 8.3. The totality of ICs belong to C2

−1 , more than the 30% is classified into
C6
−1 , and almost the 20% is part of capture set C10

−1 .
Figure 8.8 shows how ICs are classified by GRATIS into the ten capture sets

considered. The initial pericenter radius rp0 and argument of pericenter ω0 are
plotted on the left y -axis in blue and right y -axis in red, respectively. The larger
the number of revolutions n, the more discontinuous becomes the set of ICs
granting temporary capture. The way in which the set is broken apart resembles
the distinctive Cantor-like structure of the WSB consisting in the intricate network
of manifolds supporting phase space transport [62, 63].

Capture set C5
−1 is studied in detail because of the goal set in the problem

statement about inferring orbits classified into Cn≥5
−1 (see Section 8.1). Post-capture

legs, and subcorridor Š5
−1 up to t0−600 days are propagated from the set of ICs

sampled on the backbone and belonging to C5
−1 . They are plotted in their entirety

in Figure 8.9, while a magnification close to Mars’ SOI is proposed in Figure 8.10.
From the three views in Figure 8.9, the subcorridor Š5

−1 (in light blue) appears much
larger than that in Figure 5.11. Remarkably, the sample of ICs loses its capture
properties starting from large distances with respect to the target. The most useful
orbits from operational perspectives (i. e., those closely approaching Mars) retain
the required dynamical behavior even on the long-term, thereby granting capture
and successfully completing several revolutions about Mars.
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Figure 8.8: Analysis of backbone performance for several capture sets. Backbone ICs
belonging to capture sets Cn

−1 with n = 1, . . . , 10. Distributions of pericenter radii rp0 (in
blue, left y -axis) and arguments of pericenter ω0 (in red, right y -axis). Analysis carried
out sampling 103 backbone ICs.
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Figure 8.9: Views in the physical space of subcorridor Š5
−1 far from Mars built sampling

the backbone. Subcorridor backward propagated from t0 to t0−600 days. Trajectories
plotted in the Mars-centered ECLIPJ2000 frame.
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Figure 8.10: Views in the physical space of subcorridor Š5
−1 built sampling the backbone.

Magnifications of subcorridor and post-capture legs close to Mars’ SOI. Subcorridor
backward propagated from t0 to t0−600 days. Trajectories plotted in the Mars-centered
ECLIPJ2000 frame.
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8.4 Final remarks

The method presented in this chapter is an alternative approach to present-day
practices for designing BC orbits. The devised procedure leverages on the novel
concept of capture set backbone from which ICs belonging to Cn�1

−1 are inferred.
Construction of the backbone is made possible by exploiting the dynamical infor-
mation embedded within LDs propagated on a short finite horizon. The knowledge
extracted from metrics propagated over time intervals comparable to the revolution
period typical of weakly-stable orbits in W1 is proved sufficient to deduce the
location in the phase space of ICs performing several revolutions about Mars. The
computationally demanding problem of designing orbits granting long-term tempo-
rary capture is unburden by maximizing the descriptor M9 on selected 1-dimensional
sections at constant initial pericenter radius, provided that the optimization is car-
ried out within phase space regions bounded by the WSB. This novel design method
being computationally light, it could potentially see implementation on board of
autonomous, interplanetary CubeSats.

The proposed approach could be easily tailored to work with other descriptors.
The number Npnt of stationary points to compute and the step ∆rp0 can be adjusted
to overcome failings in solving the sequence of optimization problems. Decreasing
both step ∆rp0 and number Npnt aids the numerical continuation in succeeding, in
particular when using less smooth metrics. In the chapter, only heuristic arguments
are provided to justify the methodology. However, it could be argue that maximizing
the proposed Keplerian energy-based LD over finite horizons consistent with times
of flight typical of orbits in weakly-stable set W1 is akin to minimize an integral
over the same finite time of the spacecraft Keplerian energy. Indeed, the Keplerian
energy of particles being temporary captured oscillates between negative values
(see Figure 7.9) up to the escape event, when the energy rapidly increases towards
large positive values [50]. Finally, similarities between the backbone and kick-maps
[121] seem to exist, so providing an alternative perspective to face the problem and
potentially justify the backbone effectiveness with solid mathematical arguments.

Acknowledgments Potential connections between the backbone and the kick-maps
were conjectured by Prof. C. Colombo while providing constructive feedback at the PhD
final review held in October 2022. Due to time constraints, this research topic has not
been investigated yet but could be easily part of future work.

O rapaz começou a entender que os pressentimentos eram os
rápidos mergulhos que a alma dava nesta corrente Universal
de vida, onde a história de todos os homens está ligada
entre si, e podemos saber tudo, porque tudo está escrito.

Paulo Coehlo, O Alquimista
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Synthesis of ballistic capture
corridors

The chapter proposes a methodology to synthesize numerical approximation of
BCCs, thereby covering steps v)–viii) of the ABC algorithm onboard block discussed
in Section 6.2. A linear interpolation for inexpensive evaluation of states in the
BCC is used. Far from capture, smooth parametric surfaces mapping corridor states
to capture set ICs are computed and studied.

9.1 Problem statement

The goal of the BCC synthesis block foreseen in the ABC algorithm (see Figure 6.3)
is to produce a numerical approximation of a subcorridor. The approximation is later
made available to the autonomous guidance and control unit implemented onboard
the limited-capability spacecraft. Ideally, the evaluation of the synthetic corridor
shall be fast and inexpensive for spacecraft having limited onboard resources. In
mathematical terms, our problem can be thus stated as follows:

Problem. Numerically synthesize the subcorridor Šn
−1 = {γb(x0 , t0 ) ∀(x0 , t0 ) ∈

Dn
−1} as a function x = ψ(λ�,p) of the solar longitude λ� and parameters p such

that, given a solar longitude λ∗� and parameters p∗, the state x∗ = ψ(λ∗�,p∗) is
retrieved. In particular, the state x∗ must be targeted by the spacecraft to be
temporarily captured by the central body at time epoch t0 , so performing at least
n revolutions about it.

9.2 Methodology

A numerical approximation of the corridor is built with the aim of a future onboard
implementation. Firstly, a parametric representation of the corridor is carried out.
Then, a linear interpolation between two corridor’s Poincaré sections is performed
to derive an intermediate section. Finally, states on the previously computed section
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Algorithm 9.1: Synthesis of BCC.

Procedure Initialization
Define set of parameters p; . e.g., p = [ξ0 , η0 ]

>

Define subcorridor domain Dn
−1 from Cn

−1 ; . e.g., circular shape
Define number of interpolation nodes N0 ;
Define number of precomputed Poincaré sections Nλ� ;
Define solar longitude step ∆λ between subsequent Poincaré sections;

Procedure Sample selected domain
Select sampling rule; . e.g., Fibonacci lattice rule

Sample N0 nodes x
(i)
0 over domain Dn

−1 ;

Perform Delaunay triangulation on parameters p
(i)
0 ;

Procedure Construct parametric surfaces
Propagate nodes x

(1)
0 ;

Set solar longitude λ(j)� = λ
(1)
� ;

For j = 1 : Nλ�

Derive parametric surfaces at λ(j)� ; . numerical interp.

Decrement solar longitude λ(j)� = λ
(j)
� −∆λ�;

End
Save results;

Exit
Result: Synthetic subcorridor Šn

−1 expressed as x = ψ(λ�,p).

are retrieved through a second linear interpolation. Overall, the methodology
devised to tackle the problem envisages four steps:

1. sampling over the subcorridor domain Dn
−1 of N0 interpolation nodes x

(i)
0

with i = 1 , . . . , N0 according to Fibonacci lattice rule;
2. propagation of the N0 nodes x

(i)
0 sampled in step 1;

3. synthesis of subcorridor Šn
−1 as a set of parametric surfaces x = ψ(λ�,p) rep-

resentative of Nλ� precomputed Poincaré sections at λ(j)� with j = 1 , . . . , Nλ�

and by steps of ∆λ�;
4. evaluation of state x∗ given solar longitude λ∗� and parameters p∗ via two

layers of linear interpolation:
i) between Poincaré sections at solar longitudes λ(j)� and λ(j+1)

� ;
ii) on the Poincaré section computed at the desired solar longitude λ∗�.

The detailed procedure to synthesize a corridor is found in Algorithm 9.1. On the
other hand, precise steps to retrieve a state from a synthetic corridor are presented
in Algorithm 9.2. The latter algorithm is made available to the autonomous
guidance and control unit while solving the interplanetary cruise low-thrust optimal
control problem [12]. Therefore, a mere evaluation of corridor target states is
performed, so avoiding the propagation of several pre-capture legs. On the other
hand, Algorithm 9.1 is called every time a synthetic corridor granting capture at a
new desired epoch t0 is requested.
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Algorithm 9.2: Evaluation of synthetic BCC.

Procedure Initialization
Define target Poincaré section setting solar longitude λ∗�;
Define target set of parameters p∗; . e.g., p∗ = [ξ∗0 , η∗0 ]

>

Procedure Evaluate target state
Find Poincaré sections λ(j)� and λ(j+1)

� closest to λ∗�;
For i = 1 : N0

Get x(j ,i) = ψ(λ
(j)
� ,p(i)) and x(j+1 ,i) = ψ(λ

(j+1)
� ,p(i));

Interpolate x∗(i) from x(j ,i) and x(j+1 ,i); . linear interp.
End
Interpolate x∗ at p∗ on Delaunay triangulation; . linear interp.
Return target state x∗ to autonomous guidance and control unit;

Exit
Result: Evaluation of target state x∗ = ψ(λ∗�,p∗).

9.2.1 Parametric surfaces

The corridor is represented through parametric surfaces, miming what was done in
[111] but applying the methodology to a non-autonomous system instead of an
autonomous one. Cartesian coordinates (ξ0 , η0 ) are used as parameters32. They
are two independent variables describing the locations of ICs on the orbital plane in
which the capture set is defined. Given a Poincaré section and the corresponding
solar longitude λ�, that corridor’s section is completely described by six variables.
Namely, they are the time interval ∆t = t− t0 (or alternatively the time epoch t),
the projection of the position vector on the xy -plane (computed as

√
x2 +y 2 ),

the third component of the position vector z , and the three velocity components
vx , vy , and vz . In this way, the corridor’s state on a Poincaré section is suitably
mapped to the corresponding states at capture.

The grid used to numerically represent the parametric surfaces is constructed
sampling the subcorridor domain with a Fibonacci lattice and subsequently perform-
ing a Delaunay triangulation. The Fibonacci lattice is a mathematical idealization
of the sunflower pattern. It is generated with formulae [122]

li = l0
√

i −1/2 (9.1)

φi = 2πiΦ−1 (9.2)

where li and φi are the radial and azimuthal polar coordinates of each point (i)
of the grid, while Φ = 1 +Φ−1 is the golden ratio equal to (1 +

√
5)/2 . The

Fibonacci grid is chosen for its several attributes, namely its geometric regularity,
the almost homogeneous and isotropic resolution, and a lack of artificial symmetries.
All features making the lattice suitable for numerical modeling [122].

32This is not the only available option. Also other sets of parameters could be used, e. g., the
radius and argument of pericenter (rp0 , ω0 ).
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Given two Poincaré sections 1 and 2 separated by a small angle ∆λ� =

|λ(2)� − λ
(1)
� |, thereby close enough to each other, the intermediate section at

λ∗� = (λ
(1)
� +λ

(2)
� )/2 is derived by linear interpolation. The linear interpolation

is carried out point by point between corresponding samples of the Fibonacci
lattice. States on the interpolated section are evaluated by linearly interpolating
the parametric surfaces numerically constructed on the Fibonacci lattice.

9.2.2 Performance of synthetic corridor

An assessment of synthetic corridor performance and goodness is carried out by
evaluating a test point belonging to the corridor numerical approximation. The test
point is arbitrary chosen as the center of the corridor since that is never a node of
the Fibonacci lattice. Evaluations are compared against high-fidelity, point-wise
propagations performed with GRATIS. Errors at insertion are computed for any
tested solar longitudes as

eti = |ti − t∗i | , eri = ‖ri − r∗i ‖ , evi = ‖vi −v∗i ‖ (9.3)

where t∗i , r∗i , and v∗i are the time epoch, position, and velocity of the high-fidelity
solution, respectively. Additionally, also errors on time epoch and osculating
elements at capture are estimated. They are computed between the new capture
point33, obtained by forward propagating the evaluated test point, and the initial
osculating elements of the test point at time epoch t0 . Hence,

et0 = |t0 − t∗0 | , er0 = |r0 − r∗0 | , ee0 = |e0 − e∗0 | ,
ei0 = |i0 − i∗0 | , eΩ0 = |Ω0 −Ω∗0 | , eω0 = |ω0 −ω∗0 | ,

(9.4)

where quantities marked with ∗ superscript are the exact initial time epoch and
osculating elements.

9.3 Results

The method is applied to synthesize the subcorridor Š6
−1 developed from the capture

set C6
−1 presented in Chapter 5 (see Figure 5.3). The corridor is represented through

parametric surfaces in Figure 9.1, where three sets of surfaces are shown. They are
obtained performing a Delaunay triangulation on a Fibonacci lattice of 105 points.
The first set, in yellow, refers to the Poincaré section at λ(1)� = 90.05 deg named
section 1. The second one, colored in red and referred to as section 2, describes
the Poincaré section at λ(2)� = 89.95 deg. Finally, the blue set includes parametric
surfaces retrieved by linear interpolation of sections 1 and 2.

33To find the new capture point is not trivial. For a generic state, neither the capture epoch
nor the capture point location are known a priori. Generally speaking, capture is not even granted.
However, if the IC forward propagated still belongs to a corridor, a new capture point is found
inverting the methodology to construct BC orbits [25].
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(f) Velocity ż = vz .

Figure 9.1: Subcorridor Š6
−1 parametric surfaces of time epoch and Cartesian states

at three Poincaré sections. States in Sun-centered ECLIPJ2000 frame. Parameters
ξ0 = rp0 cos(ω0 ) and η0 = rp0 sin(ω0 ). Yellow and red surfaces at λ(1)� = 90.05 deg and
λ
(2)
� = 89.95 deg, respectively. Blue surfaces linearly interpolated at λ∗�= 90 deg. Delaunay

triangulations on a Fibonacci lattice of 105 points.

The center of the corridor is evaluated on all seven Poincaré sections drawn
in Figure 5.10a. Two different synthetic corridors are tested, a coarse and a fine
one. The former is built from Poincaré sections with step ∆λ� = 0.1 deg and
approximated on a Fibonacci lattice of 105 points34 (see Figure 9.1). The latter
is derived from sections with step ∆λ� = 0.01 deg and Fibonacci lattice made of
715 points35 (see Figure 5.9b). The test point evaluations are compared against
the high-fidelity solution propagated with GRATIS (collected in Table 5.1 and
Table 5.2). The errors at insertion are computed for any tested solar longitudes.
Results are shown in Figure 9.2a, while plot in Figure 9.2b provides errors at capture.
Figures 9.2c and 9.2d report the same errors when using the fine approximation.
As expected, the fine approximation performs better, overall granting smaller
errors than the coarse one both at insertion and capture. Errors are larger when
interpolating far from capture, likely due to the stretching observed in Figure 5.13.
However, they seem to stabilize after the corridor crosses the Poincaré section at
λ� = 90 deg. Regarding errors on insertion epoch and velocity, they seem to exhibit
local maxima in correspondence of the corridor twisting, when λ� ≈ 90 deg.

34Counting 21 complete clockwise spirals made of 5 points each.
35Counting 55 complete clockwise spirals made of 13 points each.
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(a) Errors at insertion in subcorridor Š6
−1 ,

coarse approximation. Step ∆λ� = 0.1 deg
and 105 points Fibonacci lattice.
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(b) Errors at capture point, coarse approx-
imation. Step ∆λ� = 0.1 deg and 105
points Fibonacci lattice.
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(c) Errors at insertion in subcorridor Š6
−1 ,

fine approximation. Step ∆λ� = 0.01 deg
and 715 points Fibonacci lattice.
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(d) Errors at capture point, fine approxima-
tion. Step ∆λ� = 0.01 deg and 715 points
Fibonacci lattice.

Figure 9.2: Errors of synthetic subcorridor Š6
−1 . Dotted black vertical lines mark

approximate solar longitude λ�,fX−1 at which a spacecraft escapes from Mars when
flying on subcorridor’s center trajectory in backward time. The x-axes are not monotone
increasing because they represent solar longitude λ� wrapped to 360 deg along subcorridor
in backward time.
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9.4 Final remarks

The mapping of capture conditions to interplanetary states has been discussed.
Different interpolation schemes can be tested to find the best trade-off between
computational effort and accuracy. Indeed, numerical experiments here omitted
prove how too coarse approximations fail in representing corridors correctly. In
particular, the method appears really sensitive to the step ∆λ� used for recon-
structing an intermediate Poincaré section. Alternative interpolation techniques
like cubic spline or cubic convolution are expected to perform better than the
simple, fast linear interpolation. This at the drawback of large computation efforts
required both in terms of memory and time. In particular, cubic convolution
interpolation was already proven successful when trying to approximate invariant
manifolds in the restricted circular three body problem [111]. Nonetheless, pri-
ority to inexpensive interpolation methods has been given in this dissertation in
light of the ultimate goal of implementing the ABC algorithm directly on board
limited-capability, autonomous, interplanetary CubeSats.

“All we have to decide is what to do with the
time that is given us.” – Gandalf

J. R. R. Tolkien, The Fellowship of the Ring
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Conclusion

In conclusion, a critical discussion is presented summarizing the attained results
and contributions that lead to answer the RQs. Furthermore, recommendations for
future work are provided to drive potential next developments at best.

10.1 Summary of results

In Chapter 1, the following RQs were defined.

Research questions

i) How can we characterize ballistic capture corridors?
ii) How to synthesize high-fidelity ballistic capture corridors that are com-

putationally inexpensive for onboard usage?
a) How can we generate new ballistic capture orbits on board?
b) To what extent can we exploit Lagrangian indicators to extract

dynamical insight and build ballistic capture corridors?
c) How accurate are ballistic capture corridors constructed on board?

The characterization of BCCs was covered in Chapter 5, so answering RQ i)
and achieving RO i). Dimension, shape, and peculiarities of corridors were studied
to appraise their potential exploitation as pathways guaranteeing temporary capture
at major planets for autonomous, deep-space CubeSats. On the other hand, RQ
ii) was tackled in Chapters 6–9. Specifically, the comprehensive overview of the
ABC algorithm was discussed in Chapter 6. Later, essential methods founding
the algorithm (i. e., the generation of BC orbit families, the extraction of the
backbone, and the synthesis of BCCs) were presented in detail. In Chapter 7,
the computationally demanding problem of designing BC orbits through stable
sets manipulation was unburdened by just solving a linear system, so answering
RQ ii.a). A novel methodology to extract the backbone of a capture set was
established in Chapter 8. The backbone could be used to construct capture sets
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directly on board. Additionally, it finds application in the generation of BC orbit
families when combined with the correction technique discussed in Chapter 7. This
was made possible by exploiting LDs evaluated on a short finite horizon, therefore
answering RQ ii.b). Finally, to answer RQ ii.c), the accuracy of synthetic corridors
was assessed in Chapter 9. Errors at insertion and capture epoch for coarse and
fine maps were estimated. All aforementioned outcomes concurred in achieving
RO ii), so making the algorithm compatible with limited-capability, autonomous,
interplanetary CubeSats.

Algorithms developed in Chapters 7–9 are advanced and complex. Their actual
onboard implementation will strongly depend on the synergy with the autonomous
CubeSat guidance and control unit. Determining the characteristic frequency
with which new capture sets and BCCs are to be computed will be of paramount
importance in assessing real feasibility for onboard implementations. Specifically, a
high frequency could be problematic and prevent the successful application of the
ABC algorithm. Nevertheless, we foresee a low characteristic frequency because
new capture sets and BCCs are expected to be computed only when re-planning the
capture about the target and not every time the interplanetary cruise is re-optimized,
which occurs more frequently. Therefore, we are mildly positive about implementing
the ABC successfully.

Overall, results presented in this dissertation aid in answering the ORQ of
Pillar 3 and, consequently, the EXTREMA big RQ (see Section 1.2). Achieving
ballistic capture at Mars without any a priori instruction is anything but trivial, in
particular for limited-capability spacecraft akin to CubeSats. The answer to Pillar 3
ORQ is nowhere close to be exhaustively resolved. Nevertheless, the advancements
discussed in this work will hopefully foster the necessary knowledge to ultimately
engineer autonomous ballistic capture.

10.2 Recommendations for future work

Suggestions on possible future developments follow. Inclusion of stochastic dynamics
in the EoM is advised to assess the robustness of the developed methods against
uncertainties in the parameters and uncertainty continuous forces [109] (i. e., solar
radiation pressure and residual non-modeled accelerations).

The boundary conditions of the 3PBVP formulated in Chapter 7 could be
adapted to correct ICs not only belonging to Cn

−1 but to any generic sub-sets
(i. e., Wn, Xn or Kn) and to seek any desired initial Keplerian elements (or state
coordinates) instead of the capture epoch. Investigating this possibility could be of
interest to several applications.

The 3PBVP could be easily converted into an optimization problem similar to
what is done in [114], the cost function being a quadratic form of the constraints
or the correction magnitude for instance. This would allow relaxing boundary
conditions iif) and ib), and remove boundary condition iiif (i. e., the most strict).
Adding constraints on regularity index S , repulsion rate ρ, or a specific LD could
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be considered as well. This is expected to ease the search for new BC orbits
at the cost of increasing the computational effort. However, by admitting some
performance loss, the optimization could be forcibly stopped after a few iterations
(in the limit even after just one if necessary) to reduce the computational burden,
boost algorithm speed, and maintain the method suitable for limited-capability,
autonomous spacecraft.

Starting from the aforementioned optimization problem statement, a low-thrust
optimal control problem could be derived with the primary goal of making the
temporary capture permanent. This means computing the thrust profile such that
the Cn

−1 orbit on which the spacecraft is flying is transformed into a C∞
−1 orbit. The

suggestion is to investigate both time-optimal and fuel-optimal approaches while
considering that the latter may be likely more interesting from a practical point of
view. The solving method (i. e., direct or indirect) should be selected based on the
required performance. However, indirect methods are suggested considering the
availability of really good initial guesses (i. e., BC orbits themselves).

The outcome of Chapter 8 is the result of an intuition supported by heuristic
arguments and numerical experiments. Unfortunately, this is insufficient to prove
the validity of the backbone because the mathematical proof is lacking. The
recommendation is to provide a theoretical demonstration. It could be argued
that clues on how to proceed may be possibly found in [62, 64, 93]. Finding
strong mathematical evidence will be challenging but highly attractive. Additionally,
potential points of contact and similarities between the backbone and kick-maps
[121] should be investigated.

Although effective, the two-layer linear interpolation technique (see Section 9.2)
used for on-the-fly evaluation of corridor states could be enhanced. In particular, an
alternative procedure based on PCE could benefit in terms of both efficiency and
accuracy [108]. The advice is to envisage a PCE based methodology to synthesize
a corridor numerical approximation, so improving the proposed approach.

Attainability of BCCs pathways as viable options for autonomous CubeSats
to achieve temporary capture at major planets according to their knowledge and
dispersion errors must be proved. Specifically, this should be intended as a combined
effort of Pillars 1, 2, and 3 in EXTREMA (see Figure 1.2).

Finally, assuring that the ABC algorithm is suitable for implementation on
board to autonomous interplanetary CubeSats is mandatory. In this regard, a
testing campaign assessing the performance and including V&V of the algorithm
is strongly suggested. Firstly, in a processor-in-the-loop simulation. Then, in a
hardware-in-the-loop experiment operated on relevant equipment.

See you space cowboy. . .

Hajime Yatate, Cowboy Bebop





A

Verification and validation
campaign of GRATIS

In this appendix, the V&V of GRATIS is presented. According to the European
Cooperation for Space Standardization (ECSS)36 verification and validation, when
referring to software, are defined as37:
• verification: “Process to confirm that adequate specifications and inputs
exist for any activity, and that the outputs of the activities are correct and
consistent with the specifications and inputs.”, the status of the software
following verification is verified ;
• validation: “Process to confirm that the requirements baseline functions and

performances are correctly and completely implemented in the final product.”,
the status of the product following validation is validated and verification is
a pre-requisite for validation.

Since no list of specifications and requirements are drafted for GRATIS, the focus
in the validation campaign is to i) verify the correctness and consistency of the
outputs provided some inputs, and ii) validate the correctness and completeness of
the implemented functions in light of the toolkit purpose. To assess the V&V of
GRATIS, the most important core routines are tested. In particular, the implemented
DOPRI8 [40] integration scheme and the right-hand side (RHS) of the high-fidelity
model. Three test plans for the DOPRI8, and a test plan and three benchmarks
for the RHS are defined to assess their V&V. Then, the whole toolkit is tested
against results found in literature to check the correct extraction and manipulation
of stable sets.

36https://ecss.nl/standards/ [last accessed Dec 1, 2022].
37From ECSS-E-ST-40C, third issue, 6 March 2009.

https://ecss.nl/standards/
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A.1 V&V of DOPRI8 integration scheme

The V&V of the implemented DOPRI8 propagation scheme, also named my_ode78
or RK8(7)13M38 throughout the manuscript, is carried out performing three test
plans. The first test plan verified the correct implementation of the scheme.
The second test checked the correct implementation of forward and backward
propagation feature. The last one verified the correct implementation of the
event location functionality. Finally, the scheme is compared to other numerical
propagators available in the MATLAB R©’s ode suite [39].

The whole DOPRI8’s V&V campaign is performed in the context of the planar
two-body problem. The planar two-body problem is selected for two reasons:
it is frequently used by many authors, and it describes the major features of
satellite motion very well [35, 123]. The nondimensional form of the equations
is implemented in the RHS. Therefore, the attracting body had a gravitation
parameter µ= 1 , and the propagated orbit is characterized by a semi-major axis
a = 1 . The revolution period resulted to be T = 2π. The differential equations of
the dynamical system can be found in [35]. Moreover, a big advantage of using
the planar two-body problem is that an exact solution exists. As a consequence,
results can be verified and validated against it.

A.1.1 Test plan 1

To assess the correct implementation of the DOPRI8 scheme the test defined by
[123] and used in [35] is used. The scheme is tested on five different problems D1
to D5 with eccentricities ranging from 0.1 to 0.9 by steps of 0.2. This because
velocity variations in an eccentric orbit are crucial when testing a variable step
numerical integration method like DOPRI8 [35].

The orbits are propagated starting from the pericenter and for 10 periods, from
t0 = 0 to tf = 20π. For this test, the RelTol (relative tolerance error) is set to
10−14. Errors are computed against the exact solution as

epos = ‖r∗− r‖ , evel = ‖v∗−v‖ (A.1)

where r∗ and v∗ are the exact position and velocity.
The results of the five test problems are shown in Figure A.1. Position and

velocity errors are shown on the left and on the right, respectively. The trends vary
differently from D1 to D5. From the charts it seems that the numerical integration
of D2 and D3 is more accurate with respect to others. As expected, D5’s solution
is the less accurate being the problem more eccentric. Nonetheless, position errors
remain always under 10−10. Similarly, apart from some exceptions for D5’s solution,
most of the times velocity errors are smaller than 10−10. For comparison, the same

38The notation RKp(q)sM is used when referring to a Runge–Kutta method of order p, with
an embedded step-size control of qth order, and a total of s stages [35].
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(b) Velocity error.

Figure A.1: Test plan 1 errors of my_ode78. Errors in nondimensional quantities. RelTol
set to 10−14.

test is run using MATLAB R©’s ode7839, ode8940, and ode11341 with AbsTol
(absolute tolerance error) set to 10−14 and RelTol set to 2.220 45×10−14. The
latter because for smaller values MATLAB R© displays a warning, notifying the user
that RelTol has been increased to 2.220 45×10−14. From the results shown in
Figure A.2, it seems that my_ode78 performs better than ode78. However,
different relative tolerances where used, therefore this comparison may be not
completely fair. Results when using propagation schemes ode89 and ode113 are
shown in Figures A.3 and A.4, respectively.

A.1.2 Test plan 2

The forward and backward integration capability of the scheme is checked prop-
agating 103 random ICs forward for 10 periods, saving the final states, and then
propagating backward the final states again for 10 periods to get back the ICs.
The ICs are derived from a random vector of eccentricities and assuming the mass-
less spacecraft at the pericenter. The random vector of eccentricities is obtained

39ode78 is a propagator based on an Verner’s implementation of the RK formula (7,8) pair
[124]. It is a method of 8th order with a 7th order continuous extension which requires four
additional evaluations but only on steps requiring interpolation. https://www.mathworks.
com/help/matlab/ref/ode78.html [last accessed Dec 1, 2022]

40ode89 is a propagator based on an Verner’s implementation of the RK formula (8,9) pair
[124]. It is a method of 9th order with an 8th order continuous extension which requires five
additional evaluations but only on steps requiring interpolation. https://www.mathworks.
com/help/matlab/ref/ode89.html [last accessed Dec 1, 2022]

41ode113 is a multistep, VSVO, ABM, PECE solver of orders 1st to 13th. The highest
order used appears to be 12th since a formula of order 13th is used to form the error estimate
and the function does local extrapolation to advance the integration at order 13th. https:
//www.mathworks.com/help/matlab/ref/ode113.html [last accessed Dec 1, 2022].

https://www.mathworks.com/help/matlab/ref/ode78.html
https://www.mathworks.com/help/matlab/ref/ode78.html
https://www.mathworks.com/help/matlab/ref/ode89.html
https://www.mathworks.com/help/matlab/ref/ode89.html
https://www.mathworks.com/help/matlab/ref/ode113.html
https://www.mathworks.com/help/matlab/ref/ode113.html
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Figure A.2: Test plan 1 errors of ode78. Errors in nondimensional quantities. RelTol
set to 2.220 45×10−14 and AbsTol set to 10−14.
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Figure A.3: Test plan 1 errors of ode89. Errors in nondimensional quantities. RelTol
set to 2.220 45×10−14 and AbsTol set to 10−14.

with MATLAB R©’s rand42 routine (which returns uniformly distributed random
numbers) setting the seed to 0 and bounding the results between 0 and 0.99, so
limiting the study to closed orbits. For this test, the RelTol is set to 10−14.

The plot in Figure A.5 shows the position and velocity errors for the test
plan under study. The final states are compared against the corresponding exact
ICs using Eq. (A.1). Errors strongly depend on the eccentricity but exhibit an
erratic behavior for close eccentricity values. As expected, larger errors occur for
eccentricities closer to the unity. As previously done, the test is run also propagating

42https://www.mathworks.com/help/matlab/ref/rand.html [last accessed Dec
1, 2022].

https://www.mathworks.com/help/matlab/ref/rand.html
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(a) Position error.
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(b) Velocity error.

Figure A.4: Test plan 1 errors of ode113. Errors in nondimensional quantities. RelTol
set to 2.220 45×10−14 and AbsTol set to 10−14.
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Figure A.5: Test plan 2 errors of my_ode78. Position error (blue diamonds) and velocity
error (red crosses) in nondimensional quantities. RelTol set to 10−14.

the equations with ode78 scheme, see Figure A.6. In that case, RelTol is set to
2.220 45×10−14 and AbsTol to 10−14. As before, although the comparison is still
not completely fair, my_ode78 seems to perform better than ode78. Results from
the tests carried out with propagation schemes ode89 and ode113 are shown in
Figures A.7 and A.8, respectively. In both cases, RelTol is set to 2.220 45×10−14

and AbsTol to 10−14.
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Figure A.6: Test plan 2 errors of ode78. Position error (blue diamonds) and velocity
error (red crosses) in nondimensional quantities. RelTol set to 2.220 45×10−14 and
AbsTol set to 10−14.

A.1.3 Test plan 3

The third test plan is used to V&V the event location functionality. The my_ode78
of GRATIS implements the regula falsi method [120] for event location purposes.
Differently, a variant of the regula falsi method called Illinois method [125] is
implemented in MATLAB R©’s routine odezero used by the integration schemes
of the ode suite [39].

The same set of random eccentricities generated for the second test plan (see
Section A.1.2) is used to generate the 103 needed for the third test. To assess
the event location functionality, the massless particle is integrated starting from
the pericenter. The scheme is requested to locate the events at which the true
anomaly is equal to θ = π/2. Half of the ICs are propagated forward, while the
other half backward. Also in this case, the RelTol is set to 10−14.

The results of the test are shown in Figure A.9. Errors are computed against
the exact solution at the event. Comparing the my_ode78’s outcome with the
errors resulting from running the same test with ode78 (see Figure A.10), as
already suggested by the previous two tests, it can be claimed that my_ode78
performs better than ode78. Results obtained using propagation schemes ode89
and ode113 are shown in Figures A.11 and A.12, respectively. Also in this case,
when propagating with ode78, ode89, and ode113, tolerances RelTol and AbsTol
are set to 2.220 45×10−14 and 10−14, respectively.



A.1. V&V of DOPRI8 integration scheme 137

0 0.2 0.4 0.6 0.8 1

Eccentricity e [-]

10
-15

10
-10

10
-5

E
rr

o
r 

[-
]

Position

Velocity

Figure A.7: Test plan 2 errors of ode89. Position error (blue diamonds) and velocity
error (red crosses) in nondimensional quantities. RelTol set to 2.220 45×10−14 and
AbsTol set to 10−14.
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Figure A.8: Test plan 2 errors of ode113. Position error (blue diamonds) and velocity
error (red crosses) in nondimensional quantities. RelTol set to 2.220 45×10−14 and
AbsTol set to 10−14.
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Figure A.9: Test plan 3 errors of my_ode78. Error on the event epoch (yellow triangles),
position error (blue diamonds), and velocity error (red crosses) in nondimensional quantities.
RelTol set to 10−14.
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Figure A.10: Test plan 3 errors of ode78. Error on the event epoch (yellow triangles),
position error (blue diamonds), and velocity error (red crosses) in nondimensional quantities.
RelTol set to 2.220 45×10−14 and AbsTol set to 10−14.
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Figure A.11: Test plan 3 errors of ode89. Error on the event epoch (yellow triangles),
position error (blue diamonds), and velocity error (red crosses) in nondimensional quantities.
RelTol set to 2.220 45×10−14 and AbsTol set to 10−14.
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Figure A.12: Test plan 3 errors of ode113. Error on the event epoch (yellow triangles),
position error (blue diamonds), and velocity error (red crosses) in nondimensional quantities.
RelTol set to 2.220 45×10−14 and AbsTol set to 10−14.
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A.2 Integration schemes comparison

Once the V&V campaign of the implemented DOPRI8 scheme is assured, its
performance is compared to the ones of MATLAB R©’s ode4543, ode78, ode89,
and ode113. The schemes are tested at different tolerances, specifically at
2.5×10−14, 10−12, 10−10, 10−8, and 10−6. A set of 103 randomly generated
ICs are propagated for 10 orbital revolutions and the final states are compared
against the exact solutions. The massless particles are assumed to start from the
pericenter of orbits having different eccentricities. The eccentricities are generated
randomly using MATLAB R©’s randn44 routine (which returns normally distributed
random numbers). Then, the output random eccentricities are scaled to obtain
a normal distribution with mean µ = 0.7 and standard deviation σ = 0.05/3 (so
having 3σ = 0.05).

The plot in Figure A.13 compares the number of function evaluations against
the tolerance. At smaller tolerances, higher accuracy is expected. Then, Figure A.14
provide a rough idea about the computational times for single calls45. Finally, the
chart in Figure A.15 presents how position (solid curves) and velocity (dashed
curves) errors vary for different tolerances and for the different integration schemes
considered. All in all, there is evidence that the my_ode78 delivers the best
performance among the tested numerical propagation schemes.

43ode45 is a propagator based on an explicit RK formula (4,5) pair of Dormand and Prince
[126]. It is a 7-stage method of 5th order with an embedded method of 4th order, also called
DOPRI5 or RK5(4)7M [35]. The MATLAB R©’s implementation uses a free interpolant of 4th
order communicated privately by Dormand and Prince as specified in the help of the routine.
https://www.mathworks.com/help/matlab/ref/ode45.html [last accessed Dec 1,
2022]

44https://www.mathworks.com/help/matlab/ref/randn.html?
searchHighlight=randn&s_tid=srchtitle [last accessed Dec 1, 2022]

45Code written in MATLAB R©R2021b and run on a Windows 10 Pro (OS type: 64-bit, x64-
based processor; version: 20H2) machine having 16GB of RAM, mounting 6x Intel R© Core

TM

i7-8700 CPU@3.20GHz and a TOSHIBA DT01ACA100 1TB.

https://www.mathworks.com/help/matlab/ref/ode45.html
https://www.mathworks.com/help/matlab/ref/randn.html?searchHighlight=randn&s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/randn.html?searchHighlight=randn&s_tid=srchtitle
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Figure A.13: Function evaluations comparison.
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A.3 RHS V&V against GMAT

The goodness of the RHS is tested against the General Mission Analysis Tool
(GMAT)46 (release R2020a), which is an open source, platform independent,
trajectory optimization and design system designed to model and optimize spacecraft
trajectories in flight regimes ranging from low Earth orbit to lunar applications,
interplanetary trajectories, and other deep space missions [127, 128]. General
Mission Analysis Tool (GMAT) is developed by NASA and private industries.

A.3.1 Test plan definition

Ten ICs are propagated for 20 years both in GMAT and GRATIS. Then, errors on
position and velocity are computed to compare the propagated trajectories. The
initial epoch for the propagation is set to January 1, 2020 at 11:00:00.000 (UTC).
The ICs Keplerian elements expressed in the J2000 frame centered at the Sun are
collected in Table A.1. The ICs are generated randomly exploiting GMAT’s random
routine rand setting the seed to 1. The generated values are limited between
lower and upper bounds. Bounds are collected in Table A.2.

GMAT comes with several embedded numerical integrator. According to the
user guide47, the PrinceDormand7848 is the best all purpose integrator in GMAT.
As a consequence, the PrinceDormand78 is used for this test. The accuracy is
set to 10−14 and the error control to RSSStep49 mode.

46https://opensource.gsfc.nasa.gov/projects/GMAT/index.php [last ac-
cessed Dec 1, 2022].

47http://gmat.sourceforge.net/docs/R2020a/html/index.html [last accessed
Dec 1, 2022].

48An adaptive step, eighth order RK integrator with seventh order error control. Coefficients
derived by Prince and Dormand [40]. It is the DOPRI8 implemented in GRATIS.

49In GMAT, root sum square (RSS) relative error measured with respect to current step.

https://opensource.gsfc.nasa.gov/projects/GMAT/index.php
http://gmat.sourceforge.net/docs/R2020a/html/index.html
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Table A.1: Ten ICs generated randomly exploiting GMAT’s random routine rand setting the seed to 1. ICs expressed as Keplerian elements in
the J2000 inertial frame centered at the Sun.

ID Semi-major axis Eccentricity Inclination RAAN Argument of pericenter True anomaly
a0 [km] e0 [-] i0 [deg] Ω0 [deg] ω0 [deg] θ0 [deg]

1 7.460 942×108 9.232 318×10−1 2.306 240×101 3.596 546×102 8.499 203×101 1.427 691×102

2 7.045 949×108 8.378 478×10−1 5.638 923×101 1.888 373×102 1.596 430×102 8.264 780×101

3 3.825 848×108 4.263 916×10−1 1.690 430×102 2.802 201×102 2.577 494×102 2.889 927×102

4 6.571 223×108 8.208 554×10−1 1.493 286×102 9.829 799×101 2.132 755×101 2.413 901×102

5 3.520 106×108 1.955 754×10−1 5.213 334×101 5.116 325×101 2.819 932×102 1.485 140×102

6 5.195 326×108 2.955 103×10−1 8.030 421×101 7.996 484×101 2.641 110×101 1.689 259×102

7 1.552 388×108 5.195 514×10−1 1.505 214×101 3.300 701×102 3.277 614×102 1.076 148×102

8 4.880 963×108 9.469 703×10−1 4.697 622×101 8.316 555×101 1.920 415×102 3.419 777×102

9 5.901 162×108 4.489 227×10−2 2.519 390×101 2.852 653×102 1.072 849×101 3.179 252×102

10 6.753 763×108 3.738 085×10−1 9.691 645×101 2.348 276×102 1.300 540×102 2.055 631×102
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Table A.2: Lower and upper bounds of ICs generated in GMAT.

Quantity Symbol Bounds

Lower Upper

Semi-major axis a0 [AU] 0.5 5
Eccentricity e0 [-] 0 0.99
Inclination i0 [deg] 0 180
RAAN Ω0 [deg] 0 360

Argument of pericenter ω0 [deg] 0 360
True anomaly θ0 [deg] 0 360

The propagation is carried out having the Sun as central body and adding the
third-body perturbations of the following: Mercury, Venus, Earth, Moon, Mars
(B50), Jupiter (B), Saturn (B), Uranus (B), Neptune (B), and Pluto (B). Moreover,
also the contribution of the SRP and relativistic corrections (Schwarzschild solution,
geodesic precession, and Lense-Thirring precession) are taken into account51. In
GMAT, the SRP spherical area model is used. When using such model the user
must provide the coefficient of reflectivity and the area needed to compute the SRP
acceleration. Those where generated randomly with the GMAT’s random routine
rand setting the seed to 1. The parameters and the bounds used to generate
them are collected in Tables A.3–A.4, respectively. For all ten cases, the spacecraft
(or particle) mass is assumed 24 kg. After the numerical propagation, the ten
trajectories are saved as SPICE’s spacecraft ephemeris kernels (SPKs)52 [27, 28].
The plot in Figure A.16 shows the propagated trajectories in the J2000 inertial
frame centered at the Sun.

According to the user guide, GMAT saves the spacecraft states from the first
step after the initial epoch to the last step before the final epoch when writing
spacecraft ephemeris as SPK. Therefore, in GRATIS, trajectories are propagate from
January 1, 2020 at 12:00:00.000 (UTC), slightly after the previously defined initial
epoch. The new ICs are retrieved with SPICE toolkit. ICs in Cartesian coordinates
with respect to the Sun-centered J2000 frame are collected in Table A.5. To be
consistent and perform a fair comparison, the propagation in GRATIS is performed
with the Sun as central body and taking into account the same list of third-body
perturbations used in GMAT. The SRP and relativistic corrections are taken into
account as well. In GRATIS, the SRP model implemented is the cannonball or
spherical model [129]. Regarding relativistic corrections, the Schwarzschild solution,

50Here B stands for barycenter.
51In GMAT, this is done making a ForceModel, which is a model of the environmental forces

and dynamics that affects the motion of a spacecraft. Numerous force models are supported.
After them being configured, they are attached to the Propagator object using a ForceModel to
numerically solve the orbital EoM, forward or backward in time.

52SPICE is the information system developed by NAIF to assist NASA scientists and engineers
in mission modeling, planning, interpreting scientific observations, and executing activities.
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Table A.3: Spacecraft SRP parameters generated randomly exploiting GMAT’s random
routine rand setting the seed to 1.

ID Reflectivity SRP area
Cr [-] ASRP [m2]

1 1.387 911 6.730 486
2 1.534 414 9.148 224
3 1.092 801 5.229 710
4 1.593 066 6.749 376
5 1.034 171 6.277 897
6 1.096 172 9.043 365
7 1.584 389 5.702 529
8 1.493 060 5.451 945
9 1.540 788 4.535 004
10 1.637 836 1.350 517

Table A.4: Lower and upper bounds of SRP spacecraft parameters generated in GMAT.

Quantity Symbol Bounds

Lower Upper

Reflectivity coefficient Cr [-] 1 2
SRP area ASRP [m2] 0.1 10

the geodesic precession, and the Lense-Thirring precession are considered [31]. The
kernels embedded in GMAT (LSK, SPK, and PCK) are exported from GMAT and
imported in GRATIS for consistency. Always for consistency, the same values of
solar constant Gsc = 1367Wm−2 and astronomical unit AU= 149597870.691km
used by GMAT are temporary adopted in GRATIS. The numerical propagation is
carried out with my_ode78. RelTol is set to 10−14.
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Figure A.16: The ten trajectories numerically propagated in GMAT. J2000 inertial frame
centered at the Sun.
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Table A.5: ICs numerically propagated in GRATIS. Cartesian coordinates in the J2000 inertial frame centered at the Sun.

ID Position Velocity

x0 [km] y0 [km] z0 [km] vx0 [km s−1] vy0 [km s−1] vz0 [km s−1]

1 −2.812 408×108 −2.816 169×108 −1.206 211×108 −6.337 448 −18.854 44 −8.043 600
2 7.279 361×107 1.054 357×108 −1.399 204×108 −17.431 16 14.894 80 −26.172 29
3 −1.717 034×107 2.742 466×108 −6.149 131×106 23.508 25 −6.942 320 −4.240 546
4 −2.916 564×108 −8.771 567×107 −1.786 731×108 11.021 89 19.043 77 8.098 486
5 −9.815 784×107 2.530 155×108 3.023 949×108 −12.872 11 −8.736 863 5.848 701
6 −8.292 633×107 −6.393 833×108 −1.741 599×108 2.329 370 1.849 327 −11.538 72
7 9.208 641×107 9.207 275×107 3.381 439×107 −9.085 801 31.586 02 6.142 329
8 −4.767 362×106 −2.597 080×107 1.760 367×106 67.468 74 −2.578 705 −72.106 29
9 −1.306 118×108 −5.402 236×108 −1.261 884×108 13.792 91 −4.199 088 5.739 615
10 −4.243 075×108 −6.777 568×108 −3.592 251×108 −2.099 945 −0.862 171 3 10.056 50
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Figure A.17: Position error of GRATIS against GMAT. Units of measurement for y -axis
shown in the legend.

A.3.2 Results and discussion

GRATIS and GMAT performances are evaluated in terms of their position and
velocity errors. Errors are computed according to Eq. (A.1). The chart in Figure A.17
shows the error on the position while the velocity error is presented in Figure A.18.
The maximum error of the whole propagation and the error at the final epoch are
found in Table A.6.
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Figure A.18: Velocity error of GRATIS against GMAT.

Table A.6: Position and velocity errors of GRATIS against GMAT.

ID Final errors Maximum errors

epos,f [km] evel,f [km s−1] epos,max [km] evel,max [km s−1]

1 4.982×101 6.544×10−7 8.836×101 5.364×10−5

2 3.224×102 1.748×10−5 3.224×102 6.570×10−5

3 5.337 2.512×10−7 7.101 6.671×10−7

4 1.947×101 4.167×10−7 6.177×101 1.284×10−5

5 1.351 9.083×10−8 1.351 9.083×10−8

6 4.688 1.245×10−7 8.313 3.675×10−7

7 7.421 3.234×10−6 7.587 3.472×10−6

8 1.417×102 5.484×10−6 3.091×103 6.172×10−3

9 8.465 2.013×10−7 8.465 2.013×10−7

10 2.019 4.184×10−8 4.716 1.680×10−7
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Table A.7: IC of Siding Spring comet (C/2013 A1). Cartesian coordinates in the J2000
inertial frame centered at the Sun.

Initial condition at
t0 = January 1, 2014 at 12:00:00.000 (UTC)

x0 2.325 487×108 km
y0 4.662 406×108 km
z0 −2.838 604×108 km
vx0 1.298 172 km s−1

vy0 −2.101 254×101 km s−1

vz0 2.144 944 km s−1

A.4 Siding Spring comet (C/2013 A1) benchmark

C/2013 A153, or Siding Spring, is an Oort cloud hyperbolic comet. It was discovered
on January 3, 2013. On October 19, 2014, it had a close encounter with Mars,
passing at a distance of approximately 140 000 km. For this benchmark, the
ephemeris of Siding Spring made available by the JPL is used as ground truth
to assess GRATIS performance. The ephemeris of Siding Spring54 (SPK file
siding_spring_s46.bsp) has been retrieved from JPL’s NAIF website.

A.4.1 Benchmark definition

Siding Spring trajectory is propagated both with GRATIS and GMAT. Then, resulting
trajectories are compared each other and against the real ephemeris retrieved
by NAIF website. The propagations are carried out from January 1, 2014 at
12:00:00.000 (UTC) to December 25, 2015 at 12:00:00.000 (UTC) (approximately
723 days). The following kernels are used for retrieving the IC and propagating it:
naif0012.tls, pck00010.tpc, and gm_de440.tpc55. The ephemerides
of the planets and the Moon are already included within Siding Spring’s SPK.

The IC expressed in Cartesian coordinates in the Sun-centered J2000 frame
is presented in Table A.7. In GRATIS, the numerical propagation is carried out
with my_ode78 setting RelTol to 10−14. On the other hand, in GMAT, the
PrinceDormand78 is used, with accuracy parameter set to 10−14 and error control
mode set to RSSStep. For this benchmark, the kernels used in GRATIS are
imported in GMAT for consistency.

53https://ssd.jpl.nasa.gov/sbdb.cgi?ID=dK13A010 [last accessed Dec 1, 2022].
54Data available at: https://naif.jpl.nasa.gov/pub/naif/generic_kernels/

spk/comets/siding_spring_s46.bsp [retrieved Dec 1, 2022].
55Data available at: https://naif.jpl.nasa.gov/pub/naif/generic_kernels/

lsk/naif0012.tls, and ~/generic_kernels/pck/pck00010.tpc [retrieved Dec 1,
2022]. The gm_de440.tpc PCK kernel consistent with the ephemerides DE440s is custom
made, courtesy of Dr. C. Giordano. In fact, it is not released yet.

https://ssd.jpl.nasa.gov/sbdb.cgi?ID=dK13A010
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/comets/siding_spring_s46.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/comets/siding_spring_s46.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/naif0012.tls
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/naif0012.tls
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/pck00010.tpc
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The propagation is performed having the Sun as central body and adding the
third-body perturbations of the following: Mercury, Venus, Earth, Moon, Mars,
Phobos, Deimos, Jupiter (B), Saturn (B), Uranus (B), Neptune (B), and Pluto
(B). SRP acceleration and relativistic corrections (Schwarzschild solution, geodesic
precession, and Lense-Thirring precession) are taken into account. To compute the
reflectivity coefficient and area-to-mass ratio some assumptions are needed. The
albedo of the comet is assumed ε= 0.04 (average between 0.02 and 0.06 [130]).
Since it is estimated that Siding Spring has a radius between 40056 and 700m57,
the radius is assumed 500m (average value). Lastly, a density of 600 kgm−3 is
assumed (average for comets) [131]. The reflectivity coefficient is computed as

Cr = 1 +ε (A.2)

therefore resulting equal to 1.04. Assuming a spherical shape, the area-to-mass
ratio is computed as

ASRP

m
=

3

4Rρ
(A.3)

where R is the radius and ρ the density of the body, equal to 2.2727×10−6mkg−2.

A.4.2 Results and discussion

The propagated trajectories and the one from HORIZONS System are compared
in Figure A.19. In Figure A.20, the xy -plane is shown. In the plots, the unit of
measure LU corresponds to 1AU. To compare the results, the errors on position
and velocity are computed according to Eq. (A.1). Results are shown in Figure A.21.
The maximum errors and the errors at the final epoch are found in Table A.8. When
compared to GMAT, GRATIS performs very well. On the other hand, errors are
larger when both GMAT and GRATIS are compared to the Siding Spring ephemeris
released by JPL. Very likely, that is because the RHS of JPL takes into account
more perturbing contributions than the ones considered in this benchmark [30].

56https://www.uahirise.org/releases/siding-spring/ [last accessed Dec 1,
2022].

57https://www.nasa.gov/content/goddard/nasas-swift-satellite-
tallies-water-production-of-mars-bound-comet [last accessed Dec 1, 2022].

https://www.uahirise.org/releases/siding-spring/
https://www.nasa.gov/content/goddard/nasas-swift-satellite-tallies-water-production-of-mars-bound-comet
https://www.nasa.gov/content/goddard/nasas-swift-satellite-tallies-water-production-of-mars-bound-comet
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Figure A.19: Trajectory comparison for Siding Spring comet benchmark. J2000 inertial
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Table A.8: Position and velocity errors of Siding Spring comet benchmark.

Final errors Maximum errors

epos,f evel,f epos,max evel,max

[km] [km s−1] [km] [km s−1]

GRATIS vs. GMAT :
2.839×10−1 7.818×10−9 2.839×10−1 1.616×10−7

GRATIS vs. HORIZONS :
2.177 4.742×10−8 2.177 9.179×10−8

GMAT vs. HORIZONS :
2.156 4.794×10−8 2.156 2.631×10−7
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Table A.9: IC of 2006 RH120. Cartesian coordinates in the J2000 inertial frame centered
at the Earth.

Initial condition at
t0 = April 1, 2006 at 12:00:00.000 (UTC)

x0 3.988 125×106 km
y0 3.786 330×106 km
z0 3.095 485×105 km
vx0 −1.488 339 km s−1

vy0 −3.621 496×10−1 km s−1

vz0 −3.338 711×10−1 km s−1

A.5 2006 RH120 benchmark

2006 RH120
58 (RH120 for short) is a tiny near-Earth asteroid and fast rotator with

a diameter of approximately 2-3 m [132]. Classified as an Apollo near-Earth object
(NEO), it can be temporarily captured by Earth–Moon system while orbiting the
Sun. That because of periodical close approaches with the Earth–Moon system.
Indeed, it was in Earth orbit from September 2006 to June 2007. As a consequence
of its temporary capture, its orbit is well-known. The ephemeris of RH120 has been
retrieved from JPL’s HORIZONS System59 and used as ground truth.

A.5.1 Benchmark definition

The body trajectory is propagated both in GRATIS and GMAT and results are
compared against the real ephemeris. The IC is set to April 1, 2006 at 12:00:00.000
(UTC) and propagated forward for 500 days. The same set of generic kernels used for
the Siding spring benchmark is used (see Section A.4). The SPK de440s.bsp60

is used for retrieving ephemerides of the major bodies [30].
The IC expressed in Cartesian coordinates in the Earth-centered J2000 frame

is presented in Table A.9. The same integration schemes and tolerance settings
of Section A.4 are used for this benchmark. The kernels employed in GRATIS are
imported in GMAT for consistency.

This time, propagation is carried out having the Earth as central body and
adding the third-body perturbations of the following: Sun, Mercury, Venus, Moon,
Mars (B), Jupiter (B), Saturn (B), Uranus (B), Neptune (B), and Pluto (B). The
contributions of SRP acceleration, NSG perturbation, and relativistic corrections
(Schwarzschild solution, geodesic precession, and Lense-Thirring precession) are

58https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2006+RH120;orb=1 [last accessed
Dec 1, 2022].

59Data available at: https://ssd.jpl.nasa.gov/?horizons [retrieved Dec 1, 2022].
60Data available at: https://naif.jpl.nasa.gov/pub/naif/generic_kernels/

spk/planets/de440s.bsp [retrieved Dec 1, 2022].

https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2006+RH120;orb=1
https://ssd.jpl.nasa.gov/?horizons
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de440s.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de440s.bsp
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Table A.10: Position and velocity errors of 2006 RH120 benchmark.

Final errors Maximum errors

epos,f evel,f epos,max evel,max

[km] [km s−1] [km] [km s−1]

GRATIS vs. GMAT :
3.321×10−1 1.217×10−7 3.764×10−1 8.518×10−7

GRATIS vs. HORIZONS :
3.810×103 1.421×10−3 4.811×103 1.084×10−2

GMAT vs. HORIZONS :
3.810×103 1.421×10−3 4.811×103 1.084×10−2

considered. The asteroid parameters needed to evaluate the SRP acceleration are
computed with Eqs. (A.2) and (A.3) and assuming the following: albedo ε= 0.18
(most typical near-Earth asteroid (NEA) albedo for S-type asteroids [133, 134]),
radius R = 3.3m [134], and density ρ = 2710kgm−3 (typical value for S-type
asteroids [135]). Therefore, the reflectivity coefficient and area-to-mass ratio used
for this benchmark are Cr = 1.18 and A/m = 8.3864×10−5m2 kg−1, respectively.
The terms of the infinite series modeling NSG are considered up to degree ndeg = 4
and order nord = 4 . The coefficients to evaluate the NSG perturbation are retrieved
from the EGM96 Earth’s gravity field model. Data are publicly available in the file
egm1996_to360_tide_free_sha.tab. They are archived in the Office of
Geomatics’s website61.

A.5.2 Results and discussion

The propagated trajectories are compared to the real ephemeris coming from the
HORIZONS System. Figure A.22 shows a three-dimensional comparison of the
trajectories in the J2000 inertial frame centered at the Earth, while Figure A.23
presents the same comparison from different points of view. In the plots, the unit
of measure LU corresponds to Earth’s radius. Position and velocity errors computed
according to Eq. (A.1) are plotted in Figure A.24. The maximum errors and the
errors at the final epoch are collected in Table A.10. Also in this benchmark,
GRATIS performs very well when compared to GMAT. Differently, errors against
the HORIZON System’s ephemeris are larger.

61Data publicly available at: https://earth-info.nga.mil/index.php?dir=
wgs84&action=wgs84 [retrieved Dec 1, 2022].

https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84
https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84
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Figure A.23: Trajectory comparison for 2006 RH120 benchmark. J2000 inertial frame
centered at the Earth. Here LU corresponds to Earth’s radius.
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Table A.11: IC of 2020 CD3. Cartesian coordinates in the J2000 inertial frame centered
at the Earth.

Initial condition at
t0 = September 18, 2017 at 10:31:22.261 (UTC)

x0 8.276 758×104 km
y0 8.144 092×104 km
z0 −1.637 116×105 km
vx0 5.829 108×10−1 km s−1

vy0 −1.705 912 km s−1

vz0 −5.538 911×10−1 km s−1

A.6 2020 CD3 benchmark

2020 CD3
62 (CD3 for short) is a tiny near-Earth asteroid or minimoon [136].

Similarly to RH120, it ordinarily orbits the Sun but periodically makes close approach
to the Earth–Moon system. In those occasions, it can temporarily enter Earth
orbit through ballistic capture. It is categorized as an Apollo object. Its ephemeris
is retrieved from JPL’s HORIZONS System and used as reference for GRATIS
performance evaluation.

A.6.1 Benchmark definition

As previously done, the first step is to propagate the trajectory both in GRATIS and
GMAT. The second step is to compare the propagated trajectories to the ephemeris
of the HORIZONS System. The epoch of the IC is selected to be September 18,
2017 at 10:31:22.261 (UTC), corresponding to the first Earth close encounter as
shown in Figure A.25. The IC is propagated backward up to December 31, 2020 at
12:00:00.0000 (UTC) and forward up to January 1, 2017 at 12:00:00.0000 (UTC).
The same set of generic kernels and major solar system bodies ephemerides (SPK
kernels) used for RH120 is employed for this benchmark.

The IC expressed in Cartesian coordinates in the Earth-centered J2000 frame
is presented in Table A.11. The same integration schemes and tolerance settings
of Section A.4 are used for this benchmark. Also in this case, the kernels used in
GRATIS are imported in GMAT for consistency.

As done in Section A.5, propagation is carried out having the Earth as central
body and adding the third-body perturbations of the following: Sun, Mercury, Venus,
Moon, Mars (B), Jupiter (B), Saturn (B), Uranus (B), Neptune (B), and Pluto (B).
The contributions of SRP acceleration, NSG perturbation, and relativistic corrections
(Schwarzschild solution, geodesic precession, and Lense-Thirring precession) are
considered. The minimoon parameters needed to evaluate the SRP acceleration

62https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=54000953 [last accessed Dec 1,
2022].

https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=54000953
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Figure A.25: 2020 CD3 distance from Earth.

are computed with Eq. (A.2) and Eq. (A.3) and assuming the following [137]:
albedo ε= 0.35 , radius R = 0.9m, and density ρ= 2100kgm−3 [137]. Therefore,
the reflectivity coefficient and area-to-mass ratio used for this benchmark resulted
to be Cr = 1.35 and A/m = 3.9683×10−4m2 kg−1, respectively. The terms of
the infinite series modeling NSG are considered up to degree ndeg = 4 and order
nord = 4 . The coefficients to evaluate the NSG perturbation are retrieved from the
EGM96 Earth’s gravity field model.

A.6.2 Results and discussion

The comparison between the two propagated trajectories and the HORIZONS
System ephemeris in the three-dimensional space is shown in Figure A.26 while
Figure A.27 provides the view of the xy -plane. The magnification of the temporary
capture is provided in Figures A.28–A.29 where trajectories are represented in
three-dimensional space and in the xy -plane, respectively. In the plots, the unit
of measure LU corresponds to Earth’s radius. Figure A.30 shows the position and
velocity errors, while Table A.12 collects the maximum errors together with the
errors at the final epochs of the forward and backward legs. The difference between
the two propagated trajectories is small, confirming the goodness of GRATIS’ RHS.
Differently, differences are larger when the numerically propagated trajectories are
compared to the ephemeris available in the HORIZONS System.
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Table A.12: Position and velocity errors for 2020 CD3 benchmark.

Final errors (backward) Final errors (forward) Maximum errors

epos,b evel,b epos,f evel,f epos,max evel,max

[km] [km s−1] [km] [km s−1] [km] [km s−1]

GRATIS vs. GMAT :
1.061×10−1 1.766×10−8 1.653×101 2.479×10−6 2.101×101 1.721×10−4

GRATIS vs. HORIZONS :
4.500×102 8.066×10−5 3.000×105 4.498×10−2 3.897×105 2.532

GMAT vs. HORIZONS :
4.498×102 8.066×10−5 3.000×105 4.498×10−2 3.898×105 2.532
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A.7 V&V of stable sets extraction and manipulation

To assess the V&V of GRATIS in terms of stable sets extraction and manipulation
some of the results published in [25] are reproduced. In [25], the authors presented
three different case studies of capture: at Mercury, at Europa, and at the Earth.
To numerically propagate the equation of motions, they used a 7th/8th order
Runge–Kutta–Felhberg63 scheme with automatic step-size control and integration
tolerance set to 10−12 [25]. The implemented DOPRI8 and the same tolerance are
used to test GRATIS against the results reported in [25].

For consistency, the same kernels used by the authors are used to replicate
the results. In particular, the JPL planetary ephemerides DE430 [138] are used
to retrieve the precise states of the Sun, planets, and other bodies needed to
compute the acceleration acting on the spacecraft (or particle). Ephemerides of
the central body (or secondary), the primary, and the other perturbing bodies are
publicly available64. Regarding the generic kernels, based on the publishing date
of the article, the following kernels are selected to be used in the V&V campaign:
naif0010.tls, pck00010.tpc, and gm_de431.tpc65.

A.7.1 Benchmark Sun–Mercury

For this benchmark the settings follow [25]: i) t0 = 2458891.70 days, corresponding
to February 12, 2020 at 04:48:00.000 (UTC); ii) e0 = 0.95; iii) i0 = 45.04deg
and Ω0 = 202.50deg; iv) rp0 ∈ [R + ε,RSOI] (ε= 1km) and ω0 ∈ [0,2π) uniformly
discretized with 548 and 360 points, respectively; v) n = 6; vi) gravitational
attractions of the Sun, Mercury, Venus, Jupiter (B), and Saturn (B). Note that,
according to [25], ICs are expressed in the body mean equator of date frame (BME),
a non-rotating frame frozen at the initial epoch and usually indicated as BME@t0 .

The plots in Figure A.31 replicates the results of Figures 6a and 6d of [25].
The number of points belonging to W1 , W−1 , W6 , and C6

−1 is 25 596, 19 529,
2807, and 994, respectively (while it was 25 534, 19 686, 2801, and 986 in [25]).
The curves in Figure A.32 are the reproduction of Figures 7a and 7b. Results of
Figure A.32 are reproduced using the same ICs of Table 4 in [25]. The plots of
Figure A.32 are slightly different compared to the ones in [25]. On the other hand,
the charts in Figure A.33, showing the distance and the Keplerian energy of the
solution characterized by the minimum stability index Smin (more recently also

63The scheme is the same explicit embedded RK of order 8th and step-size control with order
7th, performing 13 functions evaluations currently implemented in GRATIS.

64Data available at: https://naif.jpl.nasa.gov/pub/naif/generic_kernels/
spk/planets/de430.bsp, ~/spk/satellites/a_old_versions/jup310.bsp, ~/
spk/satellites/a_old_versions/sat360.bsp, ~/spk/satellites/ura111.bsp,
~/spk/satellites/a_old_versions/nep081.bsp, and ~/spk/satellites/a_
old_versions/plu043.bsp [retrieved Dec 1, 2022].

65Data available at: https://naif.jpl.nasa.gov/pub/naif/generic_kernels/
lsk/a_old_versions/naif0010.tls, ~/generic_kernels/pck/pck00010.tpc,
and ~/generic_kernels/pck/gm_de431.tpc [retrieved Dec 1, 2022].

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/a_old_versions/jup310.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/a_old_versions/sat360.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/a_old_versions/sat360.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/ura111.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/a_old_versions/nep081.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/a_old_versions/plu043.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/a_old_versions/plu043.bsp
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/a_old_versions/naif0010.tls
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/a_old_versions/naif0010.tls
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/pck00010.tpc
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/gm_de431.tpc
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Figure A.31: Stable and capture sets at Mercury. Replicas of results in [25]. Here LU
corresponds to Mercury’s radius.

called regularity index [54]), are very similar. Very likely, since the phenomenon
under analysis is chaotic and therefore very sensitive to small variation in the ICs,
it could be possible that running analysis on a different machine resulted in slightly
different output. However, the solution obtained with the implemented my_ode78
and characterized by the minimum regularity index behaves very similarly to the
one discussed in [25]. In conclusion, it seems that the current version of GRATIS
correctly reproduced the results for the capture at Mercury case study in [25].

A.7.2 Benchmark Jupiter–Europa

For this benchmark the settings follow [25]: i) t0 = 2458852.19 days, corresponding
to January 3, 2020 at 16:33:35.999 (UTC); ii) e0 = 0.95; iii) i0 = 45.00deg and
Ω0 = 233.82deg; iv) rp0 ∈ [R + ε,RSOI] (ε = 1km) and ω0 ∈ [0,2π) uniformly
discretized with 408 and 360 points, respectively; v) n = 6; vi) gravitational
attractions of the Sun, Jupiter, Saturn (B), Io, Ganymede, Callisto, and Europa.
ICs are expressed in the BME.

The plots in Figure A.34 replicates the results of Figures 9a and 9b of [25].
This time the number of points belonging to W1 , W−1 , W6 , and C6

−1 is 5594,
5342, 190, and 174, respectively (differently, it was 5601, 5410, 190 and 173 in
the original work). Curves in Figure A.35 reproduce Figures 11a and 11b. Also in
this case, the plots of Figure A.32 are reproduced using the same ICs of Table 4
from [25]. Figure A.36 represents the Keplerian energy and the distance of the
IC characterized by the minimum regularity index. Charts in Figures A.35–A.36
do not show the approaching leg, which is instead present in the originals. After
visual comparison, it looks like that GRATIS correctly reproduced the results of the
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(a) Kepler energy about Mercury.
Replica of Figure 7a in [25].
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(b) Distance to Mercury. Replica
of Figure 7b in [25].

Figure A.32: Kepler energy and distance profiles of the sample solution at Mercury from
Table 4 of [25] (backward integration dashed, forward integration solid). Replicas of results
in [25]. Here LU corresponds to Mercury’s radius while VU is the velocity on the circular
orbit about Mercury having radius equal to LU.
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(a) Kepler energy about Mercury.
Replica of Figure 7a in [25].
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(b) Distance to Mercury. Replica
of Figure 7b in [25].

Figure A.33: Kepler energy and distance profiles of the solution having IC characterized
by minimum regularity index Smin at Mercury (backward integration dashed, forward
integration solid). Here LU corresponds to Mercury’s radius while VU is the velocity on
the circular orbit about Mercury having a radius equal to LU.

capture at Europa too. Indeed, as it happened for the first case study, the plots
from Figure A.35 slightly differ from the originals but the ones in Figure A.36 are
very similar.



168 A. Verification and validation campaign of GRATIS

-10 -5 0 5 10

x [LU]

-5

0

5

y
 [

L
U

]
 

-10 -5 0 5 10

x [LU]

-5

0

5

y
 [

L
U

]

 

 

Sun@t
0

Jupiter@t
0

SOI

W
-1

W
1

Sun@t
0

Jupiter@t
0

SOI

C
-1

6

(a) W1 and W−1 in BME@t0 , xy -
plane. Replica of Figure 9a in [25].
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(b) C6
−1 in BME@t0 , xy -plane.

Replica of Figure 9b in [25].

Figure A.34: Stable and capture sets at Europa. Replicas of results in [25]. Here LU
corresponds to Europa’s radius.

7308 7310 7312 7314

MJD2000 [days]

0

5

10

15

D
is

ta
n
c
e
 [
L
U

]

 

t<t
0

t>t
0

7308 7310 7312 7314

MJD2000 [days]

-0.1

-0.05

0

K
e
p
le

r 
e
n
e
rg

y
 [
V

U
2
]

 

t<t
0

t>t
0

 

(a) Kepler energy about Europa.
Replica of Figure 11a in [25].
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(b) Distance to Europa. Replica of
Figure 11b in [25].

Figure A.35: Kepler energy and distance profiles of the sample solution at Europa from
Table 4 of [25] (backward integration dashed, forward integration solid). Replicas of results
in [25]. Here LU corresponds to Europa’s radius while VU is the velocity on the circular
orbit about Europa having radius equal to LU.

A.7.3 Benchmark Sun–Earth

For this benchmark the settings follow [25]: i) t0 = 2458888.82 days, corresponding
to February 9, 2020 at 07:40:47.999 (UTC); ii) e0 = 0.95; iii) i0 = 45.89deg and
Ω0 = 272.54deg; iv) rp0 ∈ [R + ε,RSOI] (ε = 1km) and ω0 ∈ [0,2π) uniformly
discretized with 919 and 720 points, respectively; v) n = 6; vi) gravitational
attractions of the Sun, the Earth, the Moon, Jupiter (B), and Saturn (B). ICs
conditions are expressed in the BME.
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(a) Kepler energy about Europa.
Replica of Figure 11a in [25].
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(b) Distance to Europa. Replica of
Figure 11b in [25].

Figure A.36: Kepler energy and distance profiles of the solution having IC characterized by
minimum regularity index Smin at Europa (backward integration dashed, forward integration
solid). Here LU corresponds to Europa’s radius while VU is the velocity on the circular
orbit about Europa having a radius equal to LU.

The plots in Figure A.37 replicate results of Figures 13a and 13b in [25]. ToW1 ,
W−1 , W6 , and C6

−1 belong 55 406, 56 835, 14 476, and 4472 points, respectively
(instead, in [25], the points were 55 522, 56 770, 15 363, and 4498). The charts in
Figure A.38 reproduce Figures 15a and 15c. The plots of Figure A.38 are reproduced
using the same ICs collected in Table 4 targeting Earth. Figure A.39 shows the
same quantities but for the solution characterized by the minimum regularity index
when propagating with the implemented DOPRI8. This time, is the former that is
more similar to the originals. Indeed, also if the solution with minimum regularity
index has almost the same Keplerian energy and distance histories, some differences
can be found. In particular in the peak value of the Keplerian energy just after the
capture. All in all, GRATIS V&V campaign about extraction and manipulation of
sets is considered successful as also this last case study is reproduced correctly.
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(a) W1 and W−1 in BME@t0 , xy -
plane. Replica of Figure 13a in [25].
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(b) C6
−1 in BME@t0 , xy -plane.

Replica of Figure 13b in [25].

Figure A.37: Stable and capture sets at Earth. Replicas of results in [25]. Here LU
corresponds to Earth’s radius.
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(a) Kepler energy about Earth.
Replica of Figure 15a in [25].
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(b) Distance to Earth. Replica of
Figure 15c in [25].

Figure A.38: Kepler energy and distance profiles of the sample solution at Earth from
Table 4 of [25] (backward integration dashed, forward integration solid). Replicas of results
in [25]. Here LU corresponds to Earth’s radius while VU is the velocity on the circular
orbit about Earth having radius equal to LU.
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(a) Kepler energy about Earth.
Replica of Figure 15a in [25].
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(b) Distance to Earth. Replica of
Figure 15c in [25].

Figure A.39: Kepler energy and distance profiles of the solution having IC characterized by
minimum regularity index Smin at Earth (backward integration dashed, forward integration
solid). Here LU corresponds to Earth’s radius while VU is the velocity on the circular orbit
about Earth having a radius equal to LU.
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