
Politecnico di Milano

School of Industrial and Information Engineering
Master of Science in Aeronautical Engineering

A norm-optimal Kalman iterative learning control
for precise UAV trajectory tracking

Advisor: Prof. Marco LOVERA
Co-Advisor: Eng. Salvatore MERAGLIA

Thesis by:
Francesco CARLONI Matr. 905340

Academic Year 2019–2020

Alla mia Famiglia

Acknowledgments

Desidero dedicare questo spazio a tutti coloro che hanno contribuito, direttamente
o indirettamente, alla realizzazione del mio elaborato.
Un sentito ringraziamento va al Professor Marco Lovera per avermi dato l’opportu-
nità di svolgere questa tesi, per la professionalità e disponibilità mostrata.
Una menzione speciale la rivolgo anche al mio correlatore Ing. Salvatore Mera-
glia che nonostante il contatto a distanza, data la situazione contingente, è stato
sempre presente con indicazioni e suggerimenti e ha portato a termine l’attività
sperimentale.
Grazie alla mia famiglia per aver creduto in me e per avermi sempre messo nelle
condizioni migliori per raggiungere questo obiettivo.
Infine desidero ringraziare parenti e amici per avermi supportato e aiutato nell’af-
frontare questo lungo e impegnativo percorso.

II

Abstract

The interest in multirotor Unmanned Aerial Vehicles (UAVs) has faced an expo-
nential growth over the last decades. The technological success, the cost reduction
and the parallel diffusion led to the adoption of UAVs in many research fields. De-
spite their massive popularity, the algorithms deployed to control UAVs typically
rely on simplified models approximating the complex flight dynamics. This can
lead to significant tracking errors when performing aggressive manoeuvres. It-
erative learning control (ILC) algorithms can be used in combination with the
traditional feedback control methods, which are generally implemented to correct
the system behaviour by compensating for noise and unexpected disturbances as
they occur, to reject recurring tracking errors happening during repetitive execu-
tions. These algorithms exploit the information acquired from past trials to shape
non-causal feed-forward input signals so as to anticipate recurring disturbances
and proactively compensate for them.

The purpose of this thesis is to design an iterative learning control algorithm
for precise UAV trajectory tracking. This work focuses specifically in a new model-
based, norm-optimal ILC, enhanced with a iteration-domain Kalman filter distur-
bance estimator.

The so called Kalman Iterative Learning Control (K-ILC) is implemented and
validated in a simulation environment. Eventually, the effectiveness of the algo-
rithm is successfully tested through experimental activity in a real quadcopter
flying a eight-shape manoeuvrer.

IV

Sommario

L’interesse verso gli aeromobili a pilotaggio remoto, comunemente noti come droni,
ha subito una crescita esponenziale negli ultimi decenni. Il successo tecnologico,
la riduzione dei costi e la parallela diffusione hanno portato all’adozione di tali
velivoli in numerosi ambiti di ricerca. Nonostante la loro enorme popolarità, gli
algoritmi tipicamente impiegati per controllare tali velivoli si basano su modelli
semplificati che approssimano la complessa dinamica di volo. Ciò può portare
a significativi errori di tracciamento durante l’esecuzione di manovre complesse
ad alta velocità. Gli algoritmi di controllo di apprendimento iterativo (Iterative
Learning Controls o ILCs) possono essere utilizzati in combinazione con i sistemi di
controllo tradizionali in retroazione che compensano rumori e disturbi imprevisti.
Questi, infatti, agiscono in modo da eliminare gli errori di posizionamento che si
ripetono durante l’esecuzione della stessa manovra. Le informazioni acquisite dalle
precedenti prove vengono sfruttate per calcolare segnali di ingresso non causali in
modo da anticipare i disturbi ricorrenti e compensarli in modo proattivo.

Lo scopo di questa tesi è progettare un algoritmo di controllo di apprendi-
mento iterativo per l’inseguimento della traiettoria di un drone. Questo lavoro si
concentra in particolare su un nuovo ILC basato su un modello ottimale di aggior-
namento del segnale in ingresso potenziato con un filtro di Kalman nel dominio
dell’iterazione per migliorare la stima del disturbo.

Il cosiddetto Kalman Iterative Learning Control (K-ILC) è stato implemen-
tato e validato in simulazione. Infine, l’efficacia dell’algoritmo è stata verificata
con successo attraverso l’attività sperimentale condotta nell’arena FlyART del
laboratorio di controllo e sistemi aerospaziali (ASCL) del Politecnico di Milano.

VI

Contents

Acknowledgments I

Abstract III

Sommario V

List of figures IX

List of tables XI

Introduction 1

1 Iterative Learning Control 5

1.1 Introduction to ILC . 5

1.1.1 Main idea . 5

1.1.2 Historical background . 6

1.1.3 ILC vs other control approaches 6

1.1.4 Applications . 9

1.2 General description of ILC . 9

1.3 ILC algorithms . 12

1.3.1 Linear and nonlinear algorithms 13

1.3.2 First-order and Higher-order ILC algorithms 13

1.3.3 Continuous and discrete algorithms 14

1.4 System description . 16

1.4.1 Time-domain analysis: lifted-system representation 18

1.4.2 Frequency-domain analysis: the z-domain representation . 19

1.5 Analysis of performance . 20

1.6 Typical design methods . 22

1.6.1 Feedback control with ILC 22

1.6.2 Basic design methods . 23

1.6.3 Model-based design methods 24

VIII CONTENTS

2 Kalman Iterative Learning Control 29
2.1 Introduction to estimation based ILC 29
2.2 System description . 30

2.2.1 Model of dynamics . 30
2.2.2 Lifted representation . 31
2.2.3 ILC system in lifted form 35

2.3 K-ILC . 37
2.4 Kalman estimator . 39

2.4.1 Algorithm . 40
2.4.2 Kalman estimator - design parameters 44

2.5 K-ILC input update . 46
2.5.1 Cost function . 47
2.5.2 Weights - design parameters 49
2.5.3 Constraints - design parameters 50

2.6 K-ILC design parameters . 56
2.7 K-ILC vs Q-ILC . 57

3 Implementation of a K-ILC to a multirotor UAV 61
3.1 Implementation steps . 61

3.1.1 Implementation environment and architecture 62
3.1.2 K-ILC applied to a SISO system 63
3.1.3 K-ILC applied to a MIMO system 66
3.1.4 K-ILC applied to a quadrotor UAV 67
3.1.5 Pre-existing model . 67
3.1.6 K-ILC quadcopter model 68
3.1.7 Code structure . 70

3.2 Quadcopter simulation setup . 75
3.3 Quadrotor simulation results . 79
3.4 Main K-ILC design parameters choice 85

4 Experimental setup, flight testing and results 91
4.1 Experimental setup . 91

4.1.1 Drone . 91
4.1.2 Flight Control Unit . 91
4.1.3 Companion computer . 93
4.1.4 Flying arena . 94
4.1.5 Motion Capture system . 94
4.1.6 Ground Control Station 94

4.2 Flight testing . 95
4.3 Experiment results . 96

Conclusions 105

List of Figures

1.1 ILC general scheme . 10

1.2 General ILC algorithm scheme . 15

1.3 ILC in serial arrangement . 23

1.4 ILC in parallel arrangement . 23

1.5 H∞- synthesis scheme . 26

2.1 Norm-optimal ILC block diagram in lifted form 37

2.2 K-ILC block diagram in lifted form 38

2.3 Kalman filtering . 43

2.4 Kalman Estimator . 44

2.5 Learning step of the K-ILC . 59

2.6 K-ILC block diagram in lifted form 60

2.7 Q-ILC block diagram in lifted form 60

3.1 Simulink® implementation . 62

3.2 MATLAB® implementation . 63

3.3 Simulink® - SISO system . 63

3.4 Simulink® - feedback SISO system 64

3.5 K-ILC SISO system qualitative results 65

3.6 Simulink® - MIMO system . 66

3.7 Simulink® - feedback MIMO system 66

3.9 Simulink® - UAV system . 68

3.10 Simulink® - UAV system (inner block) 69

3.11 ILC-Mode selector . 69

3.12 Setpoint: Mode-1 . 71

3.13 Setpoint: Mode-2 . 72

3.14 GUI - Main simulation parameters 76

3.15 Learning trajectory . 77

3.16 Initial iteration (j = 0) - 8-shape trajectories 80

3.17 Converged iteration (j = 25) - 8-shape trajectories 81

3.18 Quadrotor input, output and reference North-position over the it-
erations . 82

X LIST OF FIGURES

3.19 Quadrotor input, output and reference East-position over the iter-
ations . 83

3.20 Quadrotor input, output and reference Down-position over the it-
erations . 84

3.21 Initial (j = 0) and converged (j = 25) iterations - 8-shape trajectories 88
3.22 Simulation - learning performance analysis 88
3.23 Learning performance for different input weight parameters w∆u . 89
3.24 Learning performance for different noise parameter ratios σ̄/η̄ . . 89

4.1 Drone . 92
4.2 Pixhawk Mini FCU . 93
4.3 NanoPi NEO Air companion . 93
4.4 Motion Capture System . 95
4.5 Experiment 2 (ωtraj = 0.5) - 8-shape trajectories for iterations 0,

1, 2 . 97
4.6 Experiment 2 (ωtraj = 0.5) - North and East UAV positions for

iterations 0, 1 and 2 . 100
4.7 Experiment 3 (ωtraj = 1) - input, output and desired trajectories

for iteration j = 0 . 101
4.8 Experiment 3 (ωtraj = 1 rad/s) - input, output and desired trajec-

tories for iteration j = 1 . 101
4.9 Experiment 3 (ωtraj = 1 rad/s) - input, output and desired trajec-

tories for iteration j = 2 . 102
4.10 Experiment 3 (ωtraj = 1 rad/s) - North and East UAV positions for

iterations 0, 1 and 2 . 103
4.11 Experiment results for ωtraj = 1 rad/s: 8-shape trajectories for the

iterations 0, 1, 2 . 104

List of Tables

1.1 An heuristic design algorithm . 24
1.2 An H∞ design algorithm . 26
1.3 A Q-ILC design algorithm . 28

2.1 K-ILC design parameters - Kalman estimator 46
2.2 K-ILC design parameters - weights 50
2.3 K-ILC design parameters - constraints 56
2.4 K-ILC design parameters . 57
2.5 K-ILC scalar design parameters 57

3.1 Main K-ILC design parameters choice 79
3.2 Main simulation parameters choice 79
3.3 Learning performance indicators 85
3.4 Simulation times . 86

4.1 Drone characteristics . 92
4.2 NanoPi NEO Air features . 94
4.3 Default parameters for the quadrotor experiments 99
4.4 Experiment 2 - learning performance results for ωtraj = 0.5 rad/s . 99
4.5 Experiment 3 - learning performance results for ωtraj = 1 102

XII LIST OF TABLES

Introduction

Unmanned Aerial Vehicles (UAVs), commonly called drones, are aircraft with
no on-board crew or passengers, able to fly either under remote control or au-
tonomously. With the maturing and miniaturization of applicable technologies,
interest in UAVs grew at first within the military industry. Initial applications
primarily involved combat surveillance, tactical reconnaissance and targeted at-
tacks. In recent years, drones has receive increasing attention also in a wide range
of civil applications. Examples include non-trivial inspection tasks, environmental
monitoring, imagining for photogrammetry, search operations (e.g., after natural
disasters), photography and filming, farming operations, goods delivery, etc. In
all these applications and in many others, high tracking precision is often required
(even when performing aggressive manoeuvres) as it determines the quality of the
task carried out. This thesis focuses specifically on multirotor Vertical Take-Off
and Landing (VTOL) vehicles of small and medium size autonomously controlled
by on-board computers referred to as autopilots.

These UAVs are capable of performing complex manoeuvres. The control
laws which regulate their motions are commonly based on simple models, gener-
ally consisting of first-order approximations, which well describe the dynamics of
multirotors during near-hover conditions. The model-based feedback controllers
ensure the tracking of reference trajectories also when unmodeled effects are sig-
nificant. In fact, they are intended to compensate for effects not captured by
the nominal model (including noises and undesired disturbances). These effects
include for example external disturbances, as wind and gusts, ground and wall
interferences, highly non-linear aerodynamic loads due to the interaction of the
vehicle when moving towards the turbulent wakes of propellers and lift and drag
variations of rotary wings under unsteady inflow conditions.

In high-performing manoeuvres, the dynamic behaviour of the system under
study is difficult to identify as those secondary effects are not negligible. As a
consequence, the feedback is not able to react in time, causing a degradation of
the tracking performance. When the same motion is executed repeatedly, the same
errors due to unmodeled dynamics, parameter uncertainties, and other repeating
disturbances, recur. The problem of rejecting these repetitive errors has already
been addressed in motion control applications for industrial robotics, in which
high-precision in tracking reference signals is crucial. An effective solution is the

2 Introduction

use of the so called Iterative Learning Control methods. The idea behind these
approaches is to exploit the information acquired in past trials to improve the
tracking performance of the system by adjusting the input signals of the following
iterations. These learning algorithms have proved to be effective in compensating
for repetitive errors when combined with traditional feedback control loops to
correct non-repetitive disturbances as they occurs.

Iterative learning control algorithms have only recently been applied to im-
prove the accuracy of autonomous UAVs in tracking predefined trajectories. ILC
schemes are applicable in drones used for operations in which repetition is inher-
ent to the required task and where the path followed by the drone is predefined.
ILC autopilots could be employed for instance in farming (e.g., for spraying pes-
ticides on crops), environmental monitoring (of crops, forests, rivers, etc.), civil
instruction inspections (e.g., power lines, pipelines, dimes, highways, bridges) and
filming (of a pre-defined scene with a camera mounted on the drone).

State of art

In the literature, the problem of controlling autonomous multirotor VTOL-UAVs
for precise trajectory tracking (of aggressive flying) is a commonly addressed prob-
lem in control theory as multirotors are unstable non-linear systems with complex
behaviour, especially at high speed.

The first methods developed extend the classical approaches with adaptation
in order to cope with important model uncertainties and external disturbances.
PID schemes, feedback linerized controllers and backstepping methods fall in the
category of causal controllers as they are not indented to improve the system
performance in executing a same trajectory repeatedly by learning from past it-
erations.

Other control strategies are based on reinforcement learning techniques (such
as neural networks and output feedback to learn the complete dynamics of the
UAV online) or adaptive control strategies (to adjust the control parameters to
ensure high-robustness to disturbances).

The application of learning algorithms to flying vehicles, specifically the non-
causal strategies designed to exploit past experience in order to improve future
executions, is more rare and has been actively researched during recent years.

The problem of learning parametrized motions has been addressed in Lupashin
and D’Andrea [1]. The trajectories are described by a set of design parameters
that are adjusted after the execution of the manoeuvres to compensate for distur-
bances. An adaptation strategy to correct for trajectory periodic errors of generic
repeated motions is carried out in the frequency-domain (with a Fourier series de-
composition of the input and output signals) in [2]. Purwin and D’Andrea in [3]
introduced a least-squares-based ILC, considering a lifted -domain description of
the model under study, to non-causally anticipate recurring disturbances when

Introduction 3

driving a quadrotor quickly from a state to another.
Schoellig, Mueller and D’Andrea [4] [5] implemented and validated through

experimental activity an optimization-based iterative learning for precise quad-
copter trajectory tracking. The proposed algorithm combines traditional optimal
filtering methods with state-of-the art optimization techniques in order to ob-
tain an effective and computationally efficient learning strategy, that updates the
feed-forward input signal according to a customizable learning objective.

In Degen and Schoellig [6] the advantages of Kalman-filter-enhanced ILC al-
gorithms are highlighted. The so called Kalman-ILC has proven to be an effective
method for improving the performance of repetitive control tasks of a single-input,
single-output mass-spring-damper system.

Objective

The objective of this thesis is to develop and validate a novel ILC for precise
trajectory tracking of an autonomous VTOL-UAV performing a periodic motion.
ILC algorithms are, therefore, illustrated and discussed. The emphasis is put on
discrete-time algorithms due to the digital nature of the computers involved in
controlling UAVs and storing data acquired during trials. The approach selected
is based on a so defined lifted -domain description of the model capturing the
system’s key dynamics.

The ‘standard’ optimization-based (also known as norm-optimal) ILC is en-
hanced with a Kalamn filter estimator to achieve both fast initial convergence
and good noise rejection by estimating the repetitive disturbances and optimally
adapting the learning update rule over the trials. The so called Kalamn Iterative
Learning control (K-ILC) is detailed and analysed. In contrast to the benchmark
problem presented in [6], this thesis addresses the challenge of designing a Kalman-
ILC to a multirotor UAV for precisely tracking an arbitrary three-dimensional
trajectory.

The main contribution of this thesis is the implementation and validation of the
K-ILC to a complete pre-existing autonomous quadrotor model, for the execution
of an aggressive manoeuvre, without simplifying or altering the inner dynamics
of the system. The effectiveness of the iteartive control and its performance are
investigated through experimental activity for a quadrotor.

Structure of the thesis

The thesis is organized as follows:

• in Chapter 1, the Iterating Learning Control is introduced; a general de-
scription of the control is given and an overview ILC algorithms is presented.
Then, two different system representations are described, with emphasis on

4 Introduction

the lifted form representation of discrete-time linear systems, followed by a
performance analysis discussion. Eventually, the typical design techniques
are proposed with a focus towards quadratically norm-optimal approaches.

• Chapter 2 is centred on the main topic of this thesis: the Kalman itera-
tive learning control. First, an introduction to the reasons of K-ILC design
choice is discussed, then, the system description and its lifted-domain rep-
resentation are presented. Later on, the Kalman-ILC algorithm is outlined
and the estimation step (Kalamn filter) and input update step (optimiza-
tion problem) are explained in detail. The chapter ends with an analysis of
the design parameter choices and a comparison between the K-ILC and the
Q-ILC.

• Chapter 3 contains the description of the Simulink model and the MAT-
LAB code developed to test the performance of a Kalman iterative learning
control for a quadrotor Unmanned Air Vehicle (UAV). An overview of the
design process in terms of the general architecture and the implementation
steps followed is illustrated. The K-ILC is first implemented in a general
feedback SISO system and then applied to a MIMO system. Once the effec-
tiveness of the control action is validated, the iterative control is installed
in a pre-existent quadcopter model. The Simulink K-ILC quadcopter model
and the MATLAB code structure of the simulation are detailed. Eventually,
the quadrotor simulation results are presented and the choice of the main
design parameters used is discussed.

• In Chapter 4 the trajectory tracking performance of the norm-optimal Kal-
man iterative learning control algorithm is tested in a real drone manoeu-
vre. First, an overview of the experimental setup (hardware and software)
is illustrated. Then, the flight tests executed are described. Finally the
experimental results are presented and discussed.

Chapter 1

Iterative Learning Control

In this chapter, the Iterating Learning Control, ILC for short, is introduced. A
general description of the control is given and an overview ILC algorithms is pre-
sented. Then, two different system representations are described, with emphasis
on the lifted form representation of discrete-time linear systems, followed by a
performance analysis discussion. Eventually, the typical design techniques are
proposed; the focus is towards quadratically norm-optimal approaches.

1.1 Introduction to ILC

Iterative Learning Control is a control strategy based on the idea that the per-
formance of a dynamic system that executes the same task multiple times can be
improved by introducing a correction signal to the system, dependent on the way
in which the task was performed in previous iterations (trials).

ILC is a learning-type control (that is where the term learning comes from),
since it uses information gathered during previous executions to acquire new un-
derstanding of the system. This knowledge allows the control to modify the system
performance through a proper action on the signals that enter the system.

The term iterative refers, instead, to the repetitive nature of the learning
process: the control, in fact, is implemented to systems that perform the same
task repeatedly and under the same operating conditions.

1.1.1 Main idea

The idea of ILC is inspired by human learning and has its origin in industrial
robot applications where a specific task is performed repeatedly under the same
operating conditions and where high precision is vital.

Take, for example, a basketball player shooting a free throw from a fixed po-
sition; he or she can improve his or her ability to score by practising the shot
repeatedly. During each shot, the basketball player observes the trajectory of

6 Iterative Learning Control

the ball and consciously plans an alteration in the shooting motion for the next
attempt. As the player continues to practice, the correct motion is learned and
becomes ingrained into the muscle memory so that the shooting accuracy is iter-
atively improved [7].

ILC is exactly an open-loop control strategy that generates the control signal
through practice.

This control method exploits every possibility to incorporate past control in-
formation, such as tracking errors and control input signals, into the construction
of the next control action. This is done in two separate steps: first the long term
memory components are used to store control information during trials, then the
stored control information is retrieved and fused to update the input signal for
the next iteration.

Due to its simplicity and effectiveness, ILC has received considerable attention
in many fields of application.

1.1.2 Historical background

The term iterative learning control was introduced by Arimoto in 1984 and has
become the standard notion. Actually, the first academic contribution to what
today is called ILC is a paper by Uchiyama published in 1978; but, since it was
only published in Japanese, the idea was not widely spread until 1984, when
the papers by Arimoto et al [8]., Casalino and Bartolini [9], and Craig [10] were
independently published.

The development of ILC grew originally from practical issues in the field of
industrial robotics, where repetitive motions appear in a multitude of applications.
Since then, ILC started to become an active research area. Much of the early
work focuses on convergence of ILC algorithms and robustness and performance
analysis.

Algorithms of different nature (both linear and nonlinear) for different system
descriptions have been developed and analysed, but a unifying theory of ILC is
still under development. An important issue to solve in future works concerns
the formalization of the trade-off between robustness and performance. Open
problems regard, also, how to design practical algorithms simple enough, robust
and with good performance for industrial usage or how to design general ILC
algorithm when having similar, but not identical, reference signals.

ILC field of activity is still growing and there are many theoretical and practical
application issues to investigate.

1.1.3 ILC vs other control approaches

ILC differs from other learning control strategies which are described in the fol-
lowing.

1.1 Introduction to ILC 7

Traditional Control

A feedback control strategy enables the system to be controlled to adjust its per-
formance to meet a desired output, even when disturbances and uncertainties in
the system model are present. Conventional feedback controllers, in fact, guaran-
tee good tracking performance by reducing the sensitivity to disturbances. This
is done by routing back, as inputs, the outputs of the system, as part of a chain
of cause-and-effect that forms a loop. Since feedback controllers react to inputs
and disturbances, they always have a lag in transient tracking.

A feedforward control can eliminate this lag and performs well when the system
model is very accurate and signals are known or measurable. But, unmodeled
dynamics and disturbances limit the effectiveness of feedforward control.

ILC comes in handy when one desires a control strategy that is robust to
system uncertainties, works well in rejecting repeating disturbances and does not
require exogenous signals, such as references and disturbances, to be known or
measured, as a feedback strategy does; and that, at the same time, it is able
to anticipates and compensates in advance, as a feedfarward control, undesired
repeating terms, i.e. disturbances and uncertainties that affect the ‘real’ system
dynamics, but are not accounted in the nominal ideal model.

In this sense, ILC behaves as a feedforward control in the time-domain and
as a feedback control in the iteration-domain. In fact, the ILC update signal is
based on data of previous iterations (feedback term) and is introduced directly in
the system to compensate for repeating disturbances (feedforward term).

Some of the advantages of ILC over traditional control algorithms are:

High tracking performance: ILC is employed in applications in which precision
in tracking desired trajectories is key.

Monotonic convergence: if convergence conditions are met, the system converges
to a desired trajectory monotonically, preventing unwanted overshoots of
the system trajectory.

High robustness: unlike other control methods, ILC requires little knowledge of
the system to yield good results. It can be designed without an accurate
model and can handle well model uncertainties, noise and external distur-
bances.

Advanced filtering and signal processing: because ILC deals with data time-
sequences already available in its entirety, it can alleviate error sensitivity
by using noncausal filtering technique and advanced signal processing (for
instance, a zero-phase filtering allows for high-frequency attenuation without
introducing lag).

The main disadvantage of ILC is linked to its inability to deal with relevant
non-repeating disturbances that happen during trials. In fact, noise and non-
repeating disturbances degrade ILC performance.

8 Iterative Learning Control

Because of that, ILC is generally used in combination with a feedback control:
the iterative control is responsible for rejecting repetitive disturbances, while the
feedback control has the task of reducing non-repeating disturbances and noise.

Repetitive Control

Repetitive Control (RC) is closely related to ILC. As with ILC, Repetitive Control
exploits the information acquired in the past iterations to learn the way in which
the system behaves, in order to reject repetitive disturbances.

The main difference between the two is that, RC is intended for continuous
operations, where the next iteration immediately follows the current one1, whereas
ILC is designed for discontinuous operations. In fact, in RC, the system does not
return to the initial conditions it had at the beginning of the trial before the next
trial starts, unlike ILC.

This crucial difference makes the stability analysis very different. In fact, in
time domain, RC acts as a feedback control and ILC acts as a feedforward control.

Additionally, ILC, unlike RC, works with finite time scale trials and infinite
time scale in the iteration domain.

In a way, ILC can be considered a special case of RC if at the end of each
iteration, the system is stopped and reset at the initial condition.

Intelligent Control

ILC can be classified in the of group Intelligent Control strategies. Machine Learn-
ing, Artificial Neural Networks and other ‘intelligent’ control strategies, as well as
ILC, all implement a type of learning.

ILC differs from the so called ‘intelligent’ controllers because it is based on
a system-theoretic approach that does guarantee a fast convergence, unlike the
other strategies that requires extensive data training.

Adaptive Control

ILC differs from Adaptive Control strategies. Unlike ILC, the Adaptive Control
adapts to a controlled system with parameters which vary, or are initially un-
certain. The control modifies the control parameters rather than acting on the
control input signal. Moreover, adaptive control typically does not take advantage
of information contained in repetitive signals.

1The typical example of a RC application is the control of an hard disk drive’s head, in which
the iteration is defined by the full rotation of the disk and where the next iteration immediately
follows the current one.

1.2 General description of ILC 9

1.1.4 Applications

Originally, ILC has been focused on improving the performance of systems that
execute a single, repeated operation over and over again in time (time periodic).
ILC has also found application to systems in which repetitiveness is not always
with respect to time, but also with respect to state and to iteration (trajectory-
dependent).

ILC is exploited in many practical industrial systems deployed in assembly
lines, where mass production is key. ILC has been successfully applied in man-
ufacturing (computer numerical control, motion systems, injection-molding ma-
chines, extruders, rolling mills, induction motors, chain conveyor system, engine
valves), robotics (industrial robots, autonomous vehicles, braking systems), and
chemical processing (thermal processing, chemical reactors).

It can also serve as a training mechanism for open-loop control and as part
of an identification procedure (e.g. ILC is used in the experiments to obtain the
aerodynamic drag coefficients of bullets).

In the aerospace field, practical ILC application are still under development.
Several works address the problem of augmenting the performance of UAVs in

handling aggressive maneuvers by anticipating recurring disturbances (including
the error in the model) and proactively compensating for them. Iterative learning
control strategies can, in fact, be used to enable UAVs to learn from periodic
maneuver’s executions, to accurately track high-performance trajectories.

Lastly, ILC can be deployed in contexts in which repetitiveness is not guar-
anteed, such as, for example, in autonomous robots that perform non-repeating
motions. For this application, for instance, ILC can be designed and trained with
a number of repeating standard trajectories. The converged input that results in
the ‘best’ performance is stored in a database for each different maneuver. When a
new trajectory, that differs from one of the several stored in the database (only in
space-scale and/or time-scale), is desired, the converged signal, previously stored
in the database, is retrieved and used to shape the new signal. Practical appli-
cations in the robots with different task-dependent speeds is developed in several
works.

In this thesis, an iterative learning control method for precise trajectory track-
ing of a quadrotor is developed.

1.2 General description of ILC

The typical Iterative Learning Control works as follows: at each iteration, the
input update that is generated by the controller in the previous trial and that is
stored in memory, enters the system and produces the output. The output signal
is stored in memory. When the trial is over2, ILC processes the data off-line and

2It is not always necessary to wait the end of the trial to process the data

10 Iterative Learning Control

updates the input. This new input is shaped so that it reduces the observed error,
i.e. the difference between the actual output and the desired one. The updated
input that exits the ILC is stored and applied to the system for the new iteration.
The learning process continues with new trials.

A graphical description of the general ILC is displayed in Figure 1.1 3.

SYSTEM

MemoryMemory

Learning
Controller

uj(t) yj(t)

de j

yd(t)

uj+1(t)
Feedback
System

ILC

Figure 1.1: ILC general scheme

All signals are defined in the interval t ∈ T , T := [0, T]: the signal uj(t)
represents the input vector that enter the system, de j(t) represents external dis-
turbances that perturb the system, while yj(t) and yd(t) represent respectively the
signals of the actual and desired output. Subscript j indicates the trial number:
j ∈ J , J := {0, 1, . . . , Nj}.

The general ILC problem is to find a recursive law for the input update. This
can be defined formally by introducing a mapping between the vector space of the
input signals U and the one of the output signals Y :

fS : U 7→ V, (1.1)

where fS is a nonlinear operator defining the input-output relation of the given
stable system S and it represents the system dynamics:

yj(t) = fS
(
uj(t), t

)
, (1.2)

and with uj(t) ∈ U and yj(t) ∈ Y .
The goal of the control is to drive the output to the desired value or equivalently

to find the input u∗(t) that satisfied the minimization problem:

u∗(t) = argmin
uj(t)

‖ej(t)
)
‖ = argmin

uj(t)

‖yd(t)− fS
(
uj(t), t

)
‖, (1.3)

3The dashed lines in the figure are used to stress the fact that the signals are processed
off-line.

1.2 General description of ILC 11

where ‖·‖ is a suitable norm and and ej(t) is the tracking error, i.e. the difference
between the desired and actual output: ej(t) = yd(t)− yj(t).

In order to find the input u∞(t), the ILC algorithm generates the input update
with the following recursive law:

uj+1(t) = f
(
uj′(t

′),yj′(t
′),yd(t

′), t
)
, (1.4)

with t′ ∈ T and j′ ∈ J ′ := {j, j − 1, . . . , 0}, so that:

lim
j→∞

uj(t) = u∞(t), (1.5)

or equivalently4:
lim
j→∞
‖ej(t)‖ = 0. (1.6)

In the most general description, the input update is a function of the time
instant, the desired response and present and past inputs and outputs. Ideally,
the input update of ILC algorithm should not depend on the desired trajectory
yd(t). In other terms:

uj+1(t) = f
(
uj′(t

′), ej′(t
′), t
)
. (1.7)

The value of the next iteration input at instant t, uj+1(t), is therefore dependent
on the time instant itself, and in the input and tracking error vectors; both are
functions of the time-variable t′, defined in the time-frame [0, T] since there are
no causality restrictions, and of the variable j′, which specifies present and past
iterations.

A number of postulate that underlie ILC approaches have been formulated in
Arimoto’s works [11] and are listed here.

P1: The iterations are finite in time: the time-period T ∈ (0,∞).

P2: The desired reference is defined a priori over time: t ∈ T .

P3: Repetition of the initial conditions is satisfied: the system returns to its
initial state after each trial: xj(0) = x0, ∀j ∈ J

P4: The dynamics of the system is invariant throughout the repeated iterations;

P5: The output at every iteration yj(t) can be measured, and so tracking error
signal, i.e. the difference between the desired and the actual output ej(t),
can be used to generate the next input uj+1(t).

P6: The dynamics of the system is causal and invertible (and also stable), that
is, for a given desired output with a piece-wise continuous derivative , there
exists a unique input unom(t) that drives the system to produce the output
yd(t).

4This is true only for some ILC formulation.

12 Iterative Learning Control

Postulates 3, 4, and 5 can be relaxed. Specifically:

P3∗: Mismatch in initial conditions at the beginning of each iterations has a
bounded error β1 > 0: ‖xj(0)− x0‖ < β1;

P4∗: The norm of the input disturbance de j(t) induced during the repeated trials
is limited: ‖de j(t)‖ < β2;

P5∗: The output yj(t) can be measured with noise and this noise is limited:
‖µj(t)‖ < β3.

Many contributions discuss how to tackle the problem when one or several of
the postulates are not satisfied.

The discussion, so far, was focused on continuous signals, i.e. signals de-
pendent on the continuous time variable t. The same framework (with minimal
changes) holds by replacing variable t with k when dealing with discrete-time
signals: where k ∈ K := {0, 1, . . . , N − 1}, and N <∞ is the finite trial length.

1.3 ILC algorithms

The ILC algorithm defines the input update control law of ILC. They can be
distinguished by a number of properties such us the ones listed below.

Linearity Linear and nonlinear algorithms are distinguished.

ILC order Based on the order of the ILC algorithm, which defines the number
of iterations used (in terms of measurements) to update the ILC input,
first-order algorithms are separated from higher-order algorithms.

Causality Causal and non-causal control algorithms are defined.

System description Depending on the system description, the algorithms are
categorized in continuous-time and discrete-time, as well as in frequency-
domain and time-domain.

In this section, an overview of the main ILC algorithms is presented, with
a particular focus on linear first-order algorithms applied to single-input, single-
output (SISO) discrete-time linear systems. The ‘classical’ ILC formulation is
then discussed. The description of the system to which the control is applied is
postponed to the next section.

1.3 ILC algorithms 13

1.3.1 Linear and nonlinear algorithms

Nonlinear algorithms

As stated, ILC update laws can be distinguished in linear and nonlinear algo-
rithms. A general nonlinear ILC algorithm is given by the equation:

uj+1(t) = f
(
uj(t), uj−1(t) . . . , u1(t), u0(t), ej(t), ej−1(t), . . . , e1(t), e0(t)

)
(1.8)

where, as always, u and e represents, respectively, input and tracking error (of a
SISO system), j is the iteration index and t is the continuous time variable. This
‘continuous’ formulation is defined with respect to the continuous time variable t;
it can be replaced by the discrete-time variable k for the discrete case.

In this algorithm, the input update uj+1(t) is a nonlinear function of previous
iterations information, but, in general, it can also depend on the future iteration
input or the estimated predicted tracking error. The class of nonlinear algorithms
is very large and the formulations available are applied on the basis of the problem
under study. In fact, the category of nonlinear ILC algorithms is still an open
area of research.

Linear algorithms

Linear algorithms, i.e. algorithms in which the function f in (1.8) is linearly
dependent in past inputs and error measurements, are more commonly applied
both on linear and nonlinear system.

1.3.2 First-order and Higher-order ILC algorithms

First-order algorithms

A first-order ILC algorithm uses an update formula that only exploits measure-
ments of the current iteration to generate the new input update:

uj+1(t) = f
(
uj(t), ej(t)

)
, (1.9)

High-order ILC algorithms

A so called high-order ILC algorithm, instead, uses measurements from current
and previous iterations to shape the ILC update:

uj+1(t) = f
(
uj(t), . . . , uj−No+1, ej(t), . . . , ej−No+1(t)

)
, (1.10)

where No defines the order of the ILC that is No ≥ 2.

14 Iterative Learning Control

1.3.3 Continuous and discrete algorithms

Continuous algorithms

Originally, ILC was formulated for continuous systems in a continuous time frame-
work. The first ILC algorithm proposed by Arimoto, in fact, is in continuous time:

uj+1(t) = uj(t) + Γėj(t), (1.11)

where Γ is a constant gain that multiplies the derivative of the continuous tracking
error in time.

The generalized algorithm is:

uj+1(t) = uj(t) + Φej(t) + Ψ

∫ t

0

ej(τ) dτ + Γėj(t), (1.12)

where the constant gains Φ, Ψ and Γ represents respectively the proportional (P),
integral (I) and derivative (D) terms of the error that update the input of the
PID-like ILC.

Discrete algorithms

The discrete-time counterpart of the control law (1.11) is the noncausal5 update:

uj+1(k) = uj(k) + γej(k + 1), (1.13)

where γ is a constant gain (the gain can also be a function of the discrete time
variable k) and where the error is defined at the next time instant.

Discrete time algorithms are preferred to the continuous because the discrete
domain is the natural domain for ILC. In fact, input and output signals are
sampled and stored in memory so that past-information data can be retrieved.

The algorithm (1.13) can be seen as a special case of a more general structure,
by introducing a filter L(q), known as the learning function, and a so called Q-filter
Q(q), where q is the forward time-shift operator.

The learning function maps the error signal ej(k+1) to the control signal, while
the Q-filter filters the ILC updating signal uj(k) or, more often, the computed
learning signal uj(k) + L(q)ej(k) before reapplying it to the system.

The common formulation of linear discrete ILC algorithms is, thus:

uj+1(k) = Q(q)
(
uj(k) + L(q)ej(k + 1)

)
, (1.14)

The scheme is illustrated in Figure 1.2.
The formulation takes different forms depending on the system descriptions

(time-domain or frequency-domain, SISO time- and iteration-domain description
or MIMO iteration-domain description). These formulations are later explained.

5The difference in causal and noncausal ILC is later explained.

1.3 ILC algorithms 15

Memory Q(q)

L(q)Memoryej(k)

uj(k)

ILC

Figure 1.2: General ILC algorithm scheme

The general ILC algorithm (1.14) can be extended to include a feedback control
term:

uj+1(k) = Q(q)
(
uj(k) + L(q)ej(k + 1)

)
+ C(q)ej+1(k) (1.15)

This control algorithm is known as the current-iteration ILC. Redefining the
Q-filter and the learning function it is equivalent to the general ILC algorithm
1.14 combined with a feedback control in parallel6.

Causal and Noncausal Learning

ILC can anticipate and promptly respond to repeated disturbances. This charac-
teristic depends on the causality of the learning algorithm.

Definition: An ILC learning algorithm is causal if the input update uj+1(t)
depends only on uj(t

′) and ej(t
′) for t′ ≤ t. It is noncausal if uj+1(t) is also

a function of uj(t
′) or ej(t

′) for some t′ > t.7

Because of the recursive nature of ILC, the entire time sequence of data of all
past iterations is available. This allows the implementation of a noncausal control
learning strategy.

The noncausal algorithm has the advantage to anticipate repeating distur-
bances and promptly compensates them with a proper input update, by knowing
in advance, from data available in previous iterations, where the system is going
to. For this reason, the noncausal update law:

uj+1(k) = uj(k) + Lej(k + 1), (1.16)

is preferred to the causal counterpart:

uj+1(k) = uj(k) + Lej(k). (1.17)

6Feedback control used with ILC is explained in subsection 1.6.1
7This definition is referred to the continuous signals in time, the same holds for the discrete

signals by replacing t with k and t′ with k′.

16 Iterative Learning Control

In fact, the input update in equation (1.17) at time instant k aims to reduce the
error ej(k), which depend on the disturbance dj(k) (disturbance at the iteration j
at instant k), by acting on the same time instant; whereas, the noncausal update
law in equation (1.16), uses information of the current iteration error at the next
time step ej(k + 1), to reduce the disturbance dj(k + 1), by shaping the next
iteration input at the current time step uj+1(k).

In this sense, in a noise-free scenario, there is an equivalence between feedback
control and causal ILC, since, like a feedback control, it simply reacts to errors
at the same time instant. No equivalent feedback controller can, instead, provide
the same control action as the converged noncausal ILC.

1.4 System description

In this section, first, a brief description of the system to be controlled is given,
then, starting from the general ILC algorithm, the analysis is distinguished based
on the system representation. In the next chapter, a more detailed presentation
focusing on the specific system studied is reported.

In order to show convergence and to ensure stability in actual implementa-
tions, the system is required to be stable, as specified in the principles underlying
the concept of ILC postulated by Arimoto. The following analysis is centred in
LTI systems. If the plant is initially unstable, it should first be stabilized by a
conventional feedback control technique. This agrees with the focus of the ILC
algorithm that is to improve the performance of the system.

The system considered is represented in the discrete-time-domain, that is the
ILC ‘natural’ domain, as previously mentioned. Specifically, it is considered a
strictly proper Linear Time Invariant (LTI) Single Input, Single Output (SISO)
discrete-time system. This nominal model approximating the ‘actual’ system8, is
written in the state-space form:

{
x̃j(k + 1) = Ax̃j(k) + Buj(k)

ỹj(k) = Cx̃j(k),
(1.18)

where:

k is the discrete time index;

j is the trial number;

uj(k) is the input control signal;

yj(k) is the actual output control signal;

8The tilde is used to distinguish the nominal model from the ‘actual’ model.

1.4 System description 17

Given the initial state condition x̃j(0) ≈ x0,∀j, the nominal system (1.18) can be
rewritten as follows:

ỹj(k) = C(qI−A)−1B︸ ︷︷ ︸
P̃ (q)

uj(k) + CAk

︸ ︷︷ ︸
d 0(k)

x0, (1.19)

where:

dj(k) is the disturbance that includes external perturbations and model uncer-
tainties and noise measurements. It can be approximated as an exogenous
signal that repeats at each iteration if noise and non-repeating error model
are neglected: dj(k) ≈ d 0(k)+dR−(k), where d 0(k) is the disturbance of the
free response of the system due to non-null initial conditions, and dR−(k) is
remaining repeatable term of the disturbance;

q is the forward time-shift operator: qx(k) = x(k + 1);

P̃ (q) is a proper rational function of q that represent the nominal Asymptotically
Stable (AS) system and has a delay, or equivalently relative degree, of m;

d 0(k) is the disturbance of the free response of the system due to non-null initial
conditions.

The ‘real’ model is instead:

yj(k) = P̃ (q)uj(k) + dj(k), (1.20)

where dj(k) is the disturbance that includes external perturbations and model
uncertainties and noise measurements. It can be approximated as an exogenous
signal that repeats at each iteration if noise and non-repeating error model are
neglected: dj(k) = dNRj (k) + dRj (k) ≈ dRj (k) = d 0(k) + dR−(k), where d 0(k) is the
disturbance of the free response of the system due to non-null initial conditions,
and dR−(k) is remaining repeatable disturbance;

Considering a sequence of N sampling instants, the input, output, disturbance
and desired reference signals are so defined:

uj(k), k ∈ {0, 1, . . . , N − 1}
yj(k), k ∈ {m,m+ 1, . . . , N +m− 1}
dj(k), k ∈ {m,m+ 1, . . . , N +m− 1}
yd(k), k ∈ {m,m+ 1, . . . , N +m− 1}.

N is always a finite integer, since the trials are limited in time. However, it can
be considered infinite (N =∞) for analysis purposes.

Starting from the basic system description, the ILC analysis, based on the
general ILC learning update algorithm (1.14), differentiates into two separate
path, depending on the representation used.

18 Iterative Learning Control

1.4.1 Time-domain analysis: lifted-system representation

When the system is described in the time-domain, the so called lifted -representa-
tion is preferred in describing the input/output relation and the ILC update algo-
rithm. The lifted form, in fact, allows to write the SISO time and iteration-domain
dynamic system as a multiple-input, multiple-output (MIMO) iteration-domain
dynamic system.

To construct the lifted-system, the nominal plant P̃ (q) is, first, expanded as
an infinite power series9, by dividing its denominator into its numerator:

P̃ (q) = p̃1q
−1 + p̃2q

−2 + . . . , (1.21)

where the coefficients p̃k are the Markov parameters and altogether define the
impulse response of the system; these coefficient are equal to p̃k = CAk−1B, as-
suming p̃1 6= 0 and the relative degree of the plant equal to m = 1.

Then, the input/output dynamics in (1.20) can be rewritten as:

yj = P̃uj + dj. (1.22)

The vectors yj, uj and dj are shifted by one time step to accommodate the one-
step delay in the plant (m = 1) and are so defined:

yj =
[
yj(1), yj(2), . . . , yj(N)

]T
,

uj =
[
uj(1), uj(2), . . . , uj(N)

]T
,

dj =
[
dj(1), dj(2), . . . , dj(N)

]T
,

while lower-triangular Toeplitz matrix P̃ is:

P̃ =

p̃1 0 · · · 0
p̃2 p̃1 · · · 0
...

...
. . . 0

p̃N p̃N−1 · · · p̃1

.

Also the tracking error is redefined:

ej = yd − yj, (1.23)

with yd =
[
yd(1), yd(2), . . . , yd(N)

]T
.

Analogously, by defining the non-causal Q-filter and learning function as two
finite impulse response (FIR) filters (whose impulse response length depends on
the trial length N):

Q(q) = · · ·+ q−2q−2 + q−1q−1 + q0 + q1q + q2q2 · · · , (1.24)

9In the next chapter the lifted-form is derived directly from the state space representation.

1.4 System description 19

and

L(q) = · · ·+ l−2q−2 + l−1q−1 + l0 + l1q + l2q2 · · · , (1.25)

the general ILC algorithm (1.14) takes the form of:

uj+1 = Q
(
uj + Lej

)
, (1.26)

where the Q and L matrices are:

Q =

q0 q−1 · · · q−(N−1)

q1 p0 · · · q−(N−2)
...

...
. . . q−1

qN−1 pN−2 · · · p0

 ,

and

L =

l0 l−1 · · · l−(N−1)

l1 l0 · · · l−(N−2)
...

...
. . . l−1

lN−1 lN−2 · · · l0

 .

This system description is very general and it can handle also Linear Time-
Varying (LTV) systems.

1.4.2 Frequency-domain analysis: the z-domain represen-
tation

Introducing the z-transform of a discrete-time signal, the system dynamics in
equation (1.20) can be represented in the z-domain:

Yj(z) = P̂ (z)Uj(z) +Dj(z). (1.27)

where z is a complex variable and the capital letters represent the signals in the z-
domain: Uj(z) =

∑∞
k=0uj(k)z−k, Yj(z) =

∑∞
k=0yj(k)z−k, Dj(z) =

∑∞
k=0dj(k)z−k,

with the signals uj(k), yj(k) and dj(k) defined for k ∈ [0,∞). Actually, the
signals are finite as the trials have a limited duration (Nj <∞); therefore, when
representing the signal in z-domain, an approximation is done. The frequency
response of the system is obtained by replacing z with eiθ for θ ∈ [−π, π].

With this system description, the general ILC input update algorithm in (1.14)
is formulated as following:

Uj+1(k) = Q(z)
(
Uj(z) + zL(z)Ej(z)

)
, (1.28)

where Ej(z) = Yd(z)− Yj(z), with Yd(z) =
∑∞

k=0yd(k)z−k.

20 Iterative Learning Control

1.5 Analysis of performance

In this section, an analysis of the general discrete linear ILC scheme is presented.
Recalling the general algorithm (1.14), the objective of the designer is to choose

the Q-filter and learning function that regulate how the iterative learning control
performs. Q-filter and learning function, independently from the representation,
can be constant- or iteration-varying.

The learning function, as the name suggests, represents the learning contribu-
tion of the algorithm, that is the unfiltered ILC input update term.

The role of the Q-filter is, instead, to limit the frequency range of the learning
for ILC stability and noise attenuation. In fact, Q-filtering involves a trade-off
between minimizing repeatable error and amplifying noise. When Q(q) = 1 (or
Q(z) = 1 in the frequency-domain or Q = I in matrix form), the repeatable error
is eliminated, but noise and non-repeatable disturbances are amplified. Vice versa,
when Q(q) (or Q(z) or Q) is null, it has no effect on rejecting disturbances, both
repeatable and non-repeatable (noise). Therefore, the choice of the Q-filter should
be based on the nature of the disturbances: should be set to one in frequency
regions where the repeatable component of the disturbance is dominant, and set
to zero where non-repeatable component is relevant.

The typical Q-filter design is a low pass filter. This is because the (feedback)
system model is generally well known at low frequencies, where repeating distur-
bances are dominant, and uncertain at higher frequencies, where noise is relevant
and where the feedback control is predominant over ILC.

The characteristics of the filter, such as the type, the order or the cut-off fre-
quency, are selected by the designer to achieve (robust) stability and high tracking
(robust) performance. Additional limitations can be introduced to include also
input constraints.

To make it clear, ILC stability and performance definitions are briefly pre-
sented.

Stability (convergence)

The asymptotic stability (AS) of the system determines the effectiveness of the
iterative control. The ILC system is AS if ∃ ū ∈ R : |uj(k)| ≤ ū, ∀k ∈ K, ∀j ∈ J ,
and:

∃ lim
j→∞

uj(k), ∀k ∈ K, (1.29)

where K := { 0, . . . , N − 1 } and J := { 0, . . . , Nj }; where the converged control
input is:

u∞(k) := lim
j→∞

uj(k). (1.30)

Based on the system description and ILC algorithm, different stability analysis
are considered. If the lifted-form ILC formulation (1.26) is taken into account,

1.5 Analysis of performance 21

the system dynamics and ILC update can be rewritten as:

uj+1 = Q(I− LP̃)uj + QL(yd − d), (1.31)

by placing the system dynamics (1.20) in the error definition (1.23) and by sub-
stituting this error in (1.26) 10.

Thus, the AS, i.e. the convergence, of the ILC system is linked to eigenvalues
of the matrix Q(I− LP). The ILC system is stable if and only if:

ρ
(
Q(I− LP̃)

)
< 1 (1.32)

where ρ stands for the spectral radius. If the maximum singular value of the matrix
is lower than one, the condition gives monotone convergence. The convergence
speed, is thus related to the maximum singular value of the matrix, the smaller it
is the higher the speed.

Analogously, the convergence of the ILC system equations (1.28) and (1.27),
in the frequency-domain, results in the following condition:

‖Q(z)(1− zL(z)P̃ (z))‖∞ < 1 (1.33)

where the H∞-norm of a matrix M(z) is defined as: ‖M(z)‖∞ = sup
ω∈[−π,π]

|M(eiω)|.
The value of the H∞-norm is linked to the convergence speed: the smaller it is,
the faster is the convergence.

Considering the general ILC algorithm (1.14), the convergence is satisfied if a
proper choice of Q-filter and learning function are considered.

Performance

The performance of an ILC system is based on the asymptotic value of the error.
If the system is AS, the converged error exists and it is defined as:

e∞(k) := lim
j→∞

ej(k). (1.34)

As commented before, the performance analysis distinguishes based on the ILC
system description. For the lifted-domain representation, the asymptotic error is
computed from the converged input update, obtained by solving equation (1.31)
for j →∞:

e∞ =
[
I− P̃[I−Q(I− LP̃)]−1QL

]
(yd − d). (1.35)

For the z-domain ILC system, the asymptotic error is, instead:

E∞(z) =
1−Q(z)

1−Q(z)[1− zL(z)P̃ (z)]
[Yd(z)−D(z)]. (1.36)

10The disturbance d has been considered iteration-independent,i.e. noise is neglected.

22 Iterative Learning Control

In this last formulation, the error performance can be expressed, for example,
through a performance weight Wp(z) as:

∣∣∣Wp(z)
1−Q(z)

1−Q(z)[1− zL(z)P̃ (z)]

∣∣∣ < 1, ∀z ∈ D, (1.37)

where: D :=
{
z = ejω

∣∣ ω ∈ [−π, π]
}

.
When recurring to ‘non-standard’ ILC formulations, the performance is more

commonly evaluated comparing the initial trial error e0(k) with the asymptotic
error e∞(k), using either qualitative or quantitative methods (e.g. Root Mean
Square).

The stability and performance analysis can be repeated to include robustness
analysis. Analogous definitions are derived. In those definitions, the term P̃
used to represent the nominal model is replaced with P∆, to indicate a set of
(stable)-uncertain ILC systems, and the constraints are referred to the worst-case
condition.

1.6 Typical design methods

In this section the typical ILC design techniques implemented in real systems are
discussed and analysed: first a subsection is dedicated to illustrate how to use
feedback control in combination with ILC, then a distinction between basic and
model-based design methods is discussed and presented in two separate subsec-
tions: for both designs some examples are given, with the discussion limited to
discrete ILC algorithms only.

1.6.1 Feedback control with ILC

As explained numerous times, the goal of ILC is to track a desired reference and
reject repeating disturbances. In other words, the objective of the iterative control
is to generate an open-loop input signal that approximately inverts the system’s
dynamics and ideally removes only the repeating disturbance term, ignoring noise
and non-repeating contributions.

Since it has no feedback mechanism to respond to unexpected non-repeating
disturbances, in many physical implementations, a well-designed feedback con-
troller is used in combination with ILC.

Most systems, in fact, feedback controllers are already present in the system in
order to stabilize the plant in question and reduce the sensitivity to disturbances.
Two are the possible installation arrangements:

Serial arrangement When ILC is implemented in a pre-existing system, in
which direct access to the control signal that feeds the plant is inconvenient
or forbidden, as for many commercial controllers, it is generally installed

1.6 Typical design methods 23

in a so called serial arrangement, see Figure 1.3. In this case, ILC control
input is added to the reference before the feedback loop.

C P

ILC

yd yj

ej
de j

uj

−
PlantFeedback

Controller

Figure 1.3: ILC in serial arrangement

Paralel arrangement If, instead, the ILC control input is combined with the
feedback control input, as a feedforward signal, and applied directly to the
plant, the arrangement is defined as parallel. This approach, illustrated in
Figure 1.4, is more intuitive given that ILC acts directly on the control
variables.

C P

ILC

yd yj

ej
de j

uj

−
PlantFeedback

Controller

Figure 1.4: ILC in parallel arrangement

It is worth pointing out that, whenever a feedback control is already embedded
in the system, an iterative learning controller can be installed without altering the
feedback control parameters. In fact, by adding the ILC, independently from the
chosen configuration, the output of the system, dependent on the feedforward
input update, is summed to the output resulting from the feedback loop. Setting
the ILC input to zero, i.e. disconnecting the ILC, in both cases results in the
standard feedback-controlled response to the desired reference. Therefore, in both
arrangements, ILC can be disabled whenever non-repeating reference trajectories
are used.

1.6.2 Basic design methods

Basic ILC design techniques, differently from model-based methods, are very sim-
ple to implement as they require minimal knowledge of the system studied and are

24 Iterative Learning Control

not computationally demanding. Because of that, these methods are appealing
from the industrial perspective where simplicity is key.

Design methods of this kind, relying on very little information of the system,
are generally called model-free or heuristic ILC.

The pros of basic ILC approaches, as mentioned earlier, is the pure simplicity
of the algorithms: they depend on few parameters. This is motivated by the
practical implementation, as well as by the desire to control a system without
knowing its entire dynamics. On the cons, these algorithms do not perform as
well as model-based algorithms.

Examples of basic design methods are based, for instance, on the Arimoto-type
algorithms or in model-free self-tuning algorithms.

Heuristic design

A typical heuristic design method is presented. As an example, consider a SISO
system that needs to be controlled where only time delay and the static gain are
known.

The discrete ILC update law is:

uj+1(k) = Q(q)
[
uj(k) + γqδej(k)

]
, (1.38)

where the Q-filter determines how large is the part of the repeating error dynamics
that should be learned, while the learning function L(q) = γqδ compensates for
time delay through a forward time shift operator q weighted for a constant gain
γ.

These terms are computed following the simple procedure in Table 1.1.

Design procedure

Step 1. Choose the filter Q(q) as a low-pass filter with cutoff
frequency such that the bandwidth of the learning algo-
rithm is sufficient.

Step 2. Let L(q) = γqδ be the learning function. Select the
learning gain γ and time shift δ such that the frequency-
domain stability criterion is satisfied.

Table 1.1: An heuristic design algorithm

1.6.3 Model-based design methods

Model-based design methods require an explicit model of the system [12]. Be-
cause of that, the algorithms they are based on, tend to be more computationally
intensive, with the benefit of improving the overall system performance.

1.6 Typical design methods 25

Plant inversion design methods

Plant inversion methods use models of the inverted plant (or system) dynamics
as the learning function L(q).

An example of a discrete-time plant inversion ILC algorithm is the following:

uj+1(k) = uj+1(k) + P̃−1(q)ej(k) (1.39)

where P̃ (q) indicates the nominal model of the actual plant P (q).
In these methods, convergence occurs in a single iteration and the converged

error e∞ is null.
The problem of plant inversion design methods is linked to the practical diffi-

culties in implementing such algorithms. In fact, the discrete-time equivalent of a
continuous system is very often non-minimum phase. Therefore, direct inversion
of the non-minimum phase plant results in an unstable filter (where undesirably
large control signal variations can occur). Moreover, these methods depend con-
sistently on the accuracy of the model. Mismatch between nominal and actual
model, that are usually consistent at higher frequencies, can lead to poor transient
behaviour and may violate the stability properties of the system.

Frequency-domain design methods

A branch of model-based design methods is based on frequency-domain analysis
algorithms [13].

Typical examples are H∞ methods.

H∞-design methods use a systematic approach to ILC design. Given the
classical ILC update law in equation (1.14), the design goal is to find the best
learning function L(q) for a given filter Q(q). In other terms, these algorithms
uses H∞ synthesis to minimize the error transmission from one iteration to the
next by finding the learning function that gives the fastest convergence rate for the
given Q-filter choice. In mathematical terms, L∗(q) is the solution of the synthesis
problem that results in the minimum convergence speed γ∗ (that has to be below
unity):

‖Q(z)
(
I − zL∗(z)P̃ (z)

)
‖∞ = γ∗ < 1 (1.40)

The algorithm is summarized in Table 1.2.
The model matching problem can be written equivalently as a lower Linear

Fractional Transform (LTF) that defines the transfer function of the error trans-
mission from one iteration Ej(z)− E∞(z) to the next Ej+1(z)− E∞(z):

Fl(G, L) = G11(z) +G12(z)L(z)
(
I −G22(z)L(z)

)
(1.41)

where G(z) is equal to:

G(z) =

[
G11(z) G12(z)
G21(z) G22(z)

]
=

[
Q(z) Q(z)

−P̃ (z) 0

]
.

26 Iterative Learning Control

Design procedure

Step 1. Choose the filter Q(q) to be a low-pass weighting fil-
ter with pre-specified cut-off frequency ωc, such that
Q(eiω) = I, ∀ω ∈ [0, ωc], and Q(eiω) = 0, ∀ω > ωc.

Step 2. For given P̃ (z) and chosen Q(z), let L(z) be the
solution of the (sub)optimal H∞ synthesis problem:
L∗(z) = arg min

L∈H∞
‖Q(z)

(
I − zL(z)P̃ (z)

)
‖∞

Table 1.2: An H∞ design algorithm

The scheme is illustrated in Figure 1.5 .

G(z)

L(z)

Ej(z)− E∞(z) Ej+1(z)− E∞(z)

Learning
function

Figure 1.5: H∞- synthesis scheme

Alternative H∞-design methods include also robust performance analysis by
incorporating known uncertainty bounds. The solutions are however limited to
causal functions only.

Optimization-based design methods

Optimization-based design methods, also known as norm-optimal approaches, ex-
ploit the numerical optimization context to update the ILC signal for the next
iteration. These algorithms use the lifted-form description of the system and the
matrix representation of the ILC update algorithm.

The aim of the optimization correction is to reduce at each iteration step the
future tracking error while avoiding high actuator demands, i.e. by penalising the
change of the ILC input signal between successive iterations and the new input
signal itself.

The ILC input signal uj+1 is so the solution of a minimization problem. It is
derived from the minimization of a cost function, generally based on the predicted
next iteration error (which in turn depend on the updated input and the current

1.6 Typical design methods 27

cycle error), the new ILC input signals, the magnitude of the input signal itself
and the optimization weights:

Jj+1(uj+1) = fc
(
ej+1(uj+1, ej),uj+1,uj, weights

)
, (1.42)

where the weights are positive-(semi)definite matrices that can be both constant
or iteration dependent.

Chosen the weights, the current input data uj and the current error measure-
ment vector ej, the cost function at the next iteration is ultimately a function of
uj+1. So, minimizing the cost criterion means finding the updated input vector.

Typical examples of these methods are the Quadratically Iterative Learning
Control (Q-ILC) and the estimation-based norm-optimal ILC methods, such as
the Kalman filter enhanced-ILC object of the thesis.

To explicitly consider multiple ILC objectives (i.e. convergence speed, ro-
bust convergence, converged tracking performance and input constraint), the so
called multi-objective methods were recently developed. The theory behind these
methods is later presented.

Q-ILC design methods In Q-ILC algorithms, the optimization problem con-
sists in minimizing a quadratic next iteration cost function as the following:

Jj+1(uj+1) = ‖ej+1‖We j
+ ‖uj+1 − uj‖W∆u j

+ ‖uj+1‖Wu j
. (1.43)

where the norms are ‘weighted’. Written more explicitly it becomes:

Jj+1(uj+1) = eTj+1We jej+1 + (uj+1 − uj)
TW∆u j(uj+1 − uj)

+ uTj+1Wu juj+1.
(1.44)

The estimated tracking error of the next iteration can be defined as

êj+1 = ej − P̃(uj+1 − uj) (1.45)

where the hat symbol on the error indicates that the estimated error is based
on the nominal model P̃ only and does not take into model uncertainties and
undesired disturbances: êj = yd − yj = yd − P̃uj.

Solving the optimization problem for the next iteration estimated error con-
sidered, that is, deriving the cost function with respect to the uj+1 and imposing
the point to be stationary, the ILC algorithm becomes:

uj+1 = Qoptuj + Loptej, (1.46)

where the optimal Q-filter is:

Qopt =
(
P̃TWe jP̃ + W∆u j + Wu j

)−1(
P̃TWe jP̃ + W∆u j

)
, (1.47)

28 Iterative Learning Control

Design procedure

Step 1. Describes a lifted form representation of the nominal
model describing the relation between the ILC input and
the resulting output of the system.

Step 2. Select weighting matrices We j, W∆u j and Wu j.
Step 3. Design the input update by minimising a quadratic func-

tion in the error and the control signal. The resulting
update law depend on two matrices that can be inter-
preted as matrices Qopt and Lopt.

Table 1.3: A Q-ILC design algorithm

and where the optimal learning function is:

Lopt =
(
P̃TWe jP̃ + W∆u j + Wu j

)−1
P̃TWe j. (1.48)

The design algorithm is summarised in Table 1.3.
Performance, convergent rate and robustness of the algorithm can be modi-

fied by choosing appropriate weighting matrices. Specifically, the weighting term
W∆u j affects the convergence speed, that is how quickly the input changes form
one iteration to the next, but has no effect on the asymptotic error; whereas the
weight Wu j, that is useful to limit the control action and prevent saturation,
influence the final tracking error.

In the next chapter a new model-based ILC method, known as Kalman-ILC,
is presented. This new design results in a Q-ILC when specific conditions are met.

Multi-Objective ILC design methods Multi-Objective ILC ([14] [15]) are
new design methods that use an optimization problem 11, reformulated as a convex
problem, to trade different objectives (introduced also as constraints), by solving
simultaneously the non-causal Q-filter and learning function. An example, of the
procedure of these methods is the following:

minimize
Q(q),L(q)

convergence speed

subject to robust convergence

robust performance

input constraint (1.49)

where the solutions are the two filters of the general ILC input update equation
(1.14).

11These design methods can belong, also, to the category of frequency-domain methods

Chapter 2

Kalman Iterative Learning
Control

This chapter is centred on the main topic of this thesis: the Kalman iterative
learning control. It is organized as follows: first, an introduction to the rea-
sons of K-ILC design choice is discussed, then, the system description and its
lifted-domain representation are presented. Later on, the Kalman-ILC algorithm
is outlined and the estimation step (Kalamn filter) and input update step (op-
timization problem) are explained in detail. The chapter ends with an analysis
of the design parameter choices and a comparison between the K-ILC and the
Q-ILC.

2.1 Introduction to estimation based ILC

The previous chapter concludes with an analysis of the ILC design methods com-
monly used, where a major distinction is done between basic and model-based
design techniques. As explained, the model-based designs are preferred to basic
ones in order to achieve the best results in terms of system performance, even
at the expense of increasing the problem complexity (and so the computational
complexity).

On top of that, a serial arrangement scheme is considered. In fact, the purpose
of this thesis is to implement an ILC to a pre-defined quadcopter model, without
interfering with its inner dynamics. In this way, it is possible to change the
performance of the UAV by modifying the setpoint only, without altering the
feedback control laws of the system.

Traditionally, ILC has been applied to systems where the controlled variables
are also the measured variables (this is specified in Arimoto’s postulate P5 in 1.2).
When this is not the case, as in the problem studied, although the ILC algorithm
reduces the error of measured variables, the performance, evaluated in terms of
controlled variables, can be worsened due to model errors.

30 Kalman Iterative Learning Control

For this reason, ILC model-based algorithms have been extended with esti-
mators, applied to iteration-domain variables, in order to improve the learning
performance. This has proven to be particularly effective when a more accurate
model of the dynamics of the system is available and when non-repetitive noise
perturbations cannot be neglected. Through the estimation step, the unknown
repetitive disturbance, that represents the discrepancy between the nominal model
and actual model, can be estimated by measuring the output only (if the model of
the system is already defined). This information is exploited and used to update
the ILC input.

Within the model-based serial arrangement ILC approaches, optimization
based ILC design methods, also called norm-optimal, are selected. As discussed in
the prior chapter, these algorithms compute the input update step solving an opti-
mization problem (subject to additional constraints), by minimizing the predicted
tracking error of the next iteration.

The model-based, norm-optimal, estimation-enhanced ILC addressed in this
thesis and discussed in this chapter is the Kalman filter-enhanced iterative learning
control [4] [16], K-ILC for short.

2.2 System description

Before introducing the K-ILC, the (feedback) system, in which the control is
implemented, is described, and its lifted form representation is derived. The pros
in using a lifted representation were already commented in the previous chapter.
In this section, the lifted description is obtained directly from the state-space
form, both for linear time-invariant and time-variant systems.

2.2.1 Model of dynamics

The model that capture the dynamics of the physical system under consideration
is assumed to be given. As the natural domain of ILC is the discrete-domain, the
system is represented in the discrete time-domain. The MIMO model is described
by a set of linear strictly proper differential equations defined in the state-space
form: {

x̃(k + 1) = Adx̃(k) + Bdũ(k)

ỹ(k + 1) = Cdx̃(k + 1),
(2.1)

where k ∈ K is the finite discrete-time index, K :=
{

0, 1, . . . , N − 1
}

and N <∞
is the finite trial length. x̃(k) ∈ Rnx , ũ(k) ∈ Rnu and ỹ(k) ∈ Rny represent
respectively the vector of the states, the vector of the inputs and the one of the
outputs according to the model approximation of the physical system. The initial
condition is x̃(0) = x̃0 and, as the system accommodate the one-step delay, it is
also defined the output at the initial instant, that is ỹ(0) = Cdx̃0.

2.2 System description 31

For the sake of simplicity the subscript ‘d’ will be dropped from the notation
when referring to the LTI system matrices.

The lifted form of this model is exploited to derive a static map that capture
the system dynamics during one trial.

2.2.2 Lifted representation

Linear time-invariant system

A lifted representation is given for the discrete strictly proper LTI system (2.1).

The state and output motions of the system starting from the initial conditions
defined at the instant k = 0, which is equal to x̃(0) = x̃0 (and with ỹ(0) = Cx̃0),
is:

x̃(1) = Ax̃(0) + Bũ(0) = Ax̃0 + Bũ(0)
x̃(2) = Ax̃(1) + Bũ(1) = A2x̃0 + ABũ(0) + Bũ(1)
x̃(3) = Ax̃(2) + Bũ(2) = A3x̃0 + A2Bũ(0) + ABũ(1) + Bũ(2)

...

x̃(N) = Ax̃(N−1) + Bũ(N−1) = AN x̃0 +
∑k−1

i=0

[
AN−i−1Bũ(i)

]

ỹ(1) = Cx̃(1) = CAx̃0 + CBũ(0)
ỹ(2) = Cx̃(2) = CA2x̃0 + CABũ(0) + CBũ(1)
ỹ(3) = Cx̃(3) = CA3x̃0 + CA2Bũ(0) + CABũ(1) + CBũ(2)

...

ỹ(N) = Cx̃(N) = CAN x̃0 +
∑k−1

i=0

[
CAN−i−1Bũ(i)

]
.

The state and output dynamic can be rewritten in matrix notation:

x̃(1)
x̃(2)
x̃(3)

...
x̃(N)

=

B 0 · · · · · · 0

AB B
. . .

...

A2B AB B
. . .

...
...

. 0
AN−1B · · · A2B AB B

ũ(0)
ũ(1)
ũ(2)

...
ũ(N−1)

+

Ax̃0

A2x̃0

A3x̃0
...

AN x̃0

(2.2)

ỹ(1)
ỹ(2)

...
ỹ(N)

 =

C 0 · · · 0

0 C
. . .

...
...

. 0
0 · · · 0 C

x̃(1)
x̃(2)

...
x̃(N)

 (2.3)

The lifted representation of the discrete-time signals ũ(k), x̃(k) and ỹ(k) are
named respectively Ũ, X̃ and Ỹ, in order to be consistent in defining nominal

32 Kalman Iterative Learning Control

variables, i.e. modeled variables, with tilde and lifted variables with capital let-
ters1. Defining:

Ũ :=
[
ũ(0), ũ(1), . . . , ũ(N − 1)

]T
, Ũ ∈ RNnu ,

X̃ :=
[
x̃(1), x̃(2), . . . , x̃(N)

]T
, X̃ ∈ RNnx ,

Ỹ :=
[
ỹ(1), ỹ(2), . . . , ỹ(N)

]T
, Ỹ ∈ RNny ,

F̃ :=

B 0 · · · · · · 0

AB B
. . .

...

A2B AB B
. . .

...
...

. 0
AN−1B · · · A2B AB B

, F̃ ∈ RNnx×Nnu ,

G̃ :=

C 0 · · · 0

0 C
. . .

...
...

. 0
0 · · · 0 C

 , G̃ ∈ RNny×Nnx ,

∆0 :=
[(

Ax̃0

)T (
A2x̃0

)T (
A3x̃0

)T · · ·
(
AN x̃0

)T]
T
, ∆0 ∈ RNnx ,

equations (2.2) and (2.3) can be written in short in the following system:

{
X̃ = F̃Ũ + ∆0

Ỹ = G̃X̃
(2.4)

where the vector ∆0 represent the state disturbance of the system due to non-null
initial conditions.

Linear time-varying system

A similar description can be used also to represent in lifted form a discrete strictly
proper Linear Time-Varying (LTV) system. If the model that represents the
dynamics of the physical system is so defined:

{
x̃(k + 1) = A(k)x̃(k) + B(k)ũ(k)

ỹ(k + 1) = C(k + 1)x̃(k + 1),
(2.5)

the LTV system can be rewritten in lifted form as (2.4).

1The notation is different from the one used in the previous chapter. From here on the lifted
vector are written in capital letters.

2.2 System description 33

The state and output motions of the system with initial condition
x̃(0) = x̃0, and one step delay (with ỹ(0) = C(0)x̃0) are:

x̃(1) = A(0)x̃(0) + B(0)ũ(0) = A(0)x̃0 + B(0)ũ(0)
x̃(2) = A(1)x̃(1) + B(1)ũ(1) = A(1)A(0)x̃0 + A(1)B(0)ũ(0) + B(1)ũ(1)
x̃(3) = A(2)x̃(2) + B(2)ũ(2) = A(2)A(1)A(0)x̃0 + A(2)A(1)B(0)ũ(0)

+A(2)B(1)ũ(1) + B(2)ũ(2)
...

x̃(N) = A(N−1)x̃(N−1) + B(N−1)ũ(N−1) =
(∏N−1

i=0 A(i)
)
x̃0

+
∑N−1

m=0

[(∏N−m−2
n=0 A(N−n−1)

)
B(m)ũ(m)

]

ỹ(1) = C(1)x̃(1) = C(1)A(0)x̃0 + C(1)B(0)ũ(0)
ỹ(2) = C(2)x̃(2) = C(2)A(1)A(0)x̃0 + C(2)A(1)B(0)ũ(0)

+C(2)B(1)ũ(1)
ỹ(3) = C(3)x̃(3) = C(3)A(2)A(1)A(0)x̃0 + C(3)A(2)A(1)B(0)ũ(0)

+C(3)A(2)B(1)ũ(1) + C(3)B(2)ũ(2)
...

ỹ(N) = C(N)x̃(N) = C(N)
(∏N−1

i=0 A(i)
)
x̃0

+
∑N−1

m=0

[
C(N)

(∏N−m−2
n=0 A(N−n−1)

)
B(m)ũ(m)

]
.

In this case matrices F̃ and G̃, and vector ∆0 of system (2.4) are defined as
follows.

• Matrix F̃, indicated with two subscripts identifying the initial and final
instants of the time sequence to which they refer, is:

F̃0,N =

F̃(1,1) · · · F̃(1,N)
...

. . .
...

F̃(N,1) · · · F̃(N,N)

 , (2.6)

with F̃0,N ∈ RNnx×Nnu and with F̃(l,m) ∈ Rnx×nu equal to:

F̃(l,m) =

A(l − 1) · · ·A(m)B(m− 1) if m < l

B(m− 1) if m = l

0 if m > l,

(2.7)

where 1 ≤ l,m ≤ N .

• Matrix G̃ is defined as:

G̃0,N =

G̃(1,1) · · · G̃(1,N)
...

. . .
...

G̃(N,1) · · · G̃(N,N)

 , (2.8)

34 Kalman Iterative Learning Control

with G̃0,N ∈ RNny×Nnx and with G̃(l,m) ∈ Rny×nx equal to:

G̃(l,m) =

{
C(l) if m = l

0 if m 6= l,
(2.9)

analogously with 1 ≤ l,m ≤ N .

• Vector ∆0 is instead:

∆0 =
[(

A(0)x̃0

)T (
A(1)A(0)x̃0

)T
, . . . ,

(∏N−1
i=0 A(i)x̃0

)T]T
, (2.10)

with: ∆0 ∈ RNnx and with x̃(0) = x̃0 ∈ Rnx .

Nominal lifted model

The nominal model lifted matrix F2 linking the input Ũ to the output Ỹ can be
found solving the system (2.4) rewritten below:

{
X̃ = F̃Ũ + ∆0

Ỹ = G̃X̃,
(2.11)

that is the lifted model of the linear system (2.1) (or (2.5) for the time-variant
case); the output turns out to be:

Ỹ = F Ũ + D0, (2.12)

with:

F = G̃F̃, ∈ RNny×Nnu , (2.13)

D0 = G̃∆0, ∈ RNny . (2.14)

The nominal model describing the multi-input/multi-output relation, is rede-
fined with null initial conditions:

Ỹ = F Ũ. (2.15)

The nominal model lifted representation is, in the end, a static linear mapping:
it captures the complete time-domain dynamics of the system by mapping the
finite input discrete-time series ũ(k), k ∈ K, onto the one-step shifted output
time series ỹ(k + 1), k ∈ K3.

2Matrix F corresponds to what in the previous chapter was indicated with P̃, i.e. the lifted
nominal model of the plant. The letter ‘F’ indicates the fact that the system in question is a
(stable) feedback system.

3ũ(k) is the input vector that enters the system (2.1) while ỹ(k + 1) is the corresponding
output; they are distinguished from their lifted form counterparts: Ũ and Ỹ.

2.2 System description 35

2.2.3 ILC system in lifted form

The objective of the Kalamn iterative learning control, as any other serial ILC
schemes, is to improve the performance of a system in executing the same task or
trajectory by updating iteratively the input of the system (which corresponds to
the output of the iterative learning controller) after each trial.

Nominal and ‘actual’ ILC model

The lifted representation is used to define the dynamics of the K-ILC system. As
seen before, the evolution of the system dynamics in the lifted-domain over one
trial is, in fact, modeled by the following nominal lifted system Sn4:

Sn :

{
X̃ = F̃Ũ

Ỹ = G̃X̃,
(2.16)

or equivalently:
Ỹ = FŨ. (2.17)

∆0
j , which describes the state motion of non-zeros initial conditions, is omitted

from the formulation as it is assumed to be null since non-zero initial conditions
are accounted as disturbances in the generalized model.

The tilde is used so far to indicate the variables (namely Ũ, X̃ and Ỹ) of
the ideal model that approximates the dynamical system over a single trial. This
approximating nominal lifted model does not account for model uncertainties,
repeated disturbances and process and measurement noises. Those are considered
in the generalized model S which describes the system behaviour over multiple
iterations:

S :

{
Xj = F̃Uj + ∆j + NξΞj

Yj = G̃Xj + NλΛj.
(2.18)

These equations differ from the ones of the system Sn by the subscript j, with
j ∈ J :=

{
0, 1, . . . , Nj

}
, indicating the j-th trial execution of the desired task.

The nominal vectors X̃, Ũ, Ỹ are replaced with the ‘actual’ vectors Xj, Uj, Yj.
The term ∆j represents the repetitive state disturbance, which captures repetitive
disturbances, model errors and repeated non-zero initial conditions (∆0

j). It is
subject to minimal changes between iterations, in fact, the state disturbance from
one iteration to the next differs only for a contribution of a trial-uncorrelated
sequence of zero-mean Gaussian noise.

The signals Ξj and Λj account, instead, for process and measurement noises.
They are assumed to be trial-uncorrelated sequences of zero-mean Gaussian noises
too.

4The system is the lifted form representation of the system (2.1) when the initial condition
is null

36 Kalman Iterative Learning Control

The system (2.18) is solved as follows:

Yj = G̃F̃Uj + G̃∆j + G̃NξΞj + NλΛj, (2.19)

and condensed in the equation:

Yj = FUj + Dj + Mj, (2.20)

linking the input vector Uj to the measured output vector Yj.
The vector Dj represents the repetitive disturbance which captures the track-

ing errors due to unmodeled dynamics, unmodeled external noise and distur-
bances. It derives from the state disturbance ∆j and it is so defined:

Dj+1 = Dj + Ωj. (2.21)

As for the state disturbance ∆, the disturbance D enclosed the repetitive be-
haviour of the outputs so to differ, from an iteration to the next, for a random
signal trial-dependent Ωj, modeled as a zero-mean Gaussian noise with covariance
Σj.

The last term Mj is also a zero-mean Gaussian trial-dependent noise with
covariance matrix Hj and is equal to: Mj = G̃NξΞj + NλΛj.

ILC tracking error

Specifically, the goal of the ILC is to to track a desired output vector:

Yd =
[
ỹd(1), ỹd(2), . . . , ỹd(N)

]T
, Yd ∈ RNny , (2.22)

where ỹd(k) describes the desired output signal over time (in the discrete-domain).
To meet the objective, the tracking error defined as5:

Ej = Yj −Yd, (2.23)

needs to decrease during iterations through a proper action on the input vector
Uj. A new vector Unom is introduced in the equation below:

Yd = FUnom, (2.24)

in order to represents the nominal input that results in the desired output, in the
ideal case in which the nominal model is perfect.

In the ideal case in which the nominal system (2.17) is perfectly suited to
describe the dynamics of the system during the different iterations, i.e., when
model uncertainties, repeated disturbances and process and measurement noises
of the ‘actual’ model are neglected, the nominal output is equal to:

Ỹj = FUj, (2.25)

5The (lifted) error definition differs to the one given in the prior chapter only for the sign.

2.3 K-ILC 37

with Ũj = Uj, can be used to define a nominal iterative tracking error:

Ẽj = Ỹj −Yd, (2.26)

where Ỹj is the output obtained form
Replacing the nominal output and the desired reference definitions (equations

(2.25) and (2.24)), the nominal iterative tracking error becomes:

Ẽj = FVj, (2.27)

with Vj := Uj −Unom.
By substituting the actual output equation (2.20) in (2.23), the ‘real’ tracking

error becomes:
Ej = FVj + Dj + Mj, (2.28)

with Mj ∼ N (0,Hj).

2.3 K-ILC

After having introduced the whole theoretical description of a typical ILC in
serial arrangement in lifted form, the Kalman filter enhanced ILC (K-ILC) is now
explained in depth.

The Kalman-ILC is first of all a norm-optimal ILC. As such, K-ILC uses in-
formation of the input and the error at the current trial, Uj and Ej, to design the
next trial input, Uj+1, that minimizes the tracking error Ej+1, i.e., the discrep-
ancy between the actual and the desired output at the upcoming iteration. This
ILC input update is generated by solving an optimization problem (with possible
constraints in the input), and, since it enters the system as an input, it does not
change the inner dynamics of the system.

A generic scheme of a first-order norm-optimal ILC in lifted form is illustrated
in Figure 2.1.

SYSTEM

ILC

Yd−Uj Yj

Ej

Uj+1

Figure 2.1: Norm-optimal ILC block diagram in lifted form

Note that for the sake of clarity, the variables displayed in Figure 2.1 are in
lifted form (Uj, Yj, Yd, Ej). Actually, the system works in the discrete-time-

38 Kalman Iterative Learning Control

SYSTEM

Dj+1 ESTIMATOR

LEARNING
STEP

Yd−Uj Yj

Ej

D̂j+1Uj+1

K-ILC

Figure 2.2: K-ILC block diagram in lifted form

domain with discrete-time signals (uj(k), yj(k), yd(k), ej(k)6). The iterative
learning controller is indeed responsible for storing these discrete signals and re-
trieving it in the lifted form description.

The Kalman filter enhances the norm-optimal ILC by introducing an addi-
tional estimator that estimates the disturbance vector of the next iteration dis-
turbance Dj+1, based on the current input Uj and error measurement Ej. The
term D is once again the disturbance vector that represents the difference between
the nominal model and the real one (as well as the difference between the nominal
error (2.2.3) and the real error (2.28)), aside from the measurement noise term
Mj. After the estimation step is completed, the learning step updates the next
trial input. This is done by solving the usual optimization problem that is design
precisely for eliminating the estimated repetitive undesired disturbance.

The general scheme is displayed in Figure 2.2.
The disturbance estimate D̂j+1 is obtained from a Kalman filter based on the

stochastic model below, obtained joining equations (2.21) and (2.28):

SK :

{
Dj+1 = Dj + Ωj

Ej = FVj + Dj + Mj.
(2.29)

The terms Ωj and Mj are two random vectors (both with ny entries) representing
the noise acting on the state and output equations, respectively. These terms are
described as Gaussian noises with zero mean values and given variance matrices,
Σj and Hj:

ωj ∼ N (0,Σj), (2.30)

µj ∼ N (0,Hj). (2.31)

6Recall the notation used: uj is the lifted form vector of the discrete-time signal uj(k); the
same is true for the other variables.

2.4 Kalman estimator 39

In the proposed model, the disturbance Dj represents the state of the dynam-
ical system (2.29), while the error Ej defines the output measurements. The aim
of Kalman filter prediction step is to find a recursive expression for the optimal
estimate of the state at the iteration j+1: Dj+1, given the error observations up

to iteration j: D̂j+1|j.
The next iteration disturbance and error estimates are defined as:

D̂j+1|j := E[Dj+1 |Ej],

Êj+1|j := E[Ej+1 |Ej],

where: the ‘hat’ refers to estimated variables, E denotes the expectation operator
of a random variable and Ej is the vector that groups together the set of error
data over the interval of iterations J − :=

{
j, j − 1, . . . , 0

}
:

Ej = [ET
j ,E

T
j−1, . . . ,E

T
0]T . (2.32)

The vector Ej generates a subspace known as the subspace of the past.

The implementation of the actual Kalman estimator is developed in the next
section, while the setup of the optimization problem for the input update is dis-
cussed soon after.

2.4 Kalman estimator

The Kalman estimator is an optimal mathematical tool extensively used in the
field of statistical estimation. The theory presented in this section is known as
Kalman filtering because it originates from the contributions of R.E. Kalman.

Kalman filtering addresses a general problem arising when the unknown vari-
able, the state, may be different from the observed variable, the output. The
estimation of the state is performed by exploiting the information of it hidden in
the observed output. The link between the state and the output is expressed by
the mathematical state space model representing the system dynamics.

This algorithm is appropriate to estimate the disturbance of the linear dynamic
system (2.29), whose state is perturbed (in the iteration-domain) by a noise, by
using measurements which are also linear with respect to the state and corrupted
by noise. The iteration-domain Kalman filter detailed, in fact, uses a series of
measurements observed over the iterations, disturbed by noise and possibly other
inaccuracies, to produce the best estimates of unknown variables. These tend to
be more accurate than those based on a single measurement alone, because, for
each iteration, it is estimated a joint probability distribution of the variables in
order to minimize the covariance of the state prediction error. Optimality of the
filter assumes that the noises in equation (2.33) and (2.34) are white Gaussian

40 Kalman Iterative Learning Control

noises:

Ωj ∼ WN (0,Σj), (2.33)

Mj ∼ WN (0,Hj). (2.34)

As stated, the goal of the Kalman-ILC is to achieve the best estimation of the
next iteration error Ej+1, and so of the next iteration disturbance Dj+1, in order
to decrease it by acting on the next iteration input vector Uj+1. The estimated
error based on the stochastic system (2.29) is equal to the expected error given
all the past error measurements Ej:

Êj+1|j := E[Ej+1 |Ej] = E[FVj+1 + Dj+1 + Mj+1 |Ej].

Since E[Mj+1 |Ej] = 0, because the white noise vector Mj has zero-mean for
every j, the one-step-ahead-predicted error as a function of the input update is
then:

Êj+1|j = E[FVj+1 + Dj+1 |Ej]

= E[FVj+1 |Ej] + E[Dj+1 |Ej]

= FVj+1 + E[Dj+1 |Ej].

The K-ILC predicted tracking error is consequently:

ÊK-ILC

j+1 (Uj+1) = FVj+1 + D̂j+1 (2.35)

where the notation has been simplified: Êj+1 := Êj+1|j and D̂j+1 := D̂j+1|j, in
agreement with the notation previously discussed.

2.4.1 Algorithm

Specifically, the Kalman filter uses a recursive algorithm that exploits the knowl-
edge of the present measurement to predict the a priori expected state vector and
the expected error covariance of the state; in the next iteration, the new mea-
surement are then used to correct the estimates. The filter works in a two-step
process.

• In the iteration update step, the ‘Predictor ’ produces the a priori estimates
of the current state variable and the variance matrix of the state prediction
error:

D̂j+1|j = D̂j|j (2.36)

Pj+1|j = Pj|j + Σj, (2.37)

2.4 Kalman estimator 41

where the state is the disturbance, and Pj+1|j is the variance matrix of the
disturbance prediction error that is:

Pj+1|j := E[Γj+1Γ
T
j+1], (2.38)

in which the symbol Γj+1 is used to define the state prediction error at the
iteration j + 1:

Γj+1 = Dj+1 − E[Dj+1 |Ej]

= Dj+1 − D̂j+1|j.
(2.39)

• Once the outcome of the next measurement (j is shifted: j → j + 1) neces-
sarily corrupted with noise is observed, the ‘Corrector ’ updates these esti-
mates through the matrix gain Kj:

Kj = Pj|j−1(Pj|j−1 + Hj)
−1. (2.40)

The Kalman gain is calculated in such a way that it minimize the a posteriori
state error covariance. This gain weights the innovation, which contain the
new information acquired from the measurement, to update the state vector,
i.e. the disturbance, and also weights the state error covariance matrix for
its update:

D̂j|j = D̂j|j−1 + Kj(Ej − FVj − D̂j|j−1) (2.41)

Pj|j = (I−Kj)Pj|j−1. (2.42)

The innovation Oj is equal to the term in parenthesis in equation (2.41) in
fact:

Oj := Ej − E[Ej |Ej−1]

= Ej − E[FVj + Dj + Mj |Ej−1]

= Ej − FVj + D̂j|j−1,

(2.43)

since E[Mj] = 0, as the noise Mj has zero-mean.

The Kalman gain determines how heavily the measurement and the a priori
estimate contribute to the computation of the state and, so, it determines
how much the new measurement is reliable with respect to the prediction,
based on the mathematical model (2.29).

– If the measurement noise is small, the observation is trusted more and
contributes to the state measurement update, i.e. to the calculation
of Dj|j, more than the a priori state estimate Dj|j−1 does. In the
case in which the measurement error covariance Hj is Hj � Pj|j−1,
the Kalman gain approaches the identity matrix (Kj = I). Plugging
the identity gain in (2.41), the a posteriori estimate of the disturbance
becomes dependent on the current measurement and input ‘shift’ only:

D̂j|j = Ej − FVj. (2.44)

42 Kalman Iterative Learning Control

– If, instead, the error in the a priori estimate is small, this a priori
estimate is trusted more than measurement information, and the com-
putation of Dj|j mostly comes from this estimate. Therefore, if the
a priori error covariance matrix of the disturbance, Pj|j−1, is close to
zero: the the Kalman gain in the equation (2.40) goes to zero (Kj = 0);
this means that the contribution of the new measurement to the a pri-
ori disturbance is ignored:

D̂j|j = D̂j|j−1. (2.45)

The algorithm is recursive; first a prediction is computed (iteration-update),
then it is corrected based on the present iteration measurement (measurement-
update). No additional past information is required.

To initialize the recursive algorithm, the initial disturbance and error covari-
ance disturbance need to be assumed (for j = 0):

D̂0|−1 = D̂0 (2.46)

P0|−1 = E[(D0 − D̂0|−1)(D0 − D̂0|−1)T] = P0. (2.47)

In fact, in absence of observations, no information is conveyed by the innovation
and so the prediction is based on the a priori information only.

The Kalman estimator scheme is displayed in Figure 2.3.

Since the best one-step-ahead prediction of the disturbance is equal to the
disturbance itself, the a priori prediction and a posteriori measurement update
are easily combined:

D̂j+1|j = D̂j|j

= D̂j|j−1 + Kj(Ej − FVj − D̂j|j−1)

Pj+1|j = Pj|j + Σj

= (I−Kj)Pj|j−1 + Σj,

with:

Kj = Pj|j−1(Pj|j−1 + Hj)
−1.

The system of equations describing the disturbance estimator of the K-ILC thus
is:

Kj = Pj|j−1(Pj|j−1 + Hj)
−1

D̂j+1|j = D̂j|j−1 + Kj(Ej − FVj − D̂j|j−1)

Pj+1|j = (I−Kj)Pj|j−1 + Σj.

2.4 Kalman estimator 43

‘Predictor’ (iteration update)

(1) Project the state ahead:

D̂j+1|j = D̂j|j

(2) Project the error covariance ahead:

Pj+1|j = Pj|j + Σj

‘Corrector’ (measurement update)

(1) Compute the Kalman gain:

Kj = Pj|j−1(Pj|j−1 + Hj)
−1

(2) Update estimate with measurement ej:

D̂j|j = D̂j|j−1 + Kj(Ej − FVj − D̂j|j−1)

(3) Update the error covariance matrix:

Pj|j = (I − Kj)Pj|j−1

Initial Estimates

• Disturbance:

D̂0|−1
• Disturbance error covariance matrix:

P0|−1 = E[(D0 − D̂0|−1)(D0 − D̂0|−1)T]

j = j + 1

Figure 2.3: Kalman filtering

Re-writing the system with a simplified notation: Pj := Pj|j−1 and

D̂j := D̂j|j−1, it yields:

Kj = Pj(Pj + Hj)
−1 (2.48)

D̂j+1 = D̂j + Kj(Ej − FVj − D̂j) (2.49)

Pj+1 = (I−Kj)Pj + Σj, (2.50)

where the predictions of estimated initial disturbance D̂0 and its error covariance
matrix P0 are:

D̂0 = D̂0|−1 (2.51)

P0 = E[(D0 − D̂0)(D0 − D̂0)T]. (2.52)

For each iteration j, the measurement available of the error is used to correct
the estimation of the disturbance and to update it so as to estimate the predicted

44 Kalman Iterative Learning Control

K-ILC tracking error:

ÊK-ILC

j+1 (Uj+1) = FVj+1 + D̂j+1. (2.53)

Figure 2.4 shows the whole scheme that summaries the Kalman estimator of the
ILC.

Kalman Filter (‘Corrector’+‘Predictor’)

(1) Compute the Kalman gain:

Kj = Pj(Pj + Hj)
−1

(2) Update estimate with measurement Ej and project state ahed:

D̂j+1 = D̂j + Kj(Ej − FVj − D̂j)

(3) Update and project ahead the error covariance matrix:

Pj+1 = (I − Kj)Pj + Σj

Initial Estimates

• Disturbance:

D̂0 = D̂0|−1
• Disturbance error covariance matrix:

P0 = E[(D0 − D̂0)(D0 − D̂0)
T]

Optimal Estimate

• K-ILC Error:

Êj+1(Uj+1) = FVj+1 + D̂j+1

j = j+1

Figure 2.4: Kalman Estimator

2.4.2 Kalman estimator - design parameters

The performance of the Kalman estimation step of the ILC can be improved by
adjusting four different parameters.

• D̂0 is the initial disturbance. It is typically excluded from the design pa-
rameters’ choice since it is chosen to be zero as the nominal model is the
best possible guess of the real model.

2.4 Kalman estimator 45

• P0 is the error covariance of the initial disturbance and it is defined as
P0 := E[(D0 − D̂0)(D0 − D̂0)T]. Given the expected initial disturbance null
for hypothesis, it results in P0 = E[D0D

T
0]. It is chosen to be a diagonal ma-

trix with large positive elements to assure a rapid change in the disturbance
estimation in the early learning trials. To further reduce the complexity of
the problem the diagonal matrix proposed depends only on a single variable:

P0 = p0Iy, p0 > 0, p0 ∈ R, Iy ∈ RNny×Nny . (2.54)

• Σj is the covariance matrix that describes the null-mean Gaussian distri-
bution of the white disturbance noise Ωj ∼ WN (0,Σj). It captures the
variations of the disturbance vector D during iterations. This matrix can
also be modeled as a diagonal matrix depending on a common scalar term:

Σj = σjIy, σj > 0, σj ∈ R, Iy ∈ RNny×Nny . (2.55)

The scalar σj determines how the disturbance varies during the trials. Since
Dj incorporates unmodeled dynamics, and, therefore, is input-dependent,
σ is supposed to be larger at the beginning of learning, where the input
Uj and, hence, Dj changes considerably, and smaller in the final steps of
the learning process to avoid the disturbance to adapt to outliers and non-
repetitive noise as the input converges. To simplify as much as possible the
problem complexity, once again, the easiest choice is a constant value for σj:
σj = σ̄.

• Hj is the covariance matrix associated to the process and measurement
white noise null-mean Gaussian distribution: Mj ∼ WN (0,Hj). Based on
the sensor noise characteristics, the covariance matrix is so modeled:

Hj = ηjIy, ηj > 0, ηj ∈ R, Iy ∈ RNny×Nny . (2.56)

Also in this case, the scalar term is supposed to be constant: ηj = η̄. This
simplification still holds in the case in which σj varies during iterations.
This is due to the fact that there is a link between σj and ηj: the larger
σj is with respect to ηj, the more the process model of the disturbance is
considered reliable with respect the trustworthiness of the measurements
(and vice versa). This is why, in the simplified case in which the two scalar
parameters are iteration-invariant, it is possible to fix one of the two and to
let the other fluctuate.

Additionally, scaling matrices SE and SH can be introduced when Dj and Yj

(and as a consequence Ωj and Mj) represents different physical quantities with
possible order of magnitudes differences:

Σj = SE(σjIy)S
T
E, Hj = SH(ηjIy)S

T
H . (2.57)

46 Kalman Iterative Learning Control

In the model under study, this is not the case and, so, these scaling terms are not
taken into account.

The parameters are displayed in Table 2.1.

Design Parameters

• Kalman:

Initial disturbance: D̂0 = 0

Initial covariance: P0 = p0Iy, p0 ∈ R>0

Dist. covariance: Σj = σjIy, σj ∈ R>0

Error covariance: Hj = ηjIy, ηj ∈ R>0

• Weights

• Constraints

Table 2.1: K-ILC design parameters - Kalman estimator

2.5 K-ILC input update

The Kalman-ILC is completed with the learning update step. Given the predicted
error Êj+1 provided by the (Kalman) estimator, the objective of the updated step
is to find the optimal next iteration input Uj+1 (with Uj+1 ∈ RNnu) that reduces

the next iteration error by compensating for the disturbance D̂j+1.
Specifically, the next iteration input vector is computed minimizing a cost

function that weights the predicted error as well as the input changes (which
happen both during the trial and from an iteration to the next).

The input update optimization problem is formulated as follows:

Uj+1 = argmin
U′j+1

{
J̃j+1(U′j+1)

}
, (2.58)

subject to the following ‘hard’ constraints :

{
ZUj+1 ≤ Qmax

ZeqUj+1 = Qeq.
(2.59)

J̃j+1 is the cost function dependent on the updated input Uj+1, whereas Z, Qmax,
Zeq and Qeq defines the inequality (the first two terms) and equality (the last two)
constraints.

The cost function is presented in subsection 2.5.1, in subsection 2.5.3, instead,
the input constraints are explicitly defined. The optimization scheme is shown in
Figure 2.5.

2.5 K-ILC input update 47

2.5.1 Cost function

The optimal input update is stated in its most general form as the minimization
of the following cost function:

Jj+1(uj+1) = ‖WeÊj+1‖ap + ‖W∆u∆Uj+1‖ap
+‖WuUj+1‖ap + ‖WvVj+1‖ap,

(2.60)

where ‖·‖ap is the p-norm raised to the power of a, We, W∆U , Wu and Wv are

weighting matrices acting respectively on the estimated next trial error Êj+1, the
input change ∆Uj+1 = Uj+1 −Uj, the next iteration input Uj+1 and the next
‘shifted’ input Vj+1 = Uj+1 −Unom.

The predicted error Êj+1 is explicitly defined as:

Êj+1 := Êj+1|j = E[Ej+1|Y0,Y1, . . . ,Yj] = FVj+1 + D̂j+1. (2.61)

Outlining the explicit error, the cost function becomes:

J
(K−ILC)
j+1 (Uj+1) = ‖We(FVj+1 + D̂j+1)‖ap + ‖W∆u∆Uj+1‖ap

+‖WuUj+1‖ap + ‖WvVj+1‖ap.
(2.62)

The optimization problem can be done numerically considering any p-norm
to the power of a. The optimization problem considered is a standard quadratic
convex problem with p = 2 and a = 2 (squared 2-norm). The Euclidean norm
is used because it minimizes the sum of the deviations of the output along the
desired trajectory, focusing the weighting cost on large errors. Moreover, this type
of optimization has the advantage that, if there exists a local minimum, and so, if
an input compliant with the constraints is feasible, this local minimum is globally
optimal. On top of that, quadratic optimization problem can be solved faster and
more efficiently using MATLAB ® standard functions or software packages such
as the IMB CPLEX ® Optimizer. For p = 2 and a = 2, the cost function
can be redefined explicitly in terms of the input update. The cost function term
linked to the error is then:

J
(E)
j+1(vj+1) = [We(FVj+1 + D̂j+1)]T [We(FVj+1 + D̂j+1)]

= VT
j+1F

TWT
e WeFVj+1 + VT

j+1F
TWT

e WeD̂j+1

+ D̂T
j+1W

T
e WeFVj+1 + D̂T

j+1W
T
e WeD̂j+1

= VT
j+1F

TW̃eFVj+1 + 2D̂T
j+1W̃eFVj+1 + D̂T

j+1W̃eD̂j+1,

with: W̃e := WT
e We.

Defining the error cost as a function of the input update it yields:

J
(E)
j+1(Uj+1) = (Uj+1 −Unom)TFTW̃eF(Uj+1 −Unom)

+ 2D̂T
j+1W̃eF(Uj+1 −Unom) + DT

j+1W̃eDj+1

= UT
j+1F

TW̃eFUj+1 − 2UT
nomFTW̃eFUj+1 + UT

nomFTW̃eFUnom

+ 2D̂T
j+1W̃eFUj+1 − 2D̂T

j+1W̃eFUnom + DT
j+1W̃eDj+1.

48 Kalman Iterative Learning Control

The change of input cost term as a function of Uj+1 is:

J
(∆U)
j+1 (Uj+1) = ∆UT

j+1W
T
∆uW∆u∆Uj+1

= ∆UT
j+1W̃∆u∆Uj+1

= (Uj+1 −Uj)
TW̃∆u(Uj+1 −Uj)

= UT
j+1W̃∆uUj+1 − 2UT

j W̃∆uUj+1 + UT
j W̃∆uUj,

with: W̃∆u := WT
∆uW∆u.

The cost function weight referred to the input update is instead:

J
(U)
j+1(Uj+1) = UT

j+1W
T
uWuUj+1

= UT
j+1W̃uUj+1,

with: W̃u := WT
uWu.

Lastly, the ‘shifted’ input cost is equal to:

J
(V)
j+1(Uj+1) = VT

j+1W
T
v WvVj+1

= (Uj+1 −Unom)TW̃u(Uj+1 −Unom)

= UT
j+1W̃uUj+1 − 2UT

nomW̃uUj+1 + UT
nomW̃uUnom,

with: W̃v := WT
v Wv.

All the cost function terms, dependent on the input update only7, are displayed
below:

J̃
(E)
j+1 =

1

2

(
DT
j+1(2FTW̃eF)Uj+1

)
+ (2D̂T

j+1W̃eF− 2UT
nomFTW̃eF)Uj+1

J̃
(∆u)
j+1 =

1

2

(
UT
j+1(2W̃∆u)Uj+1

)
+ (−2UT

j W̃∆u)Uj+1

J̃
(U)
j+1 =

1

2

(
UT
j+1(2W̃u)Uj+1

)

J̃
(V)
j+1 =

1

2

(
UT
j+1(2W̃v)Uj+1

)
+ (−2UT

nomW̃v)Uj+1.

Combining all previous terms, it yields:

J̃j+1(Uj+1) =
1

2

(
UT
j+1(2FTW̃eF + 2W̃∆u + 2W̃u + 2W̃v)Uj+1

)

+ (2D̂T
j+1W̃eF− 2UT

nomFTW̃eF− 2UT
j W̃∆u − 2UT

nomW̃v)Uj+1.

The cost function of the optimization problem written in short is ultimately:

J̃j+1(Uj+1) =
1

2
UT
j+1H̃Uj+1 + f̃Uj+1, (2.63)

7The tilde notation is used to point out the deletion of constant contributions.

2.5 K-ILC input update 49

with:

H̃ := 2(FTW̃eF + W̃∆u + W̃u + W̃v), (2.64)

f̃ := 2D̂T
j+1W̃eF− 2UT

nomFTW̃eF− 2UT
j W̃∆u − 2UT

nomW̃v. (2.65)

In summary, the input update vector is computed solving the optimization prob-
lem.

Uj+1 = argmin
U′j+1

{
1

2
U′

T
j+1H̃U′j+1 + f̃U′j+1

}
(2.66)

subject to inequality and equality input constraints.

2.5.2 Weights - design parameters

Four different weight design parameters allow an adaptation of the optimization
problem (not accounting for the ‘hard constraints’ which are defined in the next
section).

• We is the matrix defined in RNny×Nny that weights and scales the estimated
one-step-ahead error signal. The matrix is designed to balance the magni-
tude of possible different physical quantities for MIMO system. It is also
useful for stressing the importance in accuracy of specific states, augment-
ing the cost function associated with these states. Since the matrix weights
the error vector defined in lifted-domain, the weight can additionally be ad-
justed to give importance to defined time-frames, i.e., specific parts of the
trajectory (e.g. initial and final phases).

To distinguish the weighting actions, the matrix can be decomposed in three
diagonal matrices, one to equalize the range of magnitude, another to focus
the emphasis on specific states and another one to change the weighting
along the trajectory. In the present dissertation, because of the nature of the
problem (with homogeneous physical quantities) and in order to simplify the
process, the chosen matrix is, once again, diagonal with equal coefficients:

We = weIy, we > 0, we ∈ R, Iy ∈ RNny×Nny . (2.67)

• W∆u is the matrix penalizing the change of input ∆uj+1 from one iteration
to the next. Once more, the weight chosen is a diagonal matrix:

W∆u = w∆uIu, w∆u > 0, w∆u ∈ R, Iu ∈ RNnu×Nnu . (2.68)

It is convenient if the designer wants to enforce gradual smoothness of the
ILC update input from one iteration to the next. The scalar weight w∆u is
closely related to the weight we. The more emphasis is given to the tracking
error we with respect to w∆u in terms of magnitude, the faster the output
vector will converge to the desired one, penalizing, on the other side, the
gradualness and smoothness of learning. Because of that, a higher value of
w∆u may worsen the learning performance.

50 Kalman Iterative Learning Control

Design Parameters

• Kalman: D̂0, P0,Σj,Hj

• Weights:

Error We = weIy, we ∈ R
Iter. inputs diff. W∆u = w∆u1u, w∆u ∈ R
Input Wu = 0

Nom. inputs diff. Wv = 0

• Constraints

Table 2.2: K-ILC design parameters - weights

• Wu is the matrix acting in minimizing the input and, therefore, the con-
verged solution U∞. It represent a ‘soft’ constraint and does not affect the
ILC robustness and convergence properties. The weight is omitted from the
current analysis since the limits in terms of absolute value (and derivatives)
of the input, are explicitly accounted in the inequality constraints.

• Wv is the weight matrix which reduces the asymptotic vector V∞, which
represents the difference between the actual input and the nominal input at
convergence. The same treatment of Wu applies for Wv.

These weight parameters are summarized in Table 2.2.

2.5.3 Constraints - design parameters

The designed optimization problem includes ‘hard’ constraints express in terms
of inequality and equality constraints.

Inequality constraints

First the definition of the input vector uj is recalled:

Uj =
[
ũj(0)T ũj(1)T · · · ũj(N − 1)T

]T
, Uj ∈ RNnu ,

where the vector ũj(k) ∈ Rnu in this section represents the inputs of the discrete
dynamic system obtained by sampling the continuous signals ũj(t).

The input inequality constraints imposed are expressed in terms of maximum

2.5 K-ILC input update 51

and minimum absolute values and in terms of first and second order derivatives:

ũmin ≤ ũj(t) ≤ ũmax (2.69)(
dũ

dt

)

min

≤ dũj
dt
≤
(
dũ

dt

)

max

(2.70)

(
d2ũ

dt2

)

min

≤ d2ũj
dt2
≤
(
d2ũ

dt2

)

max

. (2.71)

The relations referred to the continuous time variable t are analogous to the one
actually used, related to the discrete variable k:

ũmin ≤ ũj(k) ≤ ũmax (2.72)(
dũ

dk

)

min

≤ ∆ũj
∆k
≤
(
dũ

dk

)

max

(2.73)

(
d2ũ

dk2

)

min

≤ ∆2ũj
∆k2

≤
(
d2ũ

dk2

)

max

, (2.74)

where the following approximations hold:

(
∆ũ

∆k

)

max/min

≈
(
dũ

dt

)

max/min(
∆2ũ

∆k2

)

max/min

≈
(
d2ũ

d2t

)

max/min

.

The first and second discrete derivatives are defined according to the following
approximations:

• 1st discrete derivative:

– Forward approximation:

dũj
dt

∣∣∣∣
k̄

≈ ∆ũj
∆k

(+)∣∣∣∣
k̄

=
ũj(k̄ + 1)− ũj(k̄)

ts
; (2.75)

– Centered approximation:

dũj
dt

∣∣∣∣
k̄

≈ ∆ũj
∆k

(c)∣∣∣∣
k̄

=
ũj(k̄ + 1)− ũj(k̄ − 1)

ts
; (2.76)

– Backward approximation:

dũj
dt

∣∣∣∣
k̄

≈ ∆ũj
∆k

(−)∣∣∣∣
k̄

=
ũj(k̄)− ũj(k̄ − 1)

ts
; (2.77)

52 Kalman Iterative Learning Control

• 2nd discrete derivative:

– Forward approximation:

d2ũj
dt2

∣∣∣∣
k̄

≈ ∆2ũj
∆k2

(+)∣∣∣∣
k̄

=
ũj(k̄ + 2)− 2ũj(k̄ + 1) + ũj(k̄)

t2s
; (2.78)

– Centered approximation:

d2ũj
dt2

∣∣∣∣
k̄

≈ ∆2ũj
∆k2

(c)∣∣∣∣
k̄

=
ũj(k̄ + 1)− 2ũj(k̄) + ũj(k̄ − 1)

t2s
; (2.79)

– Backward approximation:

d2ũj
dt2

∣∣∣∣
k̄

≈ ∆2ũj
∆k2

(−)∣∣∣∣
k̄

=
ũj(k̄)− 2ũj(k̄ − 1) + ũj(k̄ − 2)

t2s
. (2.80)

The inequality constraints (equations (2.72), (2.73) and (2.74)) are written
in the lifted-domain for the discrete time steps k (with k ∈ K). The forward
approximation is used to express in matrix form the derivatives up to k = N − 3.
The discrete derivatives of the last two time steps are computed using a backward
approximation.

2.5 K-ILC input update 53

The computation of the inequality constraint is reported below.

ũj(0) ≤ ũmax

ũj(0) ≥ −ũmin

∆ũj
∆t

(+)∣∣∣∣
(0)

=
ũj(1)− ũj(0)

ts
≤
(
dũ

dt

)

max

∆ũj
∆t

(+)∣∣∣∣
(0)

=
ũj(1)− ũj(0)

ts
≥ −

(
dũ

dt

)

min

∆2ũj
∆t2

(+)∣∣∣∣
(0)

=
ũj(2)− 2ũj(1) + ũj(0)

t2s
≤
(
d2ũ

dt2

)

max

∆ũj
∆t

(+)∣∣∣∣
(0)

=
ũj(2)− 2ũj(1) + ũj(0)

t2s
≥ −

(
d2ũ

dt2

)

min

...

ũj(N−1) ≤ ũmax

ũj(N−1) ≥ −ũmin

∆ũj
∆t

(−)∣∣∣∣
(N−1)

=
ũj(N−1)− ũj(N−2)

ts
≤
(
dũ

dt

)

max

∆ũj
∆t

(−)∣∣∣∣
(N−1)

=
ũj(N−1)− ũj(N−2)

ts
≥ −

(
dũ

dt

)

min

∆2ũj
∆t2

(−)∣∣∣∣
(N−1)

=
ũj(N−1)− 2ũj(N−2) + ũj(N−3)

t2s
≤
(
d2ũ

dt2

)

max

∆2ũj
∆t2

(−)∣∣∣∣
(N−1)

=
ũj(N−1)− 2ũj(N−2) + ũj(N−3)

t2s
≥ −

(
d2ũ

dt2

)

min

54 Kalman Iterative Learning Control

Rewriting the above equations in the following way:

ũj(0) ≤ ũmax

−ũj(0) ≤ ũmin

−ũj(0) + ũj(1) ≤ ts

(
dũ

dt

)

max

ũj(0)− ũj(1) ≤ ts

(
dũ

dt

)

min

ũj(0)− 2ũj(1) + ũj(2) ≤ t2s

(
d2ũ

dt2

)

max

−ũj(0) + 2ũj(1)− ũj(2) ≤ t2s

(
d2ũ

dt2

)

min

...

ũj(N−1) ≤ ũmax

−ũj(N−1) ≤ ũmin

−ũj(N−2) + ũj(N−1) ≤ ts

(
dũ

dt

)

max

ũj(N−2)− ũj(N−1) ≤ ts

(
dũ

dt

)

min

ũj(N−3)− 2ũj(N−2) + ũj(N−1) ≤ t2s

(
d2ũ

dt2

)

max

−ũj(N−3) + 2ũj(N−2)− ũj(N−1) ≤ t2s

(
d2ũ

dt2

)

min

,

it is possible to defines the inequality constraints in a compact form:

ZUj ≤ Qmax. (2.81)

Where:

Z =

Z0 0s×1 · · · · · · 0s×1

0s×1
.

...
...

. . . Zp
. . .

...
...

. 0s×1

0s×1 · · · 0s×1 0s×1 ZN−3

0s×1 · · · 0s×1 zN−2 ZN−2

0s×1 · · · 0s×1 0s×1 ZN−1

, Qmax =

qmax0

...
qmaxp

...
qmaxN−3

qmaxN−2

qmaxN−1

,

with: Z ∈ R6nuN×nuN , s = 6nu , Qmax ∈ R6nuN ;

2.5 K-ILC input update 55

Zp =

Iu 0 0
−Iu 0 0
−Iu Iu 0
Iu −Iu 0
Iu −2Iu Iu
−Iu 2Iu Iu

, with: p = 0, . . . , N − 3 , Iu ∈ Rnu , Zp ∈ R6nu×3nu ,

zN−2 =

0
0
0
0
Iu
−Iu

, ZN−2 =

0 Iu 0
0 −Iu 0
−Iu Iu 0
Iu −Iu 0
−2Iu Iu 0
2Iu −Iu 0

, ZN−1 =

0 0 Iu
0 0 −Iu
0 −Iu Iu
0 Iu −Iu
Iu −2Iu Iu
−Iu 2Iu −Iu

in which: zN−2 ∈ R6nu , ZN−2 ∈ R6nu×3nu , ZN−1 ∈ R6nu×3nu , and where:

qmaxp = qmaxN−1
= qmaxN−2

=

ũmax
ũmin

(dũ
dt

)max · ts
(dũ
dt

)min · ts
(d

2ũ
dt2

)max · t2s
(d

2ũ
dt2

)min · t2s

, with: p = 0, . . . , N − 3,

qmaxp ∈ R6nu

Equality constraints

Equality constraints are imposed in order to guarantee continuity and avoid large
and rapid variations in the control variables when the learning trajectory starts
or ends. Constraints are imposed for k = 0 and k = N − 1: ũj(0) = ¯̃u0 and
ũj(N−1) = ¯̃uN−1. In lifted form it becomes:

ZeqUj = Qeq, (2.82)

where:

Zeq = diag(Zeq0 , . . . ,Zeqi , . . . ,ZeqN−1
), Zeq ∈ RnuN×nuN ,

Zeqi =

{
Iu if i = (0, N − 1)

0 elsewhere
, Zeqi =∈ Rnu×nu ,

and with:

Qeq =
[
qTeq0 · · · qTeqi · · ·qTeqN−1

]T
, Qeq ∈ RnuN×nuN ,

56 Kalman Iterative Learning Control

qeqi =

{
ūi if i = (0, N − 1)

0 elsewhere
, qeq ∈ Rnu .

These ‘hard’ constraints are, as explained, additional design parameters that
influence the optimization problem and the input update. Table 2.3 displays
the constraints used where, for the symmetry of the problem under study, the
following relations have been imposed:

ūl =ũmax = ũmin

ūd1 =

(
dũ

dt

)

max

=

(
dũ

dt

)

min

ūd2 =

(
d2ũ

dt2

)

max

=

(
d2ũ

dt2

)

min

.

Design Parameters

• Kalman: D̂0, P0,Σj,Hj

• Weights: We, W∆u, Wu, Wv

• Constraints:

- Inequality: ZUj+1 ≤ Qmax

Limits −ūl ≤ ũ(k) ≤ ūl

1st der. Limits −ūd1 ≤ ∆ũ
∆k
≤ ūd1

2nd der. Limits −ūd2 ≤ ∆2ũ
∆k2 ≤ ūd2

- Equality: ZeqUj+1 = Qeq

Initial ũ(0) = ūi

Final ũ(N − 1) = ūf

Table 2.3: K-ILC design parameters - constraints

2.6 K-ILC design parameters

Table 2.4 shows all the matrices and vectors parameters that need to be chosen
to improve the performance of the K-ILC.

As discussed in the estimation step (for the Kalman parameters) and in the
learning update step (for the design parameters that regulates the optimization
problem), the many free parameters can be lowered to just five scalar coefficients
plus five vector constraints. Among the five scalar terms, two couples, namely σ̄
and η̄, and we and w∆u are closely related to one another. These free parameter
chosen are reported in Table 2.5.

2.7 K-ILC vs Q-ILC 57

Design Parameters

• Kalman: D̂0, P0,Σj,Hj

• Weights: We, W∆u, Wu, Wv

• Constraints:

- Inequality: Z, Qmax

- Equality: Zeq, Qeq

Table 2.4: K-ILC design parameters

Design Parameters

• Kalman: p0, σ̄, η̄

• Weights: we, w∆u

• Constraints:

- Inequality: ūl, ūd1, ūd2

- Equality: ūi, ūf

Table 2.5: K-ILC scalar design parameters

2.7 K-ILC vs Q-ILC

The Kalman-ILC can be considered as an extension of a Quadratic-ILC [6]. In
other terms, the K-ILC results in a Q-ILC when specific conditions are met.

Q-ILC uses the most straightforward method to predict the error. In fact, the
estimated error of the next iteration, Êj+1, is supposed to be equal to the current
error measurement ej, plus the contribution of the nominal model predicted error
change:

ÊQ-ILC

j+1 (Uj+1) = Ej + F∆Uj+1, (2.83)

where the last term is obtained from the nominal error definition in equation (2.27):
Ẽj+1 − Ẽj = F(Vj+1 −Vj) = F∆Uj+1

8.
Recalling the definition in equation (2.53), the error prediction of the K-ILC

can, instead, be rewritten as follows:

ÊK-ILC

j+1 (Uj+1) = FVj+1 + D̂j+1 (2.84)

= F(Vj+1 ±Vj) + D̂j+1 (2.85)

= F∆Vj+1 + FVj + D̂j+1. (2.86)

8This expression is analogous to the one reported in the previous chapter except for the
change in sign in the error definition. Specifically, P̃ is replaced with F.

58 Kalman Iterative Learning Control

Since: ∆Uj+1 = ∆Vj+1 (with ∆Uj+1 := Uj+1 −Uj and ∆Vj+1 := Vj+1 −Vj),
equations (2.83) and (2.86) are the same when:

Ej = FVj + D̂j+1.

This is the case when D̂j+1 = Ej−FVj as in equation (2.44). In fact, if the noise in
measurements is considered negligible, the Kalman gain approaches the identity
matrix. When Kj = I, the next iteration disturbance prediction is exclusively
determined by the current-iteration error measurement and the current input
shift as pointed out in equation (2.44).

To summarize, if the measurement are completely trusted, i.e., if the Kalman
gain is equal to the identity matrix, the following holds:

ÊK-ILC

j+1 (Uj+1) = ÊQ-ILC

j+1 (Uj+1) = Ej + F∆Uj+1, (2.87)

therefore, if the optimization problem for the input update is the same, the K-ILC
and the Q-ILC are identical.

Lastly, a graphical representation is shown for a better understanding: Fig-
ure 2.6 and 2.7 illustrate respectively the block diagrams of the K-ILC and the
Q-ILC . Once again, when the measurement are solely trusted and when the opti-
mization setup is equivalent (H̃ = H̃Q, f̃ = f̃Q), the two block diagrams describe
the same process.

2.7 K-ILC vs Q-ILC 59

Cost function (Optimization problem)

(1) Define the next iteration cost function:

J
(K−ILC)
j+1 (Uj+1) = ‖WeÊj+1‖2

2 + ‖W∆u∆Uj+1‖2
2 + ‖WuUj+1‖2

2 + ‖WvVj+1‖2
2

(2) Rewrite the next iteration K-ILC quadratic cost function:

J̃j+1(Uj+1) =
1

2
UT

j+1H̃Uj+1 + f̃Uj+1

where: H̃ := 2(FTW̃eF + W̃∆u + W̃u + W̃v)

f̃ := 2D̂T
j+1W̃eF− 2UT

nomFTW̃eF− 2UT
j W̃∆u − 2UT

nomW̃v

with: W̃e := WT
e We, W̃∆u := WT

∆uW∆u, W̃u := WT
uWu, W̃v := WT

v Wv

Optimal Input

• Next iteration input:

Uj+1 = argmin
U′

j+1

{
J̃j+1(U′j+1)

}

subject to:{
ZUj+1 ≤ Qmax

ZeqUj+1 = Qeq

Optimal Estimate

• K-ILC Error:

Êj+1(Uj+1) = FVj+1 + D̂j+1

Figure 2.5: Learning step of the K-ILC

60 Kalman Iterative Learning Control

SYSTEM

D̂j+1 = D̂j +Kj(Ej − FVj − D̂j)

Uj+1 = argmin
U′

j+1

{
J̃j+1(U

′
j+1)

}
,

J̃j+1 =
1
2
UT

j+1H̃Uj+1 + f̃Uj+1

Constraints:

{
ZUj+1 ≤ Qmax

ZeqUj+1 = Qeq

Uj+1
Yd−Uj Yj

Ej

D̂j+1

K-ILC

Figure 2.6: K-ILC block diagram in lifted form

SYSTEM

Q-ILC

Uj+1 = argmin
U′

j+1

{
J̃
(Q−ILC)
j+1 (Uj+1)

}
,

J̃
(Q−ILC)
j+1 = 1

2
U′Tj+1H̃QU

′
j+1 + f̃QU

′
j+1

Constraints:

{
ZUj+1 ≤ Qmax

ZeqUj+1 = Qeq

Yd−Uj Yj

Ej

Uj+1

Figure 2.7: Q-ILC block diagram in lifted form

Chapter 3

Implementation of a K-ILC to a
multirotor UAV

This chapter contains the description of the Simulink model and the MATLAB
code developed to test the performance of a Kalman iterative learning control
for a quadrotor Unmanned Air Vehicle (UAV). An overview of the design process
in terms of the general architecture and the implementation steps followed is
illustrated. The K-ILC is first implemented in a general feedback SISO system
and then applied to a MIMO system. Once the effectiveness of the control action
is validated, the iterative control is installed in a pre-existent quadcopter model.
The Simulink K-ILC quadcopter model and the MATLAB code structure of the
simulation are detailed. Lastly the quadrotor simulation results are presented and
the choice of the main design parameters used is discussed.

3.1 Implementation steps

This section describes the engineering design process, meaning the series of steps
followed, to come up with a solution to the problem of improving the performance
of an autonomous quadrotor vehicle in precisely tracking a pre-set trajectory us-
ing a K-ILC. The goal is to teach a quadrotor how to achieve an high tracking
performance in executing a specific manoeuvre when model errors and repetitive
disturbances are present. This is done by designing a K-ILC algorithm which is
able to adapt the feed-forward input signal entering the system on the basis of
past trial performance of the system.

The approach presented is based on the norm-optimal Kalman iterative learn-
ing control algorithm described in the previous chapter.

62 Implementation of a K-ILC to a multirotor UAV

3.1.1 Implementation environment and architecture

The first design step to implement a new control law in a pre-existent system (in
a quadrotor) is the formalization of the environment and the architectural choices
that concur to shape the problem.

In this thesis, MATLAB® and Simulink® are used to explore the Kalman
iterative learning control design, given that both software can generate code (in
C, C++ and other languages) which can be exported and integrated into external
applications and devices.

MATLAB is a proprietary multi-paradigm programming language and numer-
ical computing environment developed by MathWorks that allows for numerous
applications including matrix manipulations, implementation of algorithms, data
plotting, creation of user interfaces, etc.

Simulink is a MATLAB-based graphical programming environment used for
modeling, simulating and analyzing multi-domain dynamical systems. Thanks
to a set of customizable block libraries and the graphical block diagramming
tool, that allows to model a dynamical system as a block diagram simply using
drag-and-drop features provided by the GUI, it enables rapid construction and
simulation of virtual prototypes to explore design concepts.

Since it offers tight integration with the rest of the MATLAB environment, the
‘actual’ dynamical system model (SYSTEM block) is implemented and simulated in
Simulink (Figure 3.1).

SYSTEM

K-ILC

Yd−Uj Yj

Ej

Uj+1

Figure 3.1: Simulink® implementation

The Kalman iterative learning control is, instead, coded in MATLAB (Fig-
ure 3.2) given that the controller works ‘off-line’, which means that it is activated
after each simulation is completed, i.e., once all the data gathered during the
simulation is available.

As previously mentioned, in both block diagrams (3.1 and 3.2), the signals
depicted are in lifted form. In the practical implementation, the SYSTEM block
works with (digital) discrete-time input signals using time series objects, i.e.
data vectors sampled over time.

Note that the ‘physical’ system built in Simulink in which the K-ILC is imple-
mented differs from the approximated model used to define the K-ILC algorithm.

3.1 Implementation steps 63

SYSTEM

K-ILC

Yd−Uj Yj

Ej

Uj+1

Figure 3.2: MATLAB® implementation

In fact, the K-ILC algorithm requires a linear dynamical model of the (physi-
cal) system under study. This approximated nominal model serves:

• to obtain an initial guess of the feed-forward input given a desired trajectory;

• to provide the direction for feed-forward corrections in the input update
step.

The discrete linear nominal system in state space representation (i.e. matrices
Ad, Bd, Cd), is estimated directly in Simulink, exploiting the System Identification
Toolbox. This app allows to construct the (linear) mathematical model that
approximate the dynamic system from measured input-output data. In practise,
the SYSTEM model is treated as an unknown model using a ‘black-box ’ identification
strategy in order to obtain the linear nominal lifted model matrix F linking the
input vector Uj to the output Yj (aside from model errors, external disturbances
and noises).

3.1.2 K-ILC applied to a SISO system

Instead of working directly with the multi-variable quadcopter model, the K-ILC
is first implemented in a known single input, single output system.

The ‘actual’ model is built in Simulink (Figure 3.3).

Figure 3.3: Simulink® - SISO system

The blocks in Figure 3.3 are listed below:

64 Implementation of a K-ILC to a multirotor UAV

input uj: the input block is a time-series object defined in the MATLAB work-
space that represent the continuous-time evolution of the discrete input
signal generated by the Kalman iterative learning control. Through inter-
polation, it generates a ‘continuous’ signal u j1 that enter the SISO system.

input yj: it is also a time series object obtained sampling (with the same sample
frequency with which the K-ILC works) the ‘continuous’ signal y j exiting
the system.

SYSTEM: the system block, defined in the continuous time-domain, represents a
feedback asymptotically stable dynamical system (Figure 3.4). The plant of

Figure 3.4: Simulink® - feedback SISO system

the SISO system is a second order transfer function stabilized by a PID feed-
back controller. External disturbances, which enter the plant and perturb
the process, include both repetitive and non-repetitive terms (with respect
to iterations). The repetitive disturbances are modeled in terms of sinusoidal
and co-sinusoidal signals with different frequencies, whereas non-repetitive
contributions are modeled as noise (random term).

The K-ILC algorithm is coded in the MATLAB environment in accordance to
the methodology described in the previous chapter2.

The aforementioned nominal linear model, in which the K-ILC is applied, is
obtained from the approximation of the ‘actual’ SISO system built in Simulink.

1Actually Simulink works only with digital, i.e. discrete, signals. The step size of each
simulation is however chosen in order to keep the time quantization error small enough on the
basis of the defined signal-domain.

2The structure of the code is similar to the one presented in the following for the UAV
implementation.

3.1 Implementation steps 65

Specifically, the transfer function defining the input-output relation is determined
directly from the System Identification Toolbox in Simulink, introducing a step
input and corresponding step output (that is the measured system step response)
time-series. The closed-loop transfer function is then converted to the ’continuous’
state-space representation, which is in turn discretized and transformed in lifted
form.

Through this simplified implementation (the ‘real’ model is SISO and com-
pletely defied also in term of the external disturbances), it is possible to play with
the different K-ILC design parameters and to analyse the sensitivity of the system
performance to the variations of these parameters, so as to select them properly.
In addition, the performance of the ILC system is validated also in presence of
model (multiplicative) uncertainties to ensure the robustness of the K-ILC design.

A qualitative solution (actually based on one of the many simulation) is pre-
sented in Figure 3.5.

Nj

k
T

uj(k)

. .
. .
. .

0

uj(k)

1

2

j

j+1

Nj

k
T

yj(k), yd(k)
. .
. .
. .

0

yj(k)
yd(k)

1

2

K-ILC
Uj

Uj+1

Yd

−Ej Yj

SYSTEM
Uj+1 Yj+1

Figure 3.5: K-ILC SISO system qualitative results

As it is evident in Figure 3.5, the K-ILC input signal (in red) enters the
system and gives an output (blue line) that differs from the desired output (green-
dashed line). The K-ILC is able to understand, based on past iterations, the
new signal that compensate for repetitive disturbances and identification model
errors. In fact, the effects of repetitive known sinusoidal terms (repetitive external
disturbances) are gradually removed from the output solution trough a proper
input signal update. The same is true for the known3 nominal model error.

3Since this ‘actual’ model is known and the nominal one is identified (considering the SYSTEM

block as black-box), the error between the two models is also known.

66 Implementation of a K-ILC to a multirotor UAV

3.1.3 K-ILC applied to a MIMO system

Once the effectiveness of the K-ILC has been validated for the SISO system, the
iterative learning control strategy was extended to the multi-input, multi-output
system.

Figure 3.6 shows the ‘real’ model built in Simulink. The MIMO system con-
sidered is a stable feedback system with two inputs and two outputs.

Figure 3.6: Simulink® - MIMO system

SYSTEM block is displayed in Figure 3.7. The plant of the system is described
using the state-space representation. The close-loop linear dynamic system is
asymptotically stable, i.e. all the poles of the (coupled matrix) transfer function
are in the open left-half complex plane. Analogously to the SISO system, the dis-
turbances, both repetitive (sinusoidal and co-sinusoidal) and non-repetitive (noise)
enter directly the plant.

Figure 3.7: Simulink® - feedback MIMO system

Also in this case, the nominal lifted model (Ỹj = FUj) is identified from
the input-output data using the Simulink identification toolbox. As for the SISO

3.1 Implementation steps 67

system, the MIMO model is treated as a ‘black-box ’, meaning that the SYSTEM

block is supposed to be unknown. Applying a single step input one at a time,
given the output measurement time-series, it is possible to construct the feedback
system transfer function matrix, form which a state-space description is obtained;
the linear system is thus discretized and converted in lifted form.

The K-ILC algorithm detailed in the previous chapter is once again coded in
MATLAB. This implementation is simply an extension of the SISO K-ILC code
for a MIMO system. The K-ILC system gives good results in terms of robustness
to the parameter choices, to model uncertainties and to disturbances.

3.1.4 K-ILC applied to a quadrotor UAV

The Kalman iterative learning control is now applied to a quadrotor UAV model.
The objective is to improve the quadcopter performance in executing a complex
manoeuvrer by precisely tracking a tridimensional trajectory. This is done by
acting on the reference trajectory input signal.

The pre-existing model in which the control is applied, is presented in the next
subsection. The ‘actual’ model used for the simulation and its approximation are
later described.

3.1.5 Pre-existing model

A Simulink non-linear quadrotor model has been used to validate the implemen-
tation of the Kalman iterative learning control.

The pre-existent model4 of the quadcopter([17] [18]) is displayed in Figure 3.8.

The main blocks that compose the model in Figure 3.8 are the following:

Controllers: this block contains the cascaded feedback linearized control loops
for position, velocity, acceleration, attitude, and angular rates, as well as
the mixer (to convert the thrust and moments control signals in the throttle
signals of the four motors). It receives as input the setpoint signal vector,
containing the reference positions, velocities, accelerations, jerks, (snaps),
attitudes (in quaternions), angular rates and angular accelerations that the
quadrotor is supposed to follow and, based on the measurements (of position,
velocity, attitude and angular rates), it generates as outputs the percentage
throttle of each motor to control the quadrotor.

Quadrotor: contains the equations which defines the actual dynamic of the quad-
rotor; it simulate the quadrotor behaviour by receiving as input the throttle
(in percentages) requested by to the four motors.

4Actually, the given UAV model has been slightly changed: the Setpoint block, which
generates the trajectory that the quadrotor is supposed follow, was removed.

68 Implementation of a K-ILC to a multirotor UAV

Figure 3.8: Quadcopter model

State filter: this block reads the outputs of the quadrotor block and trans-
forms the signals by discretizing them and adding noise and delay to mimic
measurements.

3.1.6 K-ILC quadcopter model

The implementation of the K-ILC in a quadrotor UAV is analogous to the one
developed for the general SISO and MIMO systems. Figure 3.9 shows the Simulink
diagram. The blocks in Figure 3.9 are:

Figure 3.9: Simulink® - UAV system

input uj: the input block is a time-series object that defines the evolution in
time of the quadrotor position, expressed with respect to the local North-
East-Down (NED) reference frame. The signal u j (i.e. uj(k)) represents
the reference trajectory generated by the Kalman iterative learning control
input update law; this discrete signal is re-sampled with the same sampling
frequency used by the feedback controller (which is much higher from the
one used by the iterative controller).

3.1 Implementation steps 69

input yj: it is also a time-series object obtained sampling (with the same sample
frequency of the iterative controller) the ‘continuous’ signal y j (i.e. yj(t))
representing the ‘actual’ position of the drone at the time t.

SYSTEM: the system block is displayed in Figure 3.10. It contains the Setpoint

Figure 3.10: Simulink® - UAV system (inner block)

block and the already mentioned quadcopter model. The former block gen-
erates the setpoint vector (with 25 signals) that contains the reference val-
ues of the feedback controller. Figure 3.11 shows the Setpoint block inner
structure. Depending on the ILC functioning mode selected by the user, the

Figure 3.11: ILC-Mode selector

setpoint can varies. When the ILC mode is set to 1, the setpoint entering
the quadcopter model does not include feed-forward contributions to the
quadcopter controllers, except possibly for the reference yaw signal (when
the yaw following toggle is ‘on’). The controller can be augmented with
feed-forward velocities and accelerations signals, and, optionally yaw feed-
forward signals, for known input trajectories, when the ILC mode is set to
2. The architecture of the Mode-1 block is displayed in Figure 3.12. When
the yaw following is enabled, the yaw time-series (of the selected trajectory)
defined in the MATLAB workspace (Yaw setpoint) enter the quadcopter
model as a feed-forward term (it is before converted in quaternions).

70 Implementation of a K-ILC to a multirotor UAV

The same is true for the Mode-2 block in Figure 3.13. In this scheme appears
also the blocks input uj der1 and input uj der2 that are the time-series
objects of the velocity and acceleration feed-foreword signals.

As for the above cases, the K-ILC algorithm is based on the linear time-invariant
approximation (nominal model) of the ‘actual’ dynamical system estimated using
the Simulink identification toolbox. The identification procedure used is basic but
effective in capturing the key dynamics of the studied system as unmodeled effects
are presumed to be compensated by the iterative learning scheme. The nominal
model is obtained analysing the output responses to position steps inputs. In
practice, a position step input is applied to the drone in the direction of each
body axis one at a time. The output measured, i.e. the measured position of the
drone in the corresponding direction, allows to estimate the input-output transfer
functions. The transfer functions are collected and used to contract the decoupled
matrix transfer function of the system linking the reference position inputs to the
actual output positions (in the NED reference frame). This matrix representing
the dynamics of the system is once again used to compute the lifted form nominal
model.

3.1.7 Code structure

The K-ILC commented in the prior chapter is coded in MATLAB and simulated
in Simulink. The main MATALB script is structured as follows.

• User choices: the code specifies the ILC-mode choice (mode 1,2), the yaw
following switcher (on/off), the trajectory speed parameter (ωtraj), the num-
ber of trials (Nj), the initial input choice, the K-ILC design parameters (σ̄,
η̄, p0, we, w∆u) and the number of plots displayed.

• Simulation setup: the overall K-ILC simulation setup is defined. It in-
cludes the following scripts.

– Initialization: the code describes the simulation time samples and
the initial conditions (position, velocity, attitude and angular rates).

– Trajectory: trajectory properties are specified in this script; they
include the trajectory type (e.g. the 8-shape path) the altitude, the
scale, the final conditions and the timing of the different flight phases
(e.g. take-off time, hovering time, etc.).

– ILC setup: the code defines the ILC timing (activation and deactiva-
tion times, sampling time of the ILC), the discrete-time index vectors
(e.g. k) and the trial lengths (e.g. N).

– Quadrotor physical parameters: the script contains the environ-
mental constants, the information of the drone (geometry, mass, struc-
tural characteristics, propeller specifications including also aerodynamic

3.1 Implementation steps 71

Figure 3.12: Setpoint: Mode-1

72 Implementation of a K-ILC to a multirotor UAV

Figure 3.13: Setpoint: Mode-2

3.1 Implementation steps 73

data, aerodynamic dumping info and ground effect coefficients), the
state estimators properties (noises’ standard deviations) and filter de-
lays.

– Quadrotor controller parameters: the script specifies the control-
ler characteristics (sample frequency and time), the saturations (of
throttle, thrust and torque) and the regulators parameters (of posi-
tion, linear-speed, attitude and angular-rate).

• Model setup: the models described are distinguished in:

– ‘Actual’ model : all the parameters of the ‘real’ Simulink model are
defined in the MATLAB work-space.

– Nominal model : the lifted representation of the linear discrete state-
space system is defined: F is obtained directly from a function built so
as to receives as inputs the state-space matrices Ad, Bd, Cd and trial
length N . These matrices are directly obtained from the identification
analysis of the ‘actual’ Simulink model (using the system identification
toolbox).

• Reference signals: the script defines the following signals.

– Desired output : through the setpoint quadrotor generator script,
the desired setpoint in terms of the NED position is computed at each
time-instant on the basis of the initial conditions, the timing scheduled
and the trajectory properties; the code is completed with the represen-
tation of the desired output in lifted form (Yd) for each sample time
considered.

– Nominal input : given the desired output, it is computed the nominal
input reported in lifted form (Unom).

– Initial input : the lifted initial input u0 is determined for the different
time sampling considered, choosing between: an input at the initial
iteration j equal to the nominal input (U0 = Unom), with or without
constraint limitations, or a desired output as initial input (U0 = Yd).

• Constraints: the script specifies the constraint design parameters for the
inequality (ūl, ūd1, ūd2) and the equality requirements (ūi, ūf), and their
lifted representation.

– Inequality constraints : given the input inequality constraint design pa-
rameters (ūl, ūd1, ūd2), the code computes Z and Qmax, which are re-
spectively the matrix and the vector of the input inequality constraints
in lifted form.

74 Implementation of a K-ILC to a multirotor UAV

– Equality constraints : analogously, matrix Zeq and vector Qeq, which
represent the equality constraints in lifted form, are computed by the
algorithm on the basis of the problem sizes and the design choices (ūi,
ūf).

• Kalamn parameters and optimization weights: in this algorithm, the
Kalman parameters associated to the initialization of the filter and to the
model estimation, and the weights of the input update optimization problem
are computed on the basis of the design parameters defined by the user.

– Kalman parameters : the initial Kalman state prediction D̂0 and the
initial variance of the error disturbance prediction P0, together with
the disturbances and error noise covariance matrices (Σj and Hj) are
obtained form the Kalman design parameter choices (p0, σ, η).

– Optimization weights : given the selected weights we, w∆u, wu and wv,
the optimization weight matrices are determined (i.e. We, W∆u, Wu,
Wv and W̃e, W̃∆u, W̃u, W̃v).

• K-ILC initialization The script defines the a priori setpoint, based on
the ILC-mode selected, in terms of position (i.e. tracking trajectory), ve-
locity, acceleration, jerk, snap, attitude, angular speed and angular accel-
eration. The position is defined a priori only for the first iteration, since
it changes from iteration to iteration due to the ILC action. The initial
simulation (j = 0) is run in the ‘real’ Simulink model so as to obtain the
initial reference data of the output, error and input ‘shift’ required to start
the K-ILC for-loop algorithm.

• K-ILC: this script represents the main body of the code as it defines the ac-
tual Kalman iterative learning control algorithm. The different simulations
of the dynamical system in which the ILC is applied are computed recur-
sively, given the input update generated by the controller. Using a for-loop
control flow statement (in which the iteration variable j goes from 0 to Nj),
the following steps are recursively executed.

– Kalman estimation: the Kalman gain Kj, the state D̂j and the variance
of the state prediction error Pj are updated so as to estimate the next-

iteration error Êj+1.

– Cost function update: the cost function to be minimized J̃j+1(Uj+1) is
re-evaluated (the adding term f̃j+1 is computed recursively).

– Input update: using the MATLAB built-in function (fmincon) the new
input vector is obtained solving the minimization problem with the
relative constraints:

U new = fmincon(J new,U,Z,Q max,Z eq,Q eq),

3.2 Quadcopter simulation setup 75

where J new is the next iteration cost function to be minimize, U old

is the initial guess chosen to be the the current input vector, Z, Q max,
Z eq, Q eq defines the inequality and equality constraints, and U new

is the next iteration ILC input update.

– Run simulation: the new simulation starts when the Launch simulator
script is run; this script launches the Simulink model, parses the data
collected and plots the drone manoeuvre.

– Parsing and saving : the relevant data of each trial, collected during
the whole iteration, is parsed and stored in a ‘structure’ object.

• Data sorting: the information related to the whole K-ILC simulation, in-
cluding the user choices, the timing schedule, the design parameters selected
(Kalman parameters, weights and constraints), the model properties, the
simulation specifications (control parameters, drone properties, environment
constants, filter noises and delay, saturation limits, trajectory properties and
initial conditions selected), the data collected during simulations (including
signal vectors Uj, Vj, Yj, Ej, D̂j, Unom, Yd), are cleaned and sorted in a
unique structure object.

• ILC plots: the script loads the data collected, specifies the plot properties
and represents in multiple figures the relevant output plots such as input-
output signals for each iteration, the change in tracking trajectories, as well
as the cumulative error variations.

• Data & figure saving: the code allows to save the data collected and the
figures produced.

3.2 Quadcopter simulation setup

The simulation of the K-ILC quadrotor model depends on numerous parameters.
The main simulation parameters can be selected by the user through the graphical
user interface (GUI) application built in MATLAB (using the App Designer add-
on). The application pane is displayed in the Figure 3.14.

First it is possible to chose the ILC functioning Mode. The ILC-Mode can be
set to ‘1’ or ‘2’, varying the model choice knob position. The user can also set
the yaw by turning the yaw-following switch ‘off’ and ‘on’ respectively to fix the
heading or to let it varies during the path5. As commented before, the iterative
controller implemented in the quadcopter model to track a desired trajectory acts

5The additional ‘safe trajectory’ toggle is always turned ‘off’ in all the simulations. It is
used to analyse if the converged ILC input signal can be used to speed-up the learning of a new
trajectory with different time scale (same path, but different travel speed). The problem is not
addressed in this thesis

76 Implementation of a K-ILC to a multirotor UAV

Figure 3.14: GUI - Main simulation parameters

exclusively on positions (the ILC provides the input trajectory in North-East-
Down coordinates) when the ILC-Mode is set to 1 and the yaw following switch
is ‘off’. The quadrotor model can be augmented with velocities, accelerations
and attitude feed-forward input signals for known trajectories. This is done by
selecting the second ILC-Mode, for velocity and acceleration terms, and turning
on the yaw-following switcher to change the yaw during the manoeuvre.

In addition, the travel speed with which the flight path is followed can be
varied adjusting the knob to select the ‘speed’ parameter (ωtraj).

The user can also modify the main ILC parameters including the number of
trials Nj (not including the initial reference trial j = 0) and the scalar K-ILC
design parameters already commented: σ̄, η̄, p0, we and w∆u.

Lastly the number of rows and columns can be chosen to visualize the simula-
tion.

In the simulation proposed, the quadcopter is controlled by a feedback con-
troller operating at 250 Hz. This frequency differs from the working frequency of
the ILC installed, which is chosen to be far lower (10 Hz). The reason for this
decision is primarily linked to the time required by the Kalman iterative learning
controller to solve the optimization problem for the computation of the input up-
date. In fact, the optimization problem complexity depends on the length of the
lifted vectors involved, which in turn is determined by the sampling frequency6.

6It is also a function of the ‘speed’ parameter ωtraj since the sampling frequency is fixed: the
faster the manoeuvre is performed, the shorter is the vectors’ length.

3.2 Quadcopter simulation setup 77

Since the minimization problem represents a bottleneck of the off-line com-
putational process, the length of the learning time interval is also confined, i.e.
during take-off, hovering and landing the K-ILC is disabled.

Learning trajectory and flight-path

The manoeuvre to be learned is a periodic eight-shape trajectory flown in the
horizontal plane:

x = 1
2
s · sin

(
2ωtraj(t− ti)

)

y = s cos
(
ωtraj(t− ti)

)

z = hs,

(3.1)

where x, y and z are the coordinates of the NED local reference frame, t is the time
variable, ti is the time in which the eight-shape trajectory starts, s is a scaling
coefficient and hs is the safe altitude. This motion is used to demonstrate the
basic working of the K-ILC algorithm.

To avoid big initial state variations, the quadcopter is required to hover at
the beginning of the eight-shape trajectory: the learning motion starts and ends
in the same hovering point (at the centre of the local frame in North and East
position, at a safe altitude hs). To connect the hovering point to the point in which
the eight-shape trajectory starts and to connect as well the point in which the
eight-shape trajectory ends to the same hovering point, a 5-th order polynomial
interpolation has been considered. The acceleration and de-acceleration phases
at the beginning and end of the eight-figure must also be learned precisely. The
trajectory shown in Figure 3.15 is then fully defined through the concatenation
of a first spline (blue dashed line), the figure-eight path (green line) and second
spline (red dashed line).

N E

D

x y

z

t0,1,8ω ,9ω

t2,3ω ,6ω ,7ω
t4ω ,5ω

Figure 3.15: Learning trajectory

Each trial simulated consists of the following flight phases.

1. The simulation starts with the multirotor UAV at the origin of the local
NED reference frame;

78 Implementation of a K-ILC to a multirotor UAV

2. at instant t1 the drone takes-off from the initial position in order to reach a
safe altitude;

3. the quadrotor hovers in this position from time-instant t2 to t3;

4. at t3 the K-ILC is activated and the quadrotor moves from the hovering
point to the beginning of the 8-shape trajectory (t4ω

7), following a five-order
interpolation trajectory;

5. the 8-shape trajectory starts at time-instant t4ω and ends at time-instant
t5ω ;

6. at t6ω the drone returns to the initial hovering point (always following a
five-order interpolation trajectory) and the ILC is deactivated;

7. the multirotor continues to hover up to time-instant t7ω ;

8. from t7ω to t8ω , the landing procedure take place and the vehicle regains its
initial starting position;

9. at time-instant t9ω the drone is stopped and the simulation ends.

Learning performance indicator

To analyse the learning performance of the ILC, the following learning perfor-
mance parameters are defined. A synthetic indicator of the learning performance
of the K-ILC algorithm at a specific iteration j is the ‘average’ position error along
the trajectory:

epos,j =
1

N

N∑

k=1

√
∆xj(k) + ∆yj(k) + ∆zj(k) =

1

N
‖Ej‖2, (3.2)

where ∆xj(k), ∆yj(k) and ∆zj(k) are defined in R and denote the deviations of
the quadrotor position from the desired trajectory at the discrete time k with
respect to the x, y and z axes (of the NED reference frame). Another parameter
used to analyse the behaviour of the quadrotor during the different simulations is
the adimentional ‘average’ tracking error, i.e., the ‘average’ position error along
the trajectory at the iteration j divided by the ‘average’ error computed at the
initial iteration (j = 0),

epos,j
epos,0

. Additionally, to understand how much the ‘average’

error decreases from two consecutive iterations the following learning performance
indicator has been used:

epos,j−epos,j−1

epos,j
.

In order to compare the learning performance of the iterative learning control
algorithm, the simulation results presented are referred to the same trajectory
(same eight-shape path and same velocity parameter ωtraj).

7The subscript ‘ω’ refers to the fact that the time-instant considered is dependent on the
ωtraj parameter defining the ‘speed’ with which the trajectory is followed.

3.3 Quadrotor simulation results 79

3.3 Quadrotor simulation results

The K-ILC algorithm is simulated in MATLAB and Simulink before the real flight
experiments are conducted in the real drone. The multiple simulations run have
the objective of validating the Kalman iterative learning controller. They aim also
to select the best design parameters for the iterative learning control algorithm.

The influence of different design parameters is discussed in section 3.4 The
values of the K-ILC parameters used in the simulation presented are reported in
Table 3.1.

Symbol Value Description

σ 0.1 Process noise scalar parameter
η 0.01 Measurement noise scalar parameter
p0 100 Initial variance P0 scalar parameter
we 1 Next iteration tracking error scalar weight
w∆u 0.6 Input change scalar weight
ūl 4 Max/min input (absolute) constraint coefficient
ūd1 25 Max/min input constraint coefficient of the 1st derivative
ūd2 20 Max/min input constraint coefficient of the 2nd derivative

Table 3.1: Main K-ILC design parameters choice

The first results obtained considering the modeled-based feed-forward velocity
and acceleration signals, introduced selecting the ILC-Mode n.2, shows that they
do not improve significantly the repeatability of the flight performance. In fact,
the ILC compensates for tracking errors almost entirely, as the input signal update
also captures the effect of conventional feed-forward terms. For these reasons, in
the simulation mentioned the ILC-Mode s set to 1. Additionally, the yaw following
is always enabled. The results presented are referred to the eight-shape trajectory
previously described considering a ‘speed’ parameter equal to ωtraj = 1 rad/s and
a maximum speed below 4.5 m/s. Table 3.2 shows the main simulation parameters
used for the simulation considered.

Symbol Value Description

ILC-Mode 1 Functioning mode of the K-ILC
Yaw following ‘ON’ Yaw following enabler
Nj 25 Number of iterations
ωtraj 1 rad/s Speed parameter
fc 250 Hz Feedback controller operating frequency
fILC 20 Hz ILC controller operating frequency

Table 3.2: Main simulation parameters choice

80 Implementation of a K-ILC to a multirotor UAV

In the first iteration it is applied a reference input to the quadcopter model
equal to the the desired trajectory. As illustrated in Figure 3.16, the ‘actual’ quad-
rotor trajectory (blue line) is far off the desired one (black dashed line) which over-
laps the ILC initial input trajectory (red line). The drone trajectory is improved

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

East position [m]

N
or
th

p
os
it
io
n

[m
]

Input Output Desired output

Figure 3.16: Initial iteration (j = 0) - 8-shape trajectories

gradually from one iteration to another till reaching convergence.
The NED position setpoint computed by the ILC at convergence and the

quadrotor ‘real’ trajectory is illustrated in Figure 3.17.
The red input trajectory learned by the K-ILC is introduced in the quadrotor

as an input and drives it to acceptably track the desired trajectory. Comparing
the initial and converged ILC input trajectories (Figures 3.16 and 3.17) is evident
how different the shape is. Nevertheless the learned ILC input it is not jittery as
it is kept smooth by a proper choice of the optimization parameters (input cost
weight and constraints).

Figures 3.18, 3.19, 3.20 illustrate the input, output and reference position
signals over time in the North, East and Down axes of the first four iterations
(including the initial at j = 0) and the last iteration (j = 25). As discussed
above, during the take-off, the landing and a part of the hovering manoeuvre as
well, the ILC is off (yellow background). When the iterative controller is enabled
(white background), the data collected in the current iteration during the time
interval in which the ILC is on, are used for the next trial input update. It take
few trials for the quadrotor to learn the desired manoeuvre.

A first way to analyse the performance of the control algorithm is to compare
the initial and final trajectories with the desired one. The quadrotor tracking
performance improvement is clearly visible in Figure 3.21. The graph displays the
path the drone follows at the initial iteration (dark blue line) and at convergence
(light blue line) compared to the reference path (black dashed line).

3.3 Quadrotor simulation results 81

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

East position [m]

N
or
th

p
os
it
io
n

[m
]

Input Output Desired output

Figure 3.17: Converged iteration (j = 25) - 8-shape trajectories

The results of the virtual simulation in terms of the performance indicators,
i.e. ‘average’ errors over the iterations is depicted in Figure 3.22.

Despite the large initial discrepancy, the drone learns rapidly how to precisely
track the reference trajectory over the next few iterations. After the first iter-
ations, the relative ‘average’ position errors decrease consistently as it can be
seen by the adimentional and relative learning performance indicators displayed
in Table 3.3.

In the simulation considered, after the fourteenth iteration, the trajectory
can be considered to be learned. In fact, the performance parameter

epos,j
epos,0

in

percentage remains fixed to 1.9 % and the percentage relative error variations

(−3% <
eposj−eposj−1

eposj
· 100 < 3%) are comparable to non-repetitive variabilities of

the system. In practical applications, to limit the number of trials, the trajectory
can be considered to be learned after the first two or three iterations besides the
reference one where most of the tracking error is reduced (as it will be done in
the experiments conducted).

In order to provide insight into the computational cost associated to the simu-
lation, the simulation times of the main MATLAB scripts are summarized in the
Table 3.4. It is worth mentioning the time required by the calculator to compute
the minimization problem (fmincon) which is about 10 s for each iteration for the
simulation detailed.

82 Implementation of a K-ILC to a multirotor UAV

0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

ILC - OFF ILC - OFFILC - ON

Time [s]

N
or
th

p
os
it
io
n

[m
]

j = 0

uN,0
yN,0
yNd

0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

ILC - OFF ILC - OFFILC - ON

Time [s]

j = 1

uN,1
yN,1
yNd

0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

ILC - OFF ILC - OFFILC - ON

Time [s]

j = 3

uN,3
yN,3
yNd

0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

ILC - OFF ILC - OFFILC - ON

Time [s]

N
or
th

p
os
it
io
n

[m
]

j = 2

uN,2
yN,2
yNd

0 2 4 6 8 10 12 14 16 18 20 22 24
−4

−3

−2

−1

0

1

2

3

4

ILC - OFF ILC - OFFILC - ON

Time [s]

N
or
th

p
os
it
io
n

[m
]

j = 25

uN,25
yN,25
yNd

Figure 3.18: Quadrotor input, output and reference North-position over the iter-
ations

3.3 Quadrotor simulation results 83

0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

ILC - OFF ILC - OFFILC - ON

Time [s]

E
as
t
p
os
it
io
n

[m
]

j = 0

uE,0
yE,0
yEd

0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

ILC - OFF ILC - OFFILC - ON

Time [s]

j = 1

uE,1
yE,1
yEd

0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

ILC - OFF ILC - OFFILC - ON

Time [s]

j = 3

uE,3
yE,3
yEd

0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

ILC - OFF ILC - OFFILC - ON

Time [s]

E
as
t
p
os
it
io
n

[m
]

j = 2

uE,2
yE,2
yEd

0 2 4 6 8 10 12 14 16 18 20 22 24
−4

−3

−2

−1

0

1

2

3

4

ILC - OFF ILC - OFFILC - ON

Time [s]

E
as
t
p
os
it
io
n

[m
]

j = 25

uE,25
yE,25
yEd

Figure 3.19: Quadrotor input, output and reference East-position over the itera-
tions

84 Implementation of a K-ILC to a multirotor UAV

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

ILC - OFF ILC - OFFILC - ON

Time [s]

D
ow

n
p
os
it
io
n

[m
]

j = 0

uD,0
yD,0
yDd

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

ILC - OFF ILC - OFFILC - ON

Time [s]

j = 1

uD,1
yD,1
yDd

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

ILC - OFF ILC - OFFILC - ON

Time [s]

j = 3

uD,3
yD,3
yDd

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

ILC - OFF ILC - OFFILC - ON

Time [s]

D
ow

n
p
os
it
io
n

[m
]

j = 2

uD,2
yD,2
yDd

0 2 4 6 8 10 12 14 16 18 20 22 24
−1.5

−1

−0.5

0

0.5

ILC - OFF ILC - OFFILC - ON

Time [s]

D
ow

n
p
os
it
io
n

[m
]

j = 25

uD,25
yD,25
yDd

Figure 3.20: Quadrotor input, output and reference Down-position over the iter-
ations

3.4 Main K-ILC design parameters choice 85

Iteration
eposj
epos0
· 100

eposj−eposj−1

eposj
· 100

[%] [%]

j = 0 100.00 -
j = 1 16.6 −83.5
j = 2 4.6 −72.4
j = 3 3.3 −28.5
j = 4 2.9 −9.6
j = 5 3.0 +0.6
j = 6 2.6 −11.4
j = 7 2.4 −10.1
j = 8 2.3 −3.8
j = 9 3.0 +31.7
j = 10 2.3 −22.8
j = 11 2.2 −4.9
j = 12 2.1 −5.0
j = 13 2.0 −6.6
j = 14 1.9 −1.8
j = 15 1.9 +0.8
...

...
...

j = 25 1.9 −1.2

Table 3.3: Learning performance indicators

3.4 Main K-ILC design parameters choice

In this section, it is discussed how the different scalar K-ILC parameters are
selected in order to improve the tracking performance of the quadcopter.

Optimization problem parameters The optimization problem is influenced
mainly by the choice of two scalar parameters: we and w∆u, or, to be more
specific, by their relative weight. For this reason the weighting scalar term
associated to the error is fixed, we = 1, while the weight linked to the input
update (from an iteration to the next) is left free to vary. The minimization
problem is also constrained by inequality and equality parameters.

w∆u and inequality constraint parameters (mainly the constraint in the max-
imum absolute value of the second derivative ūd2) are selected with the aim
of reducing the jitter and smoothing the inputs.

The nonsmooth feedforward signals reduce the effectiveness of the learning
as the higher noise that arises when driving a system by fast changing inputs
reduces the repeatability of the experiment.

From the other side, the penalizing weight w∆u and the constraint upper lim-

86 Implementation of a K-ILC to a multirotor UAV

F
u
n
ctio

n
N

a
m

e
C

a
lls

T
o
ta

l
T

im
e

S
e
lf

T
im

e
%

T
im

e
a

T
o
ta

l
T

im
e

P
lo

t
[s

]
[s

]
(d

a
rk

b
a
n

d
=

self
tim

e)

•
m
a
i
n

1
123.9

15.1

-
r
u
n

K
I
L
C

1
55.1

44.5
-
r
u
n

D
a
t
a

&
f
i
g
u
r
e

s
a
v
i
n
g

1
19.4

15.7
-
r
u
n

A
p
p

1
17.5

14.1
-
r
u
n

I
L
C

P
l
o
t
s

1
11.7

9.5
-
r
u
n

R
e
f
e
r
e
n
c
e

s
i
g
n
a
l
s

1
8.3

6.7
-
o
t
h
e
r
s

1
11.8

9.5

•
K
I
L
C

1
64.9

0.1

-
r
u
n

L
a
u
n
c
h

S
i
m
u
l
a
t
o
r

1
55.1

84.8
-
f
m
i
n
c
o
n

1
9.8

15.1
-
o
t
h
e
r
s

1
0.1

0.1

•
L
a
u
n
c
h
S
i
m
u
l
a
t
o
r

2
63.0

1.5

U
se

r
ch

o
ice

s:
ω
tr
a
j

=
1

rad
/s,

IL
C

-M
o
d
e:

1,
Y

aw
follow

in
g:

‘on
’,
N
j

=
1;

D
e
sig

n
p
a
ra

m
e
te

rs:
σ

=
0.1,

η
=

0.01,
p

0
=

100,
w
e

=
1,
w

∆
u

=
0.6;

A
d

d
itio

n
a
l

p
a
ra

m
e
te

rs:
f
c

=
250H

z,
f
I
L
C

=
20H

z;
P

C
ch

a
ra

cte
ristics:

H
p
,

In
tel

C
P

U
i7-10510U

(1.8G
H

z),
16

G
B

R
A

M
,

O
S
:

W
in

d
ow

s
10

(64-b
it)

T
ab

le
3.4:

S
im

u
lation

tim
es

aS
e
lf

tim
e

is
th

e
tim

e
sp

en
t

in
a

fu
n

ctio
n

ex
clu

d
in

g
th

e
tim

e
sp

en
t

in
its

ch
ild

fu
n

ctio
n
s.

3.4 Main K-ILC design parameters choice 87

its affect as well the learning performance since the ILC put more emphasis
in smoothing the input rather than reducing the tracking error.

This effect is appreciable in Figure 3.23 which shows the quadrotor perfor-
mance variations with w∆u.

Kalman filter parameters The disturbance estimation determines the learn-
ing behaviour of the algorithm. The scalar parameter p0 defining the initial
variance of the disturbance predicted error matrix does not affect much the
simulation. The noise model is characterized mainly by the scalar parame-
ters σj and η defining respectively the process variance and the measurement
variance matrices.

As discussed, both terms are chosen to constant over trials. Their ratio σ
η

determines how much the Kalman filter trust the process model with respect
to the measurement data. A larger ratio implies a greater reliability in the
measurement data.

Figure 3.24 illustrate the learning performance of the K-ILC quadrotor sim-
ulation for three different noise parameter ratios. As expected, a larger ratio
σ
η

results in a faster convergence speed considering that the Kalman filter
allows the disturbance estimate to change quickly.

88 Implementation of a K-ILC to a multirotor UAV

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

East position [m]

N
or
th

p
os
it
io
n

[m
]

Initial output Converged output Desired output

Figure 3.21: Initial (j = 0) and converged (j = 25) iterations - 8-shape trajectories

0 1 2 3 4 5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Iteration steps j

[-
]

Overall tracking North-East-Down-position error

epos,j/epos,0

0 2 4 6 8 10
0

5

10

j

[m
]

‘Average’ error
North-position

eN,j ·N

0 2 4 6 8 10
0

5

10

15

j

‘Average’ error
East-position

eE,j ·N

0 2 4 6 8 10
0

0.1

0.2

0.3

j

‘Average’ error
Down-position

eD,j ·N

Figure 3.22: Simulation - learning performance analysis

3.4 Main K-ILC design parameters choice 89

0 1 2 3 4 5 6 7 8 9 10
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

Iteration steps j

e p
o
s,
j
/e

p
o
s,

0

Overall tracking North-East-Down-position error

w∆u = 0.0
w∆u = 0.6
w∆u = 1.0
w∆u = 1.2

Figure 3.23: Learning performance for different input weight parameters w∆u

0 1 2 3 4 5 6 7 8 9 10
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

Iteration steps j

e p
o
s,
j
/e

p
o
s,
0

Overall tracking ‘average’ North-East-Down-position error:

σ̄/η̄ = 1
σ̄/η̄ = 10
σ̄/η̄ = 100

Figure 3.24: Learning performance for different noise parameter ratios σ̄/η̄

90 Implementation of a K-ILC to a multirotor UAV

Chapter 4

Experimental setup, flight testing
and results

In this chapter the trajectory tracking performance of the norm-optimal Kalman
iterative learning control algorithm is tested in a real drone manoeuvre. First,
an overview of the experimental setup (hardware and software) is illustrated.
Then, the flight tests executed are described. Finally the experimental results are
presented and discussed.

4.1 Experimental setup

This section describes the hardware and software components of the system ar-
chitecture used for the flight tests.

4.1.1 Drone

The K-ILC has been implemented in the drone in Figure 4.1. This drone is a Micro
Aerial Vehicles (MAV) fixed-pitch quadrotor, and, as such, it has a maximum
take-off weight below 300 g, a flight autonomy above 10 minutes and a reduced
geometry (the inner axis is lower than 200 mm).

It has 4 motors, 4 Electronic Speed Controls (ESCs), 4 propellers, a Lithium-
Ion Polymer battery, a Flight Control Unit (FCU) and NanoPi NEO Air compan-
ion computer. The drone characteristics are reported in the Table 4.1. The drone
FCU and Companion computers are detailed below.

4.1.2 Flight Control Unit

The Flight Control Unit mounted in the UAV regulates simultaneously the Revo-
lutions Per Minute (RPM) of each motor to stabilize and control the drone. The
FCU employed is the electronic board Pixhawk Mini [19] (produced by Holybro,

92 Experimental setup, flight testing and results

Figure 4.1: Drone

Weight 270 g
Dimensions 20× 20× 4 cm
Battery LIPO 950 mAh 3S
Propellers 3 blades 3040
Motors T-motor F20II KV3250

Table 4.1: Drone characteristics

Figure 4.2). It employs sensors,including 3-axes accelerometer, 3-axes gyroscope,
magnetometer and barometer. Its main features are:

• Dimentions: 38× 42× 12 mm;

• Weight: 15.8 g

• Processor: STM32F427 based on 32 bit Cortex M4 core 168 MHz CPU and
256 kB SRAM.

• Interfaces: UART serial port for GPS, spektrum DSM/DSM2/DSM-X satel-
lite compatible RC input, Futaba S BUS compatible RC input, PPM sum
signal RC input, I2C for digital sensors, CAN for digital motor control with
compatible controllers, ADC for analog sensors and micro USB port;

The MAVLink [20] (which stands for Micro Air Vehicle Link) is the protocol
used for serial communication between the FCU and the companion computer,
for communications with off-board APIs and with the Ground Control Station
(GCS).

PX4 [21] is the open source autopilot firmware installed in the Pixhawk Mini.
It executes low-level control algorithms (such as flight stabilization), within its
dedicated micro-controller and exploiting information coming from high-rate in-
ertial sensors.

4.1 Experimental setup 93

QGroundcontrol is the software used for the configuration of the Pixhawk Mini
FCU through its intuitive GUI. The software also provides full flight control and
mission planning and it is used to monitor real-time data.

Figure 4.2: Pixhawk Mini FCU

4.1.3 Companion computer

The companion computer is the computer embedded in the drone that communi-
cates with the FCU firmware PX4 using the MAVLink protocol. It is employed
to implement high-level process that require a computational power which cannot
be elaborated by the FCU.

The NanoPi NEO Air companion [22] (Figure 4.3) is installed in the drone. It
receives the commands from the GCS and elaborates the information to the FCU.
Its features are displayed in Table 4.3.

The Robot Operating System (ROS) [23] and MAVproxy are installed into the
companion computer. The ROS package MAVROS enables MAVLink extendable
communications between computers running ROS. MAVproxy: is the package in-
tended for a minimalist portable and extendable Ground Control Station required
to control the Pixhawk Mini FCU of the UAV from the GCS using the MAVLink
protocol.

Figure 4.3: NanoPi NEO Air companion

94 Experimental setup, flight testing and results

CPU Quad-core Cortex-A7 1.2 Ghz
RAM 512 MB
Wireless 2.4 GHz 802.11 b/g/n
Dimensions 40× 40 mm
Weight 7.9 g
Power 5 V - 2 A

Table 4.2: NanoPi NEO Air features

4.1.4 Flying arena

The quadrotor tracking performance has been tested in the Flying Arena for
Rotorcraft Technologies (FlyART) of Politecnico di Milano. The indoor facility
is a dedicated testbed for motion control researches: it has flight volume of 6 ×
12× 4 meters.

In the following the Motion Capture system (Mo-Cap) and of the Ground
Control Station (GCS) are presented.

4.1.5 Motion Capture system

The FlyART is equipped with an high-precision Motion Capture system which
consists of 16 Infra-Red (IR) sensitive OptiTrack cameras each of which is ringed
by IR flood lights (Figure 4.4a). These cameras are calibrated in position and
orientation so that the measurement subject is always detected by multiple cam-
eras. The system provides accurate position and attitude information for any
properly marked vehicle. Markers sensitive to infrared light are mounted on top
of the drone as in Figure 4.4b. The tracking accuracy of the UAV depends on the
frequency (cameras rate) with which data information are transmitted. This can
be selected in a the range between 30 to 240 Hz.

The Motion Capture system is controlled by the ground station PC using
Motive [24]; the software allows the user to calibrate the system, it also provides
interfaces for capturing and processing 3D data, that can be recorded or live-
streamed.

4.1.6 Ground Control Station

The Ground Control Station is the UAV control centre. It consists of two PCs with
different Operating Systems (OS): the Motive software is installed in a Windows
10 PC, whereas the Robot Operating System (ROS) and MATLAB run in Ubuntu
Linux.

The GCS communicates with the UAV via wireless telemetry: it receives the
UAV data, including the position and attitude measurements, by the Mo-Cap sys-
tem at a frequency of 100 Hz and sends the control input signals to the quadrotor.

4.2 Flight testing 95

(a) IR camera (b) IR markers

Figure 4.4: Motion Capture System

These setpoints generated by the GCS PC running the K-ILC MATLAB script
are transmitted with a frequency rate of 20 Hz

4.2 Flight testing

The parameter selected for the flight test are reported in Table 4.3. The K-ILC
design parameters displayed are the one previously selected during the different
virtual simulations. For safety reasons, to prevent the drone from hitting the
nets delimiting the flying arena the trajectory is shrunken reducing the scaling
parameter from 3 to 1 (s = 1).

Exploiting the presented setup, first of all, an identification of the dynamics
of the drone used in the experiment has been carried out considering the drone as
a black-box system (i.e. a system which can be viewed in terms of its inputs and
outputs, without any knowledge of its internal workings).

The aim is to build the LTI model of the system representing the dynamics
of the drone in position which is required for the functioning of model-based ILC
algorithm considered. In fact, the knowledge of the transfer functions linking the
setpoint in position to the actual local position of the drone (in the NED reference
frame) allows to defines the state matrices Ad, Bd and Cd and to compute, in
turns, the lifted form matrix F of the system.

Three separate experiments have been performed to validate the Kalman iter-
ative learning control algorithm. The goal is to apply the algorithm to an highly
manoeuvrable autonomous quadcopter for precisely tracking a predefined high-
performance trajectory.

For a comparison with the simulation presented in the previous chapter, the
manoeuvre to desired to be learnt is a fast eight-shape trajectory (which includes
the two splines connecting the eight-figure to the initial hovering point).

In order to avoid major damages to the drone, the first experiment is executed

96 Experimental setup, flight testing and results

with a speed parameter equal to half the desired value (i.e., equal to ωtraj = 0.5).
Four trails has been executed considering a iterative controller acting in the three
position variables (North-East-Down). The second flight test executed consists
of three iterations performed with the same parameters.The ILC is applied in
this case to the North and East position measures only. Once the effectiveness
of controller has been validated for a low-speed manoeuvre, the last flight test,
which includes three different trials, is performed at the desired speed (ωtraj = 1)
considering the same simplified ILC algorithm. In all three tests the equality
constraints are removed in the optimization problem.

The three experiments conducted are summarized:

1. ωtraj = 0.5 rad/s, Nj = 3, 3D-trajectory, equality constraints removed;

2. ωtraj = 0.5 rad/s, Nj = 2, 2D-trajectory, equality constraints removed;

3. ωtraj = 1 rad/s , Nj = 2, 2D-trajectory, equality constraints removed;

where Nj is the number of iteration executed in addition to the reference. The
flight mission panned for the set of experiments for each trial is summarized as
follows:

• Take-off to an altitude of 1.5 m;

• Hovering at the centre of the cage till the drone is stabilized in position;

• Execution of the trajectory to be learned;

• Offline input update;

4.3 Experiment results

The first results obtained considering the ‘slow’ manoeuvre (with ωtraj = 0.5 rad/s
and with a maximum speed of about 0.82 m/s) shows that the ILC do not improve
the flight performance. The reason of this is traced back to the non-negligible
errors in the initial position recovery which contradicts Arimoto’s postulate P3
in 1.2. The mismatch in the initial conditions at the beginning of each iteration is
mainly linked to the discrepancy in altitude. In fact, the ILC compensates for the
initial tracking errors (mainly in altitude) dramatically at the beginning of the
manoeuvre by corrupting the drone performance. In this way, the correcting ILC
signals which act at the beginning of the trajectory are counterproductive and do
not drive the UAV to improve the manoeuvre execution.

The difficulty in stabilizing the drone at the same position before the trial
starts led to a problem simplification. Since the trajectory to be learned is bidi-
mensional, the ILC algorithm is modeled considering the North and East position
data only and without taking into account altitude information (Down position

4.3 Experiment results 97

data). In particular, the ILC algorithm, fed by North and East position lifted
vectors (containing the local positions of the drone during the trial with respect
to the two axis of the NED reference frame), returns the input update in North
and East position at each time instant for the next iteration.

For these reasons, the experiments mentioned in this section are uniquely
computed setting the ILC to work with 2 variables only (North and East position).
The results presented are referred to a trajectory similar to the one described in
the previously chapter composed by two 5-th order splines connecting a eight-
shape path.

Results for experiment n.2 (ωtraj = 0.5 rad/s, Nj = 2, 2D-trajectory)

In the first iteration, the nominal input (which is equal to the desired trajectory)
is applied to the quadcopter. As depicted in Figure 4.5, the resulting drone eight-
shape trajectory in blue is not coincident to the desired trajectory (black dashed
line). Despite an important improvement in the second iteration (j = 1, green
line), the third iteration (j = 2, red line) do not bring any advantages.

The evolution of the North and East position in time for the different iteration
is illustrated in Figure 4.6.

−1 −0.5 0 0.5 1

−0.5

0

0.5

East position [m]

N
or
th

p
os
it
io
n

[m
]

yNEd uNE,0 yNE,1 yNE,2

Figure 4.5: Experiment 2 (ωtraj = 0.5) - 8-shape trajectories for iterations 0, 1, 2

The tracking performance results for the experiment n.2 are presented in Ta-
ble 4.4. The aforementioned learning performance indicators are reported for the

98 Experimental setup, flight testing and results

whole trajectory (which includes the connecting splines and the eight-shape path)
and the eight-figure trajectory only. Note that the results are referred to the same
experiment in which the ILC is active during the whole iteration.

The result of the third iteration of the second experiment are not convincing.
Two are the possible explanations. A first reason is linked to the problem of
stabilizing the drone in the same initial hovering position. As can be seen in
Figure 4.6, the position of the drone at the beginning of the third trial (red line)
is far off from the initial positions of the two previous trials both in North and
East axes.

Another possible explanation is related to the optimization process. In fact,
since the ILC working frequency is kept constant, the optimization problem com-
plexity increases significantly as the length of the lifted vectors nearly double.

Results for experiment n.3 (ωtraj = 1 rad/s, Nj = 2, 2D-trajectory)

The results obtained considering the desired trajectory tracking speed parameter
are analysed in detail. Three are the iterations performed with ωtraj = 1 rad/s
considering a maximum speed of about 1.48 m/s. The experiment results in terms
of North and East positions followed by the drone of the iteration 0, 1 and 2 are
shown in Figure 4.7, 4.8, 4.9.

In the initial trial (Figure 4.7), the input trajectory (in violet) is equal to
the desired trajectory (black dashed line). The actual drone trajectory (in blue)
is improved with the second and third trials: the green and red trajectories in
Figure 4.8 Figure 4.9 are closer to the desired path.

A comparison between the results obtained in the three trials is depicted. In
Figure 4.10, the North and East positions in time, covering the period in which
the ILC is active are plotted.

The trajectories followed by the drone in the different trials relatives to the
eight-shape path only, instead, are displayed in Figure 4.11.

In both figures it is evident how the ILC improves the tracking performance
by compensating in the first place the system’s delays in the output response.

The results, in terms of the learning performance indicators based on the
average error between the desired trajectory and the one actually followed by the
drone, are summarized in Table 4.5.

As can be seen from the error analysis, the K-ILC is very effective in improving
the tracking performance of the UAV, being able to counteract the small initial
errors in the positioning, the unmodeled system dynamics, process and measure-
ment noises, achieving both low noise sensitivity and fast convergence. In the first
two iterations the manoeuvre can already be considered learnt from a practical
point of view as the ‘average’ relative error with respect to the reference iteration
(trial j = 0) goes to 7.3 % (3.8 % considering the eight-figure path only).

4.3 Experiment results 99

Symbol Value Description

ILC-Mode 1 Functioning mode of the K-ILC
Yaw following ‘OFF’ Yaw following enabler
s 1 Scaling trajectory coefficient
fc 250 Hz Feedback controller operating frequency
fILC 20 Hz ILC controller operating frequency
fMo−Cap 100 Hz Motion capture operating frequency
σ 0.1 Process noise scalar parameter
η 0.01 Measurement noise scalar parameter
p0 100 Initial variance P0 scalar parameter
we 1 Next iteration tracking error scalar weight
w∆u 0.6 Input change scalar weight
ūl 4 Max/min input (absolute) constraint coefficient
ūd1 25 Max/min input constraint coefficient of the 1st

derivative
ūd2 20 Max/min input constraint coefficient of the 2nd

derivative

Table 4.3: Default parameters for the quadrotor experiments

Trajectory Iteration
eposj
epos0
· 100

eposj−eposj−1

eposj−1
· 100

[%] [%]

8-shape + splines j = 0 100.0 -
j = 1 22.0 −78.4
j = 2 23.7 +7.7

8-shape j = 0 100.0 -
j = 1 22.3 −77.7
j = 2 20.6 −7.7

Table 4.4: Experiment 2 - learning performance results for ωtraj = 0.5 rad/s

100 Experimental setup, flight testing and results

0 2 4 6 8 10 12 14 16 18 20 22 24

−1

−0.5

0

0.5

1

spline-1 spline-28-shape

Time [s]

N
or
th

p
os
it
io
n

[m
]

yN,0
yN,1
yN,2
yNd

0 2 4 6 8 10 12 14 16 18 20 22 24

−1

−0.5

0

0.5

1

spline-1 spline-28-shape

Time [s]

E
as
t
p
os
it
io
n

[m
]

yE,0
yE,1
yE,2
yEd

Figure 4.6: Experiment 2 (ωtraj = 0.5) - North and East UAV positions for
iterations 0, 1 and 2

4.3 Experiment results 101

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

East position [m]

N
or
th

p
os
it
io
n

[m
]

Input Output Desired output

Figure 4.7: Experiment 3 (ωtraj = 1) - input, output and desired trajectories for
iteration j = 0

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

East position [m]

N
or
th

p
os
it
io
n

[m
]

Input Output Desired output

Figure 4.8: Experiment 3 (ωtraj = 1 rad/s) - input, output and desired trajectories
for iteration j = 1

102 Experimental setup, flight testing and results

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

East position [m]

N
or
th

p
os
it
io
n

[m
]

Input Output Desired output

Figure 4.9: Experiment 3 (ωtraj = 1 rad/s) - input, output and desired trajectories
for iteration j = 2

Trajectory Iteration
eposj
epos0
· 100

eposj−eposj−1

eposj−1
· 100

[%] [%]

8-shape + splines j = 0 100.0 -
j = 1 14.8 −85.2
j = 2 7.3 −50.9

8-shape j = 0 100.0 -
j = 1 11.3 −88.7
j = 2 3.8 −66.4

Table 4.5: Experiment 3 - learning performance results for ωtraj = 1

4.3 Experiment results 103

0 2 4 6 8 10 12 14 16 18

−1

−0.5

0

0.5

1

spline-1 spline-28-shape

Time [s]

N
or
th

p
os
it
io
n

[m
]

yN,0
yN,1
yN,2
yNd

0 2 4 6 8 10 12 14 16 18

−1

−0.5

0

0.5

1

spline-1 spline-28-shape

Time [s]

E
as
t
p
os
it
io
n

[m
]

yE,0
yE,1
yE,2
yEd

Figure 4.10: Experiment 3 (ωtraj = 1 rad/s) - North and East UAV positions for
iterations 0, 1 and 2

104 Experimental setup, flight testing and results

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

East position [m]

N
or
th

p
os
it
io
n

[m
]

yNEd uNE,0 yNE,1 yNE,2

Figure 4.11: Experiment results for ωtraj = 1 rad/s: 8-shape trajectories for the
iterations 0, 1, 2

Conclusions

The purpose of this thesis has been to design, simulate and experimentally val-
idate a model-based, norm-optimal, Kalman-enhanced iterative learning control
algorithm for precise UAV trajectory tracking. In particular, the iterative con-
troller has has been implemented in a high manoeuvrable autonomous quadrotor
vehicle to improve the execution of a complex manoeuvre.

The estimator has been designed and integrated in the typical optimization-
based architecture so as to estimate repetitive disturbances happening during
the different trials. This information has been exploited to shape a new input
signal to be used in the next iteration for rejecting the iteration-repetitive errors.
The neat separation of disturbance estimation and input update steps of the
K-ILC has provided an intuitive design setup, making easier the choice of the
parameters regulating the learning process and the system performance. In this
work, the model-based ILC for trajectory tracking has been applied to a pre-
existing quadcopter model considering a ‘black-box approach’.

The main results are summarized in the following:

• the virtual simulations show that the K-ILC algorithm can achieve fast con-
vergence and good noise rejection by adjusting the iteration-varying Kalman
gain to improve the repetitive disturbance estimation and by adapting the
input signal optimally for every trial. The non-causal inputs, in facts, allow
the quadrotor model to improve its performance in tracking a predefined
path over the iterations by compensating for repetitive errors. In this way,
a noise level comparable to the level of non-repetitive noise is achieved.

• The ILC system has proved to be robust against disturbances resulting
mainly from unmodeled dynamics, process, measurement and environmen-
tal noises. The simulations shows that the K-ILC works well even when
a rough approximation of the dynamics of the system under study is con-
sidered. In addition, the iterative controller is also robust to the design
parameters. The choice of the learning parameters certainly influences the
way the system performs, but do not prevent the system to improve its
tracking performance.

• The approach was successfully applied to a drone. The experiments pre-
sented in the previous chapter demonstrated the effectiveness of the K-ILC

106 Conclusions

algorithm in tracking a bidimensional trajectory by properly compensate for
the system’s delays and model errors. The tracking error is reduced drasti-
cally right after the first iteration. The resulting performance, hoverer, relies
on the quality of the estimate: non-repetitive noise can be compensated by
the quadcopter feedback controller only, as the iteration-varying input is not
effective. This is why the accuracy of the tracking is limited by the level of
non-repetitive noise and is highly influenced by relevant discrepancies in the
initial conditions; thus, achieving an accurate initial state is crucial.

Starting from the results obtained the recommendations and possible future
developments are:

• the UAV needs to regain the same initial position at every trial in order
for the iterative algorithm to perform optimally. This could be achieved
introducing a start condition which would enable the drone to start the
iteration only when the initial state lies within specified bounds.

• To avoid problem in solving the optimization step for the input update, the
ILC working frequency could be adapted on the basis of the duration of
the trials so as to shorten the length of the lifted vectors (e.g. when the
manoeuvre to learn is ‘slow’). Considering the the initial state bounds and
an the frequency adjustment, the first experiment can be executed again.

• the K-ILC can be tested in three-dimensional trajectories. This could be
done considering more effective methods for solving the optimization prob-
lem as the size of the variables involved increases. This is not an issue in
terms of the computational time required because of the ‘offline’ nature of
the iterative control, as the computation is not done in real time.

• A future research problem is to investigate the capability of the quadrotor in
performing in outdoor scenarios, e.g., in presence of wind gusts and variable
initial conditions. In practice, the K-ILC scheme should be implemented in
quadrotors that have access to position information, obtained, for example,
from GPS measurements.

Bibliography

[1] S. Lupashin and R. D’Andrea. Adaptive fast open-loop maneuvers for quadro-
copters. Autonomous Robots, 33(1):89–102, 08 2012.

[2] Markus Hehn and Raffaello D’Andrea. A frequency domain iterative learning
algorithm for high-performance, periodic quadrocopter maneuvers. Mecha-
tronics, 24(8):954 – 965, 2014.

[3] Oliver Purwin and R. D’Andrea. Performing aggressive maneuvers using
iterative learning control. pages 1731 – 1736, 06 2009.

[4] R. D’Andrea A. Schoellig, F. Mueller. Optimization-based iterative learning
for precise quadrocopter trajectory tracking. Autonomous Robots, 33, 08
2012.

[5] F. L. Mueller, A. P. Schoellig, and R. D’Andrea. Iterative learning of feed-
forward corrections for high-performance tracking. In 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 3276–3281,
2012.

[6] N. Degen and A. P. Schoellig. Design of norm-optimal iterative learning
controllers: The effect of an iteration-domain kalman filter for disturbance
estimation. In 53rd IEEE Conference on Decision and Control, pages 3590–
3596, 2014.

[7] M. Tharayil D.A. Bristow and A.G. Alleyne. A survey of iterative learning.
Control Systems, IEEE, 26:96 – 114, 07 2006.

[8] F. Miyazaki S. Arimoto, S. Kawamura. Iterative learning control for robot
systems. In Proceedings of Annual Conference of the IEEE Industrial Elec-
tronics Socitey, IECON, Tokyo, Japan, October 1984a.

[9] J. Craig. A learning procedure for the control of movements of robotic manip-
ulators. In Proceedings of IASTED Symposium on Robotics and Automation,
page 108–111, San Francisco, CA, USA, May 1984.

[10] G. Casalino, G. Bartolini. In Proceedings of American Control Conference,
page 1566–1572, San Diego, CA, USA, June 1984.

108 BIBLIOGRAPHY

[11] S. Arimoto. A Brief History of Iterative Learning Control, pages 3–7. Springer
US, Boston, MA, 1998.

[12] J. Wallén. Estimation-based iterative learning control. 09 2012.

[13] D. De Roover and O. H. Bosgra. Synthesis of robust multivariable itera-
tive learning controllers with application to a wafer stage motion system.
International Journal of Control, 73(10):968–979, 2000.

[14] J. Swevers T. Duy Son, G. Pipeleers. Multi-objective iterative learning con-
trol using convex optimization. European Journal of Control, 09 2016.

[15] T. D. Son, G. Pipeleers, and J. Swevers. Robust monotonic convergent itera-
tive learning control. IEEE Transactions on Automatic Control, 61(4):1063–
1068, 2016.

[16] A. Schöllig and R. D’Andrea. Optimization-based iterative learning control
for trajectory tracking. In 2009 European Control Conference (ECC), pages
1505–1510, 2009.

[17] Flyart-quadrotor simulator. https://gitlab.com/flyart/

quadrotor-simulator.

[18] M. Giurato. Design, integration and control of a multirotor UAV platform.
Master’s thesis, Politecnico di Milano, 2015.

[19] Pixfalcon flight controller. https://docs.px4.io/v1.9.0/en/flight_

controller/pixfalcon.html.

[20] Mavlink. https://mavlink.io/en/.

[21] Px4. https://px4.io/.

[22] Nanopi neo air. http://wiki.friendlyarm.com/wiki/index.php/NanoPi_
NEO_Air.

[23] Robot operating system (ros). https://www.ros.org/.

[24] Optitrack - motive. https://optitrack.com/products/motive/.

https://gitlab.com/flyart/quadrotor-simulator
https://gitlab.com/flyart/quadrotor-simulator
https://docs.px4.io/v1.9.0/en/flight_controller/pixfalcon.html
https://docs.px4.io/v1.9.0/en/flight_controller/pixfalcon.html
https://mavlink.io/en/
https://px4.io/
http://wiki.friendlyarm.com/wiki/ index.php/NanoPi_NEO_Air
http://wiki.friendlyarm.com/wiki/ index.php/NanoPi_NEO_Air
https://www.ros.org/
https://optitrack.com/products/motive/

	Acknowledgments
	Abstract
	Sommario
	List of figures
	List of tables
	Introduction
	Iterative Learning Control
	Introduction to ILC
	Main idea
	Historical background
	ILC vs other control approaches
	Applications

	General description of ILC
	ILC algorithms
	Linear and nonlinear algorithms
	First-order and Higher-order ILC algorithms
	Continuous and discrete algorithms

	System description
	Time-domain analysis: lifted-system representation
	Frequency-domain analysis: the z-domain representation

	Analysis of performance
	Typical design methods
	Feedback control with ILC
	Basic design methods
	Model-based design methods

	Kalman Iterative Learning Control
	Introduction to estimation based ILC
	System description
	Model of dynamics
	Lifted representation
	ILC system in lifted form

	K-ILC
	Kalman estimator
	Algorithm
	Kalman estimator - design parameters

	K-ILC input update
	Cost function
	Weights - design parameters
	Constraints - design parameters

	K-ILC design parameters
	K-ILC vs Q-ILC

	Implementation of a K-ILC to a multirotor UAV
	Implementation steps
	Implementation environment and architecture
	K-ILC applied to a SISO system
	K-ILC applied to a MIMO system
	K-ILC applied to a quadrotor UAV
	Pre-existing model
	K-ILC quadcopter model
	Code structure

	Quadcopter simulation setup
	Quadrotor simulation results
	Main K-ILC design parameters choice

	Experimental setup, flight testing and results
	Experimental setup
	Drone
	Flight Control Unit
	Companion computer
	Flying arena
	Motion Capture system
	Ground Control Station

	Flight testing
	Experiment results

	Conclusions

