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1. Introduction
This thesis proposes a novel approach for pre-
dicting rotor loads using virtual sensors that
combine physics-based modelling and artificial
intelligence (AI) techniques, specifically merg-
ing AI predictions coming from aeromechani-
cal parameters with a rotor damper physical
model. [19] Previous studies have shown the vi-
ability of data-driven approaches and the ben-
efits of physics-informed predictions for virtual
sensors. [2, 8, 11] By capturing the fundamen-
tal principles of rotorcraft component mechan-
ics and leveraging historical data, the proposed
approach improves the accuracy of blade dis-
placement predictions. The thesis outlines the
development process of virtual sensors, includ-
ing input variable selection, model formulation,
and parameter estimation. Simulation results
demonstrate the effectiveness of the approach in
predicting rotor component loads. The study
concludes by highlighting the advantages of
blending physics-based modelling and AI tech-
niques in virtual sensor development for rotor
loads prediction, with the potential for practical
implementation of prognostics in the future.

2. Literature Review
Digital Twin, Virtual Sensors and Prognostics
are interconnected concepts that have gained at-
tention in engineering and technology. Prognos-
tics estimate the Remaining Useful Life (RUL)
of a system, leading to a shift in maintenance
and operation strategies. Different approaches
to prognostics include reliability-based, physics-
based, data-driven and hybrid methods. [6]
Data-driven approaches face challenges such as
noisy data, uncertainty and lack of physical
knowledge, which can be addressed through hy-
brid approaches.
Digital Twins and Predictive Maintenance
(PdM) are critical components of Industry 4.0,
with DTs providing a virtual analysis of physical
performance.
Coexistence of physical and virtual sensors is
necessary to manage computational costs. Op-
timization of virtual sensors using methods like
recurrent neural networks improves dynamic be-
haviour prediction. [1, 17]
The Digital Twin (DT) technology creates vir-
tual replicas of physical assets or systems for
real-time monitoring, analysis and optimization.
It has gained significance in energy, healthcare,
manufacturing and aerospace industries.
In the energy sector, the DT has been employed

1



Executive summary Federico Midei

to predict network loads in Italy, utilizing ma-
chine learning techniques like neural networks.
ENEA’s technical report highlights this applica-
tion [3].
In healthcare, the DT is utilized to digitalize tra-
ditional medicine and enhance patient-centred
experiences. Challenges encompass technical
issues, infrastructure, communication, security
and ethical concerns. Cardiology benefits from
DT implementation by improving diagnosis,
treatment guidelines and outcomes [4, 14].
Manufacturing, specifically CNC manufactur-
ing, employs DTs for machinery prognostics and
predictive maintenance. CNC machine tools
(CNCMT) are critical for product quality and
predictive maintenance using DTs aids in fault
identification and prevention [16].
The aerospace industry demonstrates the DT’s
potential through Sikorsky’s Rotorcraft Digital
Twin (RDT). The RDT acts as a producer and
consumer of data, supporting design engineers
and technicians with access to DT data for anal-
ysis. It captures the unique experiences of in-
dividual machines and components, facilitating
continuous analysis and improvement through
online learning algorithms [12].
These examples illustrate the broad applications
of the DT across industries, empowering bet-
ter decision-making, optimization and predictive
maintenance.
The field of predicting main rotor loads using
neural networks has a rich history. In 1993,
a study titled "Prediction of Helicopter Com-
ponent Loads Using Neural Networks" utilized
single-layer feed-forward neural networks (also
referred to as Multi-Layer Perceptron, MLP) to
predict vertical load, blade bending moment and
blade damper load in the rotor system. The
neural network model achieved high correlation
coefficients, outperforming traditional regression
approaches [11].
Subsequent research in 1997 and 1998 focused
on rotor system load monitoring and oscillatory
load prediction using neural networks. These
studies demonstrated the potential of neural net-
works in predicting rotor system vibratory loads,
improving safety and maintenance practices in
the aviation industry [2, 8].
In recent years, attention has been drawn back
to this subject. In 2019, a study proposed a neu-
ral network-based solution for real-time predic-

tion of rotor loads on an AW609 tilt-rotor. The
study introduced a harmonic decomposition ap-
proach to predict loads and feed-forward neural
networks were trained to predict individual har-
monics [7]. In 2020, another study employed
neural networks to infer the relation between
flight mechanics parameters and rotor loads, re-
constructing load time history by combining pre-
dictions from multiple neural networks [10]. Ad-
ditionally, a research paper from Airbus pre-
sented an end-to-end solution for load recogni-
tion and damage estimation, using Multi-Layer
Perceptron algorithms [9].
The future of rotor load prediction is expected
to involve the use of Transformers and CNN
technologies, as researchers explore new appli-
cations of deep learning algorithms. It is crucial
to consider data quality and explore techniques
like Principal Component Analysis (PCA) to re-
duce data dimension and improve computational
efficiency. Additionally, implementing network
structures that predict single parameters per
harmonic component could enhance prediction
performance [10].
Overall, while challenges exist in implementing
digital twin technology in the aerospace indus-
try, utilizing neural networks for load prediction
has shown to be promising. The use of virtual
sensors and improved data management can fa-
cilitate the implementation of digital twin tech-
nology, leading to enhanced decision-making, re-
duced downtime and improved system perfor-
mance.

3. Flight data analysis
A well-structured and organized data set, along
with thorough data cleaning and analysis, is cru-
cial for achieving reliable and reproducible re-
sults in data-intensive projects, particularly in
machine learning applications, where the qual-
ity of the data provided significantly impacts the
model’s performance and outcomes. Therefore,
following a structured arrangement including
problem statement, data collection, data clean-
ing, exploratory data analysis (EDA), feature
engineering and selection and modelling phases
is essential for a successful data-driven project
focused on predicting trim and loads in the ro-
tor system of civil helicopter AW169.
The first step in the data collection is to define
which data to collect, in this work, the data col-

2



Executive summary Federico Midei

lection was divided into two phases, the input
and output data that are hereafter listed.
Input data:

• Main rotor mast torque
• Tail rotor mast torque
• Rotor RPM
• Main Rotor collective command pitch
• Main rotor cyclic longitudinal
• Main rotor cyclic lateral
• Pedal
• Pitch angle
• Roll angle
• Body pitch rate
• Body roll rate
• Body yaw rate
• Pressure corrected altitude
• Outside air temperature
• Airspeed
• Load factor
• True Airspeed, blended with ground speed

(blend_speed)
Output data:

• Blade lag angle (white blade, yellow blade)
• Blade flap angle (white blade, yellow blade)
• Blade pitch angle (white blade, yellow

blade)
• Main rotor lead-lag damper link axial load

Regarding the rotor trim data (the blade angle
of the list above), an intermediary step was re-
quired due to the unavailability of the aforemen-
tioned data. Specifically, based on the investi-
gation conducted by Alberto Trezzini et al. [5],
all the necessary procedures for determining the
blade parameters, namely lag, flap and pitch an-
gles, were identified and verified.

Figure 1: Damper inter blade architecture. [5]

The rotor system of the AW169 helicopter is
characterized by an inter-blade architecture. In

fact, in this model, the anti-ground resonance
damper (lead-lag damper) is mounted between
two consecutive blades as shown in 1. The
need to monitor this component characterizes
the main reason why it was considered neces-
sary to have knowledge of blade movements.

Figure 2: Weight on Wheel signal applied to se-
lect portions of the flight, highlighted in orange

The input and output data in this study were
collected only during actual flight periods us-
ing a "weight on wheel" sensor, which detects
whether the helicopter is in contact with the
ground or not, ensuring hole-free signals and fa-
cilitating the detection of flats.

4. Damper physical model
In this section, the physical model of the lead-
lag damper, which predicts the force exerted on
the damper link inter-blade component, is de-
scribed. The transformation from blade angles
to damper rotations is explained and an iterative
process similar to Trezzini’s work is adopted to
calculate the damper system rotation based on
the measured angles of adjacent blades. The ge-
ometry of the system is illustrated in Figure 1.
The damper rotation can be obtained as an un-
known parameter imposing the congruence be-
tween the damper link length Llink and the dis-
tance of the inboard and outboard points (Xin,
Xout in the mentioned figure). The above results
in:

∥X⃗w
in − X⃗y

out∥ = Llink = ∥X⃗∗w
in − X⃗∗y

out∥ (1)

In eq 1, the symbol ∗ stands for the undeformed
case configuration.
A lead-lag damper is a mechanical system com-
prising a lead damper and a lag damper, where
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the lead damper reduces vibration amplitude
through a tuned spring-mass-damper system
and the lag damper decreases phase lag by being
placed in parallel with the vibrating component.

Figure 3: Scheme of the lead-lag damper

The damper considered in this work has the
characteristics to mix two actions: the response
of a high-viscosity fluid and the response of
the deformation of an elastomeric material, the
scheme in Fig 3 represents a simplified linear
version of the rotative damper in exam. [19]
The overall f̂w force exerted by the damper on
the damper-link, is given by the force generated
by the fluid pressure distributed over the piston
area and a stiffness component:

f̂w = Ap δ(ẋ) + kx (2)

Be noted that this equation represents a linear
spring acting in parallel with the piston. The
reason is that as the elastomeric material defor-
mation and fluid compressibility are governed by
complex conditions but as demonstrated by Zil-
letti et al. [19], this simplified model configura-
tion is enough to represent a good approxima-
tion of the damper response.

5. Data cleaning
The chosen method in this thesis for detecting
spike samples involved computing the Z-score in-
dex over a moving window. The Z-score for each
sample is calculated based on its mean and stan-
dard deviation, resulting in the equation:

zi =
(xi − µi)

σi
(3)

Where xi is the generic sample of the ith win-
dow, while µi and σi are the mean value and
standard deviation of the mentioned window.
The outcome of the proposed method is here-
after presented on an input parameter time se-
ries data:

Figure 4: spike detected by the Z-score algo-
rithm, MR cyclic lateral command parameter

Data cleaning is emphasized as a crucial step
to address errors and inconsistencies, ensuring
accuracy and reliability for obtaining precise in-
sights from the data.

6. Harmonic time history
A method called Harmonic Time History (HTH)
was implemented to decompose the dynamics of
main rotor blade movements. The HTH algo-
rithm divided the time series signal into chunks
based on the main rotor revolution frequency
and a harmonic decomposition was performed
within each chunk to approximate the signal as
a sum of harmonic components as shown in the
following:

yi(t) ≈ Ai
0 +

N∑
n=1

Ci
ncos(nΩt) + Si

ncos(nΩt)

(4)

In eq 4, the coefficients Ai
0, Ci

n, Si
n will be

referred as "static coefficient", "sine and co-
sine terms coefficients" respectively. The sig-
nals were processed with the HTH algorithm
and reconstructed back to the time domain for
comparison. The accuracy of the reconstruction
was evaluated using the normalized root mean
squared error (NRMSE), which indicated how
well the estimated signal matched the original
signal. This algorithm was implemented since,
as discovered in Trezzini and Graziani’s previ-
ous works [7, 10], training an MLP capable to
predict the complete dynamics of the main ro-
tor blade movements (blade loads in the case
of [7, 10]) could be too demanding. However,
this involved an MLP architecture per harmonic
considered. This results in multiple MLPs that
predict the A0, S and C coefficients reported in
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eq 4. The NRMSE metric was then used as a
pointer to indicate the minimum number of har-
monics required to sufficiently reconstruct the
original signal. An example of the white blade
lag angle time series reconstruction involving the
original signal decomposed taking into account
a discrete number of harmonics is hereafter re-
ported. As can be seen, the more harmonics
were included in the HTH decomposition, the
more the reconstructed signal overlapped the
original time series.

Figure 5: Accuracy in time series reconstruction,
Lag angle

The NRMSE score proved to be effective in the
final choice to have the following discretization
hereafter reported for each output parameter:

• Lag : 3rdharmonic
• Flap: 2ndharmonic
• Pitch: 1stharmonic

Additionally an example of the lag angle time
reconstruction is proposed:

(a) Lag, from 1 to 3 harmonics

(b) Lag, from 4 to 6 harmonics

Figure 6: Lag, time reconstruction after HTH
algorithm, from 1 to 6 harmonics

7. Feature engineering & selec-
tion

Feature engineering and selection is a vital com-
ponent of machine learning and data analysis,
focusing on the creation, identification, transfor-
mation and selection of relevant features (vari-
ables) to enhance the performance and effective-
ness of predictive models. It plays a critical role
in extracting valuable insights from raw data
and improving the model’s predictive capabili-
ties.

7.1. Principal component analysis
PCA was used in this study to analyze the
dataset and reduce its dimensionality while pre-
serving the most significant patterns. Although
PCA can provide valuable insights, it has the
drawback of losing the physical interpretation of
the features. Unfortunately, in this work, PCA
was not successful in capturing the underlying
structure of the dataset.

Figure 7: PCA Scree plot and cumulative vari-
ance

The Scree plot and cumulative distribution of
principal components were analyzed in Fig 7,
revealing that at least ten principal compo-
nents would be needed to explain a significant
amount of data variance. However, considering
the drawbacks of PCA and the absence of the
typical knee curve in the cumulative scree plot,
the decision was made not to implement PCA in
this study.

7.2. Feature importance
Feature importance is a metric used in feature
selection methods to quantify the contribution of
each feature in a dataset to the predictive power
of a model, helping prioritize the most influen-
tial features. Feature importance and Shapley
additive explanations are important concepts in
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explainable artificial intelligence (XAI) research.
Feature importance refers to the quantification
of the importance of various features or covari-
ates in a model, while Shapley additive explana-
tions are a popular model-agnostic method for
measuring feature importance in XAI. [13, 18]
Shapley values are a set of axioms from cooper-
ative game theory that provide a unique way to
assign credit to each feature in a model’s pre-
diction. [13] In this work, SHAP [15] python li-
brary helped in obtaining a ranked order of the
features participation in the models’ decisions.
Moreover, thanks to the Shapley values concept
it was possible to show in a specific case how the
single feature was affecting the final prediction
of the MLP model in exam.
The Shapely value of a feature value is its contri-
bution to a payout, weighted and summed over
all possible feature value combinations:

ϕj(val) =
∑

S⊂1,...,p\j

|S|!(p− |S| − 1)!

p!
∗

∗(val(S ∪ j)− val(S))

(5)

Explaining the Shapley value equation (eq 5)
with the coalition game theory, it’s obtained
that:
• p!: "number of ways" to form a coalition

for player p (the features)

• |S|: number of players in coalition S
(subset of features)

• |S|!: number of ways coalition S can form

• (p − |S| − 1)!: number of players that
can join after player j has joined coali-
tion S. The minus 1 is necessary since
the player j has already joined the coalition

• the term |S|!(p−|S|−1)!
p! , defines the weight

• val(S ∪ j): value of the coalition including
player j

• val(S): value of the coalition excluding
player j

• |S|!(p−|S|−1)!
p! (val(S ∪ j)− val(S)): marginal

contribution of player j to coalition S
SHAP feature importance provides a measure
of the importance of each feature based on the

magnitude of feature attributions. It computes
the average absolute Shapley value per feature
across the data and sorts the features accord-
ingly. This approach differs from permutation
feature importance, which relies on the reduc-
tion in model performance. Here is reported an
example of the feature importance plot in the
case of the static coefficient A0 pitch parameter
is reported.

Figure 8: Feature importance summary plot,
model that predicts pitch A0 coefficient

Moreover, as anticipated, thanks to the decision
plot in Fig 9 it is shown how the single feature
was affecting the final prediction of the pitch A0

MLP model examined.

Figure 9: Decision plot, model that predicts
pitch A0 coefficient

7.3. Data Standardization
The data standardization process generally in-
volves the implementation of two common al-
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gorithms, normalization and standardization,
whose implementation depends upon the spe-
cific case considered. The followings, represents
the normalization min-max scaler and the data
standardization equations respectively

xnew =
x− xmin

xmax − x−min
(6)

xstd =
x− µ

σ
(7)

The results of tests indicated that the min-max
normalization scaler was not suitable for the
problem at hand, leading to the adoption of the
standardization process. Following best prac-
tices, the mean and standard deviation values
were computed based on the training set and
then applied to the test set, validation set and
the training set itself. Test, training and valida-
tion sets will be explained later. The histograms
in Fig 10a and Fig 10b display the distribution
of data before and after the standardization pro-
cess, respectively.

(a) Distribution of the A0 coefficient data of an input
parameter, before standardization

(b) Distribution of the A0 coefficient data of an input
parameter, after standardization

Figure 10: Histograms representing data stan-
dardization process

As expected, data presented a unit standard de-
viation and a zero-centred mean value after the
standardization process.

8. Results
Python was selected as the working environment
for this work. The training phase utilized several
libraries, including Scikit-learn for tasks such as

data set splitting into Training-Validation-Test
subsets and data standardization. Additionally,
Keras, built on top of TensorFlow, was employed
for constructing the models.
In this master’s thesis, the problem at hand
was a direct continuous supervised learning re-
gression problem. This led to the selection of
appropriate loss and evaluation metrics. The
loss function chosen was Mean Squared Error
(MSE), while the evaluation metrics included
MSE and Mean Absolute Error (MAE). The
Mean Absolute Percentage Error (MAPE) was
not considered as it is more suitable for different
types of datasets.
Regarding regularization, the L2 regularizer,
along with the early stopping callback, was em-
ployed. The optimizer used in this work was
ADAM, which is an extension of the gradient
descent algorithm. Last, the Rectified Linear
Unit (ReLU) activation function was applied to
the hidden layer units, while the output layer
used a linear activation function.
To optimize the hyperparameters of the Mul-
tilayer Perceptrons (MLPs), an optimizer was
implemented to explore different combinations
of hyperparameter coefficients. For example,
the L2 coefficient was set to 0.001, same holds
for the ADAM coefficient. This random search
optimization was also performed for the num-
ber of layers and the number of neurons per
layer. However, a sensitivity analysis was con-
ducted to avoid overfitting, as the search con-
sistently resulted in six layers with a high num-
ber of neurons per layer (ranging from 100 to
400 neurons). The sensitivity analysis focused
on the lag parameter MLPs, where a fixed num-
ber of well-performing neurons was chosen and
the number of hidden layers was manually ad-
justed to achieve acceptable results. The re-
sults were evaluated relying on the learning plots
(loss, MSE, MAE), regression plot dispersion
and correlation coefficient. In table 1 the num-
ber of layers and neurons regarding the MLPs
involved in this study were reported.

8.1. Model robustness
To assess the robustness of the defined and
trained models, several tests were conducted.
Typically, comparing the error metrics between
the training and validation sets and evaluat-
ing the model’s performance on the test set
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are sufficient to assess robustness. However, in
this thesis work, additional efforts were made to
understand the generalization properties of the
trained models.
The data set was split into training, test and val-
idation subsets using random sampling with per-
centages of 70%, 15% and 15% respectively while
keeping a constant "seed" value. This practice
ensures results reproducibility but may lead to a
model that performs well only with that partic-
ular split. To address this, training was also per-
formed with different "seeds" where the samples
were shuffled. Results showed that the overall
performance of the models remained unvaried
with both seeds, highlighting good generaliza-
tion properties of the MLPs built.
To further assess the model’s generalization ca-
pabilities, a specific test was conducted using a
different approach. The training and validation
subsets were created using all flight data except
for one particular flight, which was reserved as
the test set. This flight was not seen by the
model during training, ensuring an evaluation
of its performance on unseen data. The evalua-
tion showcased the model’s performance on pre-
viously unseen flight data, affirming its capacity
to generalize to new instances within the overall
range of flight data.

8.2. Model time predictions
To have a visual representation of the archi-
tecture governing the virtual sensor predictions,
Fig 11 comes in help. This structure was repli-
cated for each output parameter considered in
this work.

Figure 11: Structure of the MLPs in the generic
case of n harmonics

Similarly to what was shown in section 6, here
will be presented a comparison between the re-
constructed time series obtained from the pre-

dictions and the time series reconstructed using
the Harmonic Time History (HTH) algorithm
on the original data. Visual plots and NRMSE
metrics are used to assess the analysis results.

(a) Lag comparison

(b) Flap comparison

(c) Pitch comparison

Figure 12: Time series reconstructed from pre-
dictions over time series reconstructed from
HTH algorithm, case of a generic flight

In Figure 12 the green line represents the recon-
structed time signal from the predictions, while
the red line represents the HTH algorithm’s re-
construction. Overall, the green line closely
overlaps with the red line for all the angles.
Table 2 reports the NRMSE errors calculated
for the reconstructed time series in Figure 12.
The NRMSE values, rounded to the third dec-
imal, demonstrate the matching between the
prediction-HTH time series reconstructions. By
comparing the reconstructed time series from
the predictions with those obtained using the
HTH algorithm, these results confirm a satisfac-
tory accuracy of the MLPs’ predictions.

8.3. Damper model simulation
This work implements a damper physical model
based on predicted blade angles. Lag, flap and
pitch angles from adjacent blades are used to
calculate damper rotations along with their cor-
responding velocities. An iterative solver solves
the non-linear equation for damper rotation and
rotation speeds are obtained through numerical
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differentiation. To meet Simulink ODE’s mini-
mum step size requirement, rotation and veloc-
ity are resampled at eight times the original rate
using an integrated FIR anti-aliasing lowpass fil-
ter, with compensated time delay. These quan-
tities are then provided as input to the Simulink
model.
Simulink’s ODE15 variable stepsize method is
chosen as the most suitable solver for the sim-
ulation. Other solvers were tested but either
didn’t converge or had excessively long compu-
tation times.
In the final analysis, the developed physical
model estimates the force applied to the damper-
link component. A comparison is made between
the simulated results and the time series data
obtained from a strain gauge mounted on the
damper link, reported hereafter:

Figure 13: Damper-link axial force Damper
model simulation output (input obtained from
predictions) against strain gauge corresponding
measurement

Figure 13 presents in blue the strain gauge’s
measured axial force and in orange the damper
model’s simulation output. The two signals ex-
hibit synchronization, with peaks aligning cor-
rectly. However, differences are observed in the
valleys. The simulated axial force based on pre-
dicted inputs indicates an overestimation. To
investigate the source of overestimation, a com-
parison is made between the axial force obtained
from the strain gauge and the simulated axial
force using the measured damper rotations as
input.
It can be concluded then that the overestima-
tion in Fig 13 was the result of different contri-
butions. The first one was due to an intrinsic
damper model overestimation, the second one
was due to the differences in the simplified kine-

matics used to calculate the damper rotations
from predictions and the real damper kinemat-
ics. The last one could be attributed to the
shown differences between the original blade an-
gles and the predicted ones.

9. Conclusions
In conclusion, this research demonstrates the ef-
fectiveness of data-driven virtual sensors for ac-
curate predictions of rotor components in heli-
copters under different flight conditions. The in-
tegration of these data-driven approaches with
physical modelling proves to be a valuable
framework, as virtual sensors provide new data
that can be processed by the physical mod-
els, leading to a clearer understanding of sim-
ulation outputs, particularly in the case of the
damper in this study. However, limitations re-
lated to the Harmonic Time History (HTH) al-
gorithm and the simplified kinematics approach
for damper rotation reconstruction have been
identified. Proposed solutions include explor-
ing alternative real-time usable algorithms and
employing advanced data-cleaning techniques,
as well as developing a more accurate physical
model considering the damper’s actual kinemat-
ics.
This research highlights the importance of ad-
vancing prognostics in helicopter rotor compo-
nents and introduces an innovative methodology
centred around virtual sensors. The results em-
phasize the potential of virtual sensors to signifi-
cantly enhance the safety and reliability of struc-
ture monitoring in various applications. By pro-
viding accurate predictions across different flight
conditions, virtual sensors enable early detection
of potential issues in rotor components, facilitat-
ing proactive maintenance and reducing the risk
of unexpected failures.
The findings underscore the relevance of this re-
search in promoting improved operational effi-
ciency and ensuring the continued safety of he-
licopter fleets. By incorporating virtual sensors
into existing practices, potential component is-
sues or degradation can be identified, enabling
predictive maintenance strategies.
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Parameter Nuber of Neurons Number of Layers Blade

Pitch A0 [50] [1] White
Pitch 1st harmonic S & C [50] [5] White
Lag A0 [50] [1] White
Lag 1st harmonic S & C [50] [5] White
Lag 2nd harmonic S & C [50] [5] White
Lag 33d harmonic S & C [50] [5] White
Flap A0 [50] [1] White
Flap 1st harmonic S & C [50] [5] White
Flap 2nd harmonic S & C [50] [5] White
Pitch A0 [50] [1] Yellow
Pitch 1st harmonic S & C [50] [5] Yellow
Lag A0 [50] [1] Yellow
Lag 1st harmonic S & C [50] [5] Yellow
Lag 2nd harmonic S & C [50] [5] Yellow
Lag 33d harmonic S & C [50] [5] Yellow
Flap A0 [50] [1] Yellow
Flap 1st harmonic S & C [50] [5] Yellow
Flap 2nd harmonic S & C [50] [5] Yellow

Table 1: MLPs tuning results

Variable Description NRMSE error

ξ lag 0.057
β flap 0.055
θ pitch 0.043

Table 2: NRMSE computed over Fig 12 data and rounded to the 3rd decimal
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