
A study of possible improvements
in Knowledge Tracing with
Natural Language Processing and
self-attention

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria
Informatica

Author: Simone Sartoni

Student ID: 10583763
Advisor: Prof. Paolo Cremonesi
Co-advisors: Luca Benedetto, PhD
Academic Year: 2021-2022

i

Abstract

Knowledge tracing is the task of modelling the evolution of students’ knowledge over
time while they answer a sequence of exercises. In online education systems, predict-
ing the answers correctness of a student can provide a more valuable and personalized
learning process. Recent works have proposed self-attention based models or considered
the text of the exercises to learn additional relations between them. Those areas are still
under-explored, so we focus on them. First, we propose Prediction Oriented Self-attentive
knowledge Tracing (POST), a self-attention based model composed of: an encoder, em-
bedding past exercises content information, a decoder, adding past answers and a second
decoder comparing the outputs with the content information of the target exercise. Then
we examine six Natural Language Processing methods (i.e. CountVectorizer, word2vec,
doc2vec, DistilBERT, Sentence Transformer and BERTopic) to produce embeddings from
the exercises’ texts and develop “NLP-enhanced” versions of Deep Knowledge Tracing
and POST, able to use these embeddings as inputs. Furthermore, we study how to
create hybrid models, able to use at the same time the embeddings produced by multi-
ple NLP methods. We present two hybrid approaches for NLP-DKT. We evaluate the
models on three public datasets (ASSISTments 2009, ASSISTments 2012, Peking Online
Judge) and on a private dataset provided by Cloud Academy. The results show that POST
achieves state-of-the-art performance in knowledge tracing with large improvements in bi-
nary accuracy and AUC (up to 6.65% and 7.74% respectively) compared to both SAINT+
and DKT. NLP-enhanced DKT has shown to improve DKT results on the three public
datasets, while NLP-enhanced POST outperforms the AUC of POST on each of the four
datasets. In particular, NLP-POST provides significant improvements on the datasets
with few samples. Lastly, hybrid models, implemented only for NLP-DKT, enhance fur-
ther the results, establishing itself as the model with the highest AUC on ASSISTments
2009 dataset, improving by 8.73% the AUC of DKT. We conclude that NLP-enhancing
and new self-attention architectures are successful directions to improve KT. For future
research, we suggest studying and optimizing how to NLP-enhance self-attention models.

Keywords: Knowledge Tracing; Natural Language Processing; deep learning; self-attention;
Transformer, answer correctness prediction

Sommario

Nel contesto dell’apprendimento online, è utile tracciare l’evoluzione delle conoscenze e
abilità degli studenti nel corso del tempo, col fine di ottimizzare l’utilità degli esercizi
proposti. In particolare, prevedere la correttezza delle risposte ad esercizi futuri per-
mette di personalizzare e aggiungere valore al processo di apprendimento, per esempio
suggerendo esercizi mirati a colmare eventuali lacune. Recentemente vi è stato interesse
a sviluppare modelli per la previsione della correttezza basati su self-attention oppure
capaci di utilizzare anche le informazioni presenti nel testo degli esercizi. Queste due aree
sono ancora poco esplorate per i risultati che promettono. Innanzitutto, proponiamo il
modello Prediction Oriented Self-attentive knowledge Tracing (POST), composto da tre
componenti: un encoder responsabile di modellare il contenuto degli esercizi passati, un
decoder che aggiunge ad esso le informazioni sulle risposte passate e un secondo decoder
che confronta queste informazioni con il contenuto del problema da prevedere. Successiva-
mente, abbiamo utilizzato sei metodi (CountVectorizer, word2vec, doc2vec, DistilBERT,
Sentence Transformer e BERTopic) per creare, a partire dai testi degli esercizi, dei vet-
tori che li rappresentassero e abbiamo sviluppato delle versioni “NLP-enhanced” di DKT
e POST capaci di utilizzarli. Abbiamo anche studiato come sviluppare modelli “ibridi”,
cioè capaci di usare contemporaneamente vettori provenienti da metodi diversi, e pre-
sentato due approcci per realizzarli a partire da “NLP-enhanced” DKT. La valutazione
dei modelli è stata effettuata su tre dataset pubblici (ASSISTments 2009, ASSISTments
2012 e Peking Online Judge) e uno privato fornito da Cloud Academy. POST migliora
le prestazioni rispetto a SAINT+ e DKT su tutti i dataset valutati, con un incremento
massimo rispettivamente del 6.65% per la binary accuracy e del 7.74% per l’AUC. “NLP-
enhanced” DKT porta miglioramenti sui tre dataset pubblici, mentre “NLP-enhanced”
POST supera la versione che non usa il testo su tutti i datasets, con un incremento più
significativo su quelli con pochi dati disponibili. Infine, i modelli ibridi migliorano ulte-
riormente le prestazioni, affermandosi come miglior modello per il dataset ASSISTments
2009, con un incremento dell’AUC rispetto a DKT del 8.73%.

Parole chiave: Knowledge Tracing; elaborazione del linguaggio naturale; apprendimento
profondo; self-attention; Transformer; previsione delle risposte

v

Contents

Abstract i

Sommario iii

Contents v

List of Figures ix

List of Tables xiii

1 Introduction 1

2 Related Works 5
2.1 Knowledge Tracing . 5
2.2 Bayesian Knowledge Tracing . 5
2.3 Deep Knowledge Tracing . 6
2.4 Attention based models . 6
2.5 Natural Language Processing for KT . 7

3 Background 9
3.1 Deep learning . 9

3.1.1 Perceptron . 9
3.1.2 Feed forward neural network . 9
3.1.3 Recurrent Neural Network . 11
3.1.4 Long Short Term Memory . 12

3.2 Encoder Decoder Sequence to Sequence . 13
3.3 Attention . 14

3.3.1 Multi-Head self-attention . 14
3.3.2 Transformer . 15

3.4 Natural Language Processing . 16

vi | Contents

3.4.1 Text cleaning process . 16
3.4.2 CountVectorizer . 17
3.4.3 TF-IDF . 18
3.4.4 Word embedding approaches . 18
3.4.5 From word to document or sentence embedding 20
3.4.6 Topic prediction . 22

4 Previous models in Knowledge Tracing 25
4.1 Deep Knowledge Tracing . 25

4.1.1 Long Short Term Memory variant 26
4.2 Self Attentive Knowledge Tracing . 26

4.2.1 Embedding layer . 27
4.2.2 Self-attention layer . 28

4.3 Relation-Aware Self-Attention Knowledge Tracing 28
4.4 Separated Self-AttentIve Neural knowledge Tracing 29

4.4.1 Embedding layer . 30
4.4.2 Transformer layer . 31

4.5 SAINT+ . 31
4.6 Exercise-Enhanced Recurrent Neural Network 32

4.6.1 Exercise embeddings . 32
4.6.2 Student embeddings . 32

5 Proposed model architectures 35
5.1 Generating exercise embeddings from texts 35

5.1.1 CountVectorizer . 37
5.1.2 Word2vec, DistilBERT and aggregation over words 37
5.1.3 Doc2vec . 38
5.1.4 Sentence Transformer . 38
5.1.5 BERTopic . 38

5.2 NLP-enhanced DKT . 39
5.3 Prediction Oriented Self-attentive knowledge Tracing 40

5.3.1 Past exercise content encoder . 40
5.3.2 Past performance decoder . 40
5.3.3 Prediction oriented module . 41

5.4 NLP-enhanced Prediction Oriented Self-attentive knowledge Tracing 44
5.5 Hybrid approaches . 44

6 Experimental Setups 49

6.1 Datasets . 49
6.1.1 ASSISTments Datasets . 50
6.1.2 Cloud Academy Dataset . 51
6.1.3 Peking Online Judge Dataset . 52

6.2 Data processing . 53
6.2.1 Text cleaning . 53
6.2.2 Removing interactions without text 55
6.2.3 Removing duplicated interactions 55

6.3 Processed datasets . 55
6.3.1 Processed ASSISTments 2009 . 55
6.3.2 Processed ASSISTments 2012 . 56
6.3.3 Processed Cloud Academy dataset 57
6.3.4 Processed POJ dataset . 57

6.4 Generate sequences of interactions . 58
6.5 Data split and batches . 59
6.6 Loss and metrics . 60
6.7 Hyper-parameters . 61

6.7.1 CountVectorizer analysis . 63

7 Results 65
7.1 POST-M and POST evaluation . 65
7.2 NLP-enhancing KT models with textual exercise embeddings 68

7.2.1 NLP-enhancing for ASSISTments 2009 dataset 70
7.2.2 NLP-enhancing for ASSISTments 2012 dataset 70
7.2.3 NLP-enhancing for Cloud Academy dataset 71
7.2.4 NLP-enhancing for POJ dataset . 73
7.2.5 Considerations about NLP-enhancing 73
7.2.6 Comparison of NLP methods . 75

7.3 Hybrid approaches evaluation . 75
7.4 Best performing models . 77

8 Conclusion 81

Bibliography 83

Acknowledgements 87

ix

List of Figures

3.1 Perceptron with three inputs. 10
3.2 Feed forward neural network with two inputs in the input layer, two hidden

layers, each with four neurons and an output layer with 2 outputs. 10
3.3 Recurrent neural network example with two inputs, four hidden units and

two outputs. 11
3.4 Elman Recurrent Neural Network example with two units for each layer:

input, hidden, memory and output. 11
3.5 Long Short Term Memory unit. 12
3.6 Encoder Decoder architecture for Seq2Seq problem using LSTM units. . . . 13
3.7 Representation of the architecture of the Transformer model [29]. The im-

age is taken from https://lilianweng.github.io/posts/2018-06-24-attention/
and refers to Figures 1 and 2 from the original paper [29]. 15

3.8 CBOW architecture. The image is taken from the original paper [15]. . . . 19
3.9 Skip-Gram architecture. The image is taken from the original paper [15]. . 19
3.10 BERT model pretraining and fine-tuning. 20
3.11 PV-DM and PV-DBOW models respectively. 22
3.12 Sentence BERT fine-tuning architecture. 23

4.1 DKT architecture, where inputs Xt are the one-hot encodings of question
ids and prediction yt is a vector representing the probability of getting
each of the dataset exercises correct. The intermediate layer is a RNN.
The image is taken from the original paper [19]. 26

4.2 SAKT architecture, consisting of a self-attention layer estimating at each
time-step weights only for each of the previous elements. The image is
taken from the original paper [17]. 27

4.3 The overall architecture of RKT. After computing exercise relation matrix
A, RKT generates relation coefficients between past exercises and next
exercise, using A and time elapsed. Relation coefficients R are propagated
to modify the attention weights. The image is taken from the original paper
[18]. 29

https://lilianweng.github.io/posts/2018-06-24-attention/

x | List of Figures

4.4 SAINT architecture. It separates the exercise sequence and the response
sequence, applying to them the encoder and the decoder respectively. It
can learn complex relations among exercises and responses. The image is
taken from the original paper [5]. 30

4.5 SAINT+ architecture, adding to the inputs of the decoder of SAINT+ an
embedding for elapsed time and another for lag time. The image is taken
from the original paper [25]. 31

4.6 EERNN with Markov property architecture. The image is taken from the
original paper [26]. 33

4.7 EERNN with attention mechanism architecture. The image is taken from
the original paper [26]. 33

5.1 NLP methods to produce exercise embeddings. We have six possible paths
from questions texts to produce an exercise embeddings, corresponding to
the use of CountVectorizer, word2vec, doc2vec, Sentence Transformer, Dis-
tilBERT or BERTopic. Orange, blue and yellow blocks are related respec-
tively to data processing, NLP methods and intermediate or final represen-
tations. 36

5.2 NLP-enhanced DKT model. At each time-step past exercise embedding
(embedded with correctness) is given as input to the LSTM network, whose
outputs are element-wise multiplied with the “target” exercise embedding.
The result is passed to a dense layer producing “target” correctness prediction. 39

5.3 Past exercise content encoder module. 41
5.4 Past performance decoder module. 41
5.5 POST-M prediction module. 42
5.6 POST prediction module. 42
5.7 The representation of the architecture of POST. This model is composed

of three modules: past exercise content encoder, past performance decoder
and prediction oriented decoder. The first focuses on understanding what is
relevant about past exercise content, while the second combine performance
information (correctness and elapsed time) and encoder outputs. Lastly,
the prediction oriented decoder combine exercise content embedding with
the output of the performance decoder (representing information about
past interactions) to make predictions. 43

| List of Figures xi

5.8 NLP-enhanced POST model extends POST adding a Linear layer respon-
sible of reducing the size of NLP exercise embeddings to the dimension of
the model. Then reduced NLP embeddings are summed to the inputs of
past exercise encoder and prediction oriented decoder. 45

5.9 Hybrid approach to parallelize multiple NLP-enhanced DKT models, by
computing final prediction as weighted sum of parallel predictions. 47

5.10 Hybrid approach to parallelize multiple NLP-enhanced DKT models, by
applying a Dense layer with one output to the concatenation of the outputs
of the Multiply blocks of the parallel models 48

6.1 Text cleaning process. 54
6.2 Four ROC curve examples; the blue one is the one of a perfect classifier,

while the red one is from a random classifier. 61
6.3 Number of words according to min_df for AM09 dataset. 63
6.4 Number of words according to max_df for AM09 dataset. 63
6.5 Number of words according to min_df for AM12 dataset. 63
6.6 Number of words according to max_df for AM12 dataset. 63
6.7 Number of words according to min_df for CA dataset. 64
6.8 Number of words according to max_df for CA dataset. 64
6.9 Number of words according to min_df for POJ dataset. 64
6.10 Number of words according to max_df for POJ dataset. 64

xiii

List of Tables

4.1 Contingency table. Values are taken from the original paper [18]. 28

6.1 Evolution of the number of interactions, problems and users in ASSIST-
ments 2009 dataset during data processing. 56

6.2 Evolution of the number of interactions, problems and users in ASSIST-
ments 2012 dataset during data processing. 56

6.3 Evolution of the number of interactions, problems and users in Cloud
Academy dataset during data processing. 57

6.4 Evolution of the number of interactions, problems and users in POJ dataset
during data processing. 58

6.5 Number of users, chunks, padded sequences and average sequence length
for each dataset. 59

7.1 Results of the models on ASSISTments 2009. 66
7.2 Results of the models on ASSISTments 2012. 67
7.3 Results of the models on Cloud Academy. 67
7.4 Results of the models on POJ. 67
7.5 Results of NLP-DKT and DKT on ASSISTments 2009. 69
7.6 Results of NLP-POST and POST on ASSISTments 2009. 69
7.7 Results of NLP-DKT and DKT on ASSISTments 2012. 71
7.8 Results of NLP-POST and POST on ASSISTments 2012. 71
7.9 Results of NLP-DKT and DKT on Cloud Academy dataset. 72
7.10 Results of NLP-POST and POST on Cloud Academy. 72
7.11 Results of NLP-DKT and DKT on POJ dataset. 73
7.12 Results of NLP-POST and POST on POJ dataset. 74
7.13 Results of the two hybrid approaches to parallelize multiple NLP-DKT

models (CountVectorizer, DistilBERT and word2vec) on ASSISTments
2009 dataset. 76

xiv | List of Tables

7.14 Results of the two hybrid approaches to parallelize multiple NLP-DKT
models (DistilBERT, Sentence Transformer and word2vec) on ASSIST-
ments 2012 dataset. 76

7.15 Results of the two hybrid approaches to parallelize multiple NLP-DKT
models (CountVectorizer, DistilBERT and doc2vec) on Cloud Academy
dataset. 76

7.16 Results of the two hybrid approaches to parallelize multiple NLP-DKT
models (DistilBERT, BERTopic and word2vec) on POJ dataset. 76

7.17 Results of the best performing models on ASSISTments 2009 dataset. . . . 78
7.18 Results of the best performing models on ASSISTments 2012 dataset. . . . 78
7.19 Results of the best performing models on Cloud Academy dataset. 79
7.20 Results of the best performing models on POJ dataset. 79

1

1| Introduction

In the educational domain, Knowledge Tracing (KT) is the task of modelling the knowl-
edge of a student over time, aiming at understanding its ability levels on different subjects.
Being able to understand and describe students’ abilities, starting from their observed per-
formances on assessments and inferring unobservable traits, enables us to keep track of
their level, personalize the learning process and enrich the experience on online education.
Understanding the way students’ knowledge improves over time can enable to control the
learning process and optimize it. KT can be useful in online assessments to recommend
particular questions, directly targeting students’ weaknesses, or, for example, to guaran-
tee more specific requirements, such as review and explore (i.e. suggesting users exercises
about non-mastered concepts and new knowledge at the same time), smoothness of ques-
tion difficulty (i.e. avoiding dramatic variations of the difficulty levels of exercises) and
student engagement (i.e. being able to mantain student enthusiasm) [10].

Most approaches to KT rely on the assumption of having at least an ability (or “skill”)
associated with a question, which provides context information and can be used to model
the knowledge representation. Without knowing an associated skill, logistic regression-
based and probabilistic approaches must assume all items as related to a single skill to
work, while others, such as Recurrent Neural Networks (RNN), memory-based networks
or networks with attention mechanism, simply have worse performance.

Recent interest in KT has been in developing models able to understand relationships
between questions directly from the textual content. Extracting the important content
from text and representing it in a machine-friendly format can theoretically improve the
performance. It could help understand relations between items and skills and enable
the KT models to work on embeddings created from heterogeneous sources (assessments,
small documents to read or even lesson transcripts).

Recently, some works in KT propose word frequency measures to compute similarities
between texts, while others focus on generating an embedding for each text, using neural
networks or Transformers. Each of them successfully preprocess text applying a Nat-
ural Language Processing (NLP) technique and passing the output as input to a KT

2 1| Introduction

model. Comparing their results with models not using texts, they show improvements in
the performance on the correctness predictions task, which is the task of predicting the
correctness of students’ answers to the next question at each time step.

To the best of our knowledge, no research has yet compared different techniques. Thus,
we focus on performing a methodical analysis of some of the available NLP techniques,
their advantages and disadvantages for the correctness prediction task.

First, we evaluate existing KT models, specifically focusing on the ones performing best
without the text on the correctness prediction task. We chose Deep Knowledge Tracing
(DKT) [19] for its relevance in the field and versatility and Separated Self-AttentIve
Neural knowledge Tracing Plus (SAINT+) [25] for being the state of the art model in
Ednet dataset [4], which is, to our knowledge, the largest publicly available educational
dataset in terms of the total number of students, interactions, and interaction types.

Starting from DKT, we modify the architecture to receive as input an exercise embedding,
as shown in Exercise Enhanced Recurrent Neural Network (EERNN) [13] and evaluate it
using different NLP techniques to produce the exercise embeddings. We call this archi-
tecture NLP-enhanced DKT (NLP-DKT). We also propose two new models: Prediction
Oriented Self-attentive knowledge Tracing with Multiplication (POST-M) and Prediction
Oriented Self-attentive knowledge Tracing (POST), based on self-attention and composed
of a past exercise content encoder, a past performance decoder and a prediction oriented
module.

Then we extend Prediction Oriented Self-attentive knowledge Tracing with the ability to
use as input exercise embeddings created using the different NLP methods. We denote
this model as NLP-enhanced Prediction Oriented Self-attentive knowledge Tracing.

In the end, we show the possibility of combining different exercise embeddings to create
hybrid approaches for NLP-DKT. We propose two examples of how to parallelize two or
more NLP-enhanced DKT models, each using a different NLP method. Instead, for NLP-
POST we suggest using a simple and effective method: summing together NLP generated
embeddings with other embeddings (as skill embedding). We implement only the hybrid
model for NLP-DKT.

We evaluate the proposed models on three public datasets: ASSISTments 20091, ASSIST-
ments 20122 and Peking Online Judgement (POJ)3 and on a private dataset from Cloud

1https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/
skill-builder-data-2009-2010

2https://sites.google.com/site/assistmentsdata/datasets/2012-13-school-data-with-affect
3http://poj.org/

https://www.ednetchallenge.ai/ednet-data
https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/datasets/2012-13-school-data-with-affect
http://poj.org/

1| Introduction 3

Academy (CA)4, minimizing the Binary Cross Entropy loss and using as evaluation met-
rics the Binary Accuracy and the Area Under the Curve. The public datasets are stored
and publicly available5 for future research.

The contributions of this work can be summarised in the following points:

• We propose two self-attention based models: POST-M and POST, outperforming
baselines using as information the exercise ids, the content ids (or skill ids), the
correctness of previous answers and elapsed time between answers.

• We propose NLP-DKT and NLP-POST, extending respectively DKT and POST to
use textual exercise embeddings as input (“NLP-enhancing” these models).

• We compare the utility of six NLP techniques (i.e. CountVectorizer, word2vec,
doc2vec, DistilBERT, Sentence Transformer and BERTopic) to produce textual ex-
ercise embeddings to be used as input for NLP-DKT and NLP-POST.

• We suggest and evaluate two hybrid approaches to use at the same time exercise
embeddings produced by different NLP methods for NLP-DKT. We suggest but not
evaluate an approach for NLP-POST.

The code is publicly available6 for future research.

The document is structured as follows:

• Chapter 1 Introduction, shortly defining the topics of our work, their relevance
and our contributions.

• Chapter 2 Related works, where we give an initial description of KT task and the
models relevant to our work.

• Chapter 3 Background, providing a theoretical explanation of all the terms needed
to fully understand our work, including deep learning, attention mechanism and
NLP techniques.

• Chapter 4 Models, where we accurately perform an analysis of previous relevant
KT models, their architectures and their importance in our work.

• Chapter 5 Proposed models, where we show and explain the models we develop,
their advantages and how to enhance them with NLP exercise embeddings.

4https://cloudacademy.com/
5https://drive.google.com/drive/folders/1rON8zS9oPvIxo9QZTRu_8MkY3ueCpe5n?usp=sharing
6https://github.com/SimoneSartoni/POST—NLP-for-KT

https://cloudacademy.com/
https://drive.google.com/drive/folders/1rON8zS9oPvIxo9QZTRu_8MkY3ueCpe5n?usp=sharing
https://github.com/SimoneSartoni/POST---NLP-for-KT

4 1| Introduction

• Chapter 6 Experimental setups, describing the four datasets we use for evaluation
and the data processing, split and batching needed to use them. In the same chap-
ter we describe the loss, metrics and hyper-parameters we choose for training and
evaluation.

• Chapter 7 Results, where we show the performance of each proposed model and
the NLP methods to enhance them, comparing them with the baselines (DKT and
SAINT+) and discussing them.

• Chapter 8 Conclusions, where we summarize the results, in order to extract con-
clusions. Then we suggest some topics, which should be the focus for future works.

5

2| Related Works

In this chapter, we describe Knowledge Tracing from a formal point of view, we introduce
state of the art models for the correctness prediction task, some recent works which used
NLP techniques to improve KT and their relevance in our work.

2.1. Knowledge Tracing

Knowledge Tracing (KT) is the task of modelling the evolution of the knowledge of stu-
dents over time. In our work we consider KT focused on predicting the correctness of
future students’ answers.

Given a student S, we denote the act of submitting answer rt to exercise question et at
time t as an interaction It = (et; rt). We can describe KT as the task of estimating, given
the past interactions from time t = 0 to time t = T − 1, the answer of the student at time
t = T , denoted by rT , to exercise eT . Formally, from (e0, r0), (e1, r1), ... (eT−1, rT−1) and
eT , KT is the task of predicting value rT . Many models assume to have a skill st associated
with each question et, which can represent the main ability needed to answer correctly,
or possibly a category or label. Knowing the skill enables an easier representation of
knowledge, but at the same time the performance of the models based on this assumption
could be limited by its availability (not guaranteed on many datasets).

2.2. Bayesian Knowledge Tracing

The first model we consider is Bayesian Knowledge Tracing (BKT) [6], which describes
each skill as a binary variable and makes use of a Hidden Markov Model, based on four
parameters per skill representing the probabilities of:

• knowing the skill;

• learning the skill after interacting with an exercise related to it;

• guessing the answer despite not knowing the skill;

6 2| Related Works

• slipping, meaning answering not correctly, despite knowing the skill.

This model tries to mimic directly the human behaviour but has shown some limitations
[19] due to the binary variable representation of skills, which may be unrealistic.

2.3. Deep Knowledge Tracing

In 2015 Deep Knowledge Tracing (DKT) [19] showed the capabilities of Recurrent Neural
Networks (RNN) [22] in modelling this task, using a hidden dimension to represent and
track latent knowledge over time and enabling to reuse past information later in time.
In DKT skills are not assumed as independent variables; thus, it can learn automatically
more complex skills (as combinations of existing ones) and relations among them. If
the skills associated with the items are unknown, BKT assumes all the questions assess
the same skill, while DKT is able to understand multiple skills, directly learning hidden
representations of items and relations between them.

DKT has outperformed BKT on most of the datasets, improving, for example, the Area
Under the Curve metric on ASSISTments 2009 dataset from 0.68 to 0.85. It is able
to mimic a function considering latent concepts, the difficulty of each exercise, the prior
distributions of student knowledge and its evolution over time, while BKT degrades expo-
nentially with the number of hidden concepts growing, not being able to learn unlabelled
ones. However, DKT needs large amounts of data, being well suited for online education
and not for small classrooms.

DKT has also been implemented using Long Short Term Memories (LSTM) [9] to develop
a more powerful variant, able to learn some coefficients representing the amount of past
information to maintain at each time step. We choose DKT implemented with LSTM as
the first baseline to compare our models.

2.4. Attention based models

Recently, attention-based technologies have been shown to outperform deep neural net-
work approaches in many tasks (e.g. sequence classification, language modelling and
summarization) [29] and there have been several attempts to develop attention based
architectures to model KT.

Self Attentive Knowledge Tracing (SAKT) [17] is the first model to apply self-attention
to KT. SAKT uses exercise ids as knowledge concepts and learns which of the previous
interactions are relevant for the next exercise, associating an higher weight to them. Then

2| Related Works 7

SAKT predicts correctness using learnt weights as a weighted sum of the correctness of
previous exercise answers. Compared to DKT, SAKT has shown some improvements on
the Area Under the ROC Curve (AUC) metric, but the main advantage is the possibility
of parallelizing computation, making the model orders of magnitude faster.

Separated Self-AttentIve Neural Knowledge Tracing (SAINT) [5] has instead introduced
the Transformer model to KT, which is a more complex encoder-decoder architecture with
self-attention layers as basic blocks. SAINT has been extended to use temporal features
in the so-called SAINT+ [25] architecture, which is the state of the art model on Ednet
dataset [4]. SAINT+ is the second baseline we compare our models with.

2.5. Natural Language Processing for KT

Generating additional information about the question from its text can lead to improve-
ments in KT. For example, transforming raw text into useful fixed-length vectors and
developing KT models working on generic vectors as input, can enable to use together in-
formation from heterogeneous sources, such as text, skill and temporal features. Different
works focused on applying NLP techniques to create a useful embedding from the text of
each exercise.

Exercise-Enhanced Recurrent Neural Network (EERNN) [26] produces an embedding for
each word using word2vec [16], uses a bidirectional LSTM network to learn relations
between words and use last hidden state as embedding for the exercise. Then EERNN
forwards these embeddings as input to another LSTM network responsible for tracing
knowledge over time, as DKT. For final prediction, EERNN proposes to use target exercise
embedding concatenated alternatively to the last hidden state of the previous network
(EERNN with Markov Property) or to the output of an attention mechanism applied
over its past hidden states (EERNN with Attention mechanism).

Exercise-aware Knowledge Tracing (EKT) [13] is an extension of EERNN by the same
authors, where they move from a vector to a matrix representation of knowledge, where
columns represent the different skills available. This change enables the creation of a
model able to learn hidden representations from the text (as EERNN), returning at the
same time a more explainable description of knowledge evolution over time provided by
the output before the prediction layer.

Instead, Exercise Hierarchical Feature Enhanced Framework (EHFKT) [28] approaches
the problem by using BERT [8] to create word vectors. Those embeddings are then passed
to different systems to estimate information, hierarchically structured in three levels: the

https://www.ednetchallenge.ai/ednet-data

8 2| Related Works

difficulty, the skills and the semantic group. The extracted information is later used as
input to an LSTM network (as EERNN) to model knowledge evolution over time.

Lastly, Relation-Aware Self-Attention for Knowledge Tracing (RKT) [18] is an extension of
SAKT made by the same authors, preprocessing similarity coefficients between exercises,
based on text similarity, on time between the interactions and on the performance of users.
Those additional coefficients are summed to the outputs of the SAKT self-attention layer.

Looking at the results from [18], where authors compare DKT, SAKT, EERNN, EKT and
RKT on three datasets, we can see how RKT is the best performing model on each dataset.
It is also remarkable to see that all the models using textual information (EERNN, EKT
and RKT) show better performance than DKT and SAKT. EHFKT has been shown
to outperform both DKT and EKT on another dataset. These results confirm our idea
that a methodical analysis of the NLP techniques available and how to use them can
further improve KT. Understanding each NLP technique’s advantages and disadvantages
can enable a more aware choice of the most suitable one.

In our work, we follow the approach from EERNN to generate exercise embeddings from
text and then develop a KT model using them as input. Similarly to EERNN, we propose
an LSTM network able to focus on the target exercise embedding. In the end, we propose
two new self-attention architectures able to focus more on target exercise embedding than
SAINT+ and we extend them to receive as input NLP generated exercise embeddings.

9

3| Background

In this chapter, we introduce and describe all the necessary notions to understand our
work, to create a common theoretical ground. The main subjects are deep learning,
attention mechanism and Natural Language Processing techniques.

3.1. Deep learning

Deep learning [7] is a subset of machine learning based on artificial neural networks and
aiming at reproducing the information processing and the distributed communication
nodes in biological systems. An artificial neural network is a system composed of different
layers of parallel neurons, connected in series. To explain better artificial neural networks,
we start from the concept of neurons.

3.1.1. Perceptron

A neuron is the basic unit of artificial neural networks and consists of a perceptron [21],
a mathematical function taking N different inputs, each one, denoted by Xn, associated
to a certain weight Wn and such that the neuron “activates” only when the weighted sum
of inputs plus a bias b satisfies a certain activation function f . So the perceptron can be
defined as a binary classifier that applies a threshold function f to a linear combination
of the inputs. Function describing the perceptron is:

y(x) = f(W TX + b) = f(
N∑

n=1

Wn ∗Xn + b) (3.1)

3.1.2. Feed forward neural network

An artificial neural network (ANN) is an architecture composed of concatenated layers,
where outputs of Kth layer are the inputs of K+1th; a layer is composed of many neurons
in parallel, enabling fault tolerance and contemporaneously focusing on different aspects

10 3| Background

Figure 3.1: Perceptron with three inputs.

Figure 3.2: Feed forward neural network with two inputs in the input layer, two hidden
layers, each with four neurons and an output layer with 2 outputs.

of inputs. The term “deep” comes from the ability of ANN to understand hierarchical and
deep features from unstructured data, eventually needing only some preprocessing of the
inputs. Once ANN receives inputs, they are passed through the layers, in the so-called
“forward propagation” phase, producing the output of the model.

To improve performance and learn the target function, during the training phase outputs
are used to compute a chosen loss function, which represents the error in the results
and is used to change the weights of neurons starting from the output in the opposite
direction of the previous step. This operation is called back-propagation and updates
are performed applying these formulas over each neuron at each time step:

W k+1
i = W k

i +∇Wi (3.2)

∇W k
i = η ∗ tk ∗Xk

i (3.3)

where W k
i is previous weight at time step K for input i, W k+1

i is updated weights (at
time step K+1) for input i, η is learning rate and tk is desired output to achieve for that
sample K of experience.

The first type of ANN developed has been Feed Forward Neural Networks (FFNN), where
layers are concatenated one after the previous, making the flow of execution moving only

3| Background 11

Figure 3.3: Recurrent neural network
example with two inputs, four hidden
units and two outputs.

Figure 3.4: Elman Recurrent Neural
Network example with two units for each
layer: input, hidden, memory and out-
put.

towards results, without cycles or loops, enabling easy computation of gradient and easy
back-propagation. We define a Feed-Forward layer as an FFNN with a single hidden layer;
we’ll reuse this term multiple times in this document.

3.1.3. Recurrent Neural Network

Recurrent Neural Networks are artificial neural networks where there is at least a layer
receiving as input some output from another layer (or itself) from previous time-steps.
For example, a layer can receive as inputs at time step K +1 input Xk+1 (as FFNN) and
its output at time step K, hk, allowing to maintain information from past time steps to
be reused in the future. A variant of basic RNN, called Elman RNN, uses an additional
hidden layer to model memory, highlighting better the difference between FFNN and
RNN. RNN and Elman RNN are shown in Figures 3.3 and 3.4 respectively.

The method to optimize RNN to learn target function is called Back-propagation Through
Time (BTT), adding an unfolding phase before computing back-propagation in FFNN.
This architecture is used to model temporal dynamic behaviours or sequences of repeated
data, but suffers from two main problems due to BTT: “vanishing” gradient (tending to
zero, due to limn−>∞W n = 0) or “exploding” (tending to infinity, due to limn−>∞W n =

∞) gradient, which makes difficult to learn long dependencies.

12 3| Background

Figure 3.5: Long Short Term Memory unit.

3.1.4. Long Short Term Memory

Long Short Term Memory (LSTM) [9] network is a variant of Recurrent Neural Network,
which replaces the recurrent mechanism with a memory-based mechanism, relying on
LSTM units, which are neurons able to decide importance to give to current input and
previous past. An LSTM unit consists of a function with four vectors: an input/update
gate vector, a forget gate vector, a hidden state vector (maintaining value over time) and
an output gate. Those gate vectors are applied according to following equations in the
forward pass:

ft = σg ∗ (Wf ∗Xt + Uf ∗ ht−1 + bf) (3.4)

it = σg ∗ (Wi ∗Xt + Ui ∗ ht−1 + bi) (3.5)

ot = σg ∗ (Wo ∗Xt + Uo ∗ ht−1 + bo) (3.6)

c̃t = σc ∗ (Wc ∗Xt + Uc ∗ ht−1 + bc) (3.7)

ct = ft ◦ ct−1 + it ◦ c̃t (3.8)

ht = ot ◦ σh(ct) (3.9)

3| Background 13

Figure 3.6: Encoder Decoder architecture for Seq2Seq problem using LSTM units.

where, at time t, xt is the input vector with dimension d, ft is forget gate activation
vector, ct is memory cell input activation vector , ot is output gate activation vector, and
ht is the final output of the unit. σc is the sigmoid activation function, while σh is the
hyperbolic tangent function.

LSTM units solve the vanishing gradient problem, enabling the network to decide and
optimize the importance given to the past. LSTM networks still have two main limitations:
the difficulty of focusing on inputs too far in the past and the impossibility of parallelizing
computation, because at each time step t+ 1 it needs the output of time step t as input.

3.2. Encoder Decoder Sequence to Sequence

Encoder-Decoder model (Seq2Seq) [27] has been introduced to solve the problem of map-
ping a fixed-length input to a different fixed output length, but is useful in many other
contexts too. It is a neural network composed of three main components: an encoder, an
intermediate vector and a decoder.

The encoder is a sequence of LSTM (or recurrent) units over fixed input length, where each
unit accepts a single element of the input sequence and the hidden state of the previous
unit; encoder outputs is the hidden state generated by the last LSTM unit, which is
used as an intermediate vector. Instead, the decoder is a sequence of units, each one
accepting as input the hidden state of the previous unit and its output and producing as
output an element of the output sequence. The first unit of the decoder accepts the final
hidden state from the encoder. The idea of using two LSTM networks (one for encoder,
one for decoder) enables the Encoder-Decoder model to address many different problems,
removing the constraint of the same length of input and output sequences.

14 3| Background

3.3. Attention

Attention is a mechanism first introduced by Bahdanau et al. (2014) [1] to solve the
limitations of the encoder-decoder model for the Seq2Seq task, in particular the weak
availability of data from the encoder to the decoder. The decoder receives as input only
the last hidden state of the encoder, which must summarize all the relevant information
about each element of the input sequence. This sequential approach is the bottleneck of
the encoder-decoder system. Attention mechanism mimics the cognitive attention, which
is the ability to focus on discrete subparts of information available; it was born to solve
seq2seq problem but has been extended to other tasks too, being useful to model temporal
or spatial dimensions, different features or different elements of memory.

Attention has shown to be successful in many fields, such as NLP and computer vi-
sion, leading to the development of state of the art models. Different forms of attention
have been developed, such as dot product, query-key-value, Bahdanau [1], or Luong [14];
initially, they were applied to models with RNN, keeping the limitation of not being paral-
lelizable. We will focus on more recent Multi-Head self-attention, which the Transformer
[29] model is based on, due to the absence of the non-parallelizable limitation and the
consequent better performance it offers.

3.3.1. Multi-Head self-attention

An attention function can be described in general as a mapping between a query, Q, and a
sequence of key-value pairs (K, V), where all inputs and output are vectors. Transformers
use Scaled Dot Product [29] as attention, which consists of the function:

ScaledDotProductAttention(Q,K, V) = softmax(
QKT

√
dk

)V (3.10)

Scaled Dot Product attention is a variant of Dot product attention using 1/dk scale factor,
where dk is the dimension of query, key and value vector. Multi-Head attention is finally
computed by multiplying Q, K, V for different parameter matrices WQ

i , WK
i , W V

i and
applying scaled dot product on the newly obtained queries, keys and values:

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O (3.11)

where

headi = ScaledDotProductAttention(QWQ
i , KWK

i , V W V
i) (3.12)

3| Background 15

Figure 3.7: Representation of the architecture of the Transformer model [29]. The image is
taken from https://lilianweng.github.io/posts/2018-06-24-attention/ and refers to Figures
1 and 2 from the original paper [29].

3.3.2. Transformer

The Transformer is a recent deep learning model proposed in the paper Attention Is All
You Need [29], completely based on self-attention to draw global dependencies between
inputs and outputs. This model is divided into 2 components: encoder and decoder, each
one being a complex architecture itself.

The encoder is a stack of N identical layers, each one composed of 2 sub-layers: a multi-
head self-attention mechanism and a position-wise fully connected FFNN; each sub-layer
adopts residual connection (summing input to output) and applies normalization to output
vectors. The decoder is similar to the encoder but adds each layer an initial sub-layer,
responsible for applying masked multi-head attention, avoiding attending to information
from outputs not already available at the considered element of the target sequence.
The encoder is responsible for generating N (number of heads) sequences of vectors,
representing information encoded from the input sequence at each step, which is then
given as Keys and Values to the decoder, while queries will be the outputs of the previous
steps (shifted by 1 in the past/to the right).

https://lilianweng.github.io/posts/2018-06-24-attention/

16 3| Background

3.4. Natural Language Processing

Natural Language Processing is defined as the branch of Artificial Intelligence responsible
for enabling computers the ability to understand and interact with the human language
(both in written and spoken form), in a similar way to how human beings can. Another
possible definition [12] describes NLP as a theoretically motivated range of computa-
tional techniques for representing natural texts at one or more levels of syntactical or
semantical analysis to reach human-like language processing for different tasks or appli-
cations. Understanding natural language is a very complex task, due to the presence
of complex sentence structures, ambiguities, homonyms, homophones, sarcasm, idioms
and many other difficulties. However, it has already influenced most of our life with
the development of automatic translators, chatbots, intelligent assistants, spam filters
and summarization tools. A lot of tasks have developed during the last decades and
have been improved thanks to rule-based, statistical, machine learning, and deep learning
techniques. In particular, we’ll describe the techniques useful to capture the meaning and
the features present in a text and encode them in a text embedding, to be used for other
tasks.

3.4.1. Text cleaning process

To efficiently use the text of the questions to generate useful information, we first need
to process the text, dealing with the most common related problems. Those processing
actions are usually referred to as text cleaning techniques. In our work the most useful
ones have been the following:

Remove HTML tags

Since KT’s main goal is to support online learning, we usually deal with text derived from
HTML web pages, with consequent HTML tags, making the text difficult to comprehend
for computers. So we need to remove tags, translating for example sentence “<p>Does
Amazon S3 provide a filesystem?</p>” in “Does Amazon S3 provide a filesystem”.

Remove stopwords

In any language, some words appear too often to be useful and do not provide any addi-
tional information about the content. Those words are called stopwords. In addition, if
our texts are topic-specific, many words, generally not considered stopwords, can become
unuseful and are called document-specific stopwords. A simple example in a mathematical

3| Background 17

only context can be the word “number”, present in most of the texts, becoming unuseful.
Some NLP semantic embedding techniques autonomously deal with stopwords, while oth-
ers need stopwords to be removed. There are many libraries available to remove common
English stopwords (such as a, and, then, etc), while removing document-specific stopwords
requires to use statistical techniques, related to word frequencies.

Stemming and Lemmatization

Stemming is the process of removing the last characters from words, to reduce plurals,
derivations, etc to the basic form. Lemmatization is an improvement of stemming, which
consists of the process of obtaining from a word its meaningful basic form, also considering
the context. They are alternative options to reduce the number of possible words and
understand easier their meaning and context. According to [2], lemmatization has been
shown to perform better in the document retrieval task, so we choose this method to
preprocess our texts, instead of stemming. As stopwords removal, lemmatization is not
needed for some NLP semantic embedding techniques, while for others (as approaches
computing word frequencies) it is needed to improve quality.

Tokenization

Tokenization is the process of decomposing a text (represented by a string) into a sequence
of words and then associating to each word a unique integer identifier, allowing computer
systems to easily manage the text as a sequence of identifiers. Tokenization is essential
for any NLP semantic embedding technique.

3.4.2. CountVectorizer

The simplest approach to represent a text in a machine-friendly format is CountVectorizer,
consisting of:

• collecting all the words which appear in our set of texts, counting and ordering
them.

• Each text will be described by a vector with a dimension equal to the number of
words, whose element at position K will be equal to the number of times the word
associated to that position appears in the text.

CountVectorizer is sometimes referred to as Bag Of Words (BOW) too.

18 3| Background

3.4.3. TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) is a statistical method to evalu-
ate the relevancy of words in a set of documents. It consists of computing for each word
in each document two metrics: Term Frequency, representing the frequency of the word in
the considered document, and Inverse Document Frequency, representing the importance
of the word over all the texts. Those values are computed as:

TF (doc, word) =
Number of occurrences of word in document

Number of words in text
(3.13)

IDF (word) = log(
Number of documents

Number of occurrences of word in the document
) (3.14)

TF-IDF(doc, word) = TF(doc, word) * IDF(word) (3.15)

TF-IDF is used to improve representation provided by CountVectorizer and is usually
considered a better model.

3.4.4. Word embedding approaches

Creating word embeddings is a different approach to NLP in which a model can associate
to each word a unique word embedding, which is a vector of continuous values with a fixed
size. Word embeddings encode both syntactical and semantical relations between words.
Different models can produce word embeddings, we consider word2vec (with Continuous
Bag Of Words or Skip-Gram architectures) in Section 3.4.4 and both Bidirectional Encoder
Representations from Transformers (BERT) and DistilBERT in Section 3.4.4, due to their
relevance and performance on NLP tasks.

Word2vec

Word2vec is one of the most popular techniques for NLP, introduced in 2013 [15], and
consists of using a simple neural network with an input, a hidden and an output layer.
Each word is initially represented by a one-hot encoding (equal to BOW representation
of a text with only that word).

Embeddings can be created by using two different approaches: Continuous Bag Of Words
(CBOW) [15] and Skip-Gram [15]. CBOW network takes as input a context of C words
one-hot encodings (the C words before the target word) and tries to predict next word
one-hot encoding as output. While Skip-Gram takes as input the target word encoding
and outputs C vectors of probabilities, which should represent the probability. In both

3| Background 19

Figure 3.8: CBOW architecture.
The image is taken from the orig-
inal paper [15].

Figure 3.9: Skip-Gram architecture.
The image is taken from the original
paper [15].

models, the hidden state is used as word embedding (allowing reducing the dimension by
orders) and the parameter C is called window size. CBOW usually is faster to train than
Skip-Gram, while the second tends to provide better results and is able to create accurate
embeddings of rare words too.

BERT and DistilBERT

BERT approaches the same task of creating syntactic and semantic aware word embed-
dings and introduces a completely new architecture based on transformers. BERT was
developed by the Google AI language team in 2018 [8] and became the state of the art
on eleven NLP related tasks. BERT is much important because it is a very generic and
effective architecture, pre-trained on two generic tasks, able to be easily extended for
other tasks without the need to retrain the model. BERT architecture is a multi-layered
Bidirectional Transformer pre-trained on two different tasks in order:

1. Masked Language Modeling (MLM), which consists of giving as input to the model
a sentence with some random words “masked” and training the model to infer those
words from the unmasked part of the sentence. Being able to infer the words means
the ability to learn the context meaning and the syntactical structure of the sentence.

2. Next Sentence Prediction (NSP) task has as inputs two sentences: A and B, where
B is half of the times the sentence following A in the source text and the other
half an uncorrelated random sentence from another text. The transformer model is

20 3| Background

Figure 3.10: BERT model pretraining and fine-tuning.

trained to predict whether B is the “next” sentence of A, or not.

The importance of BERT is the possibility to extend the model for many other tasks
requiring textual embeddings, by fine-tuning the embeddings produced at the end of the
pretraining phase. Fine-tuning for another task T consists of adding some additional
layers at the end of the network to produce the target outputs and train the whole
architecture to understand a function for T. Fine-tuning makes the model focus only on
the target function for the specific task and avoids the burden of recomputing semantic
and syntactical information, which is computationally and memory expensive.

DistilBERT [23] is a more compact version of BERT obtained using distillation [3], whose
performance are similar to BERT (nearly 97%), but having 40% fewer parameters and
being 60% faster at inference time. Distillation is a technique to train a student model to
mimic the function of another model, used in practice to develop smaller student models
with performance similar to the more complex (and consequently memory expensive)
teacher model.

3.4.5. From word to document or sentence embedding

Generating word embeddings with the previously shown method is a very interesting
starting point for NLP related tasks, in particular for translator applications, chatbots
or document retrieval. However, word embeddings are very difficult to be used as direct
inputs to KT models, due to the memory and computational power required. Having an
embedding (with size de) for each of the nw words in a sentence, means we can associate
to each sentence a textual embedding with size de ∗ nw. For many tasks this embedding
size is too large, ending up being out of memory, so recent approaches have focused on

3| Background 21

developing ways to compute sentence embeddings with fixed size de.

We decide to focus mainly on some of the existing approaches: Pooling, doc2vec and
SentenceTransformers.

Average, Max

The simplest approach to obtain sentence/paragraph embeddings from word embeddings
is to apply a reduce operation over the words dimension: O : (Rnw , Rde)− > Rde . The
common operations to apply are average or max over words dimension. Average of words
embeddings has shown to be useful to refine word embeddings for other tasks and is still
considered a viable and easy option.

Doc2vec

Doc2vec [11] is an approach to extend word2vec architecture to be trained at the same
time to produce a sentence/paragraph embedding. It is a model capable to produce
fixed-length embeddings from a sequence of words with variable length (as sentences,
paragraphs or documents). In addition to the shared matrix W , whose rows represent
word embeddings, doc2vec (also called Paragraph Vector) maintains a matrix D, whose
row Di represents embedding for sentence/paragraph i.

Two variants have been proposed: Distributed Memory Model of Paragraph Vectors (PV-
DM) and Distributed Bag of Words version of Paragraph Vector (PV-DBOW). PV-DM
consists of adding to inputs of CBOW model [16] an initial embedding of the paragraph,
computed from matrix D, shared across all training samples of that paragraph and learnt
during training. PV-DBOW architecture instead trains the model to predict the words
in a certain window, given the paragraph ID. According to [11], PV-DM alone usually
works well for most tasks, but its combination with PV-DBOW is usually more consistent
across many tasks and therefore is recommended.

Sentence-BERT and Sentence Transformers

Sentence-BERT (SBERT) is a model proposed by Nils Reimers and Iryna Gurevych in
2019 [20] and consists of an extension of BERT to enable embeddings to describe efficiently
sentence meaning and similarity. As described by the authors, previous ideas of using
BERT for sentence description consisted of averaging BERT embeddings, but this method
performs worse than computing the average of embeddings from other models, such as
word2vec.

22 3| Background

Figure 3.11: PV-DM and PV-DBOW models respectively.

SBERT adds a Pooling layer to generate a single fixed-length embedding from words
embeddings of each sentence, by computing an operation (AVG, MAX or CLS); then it
fine-tunes the whole network (BERT, Pooling, Normalization and softmax classifier) to
produce sentence embeddings which optimize two tasks of sentence similarity, using both
Siamese and triplet networks [24] and cosine similarity.

Another advantage of SBERT is the ability to infer semantic similarity by simply pooling
words embeddings and computing cosine similarity, without the need to use parameters
to learn similarity scores between each pair of input sentences. This allows the model to
be computationally efficient.

Sentence-Transformers1 is a library implementing Siamese network on top of different
transformers (such as BERT, DistilBERT, all-mpnet-base-v2, etc.). We use this library
because it provides a lot of already implemented models. According to the published
performance about sentence embeddings and semantic search, the best performing model
is the Siamese network on top of all-mpnet-base-v2 model, so use it as the fifth NLP
method. Henceforth, we refer to this model as “Sentence Transformer”.

3.4.6. Topic prediction

Topic prediction is a different task from word or sentence embeddings creation, which
consists of automatically understanding from a set of texts some relevant topics, grouping
texts according to them and estimating probabilities of each document belonging to a
topic.

1https://www.sbert.net/docs/pretrained_models.html

https://www.sbert.net/docs/pretrained_models.html

3| Background 23

Figure 3.12: Sentence BERT fine-tuning architecture.

BERTopic

We consider a particular method, called BERTopic2, proposed by Maarten Grootendorst
in 2020 on its Github page, consisting of using sentence embeddings as input to a model
which first groups document into semantically similar clusters and then creates topic
representations. We do not enter into the details of the method, because we only want
to use it to see if a topic-based approach can add some value compared to directly using
sentence embeddings.

Estimated topics are more human-friendly and similar to skills, so we want to see if
adding additional clustering operations (mainly unsupervised) after sentence embeddings
generation improves or reduces performance. However, this is not the main subject of our
work, so we won’t focus on optimizing this method.

2https://maartengr.github.io/BERTopic/

https://maartengr.github.io/BERTopic/
https://maartengr.github.io/BERTopic/

25

4| Previous models in Knowledge

Tracing

In this chapter, we show in detail the models already presented in Chapter 2, providing
a complete description of their architecture, the input data they make use of, their per-
formance and their relevance in our work. The models we describe are Deep Knowledge
Tracing in Section 4.1, Self Attentive Knowledge Tracing in Section 4.2, Relation-Aware
Self-Attention Knowledge Tracing in Section 4.3, Separated Self-AttentIve Neural Knowl-
edge Tracing in Section 4.4, SAINT+ in Section 4.5 and Exercise-Enhanced Recurrent
Neural Network in Section 4.6. We do not enter into the details of EKT and EHFKT,
considering that their only relevance to our work is the use of BERT to produce exercise
embeddings taken from EHFKT.

4.1. Deep Knowledge Tracing

Deep Knowledge Tracing [19] is the first model in KT to use deep neural networks to
describe and track the knowledge of students over time. Usually the input to the model
is the one hot encoding of value xt = 2 ∗ et+ rt. The first version of DKT model (denoted
as “Vanilla”) consists of a Recurrent Neural Network with 3 layers:

• an input layer with dimension D = 2 ∗ ditem, where ditem is the number of unique
item ids.

• an hidden layer with recurrent units

• an output layer, producing a vector with dimension D, each one representing the
probability of answering correctly to next question et+1.

If skills associated to items are available, we can decide to track their evolution over time.
In this case the input is the one-hot encoding of value xt = 2 ∗ st + rt, the dimension is
equal to D = 2 ∗ dskill, where dskill is the number of unique skill ids. DKT architecture is
shown in Figure 4.1.

26 4| Previous models in Knowledge Tracing

Figure 4.1: DKT architecture, where inputs Xt are the one-hot encodings of question ids
and prediction yt is a vector representing the probability of getting each of the dataset
exercises correct. The intermediate layer is a RNN. The image is taken from the original
paper [19].

4.1.1. Long Short Term Memory variant

A variant of Vanilla DKT has been proposed in [19] to exploit the advantages of LSTM
networks. The LSTM variant has been shown to perform better, so we consider it as the
first baseline. The baseline will be computed as the best performing between using item
ids or skill ids (when available) for the one-hot encoding.

4.2. Self Attentive Knowledge Tracing

To the best of our knowledge, Self Attentive Knowledge Tracing (SAKT) [17] has been
the first model to use self-attention to overcome the limitations of DKT, enabling the
model to decide at each time step how much importance to give to each of the previous
interactions.

As DKT, the model is able to predict answer rt+1, given as input the interactions x0, x1, ..., xt

and the exercise question to answer at next time step et+1, where xi = (ei, ri). SAKT con-
sists of three sub-modules: an embedding layer, a self-attention layer and a feed-forward
layer with sigmoid activation function on top to compute predictions.

4| Previous models in Knowledge Tracing 27

Figure 4.2: SAKT architecture, consisting of a self-attention layer estimating at each
time-step weights only for each of the previous elements. The image is taken from the
original paper [17].

4.2.1. Embedding layer

Denoted E the number of different exercises, input interactions are preprocessed into
sequences of a single value y0, ..., yt, where yi = ei + ri ∗E. This embedding function can
seem different from DKT one, but in practice, it has the same role: it associates with
each combination of exercise and answer a unique value. SAKT can receive as input only
sequences with constant length N , so if t < N sequence is padded into y0, ..., yN , while
if t > N it is divided into subsequences with length N and the last one is padded, if
necessary.

Then, values are embedded using an interaction embedding matrix M ∈ R2E×d into a
vector with dimension d, obtaining sequences of embeddings Myo , ...,MyN . A similar
procedure is done to embed exercise et+1 with matrix E ∈ RE×d. Finally, embeddings
are summed to a positional embedding, created using positional embedding matrix P ∈
RN×d to represent the position of an interaction in a sequence. The matrix for positional
encoding is the same for interactions and exercise et+1. Matrices M, W and P are
learnt during training, while the inputs to further steps are the embedded matrices, with
size M̂ ∈ RN×d and Q̂ ∈ RN×d, where each row of these matrices is the sum of the
interaction/exercise embedding and the positional one.

28 4| Previous models in Knowledge Tracing

exercise i
incorrect correct total

exercise j incorrect n00 n01 n0∗
correct n10 n11 n1∗
total n∗0 n∗1 n

Table 4.1: Contingency table. Values are taken from the original paper [18].

4.2.2. Self-attention layer

Self-attention is computed using as keys and values the interactions embeddings and as
query the exercise embedding to predict. Each key-value pair produces a value embedding
and all these embeddings are weighted summed by the feed forward layer, returning cor-
rectness prediction for each time-step. In Figure 4.2, we present the network architecture
of SAKT.

4.3. Relation-Aware Self-Attention Knowledge Trac-

ing

Relation-Aware Self-Attention Knowledge Tracing (RKT) [18] is a model extending SAKT
to use additional information about the item (both textual and temporal). In Figure 4.3,
we present the architecture of RKT.

It first generates for each word an embedding, using a parametric function f : M 7→ Rd,
where M is the dictionary of words and then computes smooth inverse frequency to
generate exercise embeddings as follows:

Ei =
1

|si|
∑
w∈si

a

a+ p(w)
f(w) (4.1)

where a is a trainable parameter, si is the text of ith exercise and p(w) is probability of
word w. RKT computes cosine similarity between the exercise embeddings to generate a
similarity matrix, whose coefficients represent similarity between the texts of two exercises.

RKT builds a contingency table as shown in table 4.1, by considering only the pairs of
interacted exercises i and j, where j occurs before i in the learning sequence. Then it
computes a second similarity matrix using Phi coefficient, a popular method to compute
a measure of association between two binary variables, easy to interpret and explicitly
penalizing when variables are not equal. ϕi,j coefficient between exercise i and exercise j

4| Previous models in Knowledge Tracing 29

Figure 4.3: The overall architecture of RKT. After computing exercise relation matrix
A, RKT generates relation coefficients between past exercises and next exercise, using A

and time elapsed. Relation coefficients R are propagated to modify the attention weights.
The image is taken from the original paper [18].

is computed as follows:

ϕi,j =
n11n00 − n10n10√

n1∗n0∗n∗1n∗0
(4.2)

These two matrices are summed together to generate an unique exercise relation matrix
A. In the end a third component models the tendency of each user to forget topics (called
forgetting factor); considering exercise i we define δj = Ti − Tj and compute forgetting
factor as:

RT = [exp (
−∆1

Su

), ..., exp (
−∆n−1

Su

)] (4.3)

This matrix is weighted summed with A to generate an unique relational matrix R,
representing collaborative, textual and temporal similarity between past exercise and the
one to predict.

The model consists of a self attention layer with positional encoding (as SAKT), gener-
ating attention coefficients, weighted summed (with a trainable parameter) to R. In the
end a feed forward neural network computes outputs and a sigmoid function is used to
predict probabilities.

4.4. Separated Self-AttentIve Neural knowledge Trac-

ing

Separated Self-AttentIve Neural Knowledge Tracing (SAINT) [5] is a KT model using a
novel Transformer-based architecture, enabling the encoder to embed relations between

30 4| Previous models in Knowledge Tracing

Figure 4.4: SAINT architecture. It separates the exercise sequence and the response
sequence, applying to them the encoder and the decoder respectively. It can learn complex
relations among exercises and responses. The image is taken from the original paper [5].

previous exercises and the one to predict, while decoder focus on embedding performance
information (as the correctness of previous interactions). In Figure 4.4, we show SAINT
architecture.

4.4.1. Embedding layer

Instead of embedding past exercises with the corresponding responses, as in SAKT,
SAINT associates a latent vector to each skill id (or exercise category), item id and re-
sponse value (binary in most cases). From e0, ..., et+1, s0, ..., st+1, and r0, ..., rt it generates
sequences of embeddings ee0, ..., e

e
t+1, se0, ..., set+1, and re0, ..., r

e
t .

Encoder inputs are the sum of the embeddings related to exercise, skill and a positional
encoding: Ee

i = eei + sei + pi, while decoder inputs are the sum of response embeddings
with the same positional encoding of the encoder. Inputs to the decoder are shifted by
one time-step in the future, to avoid attending to information about the future response.

4| Previous models in Knowledge Tracing 31

Figure 4.5: SAINT+ architecture, adding to the inputs of the decoder of SAINT+ an
embedding for elapsed time and another for lag time. The image is taken from the
original paper [25].

4.4.2. Transformer layer

Unlike the original Transformer architecture, SAINT masks inputs corresponding to in-
formation from the future for all multi-head attention layers to avoid invalid attending,
ensuring that the prediction of r̃t+1 depends only on exercises e0, ..., et+1 and past re-
sponses re0, ..., r

e
t (not on ret+1). In the end, a feed-forward layer, followed by a sigmoid

operation is applied to the outputs of the decoder, producing a probability of correctness
for each time step.

4.5. SAINT+

SAINT+ [25] is the successor of SAINT, adding temporal information to the inputs of the
decoder. In particular, it uses: i) elapsed time, which is the time taken by a student to
answer, and ii) lag time, the time interval between adjacent learning activities, to improve
performances of the model, outperforming SAINT on the Ednet [4] dataset. These values
are embedded in a categorical or continuous embedding and summed to SAINT decoder
input (response embeddings and positional encoding).

https://www.ednetchallenge.ai/ednet-data

32 4| Previous models in Knowledge Tracing

Results from SAINT+ show clearly that the best way to insert temporal features is by
summing them to response embeddings. Instead, it is not possible to affirm with certainty
the best way to embed generic temporal features (categorically or continuously), since
lag time seems to work better with categorical, while elapsed time works better with
continuous embedding.

4.6. Exercise-Enhanced Recurrent Neural Network

Exercise-Enhanced Recurrent Neural Network (EERNN) [26] is a model composed of three
parts: the first one produces exercise embeddings from exercise text, the second uses an
RNN (or LSTM) to model the knowledge of users over time and the last one is responsible
for the strategy to predict response.

4.6.1. Exercise embeddings

To the best of our knowledge, EERNN is the first model in KT using word2vec to gen-
erate word embeddings from texts. word2vec is used to associate to each word a word
embedding; then each text is described as a sequence of word embeddings, given as input
to a bidirectional LSTM, whose final hidden state represents the exercise embedding.

4.6.2. Student embeddings

EERNN embeds each interaction (eit, r
i
t) of user i at time step t using the exercise embed-

ding Xt generated from eit text and concatenating it to a zero vector in a different way
according to correctness of the response rit:

X̃t =

[Xt ⊕ 0] if rit = 1

[0 ⊕Xt] if rit = 0
(4.4)

where ⊕ represents the concatenation operator between vectors. The sequence of embed-
ded interactions (X̃1, X̃2, ..., X̃t) is now used as input to a RNN (or LSTM network) to
model student knowledge over time.

Prediction layer

The prediction layer is responsible for using information from past interactions (h1, ... ,
ht) and next exercise embedding Xt+1 to predict the correctness of the answer to the next
exercise rt+1.

4| Previous models in Knowledge Tracing 33

Figure 4.6: EERNN with Markov prop-
erty architecture. The image is taken
from the original paper [26].

Figure 4.7: EERNN with attention
mechanism architecture. The image is
taken from the original paper [26].

For sequential prediction tasks, Markov Property is a well-known theory, which assumes
that the next state depends only on the previous state and not on past ones. Following this
assumption, EERNN with Markov property concatenates last hidden state ht with target
exercise embedding Xt+1 and uses an FFNN with a single layer and sigmoid activation
function to produce prediction from the concatenated vector.

As explained in Section 4.1.1, RNN and LSTM suffer the inability to represent whole past
information in the last hidden state when the sequence is long. The alternative EERNN
with Attention mechanism starts from the assumption that student state at time t + 1

can be expressed as weighted combination of previous states, defining:

hatt =
t∑

j=1

αjhj (4.5)

αj = cos(Xt+1, Xj) =

∑n
k=1 Xt+1,kXj,k√∑n

k=1X
2
t+1,k

√∑n
k=1X

2
j,k

(4.6)

Final prediction is equal to EERNN with Markov property, replacing ht with hatt.

35

5| Proposed model architectures

In this chapter, we describe our work in detail explaining our considerations, the choices we
make, and the proposed models we evaluate. In Section 5.1, we show six NLP techniques
to produce embeddings from the text of the exercises, explaining the reasons behind
them, the procedure to use them and their characteristics. In Section 5.2, we propose
NLP-enhanced DKT, our first model, based on an LSTM network and able to receive as
input the exercise embeddings. In Section 5.3, we present two models: Prediction Oriented
Self-attentive knowledge Tracing with Multiplication (POST-M) and Prediction Oriented
Self-attentive knowledge Tracing (POST). In particular POST is a Transformer based
approach with an additional final decoder to refine the correctness prediction with the
target exercise information (id and skill embeddings). POST is then modified in Section
5.4 to use as input the textual exercise embeddings explained in Section 5.1, similarly to
what is done with NLP-enhanced DKT. Lastly, in Section 5.5, we present two ideas to
create hybrid models, able to use at the same time multiple exercise embeddings coming
from different NLP techniques (or, in general, from heterogeneous sources).

5.1. Generating exercise embeddings from texts

To efficiently make use of text to improve KT models, we consider the idea of decomposing
the problem into two distinct parts: i) we create exercise embeddings from text and ii)
we develop KT models able to receive them as inputs. In this section, we focus on the
first part, explaining how to use six NLP techniques to produce exercise embeddings.

In Figure 5.1, we show a schema of the NLP methods we implement and evaluate to gen-
erate exercise embeddings. Starting from exercise text, we remove HTML tags, producing
plain text, which is used as input for DistilBERT (§3.4.4), Sentence Transformer (§3.4.5)
and BERTopic (§3.4.6) models. If we remove stopwords and lemmatize the words in plain
text we create the so called clean sentence, which can be used as input for word2vec
(§3.4.4), doc2vec (§3.4.5) and CountVectorizer (§3.4.2) methods.

36 5| Proposed model architectures

F
igure

5.1:
N

LP
m

ethods
to

produce
exercise

em
beddings.

W
e

have
six

possible
paths

from
questions

texts
to

produce
an

exercise
em

beddings,
corresponding

to
the

use
of

C
ountV

ectorizer,
w

ord2vec,
doc2vec,

Sentence
Transform

er,
D

istilB
E

R
T

or
B

E
R
Topic.

O
range,blue

and
yellow

blocks
are

related
respectively

to
data

processing,N
LP

m
ethods

and
interm

ediate
or

finalrepresentations.

5| Proposed model architectures 37

5.1.1. CountVectorizer

CountVectorizer (§ 3.4.2) is the simplest NLP method we apply to produce exercise em-
beddings, collecting all the nw words, associating to each of them a unique index (from
zero to nw − 1) and representing a text as a vector with dimension nw, where each value
at position i is the number of times the word associated to index i appears in the text.

This method leads to vectors with a dimension equal to the number of words, usually too
high to directly be used as inputs to KT models. Memory consumed by CountVectorizer
with dense matrix representation is at least nd ·nw, where nd is number of documents and
nw is number of different words. Since the dense matrix has few non-zero values for each
row, we can reduce memory consumption by using a sparse implementation.

The dimensionality of a single exercise embeddings would still be high, so, to reduce it,
words in exercise texts should be lemmatized (§ 3.4.1) and stopwords (§ 3.4.1) removed.
Another possibility is to remove words appearing less than min_df times, more than
max_df times, or maintain only the most frequent max_features words. In Section
6.7.1, we describe the variation of the number of words according to these three parame-
ters.

5.1.2. Word2vec, DistilBERT and aggregation over words

Word2vec (§ 3.4.4) or DistilBERT (§ 3.4.4) are good choices to create fixed-length word
embeddings since they have shown good performance on different NLP related tasks. We
choose DistilBERT instead of BERT due to the smallest memory and time required, while
the quality of the embeddings should not decrease significantly. However, they can not be
used directly to improve KT, since describing a single text as a set of word embeddings
would be extremely memory-consuming: memory used to describe nd documents with an
average nw number of words would be nd ·nw ·he, where he is embedding vector dimension.

There are different solutions to use word embeddings to create document embeddings.
Differently from EERNN, which uses an LSTM (§ 3.1.4) network to generate document
embedding, we chose to apply a simple aggregation function over words dimension. We
compute an exercise embedding (with the same fixed-length of word embeddings) as the
average of the set of words embeddings generated from the words appearing in the exercise.
Memory consumption becomes nw·he to maintain word embeddings, plus nd·he for exercise
embeddings.

Computing average is a relatively fast operation while transforming texts into exercise
embeddings can be time-consuming with DistilBERT. Another advantage of these two

38 5| Proposed model architectures

methods is the possibility to have exercise embeddings with fixed-length, equal to word
embeddings one. At the same time, averaging could lose some relevant features or make
all exercise embeddings too similar. Since the average operator tends to produce similar
embeddings as outputs, we recommend to apply normalization before using them for KT.

5.1.3. Doc2vec

Doc2vec (§ 3.4.5) is a good alternative to averaging word2vec embeddings, enabling to
learn at the same document and word embeddings. This way we can use directly doc-
ument embeddings as exercise embedding for KT. Doc2vec has the same advantages of
using word2vec with average and, in addition, it can consider the order of words in the
computation of exercise embedding. Memory consumption is identical to word2vec one
since it keeps word and document embeddings.

5.1.4. Sentence Transformer

We denote as “Sentence Transformer” (§ 3.4.5) the Siamese network built on top of all-
mpnet-base-v2 Transformer, already implemented by SentenceTransformers1 library, a
python framework to create state-of-the-art sentence, text and image embeddings. Sen-
tence Transformer is a model creating exercise embeddings as outputs of the Pooling
and Normalization layers applied to word embeddings generated with all-mpnet-base-v2
transformer architecture. These exercise embeddings enable the reuse of knowledge about
sentence similarity, so they should theoretically contain relevant information about the
semantics of the exercise text.

5.1.5. BERTopic

Differently from previous NLP methods, BERTopic (§ 3.4.6) is not thought to produce
document embeddings; instead, BERTopic can automatically discover topics of the texts
and compute for each document a prediction of the topic or a probability vector, where
each value at index i represents the probability of text to be about the topic associate to
index i. We attempt to use the probability vector as an exercise embedding, checking if
the predicted probabilities can be useful or not to improve KT. Our idea is to consider a
“topic-oriented” approach, to see if it can provide useful insights and eventually replace
the skill information, whenever these are not available.

1https://www.sbert.net/docs/pretrained_models.html

https://www.sbert.net/docs/pretrained_models.html

5| Proposed model architectures 39

Figure 5.2: NLP-enhanced DKT model. At each time-step past exercise embedding (em-
bedded with correctness) is given as input to the LSTM network, whose outputs are
element-wise multiplied with the “target” exercise embedding. The result is passed to a
dense layer producing “target” correctness prediction.

5.2. NLP-enhanced DKT

To check the utility of the different NLP methods, the first model we develop is NLP-
enhanced DKT, which consists of an LSTM (§ 3.1.4) network, taking as inputs the exercise
embeddings. In Figure 5.2, we provide a schema of NLP-DKT implementation.

The idea behind this model is to reproduce the DKT model with float vectors as input
and outputs. Instead of one-hot encoding an integer variable, we embed interaction (et, rt)

at time step t as in EERNN (§ 4.6):

X̃t =

[Xt ⊕ 0] if rit = 1

[0 ⊕Xt] if rit = 0
(5.1)

where ⊕ represents the concatenation operator between vectors and Xt is exercise embed-
ding associated to et, generated by a NLP method. The sequence of embedded interactions
(X̃1, X̃2, ..., X̃t) is now used as input to the LSTM network.

Differently from EERNN, LSTM outputs ht ∈ Rdh are passed to a Dense layer with sig-
moid activation function, producing outputs X̃o ∈ R2·dembeddings . First dembeddings elements
of X̃o can be seen as positive knowledge representation, while the second half is negative

40 5| Proposed model architectures

knowledge representation.

Now our model takes the “target” exercise embeddings Xt+1 and compute element-wise
multiplication to both the positive and negative half of X̃o. In the end, a Dense layer is
applied to compute a single value, representing answer r̃t+1 correctness probability.

5.3. Prediction Oriented Self-attentive knowledge Trac-

ing

In this section, we describe two new models: Prediction Oriented Self-attentive knowledge
Tracing with Multiplication (POST-M) and Prediction Oriented Self-attentive knowledge
Tracing (POST), both composed of a past exercise content encoder, a past performance
decoder and a prediction oriented module.

First of all, embeddings are generated as in SAINT+: from e0, ..., et+1; s0, ..., st+1 and
r0, ..., rt three embedding matrices generates respectively sequences of embeddings ee0, ..., eet+1,
se0, ..., s

e
t+1, and re0, ..., r

e
t . The embedding matrices responsible for embedding exercise ids

and skill ids are shared by exercise content encoder and prediction oriented module, while
positional encoding is shared by exercise content encoder and performance decoder. It
is important to explicitly say that all the following encoders and decoders use Masked
Multi-Head Attention to avoid invalid attending, as in SAINT+.

5.3.1. Past exercise content encoder

The first component is an encoder similar to the encoder in SAINT+, where inputs are the
sum of the embeddings related to exercise, skill and a positional encoding: Ee

i = eei+sei+pi,
but only for past time steps from T = 0 to T = t, padded with an initial start token. In
Figure 5.3, we show the architecture of this component.

In SAINT+ the encoder has two objectives: learning which part of the embedding is useful
and understanding relations between the past exercise embeddings and the one to predict.
Instead, in our model the encoder can focus only on the first objective, understanding
what is relevant and what is not.

5.3.2. Past performance decoder

Past performance decoder is equal to the decoder in SAINT+, embedding answer and
time information from time step T = 0 to T = t, with an initial start token. Elapsed time
is embedded using a continuous embedding, as suggested by SAINT+. This decoder uses

5| Proposed model architectures 41

Figure 5.3: Past exercise content en-
coder module.

Figure 5.4: Past performance decoder mod-
ule.

these embeddings as queries, while keys and values are the outputs from the past exercise
content encoder. In Figure 5.4, we show the implementation of this component.

Differently from SAINT+, our models have the inputs for the encoder and the performance
decoder aligned in time. We think this change can fasten the learning process and simplify
learning dependencies. It is important to specify that this change does not enable invalid
attending to future responses. For example, to predict correctness at time T = 3, the
past exercise content encoder receives as input exercise content from T = 0 to T = 2

(plus initial start token) and the performance decoder receives as input responses for the
same time interval. Only the prediction oriented module receives information about the
content (not the response obviously) of exercise at time T = 3 to predict.

5.3.3. Prediction oriented module

The prediction oriented module is the main difference between our proposed models and
SAINT+. No information about the time-step to predict (t+ 1) is given to the previous
components, enabling them to focus only on embedding together past information about
interacted exercise content and user response.

Instead, the third component is responsible of combining the performance decoder outputs
ydec and the target exercise embedding Ee

t+1 = eet+1 + set+1 to predict the correctness rt+1.
POST-M and POST differ in the characteristics of the prediction oriented module.

42 5| Proposed model architectures

Figure 5.5: POST-M prediction
module. Figure 5.6: POST prediction module.

POST-M

POST-M computes Hadarmard product (also called element-wise product) of the inputs:

yt+1 = Ee
t+1 ⊙ ydec (5.2)

where:

yt+1,k = Ee
t+1,k · ydec,k ∀k (5.3)

In the end, outputs will pass through a feed-forward layer with sigmoid activation to
compute correctness predictions. This method is simple and was born from the idea of
replicating the approach used in NLP-enhanced DKT (§ 5.2). In Figure 5.5, we present
the architecture of POST-M prediction module.

POST

Since the exercise content encoder and the performance decoder are based on self-attention
layers, we consider if we can extend this approach to learn explicitly the relations between
the past interactions and the target embedding. Therefore, POST is created by using as
prediction oriented module another decoder, taking as query the target embedding Ee

t+1

and, as key-value pairs, the outputs of past performance decoder, which summarize the
knowledge evolution at each time-step from T = 0 to T = t. In the end, outputs will
pass through a feed-forward layer with sigmoid activation function to compute correctness
predictions.

In Figure 5.6, we present the architecture of POST prediction module; while in Figure
5.7 we show the complete architecture of POST model.

5| Proposed model architectures 43

Figure 5.7: The representation of the architecture of POST. This model is composed of
three modules: past exercise content encoder, past performance decoder and prediction
oriented decoder. The first focuses on understanding what is relevant about past exercise
content, while the second combine performance information (correctness and elapsed time)
and encoder outputs. Lastly, the prediction oriented decoder combine exercise content
embedding with the output of the performance decoder (representing information about
past interactions) to make predictions.

44 5| Proposed model architectures

5.4. NLP-enhanced Prediction Oriented Self-attentive

knowledge Tracing

SAINT+ and POST can use as inputs only integer values, embedded later into float
embeddings. Given a KT model, its extension, to use NLP exercise embeddings (which
are float vectors) as inputs, is denoted as “NLP-enhanced”. Similarly to how we create
NLP-enhanced DKT from DKT, we develop NLP-enhanced POST: an extension of POST
able to use as inputs the textual exercise embeddings explained in Section 5.1, which can be
both integer (as CountVectorizer ones) or float vectors (word2vec, DistilBERT, doc2vec,
Sentence Transformer and BERTopic ones). We identify two possible solutions to make
use of textual embeddings:

1. Sum the textual embedding to the input embedding of POST.

2. Apply to each textual embedding a trainable Linear layer, computing X̃:

X̃(X) = f(W TX + b) (5.4)

where X̃ ∈ Rndim and ndim is the embedding size of the POST model. Then sum X̃

to the input embedding of POST.

The first approach is more straightforward but requires ndim to be equal to the dimen-
sion of textual exercise embeddings, which is usually memory unfeasible. We use the
second because, otherwise, CountVectorizer exercise embeddings could not be used due
to memory limits.

In Figure 5.8, we show the total architecture of NLP-enhanced POST.

5.5. Hybrid approaches

Another contribution of our work is the possibility to use NLP-DKT and NLP-POST to
create hybrid approaches, using multiple exercise embeddings from different sources at
the same time. In this section, we propose some suggestions about how to use multiple
NLP methods at the same time.

The hybrid approaches we present for NLP-DKT consist of parallelizing two or more of
this model with different NLP methods and at a certain time combining the outputs. We
can for example:

• compute the final prediction as weighted sum of the parallel models predictions

5| Proposed model architectures 45

Figure 5.8: NLP-enhanced POST model extends POST adding a Linear layer responsible
of reducing the size of NLP exercise embeddings to the dimension of the model. Then
reduced NLP embeddings are summed to the inputs of past exercise encoder and predic-
tion oriented decoder.

46 5| Proposed model architectures

(shown in Figure 5.9);

• compute the final prediction applying a Dense layer with one output to the concate-
nation of the outputs of the Multiply blocks of the parallel models (shown in Figure
5.10).

Instead, the hybrid approach we propose for POST model is to modify inputs embeddings
to past exercise content encoder and prediction decoder as the sum of NLP exercise
embedding, skill id embedding, item id embedding and positional encoding:

Eparallel = Eitem id + Eskill id + Epositional +
N∑

n=1

X̃n(Xn) (5.5)

X̃n(Xn) = f(W T
n Xn + bn) (5.6)

where Xn is the exercise embedding from nth NLP method.

These hybrid approaches should not be considered as the best possible. They are examples
of how to use at the same time skill, item and textual embeddings from different sources.
We suggest to focus on hybrid approaches as a possible way to further improve our models,
since there are a lot of possible techniques to create hybrids, other than parallelization.

5| Proposed model architectures 47

F
ig

ur
e

5.
9:

H
yb

ri
d

ap
pr

oa
ch

to
pa

ra
lle

liz
e

m
ul

ti
pl

e
N

LP
-e

nh
an

ce
d

D
K

T
m

od
el

s,
by

co
m

pu
ti

ng
fin

al
pr

ed
ic

ti
on

as
w

ei
gh

te
d

su
m

of
pa

ra
lle

lp
re

di
ct

io
ns

.

48 5| Proposed model architectures

F
igure

5.10:
H

ybrid
approach

to
parallelize

m
ultiple

N
LP

-enhanced
D

K
T

m
odels,by

applying
a

D
ense

layer
w

ith
one

output
to

the
concatenation

ofthe
outputs

ofthe
M

ultiply
blocks

ofthe
parallelm

odels

49

6| Experimental Setups

In this chapter, we present the setups we adopt for our experiments. In Section 6.1,
we present the characteristics of the four datasets we choose; while in Section 6.2, we
explain the processing operations to apply to the datasets. In Section 6.3, for each dataset
we show the results of the data processing operations and describe the new common
format. In Section 6.4, we explain the procedure to generate sequences of interactions
from interactions records and the choices we make. Lastly, in Sections 6.5, 6.6 and 6.7,
we present respectively how we split the data into training, evaluation and test sets, the
loss and metrics we choose and the configuration of hyper-parameters we adopt.

6.1. Datasets

In this section, we describe the four datasets we use: ASSISTments 2009 (§ 6.1.1), AS-
SISTments 2012 (§ 6.1.1), Cloud Academy (§ 6.1.2) and Peking Online Judge dataset (§
6.1.3). In KT, a dataset is mainly composed of interactions records, where an interaction
is the act of submitting an answer rt to an exercise question et at time t by the user Ut.
An interaction record contains at least information about the user, the exercise id and
the answer rt and additionally can have some information about the skill st associated to
the exercise or about the temporal features (such as start, end, elapsed or lag time).

Since we focus on textual information, we consider only datasets providing the text of
exercises. We pre-process each dataset to produce a common representation of interaction
and textual information, which is shared by all the datasets. Then, we can develop
and evaluate our models to work on that common structure. To achieve that common
representation, we consider only the interactions information shared by all the datasets
for our KT models; the only exceptions are the elapsed time and skill id (when available)
because they are widely adopted in the literature.

50 6| Experimental Setups

6.1.1. ASSISTments Datasets

ASSISTments1 (AM) is a free online tutoring system, which helps teachers and students,
providing resources and rapid feedback. It was developed in 2003 by Neil and Cristina
Heffernan and offers teachers the possibility of retrieving useful content from open edu-
cational resources, while students can practice on assessments, receiving immediate feed-
back. Teachers can also receive reports on students’ progress and performance.

We choose two datasets among ASSISTments ones for interactions: ASSISTments 20092

and ASSISTments 20123; while texts dataset is in common for both the interaction
datasets.

ASSISTments texts

We have access to the text of exercises, collected in a single file whose records are couples
of:

• problem_id, denoting the unique identifier of the problem (exercise);

• body, which is the text of the exercise.

The number of problems is 179, 969, some of them duplicated. Due to the presence of
external references, we prefer not to remove duplicates to avoid assuming two exercises
as being the same, while referenced entities could be different.

ASSISTments 2009 interactions

Interactions in ASSISTments 2009 (AM09) dataset are recorded as rows with a lot of
fields, but we choose to consider only the ones available for all the datasets:

• user_id, which is the unique identifier for the student;

• problem_id, a unique identifier for the problem enabling to merge with texts dataset
to retrieve the text of the exercise;

• order_id, chronological id enabling to order interactions;

• skill_id, the identifier of the skill associated with the problem. If multiple skills are
associated with a problem, there would be multiple interactions, but since we do
not need the skill, we merge by taking only the first one;

1https://new.assistments.org/
2https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/

skill-builder-data-2009-2010
3https://sites.google.com/site/assistmentsdata/datasets/2012-13-school-data-with-affect

https://new.assistments.org/
https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/datasets/2012-13-school-data-with-affect

6| Experimental Setups 51

• correct, an integer value, representing if answer by the student was correct (1), or
not (0). ASSISTments platform provides the possibility to ask for hint, in that case
the answer is considered wrong.

ASSISTments 2009 dataset contains 346, 860 interaction records about 4, 217 different
students.

ASSISTments 2012 interactions

Interactions for ASSISTments 2012 (AM12) dataset are recorded similarly to ASSIST-
ments 2009 and we consider an interaction as composed of:

• user_id, which is the unique identifier for the student;

• problem_id, the unique identifier for the problem enabling to merge with texts
dataset to retrieve the text of the exercise;

• start_time, timestamp describing when the problem starts;

• end_time, timestamp describing when the user submits the answer;

• skill_id, representing the identifier for the skill associated with the problem. If
multiple skills are associated with a problem, there would be multiple interactions,
but since we do not need the skill, we keep only the first one;

• correct, an integer value, identical to the one in ASSISTments 2009.

ASSISTments 2012 dataset contains 6, 123, 270 interaction records about 46, 674 different
students.

6.1.2. Cloud Academy Dataset

Cloud Academy4 (CA) is an e-learning platform that helps companies to develop modern
training paths for their employees, aiming to make them practical, impactful, and measur-
able. The dataset we use is part of their collection about IT technologies (such as AWS5,
Azure6, GCP7) and similarly to ASSISTments is composed of two parts: interactions data
and textual data.

4https://cloudacademy.com/
5https://aws.amazon.com/it/
6https://azure.microsoft.com/it-it/
7https://cloud.google.com/

52 6| Experimental Setups

Cloud Academy texts

The textual data provided by Cloud Academy consist of two files, one containing infor-
mation about the text of the problem, the other about the text of the answers. We work
only on the text of the problem, leaving how to use the text of answers an open problem.

The file containing text of the problems is structured as a collection of records with the
following structure:

• id, which is the unique id of the problem;

• description, which is the textual description of the problem.

The number of problems is 15, 523, each one with a unique text.

Cloud Academy interactions

Interactions provided by Cloud Academy are recorded as rows with multiple fields, but
we choose to consider only:

• _actor_id, which is the unique identifier for the user;

• question_id, unique identifier for the problem enabling to merge with texts dataset
to retrieve the text of the exercise;

• _time_stamp, the timestamp associated to each interaction;

• elapsed_time, representing the time elapsed between the instant the user can start
reading the text and the instant the user submits the answer;

• session_mode, with three possible values: exam, quiz, or study. During study mode,
the user can look at lessons before answering to a question, so we do not consider
these interactions for KT;

• correct, 1 if the answer submitted by the student is correct, 0 otherwise.

Cloud Academy dataset contains 7, 494, 546 interaction records about 24, 858 different
students.

6.1.3. Peking Online Judge Dataset

Peking Online Judge8 (POJ) is an online tool providing a dataset of coding problems and
evaluating your submission. We use the datasets shared by the authors of RKT9 [18].

8http://poj.org/
9https://drive.google.com/drive/folders/1LRljqWfODwTYRMPw6wEJ_mMt1KZ4xBDk

http://poj.org/
https://drive.google.com/drive/folders/1LRljqWfODwTYRMPw6wEJ_mMt1KZ4xBDk

6| Experimental Setups 53

POJ data consists of two files: one with interactions logs and one with texts of exercises.

POJ texts

The file containing the text of the problems is structured as a collection of records with
the following structure:

• id, which is an unique number associated to the text;

• text, which is the textual description of the problem.

POJ interactions

Interactions provided by POJ are recorded as rows with only four columns:

• user, which is the unique identifier for the user in a string or integer format;

• problem, the unique identifier for the problem enabling to merge with texts dataset
to retrieve the text of the exercise;

• submit time, the timestamp associated to each interaction;

• result, which represents the result of the submission and can be accepted, Compile
error, run-time error, wrong answer, memory limit exceeded or time limit exceeded.
We generate our usual correct value by assuming 1 if result = accepted, 0 otherwise;

POJ dataset contains 996, 240 interaction records about 22, 916 different students.

6.2. Data processing

In this section, we describe the data processing operations in the same order we apply
them to guarantee reproducibility.

6.2.1. Text cleaning

Since the main topic of our work is evaluating NLP methods, it is essential to consider
only the datasets providing the text of exercises. Starting from the initial texts, we show
in Figure 6.1 the procedure to generate plain text and clean sentence, which are used later
as inputs for the NLP methods.

54 6| Experimental Setups

Figure 6.1: Text cleaning process.

Removing HTML tags, links, digits, punctuation and special

characters

Since we are using datasets coming from online courses (or in general online environments),
removing HTML tags is essential to guarantee the readability of the text string by the
machine. However, sometimes exercise content is web-related and the name of tags can
be useful to understand semantics; so, we decide not to delete the name of the removed
tag, but to append it to the sentence. Then we need to use regular expressions to remove
hashtags, links, special characters, punctuation and digits from the text. We refer to the
output of this procedure as plain text. An example of the procedure is the following. From
sentence:

<p> Now you are ready to try the

original problem again. If 900 students signed up to take

courses, how many will not be taking Biology, Algebra or Band?</p>

We obtain:

p nbsp span style color you are ready to try the original

problem again span if students signed up to take

courses how many will not be taking biology algebra or band p

Removing stopwords, lemmatizing and tokenizing

As explained in Section 3.4.1, some NLP methods (such as CountVectorizer) require
removing stopwords and lemmatizing the words to reduce the total number of words.
Some datasets present a lot of misspelling errors, so we needed to use a spell checker to
evaluate if each word exists. In a negative case, we need to decide whether to correct the
word (using automatic tools), remove it or keep it.

Since these outputs are used by CountVectorizer and word2vec the sentences are then
tokenized in a list of words. We refer to the output of this procedure as clean sentence or
list of words. The previous sentence now becomes:

[’p’, ’span’, ’style’, ’color’, ’ready’, ’try’, ’original’, ’problem’,

6| Experimental Setups 55

’span’, ’students’, ’signed’, ’to’, ’take’, ’courses’, ’many’,

’taking’, ’biology’, ’algebra’, ’band’, ’p’]

6.2.2. Removing interactions without text

After cleaning texts, we proceed to remove the interactions referring to an exercise without
available text or whose text is too small to be useful (less than a certain minw number
of words). We choose minw = 2 for any dataset. Differently from some previous works,
we do not remove interactions related to a question without an associated skill. This
information, essential to evaluate some models correctly, is not necessary for our work,
since we extract content information directly from the texts.

6.2.3. Removing duplicated interactions

Differently from most previous works, we decide to consider the problem of duplicated
interactions. Many datasets have users interacting multiple times with the same problem;
it can be a direct consequence of the nature of the dataset (as for coding exercises, where
a user compiles different times the code before finding a working solution) or the user is
allowed to repeat the same exercise after some time.

We decide to keep only the first interaction of a user with a certain exercise, removing
any subsequent one. This choice leads to different results compared to previous works
since repeated interactions are usually easier to predict, since they respect some patterns
(such as many compile errors in a row, or problem we already know answer, etc.).

6.3. Processed datasets

In this section we explain in detail how the data processing procedure (§ 6.2 is applied
to each dataset. In particular, we describe how the number of interactions, problems,
students and skills varies during the data processing procedure, in order to highlight
particular characteristics of the datasets.

6.3.1. Processed ASSISTments 2009

To process ASSISTments 2009 dataset, we start processing text dataset as explained in
Section 6.2.1, producing plain text and clean sentence for each exercise. Then we detect
the duplicated interactions (keeping only the first one) and remove all the students with
a single interaction; lastly, we compute the inner join between interactions and texts

56 6| Experimental Setups

datasets over the common key problem_id. After the inner join, ASSISTments 2009 has

Table 6.1: Evolution of the number of interactions, problems and users in ASSISTments
2009 dataset during data processing.

Raw Remove duplicates
and users with a
single interaction

Inner join with text
dataset

interactions 346,860 341,961 245,550
problems 26,688 26,684 16,626
students 4,217 4,097 3,836
skills 150 150 96

16, 626 problems with an average number of words in clean sentence equal to 47. It is
important to note that in ASSISTments 2009 the correct mean r̄ over the interactions is
0.6416, so the dataset is unbalanced. We consider as an additional baseline the majority
prediction model, with an accuracy equal to the maximum between the correct mean r̄

and 1.0− r̄.

6.3.2. Processed ASSISTments 2012

To process ASSISTments 2012 dataset, we start processing the corresponding text dataset
as explained in Section 6.2.1, producing plain text and clean sentence for each exercise.
Then we detect the duplicated interactions (keeping only the first one) and remove all the
students with a single interaction; lastly, we compute the inner join between interactions
and text datasets over the common key problem_id.

Table 6.2: Evolution of the number of interactions, problems and users in ASSISTments
2012 dataset during data processing.

Raw Remove duplicates
and single interac-
tion

Inner join with text
dataset

interactions 6,123,270 5,894,203 5,892,571
problems 179,999 179,969 179,919
students 46,674 45,975 45,975
skills 266 199 199

After the inner join between interactions and text datasets, ASSISTments 2012 has
179, 919 problems with an average number of words in clean sentence equal to 18. In
ASSISTments 2012 the correct mean r̄ over the interactions is 0.6755, so the dataset
is the most unbalanced. We consider as an additional baseline the majority prediction
model, with an accuracy equal to the maximum between the correct mean r̄ and 1.0− r̄.

6| Experimental Setups 57

6.3.3. Processed Cloud Academy dataset

To process Cloud Academy dataset, we start from the text dataset as explained in Sec-
tion 6.2.1, producing plain text and clean sentence for each exercise. Then, we remove
from the dataset all the interactions with session_mode = study, the duplicated inter-
actions, keeping only the first occurrence of each unique combination of _actor_id and
question_id, and users with a single interaction. In the end we compute the inner join
over the common keys: question_id for interaction dataset and problem_id for text one.

Table 6.3: Evolution of the number of interactions, problems and users in Cloud Academy
dataset during data processing.

Raw Remove study
mode

Remove dupli-
cates and users
with a single
interaction

Inner join with
text dataset

interactions 7,494,546 3,723,691 2,381,050 2,381,030
problems 13,605 13,268 13,267 13,262
users 24,858 17,450 17,024 17,021

In table 6.3 we show how the number of problems and users does not significantly decrease,
highlighting the reliability of the dataset. After the inner join between interactions and
text datasets, Cloud Academy has 13, 262 problems, with an average number of words
in clean sentence equal to 18. It is also important to highlight that this dataset is more
balanced than ASSISTments ones; in fact, the mean value of correct is equal to 0.5455.
We consider again as an additional baseline the majority prediction model.

6.3.4. Processed POJ dataset

To process POJ dataset, we start processing the corresponding text dataset as explained in
Section 6.2.1, producing plain text and clean sentence for each exercise. First, we remove
duplicated interactions, keeping only the first occurrence of each unique combination of
user and problem, and users with a single interaction. In the end we compute the inner
join over the common keys: problem for interaction dataset and id for text one.

In table 6.4, we can see how the number of interactions decreases drastically removing
duplicates and merging with the text dataset. This is expected because i) the interactions
represent the multiple attempts of a user to solve a coding exercise and ii) we have the
text of only one-third of the exercises. It is important to note that datasets with users
attempting many times to solve the same exercise are more difficult to deal with. In
particular, if we have no additional information about the text of the answer or the time

58 6| Experimental Setups

Table 6.4: Evolution of the number of interactions, problems and users in POJ dataset
during data processing.

Raw Remove duplicates
and users with a
single interaction

Inner join with text
dataset

interactions 996,240 126,663 49,638
problems 2,750 2,746 774
users 22,916 12,971 10,557

taken, it is extremely difficult to predict differently two consecutive answers of a user to the
same exercise. Previous works using POJ dataset do not remove duplicated interactions.
After the inner join between interactions and text datasets, POJ has 774 problems, with
an average number of words in clean sentence equal to 143.

6.4. Generate sequences of interactions

After datasets are processed, they are saved with a common format, enabling the definition
of a single method to load any of them. Each dataset is represented by two files: one for
interactions and one for textual information. Interactions file consists of a list of recorded
interactions, each one described by an unique couple of values (user id, problem id), a
correct value and some additional attributes (such as timestamp, elapsed time and skill
id). If an attribute (such as elapsed time) is not available, the column is filled with 0

values. Textual information file associates each problem id with the plain text and the
clean sentence generated during text processing.

Since the format is unique for all the processed datasets, the next operations are the same
for each of them. After loading the processed files related to a dataset, we group the
interactions according to the user id value, creating sequences of interactions related to
the same user id and ordered according to timestamp value.

Then, for each sequence (I1, I2, ...In), if n < 5 we discard the sequence, otherwise if
5 <= n <= N then the sequence is padded to length N, otherwise, if n > N , it is first
divided into subsequences with length N and then the last one is padded (or discarded
if n < 5). This enables the generation of sequences with the same length, a necessary
condition for the self-attention based models. Whenever possible, we choose a maximum
length N = 500, otherwise, if the KT model exceeds memory limits, we reduce N to 100.
In table 6.5 we show for each dataset the number of padded sequences generated, the
number of users, the average length of sequences before padding and how many sequences

6| Experimental Setups 59

are longer than N, both for N = 100 and N = 500.

All the KT models based on LSTM networks (such as DKT and NLP-enhanced DKT)
use a maximum sequence length N = 500, while self-attention based models (such as
SAINT+, POST-M, POST and NLP-enhanced POST) need to use N = 100, because of
their larger memory consumption and memory limitations of our notebook.

Table 6.5: Number of users, chunks, padded sequences and average sequence length for
each dataset.

N=100 AM09 AM12 CA POJ

Number of users 3,836 45,975 17,021 10,557

Total number of chunks 1,409 41,935 16,534 59

Sequences longer than N 657 14,722 6,251 30

Average sequence length 64 128 139 5

Number of padded sequences 4,625 83,034 32,535 2,160

N=500 AM09 AM12 CA POJ

Number of users 3,836 45,975 17,021 10,557

Total number of chunks needed 66 3,239 1,016 1

Number of Sequences longer than
N

66 2,383 721 1

Average sequence length 64 128 139 5

Number of padded sequences 3,346 45,375 17,378 2,102

6.5. Data split and batches

Once the processed datasets are loaded and the padded sequences of interactions are
created (as shown in Section 6.4), we need to split them into three datasets: training, val-
idation and test. We decide to follow the usual practice of assigning 60% of the sequences
to the training set, 20% to the validation set and the last 20% to the test set.

Sequences are grouped in batches, whose dimension changes according to the dataset
and the model we are evaluating. For ASSISTments 2009 and POJ datasets, at the
beginning of each epoch, we reorder the list of sequences and recreate the batches, while
for ASSISTments 2012 and Cloud Academy this procedure would exceed memory limits.

60 6| Experimental Setups

The shuffle modifies only the order the sequences are given to the model for training, not
the order of the interactions within a sequence.

6.6. Loss and metrics

The models are trained to minimize the Binary Cross Entropy loss (BCE), equal to:

BCE = − 1

N

N∑
i=1

yi ∗ log(p(yi)) + (1− yi) ∗ log(1− p(yi)) (6.1)

where, in KT, N is the number of interactions, yi is the target correctness value to predict
rt+1 and p(yi) is the prediction of the model r̃t+1. We choose binary cross entropy, because
it is the most used loss for binary classification problems, as it is the case of students’
answer prediction.

For a binary classification problem, like students’ answer prediction, the most common
and useful metrics to evaluate the performance of a model are the Binary Accuracy and
the Area Under the ROC Curve (AUC), equal to:

Binary Accuracy =
TP + TN

TP + TN + FP + FN
=

TP + TN

number of interactions
(6.2)

where:

• True Positives (TP) is the number of correct answers correctly predicted;

• True Negatives (TN) is the number of wrong answers correctly predicted;

• False Positives (FP) is the number of correct answers mispredicted;

• False Negatives (FN) is the number of wrong answers mispredicted.

Binary Accuracy represents the ratio between the number of correct predictions and the
total number of predictions.

The Receiver Operator Characteristic (ROC) curve (such as the examples in Figure 6.2)
is a probability curve that plots the True Positive Rate (TPR) against the False Positive
Rate (FPR) at various threshold values, where:

TPR = Recall =
TP

TP + FN
(6.3)

FPR =
FP

FP + TN
(6.4)

6| Experimental Setups 61

Figure 6.2: Four ROC curve examples; the blue one is the one of a perfect classifier, while
the red one is from a random classifier.

The highest the Area Under the Curve (AUC), the better the model can distinguish
between positive and negative classes. To better understand the performance of the
models, we directly evaluate True Positive Rate (also called Recall) and Precision, equal
to:

Precision =
TP

TP + FP
(6.5)

In literature, KT models are evaluated mainly by comparing their AUC, so we primarily
focus on this metric. Nevertheless, we decide to show other metrics too because they can
possibly give more insights into the model abilities.

6.7. Hyper-parameters

Given the wide range of models and NLP techniques to evaluate, optimizing all the hyper-
parameters would require too much time. Therefore, we decide to optimize only the
learning rate of the training process. We compute the results using three different learning
rates (lr = 1e−3, lr = 1e−4 and lr = 1e−5) for each model and report only the one with
the highest AUC.

We fix the other hyper-parameters of the models to the following values:

• dropout rates equal to 0.3 for the LSTM networks (such as DKT and NLP-DKT)
and to 0.2 for the self-attentive models (SAINT+, POST-M and POST).

• DKT is trained both to track questions or skills with a dimension dim equal to

62 6| Experimental Setups

200. If we track question ids, 200 is the largest number of units not exceeding
memory limits; otherwise, if we track skill ids, the dimension of the input is smaller
than 200, so there is no need to introduce more LSTM units. Instead, the self-
attention based models are trained with an higher dimension equal to 768 (except
with CountVectorizer, which exceeds memory with dim > 256).

• Batch size must be less or equal to 16 for ASSISTments 2012 or whenever we use
CountVectorizer to generate exercise embeddings to avoid exceeding memory limits;
Cloud Academy requires the batch size to be less or equal to 128 for the same reason.
We decide to use 128 for Cloud Academy, ASSISTments 2009 and POJ.

Furthermore, the evaluated NLP methods use the following hyper-parameters:

• After processing, clean sentence includes mainly relevant words, so we try to reduce
the least possible their number for CountVectorizer. The choice of CountVectorizer
hyper-parameters is described in subsection 6.7.1.

• DistilBERT has pre-trained word embeddings and we do not specify any hyper-
parameter to transform plain text into the document embedding. The word embed-
ding size is 768.

• Overfitting the exercise embedding model is not a problem, so word2vec is trained
for 200 epochs, using Skip-Gram architecture with word embedding size equal to 768

and window size equal to 5. The word embedding size is chosen equal to DistilBERT,
while Skip-Gram should guarantee better results than CBOW.

• Doc2vec is trained for 100 epochs, using PV-DM architecture, with word embedding
size equal to 768 and window size equal to 5 and 10 respectively for NLP-DKT and
NLP-POST. Window size equal to 10 and PV-DM architecture are chosen because
they provide small improvements to NLP-POST performance.

• Sentence Transformers uses the pretrained all-mpnet-base-v2 Transformer model
with size equal to 768.

• BERTopic uses all-mpnet-base-v2 as Transformer to produce word embeddings. The
only specified hyper-parameter is the maximum number of reduced topics, while the
others are left to standard values decided by the author of the model. The maximum
number of topics is fixed to 200, to keep it smaller than the other exercise embeddings
sizes.

6| Experimental Setups 63

Figure 6.3: Number of words according
to min_df for AM09 dataset.

Figure 6.4: Number of words according
to max_df for AM09 dataset.

Figure 6.5: Number of words according
to min_df for AM12 dataset.

Figure 6.6: Number of words according
to max_df for AM12 dataset.

6.7.1. CountVectorizer analysis

CountVectorizer is the only NLP method we evaluate that produces exercise embeddings
with non-fixed length. The dimension of the exercise embeddings generated by CountVec-
torizer depends on the number of words, which varies according to the values of min_df ,
max_df and max_features. This variable length can result into exceeding time or mem-
ory limits, so we consider useful to analyze how the number of words varies according to
min_df and max_df parameters. In our work, we make the following considerations:

• In Figures 6.3 and 6.4, we see how the number of words changes in ASSISTments
2009 processed texts according to min_df and max_df respectively. The initial
number is only 1, 282, which is relatively small, so we can use directly all the words
for CountVectorizer, without the need of modifying min_df and max_df .

• In Figures 6.5 and 6.6, we see how the number of words changes in ASSISTments
2012 processed texts according to min_df and max_df respectively. The initial
number is 10, 605, which is unfeasible to work with according to memory limitations.
So we decide to use a value min_df = 2 to reduce the number of words for our

64 6| Experimental Setups

Figure 6.7: Number of words according
to min_df for CA dataset.

Figure 6.8: Number of words according
to max_df for CA dataset.

Figure 6.9: Number of words according
to min_df for POJ dataset.

Figure 6.10: Number of words according
to max_df for POJ dataset.

experiments and value max_features = 7, 000.

• We present in Figures 6.7 and 6.8 how the number of total words changes in CA
processed texts according to min_df and max_df respectively. The initial number
is 5, 907, so we decide to assign min_df = 2 and max_features = 4, 000.

• Lastly, in Figures 6.9 and 6.10, we can see how the number of total words changes
in POJ processed texts according to min_df and max_df respectively. The initial
number in POJ processed texts is 7, 210, which is unfeasible to work according to
our memory limitations. We fix min_df = 2 again to reduce this number.

For most of the datasets we decide to fix min_df = 2, because words appearing only in
a single text are the least useful to understand relationships between exercises, because
they do not connect exercises directly.

65

7| Results

In this chapter, we report and discuss the results obtained from our experiments, dividing
them into three sections. in Section 7.1, we show the results of POST-M and POST on
the four datasets and compare them with the performance of baseline models DKT and
SAINT+. in Section 7.2, we show and discuss the results of NLP-DKT and NLP-POST
with the six NLP methods we already presented. Then, in Section 7.3, we present the
performance of proposed hybrid approaches for NLP-DKT. Lastly, in Section 7.4, we
highlight for each dataset the best performing models and we compute the total gain with
respect to the best baseline.

7.1. POST-M and POST evaluation

In this section we evaluate four models (DKT using exercise ids, DKT using skill ids,
SAINT+, POST-M and POST) on four datasets (ASSISTments 2009, ASSISTments 2012,
Cloud Academy and POJ). We add a sixth model, consisting of the majority prediction
model, predicting always the mode of the correctness rt. All the models are trained on
the training set, using the validation set to apply early stopping. In the end, they are
tested on the test set.

In this section, the columns appearing in the tables have the following meanings:

• model is the name of the evaluated model.

• lr is the learning rate used to train the model. We compute the results using three
different learning rates (lr = 1e−3, lr = 1e−4 and lr = 1e−5) for each model and
report only the the one with the highest Area Under the Curve (AUC);

• dim represents the number of LSTM units in DKT model, while it is the embedding
dimension (equal to the dimension of all the layers) in SAINT+, POST-M and
POST;

• drop is the dropout rate of the hidden layers.

• N is the length of the padded sequences. DKT trained on skills requires less memory

66 7| Results

model hyper-parameters metrics

lr dim drop N loss ACC AUC Prec Recall

majority / / / / / 0.642 0.0 0.642 1.0

DKT skill 0.001 200 0.3 500 0.571 0.711 0.721 0.725 0.896

DKT ques-
tion

0.01 200 0.3 100 0.739 0.669 0.693 0.732 0.77

SAINT+ 1.00E-
05

768 0.2 100 0.604 0.683 0.683 0.882 0.696

POST-M 0.001 768 0.2 100 0.596 0.682 0.711 0.829 0.713

POST 1.00E-
05

768 0.2 100 0.575 0.707 0.736 0.862 0.725

Table 7.1: Results of the models on ASSISTments 2009.

than the other models, so we can use N = 500;

• loss is the binary cross-entropy loss explained in Section 6.6;

• ACC, AUC, Prec and Recall are the binary accuracy, Area Under the ROC Curve,
Precision and Recall respectively (§6.6).

We start considering the two datasets with the largest amount of data (ASSISTments
2012 and Cloud Academy) because they guarantee higher consistency between training,
validation and test set. In tables 7.2 and 7.3 we report the results of the models on
ASSISTments 2012 and Cloud Academy respectively. In these datasets, the DKT model
shows the limitations of an LSTM network compared to attention-based models. The
three self-attention based models show much higher AUC and ACC. SAINT+ performs
slightly better than POST-M, probably due to the Multiply block, which reduces the
power of the latter to learn complex relations between the target exercise embedding and
the past ones. POST, replacing the multiply block with another decoder, removes this
limitation and proves that a prediction oriented approach improves both ACC and AUC.
We can see from Table 7.2 that the unbalanced nature of ASSISTments 2012 dataset
leads to worse models predicting mostly the majority value (1), increasing Recall but
reducing Precision. Instead, in table 7.3, we can see that improving the Recall metric
leads a model to achieve better AUC and ACC values on Cloud Academy dataset than
improving Precision.

From Tables 7.1 and 7.4, we can analyze the results of the models on ASSISTments 2009

7| Results 67

model hyper-parameters metrics

lr dim drop N loss ACC AUC Prec Recall

majority / / / / / 0.676 0.0 0.676 1.0

DKT skills 0.001 200 0.3 500 0.557 0.717 0.725 0.737 0.902

SAINT+ 0.0001 768 0.2 100 0.537 0.741 0.767 0.884 0.768

POST-M 1.00E-
05

768 0.2 100 0.533 0.736 0.760 0.884 0.763

POST 0.0001 768 0.2 100 0.504 0.754 0.790 0.878 0.784

Table 7.2: Results of the models on ASSISTments 2012.

model hyper-parameters metrics

lr dim drop N loss ACC AUC Prec Recall

majority / / / / / 0.546 0.0 0.546 1.0

DKT ques-
tions

0.01 200 0.3 100 0.47 0.634 0.694 0.744 0.636

SAINT+ 0.0001 768 0.2 100 0.579 0.692 0.759 0.721 0.72

POST-M 0.0001 768 0.2 100 0.579 0.692 0.758 0.744 0.71

POST 0.0001 768 0.2 100 0.572 0.699 0.769 0.695 0.736

Table 7.3: Results of the models on Cloud Academy.

model hyper-parameters metrics

lr dim drop N loss ACC AUC Prec Recall

majority / / / / / 0.552 0.0 0.552 0.0

DKT ques-
tions

0.0001 200 0.3 100 0.689 0.575 0.596 0.56 0.604

SAINT+ 0.0001 768 0.2 100 0.65 0.618 0.661 0.557 0.61

POST-M 1.00E-
05

768 0.2 100 0.642 0.627 0.68 0.546 0.626

POST 1.00E-
05

768 0.2 100 0.647 0.634 0.688 0.647 0.622

Table 7.4: Results of the models on POJ.

68 7| Results

and POJ respectively and understand the behaviours of the models with small amounts
of training data. First of all, from ASSISTments 2009 results we can see that DKT
(tracking skills) performs much better than SAINT+, highlighting the requirement for a
larger amount of data to use SAINT+. We think this requirement derives mainly from the
role of the encoder, responsible for learning at the same time how much attention to give
to each part of the embeddings and the relations between the target exercise embeddings
and previous ones. Instead, the structure of POST and POST-M, composed of three
modules each one focusing on a single task learns faster and provides high AUC even with
few training samples. It is important to highlight that DKT is the model with highest
Binary Accuracy and Recall on this dataset. POJ dataset has instead no skill information
available, so we can one-hot encode only question ids, resulting in low performance for
DKT; while self-attention models provide better results. The results show that POST
can improve significantly the four metrics while maintaining a loss similar to SAINT+.
We consider this result as a demonstration of the better capabilities of POST to model
answer correctness prediction task.

The results in tables 7.1, 7.2, 7.3 and 7.4 show that POST is the model providing the
best AUC on each dataset.

7.2. NLP-enhancing KT models with textual exercise

embeddings

In this section, we evaluate NLP-DKT and NLP-POST using as inputs the exercise em-
beddings produced by CountVectorizer (§5.1.1), word2vec (§5.1.2), DistilBERT (§5.1.2),
doc2vec (§5.1.3), Sentence Transformer using all-mpnet-base-v2 (§5.1.4) or BERTopic
(§5.1.5). We compare NLP-DKT results with DKT baseline; while we compare NLP-
POST only with POST, since the latter outperforms the AUC of SAINT+ and POST-M
on all the datasets. Each table has rows ordered by ascending AUC metric, so the model
in the last row is always the best performing for the dataset. We are not able to provide
the results of NLP-DKT and NLP-POST using BERTopic embeddings for ASSISTments
2012 and Cloud Academy datasets, since the memory required to train the BERTopic
model exceeds the limits of our notebook.

From the results, it is clear that NLP-enhancing is an effective idea to improve both DKT
and POST since it improves their performance on all the datasets.

7| Results 69

model parameters metrics

NLP method lr dim loss ACC AUC Prec Recall

BERTopic 0.0005 768 0.604 0.685 0.682 0.697 0.909

Without NLP 0.001 200 0.557 0.717 0.726 0.738 0.903

Doc2vec 0.001 768 0.559 0.726 0.746 0.739 0.884

DistilBERT 0.001 768 0.553 0.723 0.753 0.735 0.887

Sentence
Transformer

0.001 768 0.548 0.724 0.757 0.754 0.851

Word2vec 0.001 768 0.534 0.738 0.764 0.753 0.900

CountVectorizer 0.001 256 0.532 0.735 0.778 0.751 0.876

Table 7.5: Results of NLP-DKT and DKT on ASSISTments 2009.

model parameters metrics

NLP method lr dim loss ACC AUC Prec Recall

DistilBERT 1.00E-
05

768 0.573 0.709 0.728 0.863 0.737

Without NLP 1.00E-
05

768 0.5745 0.707 0.736 0.862 0.725

BERTopic 1.00E-
05

768 0.571 0.712 0.742 0.855 0.735

Word2vec 0.0001 768 0.564 0.711 0.747 0.816 0.755

Doc2vec 0.0001 768 0.568 0.709 0.751 0.796 0.761

Sentence
Transformer

0.0001 768 0.564 0.714 0.754 0.843 0.743

CountVectorizer 0.0001 256 0.5597 0.715 0.756 0.851 0.740

Table 7.6: Results of NLP-POST and POST on ASSISTments 2009.

70 7| Results

7.2.1. NLP-enhancing for ASSISTments 2009 dataset

In tables 7.5 and 7.6, we report the results of NLP-DKT and NLP-POST with six NLP
methods on ASSISTments 2009 dataset. Except for BERTopic and DistilBERT respec-
tively for NLP-DKT and NLP-POST, all the other methods provide an improvement to
the baseline. In particular, this is the only dataset where a NLP-DKT model outperforms
the AUC of all the NLP-POST models. We believe that the reason is again the small
number of samples available, which favours LSTM models and penalize the performance
of attention based ones.

The best model for the dataset is NLP-DKT with CountVectorizer, followed by NLP-
DKT with word2vec. It makes sense that the simplest NLP method (CountVectorizer)
provides the best results with NLP-DKT, because its embeddings just track the presence
of words in texts, without aiming to understand the semantics of the text. Learning
the relationships between semantic embeddings, as DistilBERT, is more complex and
requires a larger dataset or a more complex model. Despite performing the best with
CountVectorizer, NLP-POST provides similar results with most of the NLP methods. In
the end, it is important to note that BERTopic is particularly unuseful for small datasets
because learning relevant skills with a small number of texts is more difficult.

7.2.2. NLP-enhancing for ASSISTments 2012 dataset

In tables 7.7 and 7.8, we report the results of NLP-DKT and NLP-POST on ASSISTments
2012 dataset. Before making considerations about the results, it is important to note that
ASSISTments 2012 has an average sequence length equal to 128 and a large number of
sequences for training, validation and testing. We analyze the results of NLP-DKT and
NLP-POST separately:

• NLP-DKT improves DKT using any NLP method except CountVectorizer confirm-
ing the ability of NLP methods to embed ASSISTments texts. In particular, Sen-
tence Transformer is the best performing model, while Count Vectorizer is the worst
one. Differently from ASSISTments 2009, having more interactions and longer se-
quences enables the models to understand the embeddings generated by transformer-
based NLP approaches (such as Sentence Transformer and DistilBERT).

• NLP-POST can provide only a very small improvement to the AUC of POST using
CountVectorizer. We discuss in Section 7.2.5 the possible reasons.

7| Results 71

model parameters metrics

NLP method lr dim loss ACC AUC Prec Recall

CountVectorizer 0.001 64 0.565 0.717 0.689 0.721 0.948

Without NLP 0.001 200 0.557 0.717 0.726 0.738 0.903

Doc2vec 0.001 768 0.5356 0.736 0.748 0.750 0.919

DistilBERT 0.001 768 0.530 0.736 0.760 0.751 0.912

Word2vec 0.001 768 0.526 0.739 0.760 0.753 0.916

Sentence
Transformer

0.0001 256 0.510 0.749 0.780 0.775 0.890

Table 7.7: Results of NLP-DKT and DKT on ASSISTments 2012.

model parameters metrics

NLP method lr dim loss ACC AUC Prec Recall

Doc2vec 0.0001 768 0.511 0.751 0.784 0.920 0.762

Sentence
Transformer

1e-5 768 0.510 0.751 0.784 0.903 0.770

DistilBERT 1e-5 768 0.514 0.750 0.785 0.897 0.770

Word2vec 0.0001 768 0.511 0.748 0.786 0.850 0.793

Without NLP 0.0001 768 0.504 0.754 0.790 0.878 0.784

CountVectorizer 0.0001 256 0.500 0.757 0.793 0.896 0.779

Table 7.8: Results of NLP-POST and POST on ASSISTments 2012.

7.2.3. NLP-enhancing for Cloud Academy dataset

In tables 7.9 and 7.10, we report the results of NLP-DKT and NLP-POST on Cloud
Academy dataset. NLP-enhancing produces nearly no improvements to the performance
of DKT and POST on Cloud Academy dataset. In fact, NLP-DKT shows worse per-
formance than DKT with any exercise embeddings, while NLP-POST model produces
results near to POST with any exercise embedding. We believe that these results are
due to the textual content of the dataset, which is subject-specific (i.e. about IT technol-
ogy). Understanding the similarities and the differences between exercise texts with these
characteristics becomes more challenging and requires specific focus and effort. Being
unable to easily understand the relationships, NLP-POST focuses only on the item id

72 7| Results

model parameters metrics

NLP method lr dim loss ACC AUC Prec Recall

CountVectorizer 0.0001 256 0.647 0.575 0.629 0.684 0.617

Word2vec 0.001 768 0.5903 0.578 0.640 0.701 0.573

Doc2vec 0.001 768 0.5577 0.607 0.656 0.708 0.654

Sentence
Transformer

0.001 768 0.5928 0.603 0.664 0.706 0.639

DistilBERT 0.0001 768 0.5506 0.596 0.665 0.719 0.596

Without NLP 0.001 200 0.4704 0.634 0.694 0.744 0.636

Table 7.9: Results of NLP-DKT and DKT on Cloud Academy dataset.

model parameters metrics

NLP method lr dim loss ACC AUC Prec Recall

Sentence
Transformer

1e-5 768 0.572 0.698 0.766 0.731 0.722

DistilBERT 0.0001 768 0.571 0.699 0.768 0.746 0.716

Word2vec 0.0001 768 0.573 0.699 0.768 0.761 0.708

Doc2vec 0.0001 768 0.573 0.699 0.768 0.690 0.737

Without NLP 0.0001 200 0.572 0.699 0.769 0.695 0.736

CountVectorizer 0.0001 128 0.568 0.703 0.771 0.741 0.725

Table 7.10: Results of NLP-POST and POST on Cloud Academy.

7| Results 73

model parameters metrics

NLP method lr dim loss ACC AUC Prec Recall

Without NLP 0.001 200 0.689 0.575 0.596 0.560 0.604

BERTopic 0.001 32 0.671 0.594 0.630 0.588 0.563

Word2vec 0.001 768 0.654 0.610 0.657 0.619 0.549

CountVectorizer 0.0001 256 0.661 0.608 0.658 0.608 0.521

Doc2vec 0.001 768 0.662 0.608 0.659 0.603 0.657

DistilBERT 0.0001 768 0.648 0.621 0.665 0.609 0.582

Sentence
Transformer

0.001 768 0.649 0.628 0.670 0.634 0.597

Table 7.11: Results of NLP-DKT and DKT on POJ dataset.

embeddings.

7.2.4. NLP-enhancing for POJ dataset

In tables 7.11 and 7.12, we report the results of NLP-DKT and NLP-POST on POJ
dataset. NLP-DKT shows improvements with respect to DKT with every exercise em-
beddings. In particular, Sentence Transformer provides NLP-DKT the highest Acc, AUC
and Precision. NLP-POST improves the already high ACC, AUC, Precision and Recall of
POST; differently from NLP-DKT, Sentence Transformers performs worse than the other
methods. NLP-POST using word2vec or CountVectorizer are the best performing models
for the POJ dataset.

7.2.5. Considerations about NLP-enhancing

The results confirm the utility of using texts to improve KT. In particular, NLP-enhancing
shows the best utility to improve performance with small datasets. The small amount of
available data about interactions usually limits the ability of the model to learn relations
between exercises; instead, knowing the textual exercise embedding guarantees additional
information, so the model can learn relations faster, needing fewer interactions. The
results of NLP-enhanced models on ASSISTments 2009 and POJ datasets confirm this
consideration.

Instead, for ASSISTments 2012 and Cloud Academy all the NLP-POST models perform

74 7| Results

model parameters metrics

NLP method lr dim loss ACC AUC Prec Recall

Sentence
Transformer

0.0001 768 0.650 0.622 0.672 0.5299 0.622

Without NLP 0.0001 768 0.647 0.634 0.688 0.647 0.623

Doc2vec 0.0001 768 0.637 0.639 0.698 0.712 0.620

BERTopic 0.0001 768 0.631 0.648 0.701 0.558 0.649

DistilBERT 1.00E-
05

768 0.631 0.648 0.702 0.639 0.672

CountVectorizer 0.0001 128 0.649 0.635 0.703 0.749 0.585

Word2vec 0.0001 768 0.6281 0.644 0.703 0.551 0.651

Table 7.12: Results of NLP-POST and POST on POJ dataset.

the same, meaning that the textual exercise embeddings are simply ignored by the model.
We think that the reasons behind this problem are the following ones:

1. POST model is already able to learn relations among exercises from a large number
of sequences of interactions available. So the possible margin of improvement of the
performance for large datasets is small and difficult to achieve. In general, adding
information about the text to an already strong and complex model is difficult.

2. We argue that the linear layer to reduce the dimension of the embeddings can be the
limitation, in particular for float exercise embeddings (such as Sentence Transformer,
word2vec, etc.). It could be interesting to replace the linear layer with another self-
attention based module responsible for learning attention weights to create reduced
textual embeddings.

3. Another possibility explaining the limited results is the fact that we sum NLP
reduced exercise embeddings to skill and item embeddings. Instead, it could be
interesting to duplicate the past exercise content encoder: one focusing on skill
and item embeddings, while the other can focus only on NLP reduced exercise
embeddings. This duplication can possibly solve the lack of “attention” that NLP-
POST models give to textual embeddings.

4. Another necessary consideration is that the number of average words per text is
much lower in ASSISTments 2012 and Cloud Academy (equal to 18) than in AS-
SISTments 2009 and POJ (respectively equal to 47 and 143). The small number of

7| Results 75

words per text can be another reason for the low results of NLP-enhancing on these
datasets.

7.2.6. Comparison of NLP methods

To understand the capabilities of the NLP methods, we analyze both the AUC and the
binary cross-entropy loss of the evaluated models. For NLP-DKT the best model on
ASSISTments 2009 is CountVectorizer (or eventually word2vec), while on each other
dataset is Sentence Transformer or DistilBERT. In our opinion, CountVectorizer is a
better model when texts contain words with precise meaning (such as equation, plus,
exponential in ASSISTments), while Sentence Transformer, word2vec and DistilBERT
can be better with long texts (as in POJ) or with large datasets, because they are more
powerful and can understand the semantic of the texts. We do not understand the reason,
bu it is particularly interesting that doc2vec or word2vec provide the highest Recall with
most of the datasets.

For NLP-POST we consider only the results on ASSISTments 2009 and POJ because
NLP-POST suffers the problems presented in Section 7.2.5. We can affirm that with
these small datasets all the NLP-POST models have similar performance.

In conclusion, from the results of our experiments on NLP-enhancing, we can only con-
clude that BERTopic is not suitable for answer correctness prediction, while the perfor-
mance of the other methods varies according to the dataset characteristics. No method
can be considered as the best one.

7.3. Hybrid approaches evaluation

In this section, we present the results on the four datasets of the hybrid approaches
presented in Section 5.5. For each dataset, we consider from two to four NLP-DKT models
and parallelize them to create the hybrid models using the two approaches explained in
Section 5.5. The model with the best AUC between NLP-DKT models (or DKT) is the
new baseline we compare our models with. In tables 7.13 and 7.15, producing the final
prediction as a weighted combination of the parallel predictions performs better than the
other approach. In table 7.16, the two approaches produce the same AUC, but summing
parallel predictions provides a smaller loss and higher ACC.

The main consideration we can derive from the results is the utility of creating hybrid
approaches, improving AUC on all the datasets.

76 7| Results

model params metrics

lr loss ACC AUC Prec Recall

weighted sum of Multiply
vectors

0.001 0.532 0.733 0.777 0.755 0.861

weighted sum of predictions 0.0001 0.528 0.742 0.784 0.763 0.864

Table 7.13: Results of the two hybrid approaches to parallelize multiple NLP-DKT models
(CountVectorizer, DistilBERT and word2vec) on ASSISTments 2009 dataset.

model params metrics

lr loss ACC AUC Prec Recall

weighted sum of Multiply
vectors

0.0001 0.516 0.745 0.775 0.762 0.906

weighted sum of predictions 0.0001 0.520 0.743 0.772 0.766 0.892

Table 7.14: Results of the two hybrid approaches to parallelize multiple NLP-DKT models
(DistilBERT, Sentence Transformer and word2vec) on ASSISTments 2012 dataset.

model params metrics

lr loss ACC AUC Prec Recall

weighted sum of Multiply
vectors

0.0001 0.525 0.616 0.686 0.737 0.613

weighted sum of predictions 1e-5 0.638 0.666 0.699 0.669 0.754

Table 7.15: Results of the two hybrid approaches to parallelize multiple NLP-DKT models
(CountVectorizer, DistilBERT and doc2vec) on Cloud Academy dataset.

model params metrics

lr loss ACC AUC Prec Recall

weighted sum of multiply
vectors

0.0001 0.652 0.653 0.696 0.681 0.631

weighted sum of predictions 1e-5 0.647 0.639 0.696 0.660 0.632

Table 7.16: Results of the two hybrid approaches to parallelize multiple NLP-DKT models
(DistilBERT, BERTopic and word2vec) on POJ dataset.

7| Results 77

7.4. Best performing models

In this section, we provide a summarized view for each dataset of the results of the different
models. In particular, in tables 7.17, 7.18, 7.19, 7.20, we present the results of the best
performing:

• baseline (DKT or SAINT+);

• model not using textual embeddings;

• NLP-enhanced model and respective NLP method;

• hybrid approach for NLP-DKT.

We can now compute the total gain of AUC our proposed best model provides to the best
baseline (DKT or SAINT+) for each dataset:

• For ASSISTments 2009 dataset, the best model consists of a hybrid model composed
of three parallel NLP-DKT models (respectively using CountVectorizer, Sentence
Transformer and word2vec embeddings) and producing the final prediction as a
weighted combination of the parallel predictions. This model improves AUC from
0.721 (DKT) to 0.784, with an improvement equal to 0.063, corresponding to a
percentage improvement of 8.73%.

• For ASSISTments 2012 the best model is NLP-POST using CountVectorizer em-
beddings. The model improves the AUC of SAINT+ from 0.736 to 0.793, with an
improvement equal to 0.057, corresponding to a percentage improvement of 7.74%.

• For Cloud Academy dataset, the best model is NLP-POST using CountVectorizer
embeddings. The model improves the AUC of SAINT+ from 0.759 to 0.771, with an
improvement equal to 0.012, corresponding to a percentage improvement of 1.58%.

• For POJ dataset, the best model is NLP-POST using word2vec embeddings. The
model improves the AUC of SAINT+ from 0.661 to 0.703, with an improvement
equal to 0.042, corresponding to a percentage improvement of 6.35%.

78 7| Results

Best among model metrics

ACC AUC Prec Recall

baselines DKT skill 0.711 0.721 0.725 0.896

models not using text POST 0.707 0.736 0.862 0.725

NLP-enhanced models NLP-DKT with
CountVectorizer

0.735 0.778 0.751 0.876

hybrid approaches weighted sum of predic-
tions

0.742 0.784 0.763 0.864

Table 7.17: Results of the best performing models on ASSISTments 2009 dataset.

Best among model metrics

ACC AUC Prec Recall

baselines SAINT+ 0.707 0.736 0.862 0.725

models not using text POST 0.754 0.790 0.878 0.784

NLP-enhanced models NLP-POST with Sen-
tence Transformer

0.757 0.793 0.896 0.779

hybrid approaches weighted sum of vectors 0.745 0.775 0.762 0.906

Table 7.18: Results of the best performing models on ASSISTments 2012 dataset.

7| Results 79

Best among model metrics

ACC AUC Prec Recall

baselines SAINT+ 0.692 0.759 0.721 0.720

models not using text POST 0.699 0.769 0.695 0.736

NLP-enhanced models NLP-POST with
CountVectorizer

0.703 0.771 0.741 0.725

hybrid approaches weighted sum of predic-
tions

0.666 0.699 0.669 0.754

Table 7.19: Results of the best performing models on Cloud Academy dataset.

Best among model metrics

ACC AUC Prec Recall

baselines SAINT+ 0.618 0.661 0.557 0.610

models not using text POST 0.634 0.688 0.647 0.622

NLP-enhanced models NLP-POST with
word2vec

0.644 0.703 0.551 0.651

hybrid approaches weighted sum of multiply
vectors

0.653 0.696 0.681 0.631

Table 7.20: Results of the best performing models on POJ dataset.

81

8| Conclusion

In this work, we studied multiple directions to improve the Knowledge Tracing task. In
particular, we focused on improving the performance on the answer correctness prediction
task, evaluating the models on ASSISTments 2009, ASSISTments 2012, Cloud Academy
and Peking Online Judge datasets. Since the datasets are unbalanced, models unable to
model the knowledge and produce a good prediction tend to predict mostly the majority
value, reaching an higher recall, while lowering the precision metric. For this reason,
precision and recall are unreliable metrics to evaluate the models and we decided to
consider only the Binary Accuracy and the Area Under the ROC Curve to infer conclusions
and compare the models.

First of all, we proposed Prediction Oriented Self-Attentive knowledge Tracing (POST), a
novel self-attention based model for KT. Our study proved that POST models the answer
correctness prediction task better than the previous self-attention based model SAINT+.
In addition, POST has shown the advantage to work optimally even with a small number
of training samples.

Then, we examined six Natural Language Processing methods to produce textual em-
beddings from the text of the exercises and developed “NLP-enhanced" versions of DKT
and POST, able to use the textual exercise embeddings as inputs. The significant im-
provement in the results of NLP-enhanced DKT models compared to DKT proves the
utility of “NLP-enhancing” KT models. At the same time, the proposed NLP-enhanced
POST model has shown to improve POST both ACC and AUC on all the datasets, with
high improvements only on datasets with few samples. From comparing the six NLP
methods (i.e. CountVectorizer, word2vec, doc2vec, DistilBERT, Sentence Transformer
and BERTopic), we can conclude that all of them (except BERTopic) can produce good
results. However, the results depend too much on the dataset to provide a general ranking
of the NLP methods. We can only affirm that BERTopic should not be used to produce
exercise embeddings.

Lastly, we presented the possibility of creating “hybrid” models for KT, using at the same
time exercise embeddings produced by multiple NLP methods. We propose two possible

82 8| Conclusion

approaches to develop a hybrid model, parallelizing different NLP-enhanced DKT models.
The improvements given by hybrid NLP-DKT over each dataset prove the capabilities of
these models. In addition, a hybrid model provided the highest AUC on ASSISTments
2009 dataset, improving by 8.73% the AUC of DKT.

To summarize the results, our proposed models increased the AUC metric of previous
models by 8.7%, 7.7%, 1.6% and 6.4% respectively on ASSISTments 2009, ASSISTments
2012, Cloud Academy and Peking Online Judge datasets; while the binary accuracy in-
creased by 4.2%, 7.1%, 1.6%, and 5.7% respectively.

Since we accurately investigated the answer prediction correctness task, we can suggest
some potential future directions. First, NLP-POST is still unable to use textual embed-
dings with large datasets, so we suggest replacing its linear layer with another module
responsible for reducing the dimension of NLP exercise embeddings. Another possibility
is to replace the past exercise content encoder with two encoders: one for skill id and item
id embeddings, the other for textual embeddings. In general, we can affirm that a study
of the possible ways to use textual embeddings into self-attention is still needed. After
having improved NLP-POST, the following step we suggest is to create a hybrid model,
combining the embeddings generated by multiple NLP methods. According to the results
of hybrid NLP-DKT, performance should receive a large improvement. Due to the wide
range of our work, we could not optimize the hyper-parameters of our models or verify
how the model works with “cold items”, so that is a possible future work. Lastly, other
unexplored NLP methods can produce exercise embeddings from text, such as Universal
Sentence encoder; studying their utility can be another direction.

83

Bibliography

[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[2] V. Balakrishnan and E. Lloyd-Yemoh. Stemming and lemmatization: A comparison
of retrieval performances. 2014.

[3] C. Buciluundefined, R. Caruana, and A. Niculescu-Mizil. Model compression. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’06, page 535–541, New York, NY, USA, 2006. Asso-
ciation for Computing Machinery. ISBN 1595933395. doi: 10.1145/1150402.1150464.
URL https://doi.org/10.1145/1150402.1150464.

[4] Y. Choi, Y. Lee, D. Shin, J. Cho, S. Park, S. Lee, J. Baek, B. Kim, and Y. Jang.
Ednet: A large-scale hierarchical dataset in education. CoRR, abs/1912.03072, 2019.
URL http://arxiv.org/abs/1912.03072.

[5] Y. Choi, Y. Lee, J. Cho, J. Baek, B. Kim, Y. Cha, D. Shin, C. Bae, and J. Heo.
Towards an appropriate query, key, and value computation for knowledge tracing.
CoRR, abs/2002.07033, 2020. URL https://arxiv.org/abs/2002.07033.

[6] A. T. Corbett and J. R. Anderson. Knowledge tracing: Modeling the acquisition of
procedural knowledge. User Modeling and User-Adapted Interaction, 4(4):253–278,
1994.

[7] R. Dechter. Learning while searching in constraint-satisfaction problems. 1986.

[8] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

[9] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

[10] Z. Huang, Q. Liu, C. Zhai, Y. Yin, E. Chen, W. Gao, and G. Hu. Exploring multi-

https://doi.org/10.1145/1150402.1150464
http://arxiv.org/abs/1912.03072
https://arxiv.org/abs/2002.07033
http://arxiv.org/abs/1810.04805

84 | Bibliography

objective exercise recommendations in online education systems. pages 1261–1270,
11 2019. ISBN 978-1-4503-6976-3. doi: 10.1145/3357384.3357995.

[11] Q. V. Le and T. Mikolov. Distributed representations of sentences and documents.
CoRR, abs/1405.4053, 2014. URL http://arxiv.org/abs/1405.4053.

[12] E. D. Liddy. Natural language processing. 2001.

[13] Q. Liu, Z. Huang, Y. Yin, E. Chen, H. Xiong, Y. Su, and G. Hu. EKT: exercise-aware
knowledge tracing for student performance prediction. CoRR, abs/1906.05658, 2019.
URL http://arxiv.org/abs/1906.05658.

[14] M. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based
neural machine translation. CoRR, abs/1508.04025, 2015. URL http://arxiv.org/

abs/1508.04025.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. Proceedings of Workshop at ICLR, 2013, 01 2013.

[16] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representa-
tions of words and phrases and their compositionality. CoRR, abs/1310.4546, 2013.
URL http://arxiv.org/abs/1310.4546.

[17] S. Pandey and G. Karypis. A self-attentive model for knowledge tracing. CoRR,
abs/1907.06837, 2019. URL http://arxiv.org/abs/1907.06837.

[18] S. Pandey and J. Srivastava. RKT : Relation-aware self-attention for knowledge
tracing. CoRR, abs/2008.12736, 2020. URL https://arxiv.org/abs/2008.12736.

[19] C. Piech, J. Spencer, J. Huang, S. Ganguli, M. Sahami, L. J. Guibas, and J. Sohl-
Dickstein. Deep knowledge tracing. CoRR, abs/1506.05908, 2015. URL http:

//arxiv.org/abs/1506.05908.

[20] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. CoRR, abs/1908.10084, 2019. URL http://arxiv.org/abs/1908.10084.

[21] F. Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[22] D. E. Rumelhart and J. L. McClelland. Learning Internal Representations by Error
Propagation, pages 318–362. 1987.

[23] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of
BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. URL
http://arxiv.org/abs/1910.01108.

http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1906.05658
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1907.06837
https://arxiv.org/abs/2008.12736
http://arxiv.org/abs/1506.05908
http://arxiv.org/abs/1506.05908
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1910.01108

8| BIBLIOGRAPHY 85

[24] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face
recognition and clustering. CoRR, abs/1503.03832, 2015. URL http://arxiv.org/

abs/1503.03832.

[25] D. Shin, Y. Shim, H. Yu, S. Lee, B. Kim, and Y. Choi. Saint+: Integrating temporal
features for ednet correctness prediction. In LAK21: 11th International Learning
Analytics and Knowledge Conference, LAK21, page 490–496, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450389358. doi: 10.1145/
3448139.3448188. URL https://doi.org/10.1145/3448139.3448188.

[26] Y. Su, Q. Liu, Q. Liu, Z. Huang, Y. Yin, E. Chen, C. Ding, S. Wei, and G. Hu.
Exercise-enhanced sequential modeling for student performance prediction. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[27] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. CoRR, abs/1409.3215, 2014. URL http://arxiv.org/abs/1409.3215.

[28] H. Tong, Y. Zhou, and Z. Wang. Exercise hierarchical feature enhanced knowledge
tracing. CoRR, abs/2011.09867, 2020. URL https://arxiv.org/abs/2011.09867.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

http://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
https://doi.org/10.1145/3448139.3448188
http://arxiv.org/abs/1409.3215
https://arxiv.org/abs/2011.09867
http://arxiv.org/abs/1706.03762

87

Acknowledgements

Many people supported my effort in this thesis.

I would first like to thank my supervisor, Professor Paolo Cremonesi, for the provided
support and help. I would also like to thank my co-advisor, Luca Benedetto, for the
constant help and the countless suggestions he has given me during the last year. His
passion for the subject made the thesis research very interesting and engaging.

I would like to thank all my friends. In particular, Nicola, Fabio and Giacomo for the
shared adventures, which helped to improve my motivation. In the end, I want to dedi-
cate this work to my parents: Giuliano and Silvia, my brother Andrea and my girlfriend
Francesca. They are there whenever I need them. Their unconditional love and encour-
agement always boost me to pursue my dreams and goals.

	Abstract
	Sommario
	Contents
	List of Figures
	List of Tables
	Introduction
	Related Works
	Knowledge Tracing
	Bayesian Knowledge Tracing
	Deep Knowledge Tracing
	Attention based models
	Natural Language Processing for KT

	Background
	Deep learning
	Perceptron
	Feed forward neural network
	Recurrent Neural Network
	Long Short Term Memory

	Encoder Decoder Sequence to Sequence
	Attention
	Multi-Head self-attention
	Transformer

	Natural Language Processing
	Text cleaning process
	CountVectorizer
	TF-IDF
	Word embedding approaches
	From word to document or sentence embedding
	Topic prediction

	Previous models in Knowledge Tracing
	Deep Knowledge Tracing
	Long Short Term Memory variant

	Self Attentive Knowledge Tracing
	Embedding layer
	Self-attention layer

	Relation-Aware Self-Attention Knowledge Tracing
	Separated Self-AttentIve Neural knowledge Tracing
	Embedding layer
	Transformer layer

	SAINT+
	Exercise-Enhanced Recurrent Neural Network
	Exercise embeddings
	Student embeddings

	Proposed model architectures
	Generating exercise embeddings from texts
	CountVectorizer
	Word2vec, DistilBERT and aggregation over words
	Doc2vec
	Sentence Transformer
	BERTopic

	NLP-enhanced DKT
	Prediction Oriented Self-attentive knowledge Tracing
	Past exercise content encoder
	Past performance decoder
	Prediction oriented module

	NLP-enhanced Prediction Oriented Self-attentive knowledge Tracing
	Hybrid approaches

	Experimental Setups
	Datasets
	ASSISTments Datasets
	Cloud Academy Dataset
	Peking Online Judge Dataset

	Data processing
	Text cleaning
	Removing interactions without text
	Removing duplicated interactions

	Processed datasets
	Processed ASSISTments 2009
	Processed ASSISTments 2012
	Processed Cloud Academy dataset
	Processed POJ dataset

	Generate sequences of interactions
	Data split and batches
	Loss and metrics
	Hyper-parameters
	CountVectorizer analysis

	Results
	POST-M and POST evaluation
	NLP-enhancing KT models with textual exercise embeddings
	NLP-enhancing for ASSISTments 2009 dataset
	NLP-enhancing for ASSISTments 2012 dataset
	NLP-enhancing for Cloud Academy dataset
	NLP-enhancing for POJ dataset
	Considerations about NLP-enhancing
	Comparison of NLP methods

	Hybrid approaches evaluation
	Best performing models

	Conclusion
	Bibliography
	Acknowledgements

