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Abstract

Over the years, much more attention has been paid to modeling asset pricing dynamics
than volatility dynamics. In the recent period, however, the study of volatility trends
within pricing models has increased. It has been shown that volatility is, for most of
its value, path dependent; in fact, it is possible to explain up to 90% of the variance of
the implied volatility of equity indices endogenously, that is, through the values of past
returns alone, without the need to introduce a stochastic component such as Brownian
motion. The growing interest in volatility dynamics is also given by the fact that in
finance we want to do the joint smile calibration of the S&P 500/VIX implied volatility.
Thus, a new model is introduced that is capable of doing this calibration and in which
volatility is defined in such a way as to satisfy the "Zumbach Effect" and the "Leverage
Effect."

Having defined the model, it is crucial to analyze the pricing techniques in order to pro-
duce truly applicable results. In order to be able to represent the implied volatility curve
of both the S&P 500 and the VIX, one must start by calculating the derivatives (Euro-
pean options). Two techniques will be used: Monte Carlo simulations and binomial tree.
The Monte Carlo method is well known to the world of finance and easily applicable, but
in the presence of an index with a complex definition such as the VIX it does not turn
out to be the only valid solution. Thus, the non-recombinant binomial tree is developed
specifically from the newly introduced model: it will turn out to be a valid alternative. We
will compare the results produced by the two techniques, with a focus on computational
time and costs referring to memory.

Keywords: Volatility models, Monte Carlo, Binomial Tree, SPX implied volatility, VIX
implied volatility.





Abstract in lingua italiana

Nel corso degli anni si è prestata molta più attenzione alla modellazione della dinamica dei
prezzi degli asset che a quella della volatilità. Negli ultimi tempi, tuttavia è aumentato lo
studio dell’andamento della volatilità all’interno dei modelli di pricing. È stato dimostrato
che la volatilità è, per la maggior parte del suo valore, dipendente dal percorso; infatti, è
possibile spiegare fino al 90% della varianza della volatilità implicita degli indici azionari
in modo endogeno, cioè attraverso i soli valori dei rendimenti passati, senza la necessità
di introdurre una componente stocastica come il moto browniano. Il crescente interesse
per la dinamica della volatilità è dato anche dal fatto che in finanza si vuole effettuare
la calibrazione congiunta dello smile della volatilità implicita dell’S&P 500/VIX. Viene
quindi introdotto un nuovo modello in grado di effettuare tale calibrazione e in cui la
volatilità è definita in modo tale da soddisfare l’"Effetto Zumbach" e l’"Effetto Leverage".

Definito il modello, è fondamentale analizzare le tecniche di pricing per produrre risultati
realmente applicabili. Per poter rappresentare la curva di volatilità implicita sia dell’S&P
500 che del VIX, è necessario partire dal calcolo dei derivati (opzioni europee). Verranno
utilizzate due tecniche: simulazioni Monte Carlo e albero binomiale. Il metodo Monte
Carlo è ben noto al mondo della finanza e facilmente applicabile, ma in presenza di un
indice con una definizione complessa come il VIX non risulta essere l’unica soluzione ef-
ficace. Pertanto, l’albero binomiale non ricombinante è stato sviluppato appositamente a
partire dal modello appena introdotto: si rivelerà una valida alternativa. Confronteremo
i risultati prodotti dalle due tecniche, con particolare attenzione ai tempi di calcolo e ai
costi relativi alla memoria.

Parole chiave: Modelli di volatilità, Monte Carlo, Albero Binomiale, Volatilità implicita
SPX, Volatilità implicita VIX.
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1

Introduction

In the financial industry, when it comes to pricing, hedging, and risk management for
derivatives portfolios, a crucial aspect is understanding and effectively capturing the si-
multaneous movements of the underlying assets and their implied volatilities. In addition,
it turns out to be very useful to develop accurate predictors to forecast future realized
volatility. Recently, literature has mainly focused on examining the price dynamics of a
given asset, focusing on models in which volatility exhibits a unique dynamic. Among the
models explored in this context we find stochastic volatility models (SV). These models
introduce a random component into the asset’s dispersion indicator, which may or may
not be correlated with the asset’s price dynamics (introduced for the first time by Hull
and White in [27]).

Through empirical analysis of the data, it was observed that implied volatility and future
realized volatility depend on the path traced by the underlying asset price in the recent
past; thus, the idea of introducing a model for path-dependent volatility was born: Path-
Dependent Volatility model (PDV). Guyon, wanting to explain the empirically observed
features, present his PDV model in [24] (2014). This model was expanded, and in 2022
a new paper [25] was published by Guyon and Lekeufack. In particular, they want to
present a model in which the Leverage Effect, tendency of volatility to show a negative
correlation with asset price returns, and the Zumbach Effect, relationship between past
returns and future volatility, are observed. In addition, a third key factor drove Guyon
and Lekeufack to present their model: the ability to replicate the joint calibration of S&P
500 and VIX implied volatility smiles. Stochastic volatility models in fact are unable to
present a model that can accurately replicate the implied volatility curves of an underlying
and its volatility; not even the Heston model, considered the most versatile and modern
SV model, succeeds.

Guyon and Lekeufack’s model uses a simple approach to path-dependency, incorporating
a linear combination of the weighted sums of past daily returns and the square root of the
weighted sums of past daily returns squared. Different weights are assigned to different
time instants, in order to capture both short and long memory. This simple but effective
model has shown greater accuracy in replicating implied and realized volatility than clas-
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sical SV models. The proposed Path-Dependent Volatility model operates in continuous
time and can be provided with historical or risk-neutral parameters. The weights can
be approximated using exponential kernel superpositions, which represent functions of
stochastic discount factors. This makes it possible to create Markovian models, in which
the future state of the system depends solely on its current state, independent of past
states, a crucial aspect for the application of major pricing techniques.

In this Thesis an alternative pricing technique to the widely used Monte Carlo method is
proposed: the binomial tree. Thus having these two methods available we could compare
their results. We will analyze the first method in different ways, implementing two possible
time discretizations for the simulation, also introducing techniques to reduce variance
(i.e. the error) so that the best can be obtained from this methodology. With respect
to the second method, meanwhile, the entire structure for the dynamics present in the
introduced model will be implemented, referring to only one temporal discretization. We
will apply these procedures in calculating implied volatility of the S&P 500, comparing
results, computational time and cost in terms of memory, and pointing out weaknesses
and strengths.

Before presenting the results regarding the implied volatility of the VIX, an analysis will
first be performed with respect to this index. Indeed, the definition will be presented,
explaining the complexity of simulation and the consequent ineffectiveness of models to
date in explaining its implied volatility curve. Again, in Monte Carlo method and binomial
(non-recombinant) tree will be used to simulate the VIX.

Finally, the results will be presented, determining in which situations it is more appro-
priate to use one method or the other, considering computational time as the main term
of comparison. The capability of PDV’s model for joint calibration of S&P 500 and VIX
implied volatility smiles will then be analyzed, presenting some ideas for how both the
model and the pricing techniques used can be improved and implemented more, in order
to obtain more accurate data.

Listed below the structure of this Thesis.

In Chapter 1 we go over the main models introduced in quantitative finance, paying
particular attention to how volatility has been considered. We started by considering
constant volatility and then introduced local volatility models, models in which volatility
becomes a function of time. Finally, we analyzed stochastic volatility models, pointing
out the weaknesses, obvious by the large difference in the results from empirical data.

In Chapter 2 we reconstructed and analyzed the model introduced by Guyon and Leke-
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ufack, emphasizing the insights behind Path-Dependent Volatility models (PDV). We
traced the construction of the model by paying special attention to the "2-factor Marko-
vian PDV model" and the "4-factor Markovian PDV model".

In Chapter 3 we presented the techniques used for model simulation (both 2-factor and
4-factor), focusing mainly on the Monte Carlo and binomial tree methods. We have shown
in detail how to move from the theoretical model to practical applications. For the Monte
Carlo method, we have introduced systems to reduce the variance of the results; while for
the method via the binomial tree, we have shown its step-by-step construction.

In Chapter 4 we presented the results regarding the dynamics of the patterns, analyzing
for various processes their significance. We then introduced the simulations of the S&P
500 implied volatility curves, comparing the outcomes produced by the two methods both
in terms of time and accuracy. After this comparison performed with both the 2-factor and
4-factor models, we presented the results with respect to the smile of implied volatilities
for the VIX.

In Chapter 5 we summarized the main results obtained throughout this Thesis, describing
how for different circumstances one pricing method or the other was better. Finally, some
insights were presented from which techniques can be implemented that could potentially
be more effective.
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The following chapter will introduce the main quantitative models for finance, starting
with the simplest ones in which volatility is seen as a constant value over time to the most
complex ones in which instead volatility is endowed with a process of its own. The reasons
why most advanced models do not respect the Zumbach Effect, the Leverage Effect, and
the problem of joint calibration of S&P 500 and VIX option smiles, led to the introduction
of the model discussed in the Thesis, will be highlighted.

1.1. Deterministic constant volatility

Advanced tools of mathematics were first introduced to the world of finance in a theoretical
way in 1900 by Louis Bachelier, who in his PhD Thesis [1], hypothesized a model for the
value of an asset price containing a stochastic process, which was intended to represent
changes in the market. Bachelier’s main purpose was to estimate a given stock by a simple
sum of two factors:

St = S0 + σWt, (1.1)

where St denotes the asset price at future time instant t greater than zero (t>0), S0

the current stock price (always grater than 0), σ the constant and deterministic value of
volatility, and Wt is a Wiener process, a stochastic process such that:

• W0 = 0

• Wt ∼ N (0, t)

• Wt −Ws ⊥ Fs with t > s

• Wt+h −Wh ∼ Ws+h −Ws ∼ N (0, h)

It was immediately apparent that it was impossible to guarantee that the price of the
underlying asset would always be greater than or equal to zero, so consequently years
later, in 1973, Black & Scholes [4] and Merton [34] introduced their model as stochastic
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differential equation: {
dSt = rStdt+ σStdWt

S0

, (1.2)

where the variable added r is the risk free interest rate. Using the Itô’s formula1, the
Geometric Brownian Motion (GMB) can be obtained, expressed by the following equation
(calculations shown in appendix A.2):

St = S0e
(r− 1

2
σ2)t+σWt (1.3)

It is evident that St, defined as in this equation, can only take positive values.

To explain the important aspects of this model, it is first necessary to introduce the closed
formulas for the most liquid options, an European option. Given maturity T and strike
K, an option is called a "put" if at maturity returns a payoff of (K −ST )

+ and a "call" if
at maturity returns a payoff of (ST −K)+. Using the Black and Scholes model we derive
the following formulas:

C(S, t)EU = StN (d1)−Ke−r(T−t)N (d2) ,

P (S, t)EU = Ke−r(T−t)N (−d2)− StN (−d1) , .

(1.4)

(1.5)

where

d1 =
ln St

K
+
(
r + 1

2
σ2
)
(T − t)

σ
√
T − t

,

d2 = d1 − σ
√

TTt

and r still represents the risk free and N(·) is the Normal Cumulative Density Function.

As anticipated earlier mathematical tools are used to obtain approximations and in par-
ticular to be able to price derivatives of a financial underlying. However, the Black and
Scholes model is inconsistent with empirical data mainly for two reasons regarding:

• absence of volatility smile curve

• asymmetry of log-return distributions

In order to talk about the absence of Smile curve of volatility, we must first introduce the
concept of in implied volatility. When talking about European options the parameters of
the model are the underlying current price, the strike, the maturity, the risk free interest
rate and the volatility. Having fixed the reference asset, call prices in the market vary

1Itô’s Lemma: used in stochastic calculus in order to compute the differential of a function of a
particular type of stochastic process.
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depending on the maturity and strike; it was observed that taking two different call
contracts in the market (with different strikes and maturities observable in the market),
and inverting the formula of the model to derive the volatility (implied, hence implied
volatility), produces different values of σ, in contrast to the model’s assumption that
volatility, was a constant variable. To summarize, if we observe the implied volatility
σ(K,T ), we do not find a constant value (as the theory would suggest) but a curve
[37, 39], called volatility smile, which reflects the unsuitability of the model.

The second reason why the BS model is incorrect concerns the log-return distribution
of the underlying asset. Considering the time series of the stocks prices, the log-return
distribution of the daily price can be deduced:

log

(
St

S0

)
∼ N

(
µt, σ2t

)
and log

(
St+∆

St

)
∼ N

(
µ∆;σ2∆

)
where ∆ indicates the time increment equal to one day (daily log-return). It was observed
that the daily distribution of prices does not appear to be stable, so the Gaussian can-
not represent this pattern: a correct model would have thicker tails since the Gaussian
underestimate large movements.

Given the inability of the BS model to represent certain empirical dynamics, quantitative
finance moved mainly in three directions:

• Local volatility model: Dupire in 1994 [15] introduced a model in which σ was not
constant, but was seen as a deterministic function of the time and the price of the
underlying asset:

dSt = rStdt+ σ (t, St)StdWt (1.6)

• Stochastic volatility model: the first model in this category was introduced by Hull
and White in 1987 [26, 27], but more generally models in which volatility has its
own stochastic markovian process belong to this class:

St = rStdt+ σtStdWt (1.7)

where

σt = f(yt) dyt = α (t, yt) dt+ β (t, yt) dW̃t (1.8)

• Jumps model: consists of maintaining the dynamics based on a Markovian process,
but adding the possibility of jumps in the price of the underlying asset by taking
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advantage of Levy processes (Xt in the model):

St = S0e
µt+Xt (1.9)

The process has no continuous trajectories; Merton in 1976 proposed the first dif-
fusive jump model [35].

All of the above models were able to explain volatility smile curves in equity derivatives.

1.2. Local volatility model (LV)

Local volatility models assume that future volatility is a deterministic function of the
underlying asset’s value and time horizon (maturity); these characteristics are implicit
in the current price of the vanilla option. Thus, the logic of the Black-Scholes model
proved correct, and once the model was calibrated to the most liquid vanilla options in
the market, it was possible to price and hedge exotic options. The model represented in
Eq. (A.7), was introduced more generically by also considering the dividend rate (q):

St = (r − q)Stdt+ σtStdWt (1.10)

The key step in the local volatility framework is the Dupire formula [14, 15], through
which local volatility can be linked to the implied volatility surface.

Theorem 1.1. Dupire’s formula
Let C = C(K,T) be the price of a call option as a function of the strike K and of the
time-to-maturity T. Then the local volatility function satisfies

σ2
l (T,K) =

∂C
∂T

+ (r − q)K ∂C
∂K

+ qC
K2

2
∂2C
∂K2

(1.11)

where r is the risk-free interest rate and q is the dividend rate.

From Eq. (1.11) it can be seen that for the calculation of local volatilities, it is necessary
to consider the option’s prime and second derivatives with respect to the strike and the
prime derivatives with respect to the time-to-maturity: the numerical calculation of the
derivatives may be unstable; consequently, it is essential to use a sufficiently smooth
Black-Scholes implied volatility surface for the calculation of local volatility.

Even if the model is able to reproduce the implied volatility surface observed in the market,
some weaknesses should be noted. Greeks calculated with a LV model are generally not
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consistent with those observed empirically. It can also be seen that LV models tend to
underestimate the volatility of volatility, evidence confirmed by the fact that structured
products are often significantly underpriced. More in general, locare volatility models
generate skew forwards too flat, leading to an inability to price certain products. Finally,
a further limitation of the model is that the local volatility surface is composed by a
relatively small number of points: therefore, to use unknown values, an approximation by
interpolation must be made.

1.3. Stochastic volatility model (SV)

Stochastic volatility models make volatility aleatory by using a second markovian stochas-
tic process to describe it. There are two Brownian motions in the model

(
Wt, W̃t

)
, respec-

tively, one referring to the equation for the price and the other for the volatility, whose
correlation is represented by the parameter ρ. Eq. (1.7) referred to price seems to remain
unchanged from the LV models,

St = rStdt+ σtStdWt

but the main difference occurs with the introduction of the dynamics process (Eq. (1.8))

σt = f(yt) dyt = α (t, yt) dt+ β (t, yt) dW̃t

There are mainly three possibilities for the definition of this process:

• Geometric Brownian motion: Hull and White introduced the first model in this
category [27], considering the dynamics of yt as follows:

dyt = c1ytdt+ c2ytdW̃t, (1.12)

where c1 e c2 are constants. The relation between yt and σ is simply σ =
√
yt and

the correlation between the two BM is zero (ρ=0). This model does not offer great
results, in fact is the less used

• Ornstein-Uhlenbeck process [20]: the model introduced by Scott and Chesney [8, 38]
is crucially important as one of the first models to introduce the concept of mean
reverting, that is the tendency of a stochastic process to move back to its mean.
They are introduced the variable λ, index of the speed of mean reversion, and η,
the mean itself:

dyt = λ (η − yt) dt+ βdW̃t (1.13)
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Defining the drift as above, we see that the process tends to decrease when positive
(yt > η), and to increase when negative (yt < η). Since the probability of yt being
negative is nonzero, we define σ = eyt ; ρ = 0 as before.

• Cox-Ingersoll-Roll (CIR) process [11]: thanks to this process of defines the Heston
model, the most important and used of this class [26]:

dyt = λ (η − yt) dt+ β
√
ytdW̃t (1.14)

which is a mean reverting and non-negative if y0 and η are positive. In this case the
correlation ρ is negative: this phenomenon is called "Leverage Effect" and indicates
that when price decreases volatility tends to increase.

Heston model, in part because it can reproduce the Leverage Effect, is the most commonly
used among the stochastic volatility models and has actually become a benchmark in
derivative pricing and risk management.

1.4. Jumps model

The third model that researchers have proposed as an alternative to BMS to mainly
explain the phenomenon of volatility smile/skew is the Jump model as

St = S0e
µt+Xt , (1.15)

where Xt represents the Levy processes, fundamental in this theory. In fact, the Levy
process is defined as the log-price of the underlying (Xt ∼ log (St)) and it is therefore
crucial that we require that:

• Xt never goes to infinity, hence is limited, like St.

• Xt has discontinuous trajectories, since we are introducing jumps.

The Levi process family turns out to be large and complex, but by focusing on financial
application this class results to be simpler. The first subclasses that can be highlighted
are that of "Continuous Processes", of which the classic Black & Scholes model is part,
and the one of "Discontinuous Processes", a real new development introduced. When
talking about tje second class a further division is given:

• Finite Activity: In this category the jumps are a limited number and of varying
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sizes. The most analyzed are the "Jump diffusion process" rappresented as:

X(t) = bt+ σWt +

N(t)∑
i=1

Yi, (1.16)

where the Poisson process Nt represents when jumps occur and Yi are i.i.d. random
variables which can have different laws; These Levy processes are adequate to de-
scribe the log-prices, and according to the law of the random variables of the family
(Yi) there are two possibilities, which are the Merton [35] and the Kou model [32].

• Infinite Activity: they are characterised by an infinite number of infinitesimal jumps;
the most commonly used models in this category are the Variance Gamma (VG)
model [33] (and Extended VG, obtain by adding a Brownian Motion to the previ-
ous model) and the Normal-inverse Gaussian (NIG) model [3] (and Extended NIG,
obtain by adding a Brownian Motion to the previous model).

All the models that have been listed in the previous sections were formulated with the
mainly intention of trying to satisfy the implied volatility surface imposed by the market.
It is well known that models differ in the very definition of volatility, but once calibrated
almost all of them led to the same result. It was empirically observed that they recreated
a volatility surface that was accurate in the short run, but in the long run inconsistent
with market values. To solve this problem, new conditions and principles were introduced.
This aims to create more innovative and satisfactory models.

1.5. Purposes for a new model

In order to move forward in the development of increasingly sophisticated financial models
consistent with empirical data observable from the market, three characteristics to be
satisfied, mainly related to volatility, are introduced. These features, already mentioned
in the previous chapter, create a guideline for a new model introduced in the next section.

• Leverage Effect [6]: in the context of the stock world it refers to the tendency for
stocks (and other financial instruments) to show a negative correlation between
returns (returns) and volatility. This means that when stock market volatility in-
creases, returns tend to decrease and vice versa. It means that when stock markets
are under pressure and volatility is high, investors tend to see a reduction in re-
turns, while when volatility is low, returns tend to be higher. The Leverage Effect
can be particularly pronounced during volatile market periods or difficult economic
conditions, when fear and uncertainty can lead to large swings in stock prices. In
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summary, the Leverage Effect, as observed of time series, represents the negative
correlation between returns and stock volatility, which can influence investment.

• Zumbach Effect [42]: it refers to the phenomenon of the dependence of volatility on
past returns in financial markets. It is often observed in the context of time series
analysis of financial data, particularly when examining the relationship between
past returns and subsequent volatility. The Zumbach Effect is essentially a way of
describing the correlation or relationship between past returns and future volatility;
it implies that the level of volatility in a financial time series can be influenced
by the recent history of returns: when a financial instrument experiences periods
of high volatility, it is more likely to continue to have high volatility in the near
future. Similarly, if a financial instrument has been relatively stable in terms of
price movement, it is more likely to continue to be stable.

• Joint calibration of SPX and VIX implied volatility smiles: it is a process in financial
modeling where both the options on the SPX (S&P 500 Index: equity index made
up of 500 of the largest publicly traded companies in the United States selected
by Standard & Poor’s company) and options on the VIX (CBOE Volatility Index:
financial benchmark that measures the market’s expectations for future volatility)
are considered simultaneously to determine the parameters of a mathematical model
that can accurately represent the implied volatility curves of these two indices. The
SPX implied volatility smile represents how implied volatility varies across different
strike prices and maturities for options on the S&P 500. The shape of this smile can
provide insights into market expectations for future market volatility and can be an
essential input for pricing and risk management. Instead, the VIX, often referred to
as the "fear gauge," is a measure of implied volatility for options on the S&P 500.
The VIX implied volatility smile represents the implied volatility levels for different
expiration dates on VIX options. Joint calibration refers to the process of fitting a
mathematical model to the observed implied volatility smiles for both SPX and VIX
options simultaneously. The goal is to find a model (such as a stochastic volatility
model) that can accurately represent the dynamics of implied volatility for both
indices and the complex dynamics of volatility in the market. This process involve
estimating various model parameters that govern how implied volatility evolves over
time and how it varies with different strike prices and maturities. Accurate modeling
of implied volatility, may involving the use of historical option price data, is crucial
for options pricing, risk management, and the development of investment strategies
that involve SPX and VIX options. For a detailed description of VIX and joint
calibration, see, for example [16] and [17] by Chicago Board Options Exchange or
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[40] by Yingzi Zhu et al.

The Path-Dependent Volatility model ripsonde to these requirements.





15

2| Path-Dependent Volatility

models

Stochastic volatility (SV) models offered a framework for considering volatility as a
stochastic process influenced by its own sources of randomness, which can be related
to those governing asset price dynamics. After studies revealed that financial markets
are characterized by a volatility dependence of the path itself of the underlying asset, a
model was introduced by Guyon and Lekeufack to replicate this phenomenon: the "Path-
Dependent Volatility" models (PDV) [25]. The objective of this chapter is to clarify how
volatility is intrinsically linked to the path followed by asset returns. The development
of the different models that led to the requirements for Leverage Effect, the Zumbach Ef-
fect and the Joint calibration of SPX and VIX implied volatility smiles will be observed,
starting from the simple idea that:

dSt

St

= rdt+ σ
(
(Su)u≤t

)
dWt, (2.1)

where St is the asset price, Wt is a standard Brownian motion and σ is the volatility.

2.1. Reasons for the PDV model

2.1.1. A market and modeling reason

In the area of volatility modeling, we run into two fundamental parameters with inherent
scales: volatility levels and asset returns. Therefore, a valid model should establish a
connection between these two aspects: PDV models fulfill this objective by clarifying the
current level of volatility through historical asset returns.

We begin by considering that asset prices are not attainable within a predefined range; in
fact, there are stocks with very different nominal values in the market. Different thinking
regarding the scale of asset re turns and the scale of asset volatility. Indeed, it can be
said that asset returns typically fluctuate by a few percentage points per day, except for
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anomalies. Similarly, volatility remains stable regardless of the asset price. Considering
the VIX index, it can be seen that over the years the value has remained relatively constant
within the range [10, 80], regardless of the value of the SPX (Figure 2.1). It has been
studied that the large variations the worked index, always maintained within the range,
is due to significant fluctuations in the performance of the value of the SPX: for the same
value of the SPX, different values of the VIX can be observed.

Figure 2.1: VIX vs SPX, January 1995–May 2022

This shows promptly that volatility is more accurately described by the historical behavior
of the asset’s price rather than its current valuation. Figure 2.1 provides further confir-
mation of the inadequacy of the relationship between volatility and asset price (typical of
the LV model).

By analyzing temporal evolution in the historical data (Figure 2.2), it is clear that when
the SPX follows an uptrend, the VIX shows a generally downward trend relative to the
SPX, in line with the LV model. However, it is important to note that in the LV model,
there is a kind of constraint on the reference level of the SPX when the SPX undergoes a
sudden descent.

In general,we can take a closer look at the strengths of the PDV model compared with
the LV and SV approaches. Let us begin with the Local Volatility model: the LV model
attempts to explain the level of volatility as a function of asset level, which, as we have
observed from historical data, does not have a solid financial background. Since PDV
models accurately capture the observed dynamics of market volatility, they do not require
recalibration as frequently as the LV model. For Stochastic Volatility models, there is
evidence of a relationship between the variance of volatility and asset return, driven by
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Figure 2.2: SPX and VIX time series, Jan 1, 1995–May 15, 2022

Brownian motions that influence the dynamics of asset prices and volatility. Although
this approach makes more sense than LV because it uses asset returns as explanatory
variables rather than asset levels, it may not be the most cost-effective choice. This is
because it introduces path-dependence that is complex, is not explicitly selected, and may
not reflect the price feedback effect on volatility as accurately as an explicitly chosen PDV
model.

2.1.2. Role of Path-Dependent Volatility in Derivatives Pricing

In contrast to Stochastic Volatility (SV) models, Path-Dependent Volatility models (PDV)
do not necessitate the introduction of supplementary sources of randomness, typically rep-
resented by Brownian motions, to generate intricate spot-volatility dynamics. PDV mod-
els elucidate volatility solely from an endogenous perspective, consequently, PDV models,
unlike SV models, constitute comprehensive models where the pricing of derivatives is
achieved in a unique and unambiguous manner, independent of any specific preference
or utility function. SV models can attain completeness if volatility is permitted to rely
on derivative prices of the underlying asset, however, establishing the joint dynamics of
the asset’s price and the prices of options linked to that asset is known to be exceedingly
intricate. In PDV models, all information exchanged among market participants is encap-
sulated within the prices of the underlying asset, encompassing not just the current prices
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but also the historical record of all past prices. While reality may exhibit some additional
complexity, PDV models closely approximate it, so it is logical to initiate model construc-
tion by extracting the entirety of the volatility information contained in historical asset
prices. In fact, PDV models are universally applicable to option pricing: all SV models
possess an equivalent PDV counterpart, implying that the prices of all path-dependent
options (not limited to vanilla options) on the underlying asset remain consistent across
both models. This assertion is substantiated by Brunick and Shreve’s demonstration in
[7]: for a general Itô process given by dSt = σtStdWt, there exists a PDV model described
as dŜt = σ(t, (Ŝu)u≤t)ŜtdŴt, where the distributions of the processes (dSt)t ≥ 0 and
(Ŝt)t ≥ 0 are identical.

Finally, the objective need to support a path-dependency model with respect to volatility
has already been presented in several academic papers, including a substantial part of the
literature on Generalized Autoregressive Conditional Heteroskedasticity (GARCH) [5, 24],
considered the most interesting and advance model till now thanks the representation of
the Zumbach Effect. In SV models, a partial Zumbach Effect can be obtained [41, 42];
in particular, through a nonzero correlation between spot volatility and past volatilities
realized on a larger scale, it is observed that past volatilities on a smaller scale are more
highly correlated with future volatilities realized on a smaller scale, a result that PDV
models also replicate, while going further. In fact, the innovative model introduced here
fully deals with the Zumbach Effect by revealing that the dynamics of conditional volatil-
ity, relative to past observations, is influenced not only by the historical trajectory of past
volatility but also by the historical path of prices, implying a dependence on the price
path within the dynamics of volatility.

2.2. Volatility modeling

In this section we aim to understand the link between the level of volatility and past
returns of the underlying asset and compare it with the previously developed relations.

2.2.1. Fundamental properties

Guyon and Lekeufack started the study of the new model from the path-dependent fea-
tures that have the potential to explain most of the variability in volatility, focusing
mainly on two of them, one related mainly to the recent trend of the underlying and the
other to recent volatility activity:

• Trend features: The purpose of these features is to explain the fact that volatility,
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in the presence of a decline in asset value, tends to increase (Leverage Effect). To
do this, a weighted sum of past daily returns is introduced:

R1,t :=
∑
ti≤t

K1 (t− ti) rti (2.2)

where

rti :=
Sti − Sti−1

Sti−1

(2.3)

represents the daily return. K1 represents a convolution kernel that assigns varying
degrees of significance to historical daily returns, depending on how distant in the
past they were observed. As time elapses, the kernel gradually diminishes in value,
signifying the diminishing influence of past daily returns.

• Activity features: Activity characteristics are those that reflect recent fluctuations
in the price of an asset, regardless of its general direction. These characteristics prove
crucial in the process of modeling the phenomenon known as volatility clustering,
where periods characterized by high volatility tend to be followed by other periods
of high volatility, and periods of low volatility usually precede other periods of
low volatility (Zumbach Effect). Another manifestation of volatility clustering is
evidenced in the observation that implied volatility tends to increase when historical
volatility is higher. An important example of a volatility-related feature is the
weighted sum of past daily returns squared:

R2,t :=
∑
ti≤t

K2 (t− ti) r
2
ti

(2.4)

where K2, as before, is a convolution kernel that gradually decreases in value over
time. In order to take into account even higher moments of past daily returns, the
K2-weighted historical volatility is used:

∑
t :=

√
R2,t.

2.2.2. The Volatility model

Guyon and Lekeufack’s model, based on the considerations mentioned earlier, explains the
instantaneous volatility, and not its square the variance, as a simple affine combination
of the features:

σt = β0 + β1R1,t + β2Σt, β0 > 0, β1 < 0, β2 ∈ (0, 1) (2.5)
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The "trend feature" R1,t and the "historical volatility features"
∑

t are related to each
other by coefficients that, in order to guarantee particular properties to the volatility, are
subject to limitations:

• β1 < 0 produces Leverage Effect because there is a negative linear dependence on
past trends in yields : negative trends will have a positive impact on the current
level of volatility, while positive trends will have a negative effect.

• β2 > 0 introduces a positive correlation with historical volatility, enabling the repli-
cation of volatility clustering and indirectly explains the Zumbach Effect.

• β1 < 1 ensures the stability of the model, as in GARCH model.

Talking about limitations, it is necessary to specify what are the appropriate types of
kernel (K1, K2) acceptable for the model. The two kernels, defined for different model
features are distinct in one from the other, even if they have the same purpose of weighting
short-to-long memory events. We want to model these two kernels in such a way that
the weights Kn(τ) decrease fast for small time lags τ (recent events), but simultaneously
decrease for large time lags (more dated events); in this way volatility can have short and
long memory. Guyon and Lekeufack investigated which was, empirically, the best choice,
selecting a kernel that resembles a power law, except that for null delays τ the kernels do
not seem to explode, thus both kernels were chosen as time-shifted power laws (TSPL):

K(τ) = Kα,δ(τ) := Z−1
α,δ(τ + δ)−α, τ ≥ 0, α > 1, δ > 0 (2.6)

The time shift δ guarantees that Kα,δ(τ) does not blow up when the lag τ vanishes,
but we will select all positive values. Zα,δ is a normalization coefficient that allows the
assumptions that the sum of the weights is equal to one (

∑+∞
i=0 K(i∆t) = 1) in both

discrete-time and continuous-time situations where it turns out to be

Zα,δ =

∫ ∞

0

(τ + δ)−αdτ =
δ1−α

α− 1
(2.7)

The inclusion of a small (but positive) time shift δ emphasizes the importance of recent
returns (short-term memory) already identified by Gatheral, Jaisson, and Rosenbaum [18].
In addition, the model thus formulated succeeds in adding harmoniously to the observed
long memory explanation of volatility identified by Comte and Renault [9].

On a practical level, however, TSPL kernels do not produce a Markovian model1, and
1A Markovian model, is a mathematical framework used to describe systems or processes where the

future state of the system depends only on its current state and is independent of its past states.
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consequently are complicated and slow to simulate; however, there is an alternative. Ex-
ponential Kernels (K(λ)(τ) := λe−λτ , λ > 0), introduced in the discrete-time version of
the threshold EWMA Heston model, turn out to be Markovian models and thus easy to
simulate even through the Monte Carlo Method, one of the most widely used techniques
in financial pricing. It is shown and empirically observable that a convex combination
of two exponential kernels (2-EXP), which mixes a very short time scale with a longer
time scale, offers another very natural way to reconcile long memory, short memory, and
volatility-like behavior. In fact, in Figure 2.3 it can be seen that a 2-EXP and a TSPL can
approximate each other very well over a wide range of maturities. Although it is more
intuitive to use TSPL kernels, an exponential kernel for K1 and one for k2 (2-factors
PDV model) and later a convex combination of two exponential kernels for both K1 and
K2 (4-factors PDV model) will be used initially in the development and simulations of
continuous-time PDV models.

Figure 2.3: TSPL Kernel K1 for the prediction of the Realized volatility (of SPX) and
the best fits by one exponential and by a convex combination of two exponentials. The
convex combination is a much better fit.
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2.3. The model

We have established that through a simple linear model much of the observed variability
in volatility is explained. Now we want to link the volatility model to one of a generic
financial underlying asset St.

2.3.1. Continuous-Time Path-Dependent Volatility model

Thanks to Eq. (2.5) we can define a model that, by convention, neglects dividends and
takes 0 as the interest rate:

dSt

St

= σtdWt

σt = σ (R1,t, R2,t)

σ (R1, R2) = β0 + β1R1 + β2

√
R2

R1,t =

∫ t

−∞
K1(t− u)

dSu

Su

=

∫ t

−∞
K1(t− u)σudWu

R2,t =

∫ t

−∞
K2(t− u)

(
dSu

Su

)2

=

∫ t

−∞
K2(t− u)σ2

udu

(2.8)

where the dynamics of R1,t and R1,t, which in general are not Markovian because of the
general kernels (TSPL) are

dR1,t =

(∫ t

−∞
K ′

1(t− u)
dSu

Su

)
dt+K1(0)

dSt

St

=

(∫ t

−∞
K ′

1(t− u)σudWu

)
dt+K1(0)σtdWt

dR2,t =

(∫ t

−∞
K ′

2(t− u)

(
dSu

Su

)2
)
dt+K2(0)

(
dSt

St

)2

=

(
K2(0)σ

2
t +

∫ t

−∞
K ′

2(t− u)σ2
udu

)
dt

As mentioned earlier the model (2.8) is further developed by eliminating TSPL kernels
and introducing exponential ones: this will allow additional expansion of the dynamics of
R1,t and R2,t.

2.3.2. 2-factor Markovian PDV model

The main changes from model (2.8) concern kernels, in fact they are chosen exponential
type:

K1(τ) := K(λ1)(τ) := λ1e
−λ1τ , λ1 > 0

K2(τ) := K(λ2)(τ) := λ2e
−λ2τ , λ2 > 0

(2.9)
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With the introduction of the exponential kernels, where l1 and l2 are normalization co-
efficients, the simplest Markovian model is obtained, and due to the very nature of the
changes made, the integrals present in the dynamics of R1,t and R2,t can be developed.
the model becomes:

dSt

St

= σtdWt

σt = σ (R1,t, R2,t)

σ (R1, R2) = β0 + β1R1 + β2

√
R2

dR1,t = λ1

(
dSt

St

−R1,tdt

)
= λ1 (σ (R1,t, R2,t) dWt −R1,tdt)

dR2,t = λ2

((
dSt

St

)2

−R2,tdt

)
= λ2

(
σ (R1,t, R2,t)

2 −R2,t

)
dt

(2.10)

Since the instantaneous volatility is a deterministic function of two markovian factors
(R1,t, R2,t), this model has been called the 2-factor Markovian PDV model. As discussed
in Section 2.2.2, the selection of K1 and K2 as single exponential kernels proves inadequate
in capturing the blend of short-term and long-term memory present in both R1,t and R2,t.
While Model (2.10) may not offer a complete solution, its primary advantage lies in its
simplicity. An analysis of this model yields valuable qualitative insights into the dynamics
of the volatility startin fomr Eq. (2.5)2 and applying Itô’s Lemma3:

dσt =

(
−β1λ1R1,t +

β2λ2

2

σ2
t −R2,t√

R2,t

)
dt+ β1λ1σtdWt (2.11)

The evolution of volatility introduces a certain level of complexity. Unlike the volatility
of volatility, which is influenced solely by its own dynamics, the drift of volatility depends
on the individual components, R1 and R2, unless β1 = 0 or β2 = 0. We will then examine
the evolution of volatility in some particular situations in order to provide an explanation
for the parameter ranges in the volatility model (2.5):

• β2 = 0: the behavior of σt = β0 + β1R1,t simplifies to the classical self-regulating
diffusion process, described by the differential equation

dσt = λ1 (β0 − σt) dt+ β1λ1σtdWt

This implies that the instantaneous volatility σt tends to return to β0 at a constant
2Reminder:

∑
t :=

√
R2,t

3Itô’s Lemma: General application shown in the Appendix A.1.
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rate λ1, exhibiting a mean-reverting behavior.

• β1 = 0: volatility dynamics becomesσt = β0 + β2R2,t , but its differential form still
remains relatively complex:

dσt =
λ2 (1− β2

2)

2

σt − γ

σt − β0

(σ∗ − σt) dt,

where
γ :=

β0

1 + β2

, σ∗ :=
β0

1− β2

and in particular γ < β0 < σ∗.

Therefore, in both cases, the volatility mean reverts. In the general case where β1 ̸= 0

and β2 ̸= 0, the drift µt of σt is not simply a function of the volatility itself but a function
of the two factors R1,t and R2,t,

µ (R1, R2) := −β1λ1R1 +
β2λ2

2

(
β0 + β1R1 + β2

√
R2

)2 −R2√
R2

(2.12)

In the drift of the differential form of volatility, two primary components can be discerned:
one influenced by R1,t and the other influenced by R2,t. The first one, driven by its
mean reversion to zero, leads to a rapid reduction in volatility. Conversely, the second
component contributes to a gradual and sustained increase in volatility, albeit with less
intensity. This phenomenon elucidates why, following a sharp spike in volatility that
momentarily recedes, volatility can persist at relatively high levels for an extended period,
even when the asset price undergoes a swift recovery. This persistence is attributed to the
recollection of past volatility through squared returns, which competes with the influence
of past signed returns.

Finally, in order not to have negative volatility, certain restrictions must be placed on the
λ1 and λ2 parameters of the kernels. Considering the situation in which σt is zero, the
diffusion term of the differential Eq. (3.48) vanishes (β1λ1σt = 0), but its drift term does
not, and being the volatility a non-negative quantity, it must be imposed greater than
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zero. So, considering the initial constraints on the parameters, we have

µ (R1, R2) = −β1λ1R1,t +
β2λ2

2

σ2
t −R2,t√

R2,t

> 0

σt = β0 + β1R1,t + β2

√
R2,t = 0

R1,t, R2,t > 0

β0, β2 > 0

β1 < 0

λ1, λ2 > 0

(2.13)

solving the system we obtain that λ2 < 2λ1: thus the drift of volatility is positive and
consequently we have non-negative volatility

2.3.3. 4-factor Markovian PDV model

The 2-factor PDV model (2.10), although relatively simple, uses single exponential kernels
for k1 and k2, which consequently fail to replicate the TSPL kernel. Here we introduce a
convex combination of two exponential kernels for K1 and K2 since they better approxi-
mate TSPL kernels (see Figure 2.3):

K1(τ) = (1− θ1)λ1,0e
−λ1,0τ + θ1λ1,1e

−λ1,1τ

K2(τ) = (1− θ2)λ2,0e
−λ2,0τ + θ2λ2,1e

−λ2,1τ
(2.14)

where θi ∈ [0, 1], λi,0 > λi,1 > 0 for i ∈ {1, 2}. Thanks to the mixing factor θ we are able
to give volatility short and long memory (Section 2.2.2) and to introduce a new 4-factor
model:

dSt

St

= σtdWt

σt = σ (R1,t, R2,t)

σ (R1, R2) = β0 + β1R1 + β2

√
R2 1111111111111111111111111111111111111111

R1,t = (1− θ1)R1,0,t + θ1R1,1,t

R2,t = (1− θ2)R2,0,t + θ2R2,1,t

(2.15)

dR1,j,t = λ1,j

(
dSt

St

−R1,j,tdt

)
= λ1,j (σ (R1,t, R2,t) dWt −R1,j,tdt) , j ∈ {0, 1},

dR2,j,t = λ2,j

((
dSt

St

)2

−R2,j,tdt

)
= λ2,j

(
σ (R1,t, R2,t)

2 −R2,j,t

)
dt, j ∈ {0, 1}.
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The model’s additional parameters, θ1 and θ2, blend the influence of recent and historical
returns (or squared returns) to create the summary random variables R1 and R2, respec-
tively. It is possible to retrace the same reasoning used for the 2-factor PDV model in
Section 2.3.2 with a few adjustments. We have to introduce, for n ∈ {1, 2}, the average
quantities

λ̄n := (1− θn)λn,0 + θnλn,1

R̄n,t :=
(1− θn)λn,0Rn,0,t + θnλn,1Rn,1,t

λ̄n

In this way, the dynamics of volatility can be deduced, again using Itô’s Lemma:

dσt =

(
−β1λ̄1R̄1,t +

β2λ̄2

2

σ2
t − R̄2,t√

R2,t

)
dt+ β1λ̄1σtdWt (2.16)

The dynamics of this process exhibit certain qualitative properties that resemble the
behavior of the asset price. Specifically, the drift of σt leads to the phenomenon of volatility
clustering, owing to a discernible trend of mean reversion in volatility. Additionally, the
lognormality of σt remains constant over time, as observed in the data. Furthermore,
it’s important to note that the dynamics of σt are influenced by the price path, making
them price path-dependent. In other words, the drift of σt isn’t solely determined by past
values of volatility (σu) for u ≤ t ; it is also influenced by past asset returns, as reflected
through R̄1,t.

Another remarkable property of the 4-factor PDV model is its ability to generate highly
realistic smiles for both the SPX and the VIX (will be shown in the next chapters). In
fact, it even allows for the joint calibration of the 4-factor PDV model to accurately match
market SPX and VIX smiles. This demonstrates, for the first time, that a continuous-time
Markovian parametric stochastic (in fact, path-dependent) volatility model can effectively
address the joint SPX/VIX smile calibration challenge.

2.4. Path-Dependent Stochastic Volatility

Volatility is primarily driven by historical paths, yet it’s essential to note that it’s not
exclusively determined by past movements, idea on which the previous models are based.
Anomalous returns can occur, even when considering path-dependent volatility, due to
unforeseen news or newly acquired information. To address these unusual returns, which
represent the exogenous component of volatility, we propose the Path-Dependent Stochas-
tic Volatility (PDSV) model. This model resembles the 4-factor PDV model, with one
crucial difference: the instantaneous volatility σt = atσ (R1,t, R2,t) is now the result of
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the product of PDV σ (R1,t, R2,t) and a stochastic volatility component (at). The model
becomes:

dSt

St

= σtdWt

σt = atσ (R1,t, R2,t)

σ (R1, R2) = β0 + β1R1 + β2

√
R2 1111111111111111111111111111111111111111

R1,t = (1− θ1)R1,0,t + θ1R1,1,t

R2,t = (1− θ2)R2,0,t + θ2R2,1,t

(2.17)

dR1,j,t = λ1,j

(
dSt

St

−R1,j,tdt

)
= λ1,j (atσ (R1,t, R2,t) dWt −R1,j,tdt) , j ∈ {0, 1},

dR2,j,t = λ2,j

((
dSt

St

)2

−R2,j,tdt

)
= λ2,j

(
a2tσ (R1,t, R2,t)

2 −R2,j,t

)
dt, j ∈ {0, 1}.

where the stochastic process added (at) is an Ornstein-Uhlenbeck (OU) process

dat = κ (1− at) dt+ νdZt, (2.18)

with ν, κ > 0 and Z a Brownian Motion or an exponential-OU process

at = eXt , dXt = −κXtdt+ νdZt. (2.19)

Because of the supplementary random process added the model is no more pure-feedback;
moreover we can consider it a 5-factor Markovian model (easy and fast to simulate).
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3| Practical applications

In this Chapter we will go on to deal with the methodologies that bring the theoretical
model described in the previous chapter to practical applications in derivatives compu-
tation. In particular, we will study two pricing techniques. The first exploits the Monte
Carlo method, which is well-known in the financial branch and simple to apply. The
second, however, is via binomial tree, which is more complex to model and the actual
innovation of this Thesis. Both techniques require discretization of the model, which can
be done in several ways described later. Thus, the purpose of this chapter is to explain
how to go from a theoretical model to a model that can be used in reality thanks to
computational platforms.

3.1. Monte Carlo method

In the financial sector, calculating the price of derivatives analytically and accurately is
often difficult due to the many sources of randomness in the models. The Monte Carlo
method is a suitable solution to this problem [36]. In fact, the Monte Carlo method (MC)
is based on the principle of simulations: the same calculation is replicated several times
by assigning different random values to the aleatory variables chosen according to the
distribution describing them in the model. This method therefore does not turn out to
be exact, but we will show that results obtained have very small confidence intervals. As
anticipated in the previous chapter, the choice of kernels in the PDV model leads to a
markovian model, a model in which the future state of the system depends only on its
current state and is independent of its past states, and thus the Monte Carlo method
turns out to be applicable.

3.1.1. Theory for application to vanilla options

Monte Carlo simulations are convenient since prices can be written as expected values,
which can indeed be computed exploiting simulations [21]. We start from the theory of
partial derivative equations (PDE [31]) related to vanilla options, to then develop the
one with respect to Monte Carlo, via the Feyman Kac formula [12], all in the context



30 3| Practical applications

of a risk-neutral probability measure (Q-measure).1 We consider a generic underlying St

modelled as follows:

St = S0e
rt+X(T ) (3.1)

where X(t) is an Itô process driven under the risk-free measure by the following dynamics

dXt = a (Xt, t) dt+ b (Xt, t) dWt X0 = x (3.2)

(x is directly related to the value of the underlying S0 = s). The purpose is to understand
how for a generic contingent claim, the price of the derivative can be obtained by knowing
the maturity T , the value of the underline, the payoff function ϕ (call, put, etc.) and the
interest rate (k(t) seen as a deterministic interest, then set equal to zero for simplicity).
The solving formula is

v(x, t) = EQ
[
e−

∫ T
t k(u)duϕ (XT ) | Xt = x

]
(3.3)

if we look at the log-price Xt or

F (s, t) = EQ
[
e−

∫ T
t k(u)duϕ (ST ) | St = s

]
(3.4)

if we look at the price St; it is the result of solving the PDE, analyzed by the Feyman
Kac formula.

To prove the formula about the log-price Xt, we consider the following PDE and the
terminal condition:{

∂tv(x, t) + a(x, t)∂xv(x, t) +
1
2
b2(x, t)∂2

xxv(x, t)− k(t)v(x, t) = 0

v(x, T ) = ϕ(x)
(3.5)

For the sake of simplicity we set the risk free k(t) = 0. Applying the Itô’s Lemma to
v(x(t), t) where dx(t) = a(x, t)dt+ b(x, t)dWt we get:

dv =

(
∂tv + a∂xv +

1

2
b2∂2

xxv

)
dt+ b∂xvdWt (3.6)

where the drift part (∂tv + a∂xv +
1
2
b2∂2

xxv) is equal to 0 according to the PDE (3.5).

1Particular probability measure that guarantees the absence of arbitrage possibilities in the model
considered.
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Let us now integrate:∫ T

t

dv = v (XT , T )− v(x, t) =

∫ T

t

b(x, t)∂xv(x, t)dWt

⇒ v(x, t) = v (XT , T )−
∫ T

t

b(x, t)∂xv(x, t)dWt

and computing the expectation on both sides:

E[v(x, t)] = E
[
v (XT , T )−

∫ T

t

b(x, t)∂xv(x, t)dWt

]
v(x, t) = E [v (XT , T )]

since that the expectation of an Itô integral with respect to a Wiener process is always
null, so:

v(x, t) = E [v (XT , T )] = E [ϕ (XT , T )] = E [ϕ (XT , T ) | Xt = x] (3.7)

In order to apply this formula to the models presented in the previous chapter (2-factor,
4-factor, 5-factor) some considerations must be made. It is necessary to keep in mind
that when dealing with the models described, the drift and diffusion term of the stochas-
tic differential equation (3.2) are referred to as vectors, since in the 2-factor model the
dynamics to be described are 3 (Xt, R1 and R2) and in the 4-factor model they are 5 (Xt,
R1,0, R1,1, R2,0 and R2,1). The parameters in these vectors must be selected in such a way
as to ensure the existence, uniqueness and boundedness of the solution of the SDE.

3.1.2. Considerations on Monte Carlo simulations

Now we want to understand the accuracy of the results obtained by the Monte Carlo
method, since so far we have focused exclusively on analytical reflections. Now, let’s
explore the numerical estimation of the expected value of a specific random variable, X,
using the Monte Carlo method [28]. We can represent this expected value with the symbol
θ, and its estimator is as follows:

θ̂n =

∑n
i=1X

(i)

n
(3.8)

where X =
(
X(1), . . . , X(n)

)
is a random vector with i.i.d. (same distribution for all the

variables). First, it is important to emphasize that θ̂n is an estimate of θ. As θ̂n has an
expected value of θ and a variance of Var(X)/n, as n increases, θ̂n gradually approaches
the true value of θ; this is affirmed by the law of large numbers.
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Theorem 3.1. Law of large numbers
Let (Xi)i>0 be a set of i.i.d. random variable with mean µ. If we define:

Y (n) =
1

n

n∑
i=1

Xi

than
lim

n→+∞
P (|Y (n)− µ| ≥ η) = 0 ∀η > 0

Second, we want to evaluate the quality of the approximation provided by θ̂n. For this
purpose, it is necessary to introduce another theorem: the Central Limit Theorem

Theorem 3.2. Central Limit Theorem
Let (Xi)i>0 be a set of i.i.d. random variables with mean µ and variance σ2. Then:

lim
n→+∞

∑n
i=1Xi − nµ

σ
√
n

∼ N (0, 1)

As a consequence:

lim
n→+∞

θ̂n − nθ

σ
√
n

∼ N (0, 1)

⇒ lim
n→+∞

(
θ̂n − θ

)
∼ N

(
0, σ2/n

)
The Monte Carlo error follows a normal distribution with a mean of zero and a standard
deviation of σ√

n
, which is often referred to as the standard error of MC. Consequently, if

we aim to decrease the error by a factor of N , we must increase the number of simulations,
denoted as n, by a factor of N2. This demonstrates that Monte Carlo simulations can be
computationally intensive.

The situation becomes more complicated considering that the variance of the random
variable, σ, is unknown and consequently it is necessary to use an estimate for it to
compute the approximation of the standard error, which becomes σ̂√

n
. The normalized

estimator,
(
θ̂n − θ

)
/(σ̂/

√
n), converges in probability to a standard normal distribution.

As a result, the cumulative distribution function of this normalized estimator converges
to the standard cumulative normal distribution, denoted as Φ(x):

P

(
θ̂n − θ

σ̂/
√
n

< x

)
−→

n→+∞
Φ(x)
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Now it is possible to estimate the probability that θ is in the interval
(
θ̂n − a σ̂√

n
; θ̂n + b σ̂√

n

)
:

P

(
θ ∈

(
θ̂n − a

σ̂√
n
; θ̂n + b

σ̂√
n

))
P

(
θ < θ̂n + b

σ̂√
n

)
− P

(
θ ≤ θ̂n − a

σ̂√
n

)

Considering that

P

(
θ̂n − θ

σ̂/
√
n

< −a

)
= Φ(−a)

and that

P

(
θ̂n − θ

σ̂/
√
n

< b

)
= P

(
θ̂n − θ

σ̂/
√
n

> −b

)
= 1− P

(
θ̂n − θ

σ̂/
√
n

≤ −b

)
= 1− Φ(−b) = Φ(b)

we have
P

(
θ ∈

(
θ̂n − a

σ̂√
n
; θ̂n + b

σ̂√
n

))
−→

n→+∞
Φ(b)− Φ(−a)

Moreover, in order to have a symmetric confidence interval we take a = b = zδ/2 where
Φ
(
zδ/2
)
= 1− δ/2: in this case indeed Φ

(
zδ/2
)
−Φ

(
−zδ/2

)
= Φ

(
zδ/2
)
−
(
1− Φ

(
zδ/2
))

=

1− δ and δ is set according to the confidence we want to have; in the results shown in the
next chapter, we will consider a 95% confidence interval.

3.1.3. Variance reduction techniques

In the previous section, we delved into the application of Monte Carlo simulations for
estimating θ, that represents an estimate for the price of the vanilla option, and its
corresponding confidence interval, which can be represented as:

(
θ̂n − zδ/2

σ̂√
n
; θ̂n + zδ/2

σ̂√
n

)
(3.9)

Here, the value of zδ/2 is determined by the desired level of confidence and is independent of
the specific problem. To enhance the precision of our estimate and narrow the confidence
interval, we can either increase the number of simulations, or apply variance reduction
techniques to σ̂ [22].

Let’s consider two distinct random variables, X and Y, for which we can compute their
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expected values, denoted as E[X] and E[Y ]. Let’s assume that theoretically, we can es-
tablish that E[X] = E[Y ]. Additionally, we can calculate their variances, denoted as
Var(X) and Var(Y ), and assume that theoretically, Var(X) > Var(Y ). Our objective is
to estimate θ = E[X], an unknown parameter, using Monte Carlo simulations by running

n simulations with a standard error of
√

Var(X)
√
n

.

Notably, since we know that E[X] = E[Y ] and Var(X) > Var(Y ), we can observe that,
with the same number of simulations using Monte Carlo technique on the random variable
Y results in a narrower confidence interval compared to using the same method on X.
Consequently, when estimating θ, it is more advantageous to utilize Y.

To exploit this observation and reduce variance, there are three primary variance reduction
techniques available:

• Antithetic Variables: generating pairs of antithetic random variables, where each
pair has opposite values. By averaging the results of these paired variables, you can
reduce variance and obtain a more accurate estimate of θ.

• Control Variables: adding an extra variable in the simulation to decrease variance
and enhance the estimation of θ.

• Importance Sampling: assigning varying weights to different simulation results
according to their significance, thereby obtaining a lower-variance estimate of θ.

These variance reduction techniques aim to improve the efficiency of Monte Carlo simu-
lations and provide more accurate estimates of the desired parameter θ. The technique
that will be used in practice in the results in this Thesis is that of antithetic variables:
let us explore it in detail.

We consider a framework that involves a random variable X and a function g(X), where
g(X) is the price of a vanilla option. The aim is to estimate the expectation θ = E[g(X)]

and have the smallest possible variance. We can sample the mean as follows:

θ̂n(X) =
1

n

n∑
i=1

g (Xi)

The precision of this estimate can be quantified by its variance:

Var
(
θ̂n

)
=

Var(g(X))

n
or σ̂2

n(g(X)) =
1

n− 1

n∑
i=1

(
g (Xi)− θ̂n(X)

)2
where σ̂2

n(g(X)) is the unbiased estimator of variance. The purpose is to reformulate the
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problem in such a way that the new problem retains the same expected value but has a
smaller variance. To achieve this, we introduce two random variables, X1 and X2, which
share the same distribution as X. We define a new random variable, Y , as follows:

Y =
1

2
[g (X1) + g (X2)]

The expected value of Y doesn’t change and it’s:

E[Y ] =
1

2
[E [g (X1)] + E [g (X2)]] = E[g(X)] (3.10)

Hence, the new random variable Y has the same expected value as g(X), but its variance
is:

Var(Y ) = Var

(
g (X1) + g (X2)

2

)
=

1

4
[Var (g (X1)) + Var (g (X2)) + 2Cov (g (X1) , g (X2))]

(3.11)

Assuming that Var(g(X1)) = Var(g(X2)), we can simplify the variance of Y as:

Var(Y ) =
1

2
[Var (g (X1)) + Cov (g (X1) , g (X2))] (3.12)

If g(X1) and g(X2) are independent, the covariance term disappears, and we obtain the
classical result for Monte Carlo simulation. However, if X1 and X2 are negatively corre-
lated and g(·) is a monotone function, then the covariance term is negative. In this case,
we have:

Var(Y ) = Var

(
g (X1) + g (X2)

2

)
≤ 1

2
Var (g (X1)) (3.13)

This demonstrates that by considering negatively correlated random variables X1 and X2

and exploiting the properties of g(·), we can achieve a reduced variance in the estima-
tion of θ using the new random variable Y . To summarize, antithetic variables offer the
advantage of smaller confidence intervals without a significant increase in computational
effort compared to Monte Carlo simulations. The fundamental concept of antithetic vari-
ables consists in their negative correlation, as the name suggests. Whenever a random
variable and its negatively correlated counterpart can be generated, the method becomes
applicable. Generally, to obtain negative correlation between random variables uniformly
distributed between 0 and 1, X1 is taken randomly and X2 = 1 - X1 is defined such that
they are both uniformly distributed and negatively correlated. In the specific case of using
the standard normal distribution, we can set X1 and X2 = -X1 so that both variables are
normally distributed and negatively correlated.
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3.2. Binomial tree method

In the previous section, a technique was introduced to be able to simulate the random
variables contained in the underlying. In order to simulate different scenarios, random
variables are sampled by knowing their probability distribution. In this section, however,
we will introduce a second method that does not need to sample all the random compo-
nents of the model, as we represent the set of paths of the underlying in a lattice. The
technique used is that of the binomial tree (Cox, Ross and Rubinstein 1979, [10]), which
is widely used in finance to price options, particularly vanilla options. A binomial tree,
also known as a two-step model, is a mathematical approach used to break down the
passage of time into distinct, discrete intervals when analyzing the pricing dynamics of
an underlying asset. In this approach, it is presumed that the asset’s value can either rise
or fall during each time interval with well-defined probabilities. The term "binomial" is
employed due to the fact that, during each interval, there are only two conceivable out-
comes: an increase or a decrease in the asset’s price. We will mainly analyze two methods
of introducing the binomial tree model, one referring directly to the underlying, and the
other related to the log-price.

3.2.1. The first step: price model

The CRR binomial tree model is based on the fact that the initial underlying is St has
probability p to increase in value and probability one minus p to decrease in value. This
event occurs at a given instant of time of the ∆t (= T

n
), calculated as the total time

you want to consider for your analysis divided by the number of time steps you want to
consider. As it is also intuitive to think, the greater the number of time steps is, the better
the approximation to reality given by the model. In this model it is therefore important
to specify the parameters, which are:

• u: growth coefficient of the variable St,

• d: coefficient of decreasing value of the variable St,

• p: probability that the value of the underlying will increase in value.

These parameters are closely related to those already "conventionally" present in the
dynamics of St, namely volatility and interest rate.

As can be seen from Figure 3.1 the underlying has only two possibilities for the first time
step; for subsequent time steps the situation remains similar.

Then looking at (Figure 3.1) and matching the mean and the variance of the St variable as
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Figure 3.1: CRR binomial tree model: first step

a weighted probability combination of the two outcomes obtained, the following equations
can be introduced: {

E [St+∆t] = Ste
r∆t

Var (St+∆t) = E
[
S2
t+∆t

]
− E [St+∆t]

2
(3.14)

The first one is immediate:

p · Stu+ (1− p) · Std = E [St+∆t] = Ste
r∆t −→ p =

er∆t − d

u− d
(3.15)

The second is much more complex:

S2
t · σ2∆t = S2

t · [p · u2 + (1− p) · d2]− S2
t · [p · u+ (1− p) · d]2 (3.16)

so

σ2∆t = p · u2 + (1− p) · d2 − p2 · u2 − 2 · p · (1− p) · u · d− (1− p)2 · d2

= p · (1− p) ·
[
u2 − 2 · u · d+ d2

]
= p · (1− p) · (u− d)2

(3.17)
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Let us focus on p · (1− p). We can write:

p · (1− p) = p− p2 =
er∆t − d

u− d
− e2r∆t − 2 · d · er∆t + d2

(u− d)2

=
er∆t · u− u · d− er∆t · d+ d2 − e2r∆t + 2 · d · er∆t − d2

(u− d)2

=
er∆t(u− d+ 2 · d)− u · d− e2r∆t

(u− d)2
=

er∆t(u+ d)− u · d− e2r∆t

(u− d)2

(3.18)

So now Eq. (3.17) can bhe seen as:

σ2∆t = er∆t(u+ d)− u · d− e2r∆t (3.19)

by defining d = 1
u
, we write:

σ2∆t = er∆t

(
u+

1

u

)
− u · 1

u
− e2r∆t −→ u+

1

u
=

σ2∆t+ 1 + e2r∆t

er∆t
(3.20)

Considering that e−r∆t ≈ (1− r∆t), er∆t ≈ (1 + r∆t), and r · σ2 ·∆t2 → 0, we gain

u+
1

u
= e−r∆tσ2∆t+ e−r∆t + er∆t

≈ σ2∆t+ 2
(3.21)

So
u2 −

(
σ2∆t+ 2

)
u+ 1 = 0

u =
σ2∆t+ 2±

√
(σ2∆t+ 2)2 − 4

2

=
σ2∆t+ 2±

√
σ4∆t2 + 4σ2∆t+ 4− 4

2

(
σ4∆t2 → 0

)
=

σ2∆t

2
+ 1± σ

√
∆t

(3.22)

Since
√
∆t is much larger than ∆t for a small ∆t, and σ2 is relatively smaller than σ,

than we can ignore the first term σ2∆t
2

and we obtain:

u ≈ 1± σ
√
∆t ≈ e+σ

√
∆t

We consider only the value greater than 1 since u is a multiplicative growth coefficient.

By expanding for multiple time intervals as shown in Figure 3.2, the tree expands widely.
Finally, it is possible to study the probability of states condition.
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Figure 3.2: The general tree for the binomial model with n = 4

Defining the random variable with binomial distribution

Y =

{
u, with probability p

d, with probability 1− p

we can define Sn = Sn−1Yn, n ≥ 1. Given that the random multipliers are assumed to be
i.i.d., the stochastic process {Sn : n ≥ 0} can be considered a Markov chain. This means
that the probability of future states depends solely on the present state, conditioned on
the past. The potential values of Sn are still determined by the probabilities following a
binomial distribution with parameters n and p:

P
(
Sn = Sukdn−k

)
=

(
n

k

)
pk(1− p)n−k, 0 ≤ k ≤ n (3.23)

3.2.2. The alternative model

Another binomial tree model introduced in Jarrow and Rudd’s 1982 paper [29] involves
utilizing the logarithmic representation of stock prices. Let us first recall the initial model
of this Thesis in which the log-price dynamics was described by a drift coefficient µ and
deterministic variance constant σ2. So

Xt = µt+ σWt, t ≥ 0, (3.24)
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and Xt is distributed as N (µt, σ2t).
Thus, in our case, the value of the underlying asset is represented by a Geometric Brownian
Motion:

St = S0e
Xt = S0e

µt+σWt , t ≥ 0 (3.25)

Dividing by the constant S(0) and taking logarithms, we get

ln(St/S0) = Xt = µt+ σWt, t ≥ 0. (3.26)

Notice that St has a lognormal distribution. The reasoning applied is similar to that in
the previous section, but reference is made to the log-price.

Figure 3.3: Binomial tree by Jarrow and Rudd: first step

U and D, shown in Figure 3.3, are defined as ln(u) and −ln(u) (= ln(d)) respectively,
and the mean and variance of the lognormal distribution are reasoned:{

E [ln (Sn/S0)] = nE [ln (S1/S0)] = nµ∆t

Var (ln (Sn/S0)) = nVar (ln (S1/S0)) = nσ2∆t
(3.27)

also seen as {
E [ln (S1/S0)] = µ∆t

Var (ln (S1/S0)) = σ2∆t
(3.28)

thanks to the fact that {Xn, n > 0} are i.i.d. Again, the first equation is resolvable
rapidly; we rewrite:

pU + (1− p)(−U) = (2p− 1)U = µ∆t −→ p =
µ∆t

2U
+

1

2
(3.29)

while, for computational simplicity, for the second term we focus on the moment second
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instead of the variance:

pU2 + (1− p)(−U)2 = U2 = σ2∆t+ (µ∆t)2 (3.30)

These equations can be combined to form a single quadratic equation. However, a less
formal simplification is made than in the previous section: ∆t should tend to be as small
as possible, and thus ∆t2 will result in even smaller. We can deduce that (µ∆t)2 should
be negligible compared to σ2∆t. If indeed (µ∆t)2 is suitably small relative to σ2∆t, we
can safely omit the term (µ∆t)2 with minimal loss of precision:

U2 ≈ σ2∆t (3.31)

which immediately yields to

U = σ
√
∆t and u = eU = eσ

√
∆t (3.32)

We remember that d = 1/u, we also have

d = e−U = e−σ
√
∆t (3.33)

Finally, Combining Eq. (3.29) and Eq. (3.32), we obtain

p =
1

2
+

µ

2σ

√
∆t (3.34)

Although the mean remains accurate, there is a small error in the second moment and
the variance.

3.2.3. Derivatives with binomial tree

The calculation of options using this method can be divided mainly into two categories:
one is referred to options in which there is no possibility of exercising before maturity
and in which the path of the underlying in the time interval considered does not affect
the value of the derivative, such as classic European Options. The other, instead, refers
to options in which the path is fundamental to the pricing and/or in which there is the
possibility of exercising the option before it expires, such as American Options:

• The first category of options is much simpler to compute. In particular, in this
context, after constructing the binomial tree and thus obtaining the value of the
underlying at the final time instant, it is possible to simply proceed to compute the
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vector of pay-offs, depending on the derivative we are going to consider, and then
compute the expected value and discount it using the interest-rate.

• The second category, is slightly more complicated. The key to valuing an option
with the binomial model is the concept of "backward induction". We start with the
maturity of the option and calculate its value at that time; next, we backward value
the option. To estimate the option price at each node in the tree, we need to consider
two possibilities for each time step: the underlying asset may increase or decrease
by a certain amount. If the option is profitable, its intrinsic value, which is the
difference between the price of the underlying asset and the strike price, is positive;
otherwise, it is zero.This back-valuation process is repeated until the present time
is reached, providing the option’s present price. This price represents what the
option is worth in present terms, taking into account future price fluctuations in the
underlying asset.

The result introduced in the next chapter, since we are dealing with European call options,
refer to the first of the two categories.

3.2.4. Binomial tree for a Wiener process

In the previous section, deterministic variance made the model simple, resulting in a
recombinant binomial tree. This means that starting at any node and having a growth
followed by a decrease in the underlying or vice versa, leads to the same result.

Given the complexity introduced in Chapter 2, the tree constructed (see Section 3.3.4)
does not turn out to be recombinant. In this section we want to build only the dynamics
of Wiener process (Wt in Eq. (3.35)) that is fundamental for subsequent calculations. Wt

willl be recombinant too: starting from the dynamics of St, simplifying its mean and
variance to obtain the dynamics of eWt and finally the one of Wt. Setting µ = 0 and
σ = 1, Eq. (3.35) becomes

Xt = Wt, t ≥ 0, (3.35)

We can reconsider d, u and p as

d = e−σ
√
∆t

u = eσ
√
∆t

p =
1

2

Recalling that W0 is equal to 0, it is possible to recreate the tree for eWt , as shown in
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Figure 3.4:

Figure 3.4: The binomial tree for a exponential Wiener process (GBM) with n = 4

As anticipated this is again a recombinant tree. Our purpose, however, is to obtain the
structure for the Wt process only and not eWt . We therefore proceed by eliminating the
exponential function as shown in Figure 3.5. Also in this context p = 1

2
:

Figure 3.5: The binomial tree for a Wiener (BM) process with n = 4
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3.2.5. Intuitive feedback

The results obtained in the Subsection 3.2.4 coincide with what can be intuitively thought.
In fact, it is enough to consider that the Wt (Wiener process) is itself a Brown motion,
with zero mean and variance equal to ∆t. Since the distribution is normal, and since Wt

has zero initial value W0 = 0, it is obvious that the probability of increasing or decreasing
of the same quantity are identical (p = 1

2
). Starting from the dynamics of this process

and lowering it into the equations of Path-Dependent Volatility models, we are able to
construct a non-recombinant binomial tree.

3.3. Time step discretization

In this section we will look at techniques by which we can discretize our model over time
to apply both simulation methods. The discretizations used are the main ones in the
world of finance: Euler scheme and Milstein scheme. Although these techniques are well
documented, their applications vary for each model. In this Thesis, we have developed the
appropriate calculations to make both pricing techniques applicable to the PDV model.

3.3.1. Euler scheme for Monte Carlo: 2 and 4-factor models

Let us consider the following situation where

St = S0e
Xt and Xt = µ(St)t+ σ(St)Wt, t ≥ 0 (3.36)

Starting from the differential form of the underlying and considering that in our models
of Chapter 2, µ(St) is always equal to zero, we have{

dSt = σ(St)StdWt

S0

(3.37)

and applying Itô’s formula, it can be derived the differential form for Xtdln(St) = dXt = −σ(St)
2

2
t+ σ(St)dWt

X0

(3.38)

Moving to the integral form, with ∆t small, we can rewrite Xt as

Xt+∆t = Xt +

∫ t+∆t

t

−σ (Su)
2

2
du+

∫ t+∆t

t

σ (Su) dWu (3.39)
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where t < s < t+∆t. The approximations that characterize Euler’s scheme [2] are:

∫ t+∆t

t

−σ (Su)
2

2
du ≈ −σ (St)

2

2
∆t (3.40)

∫ t+∆t

t

σ (Su) dWu ≈ σ (St) [Wt+∆t −Wt] (3.41)

The first, in a very intuitive way, holds constant at the initial time of the integral t the
value of the argument, multiplying it by only ∆t, since this value is considered to be
very small. The second approximation, slightly more complex since it involves stochastic
integrals, keeps yes constant the argument of the integral at time t, which is, however,
multiplied by the difference of two Wiener processes. By definition, that difference, is a
random variable distributed as a normal of zero mean and variance ∆t, so∫ t+∆t

t

σ (Su) dWu ≈ σ (St)
√

∆tZt+∆t (3.42)

where Zt+∆t ∼ N (0, 1) evaluated at the time t + ∆t. Applying this reasoning to PDV
2-factor model (2.10) wherever a stochastic integral is present, the following discretized
model is obtained:

Xt+∆t = Xt +

(
−1

2
σ2
t

)
∆t+ σt

√
∆tZt+∆t

σt = σ (R1,t, R2,t) = β0 + β1R1,t + β2

√
R2,t

R1,t+∆t = R1,t + λ1

(
σ (R1,t, R2,t)

√
∆tZt+∆t −R1,t∆t

)
R2,t+∆t = R2,t + λ2

(
σ (R1,t, R2,t)

2 −R2,t

)
∆t

(3.43)

Similarly, it is possible to obtain the concretized equivalent of the 4-factor model (2.17):

Xt+∆t = Xt +

(
−1

2
σ2
t

)
∆t+ σt

√
∆tZt+∆t

σt = σ (R1,t, R2,t) = β0 + β1R1,t + β2

√
R2,t

R1,t = (1− θ1)R1,0,t + θ1R1,1,t

R2,t = (1− θ2)R2,0,t + θ2R2,1,t

R1,j,t+∆t = R1,j,t + λ1,j

(
σ (R1,t, R2,t)

√
∆tZt+∆t −R1,j,t∆t

)
, j ∈ {0, 1}

R2,j,t+∆t = R2,j,t + λ2,j

(
σ (R1,t, R2,t)

2 −R2,j,t

)
∆t, j ∈ {0, 1}

(3.44)
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In both cases Xt is to be considered the log-price and Zt the variable to be sampled to
apply the Monte Carlo method.

3.3.2. Milstein scheme in Monte Carlo: 2-factor model

The key concept behind the Milstein scheme [30, 31] is that it enhances the accuracy
of discretization by considering expansions of the coefficients µ(St) and σ(St) via Itô’s
lemma, since the coefficients are functions of St. As before, we consider µ(St) = 0. The
SDE for the coefficient is:

dσt =

(
σ′
tµt +

1

2
σ′′
t σ

2
t

)
dt+ (σ′

tσt) dWt (3.45)

In the context of this expression, the prime notation denotes differentiation with respect
to St, and it’s important to note that the derivatives with respect to t are assumed to be
zero due to our assumption that σt does not directly depend on t. Let’s now focus on the
2-factor model: as already mentioned in Eq. (3.48), the differential of σ can be seen as

dσt =

(
−β1λ1R1,t +

β2λ2

2

σ2
t −R2,t√

R2,t

)
dt+ β1λ1σtdWt (3.46)

Consequently, the coefficients at time are expressed in integral form as follows:

σt+∆t = σt +

∫ t+∆t

t

(
σ′
s +

1

2
σ′′
sσ

2
s

)
ds+

∫ t+∆t

t

(σ′
sσs) dWs (3.47)

or as

σt+∆t = σt +

∫ t+∆t

t

(
−β1λ1R1,s +

β2λ2

2

σ2
s −R2,s√

R2,s

)
ds+

∫ t+∆t

t

β1λ1σsdWs (3.48)

Reconsidering the equation to discretize (3.39), we can proceed as before, but considering
the expansion of σt. The terms higher than order one as ds·du = O ((dt)2)) and ds·dWu =

O
(
(dt)3/2

)
can be ignored given their infinitesimal contribution. First we calculate the

approximation for the integral in time:∫ t+∆t

t

−σ (Su)
2

2
du ≈ −σ (St)

2

2
∆t (3.49)

Nothing has changed since the σ2 is the sum of σ, σds and σdWs and, composed with
du in the integal of (3.39), only σ2 remains, so the computation is as before. In contrast,
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the second integral, namely the stochastic integral, is more complex:

∫ t+∆t

t

σ (Su) dWu =

∫ t+∆t

t

(
σt +

∫ u

t

(
−β1λ1R1,s +

β2λ2

2

σ2
s −R2,s√

R2,s

)
ds

+

∫ u

t

β1λ1σsdWs

)
dWu

=

∫ t+∆t

t

σtdWu

+

∫ t+∆t

t

(∫ u

t

(
−β1λ1R1,s +

β2λ2

2

σ2
s −R2,s√

R2,s

)
ds

)
dWu

+

∫ t+∆t

t

(∫ u

t

β1λ1σsdWs

)
dWu

≈
∫ t+∆t

t

σtdWu +

∫ t+∆t

t

(∫ u

t

β1λ1σsdWs

)
dWu,

(3.50)

recalling that the product ds ·dWu leads to negligible terms. The first integral, as before,
is ∫ t+∆t

t

σtdWu ≈ σ (St) [Wt+∆t −Wt]

≈ σt

√
∆tZt+∆t

(3.51)

The second and more complex is:∫ t+∆t

t

(∫ u

t

β1λ1σsdWs

)
dWu ≈ β1λ1σt

∫ t+∆t

t

∫ u

t

dWs · dWu

= β1λ1σt

∫ t+∆t

t

(Wu −Wt) · dWu

= β1λ1σt

(∫ t+∆t

t

WsdWs −WtWt+∆t +Wt
2

) (3.52)

In order to solve the last integral we introduce a new variable Yt. Using Itô’s Lemma, it
can be easily shown that Yt has a solution2 Yt =

1
2
W 2

t − 1
2
t such that

∫ t+∆t

t

WsdWs = Yt+∆t − Yt =
1

2
W 2

t+∆t −
1

2
W 2

t − 1

2
∆t (3.53)

2 Indeed, ∂Y
∂t = − 1

2 ,
∂Y
∂W = W , and ∂2Y

∂W 2 = 1, so that dYt =
(
− 1

2 + 0 + 1
2 · 1 · 1

)
dt + (Wt · 1) dWt =

WtdWt.
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Substitute back into (3.52) to obtain∫ t+∆t

t

(∫ u

t

β1λ1σsdWs

)
dWu ≈ 1

2
β1λ1σt

[
(Wt+∆t −Wt)

2 −∆t
]

=
1

2
β1λ1σt

[
(∆Wt)

2 −∆t
]

where W∆t = Wt+∆t −Wt, which is equal in distribution to
√
∆tZ with Z distributed as

standard normal. Similar reasoning should be carried out on R1 since it too, an integral
form, has a stochastic integral that can thus be expanded more than Euler’s scheme We
can now rewrite the 2-factor model in discrete useful form using the Milstein scheme:

Xt+∆t = Xt +

(
−1

2
σ2
t

)
∆t+ σt

√
∆tZt+∆t +

1

2
λ1β1σt

(
Z2

t+∆t − 1
)
∆t

σt = σ (R1,t, R2,t) = β0 + β1R1,t + β2

√
R2,t

R1,t+∆t = R1,t + λ1

(
σ (R1,t, R2,t)

√
∆tZt+∆t −R1,t∆t

)
+

1

2
λ2
1β1σt

(
Z2

t+∆t − 1
)
∆t

R2,t+∆t = R2,t + λ2

(
σt (R1,t, R2,t)

2 −R2,t

)
∆t

(3.54)

3.3.3. Milstein scheme in Monte Carlo: 4-factor model

In order to apply the Milstein scheme to the 4-factor model, we need to go over what was
demonstrated in the previous section; in particular the differences come in the calculation
of the stochastic integral (3.52). We begin by introducing the differential form of σt the
for this model:

dσt =

(
−β1λ̄1R̄1,t +

β2λ̄2

2

σ2
t − R̄2,t√

R2,t

)
dt+ β1λ̄1σtdWt (3.55)

where
λ̄j := (1− θj)λj,0 + θjλj,1, j ∈ {0, 1}

R̄j,t :=
(1− θj)λj,0Rj,0,t + θjλj,1Rj,1,t

λ̄j

, j ∈ {0, 1}

as introduced in Eq. (2.16). In this case we have:∫ t+∆t

t

σ (Su) dWu ≈ σt

√
∆tZt+∆t +

1

2
λ̄1β1σt

(
Z2

t+∆t − 1
)
∆t (3.56)
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Finally, the dynamics is

Xt+∆t = Xt +

(
−1

2
σ2
t

)
∆t+ σt

√
∆tZt+∆t +

1

2
λ̄1β1σt

(
Z2

t+∆t − 1
)
∆t

σt = σ (R1,t, R2,t) = β0 + β1R1,t + β2

√
R2,t

R1,t = (1− θ1)R1,0,t + θ1R1,1,t

R2,t = (1− θ2)R2,0,t + θ2R2,1,t

R1,j,t+∆t = R1,j,t + λ1,j

(
σt

√
∆tZt+∆t −R1,j,t∆t

)
+

1

2
λ̄1λ1,jβ1σt

(
Z2

t+∆t − 1
)
∆t

R2,j,t+∆t = R2,j,t + λ2,j

(
σ2
t −R2,j,t

)
∆t

(3.57)

where, j ∈ {0, 1}. Again, we have to keep in mind that the dynamics of R1 have been
expanded and that Xt is always the log-price.

3.3.4. Binomial Tree discretization

We have seen how discretization techniques can be applied with the Monte Carlo method,
but the issue is slightly different for the binomial tree. Let us consider the 2-factor model
and recover the results proposed for Euler scheme with respect to the approximation of
the integral of Eq. (3.39). In particular, we consider the approximation (3.41):∫ t+∆t

t

σ (Su) dWu ≈ σ (St) [Wt+∆t −Wt]

In this approximation the dynamics of [Wt+∆t −Wt] can be represented as a binomial
tree as shown in fFe that, since the dynamics of R1 also includes a random factor, we
need to carry over time all the dynamics of the 2-factor model (R1, R2, Xt, and σt)
simultaneously. It is also immediate to note that the dynamics that compose the model
are not recombinant.
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Figure 3.6: Binomial tree for Xt and σt in the 2-factor model

Figure 3.6, although the time interval considered are only two, shows how much the
binomial tree of X and sigma processes can expand. In particular, the number of values
at a given instant of time is exponential with respect to n, and the same holds for process
R1 and R2 in Figure 3.7. All initial values are calculated by calibrating the model to
empirical data.

Figure 3.7: Binomial tree for R1 and R2 in the 2-factor model

The idea behind applying the binomial model of the Wiener process to all dynamics of
the 2-factor model is to replace, at each time interval, the stochastic component, denoted
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by ∆tZ in the previous section, with the same possibility of increasing or decreasing
√
∆t,

as shown W∆t. We will use the following discretization with nontrivial expedients

Xt+∆t = Xt +

(
−1

2
σ2
t

)
∆t+ σtW∆t

σt = σ (R1,t, R2,t) = β0 + β1R1,t + β2

√
R2,t

R1,t+∆t = R1,t + λ1 (σ (R1,t, R2,t)W∆t −R1,t∆t)

R2,t+∆t = R2,t + λ2

(
σ (R1,t, R2,t)

2 −R2,t

)
∆t

(3.58)

If for Monte Carlo it was enough simply to replace the Wiener process with a sampling
of the normal distribution, for the binomial tree the path must be considered.

We can therefore develop the first time step for Xt:

Xu
1 = X0 +

(
−1

2
σ2
0

)
∆t+ σ0[

√
∆t]

Xd
1 = X0 +

(
−1

2
σ2
0

)
∆t+ σ0[−

√
∆t]

The first step in the binomial model for the Wiener process has been introduced.

Considering this, we can define the first step for all the dinamics:

• R1,1:
Ru

1,1 = R1,0 + λ1

(
σ0[

√
∆t]−R1,0∆t

)
Rd

1,1 = R1,0 + λ1

(
σ0[−

√
∆t]−R1,0∆t

)
• R2,1:

Ru
2,1 = R2,0 + λ2

(
σ2
0 −R2,0

)
∆t

Rd
2,1 = R2,0 + λ2

(
σ2
0 −R2,0

)
∆t

• σ1:
σu
1 = β0 + β1R

u
1,1 + β2

√
Ru

2,1

σd
1 = β0 + β1R

d
1,1 + β2

√
Rd

2,1

In this first step we begin to understand the complexity and precision that is required to
proceed along the tree. Consider the variable σ: this is composed of the values of the
dynamics of R1 and R2, which can increase or decrease. To calculate the increased amount
of σ, we must consider the increased values of R1 and R2. Similarly when it decreases.
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This concept becomes clearer as early as the following step:

• X2:

Xuu
1 = Xu

1 +

(
−1

2
σu
1
2

)
∆t+ σu

1
2[
√
∆t]

Xud
1 = Xu

1 +

(
−1

2
σu
1
2

)
∆t+ σu

1
2[−

√
∆t]

Xdu
1 = Xd

1 +

(
−1

2
σd
1

2
)
∆t+ σd

1

2
[
√
∆t]

Xdd
1 = Xd

1 +

(
−1

2
σd
1

2
)
∆t+ σd

1

2
[−

√
∆t]

• R1,2:
Ruu

1,2 = Ru
1,1 + λ1

(
σu
1 [
√
∆t]−Ru

1,1∆t
)

Rud
1,2 = Ru

1,1 + λ1

(
σu
1 [−

√
∆t]−Ru

1,1∆t
)

Rdu
1,2 = Rd

1,1 + λ1

(
σd
1 [
√
∆t]−Rd

1,1∆t
)

Rdd
1,2 = Rd

1,1 + λ1

(
σd
1 [−

√
∆t]−Rd

1,1∆t
)

• R2,2:
Ruu

2,2 = Ru
2,1 + λ2

(
σu
1
2 −Ru

2,1

)
∆t

Rud
2,2 = Ru

2,1 + λ2

(
σu
1
2 −Ru

2,1

)
∆t

Rdu
2,2 = Rd

2,1 + λ2

(
σd
1

2 −Rd
2,1

)
∆t

Rdd
2,2 = Rd

2,1 + λ2

(
σd
1

2 −Rd
2,1

)
∆t

• σ2:
σuu
2 = β0 + β1R

uu
1,2 + β2

√
Ruu

2,2

σud
2 = β0 + β1R

ud
1,2 + β2

√
Ruu

2,2

σdu
2 = β0 + β1R

du
1,2 + β2

√
Rdu

2,2

σdd
2 = β0 + β1R

dd
1,2 + β2

√
Rdd

2,2

Consider, for example, the value Xuu
2 , which depends on σ1. In this particular case it

is not possible to consider σd
1 , the value of sigma that at time one had a decrease in

value. In fact, the first u of Xuu
2 indicates that this path at time one went up, and this
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is true for all the dynamics that make up that value, so we must consider σu
1 . All this is

caused by the fact that the tree does not turn out to be recombinant. The same reasoning
applies when any variable travels along a path on which it decreases. This reasoning
must be kept in mind for all dynamics and all time instants, and this effect from simple
discretization (3.58) is not known.

In a similar way, it is possible to proceed with the 4-factor model:

Xt+∆t = Xt +

(
−1

2
σ2
t

)
∆t+ σtW∆t

σt = σ (R1,t, R2,t) = β0 + β1R1,t + β2

√
R2,t

R1,t = (1− θ1)R1,0,t + θ1R1,1,t

R2,t = (1− θ2)R2,0,t + θ2R2,1,t

R1,j,t+∆t = R1,j,t + λ1,j (σ (R1,t, R2,t)W∆t −R1,j,t∆t) , j ∈ {0, 1}

R2,j,t+∆t = R2,j,t + λ2,j

(
σ (R1,t, R2,t)

2 −R2,j,t

)
∆t, j ∈ {0, 1}

(3.59)

with proper consideration in the development.

Finally we see the non-applicability of the Milstein scheme discretization to the binomial
tree for this model. The fundamental approximation, again in the case of the 2-factor
model, is ∫ t+∆t

t

σ (Su) dWu ≈ σtW∆t +
1

2
λ1β1σt

(
W 2

∆t −∆t
)

(3.60)

Considering the fact that the binomial tree of σtW∆t at each time interval can increase or
decrease by

√
∆t, it results that

(
[±

√
∆t]2 −∆t

)
= 0 (3.61)

and thus null the additional component of the Milstein scheme. The same holds true for
the 4-factor model.

3.4. VIX: implementation

In 2004, the CBOE Futures Exchange (CFE) began trading VIX futures, which were
calculated based on a portfolio of options, as shown in papers [16] and [17]. The VIX
index is a measure of market volatility that is constructed from options, rather than
stocks; in particular the VIX Index measures 30-day expected volatility of the S&P 500
Indexand the calculation takes as input the market prices of SPX options. Its price reflects
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the market’s anticipation of future volatility and similar to traditional indices, the VIX
index can be computed using a formula:(

V IX

100

)2

=
2

T

∑
i

∆Ki

K2
i

eRTQ (Ki)−
1

T

[
F

K0

− 1

]2
(3.62)

where we have:

• T Time to expiration

• F Forward index level derived from index option prices

• K0 First strike below the forward index level, F

• Ki Strike price of iit out-of-the-money option; a call if Ki > K0 and a put if
Ki < K0; both put and call if Ki = K0

• ∆Ki = Ki+1−Ki−1

2
(Interval between strike prices - half of the difference between

strike prices Ki−1 and Ki+1)

• R Risk-free interest rate to expiration

• Q (Ki) The midpoint of the bid-ask spread for each option with strike Ki

Since this model turns out to be very complex, alternative ways must be found.

3.4.1. VIX definition

Most of the current literature on volatility derivatives using a stochastic volatility model
as the basic concept: this approach establishes a connection between the options market
and the volatility derivatives market, but considers the correlation between the variance
and the pricing process (of the S&P 500 Index) to be null. Demeterfi et al. in [13] (1999)
showed an initial review of the Eq. (3.62). They provided an alternative definition for
VIX that places it in direct correlation with the volatility of the model replicating the
SPX. Considering as a generic model

dSt

St

= rdt+ σ(St)StdWt (3.63)

for the SPX, we can define the VIX as only a function of σt(:= σ(St))3:

V IX2
t = EQ

t

[
1

τ

∫ t+τ

t

σ2
sds

]
(3.64)

3Use of risk-neutral probability measure (Q-measure).
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where τ indicates the 30-day time interval typical of the VIX. In practice, this formula
does not directly link the VIX index to the value of the underlying asset (SPX). Yingzi
Zhu in "Variance Term Structure and VIX Futures Pricing" ([40]) developed the steps to
rewrite Eq. (3.63) by highlighting the link between the two indices. We now apply Itô’s
lemma:

d lnSt = rdt− 1

2
σ2
t dt+ σtdWt (3.65)

that combined with (3.63) becomes

d lnSt =
dSt

St

− 1

2
σ2
t dt (3.66)

If we now integrate over a time interval [t, t+ τ ] we gain:∫ t+τ

t

d lnSt = lnSt+τ − lnSt =

∫ t+τ

t

dSt

St

− 1

2

∫ t+τ

t

σ2
t dt (3.67)

which we can rewrite as∫ t+τ

t

σ2
t dt = 2

∫ t+τ

t

dSt

St

− 2 (lnSt+τ − lnSt) (3.68)

Let’s focus on the stochastic integral
∫ t+τ

t
dSt

St
: we can use in fact the definition given

in (3.63) and develop the integral as:∫ t+τ

t

dSt

St

=

∫ t+τ

t

rdt+

∫ t+τ

t

σtdWt (3.69)

Considering a zero interest rate as in our case, the integral turns out to be zero; for the
second integral, namely the stochastic one, the reasoning is more complex. The integral
alone, having a Brownian motion as driver turns out to be a martingale, and thus does
not allow us to obtain an effective result. Knowing, however, that the starting integral is
contained in an expected value and that the linearity rule applies, we can rewrite (3.69)
as:

Et

[∫ t+τ

t

dSt

St

]
= Et

[∫ t+τ

t

rdt

]
+ Et

[∫ t+τ

t

σtdWt

]
= Et

[∫ t+τ

t

σtdWt

] (3.70)
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Now, since we have the expected value of a martingale4, we conclude that its value is zero.
So (3.68) becomes

Et

[∫ t+τ

t

σ2
t dt

]
= 2Et

[∫ t+τ

t

dSt

St

]
− 2Et [(lnSt+τ − lnSt)]

= −2Et [(lnSt+τ − lnSt)]

= 2Et [ln (St)]− 2Et [(lnSt+τ )]

(3.71)

recalling that the log-price by definition is X, we can redefine the VIX on the basis of
X, thus going on to emphasize the direct link between the volatility index and the asset
price on which it is based:
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√
Et

[
1

τ

∫ t+τ

t

σ2
sds
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=

√
2

τ
(Xt − Et [Xt+τ ])

(3.72)

So to simulate the VIX at a given instant of time t, one must simulate the log-price of
the underlying asset up to t and then from that moment again up to time t+ τ .

We begin by considering the case in which the underlying is simulated using the Monte
Carlo method. Let us say that we want to simulate only one path of V IXt up to time
t: first we produce a single simulation of the underlying (the log-price) up to this instant
exactly as exposed in the previous sections, producing a value for Xt. To compose the
remaining part of the index we need to compute Et [Xt+τ ], which is the expected value
of the simulations of the log-price process starting t, up to t + τ . At the practical level,
to do this, the information at time t of all the dynamics that make up the model is
taken and used as initial conditions for the secondary simulations of the process; having
obtained a set of dynamics, with the expected value we calculate only one value of V IXt.
This process must be simulated multiple times in order to be used in reality to ensure
that the Monte Carlo method is sufficiently stable and accurate. It can therefore be seen
immediately how time-consuming this method is: for each simulation of the log-price
up to time t, additional simulations must be performed to complete the calculation of

4Recall that a martingale is called a stochastic process (Yt)0≤t≤T such that each Yt is Ft-measurable
and integrable and that, taken s < t, the equality Ys = E [Yt | Fs] holds.
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V IXt. This algorithm is called ”nested loop” and, calling n1 the number of simulations
of the initial loop, and n2 the number of simulations of each inner loop, it needs a total of
n1 ·n2 paths in order to compute the vector of different paths for the V IXt. Obviously, in
order to obtain accurate results, it turns out that the total number of simulations to be
performed must be very high, and consequently high computational times are expected.

Considering instead the binomial tree as a pricing technique, the matter is different. The
concept of simulating Xt and later Xt+τ starting from t persists, but the method changes
completely. In particular, thanks to the non-recombinant tree structure, by simulating the
log-price of the model up to time t+ τ it is possible to obtain all the information we need.
In fact, thanks to the particular structure of this model, one can see the simulation tree of
Xt+τ as an initial tree going from 0 to t to which, for each node obtained, an additional tree
with such starting conditions is created. Conceptually this seems analogous to simulation
by the Monte Carlo method, and indeed it is, but on a practical level it is not. In fact
considering a generic simulation Xt, contained in that of Xt+τ , is already present the set of
paths to get to t+τ starting from t to compute Et [Xt+τ ]. Considering all nodes present at
instant t of the single generated tree, it is then possible to create a vector of simulations
for V IXt to be used later in calculating derivative prices. Thanks to the recombinant
tree, by developing two simulations starting from the same instant t, it is not possible
for the paths to be in common. This makes it easy to identify the development of a
model dynamics from a given instant onward. If the tree had been recombinant, however,
highlighting the growth of a dynamic (the secondary tree) would not have been trivial.
In fact, more attention would have had to be paid to actually tracking the development
of a given node, even if the dynamics intersect with those of the paths of other nodes.

Both methods then simulate the value of the log-price of the model up to time t and then
for each result obtained, a further series of simulations is carried out up to time t+τ . The
abysmal practical difference between the two techniques lies in the fact that for Monte
Carlo it is necessary to apply the ”nasted loop”, while for the recombinant binomial tree
method, it is sufficient to directly simulate the log-price dynamics in the interval 0, t+ τ .
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Having described the model from a theoretical point of view and analyzed it from an
application perspective, in this chapter we move on to analyze the actual results of apply-
ing the model. In particular, we will go on to compare the various techniques described,
highlighting strengths and weaknesses of the pricing techniques that can be used. We will
mainly refer to the calculation of European call and put options through which implied
volatility can be calculated: it’s fundamental since, in real application in the financial
world, it is very important to be able to describe the smile of implied volatility.

4.1. General dynamics of the model

We now want to take a general look at what the results obtained are with respect to the
model’s ability to reproduce a financial performance. Specifically, by going to replicate
the value of the log-price, volatility, and R1 and R2 features, we want to emphasize the
range of existence of certain values.

4.1.1. Dynamics with Monte Carlo

We begin by analyzing the dynamics produced by the Monte Carlo method, applying
variance reduction technique "antithetic variable" and using Milstein discretization since
σt has non-trivial dynamics. Figure 4.1 shows the trends of the four dynamics of the
4-factor model (actually, instead of R1,0,t, R1,1,t, R2,0,t, R2,1,t, are used R1,t and R2,t),
starting from the values introduced by Guyon and Lekeufack in [25] shown in Table 4.1.

Parameters value of the 4-factor model

λ1,0 λ1,1 λ2,0 λ2,1 β0 β1 β2 θ1 θ2

55.0 10.0 20.0 3.0 0.04 -0.13 0.65 0.25 0.5

Table 4.1: Set of parameters selected by Guyon and Lekeufack for the simulation of the
4-factor Markovian PDV model
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With respect to the initial values of the variables with dynamics instead, we used the
values presented in Table 4.2.

Initial value of the 4-factor model variables

X0 R1,0,0 R1,1,0 R2,0,0 R2,1,0

0.0 0.168 0.244 0.005 0.003

Table 4.2: Initial values of dynamic variables in the 4-factor Markovian PDV model

(a) log-price X dynamics (b) σtvolatility dynamics

(c) R1 dynamics (d) R2 dynamics

Figure 4.1: Dynamics of 10 simulations of the 4-factor model developed over a period of 1
month by Monte Carlo method with initial value from Table 4.1 and Table 4.2. We used
10 steps per day.

Looking at Figure 4.1, it is possible to deduce and confirm concepts already expressed
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and explored in Chapter 2. Looking at the X-dynamics, it can be seen that most of
the routes after one month reach similar values to each other, and on average slightly
higher than the starting value. Only a few dynamics differ from this trend: thanks to
these, it is possible to see how volatility values, in correspondence to these events, tend
to increase. The dynamics of R1, as anticipated earlier, is able to objectively explain the
Leverage Effect, (the fact that volatility, in the presence of a decline in asset value, tends
to increase), giving a very positive contribution, through the negative coefficient β1, to
the value of volatility. The capacity, on the other hand, for volatility clustering, that is
the tendency to follow periods characterized by high volatility with equally high volatility
and periods of low volatility with equally low volatility, is provided by the presence of R2.
In fact, this dynamic, compared with R1, is much less volatile with an existence range
generally between [0, 2], quite different from R1, which is generally in the range [−15, 4]

instead. Even if obvious, it is important to note that the values of R2, which make up
volatility through a square root function, turn out to be always positive and therefore
volatility also turns out to be so. The purely negative R1 contributions are balanced by
a negative β1 coefficient.

4.1.2. Dynamics with Binomial Tree

We have seen the results produced by the Monte Carlo method, let us continue with
those produced by the binomial tree method. Let us focus on the differences involved in
adopting the binomial approach: it is possible to see immediately in Figure 4.2, despite
the fact that 10 different paths were randomly chosen from each other, a lattice structure
within the evolution of the dynamics. This effect obviously tends to be more evident by
increasing the number of simulations, at the expense of large computational costs. This
structure is obviously due to the possibility, at a given instant of time, of being able to
continue only along two paths, concept behind the basic of the binomial tree. Despite this
trend, however, the considerations made with respect to all dynamics are confirmed: R1

remains mostly negative, R2 and σt take only positive values, and the log-price struggles
to grow, preferring paths along which it decreases in value.

Since the binomial tree is a non-recombinant tree in this case, at each time step for each
value found the previous instant, two separate values will be generated for each node that
are not linked together. This makes each vector of dynamics equal in length to 2n, where
n denotes the time step at which we are. It is clear that despite the fact that the number
of steps may not be too large, it is possible to obtain high size vectors. Obviously from the
point of view of computational cost this is not insignificant since high time discretization
cannot be achieved. Thus, the binomial model, like other techniques used in the pricing
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(a) log-price X dynamics (b) σtvolatility dynamics

(c) R1 dynamics (d) R2 dynamics

Figure 4.2: Dynamics of 10 simulations of the 4-factor model developed over a period of
1 month by binomial tree method with initial value from Table 4.1 and Table 4.2. We
used 26 total steps.

world, appears to be ineffective in representing the performance of the underlying despite
the fact that, from a pricing perspective for derivatives, it can be a viable alternative.
For completeness of analysis, we then go on to observe over a one year time frame the
behavior of the model dynamics; we therefore use of the Monte Carlo method.

4.1.3. 1-year Monte Carlo dynamics

In the previous section, we analyzed the dynamics of the model and their significance over
a time frame of one month in order to compare the results of the Monte Carlo method
and the binomial tree. As explained the binomial tree has a limitation with respect to
the time frame in which it can be adopted. We present below in Figure 4.3 the dynamics
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of the 4-factor model for a time frame of one year. As can be seen, the considerations
made in Section 4.1.1 and 4.1.2 are confirmed.

(a) log-price X dynamics (b) σtvolatility dynamics

(c) R1 dynamics (d) R2 dynamics

Figure 4.3: Dynamics of 10 simulations of the 4-factor model developed over a period of
1 year by Monte Carlo method with initial value from Table 4.1 and Table 4.2. We used
10 steps per day.

All results with respect to the dynamics we have seen come from the study of the 4-
factor model, as it is more complete than the 2-factor model where the TSPL kernel is
not well represented. However, the 2-factor model, as Figure 2.3 shows, despite having a
simple exponential kernel, manages to replicate the TSPL kernel well for short times. It
therefore turns out to be an efficient model when it comes to pricing for derivatives with
short maturities.
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4.2. Pricing results

In this section we want to present, compare, and graphically represent the results of the
smiles of implied volatility of both the SPX and the VIX. To do this we will use European
options: we will need to calculate the price of European calls, and consequently the
implied volatility, for strikes above the price of the underlying asset (out of the money,
OTM), and European puts for strikes below the price of the stock (in the money, ITM).
We are going to consider different strikes for different maturities: strikes will vary from
75% to 104% of the underlying for options with a maturity of one month, to values from
75% to 120% for options with a maturity of one year. The same strikes that Guyon and
Lekeufack used in their paper were chosen. To calculate the implied volatility, having
obtained the price of the derivative and knowing the underlying R0, the interest rate r,
and the maturity T , it is possible to use Matlab1.

We have already discussed the limitation of time steps in the binomial tree method.
However, there is a solution to expand this limitation: the nested binomial tree approach.
In this case, each node created at a specific time triggers the generation of a new tree using
the conditions present at that time as a starting point. As a result, this method allows a
significant increase in the number of time steps. Although not used in the results shown
in Figure 4.2, this technique is applicable to European options and remains remarkably
fast and efficient.

4.2.1. 2-factor model: pricing result

Let us introduce the value of the parameters to be adopted in the 2-factor model presented
by Guyon and Lekeufack in their paper [25] in Table 4.3.

Parameters value of the 2-factor model

λ1 λ2 β0 β1 β2

62.0 40 0.08 -0.08 0.5

Table 4.3: Set of parameters selected by Guyon and Lekeufack for the simulation of the
2-factor Markovian PDV model

The initial value of the 2-factor model are summarized in Table 4.4.
1In particular is used blkimpv: function to compute the Implied volatility for futures options from

Black model on the Matlab calculator.
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Initial value of the 2-factor model variables

S0 R1,0 R2,0

100.0 -0.044 0.007

Table 4.4: Initial values of dynamic variables in the 2-factor Markovian PDV model

We present the results graphically in Figure 4.4:

(a) SPX implied volatility smile with MC (b) SPX implied volatility smile with BT

(c) Relative error and computational time (d) Relative error and computational time

Figure 4.4: General results related to the SPX implied volatility results for the 2-factor
model. Values and comparison in computational times of Monte Carlo and binomial tree
methods. Initial value for the model from Table 4.3 and Table 4.4.

We start by analyzing Figure 4.4a in which are shown the implied volatility values for
European derivatives calculated from an underlying simulated by me Monte Carlo Carlo
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method. Specifically, to obtain the results presented, 10 different simulations were run
where each was composed of 108 paths and 10 time steps per day; an average was then
performed to obtain the derivative prices and then the implied volatility smile for SPX.
This process was performed once for each maturity analyzed (1 month, 3 months, 6
months, and 1 year), and given the large number of paths to obtain a minimum error,
the time for each is more than 10 minutes. Derived prices obtained by this method were
chosen as benchmarks for the 2-factor model for future comparisons.

In Figure 4.4b we always have the implied volatility smile for the 2-factor model, but
calculated via the binomial tree. As previously suggested the main limitation for this
method concerns the number of total steps that can be consider; in fact, since the tree is
non-recombinant, the length of the vectors used for the simulation tends to grow exponen-
tially. Through nested paths, however, it is possible to reach 38 total time steps (running
only one nested loop) and still obtain good results in reasonable time. This technique,
on the other hand, is successful only for relatively short maturities; as can be seen for
maturities of one month and three months the values obtained are consistent with those
in Figure 4.4a, for but six months or more (not shown) the difference between the two
methods is obvious.

The financial world, and more particularly the world of trading, is becoming faster and
more dynamic. This phenomenon makes pricing results obtained in long time frames of
low interest. We therefore analyze errors and computational times of the two models
using the results in Figure 4.4a as benchmarks (we compare only data with maturities of
1 month and 3 months). To compare the two models we will use the relative error (in
percentage) with respect to the benchmark respectively as the number of simulation and
daily steps increases for the Monte Carlo method and the number of total steps for the
binomial tree method. For the Monte Carlo method, there will be no multiple simulations
used and then averaged but directly one.

Referring to Figure 4.4c, we observe how the error varies over time with respect to the
price of the derivative with maturity one month. Considering that the error calculated
by the binomial method is inversely proportional to the number of intervals ( 1

n
) and that

the computational time is linear with the number of steps, it appears as in the figure
that the error is inversely proportional to time (1

t
). For the Monte Carlo method, on

the other hand, the error is inversely proportional to the square root of the number of
simulations applied ( 1√

Nsim
), and in this case, considering the relationship with time, we

obtain a trend, even if more rough, inversely proportional to the root of time ( 1√
t
). For

computational times below approximately four seconds, the binomial tree method brings
better results per decimal percentage point, which, with large investments, can be crucial.
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For longer computational times, on the other hand, the Monte Carlo method is better
and succeeds in getting closer to zero. The area between the two curves at the initial
instants is an indication of how much better one method forms than the other. In fact by
increasing maturity to three months (Figure 4.4d) this area decreases. In this case, the
best discretization that can be applied by the binomial tree method leads to an overall
increase in relative error. This causes that the point of convenience between one method
and the other is at three seconds, not four as the previous case.

4.2.2. 4-factor model: pricing result

We now proceed with the analysis and comparison of the results obtained through the 4-
factor model, which will be similar to the 2-factor model since for short time intervals the
kernels of both models approximate very well the TSPL kernels. As before in Figure 4.5
we show the results. We use initial value from Table 4.1 and Table 4.2. Figure 4.5a and
4.5b show very similar values for maturities of 1 month and 3 months; from 6 months on,
however, the results diverge very clearly.

By analyzing Figure 4.5c and 4.5d, instead, it is possible to expand on the previous
considerations. Comparing the computational times with respect to the 2-factor method,
for both maturities calculated by binomial tree method, it is possible to observe that the
relative error is greater given an instant of time. This is mainly due to the fact that
the number of dynamics on which another non-recombinant tree must be constructed
increases. This phenomenon is less evident in the application of the Monte Carlo method
since, although the number of dynamics increases, the simulations vector of the stochastic
component of the PDV model does not change. This causes that the area between the two
error curves in the 4-factor model is smaller than in the 2-factor model. It also decreases
more by going from Figure 4.5c and Figure 4.5d; this is confirmed by the fact that the
convenience points between one method and the other drop respectively to 3 and 2.4
seconds. The trends of relative error in relation with time confirm the arguments made
earlier.

It should be noted that for both methods this model results in a significant increase
in computational cost in terms of memory. Simulations obtained with Monte Carlo are
affected by a simple increase in the number of variables. The non-recombinant tree, on the
other hand, involves the addition of two new integer diagrams: considering that the vectors
can grow to sizes of more than 100 million values, the memory of the calculator is put to a
serious effort. For this reason, again considering short deadlines, the 2-factor model may
be a viable alternative because, having fewer dynamics, it requires less computational
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cost.

(a) SPX implied volatility smile with MC (b) SPX implied volatility smile with BT

(c) Relative error and computational time (d) Relative error and computational time

Figure 4.5: General results related to the SPX implied volatility results for the 4-factor
model. Values and comparison in computational times of Monte Carlo and binomial tree
methods. Initial value for the model from Table 4.1 and Table 4.2.

4.2.3. General considerations

Analyzing the implied volatility smile for the SPX, it can be affirmed that the binomial
tree method turns out to be a valid alternative to Monte Carlo simulations, which are
very popular in the financial world. For short maturities in fact it produces the best
results in less time. Despite the fact that these are seconds, in today’s rapid financial
transactions, they can make the difference. The best computational time, however, comes
at the expense of computational cost. In order to apply this method to both the 2-factor
and 4-factor models, it is necessary to allocate a large amount of memory for the variables.



4| Analysis of pricing results 69

4.3. The big step: VIX implied volatility smile

One of the main achievements introduced by the PDV model is the ability to simulate the
smiley of the implied volatility of the VIX in a manner very similar to empirical data. This
problem, is addressed by using nested loops and Monte Carlo simulations (the approach
proposed in Guyon and Lekeufack (2023) [21] to price VIX derivatives); in this the results
are accurate, but with a high computational cost in terms of memory and computation
time. In order to analyze the values graphically, we simulate the VIX index at one month
and two months (maturities on which the binomial tree model is found to work) with
the 2-factor model. We use initial value from Table 4.3 and Table 4.4. Knowing that
the value of VIX is about 0.2 and having produced the simulations up to maturity, we
calculate calls and puts with strikes ranging from 0.15 to 0.5 . As in the previous section,
to compute the smile of implied volatility, we use "out of the money" European calls and
"in the money" European puts.

4.3.1. VIX derivatives

In Section 3.4.1 we highlighted the direct link between the value of the VIX and the price
of the underlying asset to which it refers. The final goal is to understand what results
the model introduced in this Thesis brings with respect to the smile curve of implied
volatility for the variance index. First we need to calculate the price of calls and puts
for different strikes given an expiration date. We then proceed similarly for a generic
underlying, specifically for European call options we will have

C(VIX)EU = E0

[
(V IXT −K)+

]
(4.1)

where T denotes the maturity and K the strike. Similarly, we deduce the formula for the
European put:

P (VIX)EU = E0

[
(K − V IXT )

+] (4.2)

For both derivatives, it is therefore necessary to simulate only the VIX up to time T.
Then, through a simple expected value that takes into account the discount factor (null
in our case since r is zero), obtain the option prices. Recall that given a certain maturity,
to simulate the VIX up to that time (T ), the log-price Xt must be simulated up to instant
T + τ for the tree model, while for the Monte Carlo Method, starting from T , we have to
resimulate to arrive at T + τ .
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4.3.2. VIX results

The nested loops used for the Monte Carlo method occupy a very large amount of memory
and do not allow the use of sufficiently large vectors for simulations. This results in a very
high error and especially much related to the random component to be attributed to the
stochastic variables in the model. Nested cycles, because of their structure, take a long
time to produce results; the implied volatility curve takes times longer than 7 minutes for
each expiration.

We now discuss the results obtained from the binomial tree (Figure 4.6b), a new method
for dealing with the pricing of Guyon and Lekeufack’s model. Through the tree structure
in fact, given a certain instant of time, a smaller tree of equal size is created for each
value. This peculiarity is very convenient in the simulation of the VIX since to calculate
its value in one month’s time, we replicate for two months the value of SPX and then, at
the midpoint of the time interval, considers the beginning of the 30 days typical of the
VIX. The same logic can be applied for the two-month VIX: we simulate the SPX for
three months and consider the values at 2 and 3 months. Thus, having in the binomial
tree already available the SPX values needed for the mix calculation, the computational
times are very low: only 11 seconds per maturity (see Table 4.5).

Computational timing for the VIX implied volatility smile.

1-month maturity 2-months maturity

Monte Carlo 6.8 min 7.1 min

Binomial Tree 8.54 sec 10.96 sec

Table 4.5: Computational timing for different methods and maturities

The values presented in Figure 4.6 are different from each other because both methods
have weaknesses related to the calculator that is used. In particular, considering the
simulations generated with the Monte Carlo method, we obtain results with very high
variance: by increasing the number of simulations of the first loop and the nested loop, we
can get more accurate results at the expense of time and memory. Compared with the use
of the binomial tree, a low number of time steps used, despite the fact that short deadlines
are involved, can be a limitation: with more memory, it is possible to increase temporal
discretization without possibly exceeding computational time. However, for strikes above
the value of the VIX and relatively close to the ATM point ("at the money"), the two
methods present very similar results.
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(a) VIX implied volatility smile with MC (b) VIX implied volatility smile with BT

Figure 4.6: General results related to the VIX implied volatility results for the 2-factor
model, considering 1 month and 3 months as maturities. Use of 20,000 paths and 5,000
nested paths for Monte Carlo and 38 total time steps (running only one nested loop) for
binomial tree method. Initial value for the model from Table 4.3 and Table 4.4.
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developments

Let us draw conclusions with respect to the model and methods used.

5.1. Conclusions

The purpose of this Thesis is to understand if the PDV model of Guyon and Lekeu-
fack (2022) can be used to price efficiently derivative instruments. Three are the main
contribution of this Thesis.

First, we explain in detail how to implement a Monte Carlo scheme to price options on the
S&P 500 and VIX in the framework of the PDV model. We improve the existing method
described by Guyon and Lekeufack (2022) by proving how adapt the Milstein scheme (see
Section 3.3.2) to the case of path dependent volatility models. In particular, the PDV
model has been designed to solve the open problem of a joint calibration of S&P 500 and
VIX volatility surface. Computing prices of option on the underlying with Monte Carlo
simulations is well established on the literature. Computing the price of options on the
VIX is less so. We explain which is the relevant quantity to simulate when dealing with
VIX options (see Section 3.4) and why it is necessary recurring to an inefficient nested
Monte Carlo simulation.

Second, we propose an alternative method for pricing options on the S&P 500 and VIX:
a non-recombinant binomial tree. The structure of the proposed trees for the 2 and 4-
factor PDV models is described in Section 3.3.4. We start by deducting the recombinant
binomial tree for Brownian Motion only, a process with simple dynamics. We then develop
the tree for each dynamics of the 2 and 4-factor models. We thus obtain non-recombinant
binomial trees, which require some attention in practical development. Although more
complex to implement, they bring an advantage in the calculation of VIX. Indeed, the
lattice structure with non-overlapping paths is optimal for the simulations required to
determine the value of VIX without additional modifications.
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Finally, we compare the performance of the two methods. We compare the error obtained
with the two methods. The binomial tree method, when dealing with S&P 500 derivatives,
succeeds in obtaining better results for times less than about 4 seconds (for option with
maturity below six months), with an error around 20 basis points. For errors around
the basis point (industry standard) the Monte Carlo remains more efficient, even if the
computational time increases. When we want to compute an option on the VIX, however,
the computational times of the tree is far less time-consuming than those found with the
Monte Carlo method (on average 11 seconds instead of 7 minutes) for the Monte Carlo
method. Finally, we point out how when increasing the maturity of options on S&P 500
or VIX over six months both methods become highly inefficient at least with standard
computational power.

5.2. Future developments

Let us now look at some solutions and/or ideas can be applied to investigate the model
more in order to obtain more accurate results. Below are some suggestions:

• Larger memory: although it may seem trivial to have a larger memory capac-
ity, it can significantly increase the accuracy of the results. In the Monte Carlo
method, this increase would allow for greater discretization of time and especially
the possibility of having simulations composed of multiple values. Particularly in
the calculation of the smile of the VIX implied volatility, it would be possible to
achieve the minimum number to ensure the stability of the result. Referring instead
to the method with the binomial tree, more memory would allow a larger number
of time steps, since at each of them the length of the vector of simulations of the
dynamics of the process is of size 2n. This increase would already be evident in the
calculation of the derivatives for the S&P 5001.

• Clustering of the lattice structure: if an increase in memory is not possible for
the binomial method, a technique for increasing time steps can be used. Clustering
at each instant the values of the simulations, and it is possible to obtain vectors of
reduced size. In particular, an analysis of the dynamics of the process for each time
instant would be performed, agglomerating data of very similar value. Obviously,
by doing so, the tree would no longer be non-recombinant, so, especially for the
calculation of VIX, more attention would have to be paid to the dynamics arising
from a specific node and not to confuse them with those of other neighboring nodes.

1For the results shown in this Thesis, a computer with a 2.6 GHz Intel Core i7 6-core processor and
16 GB 2400 MHz DDR4 memory has been used.
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• Neural networks: neural networks constitute a significant evolution in the algo-
rithmic scene, bringing with them significant advances in time efficiency and compu-
tational cost. These first results were shown by Gencay and Qi in [19] and later by
Gradojevic, Gencay and Kukolj in [23]. These improvements arise mainly from their
ability to manipulate complex representations of data. The use of neural networks
enables massive parallelization of operations, taking full advantage of modern hard-
ware architectures, such as GPUs. This parallelization speeds up the calculating
process, allowing larger amounts of data to be handled in considerably less time.
This translates into the ability to build more sophisticated models without exponen-
tially inflating computational costs; transposing this concept to the tree structure
theoretically opens up possibilities for improving the accuracy of results.
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In the case of a stochastic process (Yt) t ≥ 0 with trajectories exhibiting bounded variation
and a sufficiently smooth function f , the integral of Zt = f (Yt) with respect to dYt can
be defined using the Riemann1 integral:∫ t

0

ZsdYs =

∫ t

0

f (Ys) dYs (A.1)

However, if the trajectories of (Yt)t≥0 lack bounded variation and the function f lacks
sufficient regularity, the Riemann integral may not be well-defined. This is particularly
true for Brownian motion, where the integral∫

f (Ws) dWs (A.2)

cannot generally be defined as a Riemann integral. To overcome this limitation, Itô’s
stochastic integral is introduced, represented as

∫ t

0
HsdWs for processes (Ht) t ≥ 0 that

meet a "suitable measurability assumption" and satisfy P
(∫

0tH2
sds < +∞

)
= 1. Under

these conditions, the following equation can be expressed:

Yt = Y0 +

∫ t

0

g (Ys, s) ds+

∫ t

0

σ (Ys, s) dWs (A.3)

Here, the first integral is interpreted as a classic Riemann integral (under suitable regu-
larity assumptions on g and σ), while the second is an Itô integral. This expression can
also be represented as a Stochastic Differential Equation (SDE):

{
dYt = g (Yt, t) dt+ σ (Yt, t) dWt

Y0 = y
(A.4)

1The definite integral according to Riemann is a mathematical operator that associates real functions
of real variable with the area subtended by the graph on an interval of your choice, under appropriate
assumptions.
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It is important to note that both formulations are equivalent; the latter is simply an
alternative representation of the former.

A.1. Itô formula

An essential result in the field of stochastic analysis is the well-known Itô Lemma. In
what follows, we will denote by f(x, t) in C2,1 (R,R+) a function that is continuously
differentiable twice in x and once in t. Similarly for f (x1, . . . , xn, t) in C2,1 (Rn,R+).

Itô’s Lemma

Let f(x, t) ∈ C2,1 (R,R+)be a given function. If the process (Xt)t≥0 satisfies the following
equation:

dXt = µ(t)dt+ σ(t)dWt (A.5)

then the process (Zt)t≥0, defined by Zt := f (Xt, t), satisfies

dZt =
∂f

∂t
(Xt, t) dt+

∂f

∂x
(Xt, t) dXt +

1

2

∂2f

∂x2
(Xt, t)σ

2(t)dt

=

(
∂f

∂t
+ µ

∂f

∂x
+

σ2

2

∂2f

∂x2

)
(Xt, t) dt+ σ(t)

∂f

∂x
(Xt, t) dWt

(A.6)

This formula will often be applied in different contexts in this Thesis.

A.2. Itô formula: B&S application

Let us consider the Black & Scholes model, recalling Eq. (1.2) in which the model was
defined as {

dSt = rStdt+ σStdWt

S0

We apply Itô’s formula to obtain Eq. (A.7) as follows

St = S0e
(r− 1

2
σ2)t+σWt (A.7)

where r is the interest rate, σ the variance of the underlying, and Wt the Brownian motion
(Wiener process). We choose f(x) = lnx, consequently we deduce that f ′(x) = 1

x
and
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f ′(x) = − 1
x2 . Itô’s formula implies that:

df (St) = d (lnSt) = f ′ (St) dSt +
1

2
f ′′ (St) [σSt]

2 dt

=
1

St

dSt −
1

2

1

(St)
2 [σSt]

2 dt

=
1

St

[rStdt+ σStdWt]−
1

2
σ2dt

=

(
r − 1

2
σ2

)
dt+ σdWt.

(A.8)

It follows that, considering the initial condition S0, we can solve the SDE as

ln (St) = ln (S0) +

(
r − 1

2
σ2

)
t+ σWt (A.9)

hence

St = S0e
(r− 1

2
σ2)t+σWt (A.10)

By defining the log-price (ln(St)), as Xt, we can define its following SDE:
dXt =

(
r − 1

2
σ2

)
dt+ σdWt

X0 = ln (S0)

(A.11)

hence

Xt = X0 +

(
r − 1

2
σ2

)
t+ σWt (A.12)
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