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1. Introduction
Energy system are undergoing substantial
changes to their structure due to an increasing
electrified share of applications and the evolu-
tion from a centralized to a decentralized dis-
tribution paradigm. The increasing electrifica-
tion in the light duty transportation sector and
the simultaneous penetration of small scale non
dispatchable local Renewable Energy Sources
(RES) challenges the transmission and distribu-
tion network, both in terms of grid capacity and
supply-demand balance. Limiting the scope to
domestic applications, this complex framework
may find in electric vehicles (EVs) the potential
availability of a massive and decentralized en-
ergy storage. Wisely operated, they can provide
flexibility to demand side decoupling the gener-
ation from the consumption profile, minimizing
renewable curtailment and saving costs for the
EV’s owner [1, 2].
Home Energy Management Systems (HEMS) in
presence of EVs has been extensively investi-
gated in the literature and has proven as a valid
solution. Fotouhi et al. [3] proposed a multi-
energy scheduling model for a building energy
management system in the form of a Mixed In-
teger Linear Programming (MILP) optimization

problem. The total cost of electricity and heat-
ing was minimized in the objective function and
bidirectional operation of the connected vehicles
enabled the possibility to control demand ac-
cording to current variable price and peak load.
Heat pumps were also modeled as a controllable
and shiftable load. The logic goes beyond the
simple energy scheduling since optimizations are
performed iteratively aiming at a close to real
time control strategy. A similar approach is im-
plemented in [4], where the objective function
includes both operational cost and the fictitious
degradation cost of the EV battery. In order to
deal with uncertainty a real time Model Predic-
tive Control (MPC) was proposed to make the
logic resilient to changes. The method was found
effective in reducing the electricity cost by 34 %
with respect to a non-optimized rule-based con-
troller. Similarly, Halvgaard et al. [5] proposed
an Economic MPC for the optimal charging of
a single EV. The proposed linear model, evalu-
ated over a week, calculates the optimal charg-
ing schedule based on a statistical description
of the possible driving pattern scenarios of the
user. Compared to uncontrolled charging and
in presence of a time of use (ToU) tariff, saving
results up to 60 %.

1



Executive summary Corrado Maria Caminiti

Figure 1: System architecture an entities in optimHome.

In line with the aforementioned studies, the
purpose of this work is to develop an adapt-
able and flexible HEMS simulator to test per-
formances under different boundary conditions.
The developed tool, optimHome, is designed for
a single domestic prosumer and, given in input
the arrival and departure information of the EV
state, is capable to calculate the optimal sched-
ule (Figure 1). The optimization problem is for-
mally structured as an MPC-based MILP in or-
der to strengthen with respect to an highly un-
certain framework and eventual user’s changes in
preferences. Main innovative contributions con-
sist of:
• The conceptualization and identification of

entities, limitations, parameters and vari-
ables necessary to constitute a tool close to
a real commercial HEMS. This entire work
has been enriched by a continuous and fruit-
ful confrontation with the R&D External
Charging team of Volvo Cars.

• The model is compliant with the most
updated protocols’ prescriptions in terms
of bidirectional interaction with the EV.
Moreover, the battery model is refined with
a degradation coefficient and maximum
power limitation at high State of Charge
(SoC).

• The tool is Use Case (UC) dependent: dif-
ferent optimization problems are structured
to offer the broadest perspective. A multi-
objective function is chosen to maximize re-
newable self consumption by shifting EV
charging.

2. Methodology
The energy management problem is structured
as an optimization of a MILP formulated prob-
lem. Different boundary conditions result in dif-
ferent UCs. Distinctions are deriving from dif-
ferent user-defined objective functions, battery
discharging capacity and monetary quantifica-
tion of the injected power into the grid:

Table 1: UCs’ overview

UC Mode Objective Price
1 V2H Cost minimization -
2 V2H Self consumption -
3 V2G Cost minimization Retail price
4 V2G Cost minimization FIT

In line with the procedure exemplified in [4, 5],
the MPC based MILP optimization can be struc-
tured defining the battery model, balances and
constrains. All decision variables in the model
are implemented as continuous positive-defined
quantities and will be referred in lower case in
mathematical formulations.

2.1. Battery and degradation model
The EV battery can be formulated as a discrete
time state space model in order to fit in the MPC
framework:

xt+1 = A · xt +B · ut
yt = C · xt
x0 given

(4)
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P load
t − PPV

t + pexcesst = pgrid,buyt + pEV,dh
t − pEV,ch

t (1)

P load
t − PPV

t = pgrid,buyt + pEV,dh
t − pEV,ch

t − pgrid,sellt (2)

P lim,2 = P lim,1 − (1− SoChighP )−1 · (soct − SoChighP ) · (P lim,1 − P ch,min) (3)

where the manipulable variable u corresponds
to the charging and discharging power [pch, pdh]
while the state variable x corresponds to the
SoC. In order to account for the efficiency of
the EV charging infrastructure, the state space
variable of Equation 4 are defined as follow:

A = 1 B =
[

∆t
CEV ηch,− ∆t

CEV ·ηdh
]

C = 1 (5)

At each time step t, the battery SoC is updated
as a function of the optimal control sequence.
Bidirectional operations require to evaluate the
induced additional degradation effect of the bat-
tery in order to maximize system effectiveness.
The implemented model has been inspired by [6].
The induced percentage capacity loss q, func-
tion of the energy throughput, is multiplied for
the equivalent battery pack cost resulting in D,
degradation coefficient expressed in e/kWh of
throughput

q = B1 exp(B2 · IC)∆t

T∑
t=0

pEV,ch
t + pEV,dh

t (6)

D =
ĈB · CEV

100− φ
·B1 · exp(B2 · P

avg,IC

CEV
) (7)

Experimental coefficients B1 and B2 have been
derived from an the experimental campaign on
Li-ion degradation [7].
In order to avoid the non linearity embedded
in the IC term, following the approach imple-
mented in [6], a beforehand defined average C-
rate of the entire charging session has been in-
cluded as a parameter. Seen the different bat-
tery power limitations between UC 1-2 and UC
3-4, P avg,IC depends on the selected operational
mode. Specifically corresponds to the average
load demand in UC 1-2 and to the average dis-
charge capability of the EV in UC 3-4.
Calendar ageing, on the other hand, was not
taken into account as it is independent of the
specific charging schedule and the powers in-
volved. This second deterioration mechanism
occurs regardless of charging operations.

2.2. Conventional constrains
Enforced constrains are also UC dependent.
Note that, considering the architecture in Fig-
ure 1, real power balance on the control vol-
ume corresponds to Equation 1 in UC 1-2 and
as Equation 2 in UC 3-4.
Bidirectional operation with the grid are pre-
vented in the first case.
Keeping the same UC distinction, the EV dis-
charging capacity limits are respectively ex-
pressed as follows:

xEV,dh
t ≤ pEV,dh

t ≤ Pnet
t · xEV,dh

t (8)

xEV,dh
t ≤ pEV,dh

t ≤ P ch,max · xEV,dh
t (9)

Charging operations are instead bounded as fol-
low:

P ch,minxEV,ch
t ≤ pEV,ch

t ≤ P ch,maxxEV,ch
t (10)

In accordance with the methodology adopted in
[8], P ch,max decreases linearly when a determin-
istic SoC limit is exceeded (Equation 3). This
limitation is imposed by the battery manage-
ment system to prevent excessive degradation
and undesired side reactions. In Equation 3,
P lim,1 corresponds to the minimum capacity
limits imposed by the battery and the EVSE.
The purchase and injection of energy into the
grid, when possible, are limited by :

xgrid,buyt ≤ pgrid,buyt ≤ P grid,max · xgrid,buyt (11)

xgrid,sellt ≤ pgrid,sellt ≤ P grid,max · xgrid,sellt (12)

By means of the binary variables xit, simultane-
ous operations for the same unit are prevented
enforcing the following relations:

xEV,dh
t + xEV,ch

t ≤ 1 (13)

xgrid,sellt + xgrid,buyt ≤ 1 (14)
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min
p

NP∑
t=0

pgrid,buyt · Cel
t ·∆t︸ ︷︷ ︸

Cost for electricity

+ 2 ·D ·
NP∑
t=0

pEV,dh
t ·∆t︸ ︷︷ ︸

Cost for battery degradation

(16)

min
p

α ·
NP∑
t=0

pgrid,buyt · Cel
t ·∆t+ 2 ·D ·

NP∑
t=0

pEV,dh
t ·∆t︸ ︷︷ ︸

Total cost of operation

+β ·
NP∑
t=0

pexcesst︸ ︷︷ ︸
Renewable surplus

(17)

min
p

NP∑
t=0

pgrid,buyt · Cel
t ·∆t︸ ︷︷ ︸

Cost for grid supplied energy

+2D ·
NP∑
t=0

pEV,dh
t ·∆t−

NP∑
t=0

pgrid,sellt · Cel
t ·∆t︸ ︷︷ ︸

Revenues injected energy

(18)

Satisfying SoC user requirements is the basis of
the optimisation process. Practically, this is ac-
complished by means of the following condition:

soct=NP
= SoCtarget (15)

2.3. Conditional constrains
Four distinct energy level are defined in the up-
dated protocol for bidirectional charging of EV
ISO 15118-20 [9] to regulate operations. Conse-
quently, four SoC region are defined:
• Zone 1 represents a non optimized region in

which cycling is not allowed and the charg-
ing is rule based. Practically, charging is
performed at the maximum available power
with respect to the fuse limit until the safety
value SoCminimum is reached.

• Zone 2 is an optimized region in which cy-
cling is still not permitted but the charging
can be postponed waiting for a more conve-
nient time.

• In Zone 3, charging and discharging can
freely take place as resulting from the opti-
mal control strategy.

• Zone 4 corresponds to the region between
SoCmax,v2X and SoCmaximum. This region
will be entered only if the user defined tar-
get belong to it. Discharge is prevented.

Correspondence between boolean algebra and
constrains has been used to enforce the logic
above. Binary variable xzone,it are used to
monitor the SoC and eventually prevent oper-
ation. Necessary formulations for the imple-
mented logic operators are inspired by [10, 11]

2.4. Objective functions
Boundary conditions differences in each UC di-
rectly affect the explicit form of the objec-
tive functions. Moreover, user may be inter-
ested not only in reaching economical benefits
(Equation 16) but also in self consuming the
highest share of on site renewable production
(Equation 17). Injection of power into the grid
with different valorisation corresponds instead
to Equation 18 where Cel

t may correspond to the
retail price or to an arbitrary FIT. The afore-
mentioned frameworks are directly connected
with the UCs presented in Table 1
Note that a differential logic has been imple-
mented to account for degradation: charging the
vehicle up to a target SoC represents a bench-
mark, an inevitable deterioration of battery per-
formances induced by the simple car use and
therefore it should not affect the optimization
scheduling. For this reason, the optimal charg-
ing schedule is affected accounting for two times
the discharged energy, considered as the devia-
tion from the reference unidirectional charging
process.

2.5. Economic Model Predictive Con-
trol

The deterministic scheduling detailed above
is incorporated in an iterative and predictive
framework of operations. At each sampling
time, the state of the system is updated with
current values while the prediction window is re-
duced as the result of a fixed condition on the
departure time (Equation 15). This peculiar it-
erative control technique falls under the name of
Shrinking Horizon MPC. Computational burden
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decrease progressively as a result of the decreas-
ing number of decision variables.

3. Case studies
A grid-connected household located in Gothen-
burg, Sweden, with solar panels on the roof and
bidirectional EVSE and EV has been chosen as
object of the investigation.
LoadProfileGenerator [12] was use to estimate
the domestic load demand of a family with two
working parents and one child while PV resource
has been generated using PVsyst [13] for a PV
with a 3 kW rated power.
A hourly discretized ToU tariff, taken from
Nordpool day ahead market price [14], has been
considered in line with related studies [3, 4]
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Figure 2: Forecasted trends the 30 of May 2023

A discretization time step ∆t of 15 minutes
wasassumed while EV model is Volvo XC40 with
a battery capacity of 69 kWh. The same retail
price has been used to quantify revenues from
sold energy in UC 3.
Other relevant assumptions are listed below:

Table 2: Relevant input values

ηch/dh ĈB P ch,min

0.9 100 e/kWh 2.3 kW

P lim,1 Hours P grid,max

11 kW 30 h 11 kW

According to common practice [5, 15] and
to ensure clear representation of the inter-
dependencies within the system, this stage of

the research intentionally excluded uncertainty
in the load and PV profiles. This represents
the most optimistic solution in economic terms.
However it represents a valid reference bench-
mark to assess system’s performances.

4. Results
Bearing in mind general assumptions in Table 2
and assuming SoCarrival and SoCtarget respec-
tively equal to 0.35 and 0.7, optimHome per-
formances are compared to uncontrolled charg-
ing, also referred as dumb charging. Savings can
reach up to 90 % for UC 1 at the expenses of an
increasing battery and grid utilization (respec-
tively 37.2 % and 25.2 %). It is relevant to point
out that cost reduction is related to the charg-
ing period at which dumb charging is performed.
Results are related to a peak price period, typ-
ical for 17:00-18:00, and, for this reason, saving
are potentially extremely high.
Only at this stage, an additional limitation on
the total discharged energy has been added to
simulate the tentative of automakers to prevent
a fast and excessive battery deterioration. Re-
sults for UC 1 are not changing as the limit was
not saturated.
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Figure 3: Comparison of percentage variations
with the added limitation in discharge for UC 3

Testing UC 2, α and β in Equation 17 have been
progressively changed in order to explore differ-
ent conditions for renewable penetration. This
capability is enabled shifting the EV charging
process to integrate renewable over-generation.
Note that the economic trade-off condition is
imposed by the additional offset, bought from
the grid in an non-optimized moment, to effec-
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Figure 5: Optimal charging schedule as a function of degradation coefficient D

tively exploit overproduction to charge the EV
at P ch,min. Pure economic solution, obtained
for β = 0, corresponds to a cost reduction of 80
%. However, intermediate solutions, obtained
properly tuning the coefficients, assure an high
degree of renewable integration with reasonable
savings (Figure 4).
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Figure 4: Pareto front reporting normalized non
dominated solution

A sensitivity analysis for the fuse limit economic
impact has been performed. Higher capability to
interact with the grid results in faster and often
cheaper operations with the battery. In order to
exclusively test the influence of the peak power,
EVSE maximum admitted power has been in-
creased to 22 kW.
The total cost of operations varies non-negligibly
(± 10 %) and imposes a trade-off condition be-
tween decreasing operational costs and the addi-

tional fixed costs in electricity bills imposed by
distributors to take advantage of a higher power
availability.
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Figure 6: Percentage variation of cost and en-
ergy throughput with respect to 20 A

Sensitivity on the degradation coefficient D sug-
gested the relevance of local peak to valley lo-
cal difference in the price profile. Increasing D,
exploited variability reduces and cycling is per-
formed only in correspondence of global peaks
(Figure 6). Extreme solution with high D re-
sults in unidirectional smart charging as optimal
trend.

5. Conclusions and Future De-
velopments

Economic MPC was introduced as a method for
integrating the EV charging in household energy
management in presence of a ToU tariff. EV’s
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arrival SoC, charging limitations, departure time
and desired SoC have been identified as the
most relevant parameters to be communicated
to perform the optimization. Optimization-
based approach was found effective in the op-
timal scheduling of operations within the house-
hold. The EV, considered as a controllable
and bidirectional load, was successfully oper-
ated aiming at minimizing user-defined objec-
tives. Moreover, the MPC-based technique was
proven valid when dealing with uncertainty and
user inputs’ variations in time.
Future works may address the inherent stochas-
tic character of the net load demand, as well as
heat pumps as an additional controllable load.
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List of acronyms

EV Electric Vehicle
EVSE Electric Vehicle Supply Equipment
FIT Feed in Tariff
HEMS Home Energy Management Systems
MILP Mixed Integer Linear Programming
MPC Model Predictive Control
PV Photovoltaic
RES Renewable Energy Sources
SoC State of Charge
ToU Time of use
UC Use Case

Nomenclature

Variables

p
grid,buy/sell
t Power exchanged with grid [kW]

p
EV,ch/dh
t Power exchanged with EV [kW]

pexcesst Renewable overproduction [kW]
x
grid,buy/sell
t Binary variable for grid mode

x
EV,ch/dh
t Binary variable for EV mode

xzone,2t Binary variable for Zone 2
xzone,4t Binary variable for Zone 2
soct State of charge of EV [-]

Parameters
PPV
t PV power [kW]

P load
t Load demand [kW]

Pnet
t Net demand [kW]

P grid,max Grid maximum power [kW]
P ch,min Minimum charging power [kW]
P avg,IC Average EV power [kW]
SoChighP SoC threshold for power limit [-]
SoCarrival Arrival SoC [-]
SoCtarget SoC Target [-]
SoCmax,V 2X SoC maximum for V2X [-]
SoCmaximum Maximum admitted SoC [-]
SoCminimum Minimum admitted SoC [-]
CEV Battery capacity [kWh]
Cel Electricity price [e/kWh]
∆t Discretization time-step [min]
NP Prediction horizon [h]
D Degradation coefficient [e/kWh]
q Percentage capacity loss [%]
ĈB Specific battery cost [e/kWh]
φ Remaining capacity at end life [-]
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