
Executive Summary of the Thesis

Trifocal Tensor Estimation for n-view Deep Structure-from-Motion

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Author: Leonardo Perelli

Advisor: Prof. Luca Magri

Co-advisor: Dr. Andrea Porfiri dal Cin, Prof. Giacomo Boracchi

Academic year: 2021-2022

1. Introduction
In this work we address the problem of
Structure-from-Motion (SfM), a fundamental
task in computer vision with applications span-
ning from autonomous driving to augmented re-
ality. The SfM problem consists in recovering
the 3D structure of a scene starting from n im-
ages taken from different viewpoints. The 3D
structure of a scene can be recovered by esti-
mating the position of the cameras from which
images were taken (camera pose) as well as the
depth measurements at each pixel of the images
(depth maps). The depth map for a given refer-
ence image is estimated using neighbouring tar-
get images. An important parameter that deter-
mines the quality of the 3D reconstruction is the
number n of images (or views) used to produce
a single depth map. In the base case n = 2,
one target image is used to predict the depth
map of the reference image. To leverage multi-
ple images, it is required to estimate the camera
pose between the reference frame and all tar-
get frames. The typical SfM pipeline proceeds
in two main stages: (i) recover camera pose (ii)
use the estimated camera pose to compute depth
maps. In this thesis, we focus on improving the
camera pose estimates. Indeed, the majority of
deep learning SfM pipelines directly regress the

camera pose, providing the images as input to a
neural network. While these pipelines can han-
dle the general n-view case, they do not exploit
the constraints of 3D geometry, over-relying on
neural networks. Some pipelines try to refine
the noisy camera poses obtained with neural net-
works by introducing additional computation in
the form of repeated iterations of the algorithms,
which is very computationally expensive. To
overcome these limitations, the pipeline intro-
duced in [5] leverages the 3D geometric knowl-
edge and couples it with the use of neural net-
works. However, this approach is limited to the
case n = 2. In this thesis, our contribution is
two-fold. Inspired by [5], we propose an SfM
pipeline for the general n-view case which effi-
ciently couples neural networks with the use of
3D geometric constraints. The pipeline lever-
ages the Trifocal tensor and proposes a novel
pose chaining algorithm to expand camera pose
estimation to the general case of n images. We
also provide a comparison between different Tri-
focal tensor estimation algorithms together with
their implementation.

2. Problem Formulation
The objective of SfM pipelines is to provide a
3D reconstruction of the scene. To do this,

1

Executive summary Leonardo Perelli

the pipelines are fed as input n 2D images in
RGB format {Ii}ni=1 such that Ii ∈ RH×W×3

∀i = 1, ..., n. The pipelines also receive the in-
trinsic parameters {Ki}ni=1 of the cameras from
which {Ii}ni=1 are taken, where Ki ∈ R3×3

∀i = 1, ..., n. The outputs of the pipelines are
a pair (Ri, ti) ∀ i = 1, ..., n and a depth map
Di ∈ [dmin, dmax]

H×W ∀ i = 1, ..., n. Ri ∈ SO(3)
represents the camera rotation and ti ∈ R3 is the
translation vector of the camera centre. Di as-
signs to every pixel in the image a depth value,
which represents the distance from the camera
to the object at that pixel location.
The quality of Di is evaluated with respect to the
ground truth depth map Dgt,i through common
metrics such as theAbsolute relative difference,
the Squared relative difference, the RMSE and
RMSElog. They can be computed as:

Absolute rel. diff. =
1

n

n∑
i=1

∥Di −Di,gt∥1/Di,gt

Square rel. diff. =
1

n

n∑
i=1

∥Di −Di,gt∥22/Di,gt

RMSE =

√√√√ 1

n

n∑
i=1

∥Di −Di,gt∥22

RMSElog =

√√√√ 1

n

n∑
i=1

∥log(Di)− log(Di,gt)∥22

SfM pipelines make several assumptions. The
scenes are required to be static, i.e. they con-
tain no moving objects. The lighting conditions
in the scene should be consistent across all Ii.
Sufficient texture in the scene is required: im-
ages with extended textureless regions make it
much more difficult to match points over differ-
ent images. Finally, SfM pipelines require some
overlap between the images as well as sufficiently
textured regions.
Unfortunately, it is common to have scenes con-
taining dynamic objects which can perturb both
the camera pose and depth map estimation,
hence SfM pipelines are required to be robust
with respect to these conditions.

3. Related Work
We now explore recent pipelines proposed in the
literature. Figure 1 provides an overview of the
main characteristics of the pipelines.

Figure 1: Taxonomy of pipelines. Most of the
pipelines make limited or no use of the epipolar
constraints. 2-ViewRevisited [5] couples neural
networks with the epipolar constraints, but is
limited to the 2-view case. No such pipelines
tackle the n-view setting.

3.1. 2 view Deep pose estimation
Camera pose estimation, as depth map estima-
tion, can benefit from the use of neural networks.
Since 3D geometry is well studied, it is impor-
tant to leverage this knowledge as much as possi-
ble, using neural networks only in tasks they can
excel at. DeMoN [4] is one of the first approaches
to formulate SfM as a learning problem in the
domain of neural networks. The main contribu-
tion of the approach lies in the introduction of
an end-to-end differentiable neural network ar-
chitecture to estimate camera pose and depth
maps. The problem is formulated as a regres-
sion: the network is fed n = 2 images Ia, Ib
and has to recover Di, Ri, ti. The approach has
two main limitations: (i) it has to learn the real
scale of the scene from the images, which is an
ill-posed problem that can cause the network to
overfit and (ii) it does not incorporate knowl-
edge of epipolar geometry constraints, which in-
stead have to be learned from scratch and could
limit ability to generalise.
To overcome these limitations, [5] couples neu-
ral networks with traditional geometric tools. It
uses neural networks to estimate optical flow Oab

between Ia and Ib. Optical flow is the task of
matching points between two different images.
Then, it uses the point matches provided by Oab

to compute the Fundamental matrix F, which
encodes the epipolar geometry between Ia and
Ib. From the Fundamental matrix, camera pose
can be easily recovered. This is the standard ap-
proach in traditional SfM pipelines, but neural
networks can now improve the optical flow esti-
mation. The advantages of this pipeline are sev-
eral: (i) it efficiently couples neural networks to-
gether with 3D geometrical constraints and (ii)

2

Executive summary Leonardo Perelli

the camera pose computed through the Funda-
mental matrix is estimated in a normalized scale
rather than the real scale, so the camera pose es-
timation is well-posed.

3.2. n-view
Different algorithms have been proposed to deal
with the n-view case. We first discuss the depth
estimation step, which is shared by most works
such as [6][2][7]. Later, we will discuss the cam-
era pose estimation step.
During the depth estimation step, the plane
sweep algorithm is used to generate a cost vol-
ume and regress a depth map. Plane sweep is
an algorithm used to estimate the most likely
depth value for a specific pixel x ∈ Ia by sweep-
ing through S depth samples {dj}Sj=1 in a range
[dmin, dmax]. The pixel is projected from Ia to
the corresponding x̃ ∈ Ib assuming it has depth
dj following:

x̃ ∼ K [R | t]
[(

K−1u
)
dj

1

]
(1)

A cost is assigned based on the similarity be-
tween the Fa(x) and Fb(x̃), where Fa(x) and
Fb(x̃) are the feature maps extracted from Ia and
Ib. This is repeated ∀j = 1, ...,S and ∀ x ∈ Ia,
leading to a 4D cost volume V ∈ RH×W×Ch×S ,
where Ch is the number of channels in the
feature map. The 4D cost volume then goes
through several convolutional layers that reduce
it to a 3D volume V ∈ RH×W×S . V(x) rep-
resents a probability distribution over the depth
samples and is used to regress a depth map. The
advantage of this approach is that (i) it injects
3D knowledge in the network, as the pixel pro-
jection follows the epipolar constraints and (ii)
the n-view case can be tackled by aggregating
multiple cost volumes, each produced by com-
paring the reference image and the target im-
ages. The main requirement of the plane sweep
algorithm is to have camera poses between refer-
ence and target images all expressed in the same
scale. This is required to keep the same propor-
tions of the real scene without any distortion.
For example, [4] produces {R1,R2, t1, t2} in real
scale (meters).
During the camera pose estimation step, [6]
computes pairwise camera poses with [4] and
uses them as initialization. The authors then
refine the inaccurate {Ri, ti}ni=1 by performing

multiple iterations of a plane sweep algorithm
adapted to produce camera pose samples rather
than depth samples. This injects some geomet-
rical knowledge in the network, but using [4]
as initialization still carries the limitations dis-
cussed in 3.1. Overall, the use of cost volumes in
camera pose estimation is expensive and the it-
erative use of plane sweep exacerbates the prob-
lem.
Expanding the pipeline of [5] to the n-view case
is not as easy. Indeed, the camera pose is nor-
malised and all scale information is lost. There-
fore, it is not possible to leverage pairwise cam-
era pose estimates in the same way as [6] lever-
ages [4].

4. Proposed Solution
The core of our proposal is to use the Trifocal
tensor to extend the pipeline proposed by [5] to
the general n-view case. The main idea behind
the pipeline is to compute the Trifocal tensor
for multiple triplets of overlapping cameras and
rescale all the camera pose estimates to share
the same scale. Figure 2 illustrates our proposed
pipeline.

4.1. Pipeline
The pipeline is composed of three main steps,
namely (i) 3-view point matching, (ii) camera
pose estimation and (iii) depth map estimation.
The 3-view point matching starts off by select-
ing n− 2 overlapping triplets which are used to
estimate [Ri|ti]ni=1. For every triplet (Ia, Ib, Ic),
we recover 3-view point matches x ↔ x′ ↔ x′′

by estimating the optical flows Oab and Obc be-
tween the couples (Ia, Ib) and (Ib, Ic). The point
matches obtained from Oab and Obc are then in-
tersected to produce the 3-view point matches
x ↔ x′ ↔ x′′.
Using the 3-view point matches x ↔ x′ ↔ x′′

we estimate the Trifocal tensor T. The camera
poses [Rba|tba] and [Rbc|tbc] are extracted from
T. We compared different algorithms to esti-
mate the Trifocal tensor. The algorithms were
proposed in [1] and [3]. We then rescale and
chain the camera pose estimates obtained in dif-
ferent triplets to recover the n-view normalised
camera poses [Ri|ti]ni=1 with a shared scale.
Finally, the plane sweep algorithm is carried out
by using the normalised camera poses [Ri|ti]ni=1.
Even though the camera configuration is nor-

3

Executive summary Leonardo Perelli

Figure 2: Our proposed pipeline when n = 4. The pipeline is a sequence of three main steps: 3-view
point matching, pose estimation and depth estimation.

malised, it preserves the original geometry of the
scene and the plane sweep algorithms outputs a
normalised depth map D for the reference frame
Iref .

4.2. Pose scaling and chaining
As previously mentioned, the camera poses
[Ri|ti] extracted from Ti are expressed in dif-
ferent scale for every i-th triplet. To perform
the n-view plane sweep algorithm however, the
camera poses have to share a common scale. If
this condition is not met, the 3D geometry of
the scene is distorted. Our proposal is to rescale
all camera poses [Ri|ti] with respect to the scale
of t1. We provide an example in the case n = 4.
Given two overlapping triplets (C1,C2,C3) and
(C2,C3,C4), we rescale translation vectors from
(C2,C3,C4) to match the scale of (C1,C2,C3).
Let t1,2,323 be the translation between C2 and
C3 computed in triplet (C1,C2,C3) and t2,3,432

the translation between C3 and C2 computed in
triplet (C2,C3,C4). Since we have estimated the
translation vector t23 in two different triplets,
we can match the scale of t2,3,432 to that of t1,2,323 .
Indeed,

λ1t
2,3,4
32 ≈ t1,2,332

since
∥t1,2,323 ∥ = λ1

∥t2,3,432 ∥ = 1

Therefore, we can conclude that λ1t
2,3,4
32 and

λ1t
2,3,4
34 match the scale of the previous triplet.

As a result, after dropping the triplet notation,
the camera poses [R21|t21], [R23|t23], [R34|λ1t34]
share a common scale that preserves the propor-
tions induced by the real scene. This is achieved
even if the scale does not match the ground truth
scale (e.g. meters).
The camera poses computed in step 2.2 are a
sequence of relative poses between neighbouring
cameras. The plane sweep algorithm requires
the camera pose between the reference frame Iref
and each target frame {Itari}n−1

i=1 . Let image I3
be the reference frame. Then, the plane sweep
requires [R31|t31], [R32|t32], [R34|λ1t34]. We are
thus missing: [R31|t31] and [R32|t32].
We can recover [R32|t32] by inverting the pose
[R23|t23], which we already computed.
Similarly, we can also recover [R31|t31]. This
can be achieved by chaining available poses. In
this case, we can chain the pose [R32|t32] to
[R21|t21]. As before, [R32|t32] is obtained by in-
verting [R23|t23].

4

Executive summary Leonardo Perelli

Pipeline lower is better higher is better
Abs Rel Sq Rel RMSE RMSElog α1 α2 α3

2-ViewRevisited [5] 0.055 0.224 2.273 0.091 0.956 0.984 0.993
Ours, n = 3 0.056 0.261 2.264 0.095 0.951 0.983 0.992
Ours, n = 4 0.090 0.419 2.670 0.128 0.899 0.968 0.987

Table 1: Results on KITTI Depth Eigen split. Incresing n leads to worse results due to dynamic
objects.

5. Experimental evaluation
We now report the results obtained on differ-
ent benchmarks. We only report the results ob-
tained by our full pipeline on the depth estima-
tion task, while we omit the experiments used
to choose the best Trifocal tensor estimation al-
gorithm.

5.1. Datasets
We mainly focus on 2 datasets to validate the
performance of our depth estimation algorithm.
In particular, we run our experiments on KITTI
Depth and ETH3D test sets, which are also used
by [5] and [6]. The KITTI Depth dataset is
mainly designed to evaluate the performance of
monocular depth estimation algorithms in self-
driving cars and provides two splits. The Eigen
split, which consists of 697 individual frames, is
the most common amongst the KITTI splits. [5]
introduced the Eigen SfM split, a subset with
256 frames filtered to exclude scenes contain-
ing dynamic objects or near static motion. The
ETH3D dataset contains 454 frames over 13 dif-
ferent scenes. The dataset features both indoor
and outdoor scenes collected with the aid of
very accurate laser measurements. As such, the
3D groundtruth points are reliable and account
for a very solid benchmark. Since our network
has only been trained on the KITTI dataset,
we expect our pipeline to under-perform com-
petitors such as [6] on the ETH3D, since they
have trained the network on datasets similar to
ETH3D.

5.2. KITTI Depth
We run our experiments on both the splits of
the KITTI dataset. Table 1 reports the results
on the Eigen split. From the table, it appears
that increasing the number of views has barely
no effect when n = 3 and even worsens perfor-
mance when n = 4. However, inspecting the

depth maps obtained one can notice that the
static parts of the scene are estimated better.
That is, the noise and depth artifacts inside the
estimated depth maps is strongly reduced. The
reason why numerical results do not improve can
be traced back to the presence of dynamic ob-
jects. Indeed, using more frames to estimate the
depth map of the reference image implies that
dynamic objects will have travelled greater dis-
tances between the reference frame and target
frame. This happens because the KITTI Depth
dataset is a video sequence, hence distant frames
have greater time spans between them. More-
over, objects near the edge of the image can eas-
ily disappear in later frames. Hence, when com-
puting the cost volumes through plane sweep,
points are not matched correctly: the warping
accounts for the camera motion but not for the
object motion.
With this in mind, we test the algorithm on
the KITTI Depth Eigen SfM split, which should
contain less dynamic objects. The results ob-
tained in Table 2 this time show a very good
performance of the algorithm, which improves
by around 18% to 47% over an already state-of-
the-art method. The 3-view algorithm is already
better than the original [5], and the 4-view man-
ages to improve slightly more.

5.3. ETH3D
We proceed to test our pipeline on the ETH3D
dataset. We perform the experiments both esti-
mating the camera pose with the Trifocal tensor,
both using the real ground truth camera poses.
In all cases, we can see that increasing n has
an important effect on the performance of our
pipeline. The effect seems particularly strong
when the camera pose estimates are noisy. In
such case, our pipeline provides an improvement
over [5] which ranges from 49% to 150%. When
using the ground-truth camera poses instead,
the improvement of n > 3 views over the 2-view

5

Executive summary Leonardo Perelli

Pipeline lower is better higher is better
Abs Rel Sq Rel RMSE RMSElog α1 α2 α3

2-ViewRevisited [5] 0.034 0.103 1.919 0.057 0.989 0.998 0.999
Ours, n = 3 0.027 0.071 1.617 0.048 0.992 0.998 0.999
Ours, n = 4 0.028 0.070 1.599 0.049 0.992 0.998 0.999
Ours, n = 5 0.031 0.073 1.593 0.052 0.991 0.998 0.999

Table 2: Results on the KITTI Depth Eigen SfM split. Increasing n yields benefits ranging from 18%
to 47 %.

pipeline from [5] is reduced to a smaller range
of 6% to 15%. Of course, as our pipeline has
not been explicitly fine-tuned for this dataset,
it would be best to run these experiments with
the fine-tuned pipeline and check that the ob-
tained results still hold. The performance im-
proves when accounting for more views, but it
still lags other fine-tuned SfM algorithms such
as [6].

6. Conclusion
In this work we proposed an SfM pipeline which
handles the general n-view case while solving a
well posed problem and exploiting well know 3D
constraints. The provided experimental evalu-
ation showed that using higher values of n in
presence of dynamic objects can lead to worse
depth map estimates due to dynamic objects.
However, we showed significant improvements
over 2-view state-of-the-art pipelines when the
scene is static. In particular, the performance of
our pipeline on the KITTI Eigen SfM split dis-
plays improved performance when setting n ≥ 3.
Our tests on ETH3D also provided promising re-
sults, showing that increasing n has a positive ef-
fect, especially when the camera pose estimate is
noisy. Interesting directions for future research
include accounting for the motion of dynamic
objects in the plane sweep algorithm and fur-
ther exploiting loop constraints during the cam-
era pose estimation step.

References
[1] Richard Hartley and Andrew Zisserman.

Multiple View Geometry in Computer Vi-
sion. Cambridge University Press, Cam-
bridge, 2 edition, 2004.

[2] Sunghoon Im, Hae-Gon Jeon, Stephen Lin,
and In So Kweon. DPSNet: End-to-

end Deep Plane Sweep Stereo, May 2019.
arXiv:1905.00538 [cs].

[3] Laura F. Julià and Pascal Monasse. A Crit-
ical Review of the Trifocal Tensor Estima-
tion. In Manoranjan Paul, Carlos Hitoshi,
and Qingming Huang, editors, Image and
Video Technology, Lecture Notes in Com-
puter Science, pages 337–349, Cham, 2018.
Springer International Publishing.

[4] Benjamin Ummenhofer, Huizhong Zhou,
Jonas Uhrig, Nikolaus Mayer, Eddy Ilg,
Alexey Dosovitskiy, and Thomas Brox. De-
MoN: Depth and Motion Network for Learn-
ing Monocular Stereo. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recog-
nition (CVPR), pages 5622–5631, July 2017.
arXiv:1612.02401 [cs].

[5] Jianyuan Wang, Yiran Zhong, Yuchao Dai,
Stan Birchfield, Kaihao Zhang, Nikolai
Smolyanskiy, and Hongdong Li. Deep
Two-View Structure-from-Motion Revisited,
April 2021. arXiv:2104.00556 [cs].

[6] Xingkui Wei, Yinda Zhang, Zhuwen Li, Yan-
wei Fu, and Xiangyang Xue. DeepSFM:
Structure From Motion Via Deep Bundle
Adjustment, August 2020. arXiv:1912.09697
[cs].

[7] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang,
and Long Quan. MVSNet: Depth Inference
for Unstructured Multi-view Stereo, July
2018. arXiv:1804.02505 [cs].

6

	Introduction
	Problem Formulation
	Related Work
	2 view Deep pose estimation
	n-view

	Proposed Solution
	Pipeline
	Pose scaling and chaining

	Experimental evaluation
	Datasets
	KITTI Depth
	ETH3D

	Conclusion

