
A CNN-based detector for video frame-rate interpolation

Tesi di Laurea Magistrale in
Music and Acoustic Engineering - Ingegneria Musicale e Acustica

Simone Mariani, 939469

Advisor:
Prof. Paolo Bestagini

Academic year:
2021-2022

Abstract: Nowadays, thanks to the diffusion of hand-held video capturing de-
vices and the widespread use of social networks and messaging apps, videos are
commonly shared and have become part of our daily life. However, video manip-
ulation is at everyone’s hand thanks to the huge availability of easy-to-use video
editing software suites. This has raised new social concerns, as the distribution
of maliciously manipulated videos can lead to severe consequences (e.g., people
defamation, fake-news spreading, mass opinion formation, etc.). For this reason,
the multimedia forensics community has started developing a series of techniques
to assess video authenticity and integrity. The goal of this thesis is to enrich the
panorama of video forensic technique, by proposing a video frame-rate interpola-
tion detector. Given a video under analysis, our goal is to detect whether the video
has undergone some frame-rate upsampling operations that are often applied when
multiple videos are spliced together, or to hide some part of a video. The proposed
technique is based on an ensemble of Convolutional Neural Networks (CNNs) work-
ing on three different video domains (i.e., pixels, optical flow, and frame residuals),
and on a Support Vector Machine (SVM) for a final classification. Results show
that the proposed method outperforms state-of-the-art video frame-rate interpola-
tion detectors, and can also be used to localize the spatial regions in which a video
has been interpolated.

Key-words: video forensics, interpolation, frame-rate, deep learning, convolutional neural networks

1. Introduction

In the last twenty years, due to the increasing popularity of social media networks and to the technological ad-
vancements in video capturing devices, videos are spread everywhere. Anyone can capture videos with extreme
facility, but unfortunately, anyone can also tamper with them. In fact, to the wide circulation of videos corre-
sponds a great progress in the video manipulating software suites. These software suites are also straightforward
to use, making video tampering a very simple task. Since videos are so popular nowadays, their information
can impact on many people’s lives. Maliciously manipulated videos can lead to several consequences like people
defamation, fake-news spreading or mass opinion formation. For this reason, it is important to guarantee the
integrity and the authenticity of the video contents, and this is exactly the aim of our work.

Among the many video manipulation operations that are available, video frame-rate interpolation is one of
the most common ones. In principle, interpolating a video is not always related to malicious tampering of the

1

content, as it can also be used to simply adjust a video speed. However, video frame-rate interpolation opera-
tion is often applied when splicing together different videos, since it is required to find a balance between the
frame-rates of the videos in question. This operation consists in creating new frames (upsampling) in between
already existing consecutive frames, or even in dropping (downsampling) some frames, resulting in a frame-rate
variation. If new frames are created, they can be a repetition of the original ones, or they can be built by
interpolating between the original frames pixels. The first approach, gives rise to some artifacts in the video,
especially if there is a lot of motion in the original content. The interpolating approach, instead is more difficult
to detect, especially if the motion is taken into account during the interpolation, for example using Motion
Compensated Interpolation (MCI) [1].
Indeed, MCI approaches perform first a motion estimation step, and then an interpolation one. The idea is
to estimate the trajectories that each pixel follow from one frame to another. Then, the pixels of the newly
generated frames are placed on the trajectory indicated by the estimation. In this way the interpolated frames
are computed and inserted in the middle of the original frames, resulting in a very fluid sequence.
Since this video frame-rate interpolation can lead to very realistic results, it is required to develop some tools
capable of identify manipulations introduced by interpolation.

For all of these reasons, in the past few years, the multimedia forensics community has started to develop some
techniques in order to identify traces of video frame-rate interpolation.
For example, in [2], the authors propose a detector for motion compensated interpolation. In particular, this
method relies on the analysis of the correlation introduced by the filter adopted in the interpolation process.
This approach was initially implemented for the image spatial resampling problem, as explained in [3].
Another work in the video frame-rate interpolation field shows how interpolation footprints can be found ana-
lyzing the size of each encoded frame [4].
Also, since video interpolation can be used to speed up (dropping frames) or slow down (adding frames) a video,
in this work [5], the authors use a CNN-based approach to discriminate between normal speed videos and sped
up videos.

With this thesis, we want to create a new tool that can be helpful in detecting frame-rate interpolation traces
left in videos. The goal of our work, is to be able to classify a given video, as frame-rate interpolated or as
original (untouched frame-rate).
With this purpose, we propose a detector capable to identify traces of frame-rate interpolation inside a video.
Our detector is composed by a processing stage (a Convolutional Neural Network (CNN)) and by a classifier (a
Support Vector Machine (SVM)).
The idea, is to extract a batch of consecutive frames from a video under analysis. We produce different video
domain versions of the batch of frames and we process (through the CNN) them in order to produce a feature
vector containing some sort of information about the presence of interpolation in the segment. Finally we rely
on this feature vector to classify (by the SVM) the video as interpolated or not.

The rest of the work is organized in the following way.
In Section 2 we formally define the goal of our work.
In Section 3 we fully describe all the details of our detector, and we also explain how to extend the approach to
localize smaller interpolated video regions.
Section 4 is devoted to discuss the implementation settings of the experiments to validate our detector. Section 5
reports the results of the experiments, presenting a comparison against two state-of-the-art approaches.
In the final Section 6, we draw the conclusions of our work, and we indicate some possible future developments.

2. Problem Formulation

Videos can be temporally interpolated to increase or decrease their frame-rate for different applications. Chang-
ing a video frame-rate typically involves the use of some pixel interpolation technique over time. This is necessary
to create new frames previously missing in the video stream. As interpolation leaves peculiar footprints on the
newly generated frames, it is possible to study these traces in a forensic manner in order to detect if the video
has been interpolated in time or not.

The goal of this work is to detect if a video under analysis has undergone frame-rate interpolation or not. With
reference to Figure 1, this is a binary classification problem, with one video as input, and one binary label as
output.

2

Formally, let us consider a video sequence defined as

V = [F0, ...,FL−1], (1)

where F0 denotes the first frame in V and L represents the number of frames contained in V. Our goal is
to learn how to associate a label p to the video V where p = 1 means that the video has been temporally
interpolated, whereas p = 0 means that the video frame-rate is untouched.

In the next section, we provide all the details of the propose solution to this problem.

3. Proposed Method

In this section we introduce our proposed method for video frame-rate interpolation detection. First, we give a
general overview of the entire pipeline. Then, we discuss the details of each processing block that compose our
pipeline. We start with the preprocessing operations required by each video before passing through our model.
After that, we analyze the structure of our detector. Finally, we explore a particular application of our work
related to the problem of localizing interpolation that may happen in a small temporal and spatial region of
the video.

3.1. Proposed Pipeline

In the current section we give a high level overview of the structure of our frame-rate interpolation detector.
As shown in Figure 1, the pipeline can be summarized in three main blocks:

1. Preprocessing
2. CNN
3. Classifier

Figure 1: A quick overview of our detector. We analyze the input video in order to classify it as
interpolated or not interpolated.

In the preprocessing stage, we start from an input video and we select a video segment from it by extracting
only some consecutive frames. Then, we produce different versions of the video segment and we feed them to
the CNN branches. The CNN processes our segments and produces an output score for each segment version.
This scores are packed together before the final classifier block, which then tells if the video segment is classified
as original or as interpolated. In the following, we dive into the details of each block.

3.2. Video Preprocessing

Before feeding video segments into our detector, some video preprocessing is required in order to get accurate
and coherent predictions. In this section we focus on these operations. A detailed view of the preprocessing
stage is presented in Figure 2.

3

Figure 2: Details of preprocessing block. We start from the input video V, we extract a segment S of
frames. The segment is converted into a grayscale segment Sgray. Then the frames of the segment are
resized to obtain the SN×N segment. Finally the three input segments are produced from SN×N .

3.3. Frames Selection

Considering an input video V, the first thing that we do is to extract a video segment of T + 1 consecutive
frames from V producing S. Formally, let us define the video under analysis as

V = [F0,F1, ...,FL−1], (2)

where L is the number of frames in V and Fi with i ∈ [0, L − 1] indicates the i-th frame of the video V. In
this way:

S = [Fi, ...,Fi+T], (3)

where Fi stands for the first frame (in the RGB colorspace [6]) of the new video segment and is composed by:

Fi = [FR
i ,F

G
i ,F

B
i], (4)

where FR
i , FG

i and FB
i represent the red, green and blue color components of the frame Fi, respectively. Then,

the next operation that we apply is a change of colorspace. This is essential to lower the global computational
complexity, as this reduces the memory requirements to store each frame. In particular, we convert S into the
grayscale video segment Sgray. Formally, each frame of the new segment is produced in the following way:

Fgray
i = FR

i · 0.299 + FG
i · 0.587 + FB

i · 0.114. (5)

At this point we have obtained a video segment Sgray composed by T +1 frames in the grayscale colorspace [6].

3.3.1 Frames Resizing

We now want to resize the video segment frames to let them fit in our CNN. This is done to both reduce the
computational complexity, and enhance the CNN performance with some data augmentation during training.
As a matter of fact, we make use of two different resizing policies: one is used during training; one is used
during the testing phases.

Training In the training phase we apply a very light resizing opereation that acts as data augmentation
factor. If each frame Fgray

i of our segment Sgray has a height H and a width W , the new resized frames have
height and width defined as

Hrsz = H · r,
Wrsz = W · r,

(6)

where Hrsz is the resized height, Wrsz is the resized width, and r is a random resize factor picked in the range
between 0.9 and 1.1. We name this new segment as Srsz. We do this in order to introduce more variability in
the training set. Then we just extract a center crop of N×N pixels from each frame of Srsz obtaining the SN×N

video segment. At this point, our video segment SN×N is composed by T + 1 grayscale frames with height N
and width N .

Testing In the testing stage of our CNN, we just apply a center crop of N × N pixels as we did at last in
training, obtaining SN×N . This is intended to preserve the original quality of the input video to evaluate, still
adapting the frame resolution to that required by the CNN. So the goal of the preprocessing phase is to produce
the grayscale video segment SN×N composed by T + 1 grayscale frames of height N and width N .

4

3.3.2 Input Type (Frames, Residuals or Optical Flow)

In order to obtain a robust detector, our approach is to create three different versions of the preprocessed video
segment SN×N that we define as

• Original Frames
• Residuals
• Optical Flow

We do this because we want to be able to analyze different inputs exposing different properties of the same
video segment, in order to capture more information about the interpolation traces. We want each one of these
new sequences to be T frames long. These three segments are then evaluated by our CNN, producing three
output scores, which are then aggregated in order to produce the final prediction related to the original input
video segment S. In the three following paragraphs we discuss how to obtain these new segments.

Original Frames The first input type is the original video in the pixel domain. This is the most simple
and basic input we can think of, and it surely contains all the information to describe the video. SN×N already
represents the original (preprocessed) frames. The only thing to do is to discard the last frame to have a total
length of T frames, since the length of SNxN was of T + 1. We refer to this new segment as Sfra.

Residuals The second input type that we consider is the frames residual. This is obtained as the difference
between adjacent frames in the time domain. This choice is motivated by two main reasons: it is well known that
frames residuals may contain forensic traces in several multimedia forensics applications; the frame difference
somehow deletes part of the semantic content of the frames (i.e., the depicted scene), thus helping the CNN to
focus on processing traces.
To compute the residuals segment, which we call Sres, all we need to do is one simple operation. Each frame in
the residuals sequence is obtained by:

Ri = |Ni+1 −Ni|, ∀i ∈ [0, T], (7)

where Ni represents a frame of the preprocessed segment SN×N . This frames are then concatenated to obtain
the residuals sequence

Sres = [R0,R1, ...,RT−1], (8)

where Ri indicates a frame in the new residuals sequence. In this way the length of Sres is of T frames exactly.

Optical Flow The third input type we use is the optical flow. This is a representation of the motion of
each pixel from one frame to the next one. This choice is motivated by the fact that frame-rate interpolation
can leave visible traces if we inspect video motion. It is therefore expected that feeding the optical flow to a
CNN can be a fruitful choice to capture motion artifacts, thus detecting frame-rate interpolation.
In order to produce the optical flow segment Sopt, we follow the method proposed by Gunnar Farneback [7].
This approach produces a dense optical flow. The motion estimation is computed between every two adjacent
frames of the segment SN×N and the flow is calculated for every point in the frames. Let us suppose that Fi

and Fj are two consecutive grayscale frames of SN×N . We first define a mask Mopt with three channels and
with the same height and width as each one of the frames of SN×N . The three channels of Mopt are related to
hue (Mh

opt), saturation (Ms
opt) and value (Mv

opt), since in this approach we want to work in the HSV colorspace
[6]. Then, the dense optical flow Oij is computed from Fi and Fj according to Farneback method. From the
obtained flow we calculate the magnitude ρij and the angle Φij of the 2D vectors, converting the first two
channels of Oij from cartesian to polar coordinates. We use then the angle Φij to set the mask Mopt hue
channel Mh

opt according to the optical flow direction:

Mh
opt =

Φij · 180
π/2

(9)

Being Mh
opt the hue channel (first channel) of Mopt. After that we use the magnitude ρij to set the mask Mopt

value channel:
Mv

opt = ρij (10)

Finally we convert the Mopt mask back to the grayscale colorspace. We repeat the procedure for all of the
consecutive frames in SN×N and we concatenate the results (Mopt) obtaining Sopt. In this way we get a total
length of T frames.
Figure 3 shows three frames from the three types of input segments.

5

(a) original frame (b) residual (c) optical flow

Figure 3: Samples of the same frame from the three input segment types.

3.4. CNN Single Branch Structure

In this section we analyze the structure of the core of our detector: the CNN.
As depicted in Figure 4 , the proposed CNN is composed by three branches. Each of these branches is devoted
to the processing of one of the three different input segment types that we described in Section 3.3.2: Sfra, Sres,
Sopt. The three branches which we call CB1(·), CB2(·), CB3(·) respectively, have the exact same layers, so they
are structurally identical. The only difference between them stands in their weights, since each branch needs to
adjust its weights in the training phase in order to be optimized for the processing of a specific type of input.
The training details can be found in the next section.

Figure 4: CNN high level structure. From the preprocessed segment SN×N we obtained the three
input segments Sfra, Sres and Sopt. We fed each one of them into the correspondent branch. Three
output scores are produced from each branch analysis (o1, o2 and o3).

A graphical view of the structure of a single branch is shown in Figure 5. Table 1 reports a branch structure
layer by layer. Aside from the common layers as Convolutional and Pooling for example, a particular mention
must be made for the Mixed layers (indicated in green both in Table 1 and in Figure 5). They are not properly
layers, but they are an aggregation of simpler layers. Figure 6 represents the structure of one of these particular
aggregation of layers. All of the Mixed layers contain the same set of layers, they only differ in the layers
parameters. This is evident from Table 2, in which the output shapes from each layer composing a Mixed are
shown.
One last remark about the architecture of the individual layers is that it is very similar to the one of the S3D-G
network [8], with a few variations:

• Temporal strides for all the Max Pooling layers (except the last one) are set to 1, in order not to alter
the temporal dimension.

• We perform max spatial pooling and adaptive average temporal pooling before the last 3D convolution,
as opposed to only average pooling in S3D-G, this in order to compress spatial and temporal dimensions.

Going back to the pipeline in Figure 4, our idea is to start from the three segments Sfra, Sres, Sopt and to
feed each one of them respectively to CB1(·), CB2(·), CB3(·). Each branch accepts an input of dimension
T ×N ×N ×1, since each segment is composed by T frames of height N , width N and single channel (grayscale
colorspace). After processing the segments through C(·), each branch produces as output a value:

o1 = CB1(Sfra) (11)

o2 = CB2(Sres) (12)

o3 = CB3(Sopt) (13)

6

LAYER OUTPUT SHAPE
Conv3d [-1, 64, T, N/2, N/2]

BatchNorm3 [-1, 64, T, N/2, N/2]
ReLU [-1, 64, T, N/2, N/2]
Conv3d [-1, 64, T, N/2, N/2]

BatchNorm3d [-1, 64, T, N/2, N/2]
ReLU [-1, 64, T, N/2, N/2]

MaxPool3d [-1, 64, T, N/4, N/4]
Conv3d [-1, 64, T, N/4, N/4]

BatchNorm3d [-1, 64, T, N/4, N/4]
ReLU [-1, 64, T, N/4, N/4]

Conv3d [-1, 192, T, N/4, N/4]
BatchNorm3d [-1, 192, T, N/4, N/4]

ReLU [-1, 192, T, N/4, N/4]
Conv3d [-1, 192, T, N/4, N/4]

BatchNorm3d [-1, 192, T, N/4, N/4]
ReLU [-1, 192, 16, N/4, N/4]

MaxPool3d [-1, 192, T, N/8, N/8]
Mixed_3b [-1, 256, T, N/8, N/8]
Mixed_3c [-1, 480, T, N/8, N/8]
MaxPool3d [-1, 480, T, N/16, N/16]
Miced_4b [-1, 512, T, N/16, N/16]
Mixed_4c [-1, 512, T, N/16, N/16]
Mixed_4d [-1, 512, T, N/16, N/16]
Mixed_4e [-1, 528, T, N/16, N/16]
Mixed_4f [-1, 832, T, N/16, N/16]
MaxPool3d [-1, 832, T, N/32, N/32]
Mixed_5b [-1, 832, 16, N/32, N/32]
Mixed_5c [-1, 1024, 16, N/32, N/32]
MaxPool3d [-1, 1024, 1, N/32, N/32]

AdaptiveAvgPool3d [-1, 1024, 1, 1, 1]
Conv3d [-1, 512, 1, 1, 1]
Dropout [-1, 512]
Linear [-1, 1]

Table 1: Layers with output shapes of CNN considering an input shape of [-1, 1, T, N, N]. In the input
shape, the first dimension (-1) stands for the batch size, which can be set freely. The second dimension
(1) is the number of input channels of each frame. The third dimension (T) is the number of frames in
the segment. The last two dimensions (N, N) are the spatial dimensions (height, width) of each frame.

7

M
IX

E
D

L
A

Y
E
R

S
O

U
T

P
U

T
S
H

A
P

E
S

L
A

Y
E
R

M
ix

ed
_

3b
M

ix
ed

_
3c

M
ix

ed
_

4b
M

ix
ed

_
4c

M
ix

ed
_

4d
M

ix
ed

_
4e

M
ix

ed
_

4f
M

ix
ed

_
5b

M
ix

ed
_

5c
C

on
v3

d_
0_

0
[-1

,6
4,

T
,N

/8
,N

/8
]

[-1
,1

28
,T

,N
/8

,N
/8

]
[-1

,1
92

,T
,N

/1
6,

N
/1

6]
[-1

,1
60

,T
,N

/1
6,

N
/1

6]
[-1

,1
28

,T
,N

/1
6,

N
/1

6]
[-1

,1
12

,T
,N

/1
6,

N
/1

6]
[-1

,2
56

,T
,N

/1
6,

N
/1

6]
[-1

,2
56

,T
,N

/3
2,

N
/3

2]
[-1

,3
84

,T
,N

/3
2,

N
/3

2]
B
at

ch
N

or
m

3d
_

0_
0

[-1
,6

4,
T

,N
/8

,N
/8

]
[-1

,1
28

,T
,N

/8
,N

/8
]

[-1
,1

92
,T

,N
/1

6,
N

/1
6]

[-1
,1

60
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

12
,T

,N
/1

6,
N

/1
6]

[-1
,2

56
,T

,N
/1

6,
N

/1
6]

[-1
,2

56
,T

,N
/3

2,
N

/3
2]

[-1
,3

84
,T

,N
/3

2,
N

/3
2]

R
eL

U
_

0_
0

[-1
,6

4,
T

,N
/8

,N
/8

]
[-1

,1
28

,T
,N

/8
,N

/8
]

[-1
,1

92
,T

,N
/1

6,
N

/1
6]

[-1
,1

60
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

12
,T

,N
/1

6,
N

/1
6]

[-1
,2

56
,T

,N
/1

6,
N

/1
6]

[-1
,2

56
,T

,N
/3

2,
N

/3
2]

[-1
,3

84
,T

,N
/3

2,
N

/3
2]

C
on

v3
d_

1_
0

[-1
,6

4,
T

,N
/8

,N
/8

]
[-1

,1
28

,T
,N

/8
,N

/8
]

[-1
,9

6,
T

,N
/1

6,
N

/1
6]

[-1
,1

12
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

44
,T

,N
/1

6,
N

/1
6]

[-1
,1

60
,T

,N
/1

6,
N

/1
6]

[-1
,1

60
,T

,N
/3

2,
N

/3
2]

[-1
,1

92
,T

,N
/3

2,
N

/3
2]

B
at

ch
N

or
m

3d
_

1_
0

[-1
,6

4,
T

,N
/8

,N
/8

]
[-1

,1
28

,T
,N

/8
,N

/8
]

[-1
,9

6,
T

,N
/1

6,
N

/1
6]

[-1
,1

12
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

44
,T

,N
/1

6,
N

/1
6]

[-1
,1

60
,T

,N
/1

6,
N

/1
6]

[-1
,2

56
,T

,N
/3

2,
N

/3
2]

[-1
,1

92
,T

,N
/3

2,
N

/3
2]

R
eL

U
_

1_
0

[-1
,6

4,
T

,N
/8

,N
/8

]
[-1

,1
28

,T
,N

/8
,N

/8
]

[-1
,9

6,
T

,N
/1

6,
N

/1
6]

[-1
,1

12
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

44
,T

,N
/1

6,
N

/1
6]

[-1
,1

60
,T

,N
/1

6,
N

/1
6]

[-1
,2

56
,T

,N
/3

2,
N

/3
2]

[-1
,1

92
,T

,N
/3

2,
N

/3
2]

C
on

v3
d_

1_
1

[-1
,1

28
,T

,N
/8

,N
/8

]
[-1

,1
92

,T
,N

/8
,N

/8
]

[-1
,2

08
,T

,N
/1

6,
N

/1
6]

[-1
,2

24
,T

,N
/1

6,
N

/1
6]

[-1
,2

56
,T

,N
/1

6,
N

/1
6]

[-1
,2

88
,T

,N
/1

6,
N

/1
6]

[-1
,3

20
,T

,N
/1

6,
N

/1
6]

[-1
,3

20
,T

,N
/3

2,
N

/3
2]

[-1
,3

84
,T

,N
/3

2,
N

/3
2]

B
at

ch
N

or
m

3d
_

1_
1

[-1
,1

28
,T

,N
/8

,N
/8

]
[-1

,1
92

,T
,N

/8
,N

/8
]

[-1
,2

08
,T

,N
/1

6,
N

/1
6]

[-1
,2

24
,T

,N
/1

6,
N

/1
6]

[-1
,2

56
,T

,N
/1

6,
N

/1
6]

[-1
,2

88
,T

,N
/1

6,
N

/1
6]

[-1
,3

20
,T

,N
/1

6,
N

/1
6]

[-1
,3

20
,T

,N
/3

2,
N

/3
2]

[-1
,3

84
,T

,N
/3

2,
N

/3
2]

R
eL

U
_

1_
1

[-1
,1

28
,T

,N
/8

,N
/8

]
[-1

,1
92

,T
,N

/8
,N

/8
]

[-1
,2

08
,T

,N
/1

6,
N

/1
6]

[-1
,2

24
,T

,N
/1

6,
N

/1
6]

[-1
,2

56
,T

,N
/1

6,
N

/1
6]

[-1
,2

88
,T

,N
/1

6,
N

/1
6]

[-1
,3

20
,T

,N
/1

6,
N

/1
6]

[-1
,3

20
,T

,N
/3

2,
N

/3
2]

[-1
,3

84
,T

,N
/3

2,
N

/3
2]

C
on

v3
d_

1_
2

[-1
,1

28
,T

,N
/8

,N
/8

]
[-1

,1
92

,T
,N

/8
,N

/8
]

[-1
,2

08
,T

,N
/1

6,
N

/1
6]

[-1
,2

24
,T

,N
/1

6,
N

/1
6]

[-1
,2

56
,T

,N
/1

6,
N

/1
6]

[-1
,2

88
,T

,N
/1

6,
N

/1
6]

[-1
,3

20
,T

,N
/1

6,
N

/1
6]

[-1
,3

20
,T

,N
/3

2,
N

/3
2]

[-1
,3

84
,T

,N
/3

2,
N

/3
2]

B
at

ch
N

or
m

3d
_

1_
2

[-1
,1

28
,T

,N
/8

,N
/8

]
[-1

,1
92

,T
,N

/8
,N

/8
]

[-1
,2

08
,T

,N
/1

6,
N

/1
6]

[-1
,2

24
,T

,N
/1

6,
N

/1
6]

[-1
,2

56
,T

,N
/1

6,
N

/1
6]

[-1
,2

88
,T

,N
/1

6,
N

/1
6]

[-1
,3

20
,T

,N
/1

6,
N

/1
6]

[-1
,3

20
,T

,N
/3

2,
N

/3
2]

[-1
,3

84
,T

,N
/3

2,
N

/3
2]

R
eL

U
_

1_
2

[-1
,1

28
,T

,N
/8

,N
/8

]
[-1

,1
92

,T
,N

/8
,N

/8
]

[-1
,2

08
,T

,N
/1

6,
N

/1
6]

[-1
,2

24
,T

,N
/1

6,
N

/1
6]

[-1
,2

56
,T

,N
/1

6,
N

/1
6]

[-1
,2

88
,T

,N
/1

6,
N

/1
6]

[-1
,3

20
,T

,N
/1

6,
N

/1
6]

[-1
,3

20
,T

,N
/3

2,
N

/3
2]

[-1
,3

84
,T

,N
/3

2,
N

/3
2]

C
on

v3
d_

2_
0

[-1
,1

6,
T

,N
/8

,N
/8

]
[-1

,3
2,

T
,N

/8
,N

/8
]

[-1
,1

6,
T

,N
/1

6,
N

/1
6]

[-1
,2

4,
T

,N
/1

6,
N

/1
6]

[-1
,2

4,
T

,N
/1

6,
N

/1
6]

[-1
,3

2,
T

,N
/1

6,
N

/1
6]

[-1
,3

2,
T

,N
/1

6,
N

/1
6]

[-1
,3

2,
T

,N
/3

2,
N

/3
2]

[-1
,4

8,
T

,N
/3

2,
N

/3
2]

B
at

ch
N

or
m

3d
_

2_
0

[-1
,1

6,
T

,N
/8

,N
/8

]
[-1

,3
2,

T
,N

/8
,N

/8
]

[-1
,1

6,
T

,N
/1

6,
N

/1
6]

[-1
,2

4,
T

,N
/1

6,
N

/1
6]

[-1
,2

4,
T

,N
/1

6,
N

/1
6]

[-1
,3

2,
T

,N
/1

6,
N

/1
6]

[-1
,3

2,
T

,N
/1

6,
N

/1
6]

[-1
,3

2,
T

,N
/3

2,
N

/3
2]

[-1
,4

8,
T

,N
/3

2,
N

/3
2]

R
eL

U
_

2_
0

[-1
,1

6,
T

,N
/8

,N
/8

]
[-1

,3
2,

T
,N

/8
,N

/8
]

[-1
,1

6,
T

,N
/1

6,
N

/1
6]

[-1
,2

4,
T

,N
/1

6,
N

/1
6]

[-1
,2

4,
T

,N
/1

6,
N

/1
6]

[-1
,3

2,
T

,N
/1

6,
N

/1
6]

[-1
,3

2,
T

,N
/1

6,
N

/1
6]

[-1
,3

2,
T

,N
/3

2,
N

/3
2]

[-1
,4

8,
T

,N
/3

2,
N

/3
2]

C
on

v3
d_

2_
1

[-1
,3

2,
T

,N
/8

,N
/8

]
[-1

,9
6,

T
,N

/8
,N

/8
]

[-1
,4

8,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

B
at

ch
N

or
m

3d
_

2_
1

[-1
,3

2,
T

,N
/8

,N
/8

]
[-1

,9
6,

T
,N

/8
,N

/8
]

[-1
,4

8,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

R
eL

U
_

2_
1

[-1
,3

2,
T

,N
/8

,N
/8

]
[-1

,9
6,

T
,N

/8
,N

/8
]

[-1
,4

8,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

C
on

v3
d_

2_
2

[-1
,3

2,
T

,N
/8

,N
/8

]
[-1

,9
6,

T
,N

/8
,N

/8
]

[-1
,4

8,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

B
at

ch
N

or
m

3d
_

2_
2

[-1
,3

2,
T

,N
/8

,N
/8

]
[-1

,9
6,

T
,N

/8
,N

/8
]

[-1
,4

8,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

R
eL

U
_

2_
2

[-1
,3

2,
T

,N
/8

,N
/8

]
[-1

,9
6,

T
,N

/8
,N

/8
]

[-1
,4

8,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

M
ax

P
oo

l3
d_

3
[-1

,3
2,

T
,N

/8
,N

/8
]

[-1
,2

56
,T

,N
/8

,N
/8

]
[-1

,4
80

,T
,N

/1
6,

N
/1

6]
[-1

,5
12

,T
,N

/1
6,

N
/1

6]
[-1

,5
12

,T
,N

/1
6,

N
/1

6]
[-1

,5
12

,T
,N

/1
6,

N
/1

6]
[-1

,5
28

,T
,N

/1
6,

N
/1

6]
[-1

,8
32

,T
,N

/3
2,

N
/3

2]
[-1

,8
32

,T
,N

/3
2,

N
/3

2]
C
on

v3
d_

3_
0

[-1
,3

2,
T

,N
/8

,N
/8

]
[-1

,6
4,

T
,N

/8
,N

/8
]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

B
at

ch
N

or
m

3d
_

3_
0

[-1
,3

2,
T

,N
/8

,N
/8

]
[-1

,6
4,

T
,N

/8
,N

/8
]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

R
eL

U
_

3_
0

[-1
,3

2,
T

,N
/8

,N
/8

]
[-1

,6
4,

T
,N

/8
,N

/8
]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,6

4,
T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/1

6,
N

/1
6]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

[-1
,1

28
,T

,N
/3

2,
N

/3
2]

A
da

pt
iv

eA
vg

P
oo

l3
d

[-1
,2

56
,1

,1
,1

]
[-1

,4
80

,1
,1

,1
]

[-1
,5

12
,1

,1
,1

]
[-1

,5
12

,1
,1

,1
]

[-1
,5

12
,1

,1
,1

]
[-1

,5
28

,1
,1

,1
]

[-1
,8

32
,1

,1
,1

]
[-1

,8
32

,1
,1

,1
]

[-1
,1

02
4,

1,
1,

1]
C
on

v3
d

[-1
,1

,2
56

,1
,1

]
[-1

,1
,4

80
,1

,1
]

[-1
,1

,5
12

,1
,1

]
[-1

,1
,5

12
,1

,1
]

[-1
,1

,5
12

,1
,1

]
[-1

,1
,5

28
,1

,1
]

[-1
,1

,8
32

,1
,1

]
[-1

,1
,8

32
,1

,1
]

[-1
,1

,1
02

4,
1,

1]
Si

gm
oi

d
[-1

,1
,2

56
,1

,1
]

[-1
,1

,4
80

,1
,1

]
[-1

,1
,5

12
,1

,1
]

[-1
,1

,5
12

,1
,1

]
[-1

,1
,5

12
,1

,1
]

[-1
,1

,5
28

,1
,1

]
[-1

,1
,8

32
,1

,1
]

[-1
,1

,8
32

,1
,1

]
[-1

,1
,1

02
4,

1,
1]

Table 2: Output shapes for all the layers composing the various Mixed layers. The notation is the
same used in Table 1.

8

Figure 5: CNN single branch structure. In the figure is reported the structure of the first branch
(CB1(·)) devoted to the processing of the frames segment (Sfra). Also, the output shapes and the type
of layers are indicated.

Figure 6: First Mixed layer structure. Sub layers types and output shapes are indicated in the figure.

These values represents a sort of score related to the level of interpolation traces that have been found inside
each segment. In particular, o1, o2 and o3 scores span the range (−∞,+∞). The higher the score, the higher
the probability that the video has been interpolated.

3.5. CNN Branches Aggregation

The final part of our detector consists in putting together the scores that we collected from the single branches
and to produce from them a global prediction about the input video. In Figure 7 a simple pipeline representing
this stage is presented.

Figure 7: Pipeline of the final classification stage. The three branches outcomes (o1, o2 and o3) are
aggregated into the feature vector O. This vector is fed to the classifier (cSVM(·)) which predicts if the
video is interpolated (p = 1) or original (p = 0).

9

First of all, we concatenate the scores together in a final feature vector:

o = [o1, o2, o3]. (14)

Then, we need a tool to analyze this feature vector o and to predict if the original video segment S has
interpolation traces in it or not. What we propose is to use a SVM.
We build and train a SVM classifier cSVM(·) in order to discriminate between original video segment (class 0)
and interpolated video segment (class 1).
The feature vector o is then fed to the classifier cSVM(·) producing the final prediction:

p = cSVM(o) =

{
0, if SN×N is predicted as not interpolated,
1, if SN×N is predicted as interpolated,

(15)

where p is the final prediction related to the input video preprocessed segment SN×N and o is the feature vector
containing the branches scores. In this way, p represents a prediction made about the input video segment S,
stating if it contains traces of interpolation.
Details about the training and the costruction of cSVM(·) are discussed in the next chapter along with some
alternatives to this classification procedure.

3.6. Localization Application

In this section we show an extension to a particular application of our detector. Until now, we have shown how
to detect if a video segment has interpolation traces in it. However, as we analyze a video segment-by-segment,
we can also localize where the interpolation is located inside a video. In order to do this, we designed the
pipeline presented in Figure 8.

Figure 8: High level pipeline of localization application. From the input video Vin to the output video
Vout in which the interpolated sub blocks are highlighted.

Our idea is to divide an input video into many segments, then to process these segments individually to localize
the interpolation zones inside of them. For each segment we produce a mask indicating where this interpolated
regions are placed. In the end we use this masks to create an output video which consists in a copy of the input
video in which the interpolated sectors in each segment are highlighted.
In the following, we explain the main blocks of our localization method.

3.6.1 Video Segmentation

Let us start from an input video Vin. First we want to divide it into B video segments, each of length T + 1
frames.
In this way:

Ss = [S0,S1, ...,SB−1], B =

⌊
L

T + 1

⌋
, (16)

where L is the number of frames in Vin and Ss is the succession of frame segments.
In particular each segment is composed by:

Si = [Fi·T , ...,Fi·(T+1)], i ∈ [0, B − 1], (17)

where Fi is the i-th frame contained in Vin. As we process each segment in the same way, let us focus on one
single segment Si for the sake of simplicity. The individual processing of each one of the segments is shown in
Figure 9.
From the segment Si, we generate the grayscale version Sgray

i by converting every frame Fi in Si to the grayscale
colorspace with equation (5). After that, we decompose our video segment Sgray

i from a spatial point of view,
into multiple sub segments. In particular we want each sub segment to be composed by the T + 1 frames of
Sgray
i but for each different subsegment, we crop those frames in different N × N non overlapping regions. In

this way, each sub segment represents the T + 1 frames of Sgray
i but evaluated in a specific spatial region. An

example of sub segment is reported in Figure 10.

10

Figure 9: Localization processing chain for individual video segments, in this example the input segment
has been divided into four N ×N sub segments. Each subsegment is then processed as a standalone
segment producing a prediction. The predictions for each subsegment are then used to compose the
mask Mi related to the input segment.

Figure 10: A sub segment of 5 frames 200 x 200 extracted from a segment of 5 frames 400 x 400.

At this point we can individually analyze different spatial portions of Sgray
i . Supposing that each frame of Sgray

i

has a height of H and a width of W we have:

J =

⌊
N

H

⌋
, K =

⌊
N

W

⌋
, (18)

where J and K are the number of N ×N non-overlapping blocks that we can get to cover a frame of height H
and width W . Therefore, we can define the sub segment subdivision of Sgray

i in the following way:

C =


C0,0 C0,1 C0,2 . . . C0,W−1

C1,0 C1,1 C1,2 . . . C1,W−1

...
...

...
. . .

...
CJ−1,0 CJ−1,1 CJ−1,2 . . . CJ−1,W−1

 , (19)

where C represents the global spatial subdivision of the segment Sgray
i , and it is composed by:

Cj,k = [Fi·T [j : j +N, k : k +N], ...,Fi·(T+1)[j : j +N, k : k +N]], (20)

where j ∈ (0, J − 1), k ∈ (0,K − 1) and i is related to the index of the current segment (Si). In practice,
C represents the segment Si in the grayscale colorspace and subdivided in many spatial regions. Now, from
each one of the Cj,k sub segments we create the three input segments (Sfra, Sres, Sopt) in the same way as we
explained in Section 3.3.2. Then the three of them are sent into the CNN producing three scores which are then
packed together before the final classification block. The final prediction value pj,k indicates if the sub segment
Cj,k is seen as interpolated or not.
In particular:

pj,k =

{
0, if Cj,k is predicted not interpolated
1, if Cj,k is predicted interpolated

11

3.6.2 Mask Creation

Our goal now is to assemble the information obtained from the sub segments predictions pj,k processing into
one single element representing the localization of interpolation in the main segment Si. To do so, we create a
2D binary [6] sub mask Mj,k for each sub segment Cj,k, which has a heigth of N and a width of N (the same
dimensions as a sub segment cropped frame).
We fill these sub masks in the following way:

Mj,k =


1− pj,k 1− pj,k 1− pj,k . . . 1− pj,k
1− pj,k 1− pj,k 1− pj,k . . . 1− pj,k

...
...

...
. . .

...
1− pj,k 1− pj,k 1− pj,k . . . 1− pj,k

 (21)

So, if a sub segment Cj,k produces a prediction pj,k = 0 it generates a N ×N sub mask entirely composed by
ones, otherwise by zeros. Now, we just need to assemble the mask related to the video segment Si starting from
the sub masks Mj,k. The segment mask Mi is composed simply by concatenating the sub masks:

Mi =


M0,0 M0,1 M0,2 . . . M0,W−1

M1,0 M1,1 M1,2 . . . M1,W−1

...
...

...
. . .

...
MJ−1,0 MJ−1,1 MJ−1,2 . . . MJ−1,W−1

 (22)

This results in a segment mask which has a total height of N · J and a total width of N ·W . Mi is composed
by N ×N black or white regions depending on the various sub segments predictions pj,k.
The idea is to repeat this set of operations for every segment contained in S, producing a mask for each one of
them:

M = [M0,M1, ...,MB−1], B =

⌊
L

T + 1

⌋
(23)

In this way, M represents a marker of the (predicted) interpolated regions inside the whole video Vin.

3.6.3 Localization Output Visualization

Finally, in order to realize an output to give a visible feedback, we use the produced mask M as a highlighter.
In particular, for every segment Si ∈ S, we multiply (element wise multiplication) the corresponding mask Mi

∈ M for the Green and Blue components of each one of the frames Fj ∈ Si.
Each frame of the segment becomes:

Fj = [FR
j ,F

G
j ·Mi,F

B
j ·Mi], ∀j ∈ [0, T − 1] (24)

In this way, we leave the original frames unchanged in non interpolated regions (white portions of the mask),
instead we suppress the Green and Blue components of the frames interpolated regions (black portions of the
mask). This results in a video with the same number of frames as the original video, but for each video segment
we have the interpolated regions highlighted through the Red channel. An example of this approach applied to
one individual frame is presented in Figure 11.

12

Figure 11: An example of highlighted result for a single frame Fj belonging to the segment Si, the
mask associated to the segment is Mi.

4. Experimental Setup

This section is devoted to discuss the experimental setup and the implementation details of the detector proposed
in Section 3. First, we explain how we built the dataset to conduct our experiments. Then, we fully describe
the training and testing procedures of the CNN and the SVM used by our detector. After that, we provide
some details on the localization application introduced in Section 3.6.

4.1. Dataset

Our goal is to detect video frame-rate interpolation, so we need a dataset which is composed by a mixture of
original and interpolated videos. In this way our detector can learn how to discriminate between them.
In this section we explore every aspect related to the composition of our dataset.
The creation procedure of the dataset is pictured in Figure 12.
In the following, we explain this procedure step by step.

4.1.1 Original Dataset

To build our dataset, we start from an already existing one, the Kinetics400 [9], which is available to download
at [10]. This dataset which we call K400 is composed by a total of 298,945 videos downloaded from YouTube
in the mp4 format, each of around 10s length and of variable frame-rate. It is worth noting that the original
version of this dataset was composed by, 306,245 videos, but today some of the videos cannot be downloaded
from YouTube anymore. K400 is widely used in the action recognition field since it contains 400 human action
classes, with at least 400 video clips for each action. However, we are not interested in the video action class
in our experiment, so the videos are all equivalent for us. The K400 is divided into three partitions: training
(Ktrain

400), testing (Ktest
400) and validation (Kval

400). The number of videos contained in each partition is shown in
Table 3.

K400 Ktrain
400 Ktest

400 Kval
400

VIDEOS 298,945 240,258 38,684 19,881

Table 3: Train, test and validation partitions sizes of the original dataset K400.

This amount of videos is too high to have an acceptable computational time during the training phase of our

13

Figure 12: Dataset creation pipeline. We started from the Kinetics400 (K400) dataset partitions (Ktrain
400 ,

Ktest
400 and Kval

400). We selected a part of the K400 videos to create the O dataset, composed by original
videos. We interpolated those videos at different rates to build the dataset I populated by interpolated
videos. Finally the experimental dataset D is obtained by merging O and I partitions.

O Otrain Otest Oval

VIDEOS 42,947 35,224 3,791 3,932

Table 4: Train, test and validation partitions of the original videos dataset O after the split.

detector. Therefore, we decide to use just a subset of K400. From each partition of K400 we select a set of videos
in order to compose a new dataset O. This dataset is composed by the three training, testing and validation
partitions called Otrain, Otest and Oval. In particular, we randomly extract 17916 videos from Ktrain

400 into Otrain,
1999 videos from Ktest

400 into Otest and 2000 videos from Ktest
400 into Otest. The video extraction is made in a way

that in the dataset O we have a balance of circa 80%, 10%, 10% respectively between the partitions Otrain,
Otest and Oval. Also, since in K400 some corrupted videos are present, we make sure that none of those are
included in O. All of the videos in the partition of O are obviously still of 10s length. In order to have a faster
processing for each video, we decided to split them into smaller videos of duration length of 3s.
From the practical point of view, video trimming has been implemented using FFMPEG [11]. Specificaly, we
executed the following command from on each video of the partitions of O:
f fmpeg −i input .mp4 −c copy −map 0 −segment_time 00 : 00 : 03 −f segment −reset_timestamps 1
output%03d .mp4

where
• "input.mp4" is the input video we want to split
• "-c copy", means that the videos resulting from the split are not re-encoded, basically they are just

trimmed.
• "-map 0" indicates that we are interested in the video stream only.
• "-segment_time" 00:00:03 represents the minimum output video length that we accept.
• "-f segment" is the actual filter that segments the input video.
• "reset_timestamps 1" indicates that the video timestamps are recomputed for each one of the output

videos.
• "output%03d.mp4" is the output videos name format, used to produce multiple videos from the input

one.
With this command the video split is made in a way that each new video starts with a key frame. In practice
we cut the input video in slices of 3s minimum always starting from a key frame.
The composition (after the splitting) of the partitions of O is showed in Table 4.
With these steps we have created the dataset O composed by its three partitions Otrain, Otest and Oval, as
shown in Figure 12.
As this is a dataset composed by original videos, our next step is to create interpolated videos from the videos
in O.

14

I Itrain
40fps Itrain

50fps Itrain
60fps Itest

40fps Itest
50fps Itest

60fps Ival
40fps Ival

50fps Ival
60fps

VIDEOS 42,947 11,742 11,741 11,741 1,265 1,263 1,263 1,312 1,310 1,310

Table 5: Composition of the various partition of the dataset I composed by videos interpolated at
different frame-rates (40fps, 50fps and 60fps).

D Dtrain Dtest Dval

VIDEOS 85,948 70,448 7,942 7,864

Table 6: Train, test and validation partitions of the final experimental dataset D.

4.1.2 Interpolated Videos Creation

The next step in the dataset creation is to produce some interpolated videos from the dataset O. To this
purpose, let us first explain what do we mean with interpolated video.
Suppose to have an original video VO with frame-rate f and duration t. To interpolate this video and create
the interpolated version VI by a factor x means to produce x frames between every two adjacent frames of VO

by interpolating pixels among those adjacent frames. Then, if we want VO and VI to have both duration t we
need to set the frame-rate of VI to f · (x+1). In our scenario we consider just cases in which the frame-rate of
the interpolated video is higher than the one of the original one (i.e., when x ≥ 1, meaning that we are adding
frames). In this way there is an actual interpolation, otherwise, instead of creating frames we would just drop
them.
To create our interpolated videos we proceed in this way. We want our detector to be as robust as possible, so
we select three frame rates named: r1 = 40fps, r2 = 50fps and r3 = 60fps. This because the majority of the
videos inside K400 have a frame-rate between 25 and 30 fps, so with these three rates we are sure to increase
the frame-rate with respect to the original video.
Our idea is to take the dataset O and create an equivalent dataset I, in which each video from O is interpolated
at fps r1 or r2 or r3. This procedure is graphically represented in Figure 12. In particular, we start from each
partition of O, and we interpolate one third of the videos at r1, and the other two thirds respectively at r2 and
r3.
In this way we produce three partitions of I from each partition of O. For example, from Otrain we produce
Itrain

40fps, Itrain
50fps and Itrain

60fps.
The same holds for Otest producing Itest

40fps, Itest
50fps, Itest

60fps, and also for Oval producing Ival
40fps, Ival

50fps and Ival
60fps.

The composition of the dataset I is sum up in Table 5. All of these videos are interpolated through FFMPEG,
by the minterpolate filter [12]. This filter allows to convert a video to a specified frame-rate using MCI. Here is
an example of how we interpolate videos with the following command:
f fmpeg −i input .mp4 − f i l t e r " minte rpo la te=’ fp s =60 ’:mi_mode=mci" output .mp4

In this command:
• "input.mp4" is the input video we want to interpolate
• "-filter minterpolate", is the application of the minterpolate filter.
• "fps=60" indicates the output video fps.
• "mi_mode=mci" represents the MCI which is applied to produce the interpolated frames (all of our videos

are generated with this option).
• "output.mp4" is the output (interpolated) video.

Finally, merging dataset O and dataset I, we create the dataset D which we use to conduct our experiments. D
is also composed by the three train (Dtrain), test (Dtest) and validation (Dval) partitions. Each of these partition
is obtained by merging the relative partitions of O and I. So, for example, Dtrain is composed by the videos
inside: Otrain, Itrain

40 , Itrain
50 , and Itrain

60 . The same holds for Dtest and Dval respectively, as pictured in Figure 12.
D composition is summarized in Table 6.

4.2. Experimental Setup

This section is mainly devoted to discuss about the details and the tools behind the implementation of the
model proposed in Section 3. First, we give an accurate description of the preprocessing operations seen in
Section 3.2, specifying every parameter. Then we take a close look at the training and testing phases regarding
the CNN and the SVM inside our detector. In the end we also analyze the principal features regarding the
interpolation localization experiment proposed in Section 3.6.
To conduct all of our experiments we used the Python [13] programming language. This is because it is very

15

simple and efficient when dealing with images and videos. In the following sections we also give a description
about the Python libraries and functions that we adopted during the implementation of our method.

4.2.1 Preprocessing

As seen in Section 3.2, the first operation to do on every video from our dataset D is to extract some consecutive
frames. In particular, from each video V ∈ D, we extract a segment S of T + 1 frames, with T = 16 (to be
precise we extract the first 17 frames and obviously, we discard videos with less than 17 frames). To do so,
we rely on a Python library named OpenCV [14]. OpenCV (Open Source Computer Vision Library) is an
open source computer vision and machine learning software library, which is very useful in video processing
applications. In particular we make use of the VideoCapture class and the VideoCapture.read() function
(OpenCV documentation can be found at [15]), with these we can easily open a video and extract its frames.
In our application, a segment of frames is handled through a numpy array (from the Numpy library [16]). Also,
each frame in the segment is contained in a numpy array itself with the pixel values ranging from 0 (minimum
intensity) to 1 (maximum intensity).
After the frames extraction, still using OpenCV, we convert all the frames belonging to S from the RGB
colorspace to the grayscale colorspace producing the segment Sgray. In this operation we utilize the function
cvtColor() which consents to change the colorspace of a specified input image.
Now, according to what we described in Section 3.2, we need to resize the frames of the Sgray segment. To do
that, we proceed in two different ways, depending if we are in the training or in the testing (and validation)
phases of our detector. To perform the resizing operations we rely on a Python library called Albumentations
[17]. Albumentations is a library to implement fast and flexible image augmentations, more details can be found
in this paper [18].
Let us look at the differences in the resizing policies between the training and testing phases.

Training Resizing Obviously, the training resizing operations just involve every grayscale video segment
Sgray produced from each input video V ∈ Dtrain ∈ D. In other words, we focus on the training partition of D.
As explained in Section 3.3.1, the first step is to apply a light resizement. All the frames of the Sgray segment
are resized to a height of r · H and to a width r · W , where r is a random resize factor picked in the range
between 0.9 and 1.1. In this way we produce the resized segment Srsz. This operation is executed through the
Resize class of the Albumentations library.
Then, from all the frames in Srsz we extract a N ×N center crop, with N = 224 pixels, producing the segment
SN×N . Also this operation is realized through Albumentations, in particular using the CenterCrop class.

Testing and Validation Resizing For the segments belonging to the videos V ∈ (Dtest,Dval) ∈ D, the
resizing procedure is a little different as discussed in Section 3.3.1. From the frames of Sgray we just extract a
N×N center crop with N = 224 pixels, in the exact same way as we do in training, producing the segment SN×N .

The last thing to do in the preprocessing stage, is to create the three input segments of T = 16 frames length
starting from SN×N , as introduced in Section 3.3.2. This procedure is equivalent for all the videos of all the
partitions of D.

Original Frames Segment This segment Sfra is already equivalent to the segment SN×N , so no further
actions are required.

Residuals Segment In order to obtain the residual segment Sres, we saw in Section 3.3.2 that a simple
frame by frame difference is enough. Our idea is so to calculate the difference between two numpy arrays. The
first one contains the frames of SN×N from the second to the last. The second one contains the frames of SN×N

from the first to the second last. Subtracting element by element the second array to the first one and then
taking the absolute value of the result leads us to the segment Sres.
In Figure 13 this approach is summarized.

Optical Flow Segment As discussed in Section 3.3.2, to get to the optical flow segment Sopt, we follow
the Farneback method. The idea is to calculate the flow between every two consecutive frames in the segment
SN×N . In this specific optical flow computation, it is required to convert each frame pixel value into the range
from 0 to 255 (8-bit image), after the flow calculation we convert back to the range between 0 and 1. First, we
define the mask Mopt composed by the three channels each of N ×N dimension, in the HSV colorspace: Mh

opt,
Ms

opt and Mv
opt. We initialize the whole hue and value channels (first and last) with all zeros, instead the whole

saturation channel with the maximum saturation (255). Now, considering two generic consecutive frames of

16

Figure 13: Residuals segment creation approach. The residuals segment Sres is produced by the
subtraction between First arrray (from second to last element of the preprocessed segment SN×N) and
Second array (from first to second last element of the preprocessed segment SN×N). Then the absolute
value of the pixels value is taken.

SN×N (named Fi and Fj), the flow Oij consists in a two channel array containing the 2D optical flow vectors.
This flow is produced through the OpenCV library (a sample of code is available here [19]), using the function
calcOpticalFlowFarneback(), which receives as input:

• prev: previous grayscale frame (Fi)
• next: actual grayscale frame (Fj)
• flow: None
• pyr_scale:0.5
• levels:3
• winsize:15
• iterations:3
• poly_n:5
• poly_sigma:1.2
• flags:0

For a detailed description of all the parameters, please refer to [20].
We then calculate the magnitude ρij and direction Φij of the 2D vectors by the OpenCV function cartToPolar(),
which receives as input the two channels of the computed flow Oij . After that, we use Φij and ρij (normalized in
the range between 0 and 255 through the OpenCV function normalize()) respectively to set the hue and value
channels of the mask Mopt according to Equation 9 and Equation 10. Now, the mask Mopt is a representation
of the dense optical flow between Fi and Fj . We convert the mask back to the grayscale colorspace (again using
the OpenCV function cvtColor()) and also we convert the pixel values back to the range between 0 and 1.
Repeating this set of operations for all the consecutive frames in SN×N and collecting the results Mopt we get
our optical flow segment Sopt.

4.2.2 Training Settings

In this section, we explore the training phase of our detector, differentiating between the two principal compo-
nents: CNN and SVM.
For the training and the construction of the CNN, we choose to use PyTorch [21]. PyTorch is an open source
machine learning framework that accelerates the path from research prototyping to production deployment.
Instead, for the training of the SVM, we used Sci-kit learn [22]. Scikit-learn is an open source machine learning
library that supports supervised and unsupervised learning. It also provides various tools for model fitting, data
preprocessing, model selection, model evaluation, and many other utilities.
Now, let us analyze the main fratures related to the training of these two elements.

CNN training settings Since our CNN is composed by three distinct branches (Figure 4), and each one
of them has to process a different kind of input, we decide to train the branches individually. This decision is
taken in order to evaluate the prediction accuracy of the single branches which we compare in the next section.
Once trained, the three branches are then aggregated.
We realize an individual PyTorch model for each branch (the structure is equivalent for each one of them

17

according to Table 1). Each branch model is trained for e = 15 epochs on the videos from the Dtrain partition
of the dataset D. At the end of each epoch, we validate the branch model through the videos from the Dval

partition of the dataset D. We train our branches in a supervised training fashion, meaning that each video is
labeled (0 for original videos from O, 1 for interpolated videos from I). The weights of the layers composing a
branch model are updated through an Adam optimizer [23] with an initial learning rate lr = 0.01 and through
a Binary Cross Entropy loss (with logits) [24]. Also, we use a learning rate scheduler in order to adjust the
learning rate of our branch models based on the average loss calculated during the validation phase. The
scheduler reduces the learning rate if the validation loss does not decrease for three epochs straight.
During each epoch, the videos from Dtrain are extracted in batches of 32 videos each. This extraction is
performed in a way that the 32 videos are composed by 16 original videos plus the 16 interpolated versions of
those videos. These videos are then preprocessed as we described in Section 4.2.1, producing the video segment
related to the specific branch input type. So, if we are training the frames branch, from the 32 videos in each
batch we produce 32 original frames segments (Sfra). For each batch, we then create two tensors:

• X, containing the 32 video segments related to the branch input type. Its size is [32, 1, 16, 224, 224].
Where 32 is the batch size (number of total segments), 1 is the number of channels of each frame
(grayscale), 16 is the number of frames in each segment and 224, 224 is the spatial dimension of the
segments frames

• Y, containing the labels associated to the 32 segments.
About the segments tensor:

X = [x0,x1, ...,x31] (25)

Where the generic xi, with i ∈ [0, 31] is the i-th preprocessed video segment in the batch. For example, if we
are training the original frames branch model, in X we have 32 video segment composed by the preprocessed
original frames.
About the labels tensor:

Y = [y0, y1, ..., y31] (26)

More precisely: {
yi = 0, if i-th segment in X (xi) is from an original video
yi = 1, if i-th segment in X (xi) is from an interpolated video

(27)

Where yi is a generic label related to the i-th segment contained in X (xi), with i ∈ [0, 31].
We feed X to the branch model, which after processing the data through its layers, produces the actual logits
lgt as output.
The logits contain the output score of the branch model for all of the 32 segments in the batch:

lgt = [lgt0, lgt1, ..., lgt31] (28)

Where: {
lgti < 0, if i-th segment in X (xi) is predicted not interpolated
lgti > 0, if i-th segment in X (xi) is predicted interpolated

(29)

With i ∈ [0, 31].
The logits tensor lgt along with the labels tensor Y are then used to compute the loss function. As said before,
we use a Binary cross entropy loss. The loss computation is performed through the class BCEWithLogitsLoss
from the PyTorch torch.nn module (more details at [25]).
The approach of the BCEWithLogitsLoss class is to calculate the individual losses for each segment in the batch:

li = −ωn · [yi · log(σ(lgti)) + (1− yi) · log(1− σ(lgti))], i ∈ [0, 31] (30)

Where ωn is set to 1, and σ means the application of a Sigmoid layer [26] to lgti:

σ(lgti) =
1

1 + exp−lgti
(31)

After the computation of the individual losses we build the total loss (related to the current batch) LBCE as:

LBCE = [l0, l1, ..., l31] (32)

Finally, we get the loss l by averaging between the individual losses:

l =

∑31
i=0 li
32

(33)

18

We backpropagate l to update the branch model weights. This procedure is obviously repeated for each batch.
At the end of each epoch, we validate our branch model by extracting videos from Dval in batches of 32 videos
each. Basically we repeat the loss calculation procedure as done in training, but the resulting loss is used as
input for the learning rate scheduler. In this way the learning rate can be changed according to the validation
loss value.
The same operations are repeated for each epoch.
This process is applied to train and validate each individual branch model.

SVM training settings Once the three branch models are all trained, we connect them before the classifier
stage (as in Figure 1). This classifier has the goal of taking the three output scores from the CNN branches and
generate a prediction for the relative input segment.
We choose to rely on a SVM able to discriminate between two classes (0 for original video segments, 1 for
interpolated video segments) based on the analysis of the aggregated CNN output scores. In particular we
implement a Support Vector Classifier (SVC) through the SVC class from the module svm of the Python library
Sci-kit learn. We use a SVC with a rbf kernel [27].
The training procedure is very simple.
For each video from Dtrain (after preprocessing it according to Section 4.2.1), we compute the CNN output
scores o1, o2 and o3 as seen in Section 3.4. These scores are then packed together in the list o (see Equation 14).
We also store the video segment label (remember that is 0 for a segment from an original video, 1 otherwise).
So, for all the videos in Dtrain, we collect all the labels into a list lbltot and all the packed scores o into a list
scotot. Finally we feed lbltot and scotot to the svm.SVC.train() function which finds a boundary between the
two classes based on the received labels and scores.
In this way, we are able to predict the belonging class of a video segment by analyzing the three branch scores
produced from an input video segment.

4.2.3 Testing Settings

In this section we describe the main settings related to the testing phase of the detector. As done for the training
phase, we test the CNN and the SVM in separate ways. First, we test the trained individual branch models
(composing our CNN), to have a clear view on how they perform in identifying interpolation traces. Then we
also test the SVM, evaluating the global performance of our detector.
Comparisons between the branch models and the global model performances are discussed in the next section.
Obviously, the testing phase involves the videos from the dataset D test partition Dtest.

CNN testing settings The test for each branch model is carried on in the following way. We extract videos
from Dtest in batches of 32 videos each. We preprocess those videos according to Section 4.2.1 (remember that
training and testing preprocessing have a different resizing policy). Then, we create the segments and labels
tensors X and Y in the exact same way as in the training phase (see Section 4.2.2, in particular Equation 25
and Equation 26). We feed X to the branch model producing the logits lgt. After that, we apply a sigmoid
layer onto the logits (as in Equation 31), in this way we transform each logit lgti ∈ lgt in the probability σ(lgti).
This is the probability that the segment corresponding to the i-th (xi ∈ X) segment from the batch belongs to
class 1 (interpolated segment). From these probabilities we compute the segments predictions:{

pi = 0, if σ(lgti) < 0.5

pi = 1, if σ(lgti) >= 0.5
(34)

With i ∈ [0, 31] and with pi representing the prediction related to the i-th video segment in the batch. Now we
just compare the predictions pi to the respective labels yi ∈ Y (labels values is indicated in Equation 27) for
each segment in the batch to find how many predictions are correct.
We repeat this procedure for each batch and compute the final testing accuracy dividing the total number of
correct predictions (among the various batches) for the total number of videos in Dtest.

SVM testing settings With the testing of the SVM we intend to evaluate the whole detector performances.
For each video from Dtest we follow this procedure. First, we preprocess the video (according to Section 4.2.1).
Then, we feed the three video segments created in the preprocessing stage (Sfra, Sres and Sopt) to the three
CNN branches (obviously already trained) obtaining the three scores o1, o2 and o3. We collect these scores in
o (as in Equation 14). After that, o is fed into the trained SVC which predicts the belonging class of the video
segment extracted from the video. We repeat this procedure for each video, confronting the video labels with
the obtained predictions. We compute the number of correct predictions and then we divide it for the total
number of videos from Dtest obtaining the final testing accuracy.

19

4.2.4 Localization

For what concerns the application of the detector to the localization problem (exposed in Section 3.6), here we
discuss the details of our implementation.
To conduct this experiment, we need to have already trained the detector, from the individual branches to the
classifier.
Since our goal here is to localize interpolation inside a video, the idea is to create a new dataset containing
videos that are locally interpolated, in a way that we can localize the interpolation in them.
So far, we dealt with videos in which the interpolated frames were fully interpolated (the videos from I). Now,
we create this new dataset Itest

loc . This dataset contains all of the videos from the test partitions of I (so from
Itest

40fps, Itest
50fps and Itest

60fps) but in a locally interpolated fashion. To locally interpolate a video we proceed in the
following way.
For each video from the test partitions of I, we take the original version of it (residing in Otest). We select a
N ×N spatial region, with N = 224, and for each frame of the original video, we substitute the selected region
with the exact same region but taken from the interpolated version of the video. For simplicity, but without
loss of generality, the selected region is the same for each video and corresponds to the first 224× 224 block in
the upper left corner of the frames. Despite this may seem not realistic in a real-world splicing application, this
choice makes sense in the testing scenario. An actual malicious user would likely splice a region from an alien
video into the forged video (e.g., to insert some objects). However, this operation may introduce additional
artifacts, and not just interpolation ones. With our strategy, we create the most challenging forgery for our
localization technique, as the interpolated region cannot be distinguished by visual inspection, and only frame-
rate interpolation traces are present.
The videos created with this procedure are collected in the Itest

loc dataset.
In Figure 14 an example of the creation of the locally interpolated video frames is represented. In the example,
the level of motion in the interpolated area is low, so the original and the locally interpolated frames are really
hard to distinguish.
Now we can conduct our localization experiment on the videos from the new dataset Itest

loc .
The goal of this experiment is to start from locally interpolated videos and to produce output videos in which
the interpolated regions are highlighted.
So, the idea is to process each video from Itest

loc in the exact same way as explained in Section 3.6.
Let us consider this procedure for a single video from Itest

loc .
We divide the video in segments of T + 1 frames, with T = 16 (discarding the video if it has less than T + 1
frames). Focusing on a single segment, we subdivide it into subsegments of the same T+1 frames as the segment,
but with a spatial dimension of 22 × 224 pixels. Each of this subsegments represents the T + 1 frames of the
segment but taken in a different N ×N spatial region. In practice, these subsegments are spatial subdivision in
N×N non overlapping blocks of the T +1 frames in the segment. One by one, we preprocess these subsegments
(applying the testing resizing policy as in Section 3.3.1) generating the three input segments(Sfra, Sres and
Sopt). We feed these three segments to our detector which computes a prediction related to the subsegment.
As explained in Section 3.6 we create the subsegment submask starting from the subsegment prediction (see
Equation 21). We repeat the procedure for each subsegment created from the segment, and we concatenate
the resulting masks to compose the segment mask (see Equation 22). This one indicates which regions are
interpolated inside the segment. Then, we can do the same for all the segments inside the video, collecting all
the segment masks (see Equation 23). Finally, following the procedure indicated in Section 3.6.3, we can realize
the output video relying on the generated segment masks.
So, we follow the previous steps for each video from Itest

loc producing the highlighted output videos.
Also, during this experiment, we want to measure the subsegments prediction accuracy of our detector. In
particular this accuracy is obtained by dividing the number of correct subsegment predictions for the total
number of analyzed subsegments (among all segments of all videos from Itest

loc).
In Section 5.5 we show some results in terms of output videos and localization accuracy.

5. Results

This section is devoted to the discuss the results of our work. More specifically, we analyze the results of our
detector, not just globally but also in terms of single branches. We investigate on the impact of different resizing
policies that can be applied to the video segments. Also we compare our results against some previous works
in this very same field. Finally, we present some localization results.

20

Figure 14: An example of the construction of a locally interpolated video frame. The upper left 224
x 224 block of the original frame is replaced with the same block from an equivalent but interpolated
frame.

RESIZING POLICYBRANCH
MODEL SpeedNet Our

Original Frames 60.511% 94.503%
Residuals 98.224% 99.205%

Optical Flow / 96.435%

Table 7: Comparison between the branch models testing accuracy values in the two alternative resizing
policy approaches.

5.1. Frames Resizing Comparison

We explained the adopted resizing policy in Section 3.3.1. Here we show the comparison against another resizing
approach. This alternative approach still differentiate between the training and testing phases of our detector.

Training alternative resizing In the training phase, the frames of a video segment are resized to a height
and a width of N , where N is an integer value between 64 and 336. So, here the dimension of the frames is
different from the 224 x 224 that we use in the other policy. This is possible because our CNN branch models
are fully connected, and independently from the input segment size (in terms of spatial dimension and number
of frames), it packs everything to one single output value.

Testing alternative resizing In the testing phase, the frames of a video segment are resized to a height
of 224 pixels but maintaining the aspect ratio of the original frames. Then a 224 x 224 center crop is extracted.

This resizing policy is also used in the Google SpeedNet [5] implementation. Since SpeedNet shares a consistent
part of its network architecture with our detector, we decided to try its resizing method. In Table 7 a comparison
between the resizing policies is made. In the table are shown the accuracy levels for the individual branch models
depending on the applied resizing policy. Since it is evident that our resizing policy is the best in the original
frames and residuals cases, we have not tested it for the optical flow model.

21

TRAINING
Original Frames Residuals Optical Flow

Original Frames 94.503% 49.986% 50.071%
Residuals 50.426% 99.205% 55.312%TESTING

Optical Flow 59.801% 50.298% 96.435%

Table 8: Testing accuracies of the cross-test between the three branch models.

OTHER FPS (SINGLE BRANCH)
Original Frames Residuals Optical Flow

99.565% 99.565% 98.625%

Table 9: Evaluation of the branch models on fps unseen during training. Each model has been tested
on 300 randomly selected videos from O interpolated at 70, 80 and 90 fps. In the table are indicated
the testing accuracies.

5.2. Single Branches Scores and Comparison

A first glance of the testing accuracy obtained by each branch model is shown in Table 7. We can see that
the model trained on the residuals segments is the one which performs better (independently from the resizing
policy).
Another comparison between the branch models is represented in Table 8. In this table, we show how each
branch model performs when trained on a segment type and tested on another. Obviously, training and testing
on the same segment type gives the best results. In Table 9 is represented another test that we made. In
particular, we selected 300 videos from the K400 and we interpolated 100 of them at 70, 100 of them 80 and 100
of them 90 fps, so at rates not considered in the training phase.
In Table 9 the testing accuracies are presented.

5.3. Global Network Performance

To evaluate the global performances of our detector, we need to focus on the classification stage. As discussed in
Section 4.2.2, we implemented a SVC to classify the aggregated scores of the three branches. Two alternatives
have also been tested. In Table 10, the testing accuracies related to the three approaches are shown.
In particular, the linear layer has the purpose of generating one single score starting from the three branch
outcomes for each video segment, then a sigmoid is applied to transform this score into a probability (which
is then rounded to the nearest integer to get the final class, 0 or 1). The simple average consists in averaging
together the three branch outcomes, and applying a sigmoid layer to transform this average into a probability
(which is then rounded to the nearest integer to get the final class, 0 or 1).
Another test has been conducted similarly to what we did in the single branch evaluation. This is related to
the testing of interpolated videos at rates unseen during the training phase (on the exact same 300 videos as
the single branch cases). In Table 11 the testing accuracies are shown.
Table 9 and Table 11 show that our model is very efficient in detecting interpolation in rates not considered
during training.

5.4. Comparison Against the State of the Art

So far we showed the results of our experiments, now let us compare our detector against some of the already
existing works in the video interpolation field.
In this section we focus on two recent works:

CLASSIFIER TYPE
SVC LINEAR LAYER SIMPLE AVERAGE

99.630% 99.516% 99.544%

Table 10: Comparison between the testing accuracies obtained from the different types of classification
approaches.

22

OTHER FPS (GLOBAL)
SVC LINEAR LAYER SIMPLE AVERAGE
100% 100% 100%

Table 11: Testing accuracies of each classification alternative on 300 randomly selected videos from O
interpolated at 70, 80 and 90 fps.

METHODS COMPARISON
Our SpeedNet S&H

99.630% 75.600% 91.700%

Table 12: Comparison between our detector against ’SpeedNet’ and ’Stamm and Hosler’ detector
(S&H).

• SpeedNet
• Stamm and Hosler speed manipulation detector

Below, give a brief introduction on these two methods.

SpeedNet We already mentioned SpeedNet because its network structure is very similar to our detector
branch models. The details about this work can be found at [5].
In a few words, the goal of SpeedNet is to automatically predict the “speediness” of moving objects in a video.
As in our case, it is a binary classification problem.
A video segment is extracted from an input video, it is then fed to the SpeedNet CNN and then it is predicted
as ‘normal speed’ or ‘sped up’.
So, SpeedNet does not directly deal with interpolated videos, but with sped up videos. Anyway it is almost the
same concept, because speeding up a video means upsampling a video inserting new frames between already
existing ones (these new frames can either be interpolated or just copies of adjacent frames). These frames are
then red with the same frame rate as for the original video, resulting in a reduced duration.
Another thing in common with our experiment, is that SpeedNet is also trained on videos from the Kinetics
dataset, the only difference is that they use a lot more videos than us (246,000 for training and 50,000 for
testing).

Stamm and Hosler speed manipulation detector Like SpeedNet, this work developed by Brian C.
Hosler and Matthew C. Stamm is also related to video speed manipulation detection.
The problem is still a binary classification one, given an input video, the goal is to predict if it has undergone
speed manipulation or not. In this paper [4] the implementation of the detector is discussed.
The aim of this work is to detect video speed manipulation in a video and to estimate the rate by which the
video’s speed has been modified. In particular, they identify a trace left by video speed manipulation inside the
encoded frame size sequence (EFS).
The EFS sequence is composed by the number of bytes used to encode each frame in the video. In Figure 15
we show an example of three different EFS sequences: for an original video at 30fps and for the same video
but interpolated at 15fps and 60fps. For example, the version at 60fps of the original video consists in inserting
a new (interpolated frame) between two every consecutive frames in the original video. In their work, the
authors demonstrate that the encoding size in bytes associated to the P (red in Figure 15) and B (orange in
Figure 15) frames decreases for interpolated videos. This because, the information in the interpolated frames
can be obtained from adjacent frames, so the encoding size of the interpolated frames decreases.
The EFS sequence is then processed and fed into a SVM to state if a video has been altered. The SVM is trained
with the processed EFS sequences of 372 videos from the DFDC dataset [28], plus the 372 altered versions for
each one of the speed manipulation rates that they used (for a total of 6334 videos).
Now, let us look at a comparison between our detector and the above mentioned methods.
In Table 12

5.5. Interpolation Localization Results

In this section we report some results concerning the localization experiment. As said in Section 4.2.4, the goal
of the localization experiment was to produce output videos in which the interpolation zones were highlighted
for each segment inside an input video.
Also the secondary goal was to measure the subsegments prediction accuracy.

23

(a) 30fps (original) video EFS sequence

(b) 15fps (interpolated) video EFS sequence

(c) 60fps (interpolated) video EFS sequence

Figure 15: Three EFS sequences produced from three versions of the same video. For each diagram, on
the X-axis we represent the frames, on the Y-axis we indicate the encoded frame byte size. I-frames,
B-frames and P-frames are indicated respectively in green, red and orange.

24

We can state that during the experiment, the 98.942% of the subsegments were correctly detected either as
original or interpolated.
In Figure 14 a representation of the creation of the locally interpolated video frames is shown. Now let us look
at the output video structure. In Figure 16 the first three frames of three different segments from an output
video are shown.
We remind that the interpolation zone for every input video is located in the first 224x224 block in the upper
left corner of each frame.
So, for the frames pictured in Figure 16 the localization is perfect.

(a) segment 1, first frame (b) segment 2, first frame (c) segment 3, first frame

Figure 16: Samples of frames from three random video segments from an output video. Analysis
performed with subsegments of dimension 224x224 and 16 frames segments. The predicted interpolated
sectors are marked in red.

Remember that this analysis is performed with subsegment of dimension 224x224 and with segments of 16
frames each, so we are in the exact same condition as the one adopted in the training phase.
To vary things a little bit, we also show some examples in which the analysis parameters are different from the
training ones.
In Figure 17 the same three frames from the same three segments (from Figure 16) are shown, but this time
the analysis has been performed with subsegments of dimension 128x128 and on 16 frames segments.

(a) segment 1, first frame (b) segment 2, first frame (c) segment 3, first frame

Figure 17: Samples of frames from three random video segments from an output video. Analysis
performed with subsegments of dimension 224x224 and 16 frames segments. The predicted interpolated
sectors are marked in red.

As we can see from Figure 17 the localization is not so precise especially for the second and third segments.
Anyway, if we keep the same subsegment dimension (224x224) but we increase the number of frames for each
segment (32 for example) we have a better result. This last approach is pictured in Figure 18.

(a) segment 1, first frame (b) segment 2, first frame (c) segment 3, first frame

Figure 18: Samples of frames from three random video segments from an output video. Analysis
performed with subsegments of dimension 128x128 and 32 frames segments. The predicted interpolated
sectors are marked in red.

This results show that conducting the localization experiment on the same conditions as the training ones, leads

25

to better results.
Neverthless, a trade off between the subsegments size and the number of frames contained in each segment can
be found.

6. Conclusions

In this work, we considered the problem of identifying traces of frame-rate interpolation in video sequences. To
this purpose we proposed a detector which is trained in a supervised fashion to understand if a video has been
frame-rate interpolated. The proposed methodology exploits the idea of applying different kinds of preprocess-
ing to the video under analysis in order to better expose frame-rate interpolation traces. Preprocessed videos
are then passed to a CNN to extract salient features, and an SVM that performs the final classification.

Our method has been validated through a series of experiments. To conduct our experiments, we built a brand
new dataset composed by original videos and the correspondent interpolated (at different frame-rates) versions,
starting from the Kinetics400 dataset. We have demonstrated the precision of our model, evaluating it from
multiple perspectives and proposing different alternatives in the implementation process. Moreover, we have
compared against two recently-proposed state-of-the-art techniques, showing that the proposed method is able
to outperform both.

Finally, we also made a few steps into the localization of the frame-rate interpolated zones inside a video, rather
than just the simple detection, demonstrating a new particular use of the detector.

Despite the promising achieved results, this work has still room for improvement. As a possible continuation or
future development of our work, we would like to focus on:

• investigating the effect of training and testing on interpolated videos at frame rates which are different
from the adopted ones, in order to increase the variability in the experiment.

• trying to repeat the detection and localization experiments with different parameters, for example ex-
tracting video segments of different length or different spatial dimension, to see how this affects the final
detection/localization.

• evaluate different kind of video formats with respect to MP4, especially focusing on the effect of possible
video coding techniques.

• interpolate videos with different types of interpolation methods with respect to the motion compensated
ones, also using other tools rather than just FFMPEG.

References

[1] John W. Woods. Chapter 11 - digital video processing. In John W. Woods, editor, Multidimensional
Signal, Image, and Video Processing and Coding (Second Edition), pages 415–466. Academic Press, second
edition edition, 2012.

[2] P. Bestagini, S. Battaglia, S. Milani, M. Tagliasacchi, and S. Tubaro. Detection of temporal interpolation
in video sequences. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 3033–3037, 2013.

[3] Chang Liu and Matthias Kirchner. Cnn-based rescaling factor estimation. pages 119–124, 07 2019.

[4] Brian C. Hosler and Matthew C. Stamm. Detecting video speed manipulation. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 2860–2869, 2020.

[5] Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, William T. Freeman, Michael Rubinstein, Michal
Irani, and Tali Dekel. Speednet: Learning the speediness in videos. https://arxiv.org/abs/2004.06130,
2020.

[6] Rafael C. Gonzalez and Richard E. Woods. Digital image processing. Prentice Hall, 2008.

[7] Gunnar Farneback. Two-frame motion estimation based on polynomial expansion. volume 2749, pages
363–370, 06 2003.

[8] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin P. Murphy. Rethinking spatiotemporal
feature learning: Speed-accuracy trade-offs in video classification. In ECCV, 2018.

26

https://arxiv.org/abs/2004.06130

[9] Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew Zisserman. The
kinetics human action video dataset. CoRR, abs/1705.06950, 2017.

[10] Kinetics400 download. http://deepmind.com/kinetics.

[11] Ffmpeg. https://ffmpeg.org/.

[12] Minterpolate filter. http://underpop.online.fr/f/ffmpeg/help/minterpolate.htm.gz.

[13] Python programming language. https://www.python.org/.

[14] Opencv python library. https://opencv.org/.

[15] Opencv documentation. https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html.

[16] Numpy python library. https://numpy.org/.

[17] Albumentations python library. https://albumentations.ai/.

[18] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail Druzhinin, and
Alexandr A. Kalinin. Albumentations: Fast and flexible image augmentations. Information, 11(2), 2020.

[19] Optical flow with opencv. https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html.

[20] Opencv farneback optical flow parameters. https://docs.opencv.org/3.4/dc/d6b/group__video_
_track.html#ga5d10ebbd59fe09c5f650289ec0ece5af.

[21] Pytorch. https://pytorch.org/.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[23] Adam optimizer. https://pytorch.org/docs/stable/generated/torch.optim.Adam.html.

[24] Binary cross entropy loss with logits. https://pytorch.org/docs/stable/generated/torch.nn.
BCEWithLogitsLoss.html.

[25] Pytorch torch.nn module. https://pytorch.org/docs/stable/nn.html.

[26] Sigmoid layer. https://pytorch.org/docs/stable/generated/torch.nn.Sigmoid.html.

[27] Radial basis function kernel. https://scikit-learn.org/stable/modules/generated/sklearn.
gaussian_process.kernels.RBF.html.

[28] Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes, Menglin Wang, and Cristian Canton
Ferrer. The deepfake detection challenge (dfdc) dataset. https://arxiv.org/abs/2006.07397, 2020.

27

http://deepmind.com/kinetics
https://ffmpeg.org/
http://underpop.online.fr/f/ffmpeg/help/minterpolate.htm.gz
https://www.python.org/
https://opencv.org/
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
https://numpy.org/
https://albumentations.ai/
https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html
https://docs.opencv.org/3.4/dc/d6b/group__video__track.html#ga5d10ebbd59fe09c5f650289ec0ece5af
https://docs.opencv.org/3.4/dc/d6b/group__video__track.html#ga5d10ebbd59fe09c5f650289ec0ece5af
https://pytorch.org/
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/generated/torch.nn.Sigmoid.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.html
https://arxiv.org/abs/2006.07397

Abstract in lingua italiana

Al giorno d’oggi, grazie alla diffusione di dispositivi di acquisizione video a portata di mano e all’uso molto
diffuso di social network e app di messaggistica, i video vengono condivisi facilmente e sono diventati parte della
nostra vita quotidiana. Tuttavia, la manipolazione dei video è diventata alla portata di tutti grazie alla grande
disponibilità di software, semplici da utilizzare, per la modifica video. Ciò ha sollevato nuove preoccupazioni
sociali, poiché la distribuzione di video manipolati in modo dannoso può portare a gravi conseguenze (ad esempio,
diffamazione delle persone, diffusione di notizie false, formazione di opinioni di massa, ecc.). Per questo motivo,
la comunità di forensica multimediale ha iniziato a sviluppare una serie di tecniche per stabilire l’autenticità
e l’integrità dei video. L’obiettivo di questa tesi è di arricchire il parnorama delle tecniche di forensica video,
proponendo un detector per identificare l’interpolazione frame-rate di video. Dato un video da analizzare, il
nostro obiettivo è di identificare se il video ha subito qualche operazione di sovra campionamento frame-rate che
sono solitamente applicate quando molteplici video vengono uniti, o per nascondere alcune parti di un video.
La tecnica proposta è basata su un insieme di Convolutional Neural Network (CNN) che lavorano su tre diversi
domini video (ovvero, pixels, optical flow e residui di frame), e su una Support Vector Machine (SVM) per una
classificazione finale. I risultati mostrano che il metodo proposto supera in prestazioni i più recenti detector di
interpolazione frame rate di video, e può anche essere usato per localizzare le regioni di spazio in cui un video
è stato interpolato.

Parole chiave: forensica video, interpolazione, frame-rate, deep learning, convolutional neural network

Acknowledgements

This thesis represents the conclusion of two years at MAE (and a little more) in which I learned a lot of new
things and met a lot of new people.

I really want to thank each one of those people, colleagues and professors, that I met along the way.

Among them, a special mention goes to Daniele Ugo Leonzio with whom I shared a lot of moments.

A huge thank to my family and friends for always supporting me.

Finally, a special thank to prof. Paolo Bestagini for the help and the support during the months in which this
work was developed.

Simone Mariani

28

	Introduction
	Problem Formulation
	Proposed Method
	Proposed Pipeline
	Video Preprocessing
	Frames Selection
	Frames Resizing
	Input Type (Frames, Residuals or Optical Flow)

	CNN Single Branch Structure
	CNN Branches Aggregation
	Localization Application
	Video Segmentation
	Mask Creation
	Localization Output Visualization

	Experimental Setup
	Dataset
	Original Dataset
	Interpolated Videos Creation

	Experimental Setup
	Preprocessing
	Training Settings
	Testing Settings
	Localization

	Results
	Frames Resizing Comparison
	Single Branches Scores and Comparison
	Global Network Performance
	Comparison Against the State of the Art
	Interpolation Localization Results

	Conclusions

