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1. Introduction
In the field of modulation techniques in elec-
trical drives, the optimization of pulse patterns
is a promising research area [1]. The modula-
tion via Optimal Pulse Patterns (OPP) com-
putes the switches of the inverter as the opti-
mization variables of an optimal control prob-
lem. In this work, the objective is the minimiza-
tion of the distortion of the currents flowing in
the coils of the electric motor. This problem is
challenging due to its high dimensionality and
non-convexity.
Set Membership Global Optimization (SMGO)
is an innovative optimization method that is
characterized by its global nature. Its func-
tioning is black-box and data-driven, hence an
explicit model of the cost function is unneces-
sary [5]. In this work, the SMGO method is
enhanced with some novel concepts and mech-
anisms. Moreover, these modifications produce
a method applicable to the OPP problem. Fi-
nally, the effectiveness of SMGO is compared
with two other methods: gradient-based opti-
mization, representing the state of the art, and
Bayesian optimization, which is a well-known
global optimizer.

2. Enhancing SMGO
The principles of SMGO are vastly reviewed
in [5]. This method fits a Set Membership
(SM) model to the cost and constraint func-
tions, which are black-box functions defined on
the search space, i.e. the space of the optimiza-
tion variables. Such a surrogate model is then
refined through wise handling of the budget of
function evaluations. This last term refers to a
simultaneous evaluation of the cost and all the
constraints, that is performed once per iteration
and produces a known point in the search space.
This point is defined as sample. The algorithm
chooses its next sample according to two differ-
ent modes:

1. Exploitation, trying to find a better point.
2. Exploration, in regions where the cost func-

tion is uncertain.
The balance of these two modes is key to have
a high rate of convergence towards the global
optimum. On every new iteration n, the SM-
model is updated on a subset of the search space,
i.e. the set of candidate points E⟨n⟩. This set is
enlarged at each iteration according to a specific
points generation mechanism.
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2.1. Enforcement of linear constraints
The first addition to SMGO is the ability to
account for linear constraints. This feature is
important in the OPP problem, where the re-
quirement of a sequence of ordered switches can
be translated into a set of linear constraints.
Generally, a set of linear constraints on the op-
timization variables x defines a convex poly-
tope X of feasible points [2] . To easily enforce
these constraints, it is possible to modify the
candidate points generation, so that the search
space of the algorithm is practically limited to
X . As a consequence, the Sobol distribution im-
plemented in SMGO to populate the set E⟨n⟩

is no longer good. This distribution of pseudo-
random points offers good coverage of the hyper-
rectangular space, but is not suited for a poly-
topic X . Instead, the points generated from the
symmetric Dirichlet distribution can be used to
cover uniformly a simplex [3]. The density func-
tion of this symmetric distribution is

Dir(q, a) =
Γ(ma)

Γ(a)m

m∏
i=1

qa−1
i , (1)

where Γ(a) is the gamma distribution with the
shape parameter a and vector q contains the co-
ordinates of the point on the standard simplex,
i.e. the (m-1)-simplex with the standard unit
vectors of Rm as vertices. If a = 1, the distribu-
tion on the standard simplex is uniform. This
uniform distribution can then be mapped into
a uniform distribution in any simplex of dimen-
sion m− 1.
Therefore, X is decomposed into the product of
simplices and in all these simplices a uniform dis-
tribution of points is obtained through (1). Fi-
nally, recomposing the original polytope, a uni-
form distribution over the full X is obtained.

2.2. Extended trust region
It is observed from the application of SMGO to
the OPP problem, that the optimization suffers
of over-exploitation, i.e. it wastes too many it-
erations refining a local minimum. To fight this
issue, a modification is applied. Instead of lim-
iting the exploitation in the surroundings of the
current best point, the enhanced SMGO exploits
always the full E⟨n⟩. Previously a better point
in a different region could be found only via ex-
ploration, i.e. searching in regions with high un-
certainty. With this change, it is easier for the

algorithm to jump from a local optimum to a
superior one in a different region: Exploitation
could eventually reach these minima, enhancing
the rate of convergence.

2.3. Adaptive alpha
The trade-off between exploitation and explo-
ration is a crucial feature for the rate of con-
vergence of a global optimizer. The best com-
promise depends on the user’s objectives. In
SMGO, this trade-off is controlled by the tun-
ing parameter α, which acts as a threshold that
limits the exploitation. However, this α-tuning
has various drawbacks. The application of a
fixed α limits the accuracy of the optimum that
the algorithm can possibly achieve. Moreover,
the relationship between α and the amount of
exploitation performed is highly dependent on
the specific cost function. Proper tuning can be
achieved only via trial and error.
A new approach is here proposed. The value of α
is set to be the result of a discrete PI controller,
that adjusts its value throughout the optimiza-
tion. The user’s preference is now accommo-
dated through Rref, which represents a reference
for the value of

R(n) =
Nϕ(n)

Nθ(n)
. (2)

At iteration n, (2) describes the ratio between
the amount of iterations spent for exploration
over the amount of iterations spent for exploita-
tion. Therefore, after defining the error

e(n) = Rref −R(n), (3)

the PI controller that outputs α is

α(n) = max (KP e(n) +KI Σe(n), αmin) , (4)

where KP and KI are the proportional and the
integral gain, αmin corresponds to the minimum
value of α and Σe(n) is the integral error. The
update of Σe(n) is characterized by a clamping
anti-windup:

Σe(n+ 1) =

{
Σe(n), α(n) = αmin

Σe(n) + e(n) otherwise.
(5)

The primary purpose of this structure is not to
keep the error e(n) close to 0, but to adapt the
value of α to a large variety of situations in terms
of different SM models and different distribu-
tions of candidate points.
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2.4. Sunburst points generation
The default mechanism for the update of the
data set E⟨n⟩ is the spiderweb generation [5].
However, in this mechanism the number of can-
didate points increases following the law

n(B − 1)

(
2D +

n− 1

2

)
, (6)

where n is the iteration, B is the user-defined
gridding granularity and D is the dimension of
X . Hence, it is polynomial w.r.t. the number
of samples n. The pulse pattern optimization is
carried out offline, so there are ideally no lim-
its on the number of iterations that can be per-
formed, and therefore of samples that can be col-
lected. In this work, a new candidate points gen-
eration is introduced. The sunburst generation
adds to E⟨n⟩ only the midpoints of the segments
along the coordinate directions and between the
last sample and the Ncdpt closest candidates,
represented in orange in Figure 1. With this
method, the number of candidate points gen-
erated at each iteration is fixed, and the total
number of candidate points grows linearly with
n, according to the law

n(2D +Ncdpt). (7)

The tuning parameter Ncdpt offers a further de-
gree of freedom to the user.
The sunburst generation speeds up the algo-
rithm, which is vital for D > 5. On top of
that, the distribution of candidate points gets
finer only in the most interesting regions.

The enhancement to SMGO can be assessed

Figure 1: Two consecutive iterations of sunburst
generation.

on the 3D OPP problem. Table 1 and Table 2
report the results of different tunings of the ex-
ploitation vs exploration trade-off. For clarity,

in Table 2 the tuning parameter Rref is substi-
tuted with Ξ, which is defined as

Ξ =
1

Rref + 1
(8)

and describes the fraction of the budget that
should be preferably reserved for exploitation.
The metrics presented in the Tables are: Mean,
the mean optimum found by SMGO over ten
trials, Exploitation, the fraction of exploita-
tion out of the full budget and Converged, the
number of trials that converged to the global
optimum, which is known to be 32.373. In the
captions is also reported the mean self-time, i.e.
the run time of the algorithm only, without the
time for cost and constraint evaluation.

α Mean Exploitation Converged

0.001 36.563 293.5/500 5/10

0.005 37.646 108.4/500 4/10

0.01 38.339 66.8/500 4/10

Table 1: Original SMGO for different tuning of
α. Average self-time: 68.3 s.

Ξ[%] Mean Exploitation Converged

50% 33.627 179.7/500 9/10

33% 33.358 151.0/500 9/10

17% 32.574 69.5/500 10/10

Table 2: Enhanced SMGO for different tuning
of Rref. Average self-time: 2.0 s.

The improvement with respect to the original
version is manifold: The self-time is greatly re-
duced, the number of convergent optimums is
increased and the mean optimum is generally
closer to the global one. Notice how the indica-
tor Ξ does not correspond exactly to the fraction
reported in the third column. This happens be-
cause factors other than α influence the exploita-
tion, e.g. the available candidate points.
Analogous results are confirmed also on a set of
14 benchmark functions, taken from literature
on global optimization.
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3. Pulse pattern optimization
The goal of OPPs is to minimize the total losses
of the electric drive system. The optimization in
this work is based on the Total Harmonic Dis-
tortion (THD) concept. The THD is a perfor-
mance criterion computed with the power spec-
trum of a signal. In particular, it compares the
magnitude of the first harmonic with the higher
harmonic content. This methodological choice
follows the literature on this topic [4], as much
as recent trails of research [1], and even if it
is a simplified approach, still represents a valid
and relevant starting point. The following multi-
objective cost function is used:

F (σ) =

√√√√ N∑
i=2

(hi(σ))2 +Qh1(σ). (9)

Here, the optimization variable σ ∈ RD is a se-
quence of switching angles that define the pulse
pattern. σ is linked to the amplitude of the i-
th spectrum harmonic of the electrical machine
phase current hi(σ) by a non-linear dynamical
relationship. The first term penalizes the har-
monic content of the current, while the second
favors the lowest fundamental current that en-
sures a certain mean torque, enforced via black-
box constraint. The parameter Q is a weight
empirically tuned. Overall, the problem results
to be a challenging constrained non-convex opti-
mization.

4. Comparative analysis
4.1. Setup of the methods
In order to assess SMGO performance, the algo-
rithm is compared with two well-established op-
timization methods: gradient-based multistart
and Bayesian optimization.
The former represents the state of the art in
the industry and the latter is a well-established
black-box global optimization method.
Gradient-based methods make use of the first-
and second-order optimality conditions. They
are very powerful, but they exploit only local
information in the quest for a minimum, con-
verging to local minima in case of non-convex
optimization problems. In order to find the
global optimum of a non-convex cost function,
the gradient-based local optimization must be
initialized on different points. This structure

gives the name multistart to the method. In the
thesis, the initialization point is drawn from the
Dirichlet random distribution, which enforces
the linear constraints on the starting point.
The optimizer is fmincon of MATLAB. Among the
manifold of gradient-based approaches, this is
a Sequentially Quadratic Programming (SQP)
that makes use of the quasi-newton method
Broyden–Fletcher–Goldfarb–Shanno (BFGS) to
approximate the Hessian matrix. In addition,
the computation of the gradient is done with the
central difference approach. Details on these fea-
tures are discussed in [2] in an exhaustive man-
ner.
Differently, Bayesian optimization is a global
black-box optimization method, like SMGO.
Nevertheless, they approximate the value of the
cost function with two different surrogate mod-
els. SMGO uses the SM-model, while Bayesian
fits a Gaussian process on the evaluated samples.
The problem is solved with the MATLAB function
bayesopt. Lastly, SMGO solutions make use of
the enhancements described in Section 2.

4.2. Comparative results
In this comparative study, every algorithm is
tested for ten trials, with a given number of
function evaluations. The first chart that we
report summarizes in a synthetic way the re-
sults obtained with the different methods. The
square represents the mean value of the optimum
found over all the trials, with the bracket delim-
ited by the largest and the smallest optimum.
The blue numbers tell the average amount of lo-
cal gradient-based optimizations carried out in
the multistart optimization. The second chart
shows the performance of each method in terms
of total running time. For bars out of scale, the
number is reported on top.
Results for the 3D OPP problem case are con-
tained in Figure 2.
All the solvers reach the same global minimum,
with a reasonable budget of function evalua-
tions. SMGO converges with a smaller number
of function evaluations compared to multistart.
Bayesian employs even fewer evaluations, but it
requires way more computational time, one or-
der of magnitude higher than SMGO. Overall,
SMGO for this low dimensional case can be con-
sidered the best one, in the trade-off between
computational burden and convergence rate.
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Figure 2: Comparison charts for D = 3.

Note that, in multistart optimization, the whole
budget is just sufficient to initialize the gradient-
based optimization in a few different points;
This can be inferred from the blue numbers of
the first chart.
It is known that the OPP problem requires more
than three optimization variables to have inter-
esting results, especially for higher motor speed.
Up to five switching angles, SMGO maintains
a good quality-efficiency trade-off and result.
However, starting from D = 6, SMGO perfor-
mance deteriorates. In the following, the com-
parative charts for σ ∈ R20 are presented. This
is an interesting case, because applications in
the automotive field require similar number of
switches.
Notice that Bayesian optimization is not even
applied for this high dimension. The requested
time is prohibitive and, in addition, it suffers
in finding the region feasible for the linear con-
straints.
For budgets of a few hundred cost function eval-
uations, SMGO provides slightly better perfor-
mance in terms of mean and variability of the re-
sulting optima, and also in terms of the compu-
tational burden. Nonetheless, with larger bud-
gets, the roles are reversed: multistart can con-
verge very reliably to a better minimum, in a

Figure 3: Comparison charts for D = 20.

short time. Looking at Figure 3, we notice that
multistart can converge with just between 5 and
6 random initializations of local gradient-based
optimization.
Therefore, the problem at hand can be consid-
ered smooth enough. Normally, for this kind of
problem, gradient-based methods are the best
choice. Nevertheless, the OPP can be computed
with different cost and constraint functions. A
cost function with a more accurate loss model
or different constraints can lead to the failure of
gradient-based methods, due to non-convexity
and discontinuity. Hence, SMGO could still be a
superior method with respect to gradient-based
for different formulations of the OPP problem.

5. Conclusion
The Optimal Pulse Patterns are specific drive
modulations able to dramatically reduce the
harmonic distortion introduced by the power
converters in the electrical machines for steady-
state operating points. For low dimensions of
the THD-based OPP problem with one inequal-
ity constraint on torque, SMGO appears to be
a good option. It is faster than Bayesian and
multistart, and the budget of function evalua-
tions it requires is in-between the two methods.
However, in practical terms, OPPs modulation
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requires a high number of switching angles, that
correspond to a high number of optimization
variables. In this case, SMGO does not perform
better than state-of-the-art gradient-based mul-
tistart, because the formulated problem is quasi-
smooth. On the other side, SMGO shows the
ability to handle the problem where other global
optimization methods fail. These interesting re-
sults are achieved thanks to several modifica-
tions to the original SMGO implementation. An
extended trust region, an adaptive alpha, and a
sunburst candidate point generation mechanism
reveal to be enhancements to the solver, that be-
comes faster and less memory demanding. These
changes are also tested on 14 benchmark func-
tions that prove the generality of the enhance-
ments. In conclusion, SMGO turns out to be
appealing for two branches of optimization:

• offline optimization in case of few op-
timization variables, expensive and time-
consuming cost function evaluation or
highly non-smooth problems.

• online optimization where the real bot-
tleneck is a low budget of available function
cost evaluations.
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