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ABSTRACT 

In the last few decades, the increase of energy demand has not been followed at the same pace by 

the installation of new energy generation facilities. As a result, the aging worldwide fleet of 

energy generation facilities will be capable of addressing the demand only if their life is extended. 

Digitization brings new opportunities for evaluating the viability of life extension and monitoring 

its effects on reliability and safety, thanks to the intelligent sensoring of Systems, Structures and 

Components (SSCs) through which monitoring data can be collected and used within risk 

assessment models to take risk-informed maintenance decisions that enable life extension. 

In this context, the objective of the PhD thesis is to develop a computational framework for 

condition-based risk-informed decision-making, which includes: I. Value of Information (VoI)-

based data acquisition, and II. Condition-Based Probabilistic Risk Assessment (CB-PRA) 

maintenance decision support. 

Regarding I, a novel computational approach is introduced to identify the optimal positioning of 

sensors for condition monitoring of SSCs by VoI. VoI is a utility-based Figure of Merit (FoM), 

which quantifies the benefits of acquiring information for supporting the maintenance decision-

making in a way to guarantee, at the same time, low cost, and valuable information. The VoI-

based optimal sensors positioning is achieved by solving an optimization problem that maximizes 

the VoI among different sets of measurements using three different proposed optimization 

approaches namely, greedy, non-greedy and Subset Simulation (SS).  

In terms of original contributions, the proposed advanced computational framework provides a 

simulation-based scheme for optimal condition monitoring and data acquisition for maintenance 

management and decision-making, as well as an innovative approach for developing condition 

monitoring guidelines, which have been traditionally relying only on operational experience. 

With respect to II, an innovative framework is presented which makes use of the optimal condition 

monitoring data (obtained from I) within an innovative risk assessment framework (i.e., CB-PRA), 

for prioritizing the risk imposed on SSCs by different degradation mechanisms and taking the 

most proper decisions on the maintenance strategy to be adopted to control the degradation 
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progression. This allows a proactive lifecycle asset management by allowing the decision-makers 

to taking real-time decisions on the optimal maintenance strategy for preventing accidents and 

balancing the maintenance budget expenditure.  

The proposed framework of I is applied on a case study regarding the optimal sensors positioning 

on a Steam Generator (SG) of a Nuclear Power Plant (NPP) that is degrading under creep. Also, 

a SG Tube Rupture (SGTR) accidental scenario due to multiple degradation mechanisms is 

considered, to show the benefits gained by applying the framework in II. 
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SOMMARIO 

Negli ultimi decenni, l'aumento della domanda di energia non è stato seguito di pari passo 

dall'installazione di nuovi impianti di generazione di energia. Di conseguenza, l'invecchiamento 

della flotta mondiale di impianti di generazione di energia sarà in grado di soddisfare la domanda 

solo se la vita utile degli impianti esistenti verrà estesa. La digitalizzazione offre nuove 

opportunità per valutare la fattibilità dell'estensione della vita e monitorare i suoi effetti 

sull'affidabilità e sulla sicurezza, grazie alla sensorizzazione intelligente di Sistemi, Strutture e 

Componenti (SSC) attraverso la quale i dati di monitoraggio possono essere raccolti e utilizzati 

all'interno di modelli di valutazione del rischio per assumersi il rischio decisioni di manutenzione 

informate che consentono l'estensione della vita utile. 

In questo contesto, l'obiettivo della tesi di dottorato è quello di sviluppare un framework 

computazionale a supporto di un processo decisionale informato, che includa: I. l’acquisizione 

dei dati basata sul Value of Information (VoI) e II. La presa di decisioni di manutenzione basati 

sulla sulla valutazione del rischio probabilistico on-condition (Condition Based Probabilisti Risk 

Assessment). 

Per quanto riguarda la parte I, in questa tesi viene introdotto un nuovo approccio computazionale 

per identificare il posizionamento ottimale dei sensori per il monitoraggio delle condizioni di SSC 

tramite VoI. VoI è una Figura di Merito (FoM) che quantifica i benefici dell'acquisizione di 

informazioni per supportare il processo decisionale di manutenzione in modo da garantire, allo 

stesso tempo, di aver selezionato informazioni di valore al minor costo possibile. Il 

posizionamento ottimale dei sensori basato su VoI si ottiene risolvendo un problema di 

ottimizzazione che massimizza il VoI tra diversi set di misurazioni: in questa tesi vengono 

proposti tre diversi approcci di ottimizzazione per la risoluzione del problema, ovvero algoritmi 

di ottimizzazione greedy, non-greedy e Subset Simulation (SS). 

In termini di contributi originali, il framework computazionale proposto fornisce uno schema 

basato sulla simulazione per il monitoraggio delle condizioni ottimali e l'acquisizione dei dati per 
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la gestione della manutenzione e il processo decisionale, nonché un approccio innovativo per lo 

sviluppo di linee guida per il monitoraggio delle condizioni, che tradizionalmente si sono affidate 

solo sull'esperienza operativa. 

Rispetto alla parte II, in questa tesi viene presentato un framework innovativo che fa uso dei dati 

di monitoraggio delle condizioni ottimali (ottenuti da I) all'interno di un approccio di valutazione 

del rischio (chiamato CB-PRA), che consente di individuare le priorità (in termini di rischio) delle  

SSC, quando esposte a diversi meccanismi di degrado, e di prendere le decisioni più appropriate 

sulla strategia di manutenzione da adottare per controllare l'andamento del degrado. Ciò consente 

una gestione proattiva delle risorse del ciclo di vita consentendo ai responsabili di prendere 

decisioni in tempo reale sulla strategia di manutenzione ottimale per prevenire gli incidenti e 

bilanciare la spesa del budget di manutenzione. 

Il framework proposto  I viene applicato a un caso di studio riguardante il posizionamento ottimale 

dei sensori su un generatore di vapore (SG) di una centrale nucleare (NPP) che degrada a causa 

di creep. Inoltre, viene considerato uno scenario accidentale SG Tube Rupture (SGTR) dovuto a 

più meccanismi di degrado, per mostrare i benefici ottenuti applicando il framework in II.  
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SECTION I. GENERALITIES 

This section of the dissertation describes the context of the PhD research, its relevance, the 

state-of-the-art methods, the challenges that are addressed, the overview of the developed 

framework and the description of the industrial applications carried out for the demonstration.  
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1. INTRODUCTION 

Energy generation facilities are designed to operate for long periods of time (e.g., electric 

power plants for more than 50 years of operation [1]). Life extension of these facilities, beyond 

the designed life, are also required not only to meet the ever increasing energy demands [2, 3, 4] 

but also to respond to the high social and  political pressures put in force to continue their 

operation due to the direct substantial replacement costs as well as the indirect incurred costs 

imposed by service disruption during replacement [5]. Indeed, life extension implies a substantial 

economic return (e.g., life extension of a 1000 MW Nuclear Power Plant (NPP) for 20 extra years 

may yield a saving of $1 billion) [6]. 

Life extension is not a trivial decision to undertake since aging exposes facilities to failures, 

that in turn, directly expose the environment and the society to significant risk [7] because the 

designed safety margins of Structures, Systems and Components (SSCs) of these facilities may 

not be adequate to deal with the stresses that challenge their integrity by life extension (for 

example, growing energy demand) [8, 9]. Therefore, life extensions should be achieved with 

caution, through maintenance, renovation and integration of new advanced technologies [10, 11] 

that enable time-dependent characteristics of the SSCs (due to aging) to be precisely monitored 

[12]. Digitization of the ongoing 4th industrial revolution brings new opportunities for condition 

monitoring by intelligent sensoring the SSCs [13]. Condition monitoring data, reflecting the 

current health condition of SSCs, can be indeed used for informing the risk assessment [14, 15, 

16], as well as informing simulation models therein used with respect to the degradation 

mechanisms affecting the SSCs, to predict the SSC failure time and enable decision-makers to 

take risk-informed decisions regarding maintenance strategies, even whit budgetary constraints 

[17, 18, 19]. To achieve this, after collecting the condition monitoring data, Probabilistic Risk 

Assessment (PRA) models should be used to translate the acquired data into dynamic risk 

estimates that reflect the current health state of the SSCs and help the decision-maker taking risk-

informed maintenance decisions [20, 21].  

In this PhD thesis, with respect to the above-mentioned challenges, innovative solutions are 

provided to obtain optimal condition monitoring data in energy facilities by recommending the 
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optimal sensors positioning that uses the Value of Information (VoI). Then, the innovative risk 

model of Condition-Based Probabilistic Risk Assessment (CB-PRA) [22] (briefly discussed in 

Section 1.2) is adopted in this thesis to provide dynamic risk estimates based on the previously 

collected optimal condition monitoring data which enables the decision-makers to, finally, make 

condition-based risk-informed maintenance decisions. 

The novelty of the thesis work consists in: I. the proposed VoI-based data acquisition that 

uses greedy optimization, non-greedy optimization, and Subset Simulation (SS) to address the 

issue of optimal sensors positioning; and II. the proposed CB-PRA maintenance decision support, 

that adopts the CB-PRA to take condition-based maintenance decisions. 

1.1. Research objectives of the thesis 

The structure of this PhD thesis is summarized in Figure 1. First, the issue of optimal sensors 

positioning is addressed. Then, the innovative PRA approach (CB-PRA), capable of dynamically 

estimating the risk measures by updated condition monitoring data, is adopted to finally take 

condition-based risk-informed maintenance decisions, with respect to multiple degradation 

mechanisms for risk prioritization, accounting also for maintenance costs. 

 

 

Figure 1: Schematic representation of the thesis framework 

The novelty of the research consists in:  

I) VoI-based data acquisition: a novel approach is presented to identify the optimal 

positioning of sensors for condition monitoring of SSCs by Value of Information (VoI) for 

supporting the decision making of maintenance, that guarantee, at the same time, low costs and 

valuable information. 
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 II) CB-PRA maintenance decision support: an innovative framework is presented which 

makes use of the optimal condition monitoring data (addressed in task I) and of the CB-PRA 

methodology, to prioritize the risk of the different degradation mechanisms of SSCs, and support 

taking the most proper decision regarding the maintenance strategy to be adopted to control the 

degradation propagation and, therefore, extending the facility lifetime.  

In other words, in a nutshell, using the optimal monitoring scheme of task I, and benefiting 

from the innovative approach of CB-PRA, a condition-based risk-informed decision-making 

support tool is achieved in task II. 

In what follows, details will be provided on the research activities performed in this PhD 

thesis for addressing: Task I: “VoI-based data acquisition”; and Task II: “CB-PRA maintenance 

decision support”. Table 1 lists subtasks details, along with the dissemination achievements. 

Table 1: Tasks defined to achieve condition-based risk-informed decision-making 

No. Research tasks Achievements 

I VoI-based data acquisition  

2 Journals [J] and 3 

Conference [C] 

papers 

   I.1 Optimal sensors positioning by greedy optimization method 1 [J] &1[C] 

   I.2 The sub-modularity issue in VoI based sensor positioning 1[C]  

   I.3 Optimal sensors positioning by non-greedy optimization method 1[C]  

   I.4 Optimal sensors positioning by subset simulation method 1 [J]  

II CB-PRA maintenance decision support  
1 Journal paper [J] 

and 1 Book [B]  

   II.1 Modeling of multiple degradation mechanisms for Steam Generator (SG) of a NPP 

1 [J] &1[C]    II.2 Risk prioritization 

   II.3 Development of the maintenance decision tool for SG 

 

A brief discussion on the CB-PRA approach is provided in Section 1.2. Then, the two 

research tasks performed during the PhD thesis are introduced in Sections 1.3 and 1.4 (then, 

described in more details in Sections 2 and 3). 

1.2. Condition-Based Probabilistic Risk Assessment (CB-PRA) 

Risk assessment is one of the greatest concerns for many industrial systems because any 

failure could cause severe consequences with human fatalities and adverse impacts on economy, 

society, and environment [23]. Therefore, risk models able of modeling, simulating, and 

predicting the failure consequences are vital to any industry. In nuclear industry, dealing with the 
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significant risk of nuclear radioactive materials, Probabilistic Risk Assessment (PRA) [24] is 

utilized as a useful tool for decision-makers to improve the safety and cover any available flaws 

during design and operation [25, 26].  

Traditional PRA methods have a static nature and allow for a failure probability calculation 

based on the design (i.e., prior to operation) available information [27]. In current practice, risk 

measures such as Core Damage Frequency (CDF) in NPPs are calculated based on traditional 

static PRA methods like traditional Event Tree Analysis (ETA), Fault Tree Analysis (FTA) [28, 

29]. Even though, PRA is believed to reflect the status of a specific plant, it is mostly obtained 

from generic data of other similar plants [30] which, in spite of the updates of the generic data 

with plant-specific data, gives a picture of prototypical plant, rather than a specific NPP [31]. In 

addition, aging and degradation may increase the probability of a failure that is often neglected 

and excluded throughout the assessment [32]. Therefore, traditional PRA methods only provide a 

static risk measure, without taking into account the new condition of degraded materials that, on 

the other hand might be easily inspected by numerous monitoring techniques [33]. As a result, 

remaining service life, and maintenance needs (calculated from such static reliability analysis 

methods) are generically based on the information of the design stage, generic data, codes, and 

expert judgments [34]. 

In light of this, a methodology called Condition-based PRA (CB-PRA) was proposed in [22] 

that utilizes data gathered from a plant by condition monitoring techniques that dynamically 

actualizes the related risk measures. The CB-PRA combines the traditional PRA with the 

intelligent condition monitoring tools to provide a powerful support to decision makers, being 

able to mine past, present and future data/information on environmental, operational and usage 

conditions of industrial equipment, for detecting degradation, diagnosing faults and predicting 

failures.  

The innovative methodology has the potential to allow the decision makers to take real-time 

decisions to prevent accidents. These decisions will support effective and optimal operation, 

maintenance, and outage planning. In this PhD thesis, the CB-PRA methodology is adopted to 

take condition-based risk-informed maintenance decisions. 
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1.3. VoI-based data acquisition  

Condition monitoring of SSCs has been fostered by sensors technology’s rapid growth [35, 36]. 

By the exponential growth in computational capabilities of computers and by the availability of 

cheaper and more precise sensors, condition monitoring is more readily available, but the real 

challenge lies in acquiring optimal information [37]. Collecting useful condition monitoring data 

is the key point for cost-effective life extension of aging facilities since acquiring massive data, 

without exploiting it, has no benefit but unnecessary costs [38]. The main issue to be addressed 

is the positioning of the condition monitoring sensors in locations where they can collect the most 

beneficial data. This process is called the optimal sensors positioning [39, 40]. However, since 

sensors positioning and consequent actions taken, based on the data collected come with a cost, 

this must be justified in terms of safety improvements [41]. With the optimal sensors positioning, 

the optimal set of measurement that have the most beneficial information with the lowest cost can 

be identified [42, 43]. 

Till now, most of the recommendations of the norms on how to perform the health monitoring 

are drawn from the experiences gained during in-service inspections or from the structural 

analyses [44] which is a shortcoming that questions the accuracy and reliability of the suggested 

procedure when to be applied on new materials (or on the materials with short experience recorded) 

as well as new designed SSCs. In this research, a framework based on the computational 

techniques is proposed to give recommendations on optimal sensors positions that yielded the 

highest benefit from condition monitoring before installing the sensors. Therefore, it is also 

feasible to be applied on new design SSCs. 

The rationale behind the proposed framework is that the positioning of sensors that measure 

specific properties f can be seen as an optimization problem that searches the maximum of Value 

of Information (VoI) metric [45, 46, 47, 48] by Bayesian decision theory [49]. The VoI is a utility-

based Figure of Merit (FoM) which quantifies the benefits/losses of acquiring information that 

can be used to compare the benefit of taking a measurement regarding specific properties of the 

SSC in one position rather than another. A measurement is more beneficial than another if it has 
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the larger VoI value. Therefore, VoI provides a clear indication on the benefits that may be gained 

(i.e., before sensors installation) by putting sensors in specific positions and finding the optimal 

sensors positions [50].  

Let F be a spatial model of a system where each physical property f can be measured by 

random quantities f(x̄) at each location x̄ resulting in a vector f̄(x̄) representing a multivariate 

random field in which the various properties are jointly described. The set of measurement ȳ(x̄) 

consists in a subset of all potential measurement sets Ȳ that can be used to update the prior 

distributions of the multivariate random field p̄F in the posterior distributions p̄F|ȳ, by the Bayesian 

inference method [49]. Based on the distributions, the decision maker can take actions ā to 

counteract the degradation progression of the SSC that can cause a loss (i.e., a negative utility) 

described by a loss function L(f̄(x̄), ā).  

VoI quantifies the loss reduction (i.e., the benefit) of decisions taken based on the posterior 

p̄F|ȳ, when the set of measurement ȳ(x̄) would be collected. Taking measurements in different 

locations could bring different effects on the posterior and, ultimately, on the benefits on decision 

making. Therefore, measurement source locations (i.e., sensors positioning) are to be optimally 

identified. The maximum VoI would correspond to the optimal positioning for collecting the 

optimal set of measurements 𝑦 (�̅�∗).  

Solving the problem that finds the optimal set of measurements 𝑦 (�̅�∗)  by comparing all 

potential measurement sets Ȳ brings complexity that is dramatically increased when the candidate 

positions of sensors are increased (i.e., all possible set of sensors should be investigated and 

compared to find the optimal solution by exhaustive search) making this search tedious and 

computationally intractable [51]. Therefore, optimization methods are proposed to find the 

solution in an efficient way. Two optimization methods, namely, greedy optimization, non-greedy 

optimization and one innovative approach by using Subset Simulation (SS) are proposed to find 

the VoI-based optimal sensors positioning. 

In this PhD thesis, we tailor the VoI-based sensor positioning framework on ageing energy 

systems. Specifically, In Section 2.1, we propose a simulation-based framework that uses VoI for 

identifying the optimal spatial positioning of sensors on degrading energy systems. In Section 2.3, 
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We apply the proposed framework for identifying the optimal spatial positioning of sensors on 

degrading pressurized equipment (i.e., a manifold of the SG of a Prototype Fast Breeder Reactor 

(PFBR)) under creep, whose sensors are typically positioned in line with recommendations of 

UNI 11096 [52]. In practice, we compare the optimized sensors positioning on the simulated case 

study with the normative recommendation. A Gaussian Process (GP) model is developed for the 

case study. The manifold is modeled as a rectangular plate of length L and width πDe, whose 

surface is discretized into 160 squares all with dimension of 100×100 mm. Ultrasonic thickness 

gauges that measure the thickness of base material can be placed at the center of the squares. The 

thickness model of the manifold is assumed to be normally distributed coming from the GP. The 

less the thickness of the SG, the higher probability of creep failure. To Find the optimal sensors 

positioning, as discussed in Section 2.2, three different optimization approaches namely greedy 

optimization method, non-greedy optimization method and Subset Simulation (SS) are adopted. 

The objective of all these optimization methods is to find the optimal measurement set that 

accordingly provides the maximum VoI. 

Greedy optimization method consists of looking for the optimal set of measurements 𝑦 (�̅�∗) 

by iteratively adding one single sensor, until the optimal arrangement is reached by so doing [53, 

54].  Results show that the VoI-based sensors positioning by greedy optimization, applied to the 

case study, allows reducing the number of sensors to be positioned with respect to UNI 11096  

[52], while gaining the same VoI, meaning that guidelines can benefit from methodological and 

technical advancements (such as VoI and simulation) to provide end-users with cost-effective 

indications, overcoming, in this way the shortcomings of relying only on past operational 

experience.  

Greedy optimization can guarantee optimal or near optimal results, for the metrics that 

satisfy the characteristics of sub-modularity that is, the larger the already identified set the lower 

the benefit of adding new measurements. For example, the metric M is sub-modular when its 

increase when it is evaluated at both locations a and b is smaller than when it is evaluated only at 

location b, (i.e., [M(a&b)- M(a)] ≤ M(b)). Incidentally, the VoI metric is not sub-modular making 

the VoI-based greedy optimization for sensors positioning not always effective [55, 56, 57]. In 
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light of this, the sub-modularity issue in the case study is practically shown, and solutions are 

suggested to overcome this issue such as, non-greedy optimization methods (e.g., Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA)) that are not sensitive to non-sub-modularity of 

VoI. It is practically shown that, by using non-greedy methods, more optimal sensors positioning 

is provided which not only yields better VoI, but also provides more accurate risk estimates.  

Despite both greedy and non-greedy methods can find a solution, each one comes with 

limitations and challenges: greedy optimization, as mentioned before, does not guarantee the 

optimal solution to be found due to the non-sub-modularity of VoI; non-greedy optimization, 

while being not sensitive to the non-sub-modularity, needs computationally expensive and tedious 

simulations to find the optimal solution. SS method which is typically used to find the failure 

probability in highly reliable SSCs is innovatively introduced to find the optimal sensors 

positioning. The proposed SS method not only does not have the greedy method’s problem of the 

sensitivity to the non-sub-modularity of VoI but is also far more efficient than the non-greedy 

methods. The result of this computational work can be utilized to advance the process of data 

acquisition in safety related SSCs for a more profitable and reliable condition monitoring. 

 

1.4. CB-PRA maintenance decision support 

Since PRA does not reflect the actual status of the specific plant, but a generic prototypical 

plant [33], and it does not fully account for the time processes of aging and degradation for 

updated risk measures estimations [9], a methodology called Condition-based PRA (CB-PRA) 

was proposed in [22] that utilizes data gathered from a plant by condition monitoring techniques 

that dynamically actualizes the related risk measures. In this PhD thesis, a novel framework is 

proposed to make use of the advantages of CB-PRA for risk monitoring and taking risk-informed 

maintenance decisions. The dynamic provision of condition-based risk measures estimates 

enables ranking the contribution to risk of different failure mechanisms affecting a SSC and, 

consequently, taking real-time decisions to prevent accidents by prioritizing maintenance 

activities.  

In Section 3.3, the framework has been applied on the spontaneous Steam Generator Tube 
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Rupture (SGTR) accident scenario in a Pressurized Water Reactor (PWR), considering the Steam 

Generator (SG) to be subjected to multiple degradation mechanisms. Different degradation 

mechanisms that affect the SG tubes integrity are considered [58], such as Stress corrosion 

cracking (SCC) and pitting, as being the mechanisms, most contributing to SGTR [59]. To 

counteract these degradation mechanisms, some maintenance strategies like tube plugging and 

Water Lancing and Chemical Cleaning (WL-CC) are commonly implemented [60] in line with 

the regulatory guideline, when corrosion reaches specific thresholds [61, 62]. This may result to 

be non-optimal [63]: numerous cases of unnecessary plugging have been reported worldwide 

[64]. Moreover, it has been reported that plugging is not always beneficial, since it increases the 

pressure difference between the inner and the outer sides of the SG tubes, that, in turn, increases 

the probability that microcracks reach the failure threshold [65]. Therefore, a method for 

prioritizing the risks due to multiple degradations, embedded into a decision framework, is 

proposed based on CB-PRA risk measures estimates. Based on this, an operator can dynamically 

choose, at each inspection cycle, the optimal maintenance action to be undertaken to trade-off the 

risk of any accident that might be induced by a SGTR and the related maintenance cost, without 

relying on the threshold-based on regulatory guidelines like NRC’s NUREG guidelines [66]. 

The condition-based risk-informed maintenance decision provides maintenance strategies 

that are different from what US Nuclear Regulatory Commission (NRC) enforces [66]. If a 

realistic case of constrained budgetary resources is assumed, maintenance decisions taken by CB-

PRA have lower risk than what is enforced by NRC guidelines. 

  The results show that the proposed maintenance decision support tool enables the decision 

maker to predict the degradation evolution, predict the tube failure time, calculate the risk of 

SGTR failure due to the multiple degradation mechanisms and prioritize the maintenance actions, 

under budget constraints. It is shown that the operators can optimally take the safest and most 

economic decision for maintenance, with respect to the NRC guidelines [66].  

1.5. Case Studies 

Without loss of generality and for demonstration purposes, the proposed computational 
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framework is applied on the Steam Generator of two different NPPs. The SG of a of a Prototype 

Fast Breeder Reactor (PFBR) is selected to apply the VoI-based data acquisition. The SG of Zion 

NPP is selected to apply the maintenance decisions by CB-PRA. Subsections 1.5.1 and 1.5.2 are 

dedicated to a brief introduction of the considered case studies. 

1.5.1. The SG of PFBR 

The application of the VoI-based approach with respect to the optimization of sensors 

positioning is shown on a manifold of the SG of a Prototype Fast Breeder Reactor (PFBR) (See 

Figure 2), whose thickness can be measured by Ultrasonic Thickness Testing (UTS). 

 

 

Figure 2:The manifold of a SG of a PFBR used as test case for the VoI-based approach for sensor positioning 

Under the assumed operating conditions listed in Table 2, the manifold may suffer of creep 

due to the large design pressure and temperature, and long exposure time that may lead to failure. 

Table 2: Operating conditions of the SG 

Design pressure 189 barg 

Design temperature 
778 °K = 505 °C    inlet 

723 °K = 450 °C    outlet  

Material 
9Cr-1Mo-V-Nb (Plate) 

ASME SA-387/SA-387M Grade 91 

Percentage of life 

spent 
35% 

Operating hours 100,000 h 

Tensile strength 475 MPa 

Thickness 20 mm 

 

Sensors can be positioned on the surface of the manifold to measure its thickness by 

Ultrasonic Thickness Testing (UTS). Positions where have smaller thickness are more susceptible 

to be damaged and ruptured by creep. 
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1.5.2. SGTR in Zion NPP 

The SG of the Zion NPP is considered to apply the framework of CB-PRA maintenance 

decision. This is a typical Pressurized Water Reactor (PWR) SG which has 3.6 m of diameter and 

21 m of height. Zion NPP’s SG weights 800 t of weight.  Total number of tubes is 3592 which 

are inverted U shaped. These tubes have an outside diameter of 22.23 mm, and the thickness of 

their walls are 1.27 mm [22]. The SG is modeled for 30 inspection cycles. Each inspection takes 

place every 2 years. The schematic view of the SG is shown in Figure 3. 

 

 

Figure 3: Schematic view of the SG of the case study 

In this work, Stress Corrosion Cracking (SCC) and pitting degradation mechanisms are 

selected for further study and implementation of the CB-PRA framework. The effects of multi-

degradation mechanism on spontaneous SG Tube Rupture (SGTR) accident scenario are studied 

to have comprehensive view on the decisions that must be taken on optimal maintenance 

strategies (i.e.,   tube plugging and Water Lancing and Chemical Cleaning (WL-CC) ).
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1.6. Thesis Structure 

The structure of the thesis is shown in Figure 4. Chapters 2 and 3 are dedicated to the steps 

of the PhD research taken to achieve the research objectives introduced in Section 1.2. Chapter 4 

draws the conclusions and future perspectives. At the end, a collection of the international peer-

reviewed journals papers finalized during the PhD is included for further details. 

 

Figure 4: Sketch of the thesis structure 

 
Chapter 1: Introduction 

 Overview of the developed computational framework for VoI-based data acquisition 
 Overview of the developed computational framework for Maintenance decisions by CB-PRA 
 Descriptions of the applications taken for illustrating the developed framework 

Chapter 2: VoI-based data acquisition  

Greedy 
optimization 

Non-greedy 
optimization 

Subset 
Simulation 

Papers 3[C], 2[J]  

Chapter 3: CB-PRA maintenance decision support 

Multiple degradation 
mechanisms 

Risk prioritization 

Paper 1[J] Book 1[B] 

Chapter 4: Conclusions  
 

Optimal sensors positioning 

Research Objective 1 

Condition-based maintenance decisions 

Research Objective 2 

SG of the PFBR 

Application 

SGTR accident scenario 
in Zion NPP 

Application 

Cost 
assessment 
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SECTION II. DETAILS OF THE DEVELOPED FRAMEWORK 

This Section consists in 3 Chapters (i.e., Chapters 2: VoI-based data acquisition, Chapter 3:  

CB-PRA maintenance decision support, and Chapter 4: Conclusions) that describe in details the 

original contributions resulting from the PhD research work. 
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2. VOI-BASED DATA ACQUISITION  

Contents of the Chapter have been adapted from the following publications disseminated from the PhD 

thesis (Along with the numbering, [J] represents Journal article, [C] represents Conference paper and [B] 

represents Book, e.g., 3[J] represents the 3rd published journal article): 

1[J] S.M. Hoseyni, F. Di Maio, E. Zio, “Optimal sensor positioning on pressurized equipment based 

on value of information”. Proceedings of the Institution of Mechanical Engineers, Part O: 

Journal of Risk and Reliability, 1748006X21989661, January 2021. 

2[J] S.M. Hoseyni, F. Di Maio, E. Zio, “Subset simulation for optimal sensors positioning based on 

value of information”. In preparation 

1[C] S.M. Hoseyni, F. Di Maio, E. Zio, “VoI-Based Optimal Sensors Positioning and the Sub-

Modularity Issue”. 4th International Conference on System Reliability and Safety (ICSRS 2019), 

Rome, November 2019. 

2[C] S.M. Hoseyni, F. Di Maio, E. Zio, “Optimal Sensors Positioning for Condition-based Risk 

Assessment by Particle Swarm Optimization”. 30th European Safety and Reliability Conference 

and the 15th Probabilistic Safety Assessment and Management Conference (ESREL2020-

PSAM15), Venice, November 2020. 

3[C] F. Di Maio, S.M. Hoseyni, E. Zio, “Stima probabilistica del rischio di rottura di componenti in 

pressione soggetti a creep e monitoraggio continuo delle condizioni” SAFAP 2018- Sicurezza 

ed affidabilità delle attrezzature a pressione, Bologna, Novembre 2018. 

In this Chapter of the PhD thesis, VoI-based data acquisition approach is discussed in detail 

to address the issue of optimal sensors positioning. First, in Section 2.1, the mathematical concept 

of VoI is provided. In Section 2.2., VoI-based optimal sensors positioning is discussed and 3 

different approaches to find the optimal sensors positioning namely greedy method, non-greedy 

method, and Subset Simulation (SS) are proposed. In Section 2.3, these approaches are applied 

on a case study of SG undergoing creep. The advantages and disadvantages of each method are 

clearly compared, and the most suitable approach is proposed. 

2.1. Value of Information 

Value of Information (VoI) is a mathematical concept used in Bayesian statistical decision 

theory to quantify (in monetary terms) the gain that one could obtain by updating prior available 

information with new one, before adopting it [49]. Indeed, the process of acquiring information 

(here specifically consisting in measurements from sensors) may not always be justified because 
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of the high cost, and one finds this out only after (the information is acquired by the measurements 

taken) [67, 68]. In other words, VoI predicts (by pre-posterior analysis) the economic benefit of 

collecting measurements in specific sensors locations, by accounting (in addition to the cost of 

the sensor and measurement acquisition chain) for the costs that the decision-maker might incur 

when adopting mitigative actions to counteract SSC degradation (or its failure in case no action 

is taken) based on the collected measurements. This provides a powerful tool for comparing 

different locations of measurement before physically placing the sensors on the SSCs (i.e., a 

location that has larger VoI value is more beneficial) and makes it possible to find the most 

beneficial set by solving an optimization problem that finds the observation that has the largest 

VoI. 

The mathematical framework for quantifying the VoI is recalled in the following: In general 

terms, a spatial domain Ωx can be defined over the SSC of interest and indicated by its spatial 

coordinates. For example, each location i on a 2-dimensional Ωx can be indicated as x̄i = {𝑥1, 𝑥2}. 

For practicality, the spatial domain Ωx is discretized into a finite set of i locations X̄ = {x̄1, x̄2, …, 

x̄i}. A spatial model F= f(x̄), where hereafter x̄ is generally assumed to represent a set of locations, 

can be introduced on the spatial domain Ωx to measure a certain property of the SSC at each 

location x̄ (e.g., for a pressurized vessel, a random field f(x̄) of stress, at each location x̄). If 

multiple random fields f̄(x̄) (e.g., stress, temperature, thickness and so on) insist on the SSC, F = 

f̄(x̄) can be defined as a multivariate random field, possibly with dependencies [48]. 

The spatial model can be described based on design values and operational experience (i.e., 

prior knowledge), eventually assigning prior distributions 𝑝̄ 
𝐹

 of values to the relevant variables 

(e.g., the distribution of the internal stress in a pressurized vessel). 

Similar to the spatial domain Ωx, the measurements spatial domain Ωy can be defined at the 

generic set of locations x̄ where the measurements can be taken (i.e., Ωy  ⊆ Ωx). The measurement 

set ȳ(x̄) is the collection of measurements at the generic locations x̄ (e.g., measurements of 

realizations of the multivariate random field f̄(x̄) at 3 locations ȳ(x̄)={x̄2, x̄5, x̄12}): 
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 𝑦 (𝑥 ) = 𝑹𝑓(̅𝑥 ) + 휀 ̅ (1) 

where R is a row matrix with i elements indicating which locations in Ωx are observed (i.e., 

R is a row matrix with zero value for the non-observed locations of X̄ and 1 for the observed 

locations), and ε̄ is a vector of random noise measurements, usually assumed to be distributed like 

a Gaussian with zero mean and covariance matrix Σε  [48]. When new information become 

available (new measurements are recorded), the distribution of the model f̄(x̄) can be updated. 

Specifically, Bayesian inference allows updating the prior distributions 𝑝̄ 
𝐹

 to obtain the posterior 

distribution 𝑝̄ 
𝐹|𝑦̄ 

.  

Prior and posterior distributions, 𝑝̄ 
𝐹

 and 𝑝̄ 
𝐹|𝑦̄ 

 can be used by a decision-maker to decide an 

action from a set of possible actions ā. In particular, the SSCs prior probability of failure P̄F (x̄) 

and posterior probability of failure P̄F|ȳ (x̄) that can be inferred from 𝑝̄ 
𝐹

 and 𝑝̄ 
𝐹|𝑦̄ 

, respectively, 

can support, in a risk-informed perspective, a decision-maker choice of maintenance by balancing 

risk and actions costs, based on the most informative set that can be collected.  

To this aim, a loss function L(f̄ (x̄), ā) can be introduced as negative utility (i.e., loss) that 

may come from taking  a decision. For example, in case a decision of action is taken based only 

on the prior knowledge 𝑝̄ 
𝐹

 without relying on additional measurements (∅), the prior expected 

loss 𝔼L(∅) can be minimized to find the optimal action: 

 𝔼𝐿(∅) = 𝑚𝑖𝑛{𝔼𝐹𝐿(𝑓(̅𝑥 ), 𝑎̄ )} (2) 

On the other hand, if ȳ(x̄) is available, the decision can be taken posteriori of collecting the 

information ȳ(x̄), i.e., with respect to 𝑝̄ 
𝐹|𝑦̄ 

, and minimizing the posterior expected loss 𝔼𝐿(𝑦 (𝑥 )): 

 𝔼𝐿(𝑦 (𝑥 )) = 𝔼𝑌min{𝔼𝐹|𝑦̄  𝐿(𝑓(̅𝑥 ), 𝑎̄ )} (3) 

For example, based on 𝑝̄ 
𝐹

 (e.g. the prior knowledge on the field of stress on a plate with 

growing cracks, providing a failure probability estimate P̄F(x̄) due to the load applied) a repair 

decision might be taken that differs from the one that would have been taken if the posterior 

probability of failure P̄F|ȳ(x̄) would have been considered, if P̄F|ȳ(x̄) were updated with the new 
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measurements ȳ(x̄) that have become available. For the pressurized vessel, 𝑝̄ 
𝐹|𝑦̄ 

 reflects the 

updated distribution of the stress, conditioned on the collected information ȳ(x̄): within the here 

proposed simulation-based approach, the measurement corresponds to random realizations in a 

specific location i. To account for this stochasticity, we assume that in each location, we simulate 

the collection of K alternative measurements, and 𝑝̄ 
𝐹

 and 𝑝̄ 
𝐹|𝑦̄ 

 are collected accordingly with their 

consequent losses as in Equations (2) and (3). K different stochastic realizations of 𝑦 (𝑥 𝑖) 

represent K different posterior expected losses (𝔼𝐿(𝑦 (𝑥 𝑖))𝑘 which are averaged, by Monte Carlo 

simulation, to quantify the posterior expected loss conditioned on the measurement at a specific 

location i as: 

 𝔼𝐿(𝑦 (𝑥 𝑖)) ≅
∑ (𝔼𝐿(𝑦 (𝑥 𝑖))𝑘
𝐾
𝑘=1

𝐾
 (4) 

The difference between 𝔼L(∅)  and 𝔼𝐿(𝑦 (𝑥 ))  quantifies the benefit of taking decisions 

informed by the new information 𝑦 (𝑥 ), and is, thus, the VoI: 

 𝑉𝑜𝐼(𝑦 (𝑥 )) =  𝔼𝐿(∅) − 𝔼𝐿(𝑦 (𝑥 )) (5) 

 

2.1.1. VoI-based sensor positioning 

As mentioned before, decisions are made optimal by the informativeness of ȳ(x̄). The cost-

effectiveness of ȳ(x̄) holds when its cost C(ȳ(x̄)) is less than (or equal) to the VoI gained (i.e., a 

measurement is cost-effective when VoI(𝑦 (𝑥 ))≥ C(ȳ(x̄))), and consequently, the total benefit 

utility 𝐵𝑉𝑜𝐼(𝑦 (𝑥 ))≥ 0): 

 𝐵𝑉𝑜𝐼(𝑦 (𝑥 )) = 𝑉𝑜𝐼 (𝑦 (𝑥 )) − 𝐶(𝑦 (𝑥 )) (6) 

The optimal set of measurement ȳ(x̄*), i.e., the set which maximizes the utility 𝐵𝑉𝑜𝐼 among 

all potential sets of measurements �̅�, is determined by the optimal number of sensors n and their 

positioning. In principle, the optimal positioning of sensors can be found by simulating every 

possible set of measurement on �̅� ⊆ 𝛺𝑌 (by a combinatorial and computationally impractical way 

of solving Equation (7): 
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 �̅�∗(𝑥 ) = 𝑎̄𝑟𝑔𝑚𝑎̄𝑥 𝑌  ⊆𝛺𝑌  (𝐵𝑉𝑜𝐼(�̅�)) (7) 

To find the solution of Equation (7), one primitive yet non-efficient way is to perform the 

exhaustive search by calculating 𝐵𝑉𝑜𝐼 for all potential sets of measurements �̅� and finding the 

optimal set which provides the maximum 𝐵𝑉𝑜𝐼 . The exhaustive search is most of the time 

computationally intractable and this justifies the need for introducing more efficient solutions 

of optimization methods in this PhD thesis as: greedy and non-greedy method as wells as the 

Subset Simulation (SS).   

2.1.2. VoI-based sensor positioning for Gaussian fields 

A particular case of the sensor positioning procedure is the sensor positioning on Gaussian 

fields, which means that f̄(x̄) is normally distributed on Ωx [69], with a mean function value m(x̄), 

a standard deviation 𝜎(𝑥 ) , and covariance k(x̄, x̄′) with correlation ρ(x̄, x̄′) (i.e.,  𝑘(𝑥 , 𝑥 ′) =

 𝜎(𝑥 )𝜎(𝑥 ′)𝜌(𝑥 , 𝑥 ′)) between locations x̄ and x̄′. This means, also, that when a measurement is 

taken at a given location (𝑥1, 𝑥2), any other measurement at any other location (𝑥1′, 𝑥2′) is 

correlated with (𝑥1, 𝑥2) according to a correlation function. There are numerous correlation 

functions.  In this work, for the case study of Section 2.3, an exponential correlation function is 

selected as it better represents the correlation of the locations in Gaussian fields [54]: 

 ρ(𝑥1, 𝑥2, 𝑥1
′ , 𝑥2

′ ) = exp ( -√
((𝑥1−𝑥1

′)
2
+(𝑥2−𝑥2

′ )
2
)

𝜆2
) (8) 

where 𝜆 is called scale parameter (in the case study of Section 2.3, 𝜆 is taken equal to 100 

mm in order to provide the maximum correlation among the adjacent sensors positions). 

 In various cases, spatially distributed systems can be assumed to be Gaussian [54] and, 

Bayesian inference for the sensors positioning can exploit the property of conjugate priors [70], 

as discussed hereafter.  

Specifically: 
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• the multivariate field f̄(x̄) can be described by the mean vector 𝜇̄ 𝐹 =

 �̅�(𝑥 ) containing multivariate mean values m(x̄) of different SSC properties and a 

covariance matrix ΣF =  𝑘(𝑥 , 𝑥 ′), with a prior distribution 𝑝̄ 
𝐹

: 

 𝑓(̅𝑥 ) ~ 𝑝̄ 
𝐹
=  ℕ(𝜇̄ 𝐹 , Σ𝐹) (9) 

• the noise ε̄ is modeled as an independent, identically distributed, zero mean 

Gaussian distribution covariance matrix Σε  can be described as distributed by a 

multivariate normal distribution so that the measurement set ȳ(x̄) is Gaussian with μ 𝑦̄ =

𝐑μ F and Σ𝑦̄ = 𝐑ΣF𝐑
T + Σε (Equation (10)): 

 𝑦 (𝑥 ) ~ 𝑝̄ 𝐹|𝑦̄  =  ℕ (𝜇̄ 𝑦̄ , Σ𝑦̄ ) (10) 

The conjugate posterior of f̄(x̄) is, thus, a Gaussian distribution [71]:  

 𝑓 ̅| 𝑦 (𝑥 ) ~ ℕ (µ 𝐹|𝑦̄  , Σ𝐹|𝑦̄ ) (11) 

with: 

 𝜇̄ 𝐹|𝑦̄ = 𝜇̄ 𝐹 + Σ𝐹𝐑
TΣ𝑦̄ 

−1 (𝑦 (𝑥 ) − 𝜇̄ 𝑦̄ ) (12) 

and 

 Σ𝐹|𝑦̄ = Σ𝐹 − Σ𝐹𝐑
TΣ�̅�̄

−1𝐑Σ𝐹 (13) 

being the posterior mean and covariance, respectively. 

2.2. Optimal Sensors Positioning 

Identifying the optimal set of sensors positions to be mounted on Safety-critical SSCs is 

crucial for maximizing the value of data collected and correctly informing the decision-making 

process regarding maintenance and risk management, yet very challenging in terms of the 

computational costs [72, 73, 74]. VoI, based on Bayesian statistics, is the utility used, in this PhD 

thesis, to quantify the value of data collected with a set of sensors positions, by estimating the 
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benefits that can be gained, in monetary terms, by installing that set of sensors, prior to its 

installation [49, 75].  

Beside the mathematical complexity of VoI, the real challenge is computational and comes 

when VoI computation has to be repeated among all candidate sets of sensors, to find the optimal 

positions set that gives the maximum VoI [76, 77]: if we assume that n sensors are to be positioned 

in a system that has j candidate sensors positions, (𝑗
𝑛
) VoI computations shall be conducted to 

consider all possible sets of sensors positions and, among these, find the optimal set that 

maximizes the VoI [56] (for example, n= 5 sensors in j=200 candidate positions = 2.54E+9 

different sets of sensors positions). If we consider that in real applications, j can be very large and 

n unknown, the problem becomes intractable, from the computational point of view (e.g., for 

j=1000 candidate positions, ∑ (
𝑗
𝑛
)

𝑗

𝑛=1
 = 1.07e+301 possible set of sensors positions).  

To overcome these issues, combinatorial optimization methods can be used to find the 

optimal solution not by comparing all potential solutions with an intractable exhaustive search 

but by smartly selecting a fraction of possible solutions that, eventually, lead us to the optimal 

solution [78, 79]. The combinatorial optimization methods that have been used for solving VoI-

based sensors positioning problems [46, 56, 80] are here categorized in greedy and non-greedy 

methods. Moreover, an alternative novel approach, the SS method, is innovatively used to find 

the VoI-based optimal sensors positioning. The detailed description of these 3 approaches is 

provided at what follows. 

2.2.1. Greedy method 

A classical approach to find the optimal set of measurement is to use the greedy method [81]. 

To find the optimal set 𝑦 (�̅�∗) comprised of n sensors (n is unknown usually) by greedy method, 

sensors are sequentially positioned one by one in n iterations until the objective of the 

optimization is reached by finding the set which has largest 𝐵𝑉𝑜𝐼 (Equation (7)). More specifically, 

the first best single position is, firstly, identified. Then, for the remaining iterations, one other 

single sensor position with respect to previously positioned sensors are sequentially added until 
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finding optimal set of measurement ȳ(x̄*). This method is very efficient with respect to the 

dramatical reduction in the number of required VoI computations to find the optimal set [56] since 

n×j VoI computations are required.  

The greedy optimization guarantees to achieve a solution with a metric value of at least (1-
1

𝑒
 

)≅63% of that of the true optimal solution obtained by exhaustive search for the problem that use 

sub-modular metrics [56], but VoI is a non-sub-modular metric [82]. Sub-modularity is discussed 

by detail in Section 2.2.1.1 below. Moreover, the non-sub-modularity of VoI metric will be 

practically shown in the case study of Section 2.3. 

2.2.1.1. Sub-modularity  

Greedy methods guarantee the optimal result for optimization problems that use sub-modular 

metric. More specifically, the larger a set of measurement, the less beneficial is adding new 

measurements. In mathematical terms, consider ȳ1(x̄) to be a smaller set of measurement than ȳ2(x̄) 

and ȳs(x̄) a specific measurement set added to both these sets. Metric M is sub-modular when for 

every ȳ1(x̄) ⊆ ȳ2(x̄) ⊆ ΩY, Y̅1 ⊆ Y̅2 ⊆ ΩY, ȳs(x̄) ∈ΩY and ȳs(x̄) ∉ ȳ2(x̄): 

 𝑀(𝑦 1(𝑥 ) ∪  𝑦 𝑠(𝑥 )) −  𝑀(𝑦 1(𝑥 ))  ≥  𝑀(𝑦 2(𝑥 ) ∪  𝑦 𝑠(𝑥 )) −  𝑀(𝑦 2(𝑥 )) (14) 

The sub-modularity of metric M in Equation (14) implies that when a specific set ȳs(x̄) is 

added to a smaller set ȳ1(x̄), the improvement in the metric value is more than that of adding the 

same set ȳs(x̄) to a bigger set ȳ2(x̄) (i.e., the bigger set ȳ2(x̄) also contains the smaller set ȳ1(x̄)). 

When the metric M is non-sub-modular, the greedy method may not well perform the process of 

sensors positioning. Table 3 shows, as a demonstrative example, the benefits of information 

acquisition by sensors positioning in a system that n=2 sensors are to be positioned in j=3 

candidate positions {a,b,c}. Two different generic metrics M1 and M2 are used to show the benefits 

of data acquisition (where M1 is sub-modular, while M2 is not). As shown in Table 3, both metrics 

show equal benefits for adding single sensors and two sensors positions of {a,b} and {a,c}. 

However, for {b,c}, there is diminishing return for  the sub-modular metric (M1) and non-

diminishing return for non-sub-modular metric (M2). If greedy method is used for both problems 
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with M1 and M2, first {a} will be selected and then {b} will be added to form the optimal set{a,b}. 

By this numerical example, it is obvious that when the metric is sub-modular, the greedy methods 

easily identifies the optimal set while, otherwise, fails to identify the optimal set {b,c}. 

Table 3:Comparison of sub-modular metric (M1) and non-sub-modular metric (M2) 

 Sensors positions 

a b c a,b a,c b,c 

Metric 

Value 

M1 4 3 2 6 5 4 

M2 4 3 2 6 5 7 

 

It is worth mentioning that, using non-sub-modular metrics does not mean that greedy 

method always fails to identify the optimal solution, but there is the possibility to encounter cases 

similar to the example shown in Table 3. Therefore, letting the greedy method to find the optimal 

solution by chance of not encountering such an example is not wise. 

2.2.2. Non-greedy method 

The non-greedy methods are generally called to the optimization methods that do not follow 

greedily selecting the optimal set of measurement by sequentially adding single sensor position 

to the 𝑦 (�̅�∗) but by smartly searching in all possible configuration of sensors positions and finding 

the optimal set 𝑦 (�̅�∗) . The non-greedy methods can span among lots of combinatorial 

optimization methods like Genetic Algorithm (GA) [83], Particle Swarm Optimization (PSO) [84], 

Differential Evolution (DE) [85] and so on.  

Despite the greedy method which is sensitive to non-sub-modularity of VoI because it adds 

the single positions one by one to build up the 𝑦 (�̅�∗) and, therefore, may fail to find the optimal 

result (e.g., similar to M2 in Table 3), the search space for non-greedy methods involves all 

possible configurations of sensors positions making it not sensitive to the non-sob-modularity of 

VoI (e.g., in searching the optimal solution for n=2 sensors in the same example of j=3 candidate 

sensors positions abovementioned for the non-sub-modular metric M2 in Table 3, the optimal set 

{b,c} would be found by non-greedy method by smartly searching in all sets with n=2 sensors 

position while greedy method would find {a,b} that is not the optimal solution.)  
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The main drawback of VoI-based non-greedy optimization is its computational cost as VoI 

computation is mathematically complex by itself, and it becomes very burdensome when the VoI 

evaluation has to be repeated for a large number of times, evolving towards the optimal solution.   

2.2.3. Subset simulation 

Subset Simulation (SS) is an adaptive stochastic simulation procedure, originally developed 

by Au and Beck [86], that can efficiently estimate small probability of rare events, when crude 

Monte Carlo Simulation (MCS) fails. In other words, SS is an improved MCS method that is 

adaptively improved to find the probability of rare events where crude MCS can barely estimate 

or is very demanding in terms of computational cost. SS, due to its high efficiency, have been 

applied in different fields of engineering, not only for probability estimation, but adapted to also 

address optimization problems [87]. 

SS for optimization consists in iteratively generating samples of solutions of the optimization 

problem towards a target event G (i.e., the optimal solution), assuming G1 ⊃ G2 ⊃ … ⊃ Gm = G 

to be a sequence of nested intermediate events (i.e., suboptimal solutions) where 𝐺𝑘 = ⋂ 𝐺𝑘
𝑘

𝑖=1
 , 

k= 1,2,…,m. By conditioning on the sequential events Gi, the probability of event G is defined as: 

 𝑃(𝐺) =  𝑃(𝐺𝑚) =  𝑃(𝐺1) .∏ 𝑃(𝐺𝑖+1|𝐺𝑖)

𝑚−1

𝑖=1

 (15) 

meaning that 𝑃(𝐺)  in Equation (15) is quantified by conditional probabilities 𝐺𝑖  of 

intermediate events (i.e., the quantification of  𝑃(𝐺) passes through the quantification of the 

probabilities of a series of conditional events 𝐺𝑖+1|𝐺𝑖  that are more frequent and have larger 

probabilities of occurrence. MCS is used to quantify 𝑃(𝐺1)  and the conditional samples in 

𝐺𝑖+1|𝐺𝑖 are generated by Markov Chain MC (MCMC) [88]. 

In this work, SS for optimization is proposed for finding the optimal sensors positions by 

searching for the set of measurements locations that satisfy Equation (16) (i.e., no other set of 

measurements can have a benefit greater than the benefit of the optimal set of measurement 𝑦 (�̅�∗). 

Therefore, the probability of event G which is the probability of 𝐵𝑉𝑜𝐼(𝑦 (𝑥 )) > 𝐵𝑉𝑜𝐼(𝑦 (�̅�
∗)) is 

equal to zero): 
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 𝑃(𝐺) =  𝑃(𝐵𝑉𝑜𝐼(𝑦 (𝑥 )) > 𝐵𝑉𝑜𝐼(𝑦 (�̅�
∗))) = 0 (16) 

where 𝐵𝑉𝑜𝐼(𝑦 (𝑥 )) is the benefit of acquiring information by the set of measurement 𝑦 (𝑥 ) 

quantified by Equation (6), while 𝑦 (�̅�∗) is the optimal set of measurement and 𝐵𝑉𝑜𝐼(𝑦 (�̅�
∗)) is its 

associated benefit.  

The probability of target event G (i.e., 𝑃(𝐺)) can be defined as product of a sequence of 

conditional probabilities 𝑃(𝐺𝑖+1|𝐺𝑖) as shown in Equation (15) (Suo, et al., 2017). In solving the 

optimization problem by SS, a series of intermediate threshold values 𝑞𝑖 with i=1,2,3,…,mm are 

adaptively selected, in each iteration i, to make the conditional probability of intermediate events 

equal to 𝑃(𝐺𝑖+1|𝐺𝑖): 

 𝑃(𝐺1) =  𝑃(𝐵𝑉𝑜𝐼(𝑦 (𝑥 )) ≥ 𝑞1) (17) 

 𝑃(𝐺𝑖+1|𝐺𝑖) =  𝑃(𝐵𝑉𝑜𝐼(𝑦 (𝑥 )) ≥ 𝑞𝑖+1 | 𝐵𝑉𝑜𝐼(𝑦 (𝑥 )) ≥ 𝑞𝑖) (18) 

 

where 𝑞1  is the first threshold value used to compute the probability of event 𝐺1  and 

{𝑞2… 𝑞𝑚𝑚} are the intermediate threshold values. In the optimization problem, the algorithm 

will progressively move toward the optimal set of measurements as 𝑃(𝐺) moves toward zero (i.e., 

𝑞𝑖 → 𝐵𝑉𝑜𝐼(𝑦 (�̅�
∗)) as 𝑃(𝐺) → 0). 

 The conditional probabilities {𝑃(𝐺𝑖+1|𝐺𝑖):  𝑖 = 1, 2, 3, … ,𝑚𝑚 − 1}are affected by how the 

threshold values {𝑞𝑖: i=1,2,3,…,mm } are selected as arbitrarily choosing  𝑞𝑖 values may end up 

in inability to control the conditional probabilities values being too  small or too large. Small 

𝑃(𝐺𝑖+1|𝐺𝑖) values will put, once again, the problem in the loop of finding rare events and large 

values will increase the computational efforts (Li & Au, 2010).  Therefore, 𝑞𝑖 values are chosen 

adaptively in order to make the conditional probabilities always be equal to a fixed value p0 (i.e., 

∀ 𝑖 = 1, 2, 3, … ,𝑚𝑚, 𝑃(𝐺𝑖+1|𝐺𝑖)= p0) (Pedroni & Zio, 2017).  

In summary, to perform the optimization, first Np samples are generated by crude MCS. Then, 

𝑞1 value is adaptively selected in a way that Nt=p0Np number of samples have 𝐵𝑉𝑜𝐼(𝑦 (𝑥 )) ≥ 𝑞1 
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making 𝑃(𝐺1) of Equation (17) equal to p0. These Nt samples are kept for the next iteration as 

seed samples. Using MCMC, (1- p0)Np new conditional samples are generated from the seed 

samples to make the number of samples, once again, equal to Np. Then,  𝑞2 value is adaptively 

selected as Nt=p0Np samples have 𝐵𝑉𝑜𝐼(𝑦 (𝑥 )) ≥ 𝑞2 to set 𝑃(𝐺2|𝐺1) of Equation (18) equal to p0. 

These Nt top samples are, again, selected as seed samples to be fed to the next iteration i, and 

generate by MCMC, another (1- p0)Np new conditional samples. This loop will continue until 

𝑃(𝐺) → 0 meaning that  𝑞𝑖 → 𝐵𝑉𝑜𝐼(𝑦 (�̅�
∗)) and the optimal solution 𝑦 (�̅�∗) is identified. 

2.3. Case Study: SG Undergoing Creep 

The manifold of Steam Generator (SG) of a Prototype Fast Breeder Reactor (PFBR), with 

the properties described in Figure 2 and Table 2, is considered as the case study to show the 

application of VoI-based sensors positioning by greedy, non-greedy and SS methods. Sensors are 

installed on the manifold to measure its thickness by Ultrasonic Thickness Testing (UTS) [52]. 

The thickness measurement is used to monitor the health condition of the manifold to prevent any 

failure caused by creep. The schematic view of the manifold is shown in Figure 5. 

 

Figure 5: The schematic view of a SG of a PFBR used for the VoI-based sensors positioning and the candidate 

sensors positions 

As can be seen in Figure 5, for modelling purpose, the manifold is unwrapped in a form of 

rectangular plate and is discretized into j=160 candidate sensors positions where sensors can be 

installed (Shown as black circles).  
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Failure would occur at location x̄ if the thickness (i.e., the Gaussian strength random field fs 

(x̄)) is smaller than a threshold thickness, here assumed equal to a constant value of 16.9 mm on 

the whole Ωx (i.e., the failure threshold field ft (x̄) calculated in [89] in line with [90] using the 

NIMS creep database [91], that contains creep data collected in experiments related to pressurized 

equipment of NPP of the same material and operating under the same conditions of the manifold 

considered in our case). 

Since fs (x̄) is a Gaussian field and ft (x̄) is a constant, the limit state function 𝑔(𝑥 ) =  𝑓𝑠(𝑥 ) −

𝑓𝑡(𝑥 ) is a Gaussian g(x̄) ~ N (µg(x̄), σg(x̄)), which implies a probability of manifold failure P̄(x̄) 

(i.e., the probability that g(x̄)<0) equal to: 

 �̅�(𝑥 ) =  Φ(−β(𝑥 )) (19) 

where Φ(.) is the standard normal cumulative distribution function, and 𝛽 is the reliability 

index equal to: 

 𝛽(𝑥 ) =   
𝜇̄𝑔(𝑥 )

𝜎𝑔(𝑥 )
 (20) 

The actual thickness fs(x̄) may vary, due to the manifold production process. The following 

common cases are considered (see Figure 6 where dashed lines show the welding): 

1. Circumferential welding of two extruded manifolds. 

2. Longitudinal welding of a rectangular plate. 

3. Circumferential welding of two manifolds resulting from a longitudinal welding 

of two rectangular plates. 

4. Manifold extrusion. 
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Figure 6: schematic view of the four case studies. 

In all these cases, the fs (x̄) is modeled with a Gaussian model 𝑝̄ 
𝐹
(𝑥 ) = ℕ (20mm, 1mm) 

except for the Welding and Heat Affected Zone (WHAZ), where 𝑝̄ 
𝐹
(𝑥 )  of fs (x̄) is ℕ ~ (20mm, 

2mm). Figure 7 shows the standard deviation of fs (x̄) for all the cases (the lighter the color, the 

larger the standard deviation). 

 

Figure 7: Standard deviation of fs (x̄) for the four case studies 

Knowing that ft (x̄) is equal to 16.9 mm, the prior probability of failure P̄F (x̄) can be 

calculated at any location x̄ of the manifold, as plotted in Figure 8 (the warmer the color, the larger 

the probability of failure). 
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Figure 8: Prior probability of failure P̄F (x̄) for the four case studies 

At this point, it can be decided to: 1. do nothing (a = 0) with zero cost, or 2. mitigate 

degradation (a = 1) (for, example, for mitigating creep, one can either reduce the operational stress 

(i.e., lowering pressure, temperature, …), or sleeve the risky area, or perform a weld repair [92], 

or any combination of these with cost Cm). Depending on the true state (s̄) of the manifold, 

unknown to the decision maker, (i.e., severely degraded (s = 0) that would entail failure cost of 

Cf, or intact (s = 1)), one sets the loss function value: 

 𝐿(𝑓̅(𝑥 ), �̅�̄) =  {

0                                             if 𝑠 = 1 and 𝑎̄ = 0
𝐶𝑓 = 200𝐾€                         if 𝑠 = 0 and 𝑎̄ = 0 

 𝐶𝑚 =  5𝐾€                                                  if 𝑎̄ = 1
} (21) 

In other words, if no mitigation action is performed (a = 0) and the true state is intact (s = 1), 

then the decision comes with zero cost; otherwise, if the actual state is severely degraded (s = 0), 

then, a wrong decision comes with cost Cf . It is assumed that, regardless of the true state of the 

manifold, if a failure mitigation action is undertaken, the payoff is the cost Cm.  

For the proposed application, the prior expected loss 𝔼L(∅) = ∑ 𝔼𝐿𝑖(∅)
160
𝑖=1  is quantified by 

simultaneously accounting for all the 160 prior expected losses, where, for the 𝑖-th location, the 

prior expected loss is: 

 
𝔼𝐿𝑖(∅) = 𝑚𝑖𝑛{𝔼𝐹𝐿𝑖(𝑓(̅�̅�𝑖), �̅�̄𝑖)} = 𝑚𝑖𝑛{𝔼𝐹𝐿𝑖(𝑓(̅�̅�𝑖), 0), 𝔼𝐹𝐿𝑖(𝑓(̅�̅�𝑖), 1)} 

= 𝑚𝑖𝑛{𝐶𝑓 × 𝑃𝐹 (�̅�𝑖), 𝐶𝑚 } 
(22) 

being 𝔼𝐹𝐿𝑖(𝑓(̅�̅�𝑖), 0) the failure cost 𝐶𝑓  = 200 𝐾€ weighted by the probability of failure 

𝑃𝐹(�̅�𝑖) (if no action is taken, a=0), and 𝔼𝐹𝐿𝑖(𝑓(̅�̅�𝑖), 1) corresponds to the cost 𝐶𝑚 = 5𝐾€ (if 

maintenance action is taken, a=1). Figure 9 shows the process of 𝔼𝐿𝑖(∅) calculation by the logic of 

Equation (22) in the form of a decision tree. 
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Figure 9:Decision tree used to calculate 𝔼𝐿𝑖(∅) 

 

Also the posterior expected loss 𝔼L(𝑦 (𝑥 )) = ∑ 𝔼𝐿𝑖(𝑦 (𝑥 ))
160
𝑖=1  is quantified by simultaneously 

accounting for all the 160 posterior expected losses where, for the 𝑖-th location, the posterior 

expected loss conditional on the measurement set 𝑦 (𝑥 ) is: 

 𝔼𝐿𝑖(𝑦 (𝑥 )) = 𝑚𝑖𝑛{𝐶𝑓 × 𝑃𝐹|𝑦̄  (�̅�𝑖), 𝐶𝑚 } (23) 

being 𝑃𝐹|𝑦̄  (�̅�𝑖) the posterior probability of failure of location  �̅�𝑖.  

It is worth mentioning that 𝔼L(∅) and 𝔼L(𝑦 (𝑥 )) have been calculated as the sum of all the 

prior and posterior losses, 𝔼𝐿𝑖(∅) of Equation (22) and 𝔼𝐿𝑖(𝑦 (𝑥 )) of Equation (23) respectively, 

from all the i locations (i.e, 𝔼L(∅) = ∑ 𝔼Li(∅)160
𝑖=1  and 𝔼L(𝑦 (𝑥 )) = ∑ ELi(𝑦 (𝑥 ))160

𝑖=1 ), because we 

assumed the system as a cumulative system where the total cost is the cumulative cost for 

managing all i locations. 

In Figure 10, the P̄F, the prior ā and the prior expected loss of each ith location 𝔼Li for the 

case 1 (circumferential welding of two extruded manifolds) are plotted resulting in a total prior 

expected loss 𝔼L(∅) = ∑ 𝔼Li(∅)160
𝑖=1 , which can be interpreted as the utility value of taking 

decisions ā on the prior belief 𝑝̄ 
𝐹

, when due account is given to all the 160 prior expected loss 

values 𝔼Li of each ith discretized locations 𝑥 . 

 

Figure 10: Prior probability, prior actions and the prior expected loss for the case study 1 
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When a new measurement ȳ(x̄) is taken, it reduces the uncertainty of f(x̄). In each realization, 

𝑝̄ 
𝐹

 is to be updated in 𝑝̄ 
𝐹|𝑦̄ 

 to calculate the posterior probability of failure P̄F|ȳ, the posterior 

actions (ā) and the posterior expected loss 𝔼𝐿𝑖(𝑦 (𝑥 )) for each ith location (see Figure 11, where 

the posterior expected loss field is plotted conditioned on a specific observation at location x̄o 

shown by the circle). Finally, 𝑉𝑜𝐼(𝑦 (𝑥 ))  is calculated using Equation (5) and 𝔼L(𝑦 (𝑥 ) ) = 

∑ ELi(𝑦 (𝑥 ))160
𝑖=1 .  

 

 

Figure 11: The plot of the posterior expected loss field, conditioned on a specific observation at location x̄o 

The above-mentioned descriptions showed the detailed steps of the computation of the VoI 

value for a measurement set 𝑦 (𝑥 ) . In the following sections the VoI-based optimal sensors 

positioning by greedy, non-greedy and SS for the case studies are provided where to find the 

optimal set of measurement multiple VoI computations shall be conducted. 

2.3.1. Sensors positioning by greedy method 

In this Section, we use the concept of VoI-based greedy optimization to find how to 

optimally position ultrasonic thickness gauges on the pressurized equipment, for largest benefit 

in terms of reduced costs and increased data accuracy. The greedy optimization that finds the 

optimal set of sensors positions is compared with the sensors positioning recommendations of the 

Italian guideline ISPESL n. 48/2003 [90] and, specifically, the norm (UNI 11096, 2012) [52] 

where are derived from past operational experiences. The novelty of this work lies in use of the 

VoI-based sensors positioning framework for comparing the outcomes with 
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standards/recommendations/guidelines for monitoring of energy SSCs issued by regulatory 

bodies, to confirm their validity or suggest improvements. Results show that the VoI based sensor 

positioning allows reducing the number of sensors to be positioned with respect to the guidelines 

in [52], while achieving the same VoI. This shows that guidelines can benefit from VoI and 

simulation to obtain cost-effective solutions that overcome the shortcomings of relying only on 

past operational experience.  

The technical procedure in the Italian guideline ISPESL n. 48/2003 [90] and, specifically, 

the norm (UNI 11096, 2012) [52] is used as benchmark for the sensors positioning. In line with 

[52], 32 thickness gauges are placed in the locations (*) of Figure 12, among 160 locations 

available. Notice that holes of subchannels within the manifold are neglected in line with [52].  

 

 

Figure 12: Schematic view of the unwrapped manifold with sensor locations (x̄), in line with (UNI 11096, 2012) 

In this case study, VoIUNI is the standard value to be reached by the inspection scheme 

assuming that the inspection costs are neglected (i.e., C(𝑦 (𝑥 ))=0). As a result, the largest VoI of 

the case study comes from the set of measurement that fills all the i=160 candidate locations with 

sensors. Instead, we are looking for a set that its benefit exceeds that of the standard value VoIUNI 

to evaluate the proposed simulation-based methodology’s capabilities and compare it with the 

experience-based standard in recommending better sensors positioning strategy. 

The optimal n sensors locations ȳ(x̄*) can be found with the greedy optimization method 

whose flowchart, tailored on the specific case study, is given in Figure 13.  
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Figure 13: Flowchart for VoI-based greedy optimization 

At each n-th iteration, we aim at positioning one sensor among the 160 candidate positions. 

The posterior field (p̄F|ȳ)n  is calculated K=10000 times to simulate K different stochastic 

realizations of 𝑦 (𝑥 𝑖) (i.e., to consider the stochasticity of the measurement, instead of assuming 

one possible realization, K=10000 realizations of a measurement are considered). The posterior 

expected loss 𝔼𝐿(𝑦 (𝑥 𝑖)) =
∑ (𝔼𝐿(𝑦̄ (𝑥 𝑖))𝑘
10000
𝑘=1

10000
 (Equation (4)) is calculated and VoI(ȳ(x̄i) is 

quantified; the sensor position ȳn
* that yields the largest VoI(ȳ(x̄i)) value among the 160 candidate 

positions is added to the optimal set ȳ(�̅�∗) and the prior belief (p̄F)n of the next iteration becomes 

the posterior field,  informed by ȳ(�̅�∗) (i.e., (p̄F)n  = p̄F|ȳ(ȳ(�̅�∗)). In other words, a sensor position 

is added to ȳ(�̅�∗) in each iteration and the effects of adding this single sensor position in the next 

iteration’s search to another single sensor position is considered by considering the n-th iterations 

prior field (p̄F)n equal to previous field’s posterior p̄F|ȳ(ȳ(�̅�∗)). The search of the optimal location 

sets stops when the set ȳ(�̅�∗) yields a VoI value greater than or equal to VoIUNI  that represents the 

positioning of 32 sensors in the 32 locations identified by (*) in Figure 12 (as supported by the 

technical procedure in the Italian guideline ISPESL n. 48/2003 [90] and, specifically, the norm 

(UNI 11096, 2012) [52], assuming that inspection costs are negligible with respect to Cm and Cf ). 
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Figure 14 shows the contour plots of VoI at the first iteration of greedy optimization, where 

the circle identifies the location where the max VoI would have been reached if the sensors were 

positioned there. 

 

Figure 14: VoI contours for the four case studies at the first iteration n=1 

It can be seen that locations close to the WHAZ (with larger uncertainty) also have larger 

VoI; a further proof comes from the case study 4, for which all locations have the same 𝑝̄ 
𝐹

 and, 

therefore, the VoI for any i-th location is almost identical with all other locations (i.e., slight 

difference in VoI is due to the stochasticity of the random field characterization). Additionally, 

the chance of a location to be selected as the single location that has the max VoI value in WHAZ 

area, from an engineering point of view, should be equal as the uncertainty is the same (e.g., all 

locations of WHAZ area shown in yellow in case 2 have the same chance to be selected as the 

point with max VoI and their VoI is slightly different due to the stochasticity of the analysis.)  

Figure 15 shows the optimal sensors positions ȳ(x̄*) for each of the case studies. The number 

of sensors n required to exceed VoIUNI is 5, 17, 18, 32, respectively (where the numbers indicate 

the order of positions selected by the optimization strategy). 
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Figure 15: Sensor positioning using the greedy optimization algorithm for the four case studies 

In all cases, n< nUNI=32 and the ratio r = 
𝑉𝑜𝐼

𝑛
 is defined to show the VoI-per-sensor in each 

case study. Similarly, 𝑟𝑈𝑁𝐼 = 
VoIUNI

𝑛UNI
 shows the VoI-per-sensor obtained by positioning by the [52] 

guidelines with nUNI=32. Table 4 compares quantitatively the VoI, number of sensors n, and the 

VoI-per-sensor ratio r in the different case studies, with their corresponding values of the (UNI 

11096, 2012) sensors positioning. The VoI-per-sensor ratio r of the case studies are compared 

with their associated rUNI values, with the coefficient of improvement CI showing how much the 

VoI-per-sensor ratio r is improved using the suggested framework (CI= 
𝒓

𝒓𝑼𝑵𝑰
). 

Table 4: Comparison between the UNI 11096 and the proposed method for sensor positioning 

Case 

Study 

VoI n r  VoIUNI nUNI 𝒓𝑼𝑵𝑰  CI 

1 2.6495e+04 5 5299 2.6386e+04 32 824.56 6.43 

2 9.9772e+04 17 5868.94 9.4014e+04 32 2937.94 2.00 

3 1.0727e+05 18 5959.44 1.0420e+05 32 3256.23 1.83 

4 6.1561e+03 28 219.86 5.9847e+03 32 187.02 1.18 
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It can be seen that the VoI-based sensor positioning strategy in all cases gives a better VoI-

per-sensor than following the normative recommendation of [52]. 

2.3.1.1. Considerations on Geometrical Symmetry 

Due to the symmetry of the manifold geometry and thickness distribution, one might argue 

that positioning sensors in locations ns with the same uncertainty should not imply differences in 

VoI. To test this hypothesis, let us consider case study 1, in which ns=8 potential sensors locations 

fall in the WHAZ area with large uncertainty (i.e., elements in the frame highlighted in Figure 16) 

and they may be equally selected as one of the optimal location of each greedy optimization 

iteration (i.e.,  ȳn
*). These locations are sketched in Figure 16 (top). 

 

 

Figure 16: Sensor positioning for case study 1 

As mentioned in Section 2.3.1, to exceed the VoIUNI value of case study 1, a measurement 

set ȳ(x̄*) comprised of n=5 sensors were needed (shown in Figure 16 (bottom)). However, if the 

sensor positioning approach is repeated 1000 times to find ȳ(x̄*) and the probability that each one 

of these ns locations being selected as one of the n optimal sensors of ȳ(x̄*) is calculated, the results 

shown in Figure 17 are obtained, showing that the probability of each location being selected as 

one of the n optimal sensors positionings is 62±5% (the fluctuation is due to the randomness 

inherent in the Monte Carlo simulation and in the realizations of the measurements), which proves 

that the locations ns sharing the same uncertainty and geometrical properties have almost equal 
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probability to be selected as one of the optimized locations for sensor positioning of the optimal 

set ȳ(x̄*). 

 

 

Figure 17: Probability of the sensors locations to be selected as one of the optimal positions (%) 

2.3.1.2. Practical example for non-sub-modularity of VoI 

In this Section, the greedy method is conducted on the manifold of case   study 1. Instead of 

trying to exceed the VoIUNI, the procedure of greedy optimization is here assumed to continue 

iteratively, until the VoI improvements are less than a predefined negligible benefit (here 

arbitrarily taken equal to 4000 €), resulting in the set of 5 sensors locations, shown in Figure 18. 

 

 

 

 

Figure 18: The arrangement of sensors positioning by greedy optimization 

It is worth mentioning that, as expected, all the n=5 sensors are placed in WHAZ locations 

with larger uncertainty on the thickness (labeled with a to h as in Figure 18): this is to say that 

acquiring information under this condition provides the highest benefit (i.e., VoI), because it 

allows reducing the posterior uncertainty. The detailed VoI value of these single sensor locations 
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are presented in Table 5. For example, positioning sensor in b provides a VoI equal to 5691 €, 

compared to the benefit of no measurement. It is worth mentioning that, due to symmetry of the 

pipe and equal uncertainty in WHAZ area, VoI values of Table 5, from an engineering point of 

view, should be the same and the difference is due to the stochasticity in measurement realizations. 

 

Table 5: VoI for single sensor locations 

 Sensors 

a b c d e f g h 

VoI 6203 5691 5693 6132 6177 6091 5701 5682 

 

The sensor location labeled as a has the maximum VoI value as a single sensor configuration 

and is selected as the first sensor location by greedy optimization. The values of the VoI in the 

step-by-step iterations followed by the greedy method are given in Table 6.  As it can be seen, 

since the VoI improvements in the sixth iteration are less than 4000 € (i.e., 30043-26495=3548 

€), the first n=5 sensors locations are selected as the final optimal set. 

Table 6: VoI for greedy sensor positioning in each iteration 

 Sensors 

Iteration 1 2 3 4 5 6 

Location a a, b a, b, c a, b, c, d a, b, c, d, e a, b, c, d, e, f 

VoI 6203 12463 17745 22464 26495 30043 

 

In this Section, we practically show the sub-modularity issue in the case study. As shown in 

Table 6, when at the second iteration, location b is added to a, the resulting benefit (i.e., 

VoI({a,b})-VoI({a})=12463- 6203 = 6260 €) is larger than the VoI value of b alone (shown in 

Table 5 (i.e., 5691)). This implies that the inequality of (14), with ȳ1(x̄) =∅ ȳ2(x̄) ={a} and ȳs(x̄) 

={b}, is not satisfied since adding b to a result in an increasing return, rather than in a diminishing 

return (see Figure 19). This increasing return property of the non-sub-modular VoI metric that 

causes VoI(a,b)>VoI(a)+ VoI(b) could be explained by the advantageous benefit that a 2 

configuration sensors positions set provides on the measurement of adjacent areas due to the 

correlation of these 2 sensors in comparison to  that of  two separate single configurations.  
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Figure 19: Sub-modularity issue with a subset of locations 

 

This shows that the VoI metric is not sub-modular, causing the sensor positioning not to be 

optimal (but still, sub-optimal). If we rely on a non-greedy optimization method such as Particle 

Swam Optimization (PSO) to optimize the sensors positioning constrained by the requirement 

that in j=160 candidate locations only a set of n=5 sensor locations are to be selected, a different 

result is obtained as shown in Table 7. 

Table 7: VoI of 5 sensor locations by greedy and non-greedy methods 

Optimization method Greedy Non-Greedy 

Sensors selected a, b, c, d, e a, b, c, f, g 

VoI 26495 26926 

 

The non-greedy optimization results in a VoI 2% larger (26926) than that of the greedy 

optimization result (26495), since locations f and g are selected instead of d and e. Figure 20 

compares the VoI values obtained with the non-greedy optimization (dot) and those obtained by 

greedy optimization adding one location at a time (line). 
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Figure 20: Comparison of the VoI values in greedy and non-greedy optimizations 

2.3.1.3. Considering the inspection cost 

In this section, for case 1, it is assumed that taking measurement comes with a cost C(𝑦 (𝑥 )) 

that depends on the measurement set 𝑦 (𝑥 ) and comprises of a fixed cost of measurement chair 

system installation equal to 3 𝐾€ plus a cost proportional to the number of sensors in the set 

n(𝑦 (𝑥 )) where each sensor costs 250 €: 

 C(𝑦 (𝑥 )) = 3000 + 250×n( 𝑦 (𝑥 )) (24) 

Using Equations (1)-(5) and the specific loss function defined in Equation (21) we will 

quantify the VoI. 

Greedy method is here used to find the optimal set of measurement 𝑦 (�̅�∗) that yields the 

maximum benefit by solving the optimization problem of Equation (7). To this end, as discussed 

by details in Section 2.2.1, single best sensor positions are sequentially quantified and added one 

by one until the maximum benefit is reached. In this section, we continue the iterations until the 

cost of sensors positioning suppresses the benefit gained meaning that 𝐵𝑉𝑜𝐼(𝑦 (𝑥 )) in iteration n+1 

is less than its value in iteration n. Table 8 shows the VoI, total benefit and selected sensors 

positions ID number (i.e., ID number is defined for all 160 sensors positions starting from 1 at 

bottom left to 160 at top right as shown in Figure 21) quantified by greedy method.  
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Figure 21: Schematic view of numbering the ID numbers of sensors positions 

As can be seen, at the 10th iteration 𝐵𝑉𝑜𝐼(𝑦 (�̅�
∗)) is smaller than its value at the 9th step, 

meaning that the cost of an additional sensor is not justified by the increase in VoI. Therefore, the 

optimal set 𝑦 (�̅�∗) is the one resulted at the 9th iteration with 𝐵𝑉𝑜𝐼 (𝑦 (�̅�
∗)) = 32547.62 €.  

Table 8: Details quantities of greedy method in 10 iterations 

n 𝒚 (�̅�∗) VoI (𝒚 (�̅�∗)) C(𝒚 (�̅�∗)) 𝑩𝑽𝒐𝑰 (𝒚 (�̅�
∗)) 

1 82 6203.85 3250 2953.85 

2 82, 80 12463.17 3500 8963.17 

3 82, 80, 77 17745.91 3750 13995.91 

4 82, 80, 77, 83 22464.18 4000 18464.18 

5 82, 80, 77, 83, 78 26495.20 4250 22245.20 

6 82, 80, 77, 83, 78, 84 30403.15 4500 25903.15 

7 82, 80, 77, 83, 78, 84, 81 34115.92 4750 29365.92 

8 82, 80, 77, 83, 78, 84, 81, 79 37535.84 5000 32535.84 

9 82, 80, 77, 83, 78, 84, 81, 79, 38 37797.62 5250 32547.62 

10 82, 80, 77, 83, 78, 84, 81, 79, 38, 71 38037.97 5500 32537.97 

 

To confirm the result, in Figure 22, we show the curve of total benefit solving the 

optimization problem by the greedy method for all iterations until covering all the160 candidate 

sensor: As can be seen, the benefit 𝐵𝑉𝑜𝐼 (𝑦 (𝑥 )) rapidly increases from 1st to 8th iteration, then 

there is a small increase in 9th iteration and after that it is decreasing until 160th iteration, showing 

once more that the optimal solution lays in the 9th iteration.  
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Figure 22: The total benefit of sensors positioning by greedy method 

An in-depth analysis of the selected set of positions {82, 80, 77, 83, 78, 84, 81, 79, 38} 

highlights that all these 8 sensors positions located at WHAZ area (in yellow at Figure 21) 

characterized by a larger uncertainty on the random field f(x̄) of thickness are among the selected 

9 sensors positions; this means that taking measurements in positions with larger uncertainty 

yields larger benefits (according to VoI) because this helps reducing it, whereas larger uncertainty, 

consequently would provide larger benefits. Positions with smaller uncertainty would provide less 

benefit in gaining accurate knowledge on the field f(x̄) and their positioning is, therefore, not 

justified by their costs. 

2.3.2. Sensors positioning by non-greedy method 

Two non-greedy optimization methods namely, Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO) [93] are used to find the 𝑦 (�̅�∗) for the case study 1 while considering the 

inspection cost like Section 2.3.1.3. In contrast to the greedy method which finds the optimal set 

by sequentially adding single sensors positions, the non-greedy method finds the optimal set by 

smartly searching into all potential measurement sets with different number of sensors positions 

n (i.e., 1≤ n≤160). Using GA and PSO, the optimal set is searched among all the possible sets of 

measurement that may have 1 to 160 members. Non-greedy methods concluded the same result 

of greedy method, in Section 2.3.1.3, with n=9 sensors positions (i.e., {82, 80, 77, 83, 78, 84, 81, 
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79, 38}). However, this calculation almost took 8 hours by non-greedy method instead of 5 

minutes of the greedy method with our typical computer.  

In this case study, the optimal set 𝑦 (�̅�∗)) obtained by greedy and non-greedy methods were 

finally identical and the non-sub-modularity of VoI metric did not affect the final result. The 

detailed plot of the iterations of PSO method used to find the optimal set with 𝐵𝑉𝑜𝐼(𝑦 (�̅�
∗)) value 

equal to 32547.62 after 106 iterations is shown in Figure 23. Unlike the greedy method, the 

number of sensor n in each iteration is not equal to the iteration number itself and the number of 

sensors position in each iteration n could be any number between 1≤ n≤160. In other words, 

regardless of the number of sensors position n in the optimal set 𝑦 (�̅�∗), non-greedy method 

searches into all configurations of sensors positions in each iteration and finds the one with the 

largest 𝐵𝑉𝑜𝐼  value which, in the case study 𝑦 (�̅�∗)  has n=9 sensors positions with 

𝐵𝑉𝑜𝐼(𝑦 (�̅�
∗))=32547.62.  

 

Figure 23: The plot of total benefit in each iteration of the PSO method 

There are cases where the non-sub-modularity of the VoI metric may cause the greedy 

method to fail to find the optimal solution. However, there is no guarantee to find the optimal 

solution even with sub-modular metrics. To practically show this, the following examples are 

provided: 
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GA and PSO are utilized to solve 9 separate optimization problems and find 9 sets of 𝑦 (�̅�∗) 

where each sets number of sensors positions n is restricted to a certain value, namely 

n=1,2,3,4,…,9. In other words, in this approach, the number of sensors positions in the optimal 

set 𝑦 (�̅�∗) is deliberately restricted to n  and the non-greedy optimization method in each of the 9 

optimization problems search only among candidate sensors positions that have n members. For 

example, at 4th optimization problem where n=4, the non-greedy method searches into all possible 

configurations of 4 sensors positions and finds the one which yields the largest benefit. Therefore, 

at the end of these 9 optimizations, there are 9 optimal set 𝑦 (�̅�∗) each representing the set with 

largest benefit in n sensors positions configuration and their resulted sensors positions as well as 

𝐵𝑉𝑜𝐼 (𝑦 (�̅�
∗)) are compared with those of the greedy optimizations results as shown in Table 9. 

Table 9: Detailed comparison of greedy and deliberately constrained non-greedy optimization 

n Greedy Non-greedy 

𝑦 (�̅�∗) 𝐵𝑉𝑜𝐼 

(𝑦 (�̅�∗)) 
𝑦 (�̅�∗) 𝐵𝑉𝑜𝐼 

(𝑦 (�̅�∗)) 
1 82 2953.85 82 2953.85 

2 82, 80 8963.17 80, 82 8963.17 

3 82, 80, 77 13995.91 80,81,83 14034.65 

4 82, 80, 77, 83 18464.18 77,79,82,84 19171.76 

5 82, 80, 77, 83, 78 22245.20 77,79,80, 82,84 22671.81 

6 82, 80, 77, 83, 78, 84 25903.15 77,79,80, 81,82,84 26165.96 

7 82, 80, 77, 83, 78, 84, 81 29365.92 82, 80, 77, 83, 78, 84, 81 29365.92 

8 82, 80, 77, 83, 78, 84, 81, 79 32535.84 82, 80, 77, 83, 78, 84, 81, 79 32535.84 

9 82, 80, 77, 83, 78, 84, 81, 79, 

38 

32547.62 82, 80, 77, 83, 78, 84, 81, 79, 

38 

32547.62 

 

As can be seen in Table 9, the non-greedy method where n is equal to 3,4,5 or 6, finds 

different 𝑦 (�̅�∗) than the greedy method where also has larger 𝐵𝑉𝑜𝐼.  In other cases, the results of 

both optimizations approaches are identical. These examples, practically, show the cases that the 

greedy method, due to the non-sub-modularity of VoI, fails to find the optimal solution. 

 

2.3.3. Sensors positioning by subset simulation 

The SS method is here used to find 𝑦 (�̅�∗) that satisfies the condition 𝑃(𝐺)=0 of the event 

G={𝐵𝑉𝑜𝐼(𝑦 (𝑥 )) > 𝐵𝑉𝑜𝐼(𝑦 (�̅�
∗))}, as defined in Equation (7) and (8) with the following steps:  



 

2.  VOI-BASED DATA ACQUISITION 

45 

 

1. Generate Np=200 independent and identically distributed samples of measurement 

sets 𝑦 (𝑥 ) (with random number of sensors positions n and random positioning) 

2. Quantify  𝐵𝑉𝑜𝐼(𝑦 (𝑥 )) of the Np samples and sort in increasing order 

3. Select Nt=p0Np=100 top solutions as seed samples to be fed to the MCMC (i.e., p0 is 

the conditional probability (being constant in all intermediate events i and, in this 

work, is assumed to be equal to 0.5) 

4. Generate by MCMC (1- p0)Np new conditional samples from the selected Nt seed 

samples, by using modified Metropolis-Hastings algorithm (Au & Beck, 2001) and 

stochastically generating samples (i.e., seed samples plus the conditional MCMC 

samples consist in Np possible measurement sets solution of the optimization 

problem and for each of Nt seed samples a Markov chain with 1/p0 length is 

generated). The proposal distribution is the conditional distribution and algorithm 

stops when the maximum sample standard deviation is less than the target tolerance 

here assumed to be equal to 1e-4. 

5.  Repeat steps 3 and 4 until the convergence of the optimization in Equation (8) is 

satisfied (i.e., 𝑃(𝐺) = 0) 

As shown in Figure 24, after 50 iterations in 1 hour and 57 minutes, the optimal set with 

𝐵𝑉𝑜𝐼(𝑦 (�̅�
∗)) = 32547.62 euros with the same set of sensors positions configuration obtained 

by greedy and non-greedy method (i.e., 𝑦 (�̅�∗) = [ 82, 80, 77, 83, 78, 84, 81, 79, 38]) is 

obtained. It is worth mentioning that this 9-sensors configuration (found by greedy, non-

greedy and SS) is also the true optimal solution that can be found by exhaustive search. After 

all 8 sensors positions of WHAZ area is filled with sensors (i.e., 8 sensors positions with 

max VoI), the 9th sensors position of the 9-sensors configuration can be easily found by 

searching among 152 remained sensors positions which is the location with ID number 38. 
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Figure 24: The iterations of SS method and the path toward finding 𝑦 (�̅�∗) 

The SS method, as proved in the case study, can find the optimal solution four times faster 

than the non-greedy method. Additionally, it does not have the drawbacks of greedy method for 

the non-sub-modular VoI. To prove this, the 9 optimizations performed by the non-greedy method 

with the approach of restricted number of sensors positions n (described in Table 3) are conducted 

using the SS method. Results are shown in Table 4 and are identical to the non-greedy method 

whereas n=3,4,5, and 6, the SS method yielded better result than the greedy method. 

Table 10: Detailed comparison of greedy and deliberately constrained SS optimization 

n Greedy SS 

𝑦 (�̅�∗) 𝐵𝑉𝑜𝐼 

(𝑦 (�̅�∗)) 
𝑦 (�̅�∗) 𝐵𝑉𝑜𝐼 

(𝑦 (�̅�∗)) 
1 82 2953.85 82 2953.85 

2 82, 80 8963.17 80, 82 8963.17 

3 82, 80, 77 13995.91 80,81,83 14034.65 

4 82, 80, 77, 83 18464.18 77,79,82,84 19171.76 

5 82, 80, 77, 83, 78 22245.20 77,79,80, 82,84 22671.81 

6 82, 80, 77, 83, 78, 84 25903.15 77,79,80, 81,82,84 26165.96 

7 82, 80, 77, 83, 78, 84, 81 29365.92 82, 80, 77, 83, 78, 84, 81 29365.92 

8 82, 80, 77, 83, 78, 84, 81, 79 32535.84 82, 80, 77, 83, 78, 84, 81, 79 32535.84 

9 82, 80, 77, 83, 78, 84, 81, 79, 

38 

32547.62 82, 80, 77, 83, 78, 84, 81, 79, 

38 

32547.62 
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2.4. Conclusions 

In this part of the PhD thesis, the framework for VoI-based data acquisition is proposed to 

find the optimal sensors positioning with three different methodologies namely, greedy method, 

non-greedy method, and subset simulation with a case study of sensors positioning of a SG of 

PFBR under creep. 

 The sensors positioning obtained in Section 2.3.1 using the proposed greedy framework is 

compared with the sensors positioning recommendation of the standard [52] and gives results that 

not only justify the positioning of the standard, but also require less sensors to reach the VoI that 

would be obtained by duly implementing the current guidelines/norms. This proposed advanced 

computational framework can be used for supporting the development of guidelines based on past 

operational experience and could be particularly useful for those ones with limited past 

operational records. Then, the main limitation of greedy approach, non-sub-modularity of VoI, is 

practically shown in Section 2.3.1.2 and non-greedy and SS methods are proposed to overcome 

this. 

The pros and cons of each method in solving the problem of sensors positioning is 

summarized in Table 11 which compares the characteristics of each method used to solve the 

problem of optimal sensors positioning, namely, the sensitivity to the non-sub-modularity of VoI 

metric, the elapsed time dedicated to run the method in a typical computer and a qualitative 

judgment on difficulties associated with settings and coding of the methods. 

Table 11: Detailed comparison of the methods used on optimal sensors positioning 

Optimization method Sensitive to the 

non-sub-

modularity of VoI 

Elapsed time Difficulty in 

settings 

Greedy Yes < 1 hour Intermediate 

Subset Simulation No 2 hours High 

Non-greedy, GA No 8 hours High 

Non-greedy, PSO No 8 hours High 

 

The greedy method has the lowest time and effort required to set the method and run the 

optimization. However, due to the non-sub-modularity of VoI, as practically shown in Tables 9 



 

2.  VOI-BASED DATA ACQUISITION 

48 

 

& 10 and in Section 2.3.1.2, greedy method cannot be trusted to always achieve the optimal result.  

The non-greedy methods (both GA and PSO), despite being not sensitive to the non-sub-

modularity of VoI, are difficult to set and require huge computational effort to find the optimal 

solution. The SS method, at the other hand, can be trusted as a powerful efficient method that 

does not have the drawbacks of greedy (i.e., not sensitive to non-sub-modularity of VoI) and non-

greedy method (i.e., SS is 4 times faster than non-greedy) and is the recommended method for 

the optimal sensors positioning. Finally, it is concluded that the obtained results by greedy method 

can give a rough estimate for the sensors positioning, but it can never be considered as the optimal 

solution. For a precise trustworthy solution, it is always required to search by non-greedy methods 

or SS for the optimal sensors positions, preferably with the latter as it demands less computational 

efforts. The result of this computational work can be utilized to advance the process of data 

acquisition in safety related SSCs for a more profitable and reliable condition monitoring. 
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3. CB-PRA MAINTENANCE DECISION SUPPORT 

Contents of the Chapter have been adapted from the following publications disseminated from the PhD 

thesis (Along with the numbering, [J] represents Journal article, [C] represents Conference paper and [B] 

represents Book, e.g., 3[J] represents the 3rd published journal article): 

3[J] S.M. Hoseyni, F. Di Maio, E. Zio, “Condition-based probabilistic safety assessment for 

maintenance decision making regarding a nuclear power plant steam generator undergoing 

multiple degradation mechanisms”. Reliability Engineering & System Safety. 2019 Nov 

1;191:106583. 

1[B]F. Antonello, P. Bragatto, F. Di Maio, S. M. Hoseyni, E. Zio, ”Stima adattiva del rischio di 

rottura di attrezzature in pressione, sulla base dei dati di monitoraggio”, Quaderni INAIL, 

2019, ISBN: 978-88-7484-174-5. 

Condition-Based Probabilistic Risk Assessment (CB-PRA) developed in [22], makes use of 

inspections and monitoring information on SSCs to update risk quantities. CB-PRA is adopted in 

this PhD thesis, to show the benefits of exploiting the optimal condition monitoring data, 

addressed in Chapter 2, to provide condition-based estimates for taking maintenance decisions on 

a SSC undergoing multiple degradation mechanisms even with budgetary constraints.  

The methodology is presented with respect to a spontaneous Steam Generator Tube Rupture 

(SGTR) accident scenario that may occur in a Pressurized Water Reactor (PWR) [22]. Different 

degradation mechanisms that affect the SG tubes integrity are considered [58]. Stress corrosion 

cracking (SCC) and pitting are eventually mentioned as the mechanisms most contributing to 

SGTR [59]. To counteract these degradation mechanisms, some maintenance strategies like tube 

plugging and Water Lancing and Chemical Cleaning (WL-CC) are commonly implemented [60]. 

These maintenance strategies are usually enforced according to regulatory guideline when 

corrosion reaches specific thresholds of developments [61, 62]. These strategies are found to be 

non-optimal [63]: numerous cases of unnecessary plugging have been reported worldwide [64] 

arguing that the risk related to possible NPP accidental scenarios generated by SG degradation is 

neither optimally controlled nor cost-efficient. In this study, we propose a decision framework, 

based on CB-PRA risk measures estimates for the operators to dynamically choose, at each 

inspection cycle, the optimal maintenance action to be undertaken to trade-off the risk of any 
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accident that might be induced by a SGTR and the related maintenance cost. Indeed, realistic case 

of constrained budgetary resources is assumed, challenging for the operator choice on the 

maintenance strategy to be adopted (i.e., not only beneficial for safety but also economically 

affordable). The results show that the proposed framework enables the decision maker to predict 

the degradation evolution, predict the tube failure time, calculate the risk of SGTR failure due to 

the multiple degradation mechanisms and prioritize the maintenance actions, under budget 

constraints [20]. It is shown that the operators can optimally take the safest and most economic 

decision for maintenance, with respect to the state-of-practice NUREG report [66].  

In Section 3.1, the methodology is presented with respect to a spontaneous Steam Generator 

Tube Rupture (SGTR) accident scenario that may occur in a Pressurized Water Reactor (PWR). 

In Section 3.2, the methodology of CB-PRA maintenance support tool is discussed. To show the 

application of the methodology, the SG of Zion NPP is selected as details are provided in Section 

3.3. Results of a case study regarding SGTR show that the decisions based on the risk estimates 

provided by a CB-PRA approach allow controlling the SGTR risk at minimum maintenance cost.  

 

3.1. The Spontaneous SGTR Accident Scenario 

The SGTR accident scenario is one of the most significant accidents in NPPs that can lead 

to core damage [58]. SG tube rupture can not only lead to a modest release of radioactive material 

to the environment, but also, if not properly controlled, to severe core damage and substantial 

release of radioactive material. In this study, without loss of generality, spontaneous SGTR 

accident scenario in a typical PWR (i.e., the Zion NPP) is analyzed. It is assumed that tube 

ruptures are caused by multiple degradation mechanisms, specifically SCC and pitting, which are 

the main contributors to tube ruptures [63].  

In a traditional level 1 PRA, the SGTR accident scenario is modeled by an Event Tree (ET) 

[94] (see Figure 25), where the core damage is one of the possible end states reached after the 

Initiating Event (IE) of SGTR is triggered, with frequency fSGTR estimated as: 
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 𝑓𝑆𝐺𝑇𝑅 =
𝑁 + 1/2

𝑇
 (25) 

where N = 3 is the number of SGTR occurrences in T = 499 years of similar NPPs operations, 

irrespectively of the failure mechanism that has induced the SGTR (the interested readers are 

invited to refer to [98, 99] for further information). A simplified event tree with a spontaneous 

SGTR initiating event potentially leading to core damage is shown in Figure 25. Some safety 

functions/systems are considered and modelled to mitigate the SGTR effects, namely: the 

operator driven plant depressurization (OD), the Reactor Water Storage Tank (RWST) refill and, 

finally, the Reactor Coolant System (RCS) heat removal. If all the safety functions/systems are 

operational, the plant end state would result to be safe, whereas if any of them fails, core damage 

occurs. In the ET of Figure 25, the frequency of IE is computed from Equation (25), resulting in 

a value of 7.01×10-3 per reactor year and the probabilities of failure of operator depressurization 

OD, RWST and RCS are taken equal to 1.8×10-4, 2.4×10-8, 5.6×10-5 per reactor year, respectively, 

from [97]. The ET (static) approach of Figure 25 provides a Core Damage Frequency CDFstatic 

(constant in time) equal to 3.92×10-7 per reactor year. 
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Figure 25: Simplified event tree for a spontaneous SGTR 

In CB-PRA, we rely on models of the multiple degradation mechanisms (i.e., SCC and 

pitting, in this case) to calculate fSGTR: onset, formation, and propagation models of SCC, besides 

models of initiation and growth of the pits, are used to predict the degradation progression and, 

finally, to update the values of fSGTR and CDF.  

3.1.1. The steam generator 

We consider the Zion PWR NPP, with SGs of 3.6 m of diameter and 21 m of height. Each 

SG weighs 800 tons and consists of a bundle of Ntb =3592 inverted U-shaped tubes with nominal 

outside diameter of dnom equal to 22.23 mm. Nominal thickness ts,nom is equal to 1.27 mm to 

withstand a nominal pressure difference on the tube wall equal to ΔPnom =8.3 MPa. Details on the 

Zion NPP parameters are provided in Tables 12 and 13, together with their uncertainties [98, 22]. 

It is worth mentioning that these random variables are independent.  

Table 12: Parameters of the Zion NPP [97] 

NPP Operating Conditions  

Nominal Power Wnom 1110 MWe 
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Primary side pressure  Pin,nom 15.2 MPa  

17.13 MPa  

  

Secondary side pressure  Pout,nom 6.9 MPa  

SG Parameters  

Number of tubes Ntb 3592  

Material  Alloy 600MA  

Ultimate tensile strength (UTS) Su 713 MPa   

Yield strength (YS) Sy 362 MPa  

 

Table 13: Uncertainty in tubes parameters [22] 

Parameter  Nominal Value  Uncertainty  

[uniform distribution] 

Outside diameter dnom 22.23 mm  +/- 0.5 mm 

Thickness ts,nom 1.27 mm  +/- 12.5%   

Nominal pressure difference ΔPnom 8.3 MPa +/- 1 MPa 

 

3.1.2. The SGTR degradation mechanisms 

The most significant degradation mechanism that can affect the SG during its expected 

mission time (Tm = 60 years) is SCC, which contributes to 60 to 80 percent of tubes defects 

requiring plugging. Pitting and fretting collectively account for 15 to 20 percent [99]. In this work, 

we complement the analysis in [22] by considering the simultaneous effects of multiple 

degradation mechanisms on the spontaneous SGTR accident scenario and investigating the 

maintenance activity to be performed at each t-th inspection cycle, here taken equal to two years, 

when inspection of the SG is also allowed due to core refueling. Degradation in tubes is inspected 

with techniques that are assumed to be perfectly reliable. For the prevention of tube rupture, it is 

assumed that plugging and WL-CC are performed as maintenance strategies to counteract SCC 

and pitting, respectively. Alternatively, instead of plugging the tubes with medium-sized cracks, 

sleeving can be selected as another option of maintenance. However, since sleeving imposes 

higher operational costs than plugging [63], it is opted out of this research. 

In this research, two different separate approaches are used to model the two main 
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degradation mechanisms affecting SG performance, that are SCC and pitting. While the axial 

growth rate of the stress corrosion cracks is modeled by the Scott model [100], the through-wall 

penetration rate of the pits is modeled by the Turnbull model [101]. Both degradation models 

describe a one-dimensional damage to SG tubes, modelling axial crack length growth and pit 

depth growth, respectively for SCC and pitting. The models describing for SCC and pitting are 

briefly presented in the following Sections.  

3.1.2.1 Stress corrosion cracking 

The tube cracking process induced by SCC can be divided into three phases: onset, formation, 

and propagation [22]. Crack onset and formation are modelled based on the real data collected in 

the Zion NPP (see [97]). 

To estimate the onset probability of cracks in the SG, a Maximum Likelihood Estimation 

(MLE) approach is used to fit the available data collection (see [97] for further details) to a 

Weibull distribution, with Probability Density Function (PDF) of Equation (26) whose parameters 

b and λ are equal to 0.3654 and 30.1609, respectively: 

 𝑓(𝑡) =
𝑏

𝜆𝑏
𝑡𝑏−1𝑒

(
−𝑡
𝜆
)𝑏

 (26) 

For cracks formation, it is assumed that in about 9.3 years (with standard deviation of 3.2 

years), at the operating temperature of 330 °C, axial microcracks reach a critical length of 0.1 mm 

at which propagation becomes faster [103]. Following the Scott model [103], which is an 

empirical model that depends on the material property, tube dimension and pressure difference of 

the tube bundles, the crack growth rate 
𝑑𝑎

𝑑𝑡
  which grows in the axial direction is modeled as in 

Equation (27): 

 
𝑑𝑎̄

𝑑𝑡
= 𝛼𝑠. (𝐾𝑠 − 𝐾𝑡ℎ)

𝛽𝑠 (27) 

where αs, βs and Kth are constant values, and the stress intensity factor Ks is derived from 

Equation (28): 
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 𝐾𝑠 = 𝐹𝑔
𝛥𝑃. 𝑑

2𝑡𝑠
√
𝜋𝑎̄

2
 (28) 

where Fg is a geometric factor, ΔP is the actual pressure difference between the inner and 

the outer sides of the SG tube, d is the actual outer tube diameter, and ts is the thickness of the 

tube (see Table 2 for the nominal values of these parameters ΔPnom, dnom, and ts,nom). The nominal 

values of the crack growth parameters are listed in Table 14: 

Table 14: Parameters of crack growth used in the Scott model [22] 

Parameter Minimum Maximum Nominal 

𝛼𝑠 2.5e-2 3.1e-2 2.8e-2 

Kth (MPa √𝑚) 8 10 9 

𝛽𝑠 1.07 1.25 1.16 

F - - 0.93 

 

According to NUREG report [66], when a reaches alim = 1.52 mm, the tube where that crack 

has propagated must be plugged as soon as it is detected when inspected, to avoid reaching the 

critical crack length acr (i.e., the spontaneous SGTR is induced). It is worth mentioning that acr is 

calculated from Equation (29): 

 𝛥𝑃 =
𝑃𝑏
𝑚𝑏

= 
𝑃𝑏

0.614 +  0.481𝜙 +  0.386𝑒−1.25𝜙
 (29) 

where Pb is the burst pressure of an unflawed virgin tube, mb is the bulging factor, and 𝜙 =

1.82 𝑎𝑐𝑟

√2𝑑−𝑡𝑠
 [105]. The critical crack length acr, therefore, changes in time depending on the actual 

workload of the plant and the pressure difference, W and ΔP, respectively (that, incidentally, also 

influences K, and in turn, 
𝑑𝑎

𝑑𝑡
). Therefore, we can claim that plugging may not be always the 

optimal decision, because costly and not always effective for controlling the SGTR occurrence 

[60]: Indeed, plugging reduces the heat transfer surface and the primary system mass flow rate, 

and increases the actual ΔP (facilitating the crack propagation as shown in [22]); large amount of 

plugging also reduces the reactor nominal power and generates economic losses [103]. This 

problem is overlooked by regulation but can be improved by the application of CB-PRA to 
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support maintenance decisions, as we shall see in what follows. In practice, the optimized 

condition-based plugging strategy introduced in [22], consists in plugging tubes when the 

identified crack at inspection time t is calculated to exceed acr within the t-th cycle and t+1-th 

cycle of length 2 years with more than 1% probability (see [22] for further details), instead of 

when the cracks exceed the plugging limit alim, as regulation would suggest.  

3.1.2.2. Pitting 

Pitting is a local corrosion mechanism which typically occurs at the tube surface where pre-

existing defects are incidentally generated by surface machining and whose growth is accelerated 

by impurities [104].  Pitting can be modeled as a two steps stochastic process: pit initiation and pit 

growth [105, 106]. Pit initiates when breakdown occurs in the passive layer of the metal surface 

and consequent metal dissolution takes place, whereas pit growth occurs when corrosion radially 

penetrates the tube wall and creates small holes [107, 101].  

For pit initiation, stochastic models are proposed based on Non-Homogeneous Poisson 

Processes (NHPP): let the number of initiated pits N(t) at time t (for all the SG tubes surface area) 

follow a NHPP [108, 109, 110] with a power law intensity function λ(t) = αtβ−1,  where α and β 

are the scale and shape parameters taken equal to 0.0014 and 4.526, respectively, as in [108] 

where the pitting initiation process is modeled for a SG that has similar specifications (height, 

length, surface area, …) and properties (material, working pressure and temperature, …) to those 

of Zion NPP. The expected number Λ(t) of initiated pits at time t is: 

 Λ(t) = ∫ 𝜆(𝑠)𝑑𝑠 
2𝑡

0
 =  

𝛼

𝛽
 (2t)β   (30) 

and the expected number m of pits initiated within the two successive inspection cycles t+1 

and t (of length 2 years): 

 𝑚 = 𝛬(𝑡 + 1) − 𝛬(𝑡) =
𝛼

𝛽
 ((2(𝑡 + 1))𝛽 − (2𝑡)𝛽) (31) 

The number npit of pits that are initiated during the t-th cycle follows a Poisson distribution: 

 Pr{N(t+1) − N(t) = npit} = 𝑒𝑥𝑝̄ (−[𝛬(𝑡 + 1) −  𝛬(𝑡)])
[𝛬(𝑡+1)− 𝛬(𝑡)]

𝑛𝑝𝑖𝑡

𝑛𝑝𝑖𝑡!
 (32) 
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Figure 26 shows the cumulative number of pits initiated at each inspection cycle t, and the 

5% and 95% percentiles (i.e., a two-sided 90% confidence interval). 

 

 

 Figure 26: A two-sided 90% confidence interval for the number of initiated pits, at each SG inspection cycle 

Following the initiation of a small pit, we use the model in [101] to simulate the pit growth 

in time. The pit growth is modelled as a one-dimensional radial degradation in the wall depth 

direction. As soon as the through-wall depth of the pit exceeds a specific threshold, failure of the 

tube will occur [108].  The radial growth rate gr(xpit) of the pit size xpit [m] in through-wall 

direction is equal to: 

 
𝑑𝑥

𝑑𝑡
= 𝑔𝑟(𝑥) =  𝛿𝛾

1

𝛿 𝑥(1−
1

𝛿 
)
  (33) 

 xpit = 𝛾𝑡𝛿   (34) 

where γ and δ are fitting parameters experimentally calculated: γ is assumed to be distributed 

as a truncated positive normal distribution with mean value equal to 0 and standard deviation 

equal to 1.36e-5, and δ is taken as a constant equal to 0.064, [111]). 

With reference to the operational experience in [108], plugging must be enforced when the 

Through Wall Depth (TWD), xpit/ts,nom reaches 51%, meaning that plugging is done when xpit 

penetrates 51% of the tube thickness ts,nom to avoid it reaches the failure threshold TWDcr = 95%: 

a small pit that may exceed the failure threshold TWDcr would trigger a SGTR accident scenario 

[66]. Moreover, regulation recommends performing Water Lancing and Chemical Cleaning (WL-
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CC) at least once in Tm, not only for reducing the corrosive environment during SG operation, due 

to the large concentration of chlorides and sulfites in deposit, but also for improving the heat 

transfer rate of the tubes [60]. By WL-CC, sludges are removed and, consequently, pits initiation 

is temporarily slowed down to 80% [64, 108, 109]. However, there is no theoretical evidence that 

changes to the SG operational conditions can modify the growth parameters [106], although 

cracks formed by pitting propagate slower than those induced by SCC. Then, in this work, we 

assume pitting is controlled only by WL-CC (and not also by plugging).  

 

3.2. Maintenance Support Tool 

SG degradation can be counteracted by plugging the tubes [58] or by WL-CC [112]. These 

strategies can be enforced at each inspection time t, but at a cost. We denote the budgetary 

constraint as Bc for each cycle and as B(t) for the cumulative available budget at cycle t. The risk 

measures updated at each inspection by the CB-PRA are utilized to evaluate the risk due to the 

different degradation mechanisms and prioritize the activities of maintenance. On the basis of the 

CDF estimates relative to SCC and pitting provided by CB-PRA at each inspection, the operator 

chooses the balance of plugging and WL-CC to perform on the SG tubes, so as to trade off cost 

(up to the maximum affordable cost B(t)) and risk at each t-th cycle.  

The cost of WL-CC is assumed to be 5 times the initial budget (Bc) of each cycle [113]; the 

plugging cost depends on the number of tubes that must be plugged: if the number of plugged 

tubes is smaller than 300 tubes it is equal to 0.2Bc, otherwise the cost is 0.6Bc [63]. 

The novel framework (sketched in Figure 27) for simultaneously considering pitting and 

SCC and deciding on the most proper budget of maintenance activities, consists of four nested 

steps, namely degradation modelling, risk prioritization, cost assessment and decision making. In 

practice, starting from inspection cycle t = 1 

1. Set the operational conditions that are expected to be experienced by the SG up to the 

next cycle t+1, i.e., the number of available tubes Ntb, the actual pressure difference ΔP, 

the water chemistry and the sludge content (that affect α and β of Equation (30)); 

▪ a: Degradation Modeling (SCC) 
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▪ a.1. Define acr, depending to the operational conditions (see Equation (29)); 

▪ a.2. Simulate the SCC microcracks generation and their propagation up to the 

next cycle t+1 (see Equations (26) & (27)): First, the probability of a crack onset and 

formation (i.e., the probability that the crack length reaches the limit beyond which 

it propagates) is calculated by the convolution of the two distributions of onset 

(Equation (26)) and formation (N ~ (9.3, 3.2) years). Then, the crack is propagated 

by Equation (27) up to the next cycle t+1; 

▪ a.3. Simulate the SCC progression of the existing cracks up to the next cycle t+1 

(see Equation (27)); 

▪ a.4. Calculate the number of tubes Np(t) that should be plugged, according to the 

optimized condition-based plugging strategy presented in [22] (i.e., tubes are 

plugged only if the crack length x exceeds acr, with probability larger than 1%); 

▪ a.5. Calculate the number of tubes Ft(t) with cracks exceeding acr if no plugging 

is enforced and the corresponding CDFSCC (t), as follows [22]: 

 𝐶𝐷𝐹𝑆𝐶𝐶(𝑡) =  𝑓𝑆𝐺𝑇𝑅(𝑡)  ×  
𝐶𝐷𝐹𝑠𝑡𝑎𝑡𝑖𝑐
𝑓𝑆𝐺𝑇𝑅

 (35) 

Assuming Ntb(t) is the number of tubes available at cycle t, and these tubes are 

independent, fSGTR(t) is the frequency of SGTR occurrence at cycle t: 

 𝑓𝑆𝐺𝑇𝑅(𝑡) = 1 − ∏ (1 −

𝑁𝑡𝑏(𝑡)

𝑓𝑇𝑅(𝑡)) (36) 

where fTR is the expected tube rupture frequency between cycles t and t +1: 

 𝑓𝑇𝑅(𝑡) =
𝐹𝑡(𝑡) +

1
2

𝑡 ∙ 𝑁𝑡𝑏(𝑡)
 (37) 

fTR(t) is a function of the number of available tubes Ntb(t) at cycle t and the number 

of tubes Ft(t) with cracks exceeding acr. Since Ft(t) and Ntb(t) are changing in 

time based on the maintenance strategy that is enforced, the value of fTR(t) should 

be accordingly updated, which results in the change of 𝑓𝑆𝐺𝑇𝑅(𝑡) in time. 

▪ b: Degradation Modeling (Pitting) 

▪ b.1. Define TWDcr depending on the operational conditions; 
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▪ b.2. Simulate pits initiation and their stochastic growth up to the next cycle t+1 

(see Equation (0-32)); 

▪ b.3. Simulate the progression of the existing pits up to the next cycle t+1 

(Equation (33)); 

▪ b.4. Calculate the number of tubes Ft(t) with pits exceeding TWDcr if no WL-CC 

is enforced and compute the CDFP (t), as follows: 

 𝐶𝐷𝐹𝑃(𝑡) =  𝑓𝑆𝐺𝑇𝑅(𝑡)  ×  
𝐶𝐷𝐹𝑠𝑡𝑎𝑡𝑖𝑐
𝑓𝑆𝐺𝑇𝑅

 (38) 

where fSGTR (t) is calculated as in Equations (36-37) and is updated in each cycle 

based on the current properties of the tubes, as explained in section a.5. 

c. Risk Prioritization 

c.1. Compare CDFSCC (t) and CDFP (t) for risk prioritization: 

 

▪ c.2. If CDFSCC (t) ≤ CDFstatic or CDFP (t) ≤ CDFstatic, there is no need to perform plugging 

or WL-CC, respectively. 

✓ if CDFSCC (t) ≥ CDFP (t) and CDFSCC (t) > CDFstatic, priority goes to plugging to 

counteract SCC; 

▪ d. Cost Assessment 

▪ d.1. if Np (t) ≥ 300, then the maintenance cost is C(t)=0.6Bc. 

▪ d.2. else if Np (t)  < 300, then C(t) = 0.2Bc. 

▪ d.3. set saved budget S(t) = B(t)-C(t), if it is decided to perform 

plugging; then, if S(t) ≥ 5.0Bc, WL-CC can be performed. 

✓ else if CDFSCC < CDFP and CDFP > CDFstatic, then priority goes to WL-CC to 

counteract pitting. 

▪ d. Cost Assessment 

▪ d.4. Set C(t)=5Bc 

▪ d.5. set S(t) = B(t)- C(t), if it is decided to perform WL-CC. 

▪ d.6. Then, if Np (t) ≥ 300 and S(t) ≥ 0.6Bc, plugging can be 
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performed. 

▪ d.7. else if Np (t) < 300 and S(t) ≥ 0.2Bc, plugging can be performed. 

e. Decision Making  

e.1. Take decision: 

✓ If priority is for plugging and B(t) ≥ C(t), then perform plugging and set S(t) 

= B(t)- C(t).  

▪ Then, if no WL-CC has been performed before, and S(t) ≥ 5Bc, 

perform WL-CC, and set S(t) = S(t)- 5Bc and C(t) = C(t)+ 5Bc. 

✓ If priority is for WL-CC and B(t) ≥ C(t) and no WL-CC has been performed 

before, then perform WL-CC and set S(t) = B(t)- C(t).  

▪ then, if Np (t) ≥ 300 and S(t) ≥ 0.6Bc, perform plugging, and set 

S(t) = S(t)- 0.6Bc and C(t) = C(t)+ 0.6Bc. 

▪ else, if Np (t) < 300 and S(t) ≥ 0.2Bc, plugging can be performed, 

and set S(t) = S(t)- 0.2Bc and C(t) = C(t)+ 0.2Bc. 

There may be cases when the budget is not sufficient for performing maintenance. 

Therefore, the maintenance is postponed to the next inspection cycle, accepting the risk 

of not performing maintenance. 

2. At the end of each inspection cycle t, set B(t+1) = S(t)+Bc and t=t+1 to repeat the 

framework for the next cycles, depending on the decisions taken, by setting: 

▪ the number of available tubes Ntb (as in Equation (39)) if plugging is performed. 

 𝑁𝑡𝑏(𝑡 + 1) =  𝑁𝑡𝑏(𝑡) − 𝑁𝑝(𝑡) (39) 

where Np(t) is the number of plugged tubes. 

▪ the pressure difference ΔP (as in Equation (40)) if plugging is performed. 

 𝛥𝑃 (𝑡 + 1) =  𝑃𝑖𝑛(1 +
𝑁𝑝(𝑡)

𝑁𝑡𝑏(𝑡)
× 0.4)𝑃𝑜𝑢𝑡,𝑛𝑜𝑚 (40) 

because ΔP increases when the number of plugged tubes Np(t) increases. 
 

▪ the number of initiated pits based on the improved environment after cleaning, which 
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affects α and β of Equations (30) and (31) if WL-CC is performed  
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Figure 27: Flowchart of the risk-informed maintenance decision strategy 
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3.3. Case Study: SG of Zion NPP 

The SG of the Zion NPP with the properties described in Section 3.1 is considered. At each 

cycle, (inspection time) t, starting from t = 1, with the operational conditions of the SG in Tables 

12 and 13, the failure thresholds of acr and TWDcr are set. The generation of microcracks and their 

growth progression are simulated up to the next cycle t+1 for SCC. At the same time, the pit 

initiation and stochastic growth of pits are stochastically simulated up to cycle t+1. The CDF 

estimates obtained at each inspection cycle, with the maintenance managed as explained in 

Section 3.1, are plotted in Figure 28: the bold continuous line is the estimated CDFSCC(t) and the 

dashed line is CDFP(t). For comparison, CDFstatic is plotted in the dashed-dotted line. The values 

of CDFSCC(t) and CDFP(t) are calculated for each cycle to prioritize the maintenance activity, and 

the associated costs are used to inform the decision maker regarding the maintenance to be 

performed to counteract the most dangerous degradation.  It should be noted that the value of 

CDFSCC(t) increases in time until the 7th cycle and, then, decreases until it reaches an almost 

constant value at the last cycles. This is due to the fact that most of the cracks due to SCC are 

generated at the earliest cycles of the SG operation, as shown in Figure 3 of [22] and, then, the 

probability of crack onset in a given cycle reduces with time. Therefore, as the operational time 

increases, the probability of crack onset and formation reduces as well. On the other hand, tubes 

that were plugged do not impair the SG integrity, resulting, as a whole, in the CDFscc(t) 

decreasing in time. 
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Figure 28: CDF estimates when CB-PRA estimates are used to prioritize maintenance 

From inspection cycle t=1 to t=4, CDFSCC (t) < CDFstatic and CDFP (t) < CDFstatic; therefore, 

there is no need to perform any maintenance. On the other hand, at inspection time t=5, CDFSCC(t) > 

CDFP(t) making plugging the prioritized maintenance to counteract SCC. At cycle t=6, plugging 

is still the preferred maintenance activity, but since the available budget B(t=6)=5.8Bc is enough 

for both plugging and WL-CC (cost C(t=6)=5.2Bc), both maintenances activities are performed, 

reducing the savings to S(t=6)=0.6Bc as shown in Figure 29 where the total maintenance cost for 

each cycle C(t) (continuous line), the cumulative savings S(t) accumulated up to the current cycle 

t (dashed line), and the available budget of each cycle B(t) (dotted line) are shown. At any 

following cycles plugging is performed. 
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Figure 29: Comparison of the total cost of maintenance for each cycle C(t) (continuous line), the cumulative 

saved money accumulated from previous cycles S(t) (dashed line) and the available budget of each cycle B(t). 

 

Figure 30 shows the ratio between C(t) and B(t) (continuous line) and S(t) and B(t) (dashed-

dotted line). At cycle 6, 90% of the available budget B(t) is spent for maintenance. This budget is 

the result of savings accumulated in the first 5 cycles and is more than 90% of the available budget 

(dashed-dotted line from t=1 to 5).  

 

Figure 30: The ratio of risk-informed maintenance cost to available budget C(t)/B(t) (continuous line) and 

savings per available budget S(t)/B(t) (dashed-dotted line). 

C(t)/B(t) 

S(t)/B(t) 
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Figure 31 shows the resulting CDFMD,SCC of SCC (i.e., CDF estimated by taking the 

Maintenance Decisions by CB-PRA to counteract SCC shown with dashed line with crosses) and 

CDFMD,P (dashed line) of pitting upon enforcement of the optimal maintenance at each cycle t and 

compares it with the traditional CDFstatic (dashed-dotted line), the CDFNRC,SCC (continuous line), 

that would result from the enforcement of the NRC guidelines for plugging (i.e., exceeding the 

crack length of 1.52 mm in case of SCC) and the CDFNRC,P (continuous line with circles) resulting 

from performing one WL-CC in the lifetime of the SG at cycle 15. It can be seen that: i) CDFMD,SCC 

is zero at all cycles because of implementing plugging that never lets a crack to reach the failure 

threshold acr, ii) CDFMD,P initially increase and, then, decreases at cycle 11 thanks to the WL-CC 

performed  at 6th cycle, iii) the positive effect of WL-CC at the 15th cycle for the NRC method is 

visible in CDFNRC,P, after the 20th cycle, iv) CDFNRC,P and  CDFNRC,SCC are larger than CDFstatic, 

because they are the realistic risk measures updated by the plant conditions after each inspection 

cycle, v) for SCC, the CDFMD,SCC values with maintenance performed based on the CB-PRA 

results is always lower than its corresponding value CDFNRC,SCC, where maintenance follows the 

NRC recommendations. For pitting, CDFMD,P, is always lower than its corresponding value 

CDFNRC,P, until the 25th cycle, and almost equal to it at the next cycles.  These evidences show the 

beneficial effects of the proposed CB-PRA framework for maintenance decision making. 
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Figure 31: Comparison of CDF for multiple degradation mechanisms with different maintenance strategies. 

Figure 32 shows the cumulative CDF when both pitting and SCC are considered as SGTR 

initiating events, and NRC procedures [66] (solid line) or CB-PRA driven maintenance decisions 

(dashed line) are followed. The proposed methodology controls better the escalation of the CDF 

as the NPP ages (CDFNRC is larger than CDFMD). It should also be noted that CDFNRC is 

dynamically changing and at most cycles is larger than CDFstatic (dashed-dotted red line), because 

the CDF is estimated with updated plant conditions. As previously shown in [22], risk measures 

are underestimated by the traditional static method (i.e., CDFstatic).  

 

Figure 32: Comparison of CDF of the NRC procedure (solid line) with the CB-PRA driven maintenance 

decisions (dashed line). 

Moreover, following the NRC guidelines [66]: i) the tubes should be plugged when the 

cracks exceed the failure threshold for both degradation mechanisms of pitting and SCC and ii) 

at least one WL-CC is recommended within the lifetime of the SG (here set to be performed at 

cycle 15).  The advantage of the proposed methodology over the conventional NRC method, in 

terms of cost, is presented in Figure 33, where enforcing the NRC method gives 65% higher total 

cumulative maintenance cost ∑ 𝐶(𝑡)30
𝑡=1  at the end of the NPP life in comparison to our proposed 

maintenance methodology. Therefore, the proposed method not only leads lower risk than the 

NRC requirement (see Figure 32), but also smaller cost. 
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Figure 33: Comparison between the cumulative cost of maintenance in CB-PRA driven maintenance and NRC 

enforcement. 

3.3.1. Sensitivity analysis  

In this Section, we analyze the effects of different hypotheses of the cost model as 

summarized in Table 15. 

Table 15: Different cost hypotheses 

Maintenance type Smallest cost Average cost Largest cost 

WL-CC 5.0 Bc 7.5 Bc 10.0 Bc 

Plugging more than 300 tubes in a cycle 0.6 Bc 0.8 Bc 1.0 Bc 

Plugging less than 300 tubes in a cycle 0.2 Bc 0.35 Bc 0.5 Bc 

 

A combination of 27 possible cost models are generated and used as hypotheses within the 

framework of maintenance decision making described in Section 3.2. 

Figure 34 shows the cost of maintenance for the 27 cases. The Figure shows the ratio of the 

cumulative cost at cycle t (∑ 𝐶(𝑖)𝑡
𝑖=1 ) to the cumulative budget at cycle t (𝐵𝑐 × ∑ 𝑖𝑡

𝑖=1 ). Generally 

speaking, it can be seen that the sooner WL-CC is performed the lower probability of SGTR 

failure due to pitting, although WL-CC is only affordable for 6 out of the 27 cost models at nearest 

eligible time which is cycle 6 (i.e., those with cheapest WL-CC cost equal to 5.0 Bc (solid lines)). 
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In particular, as shown in Figure 34, for two cases WL-CC is affordable at cycle 7 (diamond-

lines), for one case at cycle 9 (green circled-lines), continuing postponing it (dashed lines), cycle 

by cycle, until the most expensive case where the WL-CC can be performed only at cycle 18 (line 

with crosses).  

 

Figure 34: The ratio of the cumulative maintenance cost at each cycle t to the cumulative budget at each cycle 

t, for 27 cost scenarios. 

The CDFMD,P values for different cost scenarios of  Figure 34 are shown in Figure 35, with 

the same line styles in both Figures. The cheapest cost scenarios are related to the six cases where 

WL-CC is performed at cycle 6 with the solid line representing the lowest CDFMD,P. In the 

remaining cases, since WL-CC is postponed due to shortage of funding, the SG is exposed to an 

increase of pitting-initiated SGTR scenarios and, consequently, CDFMD,P increases as shown in 

Figure 35: the diamond line represents the second cheapest two scenarios, the circled line 

represents the third cheapest one scenario and, finally, the crossed line represents the highest cost 

scenario, which also has the highest CDFMD,P.  
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Figure 35: CDFMD,P values resulted from 27 maintenance cost scenarios 

Figure 36 compares the cost of the NRC maintenance (solid lines) with that of our proposed 

method (dotted lines) in the 27 different cost scenarios, in terms of the ratio of the cumulative 

cost at cycle t (∑ 𝐶(𝑖)𝑡
𝑖=1 ) to the cumulative budget at cycle t (𝐵𝑐 × ∑ 𝑖𝑡

𝑖=1 ). As it can be seen, in 

12 out of 27 cases the NRC maintenance is not affordable because the available budget (dashed 

line) is exceeded. On the contrary, the proposed methodology manages the maintenance cost in 

all the possible cost scenarios. 
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Figure 36: The ratio of the cumulative maintenance cost at each cycle t to the cumulative budget at each cycle 

t,  for 27 cost scenarios using CB-PRA decision maintenance (dotted lines) and the NRC method (solid lines). Dashed 

line is the threshold when the costs exceed the budget. 

Figure 37 shows the integral CDF of pitting and SCC. Only 3 out of 27 cases of very 

expensive maintenance costs (crossed line and two dashed lines) result in CDF values higher than 

for the NRC guided maintenance (dotted line), but this latter is not affordable (Figure 36). In all 

other cases, the total CDF is less than the NRC’s value. 
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Figure 37: Comparison of CDF values of the NRC procedure with that of CB-PRA driven maintenance decisions 

in different cost scenarios. 

3.4. Conclusions 

In this chapter, optimal condition monitoring, obtained by the innovative approach of 

Chapter 2, is integrated in the systematic framework of PRA for updating accident probabilities 

and estimating their consequences based on the predicted degradation states. This allows a “living” 

prioritization of the risks that impact the lifecycle asset management in the short, middle, and long 

terms, and a proactive management of them by allowing the decision makers to take real-time 

decisions on the optimal maintenance strategy to prevent accidents and balance the maintenance 

budget expenditure. To show the methodology, the CB-PRA has been used to inform maintenance 

decisions (plugging and WL-CC) for controlling the risk of SGTR initiated by multiple 

degradation mechanisms, namely SCC and pitting.  

Based on the results of the application on the case study of multiple SG tubes degradation 

mechanisms with Zion NPP parameters, it can be concluded that the proposed methodology can 

not only significantly reduce the risk of SGTR but also lower the maintenance cost. 
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4. CONCLUSIONS  

This PhD thesis aims at introducing innovative solutions for condition-based risk-informed 

decision-making of energy facilities to provide a practical scheme for life extension assessment 

of SSCs. To this end, two different steps are identified to achieve this goal by computational 

approaches as described in Chapter 1 and are: 1. VoI-based data acquisition and 2. CB-PRA 

maintenance decision support. 

Regarding VoI-based data acquisition, the issue of optimal sensor positioning for condition 

monitoring of aging SSCs of energy facilities is addressed by the development of VoI-based 

greedy and non-greedy optimization methods as well as by subset simulation approach. The pros 

and cons of each method in solving the problem of sensors positioning is practically presented 

with a case study of sensors positioning of a SG of PFBR degrading under creep. This will bring 

methodological and technical guidelines for cost-effective sensor positioning and data acquisition. 

equipment.  

Firstly, the sensors positioning by the proposed greedy approach is presented and compared 

by the standards sensors positioning recommendations. It gives results that not only justify the 

positioning of the standard [52], but also require less sensors to reach the VoIUNI. This can be used 

for developing guidelines to redeem the shortcomings that are inherent in relying on the past 

operational experience only, and essentially for the materials with limited past operational records. 

The challenges of using greedy optimization for the VoI maximizing problems is discussed 

since VoI lacks the characteristic of sub-modularity. To overcome this, non-greedy optimization 

methods, like PSO and GA, are proposed which are not sensitive to the non-sub-modularity of 

the VoI. Results show that using the sensors positioning obtained by non-greedy methods not only 

yield better VoI, but also provides more accurate risk estimates while being computationally non-

efficient and expensive. 

The SS method which is typically used to find the failure probability of rare events is 

innovatively introduced to find the optimal sensors positioning. The proposed SS method not only 

does not have the greedy method’s problem of the sensitivity to the non-sub-modularity of VoI 

but is also far more efficient than the non-greedy methods. The result of this computational work 
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can be utilized to advance the process of data acquisition in safety related SSCs for a more 

profitable and reliable condition monitoring. 

At the other hand, the optimal condition monitoring data, acquired as schemed in 1, can be 

used to estimate dynamic risk measures, by CB-PRA methodology, to provide advanced and 

realistic risk assessment. CB-PRA, an advanced and realistic risk assessment methodology, 

provides updated condition-based dynamic risk estimates of aging SSCs rather than the static risk 

estimates of traditional PRA. The outcome can be fed into 2 to enable condition-based risk-

informed decision making. 

With respect to CB-PRA maintenance decision support, in this PhD thesis, the optimal 

informative data provided by VoI-based data acquisition of 1 is used to address the issue of risk 

prioritization and maintenance decisions for multiple degradation mechanisms with cost 

constraints by developing computational methods for CB-PRA that provide condition-based 

dynamic risk estimates and cost assessment for maintenance decision-making by allowing the 

decision makers to take real-time decisions on the optimal maintenance strategy to prevent 

accidents and balance the maintenance budget expenditure.  

To show the methodology, the SG of Zion NPP is selected, and the CB-PRA has been used to 

inform maintenance decisions (plugging and WL-CC) for controlling the risk of SGTR initiated 

by multiple degradation mechanisms, namely SCC and pitting. Based on the results, it can be 

concluded that the proposed methodology can not only significantly reduce the risk of SGTR but 

also lower the maintenance cost. 

The outcome of this thesis with provided methodological and computational advancements, 

and will be useful for life extension of aging energy facilities and enables decision-making 

processes that are safer and cheaper. 
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SECTION IV: PUBLICATIONS 

This Section provides the papers related to this PhD research activity. The research activity 

has led to the acceptance (2), the submission (1) and the work in progress (1) of 4 manuscripts at 

international peer-reviewed journals and books (see Table 16), and the acceptance of 3 papers 

presented at the international academic conferences (see Table 17). 

These publications which introduce the core techniques of this PhD thesis are attached in 

this Section. 
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